REDACTED APPLICATION

REGULATION 13 PERMIT APPLICATION FOR THE CONSTRUCTION OF A COAL TO GASOLINE PLANT IN MINGO COUNTY, WEST VIRGINIA

Prepared for:

TransGas Development Systems, LLC

630 First Avenue, Suite 30G New York, New York 10013-3799

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

E-Mail: potesta@potesta.com

Project No. 0101-08-0324

December 2008

TABLE OF CONTENTS

Application for NSR Permit	SECTION I - III
Business Certificate	ATTACHMENT A
Site Location Map	ATTACHMENT B
Installation and Start Up Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Process Flow Diagram(s)	ATTACHMENT F
Process Description	ATTACHMENT G
Material Safety Data Sheets	ATTACHMENT H
Emission Unit Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Fugitive Emissions Data Summary Sheet	ATTACHMENT K
Emissions Unit Data Sheet(s)	ATTACHMENT L
Air Pollution Control Device(s)	ATTACHMENT M
Supporting Emissions Calculations	ATTACHMENT N
Monitoring, Recordkeeping, Reporting and Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P
Business Confidential Claim.	ATTACHMENT Q
Supplemental Information	APPENDIX
Attachments not applicable to this submission: Attachment Attachment S, Title V Permit Revision Information.	R, Authority Forms and

SECTION I - III GENERAL APPLICANT INFORMATION

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT

AND

601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.wvdep.org/dag	TI		MIT REVISION (ONAL)	V
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION	. ' _	TYPE OF 45CS	R30 (TITLE V) REV	ISION (IF ANY):
☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY	GICNIEICANT			IODIFICATION
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-F	IF ANY BOX ABOUT INFORMATION A	OVE IS CHECKED AS ATTACHMENT), INCLUDE TITLE V I S TO THIS APPLICA	REVISION ATION
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and				
Sec	tion I. General			
Name of applicant (as registered with the WV Secreta TransGas Development Systems, LLC	ry of State's Office):	2. Federal En	nployer ID No. <i>(FE)</i> 20343110	IN):
3. Name of facility (if different from above):		4. The applicar	nt is the:	
TransGas Coal to Gasoline Plant			OPERATOR	⊠ вотн
5A. Applicant's mailing address: 630 First Avenue, Suite 30G New York, New York 10016-3799	5B. Facility's pres New Facility Mingo County, We		dress:	
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorporation change amendments or other Business Registration □ If NO, provide a copy of the Certificate of Authority amendments or other Business Certificate as Attach 	ation/Organization/Limi Certificate as Attachmer /Authority of L.L.C./Reg	ited Partnership nt A.	p (one page) includ	
7. If applicant is a subsidiary corporation, please provide	the name of parent corpo	oration: No		
8. Does the applicant own, lease, have an option to buy	or otherwise have control	of the proposed	d site? 🖾 YES	□NO
➡ If YES, please explain: Applicant has an option	on the site with the Ming	go County Devel	opment Authority	
➡ If NO, you are not eligible for a permit for this source). 			
9. Type of plant or facility (stationary source) to be consadministratively updated or temporarily permitted crusher, etc.): Coal to Gasoline Plant	structed, modified, reloc l (e.g., coal preparation p	cated, 1 lant, primary	 Standard Indus Classification (the facility: 2999 	
11A. DAQ Plant ID No. (for existing facilities only): New Facility	11B. List all current 45C associated with this New Facility			
All of the required forms and additional information can be	found under the Permitting	Section of DAO)'s website, or reque	sted by phone

12A.					
For Modifications , Administrative Updates or Te present location of the facility from the nearest state		please provide directions to the			
→ For Construction or Relocation permits, please road. Include a MAP as Attachment B.	provide directions to the proposed new s	ite location from the nearest state			
The facility will be located within the proposed Min WV Route 52 on the proposed connector road bet Current directions to the site from Charleston, Wes	ween WV Route 52 and the King Coal H	ighway (under construction).			
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:			
Not Applicable	Wharncliffe	Mingo			
12.E. UTM Northing (KM): 4,162.9517	12F. UTM Easting (KM): 417.917	12G. UTM Zone: 17			
13. Briefly describe the proposed change(s) at the facili	ty:				
This application is for construction of a new facility.					
14A. Provide the date of anticipated installation or chan from the WVDEP and other necessary regulatory approduction. If this is an After-The-Fact permit application, providing did happen: /	vals (2010 anticipated).	14B. Date of anticipated Start-Up if a permit is granted: Operations will commence approximately 42 months after beginning of actual construction.			
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one un		units proposed in this permit			
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	of activity/activities outlined in this application Weeks Per Year 52	ation:			
16. Is demolition or physical renovation at an existing fa	acility involved?				
17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cep					
18. Regulatory Discussion. List all Federal and State					
proposed process (if known). A list of possible applic					
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this					
information as Attachment D.					
Section II. Additional attachments and supporting documents.					
19. Include a check payable to WVDEP – Division of Air 45CSR13).	Quality with the appropriate application	fee (per 45CSR22 and			
20. Include a Table of Contents as the first page of yo	ur application package.				
21. Provide a Plot Plan , e.g. scaled map(s) and/or ske source(s) is or is to be located as Attachment E (R		erty on which the stationary			
Indicate the location of the nearest occupied structu	re (e.g. church, school, business, resider	nce).			
 Provide a Detailed Process Flow Diagram(s) sho device as Attachment F. 	wing each proposed or modified emissio	ns unit, emission point and control			
23. Provide a Process Description as Attachment G .					
Also describe and quantify to the extent possible					
All of the required forms and additional information can b	e found under the Permitting Section of DA	AQ's website, or requested by phone.			

24.	Provide Material Safety Data Sheets	(MSDS) for all materials process	sed, used or produced as Attachment H.			
⇨	For chemical processes, provide a MSE	OS for each compound emitted t	o the air.			
25.	5. Fill out the Emission Units Table and provide it as Attachment I.					
26.	Fill out the Emission Points Data Sun	nmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.			
27.	Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	as Attachment K.			
28.	Check all applicable Emissions Unit I	Data Sheets listed below:				
\boxtimes	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry			
	Chemical Processes	☐ Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage			
	Concrete Batch Plant	☐ Incinerator	Facilities			
	Grey Iron and Steel Foundry		☑ Storage Tanks			
\boxtimes	General Emission Unit, specify Process	Units (See Section L)				
	out and provide the Emissions Unit Da					
29.	Check all applicable Air Pollution Cor	ntrol Device Sheets listed below	v:			
	Absorption Systems	☑ Baghouse	⊠ Flare			
	Adsorption Systems	☐ Condenser	☐ Mechanical Collector			
	Afterburner	☐ Electrostatic Precipitat	or			
	Other Collectors, specify					
			process design and are not add on control devices.			
Fill	out and provide the Air Pollution Cont	rol Device Sheet(s) as Attachr	nent M.			
30.	Provide all Supporting Emissions Ca Items 28 through 31.	lculations as Attachment N, o	r attach the calculations directly to the forms listed in			
31.		ompliance with the proposed en	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit			
>		not be able to accept all measu	ner or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.			
32.	Public Notice. At the time that the ap	plication is submitted, place a C	class I Legal Advertisement in a newspaper of general			
	circulation in the area where the source	e is or will be located (See 45CS	GR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>			
	Advertisement for details). Please su	bmit the Affidavit of Publication	n as Attachment P immediately upon receipt.			
33,	Business Confidentiality Claims. Do	oes this application include confi	dential information (per 45CSR31)?			
	⊠ YES	□ NO				
>	segment claimed confidential, including Notice – Claims of Confidentiality"	g the criteria under 45CSR§31-4 guidance found in the General I				
	Sec	tion III. Certification o	f Information			
34.	Authority/Delegation of Authority. Check applicable Authority Form belo		ner than the responsible official signs the application. ning below is a Responsible Official			
	Authority of Corporation or Other Busine	ess Entity	Authority of Partnership			
	Authority of Governmental Agency		Authority of Limited Partnership			
	omit completed and signed Authority Fo		•			
		1 A	ermitting Section of DAQ's website, or requested by phone.			
<i>~</i> 111	or are required roring and additional lillor	maden van be ivand ander ale F	or requested by priorie.			

35A. Certification of Information. To certify 2.28) or Authorized Representative shall check			al (per 45CSR§13-2.22 and 45CSR§30-
Certification of Truth, Accuracy, and Comp.	leteness		
I, the undersigned Responsible Official / [application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordar Environmental Protection, Division of Air Quality and regulations of the West Virginia Division of business or agency changes its Responsible Conotified in writing within 30 days of the official of	ended hereto, is esponsibility for nce with this app ty permit issued f Air Quality and Official or Authol	is true, accurate, and completure the construction, modification of control and any amendment in accordance with this appleture. Code § 22-5-1 et se	ete based on information and belief after in and/or relocation and operation of the its thereto, as well as the Department of lication, along with all applicable rules g. (State Air Pollution Control Act). If the
Compliance Certification Except for requirements identified in the Title V that, based on information and belief formed at compliance with all applicable requirements. SIGNATURE	Application for fter reasonable	inquiry, all air contaminant s	nieved, I, the undersigned hereby certify ources identified in this application are in
	use blue ink)	_	(Please use blue ink)
35B. Printed name of signee: Adam Victor			35C. Title: President
35D. E-mail: adamvictor@transgasenergy.com	36E. Phone: ((212) 828-0001	36F. FAX: (212) 828-0002
36A. Printed name of contact person (if different	nt from above):	Aaron Daley	36B. Title: Manager of Development
36C. E-mail:	36D. Phone: ((212) 725-1956	36E. FAX: (212) 828-0002
aarondaley@ transgasenergy.com			
PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION: Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment F: Detailed Process Description Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet Please mail an original and three (3) copies of the complete permit application. Please DO NOT fax permit applications.			
FOR AGENCY USE ONLY — IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title For Title V Minor Modifications: Title V permit writer should send appl NSR permit writer should notify Title For Title V Significant Modifications processes NSR permit writer should notify a Title Public notice should reference both 4 EPA has 45 day review period of a dra	V Permitting Given Permit writer of the permit.	of draft permit, tion to EPA and affected state of draft permit. h NSR Permit revision: r of draft permit, le V permits,	
All of the required forms and additional information	ion can be found	d under the Permitting Section	n of DAQ's website, or requested by phone.

ATTACHMENT A BUSINESS CERTIFICATE

2008

WEST VIRGINIA STATE TAX DEPARTMENT

2010

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

TRANSGAS DEVELOPMENT SYSTEMS, LLC 630 1ST AVE STE 30G NEW YORK, NY 10016-3799

BUSINESS REGISTRATION ACCOUNT NUMBER:

2218-0756

This certificate is issued for the registration period beginning:

July 1, 2008

This certificate is valid until:

June 30, 2010

This business registration certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12 of the West Virginia Code.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.

ENGAGING IN BUSINESS WITHOUT CONSPICUOUSLY POSTING A WEST VIRGINIA BUSINESS REGISTRATION CERTIFICATE IN THE PLACE OF BUSINESS IS A CRIME AND MAY SUBJECT YOU TO FINES PER W. VA. CODE § 11-9.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL007 v.58 L1191270912

ATTACHMENT B AREA MAP

Reference: Wharncliffe, West Virginia Quadrangle

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE, Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-Mail: potesta@potesta.com

Transgas Development Systems, LLC Coal to Gasoline Plant

Wharncliffe, West Virginia Project No. 0101-08-0324

Driving Directions from Charleston, West Virginia to Site

- Take US Route 119 South (Corridor G) toward Logan, West Virginia (approximately 50 miles).
- ➤ Veer right onto the Logan exit (Route 73).
- At the end of the exit ramp, turn left at the stop light onto Route 73 toward Logan.
- ➤ Go approximately 2 miles to the Logan Boulevard until Route 44 South is directly in front of you at the stop light.
- ➤ Go through the stop light and travel approximately 17 miles on Route 44 South to the intersection of Route 44 and Route 52 (the top of Horsepen Mountain).
- Turn left onto 52 South toward Gilbert. Stay straight approximately 8 miles.
- > Turn right onto Gilbert Creek (County Route 13). From Gilbert Creek, follow the signs that say "Twisted Gun Golf Course".
- Turn right onto Ben Creek (County Route 10), still following signs to Twisted Gun Golf Course.
- > Stop at the Cobra Natural Resources' guard shack at the top of the mountain. Site visits need to be coordinated with Cobra's as this is an active mining site.

ATTACHMENT C INSTALLATION AND START UP SCHEDULE

ATTACHMENT C

INSTALLATION AND START UP SCHEDULE

Construction of the facility will begin after receipt of Construction Permit from WVDEP and other necessary regulatory approvals (2010 anticipated). Operations will commence approximately 42 months after the beginning of construction.

ATTACHMENT D REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION

The facility proposed herein, or portions of the facility, may be subject to the following state and federal rules and regulations based on a review of potential air quality regulations. This facility is being designed as a minor source of emissions; therefore, is not subject to Prevention of Significant Deterioration (PSD) or National Emissions Standards for Hazardous Air Pollutants (NESHAPS). Additionally, there is discussion concerning the major process emissions points and the applicable requirements.

1. STATE REGULATIONS

A. 45CSR2 – "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"

Sets emission limits on particulate matter mass and opacity from indirect heat exchangers such as the proposed startup boiler. Opacity is generally restricted to no more than 10% while the mass limit is set by a multiplier and the unit's total design heat input (BTU/hr). The start-up boiler will be subject to this rule.

B. 45CSR2A – "Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2"

Provides guidance for complying with the requirements of 45CSR2.

C. 45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

The proposed facility will control the discharge of objectionable odors.

D. 45CSR5 - "To Prevent and Control Air Pollution from the Operation of Coal Preparation Plants, Coal Handling Operations and Coal Refuse Disposal Areas"

45CSR5 requires the facility to maintain fugitive dust control systems on coal processing equipment. Controls are proposed herein for the coal system.

E. 45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

Sets emission limits on particulate matter mass and opacity from manufacturing processes. Opacity is generally restricted to no more than 20% while the mass limit is a function of source type and process weight rate as established in Table 45-7A of the rule. Proposed manufacturing process units are defined as type "a" and type "d" units in

accordance with 45CSR7. Rule 7 will apply to the limestone handling as a type "a" source and ash handling and process heaters as a type "d" source.

F. 45CSR7A – "Compliance Test Procedures for 45CSR7 – To Prevent and Control Particulate Matter Air Pollution from Manufacturing Process Operations"

Provides guidance for complying with the requirements of 45CSR7.

G. 45CSR10 – "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

Sets emission limits on sulfur dioxide from fuel burning units, manufacturing processes, and combustion of process gas streams. The rule establishes emission limits based on a multiplier and the total design heat input (BTU/hr) for combustion sources. Manufacturing process units generating sulfur dioxide emissions are restricted to an in-stack sulfur dioxide concentration of no more than 2,000 ppm.

H. 45CSR10A – "Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR10"

Provides guidance for complying with the requirements of 45CSR10.

I. 45CSR13 – "Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Temporary Permits, General Permits, and Procedures for Evaluation"

The applicant of the proposed facility is required to obtain a permit prior to the start of construction. This application is being submitted based on the requirements of 45CSR13 to obtain said permit.

J. 45CSR16 – "Standards of Performance for New Stationary Sources"

45CSR16 formally adopts NSPS of 45CFR60 which are the federal standards discussed below.

K. 45CSR20 – "Good Engineering Practice as Applies to Stack Heights"

Facility stack heights will meet the requirements 45CSR20.

L. 45SCR30 – "Requirements for Operation Permits"

Requires permitting under Title V of the Clean Air Act as needed. This facility is designed to be a minor source under Title V and is deferred from obtaining a Title V Permit at this time. The facility will pay operating fees under Title V since it is subject to NSPS Standards.

M. 45CSR31 – "Confidential Information"

This application contains confidential information. This claim of confidentiality is made in accordance with the requirements of 45CSR31.

2. FEDERAL REGULATIONS

A. 40CFR60 Subpart Y – "Standards of Performance for Coal Preparation Plants"

Requires written notification of construction and startup, operation of air pollution control equipment, and performance testing and recordkeeping. The proposed coal processing equipment up to the feed hoppers is subject to Subpart Y.

B. 40CFR60 Subpart OOO – "Standards of Performance for Nonmetallic Mineral Processing Plants"

Requires written notification of construction and startup, operation of air pollution control equipment, and performance testing and recordkeeping. The proposed limestone processing equipment up to the feed hoppers is subject to Subpart OOO.

C. 40CFR60 Subpart RRR – "Standards of Performance for Volatile Organic Compounds Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes"

This facility makes methanol as an intermediate product which is then formed into the final products. Methanol is listed as a material in the regulation.

D. Subpart NNN - "Standards of Performance for Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Operations"

This facility makes methanol as an intermediate product which is then formed into the final products. Methanol is listed as a material in the regulation.

E. Subpart Kb—Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, or Modification Commenced After July 23, 1984

There are three (3) gasoline tanks and one (1) methanol tank proposed for the site each with two (2) million gallon capacity.

The storage tanks will be subject to this rule. The engineering design for the tanks will incorporate the requirements as stated in Section 60.112b and will include a fixed roof tank with an internal floating roof. The tanks will also be subject to the monitoring,

recordkeeping, reporting, and testing requirements as stated in sections 60.113b., 60.115b., and 60.116b.

F. Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

The start-up boiler will be subject to this rule.

G. Subpart VVa—Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006

The fugitive emissions of volatile organic compounds occur at several sections of the facility. This facility makes methanol and other products as an intermediate product or within the final product which are listed in the rule.

This regulation applies to pumps, compressors, pressure relief devised, sampling connections, open-ended valves or lines, and flanges or other connectors that operate in VOC service at synthetic organic chemical manufacturing facilities. This facility meets the definition of a SOCMI facility and the portions of the facility in VOC service are subject to the rule. The rule establishes leak definitions for the sources and sets requirements for leak detection and repair.

H. 40CFR60, Subpart XX - Standards of Performance for Bulk Gasoline Terminals

There are two (2) gasoline loading racks at the facility for loading gasoline to either tank trucks or tank rail cars for shipping to market. The following regulation has been identified as being applicable to this source when loading trucks.

40CFR60, Subpart XX—Standards of Performance for Bulk Gasoline Terminals

Sets emission standards for that apply to the loading racks at a bulk gasoline terminal which deliver liquid product into gasoline tank trucks. The proposed system is to be designed to meet the requirements of MACT level control as stated in AP-42, 5.2 Transportation And Marketing Of Petroleum Liquids. The loading and control of the system shall be designed to meet the applicable requirements contained in 60.502, and monitoring, recordkeeping, reporting, and testing as required in sections 60.502, 60.503, and 60.505.

The limit set by section 60.502(b) is a not to exceed of 35 milligrams of total organic compounds per liter of gasoline loaded. The system will be designed to meet this requirement.

I. Part 60 – Standards of Performance for New Stationary Sources Subpart A – General Provisions Part 60.18-General Control Device Requirements.

The flare will be subject to this section. The engineering design for the flare will incorporate these requirements.

3. SPECIFIC POINTS OF INTEREST

A. MTG Start-Up/Regeneration Gas Heater Operation (E1)

The emissions from the operation of the MTG Start-up/Regeneration Gas Heater are emitted through emission point E1. This unit is fired by syngas produced within the plant and the unit is not used to destroy a waste stream from the process. The unit is not in continuous operation as it only operates during process start-up and regeneration of the catalysts.

45CSR2 – "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"

The purpose of the rule is to prevent and control particulate matter air pollution from indirect heat exchangers. Process heaters are excluded from the definition of indirect heat exchangers.

45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

There are no anticipated objectionable odors from the operation of this source.

45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

This rule establishes emissions limitations for smoke and particulate matter which are discharged from process heaters. This heater (30.0 MM Btu/hr) is in the process of the MTG unit within the facility and is part of the chemical change manufacturing facility classified as Type "d".

For Type "d" operations the allowable particulate emissions rate from the total operation is based on the process weight rate in pounds per hour and Table 45-7A. The process weight rate is the methanol charged to the system which is 526,000 pound per hour. Table 47-7A provides a maximum allowable of 21.2 pounds per hour for the sources. The proposed emission rate of 0.223 pounds per hour meets the requirements under this rule.

45CSR10 - "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

The purpose of this rule is to prevent and control air pollution from the emissions of sulfur dioxides. By definition, the process heater is considered Type "b" fuel burning unit (45CSR10-2.8.b.).

For Type 'b' fuel burning units the emission limit is the product of 3.2 and the total design heat inputs for such units in million B.T.U.'s per hour (45CSR10-3.1.e.). Therefore, the allowable sulfur dioxide emissions rate from the total maximum heat input (30 MM Btu/hr) is 96.0 pounds per hour. The syngas fuel used in this system is sulfur-free; therefore, there are no anticipated emissions of sulfur from the combustion of syngas in the system.

40 CFR 60, Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

This is a process heater and is not a steam generating unit; therefore, the unit is not subject to 40CFR60, Subpart Dc.

40 CFR 60, Subpart RRR: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart RRR.

40 CFR 60, Subpart NNN: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart NNN.

B. MTG Start-Up/Regeneration Gas Heater Operation (E2)

The emissions from the operation of the MTG Start-up/Regeneration Gas Heater are emitted through emission point E2. This unit is fired by syngas produced within the plant and the unit is not used to destroy a waste stream from the process. The unit is not in continuous operations as it only operates during start-up and regeneration of the catalysts.

45CSR2 – "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"

The purpose of the rule is to prevent and control particulate matter air pollution from indirect heat exchangers. Process heaters are excluded from the definition of indirect heat exchangers.

45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

There are no anticipated objectionable odors from the operation of this source.

45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

This rule establishes emissions limitations for smoke and particulate matter which are discharged from process heaters. This heater (120 MM Btu/hr) is in the process of the MTG unit within the facility and is part of the chemical change manufacturing facility classified as Type "d".

For Type "d" operations the allowable particulate emissions rate from the total operation is based on the process weight rate in pounds per hour and Table 45-7A. The process weight rate is the methanol charged to the system which is 526,000 pound per hour. Table 47-7A provides a maximum allowable of 21.2 pounds per hour for the sources. The proposed emission rate of 0.89 pounds per hour meets the requirements under this rule.

45CSR10 - "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

The purpose of this rule is to prevent and control air pollution from the emissions of sulfur dioxides. By definition, the heater is considered Type "b" fuel burning unit (45CSR10-2.8.b.).

For Type 'b' fuel burning units the emission limit is the product of 3.2 and the total design heat inputs for such units in million B.T.U.'s per hour (45CSR10-3.1.e.). Therefore, the allowable sulfur dioxide emissions rate from the total maximum heat input (120 MM Btu/hr) is 384.0 pounds per hour. The syngas fuel used in this system is sulfur-free; therefore, there are no anticipated emissions of sulfur from the combustion of syngas in the system.

40 CFR 60, Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

This is a process heater and is not a steam generating unit; therefore, the unit is not subject to 40CFR60, Subpart Dc.

40 CFR 60, Subpart RRR: Standards of Performance for Volatile Organic Compound Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart RRR.

40 CFR 60, Subpart NNN: Standards of Performance for Volatile Organic Compound Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart NNN.

C. MTG Start-Up/Regeneration Gas Heater Operation (E3)

The emissions from the operation of the MTG Start-up/Regeneration Gas Heater are emitted through emission point E3. This is a continuous operating unit, is a process heater, and is fueled with syngas from the process. This is not a control device or a unit which is used to destroy a waste product from the plant. This unit heats an intermediate product prior to further processing.

45CSR2 – "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"

The purpose of the rule is to prevent and control particulate matter air pollution from indirect heat exchangers. Process heaters are excluded from the definition of indirect heat exchangers.

45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

There are no anticipated objectionable odors from the operation of this source.

45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

This rule establishes emissions limitations for smoke and particulate matter which are discharged from process heaters. This heater (4.0 MM Btu/hr) is in the process of the MTG unit within the facility and is part of the chemical change manufacturing facility classified as Type "d".

For Type "d" operations the allowable particulate emissions rate from the total operation is based on the process weight rate in pounds per hour and Table 45-7A. The process weight rate is the methanol charged to the system which is 526,000 pound per hour. Table 47-7A provides a maximum allowable of 21.2 pounds per hour for the sources. The proposed emission rate of 0.03 pounds per hour meets the requirements under this rule.

45CSR10 – "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

The purpose of this rule is to prevent and control air pollution from the emissions of sulfur dioxides. By definition, the process heater is considered Type "b" fuel burning unit (45CSR10-2.8.b.).

For Type 'b' fuel burning units the emission limit is the product of 3.2 and the total design heat inputs for such units in million B.T.U.'s per hour (45CSR10-3.1.e.). Therefore, the allowable sulfur dioxide emissions rate from the total maximum heat input (4.0 MM Btu/hr) is 12.8 pounds per hour. The syngas fuel used in this system is sulfur-free; therefore, there are no anticipated emissions of sulfur from the combustion of syngas in the system.

The rule exempts fuel burning units having a design heat input under ten (10) million BTU's per hour from section 3 (Sulfur Dioxide Weight Emission Standards for Fuel Burning Units), and sections 6 (Registration), 7 (Permits) and 8 (Testing, Monitoring, Recordkeeping and Reporting).

40 CFR 60, Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

This is a process heater and is not a steam generating unit; therefore, the unit is not subject to 40CFR60, Subpart Dc.

40 CFR 60, Subpart RRR: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart RRR.

40 CFR 60, Subpart NNN: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Process.

The unit burns syngas from the front end of the plant and is not a control device for destruction of volatile organic compounds or total organic compounds; therefore, is not subject to 40CFR60, Subpart NNN.

D. CO2 Purification System Operation (C1)

The CO2 Purification System prepares CO2 by catalytic stripping for use as blanket gas for the process. The process streams are from the AGR and the gasses from the regeneration of the MTG catalysts. The AGR vents to the CO2 Purification System on a continual basis under normal operations and during startup once that portion of the facility has been started. The MTG catalysts regeneration is a discontinuous operation and only discharges to the CO2 Purification System during regeneration of the catalysts.

45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

There are no anticipated objectionable odors from the operation of this source.

45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

The purpose of the rule is to prevent and control particulate matter air pollution from manufacturing processes and associated operations. Emission point C1 is not anticipated to contain particulate matter.

45CSR10 – "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

The purpose of this rule is to prevent and control air pollution from the emissions of sulfur dioxides. Section 10-4, Standards for Manufacturing Process Source Operations contains limits for sulfur dioxide from the manufacturing process in section 4.1 at a limit of an in-stack sulfur dioxide concentration exceeding 2,000 parts per million by volume (ppmv).

The conservative estimate of SOx contained in the C1 is estimated at 10 ppmv which is the resulting SOx from the Acid Gas Removal operation. There is no sulfur coming from the regeneration of the catalysts. This facility will meet the requirement contained in this rule.

E. Flare Operation (B2, C2, E5, and G)

The flare is the control device for emissions during start-up and normal operation. The flare controls emissions from several sources throughout the process of start-up and normal operation: B2 (raw syngas during startup); C2 (raw syngas during startup); and E5 (tailgas flaring). The largest flow of material to the flare is during startup of the process when the raw syngas is being flared to allow the facility to build up to the proper operating temperatures and pressures. These include emissions points identified as B2 and C2. After the start-up is completed neither B2 nor C2 are venting to the flare. E5 is a discontinuous emission under normal operations when the front end of the plant is down and the tailgas cannot be recycled. Emissions identified as G are for the pilot flame only. These emissions (B2, C2, and E5) occur at the same emissions point (the flare); however, they are not additive in the fact that they do not occur at the same time in the process sequence. B2, C2 and E5 cannot vent to the flare at the same time. G is additive as it occurs on a continual basis to keep the flare operational to allow destruction of materials which would vent to it either during startup or normal operation.

45CSR6 - "Control of Air Pollution from Combustion of Refuse"

45CSR6 set particulate emission standards and opacity requirements for the operation of activities involving incineration of refuse which includes the operation of a flare. This facility employs the use of a flare at start-up of operation and during normal operations. The flare is typically being used to flare syngas which results from gasification or MTG

off gas which occurs when the front end of the plant is down and the MTG process is in operation.

The rule sets the allowable emissions standard based on a formula:

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Where, the factor, F, is as indicated in Table I below:

Table I
Factor F, for Determining Maximum Allowable Particulate Emissions.

Incinerator Capacity	Factor F
A. Less than 15,000 lbs/hr	5.43
B. 15,000 lbs/hr or greater	2.72

The feed to the flare varies depending on the operation of the plant. The maximum anticipated flow to the flare is during start-up of the facility. Flare feed at startup is anticipated to be 140 tons per hour (280,000 lbs/hr) which would yield an allowable emission value of 380.8 pounds per hour. The feed is syngas that is being produced but cannot be processed further down the line into methanol and therefore it is sent to the flare. The anticipated emissions value at this time is 0.223 lbs per hour which meets the requirement of this rule.

Emissions points which are considered flared emissions either during startup or normal operations along with the respective emissions values during operation are as follows:

Emission Point	Particulate Emission Value (lb/hr)		
B2 (Gasification to Flare during Start-up)	Flaring is expected to be smokeless.		
C2 (Acid Gas Removal to Flared during Start-up)	Flaring is expected to be smokeless.		
E5 (Flare of MTG Tailgas when Front End Plant is down)	Tailgas flaring is expected to be smokeless.		
G (Flare Pilot Flame)	0.0071		

The rule establishes an opacity limit under sections 4.3 at 20% with exceptions under 4.4 where 4.3 shall not apply to smoke which is less than forty percent (40%) opacity, for a period or periods aggregating no more than eight (8) minutes per start-up, or six (6) minutes in any sixty (60)-minute period for stoking operations periods of and 4.4.

There are no anticipated opacity issues with the operation of the flare. The flare will be specifically designed for the process and will meet the requirements for particulate matter emissions and opacity as stated within 45CSR6.

40 CFR 60, Subpart RRR: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Process.

The process is a synthetic organic chemical manufacturing facility and is subject to 40CFR60, Subpart RRR. The emissions from the process during startup of the gasifiers and the operations of the regeneration system are controlled by the flare. The flare must meet: Section 60.702(b) standards; Section 60.703, monitoring of emissions and operations under section 60.703.(b); Section 60.704(c) for test methods and procedures the flare must meet the requirements of 40CFR60, Subpart A, General Provisions, Section 60.18; and Section 60.705(a), (b), (b).(3) for reporting and recordkeeping requirements. The flare will be designed to meet the requirements for this section. This includes the requirement for no visible emissions except for a period of 5 minutes during any 2 consecutive hours. This visible emissions requirement is more stringent than the requirement in 45CRS6.

40 CFR 60, Subpart NNN: Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Process.

The process is a synthetic organic chemical manufacturing facility and is subject to 40CFR60, Subpart NNN. The emissions from the process during startup of the gasifiers and the operations of the regeneration system are controlled by the flare. The flare must meet: Section 60.662(b) standards; Section 60.663, monitoring of emissions and operations under section 60.663(b); Section 60.664(d) for test methods and procedures the flare must meet the requirements of 40CFR60, Subpart A, General Provisions, Section 60.18; and Section 60.665(a), (b), (b)(3) for reporting and recordkeeping requirements. The flare will be designed to meet the requirements for this section.

F. Startup Boiler Operation (F)

The emissions from the operation of the startup boiler are emitted through emission point F.

45CSR2 – "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"

This rule establishes emissions limitations for smoke and particulate matter which are discharged from fuel burning units. By definition of this rule the natural gas fueled startup boiler is classified as Type b fuel burning unit (45CSR2-2.10.b.).

For Type 'b' fuel burning units the emission limit is the product of 0.09 and the total design heat inputs for such units in million B.T.U.'s per hour, provided however that no more than six hundred (600) pounds per hour of particulate matter shall be discharged into the open air from all such units. Therefore, the allowable particulate emissions rate

from the total maximum heat input (81.84 MM Btu/hr) is 7.36 pounds per hour. The proposed emissions of 0.61 pounds per hour meet the requirements under this rule.

45CSR4 – "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"

There are no anticipated objectionable odors from the boiler as the boiler is fueled by natural gas.

45CSR7 – "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"

The purpose of the rule is to prevent and control particulate matter air pollution from manufacturing processes and associated operations. The startup boiler (fuel burning unit) is exempt from the requirements of this rule.

45CSR10 - "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"

The purpose of this rule is to prevent and control air pollution from the emissions of sulfur dioxides. By definition, the startup boiler is considered Type b fuel burning unit (45CSR10-2.8.b.).

For Type 'b' fuel burning units the emission limit is the product of 3.1 and the total design heat inputs for such units in million B.T.U.'s per hour (45CSR10-3.1.e.). Therefore, the allowable sulfur dioxide emissions rate from the total maximum heat input (81.84 MM Btu/hr) is 253.7 pounds per hour. The proposed emissions of 0.31 pounds per hour meet the requirements under this rule.

As stated under 45CSR10-10.3., the owner or operator of a fuel burning unit(s) which combusts natural gas, wood or distillate oil, alone or in combination, shall be exempt from the requirements of Section 8. The startup boiler is exempt from 45CSR10-8. Testing, Monitoring, Recordkeeping and Reporting.

40 CFR 60, Subpart Dc: Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

The startup boiler is subject to 40 CFR 60, Subpart Dc under the applicability requirements of §60.40c(a). Subpart Dc does not have an emission standard for combusting natural gas and there are no monitoring requirements for boilers combusting natural gas. The startup boiler is subject to the Reporting and Recordkeeping requirements of §60.48c(a), (a)(1), (a)(3), (g) and (i).

ATTACHMENT E PLOT PLAN

ATTACHMENT F PROCESS FLOW DIAGRAM

⊿POTESTA

POTESTA & ASSOCIATES, INC. ENGINEERS AND ENVIRONMENTAL CONSULTANTS

7012 MacCorkle Ave. SE, Charleston, WV 25304
TEL: (304) 342-1400 FAX: (304) 348-9031
E-Mail Address: potesta@potesta.com

Project

PROCESS FLOW DIAGRAM COAL FACILITIES

Scale NOT TO SCALE
Date NOV. 2008

Dwg. No.

FIGURE 1

XREF Files: IMAGE Files: S\C3D-Projects\08-0324 - TRANSGAS\A08-0324-02.dwg Plot Date/Time: May 28, 2009 - 10:01am Plotted By: MBSankoff

Ash Handlii	ng (ASH)					
SLCR	NA	Slag Crusher	2010	1	NEW	WET
SLH	NA	Slag Lock Hopper	2010	7	NEW	WET
SLE	NA	Slag Extractor	2010	T	NEW	WET
BC7	BC7	Slag Conveyor	2010	7	NEW	PE
SSP	SSP	Slag Stockpile	2010	7	NEW	WET
BC8	BC8	Slag Reclaim Conveyor	2010	7 tph out of	NEW	PE
BC9	BC9	Slag Bin Feed Conveyor	2010	plant and 100 tph	NEW	PE
SB	SB	Slag Truck Loadout Bin	2010	loading	NEW	PE
CL	NA	Clarifier	2010	7	NEW	WET
SSB	NA	Sludge Storage Buffer	2010	7 –	NEW	WET
BFP	NA	Belt Filter Press	2010	7	NEW	WET
BC10	BC10	Filter Cake Transport Belt	2010	T [NEW	PE
FCS	FCS	Filter Cake Storage/Loadout Silo	2010	7	NEW	FE

APOTESTA

POTESTA & ASSOCIATES, INC. ENGINEERS AND ENVIRONMENTAL CONSULTANTS

7012 MacCorkle Ave. SE, Charleston, WV 25304 TEL: (304) 342-1400 FAX: (804) 843-9081 E-Matl Address: potesta@potesta.com Project

PROCESS FLOW DIAGRAM ASH FACILITIES

Scale NOT TO SCALE
Date NOV. 2008

Dwg. No.

FIGURE 2

▲POTESTA

POTESTA & ASSOCIATES, INC. HIGHERS AND ENVIRONMENTAL CONSULTANTS

7012 MacCorkle Ave. SE, Charleston, WV 25304
TEL: (304) 342-1400 FAX: (304) 343-9031
E-Mail Address: potesta@potesta.com

Project

PROCESS FLOW DIAGRAM LIMESTONE FACILITIES

Scale NOT TO SCALE
Date NOV. 2008

Dwg. No.

FIGURE 3

XREF Files: IMAGE Files: S\C3D-Projects\08-0324 - TRANSGAS\A08-0324-02.dwg Plot Date/Time: May 28, 2009 - 10:01am Plotted By: MBSankoff

ATTACHMENT G PROCESS DESCRIPTION

Attachment G General Process Description

The proposed facility will produce gasoline and LPG from coal through the processes of gasification of the coal to produce a syngas, modify the syngas to methanol and then unitize the methanol as the feed to the methanol to gas process. The following is a description of the start-up and operation of the process. A more detailed version of this information is provided for additional detail for the agency review and understanding of the process in preparing the permit for the facility.

Start-up of the Plant

Start-up of the operation will sequence through the following steps:

PDQ Start-up Overall Sequence

The start-up overall sequence gives a summary of the overall operating procedures, for the gasification (one stream), water treatment unit and the raw gas treatment units (one stream). The start-up will be described from "cold, air-filled" to "fully operational". Prior to start the PDQ-Gasifier with feedstock the water/steam system has to be filled with boiler feed and the quench water system with fresh water. Both systems are to be warmed up. The downstream Units as Sour Shift and Gas Cooling, Sulfur Removal and Sulfur Recovery/Tail gas Treatment are to be transferred into hot /cold condition ready to receive washed and water saturated raw gas and Sour Gas. The consumers of the treated syngas are ready for syngas take over. All Utilities as Cooling Water, HP and LP Nitrogen systems, Oxygen system, Instrument Air and Chemical Dosing Stations are in operation, The Start-up Boiler is started and the steam system is ready for take over. The Startup Boiler operation is scheduled approx. 4 times /year, each 96 hours. For emissions see Emission Point F. Waste Water Treatment, Condensate System and Boiler Feed Water Preparation are in operation.

The Coal Milling and Drying system consists of five identical 100 % process lines, four in operation, one in stand by, feeding two Coal Pressurization and Feeding lines. In this description only one mill is described. In case 2 Gasifiers are in operation 4 Coal Milling & Drying Units are in operation. In this case for Coal Milling & drying the Emission Points A1/1 & A1/2 & A1/3 & A1/4 are active.

Main start-up steps are as followed: starting of the auxiliary systems, filling of raw coal and lime-stone bunkers; Inertizing of the mill and the gas circulating system; adjusting the oxygen concentration; if necessary supplying N2 to the system to reduce the oxygen content below 8% on volume; pre-heating the system, if necessary the start-up burner of the inert gas generator can be ignited to support the tracing of the pulverized coal bag house. In this situation the emissions at Emission Point A1/x are similar as for stand by operation (emission values approx. 10% of operation emissions); and start-up of the mill and the coal feeders.

The shutdown procedure basically follows the reversed order of the start-up procedure. It is possible to operate each line on hot or inerted stand-by.

Coal Pressurization and Feeding

The coal pressurization and feeding units are started through the following sequence: Checking that all manholes, blinds, etc. are securely placed, block valves are in correct position, instrument isolation valves are opened, instrument air is turned on, nitrogen purges are started, and radioactive level instruments are unblocked. The main start-up steps are listed below: Start operation of the Blow Back System of Feed Dust Bunker Filter; Feed Dust Bunker is filled with specified coal dust; Start supply of CO2 or N2 to the aeration cones of Feed Dust Bunker; Start supply of CO2 or N2 to the Aeration cones of Feed Vessel, Start-up; Vessel and Lock Hoppers are in operation; The Start-up Vessel for coal dust recycle is inert and ready for use; Adjust the differential pressure controller between Feed Vessel and Gasifier; and Transfer Coal Dust Feed Stock via Lock Hoppers into the Feed Bin.

These systems feed to the gasifier section of the plant.

Gasifier Section

For startup to occur the pre-conditions must be met: liquid carrying tanks and vessels are filled with water/boiler feed water; all water circulations, the chemical dosing system and the vacuum pump are to be started; the waste water treatment unit is ready to receive process water; the oxygen system is tightness tested and under operation pressure with oxygen; and the flare system is ready for use.

Warming-up of the Sour CO-Shift Catalyst

The sour CO-Shift catalysts achieve the maximum activity in the sulphided state. Therefore, prior to the first start-up, they are to be treated with sulfur. Normal preheating of the catalyst is carried out in a dry inert gas (nitrogen) which is recycled via the start-up compressor and preheated by MP-Steam and the electrical Start-up Heater. The shift reaction will start at a temperature of around 200°C. The catalyst normally operates between 230°C and 500°C. Temperatures up to 550°C are acceptable.

Preparation of the Sour Water Stripping

The Stripper has to be pressurized by nitrogen and warmed up by steam. It is in hot standby condition under total reflux.

Start-up of the H2S/CO2 Removal Unit

The aim of the start-up operation of the Acid Gas Removal Unit is to cool down the methanol solvent inventory to a level of about -35 °C for absorption of the acid gas components H2S and CO2. Before any gas enters the Unit, absorption section has to be pressurized with nitrogen. The normal gas path to the downstream synthesis unit is closed

and the gas path to the flare is opened. The pressure in the absorption section will be controlled on flow control to the flare (Emission Point C2). Once the normal operating temperatures are established, levels have stabilized and the operating pressures in the vessels of the regeneration section are set, the unit is ready for take over of feed gas. The H2S stripped off from the solvent in the thermal desorber is sent as acid gas to the Sulfur Recovery Unit, the CO2 produced in the flash regeneration section of the Acid Gas Removal Unit is sent to the CO2 purification section before it can be pressurized and reused as carrier or sluicing gas in the gasification unit or sent to the atmosphere (Emission Point C1).

Preparation of the Sulfur Recovery Unit

The SRU represents a typical Claus unit comprising one thermal and two catalytic stages. The SRU can be operated by air and/or by O2 enriched air. Feedstock is acid gas generated in the H2S/CO2 removal plant, a small stream of sour gases of the sour water stripping unit and flash gases yielded in the slurry flash vessels and different other venting points. The thermal and the two catalytic stages have to be warmed up to operation temperature. All sulfur carrying lines and vessels are to be carefully warmed up by steam tracing. The unit can remain in hot stand-by position until sour gas is available.

Preparation of the Tail Gas Treatment Section

The Tail Gas Treatment Section has to be heated up to 200°C by using nitrogen and the electrical tail gas heater. The unit is now ready for Claus tail gas intake.

Warming-up/Start-up of PDQ Gasification

Warming up of the PDQ Gasification has to be carried out in the following sequence: Warming-up of the Gasifier Steam system has to be carried out; The water quench part of the Gasifier, the water circulation of the Venturi Scrubber and the Wash Column and the Slurry Expansion and Filtrate Preheating will be warmed-up; Ignition of the Start-up Burner; Pressurizing of the Gasifier up to start-up pressure for the first Coal Dust Burner; Line up the raw gas route; Start coal dust recycle of the first burner to the start-up vessel. For emissions and duration of emissions at the start-up vessel filter 1121-F004 see Emission Point A2/1; A2/2; Start Coal Sluicing and Feeding to keep sufficient coal in the Feed Vessel. For emission during expansion of the sluice vessels see Emission Point B1/1;B1/2; Start the Coal Dust Burners with the required coal dust quantity; Retract the Start-up burner; Increase the gasifier pressure to normal operating pressure. The produced gas is routed via the Scrubber 1161-C001 to the flare. For gasifier start-up emissions see Emission Point B2; Start sending raw gas to the cooling train of the CO Shift Conversion, the CO2/H2S Removal and the pressure controller downstream of the CO2/H2S Removal to the flare; Start slag sluicing program, (Slag cooling, slag sluice support pump, slag extractor and slag disposal.) Adjust Slurry Expansion flow and keep Gasifier base level constant via the level control valve; Start the Belt Filter Press; Start filter cake disposal; Adjust the CO2/H2S Wash Unit. Route the yielded sour gas to the sour gas flare first, until the sour gas quality (H2S content) is suitable to be used in the Sulfur recovery Unit;

Start sending raw gas stepwise via the CO Shift Reactor; Start-up the Sulfur Recovery Unit with sour gas; Start-up the Tail Gas Treatment Section with tail gas.

Shut Down Depressurization of the PDQ Unit

After tripping of the coal dust burner depressurization of the PDQ unit can be initialized. The depressurization time is related to the cooling-down time of the quench water circulation and the water circulation around the venture scrubber / wet scrubber to prevent excess of water evaporation. Forced temperature reduction can be reached by cooling of the expanded quench water to the clarification unit in the cooling water cooler down-steam of the third expansion vessel. The clarified cooled quench water has to be routed back to the PDQ quench circuit bypassing the pre-heater of the first quench Vessel.

Start-up Methanol Plant

Clean synthesis gas must be available for the start-up downstream of the acid gas removal. The synthesis gas is fed via the make up gas (MUG) compressor. The steam pressure will be adjusted to the required temperature profile of the methanol reaction. Above 10 bar methanol will start to condense in the HP methanol separator and so synthesis gas will be removed from the system by the reaction. The feed rate from the MUG compressor has to be increased to compensate the losses of H2 and CO. If the liquid level in the HP methanol separator is sufficient high then commission the let down system to the methanol flash drum. If the concentration of Nitrogen and /or CH4 in the loop reaches the flow sheet values start the purge from the synthesis loop. The purge is routed to the hydrogen recovery unit.

Start-up Methanol to Gasoline Plant

Start-up of the MTG unit from cold conditions requires that the system be nearly oxygen free. During start-up of the methanol to gasoline section there are flue gas emissions from the fired heaters (Emission Points E1 and E2) used during heating up the DME Reactor and the MTG Reactor. The columns and reflux accumulators of the product fractionation section will be filled with pre-stored gasoline. For pressurizing of the Stabilizer prior to feed in, fuel gas will be used. During Start-up of the product fractionation section no emissions are expected. Fuel gas produced in the Stabilizer will be routed to the fuel gas system (OSBL).

During Start-up of the heavy gasoline treatment section emissions due to use of the HGT Charge Heater (Emission Point E3) appear. Gas purged from the HGT Section during take over of heavy gasoline from product fractionation section and stabilization of the heavy gasoline section will be routed to the fuel gas system (OSBL).

Normal Operation of the Plant

Once the start-up sequence is completed the process operations are continued with the entire process being active. The coal feed and limestone are sent to the preparation facilities from the coal and limestone yard, the material is then fed through the preparation/grinding facilities and fed to the PDQ gasification systems. The products of the gasification system are the syngas and the ash material. The gasification system is basically a high temperature partial oxidation process for converting the coal into a syngas of carbon monoxide and hydrogen. The ash material is mostly a slag/aggregate and a smaller fraction of fly ash. The ash materials are stored in the storage building (slag/aggregate) or in the storage silo (fly ash). The ash materials will be shipped off site.

The syngas passes through the remaining part of the syngas treatment units which include the CO Shift (enriches the syngas into a hydrogen rich stream), the Acid Gas Removal (removes the acid gases CO2, H2S, COS, mercury, and HCN), Mercury Removal Systems (removal of remaining mercury with the majority of mercury removed in the Acid Gas Removal System), CO Purification (purifies the CO stream), Sulfur Recovery Unit (processes H2S, CO2 and NH3 containing sour gas from stripping of process condensates, H2S, COS, CO2 and HCN containing acid gas, NH3 and HCN are decomposed to sulfur containing components are converted to elemental sulfur which is a product of the plant), Sour Water Stripping (removal of H2S, CO2, NH3 and HCN), and then to the Methanol Production Unit which transfers the syngas to methanol which is the intermediate product of the plant. Air separation units are required to provide nitrogen and oxygen for the process steps. Each step of the process is necessary to take the original produced syngas and transfer it to the next process at the grade required to continue down the line for further processing to maximize production of methanol. Differing temperatures and pressures are required throughout the processes for proper operation of each step of the system.

The methanol is then sent to the Methanol to Gasoline Treatment (MGT) unit to be converted to gasoline and LPG products and the remainder of the material is converted to water.

Portions of the process also produce steam (high pressure and low pressure). The steam is used in the processes to provide heat as needed, to provide steam for steam driven sections of the process, or converted into electrical power as needed to drive electrical system. There will be a cooling tower to allow for the process water to be cooled and reentered into the process. Electric power, as produced, will be utilized at the facility. Additional needs for electric will be supplied by utility connections. There are no sales of electric power.

The plant will feed approximately 346 tons per hour, 8,304 tons per day, and 3,030,960 tons per year into the system and produce 18,000 barrels of gasoline per day and 6,570,000 barrels per year with a barrel being 42 gallons. Raw materials for the plant will be trucked into the site. Product gasoline and LPG will be removed from the site via the preferred method of loading to railcar and some allowance is made for trucking for the delivery to markets.

ATTACHMENT H MATERIAL SAFETY DATA SHEETS

METHANOL

ICSC: 0057

Methyl alcohol Carbinol Wood alcohol CH₄O / CH₃OH Molecular mass: 32.0

ICSC# 0057 CAS# 67-56-1 RTECS#<u>PC1400000</u> UN# 1230

EC # 603-001-00-X April 11, 2000 Peer reviewed

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable, See Notes.	NO open flames, NO sparks, and NO smoking. NO contact with oxidants.	Powder, alcohol-resistant foam, water in large amounts, carbon dioxide.
EXPLOSION	Vapour/air mixtures are explosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Do NOT use compressed air for filling, discharging, or handling. Use non-sparking handtools.	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE		AVOID EXPOSURE OF ADOLESCENTS AND CHILDREN!	
•INHALATION	Cough, Dizziness. Headache. Nausea. Weakness. Visual disturbance.	Ventilation. Local exhaust or breathing protection.	Fresh air, rest. Refer for medical attention.
•SKIN	MAY BE ABSORBED! Dry skin, Redness.	Protective gloves, Protective clothing.	Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention.
-EYES	Redness. Pain.	Safety goggles or eye protection in combination with breathing protection.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
Abdominal pain. Shortness breath, Vomiting. Convulsi Unconsciousness. (Further Inhalation).		Do not eat, drink, or smoke during work. Wash hands before eating.	Induce vomiting (ONLY IN CONSCIOUS PERSONS!). Refer for medical attention.

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING
Evacuate danger area! Ventilation. Collect leaking liquid in sealable	Fireproof. Separated from strong oxidants, food and feedstuffs Cool.	Do not transport with food and feedstuffs.
containers. Wash away remainder with plenty of water. Remove vapour with fine water spray. Chemical protection suit including self- contained breathing apparatus.		F symbol T symbol R: 11-23/24/25-39/23/24/25 S: 1/2-7-16-36/37-45 UN Hazard Class: 3 UN Subsidiary Risks: 6.1 UN Packing Group: II

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0057

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

METHANOL

ICSC: 0057

	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:		
I	COLOURLESS LIQUID, WITH	The substance can be absorbed into the body		
М	CHARACTERISTIC ODOUR.	by inhalation and through the skin and by ingestion.		
P	PHYSICAL DANGERS: The vapour mixes well with air, explosive	INHALATION RISK:		
o	mixtures are easily formed.	A harmful contamination of the air can be reached rather quickly on evaporation of this		
R	CHEMICAL DANGERS: Reacts violently with oxidants causing fire	substance at 20°C.		
T	and explosion hazard.	EFFECTS OF SHORT-TERM EXPOSURE:		
A	TLV: 200 ppm as TWA 250 ppm as STEL	The substance is irritating to the eyes the skin and the respiratory tract The substance may		
N	(skin) BEI issued (ACGIH 2004). MAK: 200 ppm 270 mg/m ³	cause effects on the central nervous system, resulting in loss of consciousness. Exposure		
Т	Peak limitation category: II(4); skin absorption (H); Pregnancy risk group: C	may result in blindness and death. The effects may be delayed. Medical observation is indicated.		
D	(DFG 2004). OSHA PEL±: TWA 200 ppm (260 mg/m³)	EFFECTS OF LONG-TERM OR		
A	NIOSH REL: TWA 200 ppm (260 mg/m ³) ST 250 ppm (325 mg/m ³) skin	REPEATED EXPOSURE: Repeated or prolonged contact with skin may		
T A	NIOSH IDLH: 6000 ppm See: 67561	cause dermatitis. The substance may have effects on the central nervous system, resulting in persistent or recurring headaches		
A		and impaired vision.		
PHYSICAL PROPERTIES	Boiling point: 65°C Melting point: -98°C Relative density (water = 1): 0.79 Solubility in water: miscible Vapour pressure, kPa at 20°C: 12.3	Relative vapour density (air = 1): 1.1 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01 Flash point: 12°C c.c. Auto-ignition temperature: 464°C Explosive limits, vol% in air: 5.5-44 Octanol/water partition coefficient as log Pow: -0.82/-0.66		
ENVIRONMENTAL DATA				
272.212	NOTES			
	s bluish flame. Depending on the degree of exp	posure, periodic medical examination is		
suggested. Transport Emergency Card: TEC (R)-30S1230 NFPA Code: H 1; F 3; R 0;				

	ADDITIONAL INFORMATION	
ICSC: 0	057	METHANOL
	(C) IPCS, CEC, 1994	

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

SODIUM HYDROXIDE

ICSC: 0360

Caustic soda Sodium hydrate Soda lye NaOH Molecular mass: 40.0

ICSC # 0360

CAS # 1310-73-2 RTECS # <u>WB490000</u>

UN# EC# 1823

011-002-00-6

October 02, 2000 Peer reviewed

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
Not combustible. Contact with moisture or water may generate sufficient heat to ignite combustible substances.			In case of fire in the surroundings: use appropriate extinguishing media.
EXPLOSION			
EXPOSURE		AVOID ALL CONTACT!	IN ALL CASES CONSULT A DOCTOR!
•INHALATION	Corrosive. Burning sensation. Sore throat. Cough. Laboured breathing. Shortness of breath. Symptoms may be delayed (see Notes).	Local exhaust or breathing protection.	Fresh air, rest. Half-upright position. Artificial respiration may be needed. Refer for medical attention.
•SKIN	Corrosive. Redness. Pain. Serious skin burns. Blisters.	Protective gloves, Protective clothing.	Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention.
-EYES	Corrosive. Redness. Pain. Blurred vision. Severe deep burns.	Face shield or eye protection in combination with breathing protection if powder.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Corrosive, Burning sensation. Abdominal pain, Shock or collapse.	Do not eat, drink, or smoke during work.	Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Refer for medical attention.

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING	
containers. Wash away remainder with plenty of water. Personal		Unbreakable packaging; put breakable packaging into closed unbreakable container. Do not transport with food and feedstuffs. C symbol	
breathing apparatus.		R: 35 S: 1/2-26-37/39-45 UN Hazard Class: 8 UN Packing Group: II	

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0360

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

SODIUM HYDROXIDE

ICSC: 0360

I	PHYSICAL STATE; APPEARANCE: WHITE DELIQUESCENT SOLID IN VARIOUS FORMS, WITH NO ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its aerosol and by ingestion.
М	PHYSICAL DANGERS:	INHALATION RISK: Evaporation at 20°C is negligible; a harmful
P		concentration of airborne particles can.
О	CHEMICAL DANGERS: The substance is a strong base, it reacts	however, be reached quickly.
R	violently with acid and is corrosive in moist air to metals like zinc, aluminium, tin and lead forming a combustible/explosive gas	EFFECTS OF SHORT-TERM EXPOSURE: Corrosive. The substance is very corrosive to
T	(hydrogen - see ICSC 0001). Reacts with to	the eyes, the skin and the respiratory tract.
A .	produce ammonia causing fire hazard. Attacks some forms of plastics, rubber or coatings. Rapidly absorbs carbon dioxide and	Corrosive on ingestion. Inhalation of an aerosol of the substance may cause lung oedema (see Notes).
N	water from air. Contact with moisture or	•
T	water may generate heat (see Notes).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
D	TLV: 2 mg/m ³ (Ceiling value) (ACGIH 2004).	Repeated or prolonged contact with skin may cause dermatitis.
A A	MAK: IIb (not established but data is available) (DFG 2004).	
т	OSHA PEL:: TWA 2 mg/m ³ NIOSH REL: C 2 mg/m ³	
A	NIOSH IDLH: 10 mg/m ³ See: <u>1310732</u>	
PHYSICAL PROPERTIES	Boiling point: 1390°C Melting point: 318°C Density: 2.1 g/cm³	Solubility in water, g/100 ml at 20°C: 109
ENVIRONMENTAL DATA	This substance may be hazardous to the envir- given to water organisms.	onment; special attention should be
	NOTES	

The occupational exposure limit value should not be exceeded during any part of the working exposure. The symptoms of lung oedema often do not become manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation are therefore essential. NEVER pour water into this substance; when dissolving or diluting always add it slowly to the water. Other UN number: UN1824 Sodium hydroxide solution, Hazard class 8.

> Transport Emergency Card: TEC (R)-80GC6-II+III NFPA Code: H 3; F 0; R 1;

ADDITIONAL INFORMATION

ICSC: 0360

SODIUM HYDROXIDE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

METHANE

ICSC: 0291

Methyl hydride CH₄

Molecular mass: 16.0 (cylinder)

ICSC # 0291 CAS # 74-82-8 RTECS # <u>PA1490000</u> UN # 1971

EC# 601-001-00-4

February 10, 2000 Validated

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS		PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE			NO open flames, NO sparks, and NO smoking.		Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with water spray, powder, carbon dioxide.	
EXPLOSION	Gas/air mixtures are explosive.		Closed system, ventilation, explosion-proof electrical equipment and lighting. Use non-sparking handtools.		In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.	
EXPOSURE						
•INHALATION	Suffocation. See Notes.		Ventilation. Breathing protection if high concentration.		Fresh air, rest. Artificial respiration if indicated. Refer for medical attention.	
·skin	ON CONTACT WITH LIQUID: FROSTBITE.		Cold-insulating gloves.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.	
•EYES					First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
•INGESTION						
SPILLAGE DISPOSAL		STORAGE		PACKAGING & LABELLING		
		Fireproof. 6 floor and co	Cool. Ventilation along the ceiling. F+ symbol R: 12 S: 2-9-16-33 UN Hazard Class: 2.1		9-16-33	

SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the

ICSC: 0291

Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

METHAN	E	ICSC: 0291
I M	PHYSICAL STATE; APPEARANCE: COLOURLESS, COMPRESSED OR LIQUEFIED GAS, WITH NO ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation.
P	PHYSICAL DANGERS: The gas is lighter than air.	INHALATION RISK: On loss of containment this gas can cause
O R	CHEMICAL DANGERS:	suffocation by lowering the oxygen content of the air in confined areas.
T	OCCUPATIONAL EXPOSURE LIMITS: TLV: (aliphatic hydrocarbons gases, Alkane	EFFECTS OF SHORT-TERM EXPOSURE: Rapid evaporation of the liquid may cause
A N	(as TWA) (ACGIH 2005).	frostbite. EFFECTS OF LONG-TERM OR
Т	MAK not established.	REPEATED EXPOSURE:
D		
A T		
A		
PHYSICAL PROPERTIES	Boiling point: -161°C Melting point: -183°C Solubility in water, ml/100 ml at 20°C: 3,3 Relative vapour density (air = 1): 0.6	Flash point: Flammable Gas Auto-ignition temperature: 537°C Explosive limits, vol% in air: 5-15 Octanol/water partition coefficient as log Pow: 1.09
ENVIRONMENTA DATA	T	
	NOTES	
risk of unconsciousn to prevent escape of leaks with soap and	at boiling point: 0.42 kg/l. High concentrations in less or death. Check oxygen content before entering gas in liquid state. After use for welding, turn val- water. The measures mentioned in section PREVE to of the gas. Other UN number: 1972 (refridgerate	g area. Turn leaking cylinder with the leak up to off; regularly check tubing, etc., and test for INTION are applicable to production, filling of
	ADDITIONAL INFORMA	TION
ICSC: 0291	(C) IPCS, CEC, 1994	METHANE
	Neither NIOSH, the CEC or the IPCS nor any pers PCS is responsible for the use which might be ma collective views of the IPCS Peer Review Commit	de of this information. This card contains the

detailed requirements included in national legislation on the subject. The user should verify

compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

LEGAL

ETHANE

ICSC: 0266

explode if heated

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CBC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

 C_2H_6/CH_3CH_3 Molecular mass: 30.1 (cylinder)

ICSC# 0266 CAS# 74-84-0 RTECS # KH3800000 UN# 1035

ICSC: 0266

601-002-00-X

EC# April 03, 2006 Validated

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Extremely flammable.		and NO smoking.		Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with water spray, powder
EXPLOSION	Gas/air mixtures are	explosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding) if in liquid state. Use non-sparking handtools.		In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.
EXPOSURE			4		
•INHALATION	Suffocation. See No	tes.	breathing protection.		Fresh air, rest. Artificial respiration may be needed. Refer for medical attention.
•SKIN	ON CONTACT WI LIQUID: FROSTBI		Protective clothing.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.
•EYES	ON CONTACT WI LIQUID: FROSTBI		Face shield.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
-INGESTION					
SPILLAGI	SPILLAGE DISPOSAL		STORAGE		PACKAGING & LABELLING
area! Consult an	us. Evacuate danger expert! Remove all Ventilation. NEVER		oof. Cool. Separated from soxidants and halogens. F+ symbol R: 12 S: 2-9-16-33 UN Hazard Class: 2.1 Signal: Danger Flam Flammable gas		2 9-16-33 Hazard Class: 2.1 al: Danger

SEE IMPORTANT INFORMATION ON BACK

ETHANE ICSC: 0266

EIHANE		1050. 0200				
I M	PHYSICAL STATE; APPEARANCE: COLOURLESS COMPRESSED LIQUEFIED GAS, ODOURLESS WHEN PURE.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation.				
P O	PHYSICAL DANGERS: The gas mixes well with air, explosive	INHALATION RISK: On loss of containment this liquid evaporates very quickly displacing the air and causing a				
R .	mixtures are easily formed. As a result of flow, agitation, etc., electrostatic charges can be generated.	serious risk of suffocation when in confined areas.				
T	CHEMICAL DANGERS:	EFFECTS OF SHORT-TERM EXPOSURE:				
A N	Reacts violently with halogens strong oxidants causing fire and explosion hazard.	Rapid evaporation of the liquid may cause frostbite.				
T	OCCUPATIONAL EXPOSURE LIMITS: TLV (as Aliphatic Hydrocarbon Gases: Alkanes (C1-C4)): 1000 ppm; mg/m³	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:				
Ð	(ACGIH 2006).					
A.		_				
T	⊀	,				
A						
PHYSICAL PROPERTIES	Boiling point: -89°C Melting point: -183°C Solubility in water, ml/100 ml at 20°C: (very poor) Vapour pressure, kPa at 20°C: 3850 Relative vapour density (air = 1): 1.05	Flash point: flammable gas Auto-ignition temperature: 472°C Explosive limits, vol% in air: 3.0-12.5 Octanol/water partition coefficient as log Pow: 1.81				
ENVIRONMENTAL DATA	·					
	NOTES					
High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. Turn leaking cylinder with the leak up to prevent escape of gas in liquid state. Other UN number: 1961 (refrigerated liquid), Hazard class: 2.1. Transport Emergency Card: TEC (R)-20S1035 NFPA Code: H1; F4; R0						
	ADDITIONAL INFORMA	TION				

ICSC: 0266 ETHANE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

Home		Catalogue	In Action	About us	Contact	Information
	CHARLES CONTROL		\$3		in the second se	it someonites
Log in						

(Seemile

Categories

LPG Regulators Peco Filters Natural Gas & Sperryn Signs & Markers Cast Iron Products Algas SDI Vaporisers Gas Installation LPG Leisure Adaptors Gas Controls & Pilots LPG Specialists' Adaptors Rail (Gas) Cocks Rochester Gauges Infrared Heating Red Dragon - Weed Flamers Gas Pex Tube Camping Lanterns Brass Fittings - SAE Brass Fittings - BSP **Tubing Tool Range** Industry Specialty Tools

Rock LP Gas Products

Please note: This MSDS current at publication date below. This site does not undertake to keep most recent version.

Source: Energy Safety Handbook - LP Gas Edition

MATERIAL SAFETY DATA SHEET This material safety data sheet (MSDS).

- 1. Is produced by Australian Liquefied Petroleum Gas Association Ltd. Pty. for use by its members.
- 2. Has been produced following the principles and recommendations outlined in the Worksafe Australia Guidance Note for completion of a material Safety Data Sheet, Second Edition, Sydney, February 1990.

MSDS No: 0000/1

Date issued: December 1991

IDENTIFICATION		
PRODUCT NAME:	LIQUEFIED PETROLEUM GAS	
UN Number:	1075	
Other Names:	LP GAS; LPG; Propane/Butane Mix	
Hazchem Code:	2WE	
Dangerous Goods Class:	2.1	
Subsidiary Risk:	None	
Emergency Procedures Guide:	2A2	
Poisons Schedule:	none allocated	
USE: A flammable gas used as a fuel or propellant, normally stored under pressure in liquid form.		
pressure :		
r		
r	in liquid form.	
PHYSICAL DESCR	in liquid form. IPTION/PROPERTIES: Rapidly evaporating liquid or gas with	
PHYSICAL DESCR Appearance:	in liquid form. IPTION/PROPERTIES: Rapidly evaporating liquid or gas with rotten cabbage - like smell.	
PHYSICAL DESCR Appearance: Initial Boiling Point:	in liquid form. IPTION/PROPERTIES: Rapidly evaporating liquid or gas with rotten cabbage - like smell. - 42 to 0 deg C.	

Evapor Auto i Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta	oration Rate: ignition Point: ING Other Name:	74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) % of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Lower Fla Upper Fla Vapo % Evap Auto i Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	mmability Limit: mmability Limit: pur density: Volatiles: OTHER oration Rate: ignition Point: ING ntity Other Name:	1.9 % in air 9.5 % in air 1.5 to 2.0 air = 1 100 % R PROPERTIES: Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) % of its lower flammability limit.	
Upper Fla Vapo %' Evapo Auto i Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	our density: Volatiles: OTHER oration Rate: ignition Point: ING ntity Other Name Propylene Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	9.5 % in air 1.5 to 2.0 air = 1 100 % R PROPERTIES: Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100 % 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) K of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Evapo Auto i Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	OTHER OTHER OTATION Rate: ignition Point: ING ING ING Other Name Propylene Butylene ay be stored and trains odourant ethyl (recomme is detectable to 20 9) HEALTH HAZ HEAL Way cause irritation of	1.5 to 2.0 air = 1 100 % R PROPERTIES: Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) W of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Evape Auto i Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	OTHER ING ING OTHER ING ING OTHER ING ING OTHER ING ING ING ING OTHER ING	R PROPERTIES: Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) W of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Evaporation Auto in Au	OTHER oration Rate: ignition Point: ING ntity Other Name Propylene Butylene ay be stored and tra ains odourant ethyl (recomme is detectable to 20 9 HEALTH HAZ HEAL	RAPIDERTIES: Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) K of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	oration Rate: ignition Point: ING Other Name:	Rapid 482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) 6 of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	ignition Point: ING ING Other Name	482 to 5820 deg C REDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. Mercaptan unless otherwise authorised. Mended 25 mg/kg) W of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Chemical En Propane Butane Propene Butene LP Gas ma LP Gas conta This	ING ntity Other Name	IREDIENTS: S CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients.	
Propane Butane Propene Butene LP Gas ma LP Gas conta This	Propylene Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	CAS Number Proportion 74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. Insported as a mixture of ingredien	
Propane Butane Propene Butene LP Gas ma LP Gas conta This	Propylene Butylene Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	74-98-6 0 to 100% 106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. Insported as a mixture of ingred as a mixture of ingredients. Insported as a mixture of ingredie	
Butane Propene Butene LP Gas ma LP Gas conta This	Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	106-97-8 0 to 100 % 115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. mercaptan unless otherwise authorised.ended 25 mg/kg) % of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Propene Butene LP Gas ma LP Gas conta This	Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	115-07-1 0 to 100 % 106-98-9 0 to 100 % Insported as a mixture of ingredients. Insported as a mi	
LP Gas conta This Inhaled:	Butylene ay be stored and tra ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL Way cause irritation of	106-98-9 0 to 100 % Insported as a mixture of ingredients. Insported as a mixture of ingredients	
LP Gas ma	ay be stored and tra ains odourant ethyl i (recommo is detectable to 20 9 HEALTH HAZ HEAL	nsported as a mixture of ingredients. mercaptan unless otherwise authorised. ended 25 mg/kg) % of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
LP Gas conta	ains odourant ethyl i (recomme is detectable to 20 9 HEALTH HAZ HEAL	mercaptan unless otherwise authorised. ended 25 mg/kg) % of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
This	(recomme is detectable to 20 9 HEALTH HAZ HEAL	ended 25 mg/kg) % of its lower flammability limit. ZARD INFORMATION TH HAZARDS	
Inhaled:	HEALTH HAZ HEAL May cause irritation o	ZARD INFORMATION TH HAZARDS	
inhaled:	HEALTH HAZ HEAL May cause irritation o	ZARD INFORMATION TH HAZARDS	
inhaled:	HEAL May cause irritation of	TH HAZARDS	
inhaled:	May cause irritation o		
inhaled:		of the respiratory tract. May also cause	
	May cause irritation of the respiratory tract. May also cause headaches or dizziness at moderate exposures. Asphyxiant. Causes unconsciousness and respiratory arrest at elevated exposures.		
	Irritating if the liquid gets into the eyes, with a possible hazard from freezing due to rapid evaporation. Vapours in high concentration may also be irritating.		
	Excessive prolonged contact to the liquid can cause skin irritation and frostbite due to rapid evaporation.		
Swallowed: L	Jnlikely to be a prob	olem, owing to high evaporation rate.	
No effects reported from long term industrial exposure to			
L	F	IRST AID	
Chronic: this product. FIRST AID Avoid breathing vapours and fumes as much as possible. If someone is overcome by fumes, remove them to fresh air immediately. However, rescuers should avoid becoming a casualty by wearing suitable respiratory protection. If the affected individual is not breathing, administer artificial respiration. Seek medical advice promptly in serious cases of over-exposure. Avoid eye contact with the product. Remove any contact lenses carefully. Hold eyelids open and flush eyes with fresh tepid water for 15 minutes. Seek medical advice immediately for all eye contact. Where significant splashing of LP Gas liquid may occur, events the facilities stations Should be installed.			
Eye:	Avoid eye contact with the product. Remove any contact lenses carefully. Hold eyelids open and flush eyes with fresh tepid water for 15 minutes. Seek medical advice immediately for all eye contact. Where significant splashing of LP Gas liquid may occur, eyewash Facilities stations Should be installed.		

Skin:	Avoid skin contact with the liquid. Remove contaminated clothing and wash the exposed areas with plenty of soap and water. Seek medical advice if irritation or frostbite (see below) occurs.
Swallowed:	Unlikely to be a problem, owing to high evaporation rate.
Frostbite:	Obtain medical assistance. If medical advice is not available immediately, place casualty in a warm area as soon as possible and allow the injured area to warm gradually (further damage may occur if the area of injury warms too rapidly). DO NOT EXPOSE THE INJURED AREA TO EXCESS HEAT OR COLD (such as heat lamps, hot water, snow or ice). Gently cover or drape the injured area with clean material, such as a dressing or sheet. To relieve pain, immerse the injured area in water which is near or at body temperature (35-40 deg C). If possible, get the casualty to exercise the injured area gradually. Give them something warm to drink, BUT NO ALCOHOL. Seek medical advice as soon as possible.
ADVICE TO DOCTOR	No specific treatment recommended. Treat symptomatically. Show a copy of this material safety data sheet to medical personnel dealing with cases of over-exposure.
	A THE PROPERTY OF THE PARTY OF

PRECAUTIONS FOR USE

EXPOSURE STANDARDS

Worksafe Australia has established comments and exposure standards for the following ingredients of this product:

Propane: simple asphyxiant

Butane: 800 ppm (1900 mg/m³) as an 8-hour Time Weighted Average.

Most LP Gas is odourised before transport handling and is detectable to 20% of its LEL. If no stenching agent has been added, LP Gas has a high odour threshold (in the order of 10 - 25 times the exposure standard). Therefore, unodourised LP Gas does not have good warning properties.

ENGINEERING CONTROLS

Ensure there is good ventilation of the area in which the product is used to keep concentrations below the exposure standard or lower explosive limit. While dilution by air may be sufficient in most cases, mechanical exhaust ventilation may be required. In such cases, use sparkproof equipment if possible. A ventilation velocity of at least 0.3 m/s is recommended.

PERSONAL PROTECTION

Avoid contact with eyes and skin. Overalls or a long sleeved shirt and closed-in shoes or safety footwear should be worn as a general precaution.

Eye Protection:	Eye protection is required (faceshield, chemical safety glasses or side shield glasses) where splashing is likely. Eye protection should comply with AS 1336/1337.	
Gloves:	Impervious oil and cold resistant gloves should be worn when using this product. Gloves made of PVC are preferred, though gloves made of nitrite and chloroprene should also be satisfactory. Any such gloves should compl with AS 2161.	
Respiratory Protection:	If ventilation of the area is not sufficient, respiratory protection may be required. This should be at least approved air supplied or self-contained breathing apparatus where the exposure standard is likely to be exceeded or if work is required close to large gas leaks. Respiratory protection should comply with AS 1715/ 1716.	

FLAMMABILITY

LP Gas is gaseous and highly flammable at normal temperatures and pressures. The gas is normally stored under pressure in the liquid form. Release of pressure is associated with rapid cooling, the intensity of which is dependent on the rate of release. Containers of LP Gas are explosive hazards, when exposed to excessive heat.

SAFE HANDLING		
STORAGE AND TRANSPORT		
	under the Australian Code for the Transport of y Road and Rail (ADG Code) as a FLAMMABLE GAS (Class	
Storage:	LP Gas should be stored in approved areas only. Minimum conditions of storage include dry, cool,secure storage away from heat, sources of ignition and oxidising substances. Keep containers closed and upright when not in use.	
Transport;	LP Gas must be transported in accordance with the latest edition of ADG Code (April 1987). Large volumes must be transported in approved tankers, and smaller volumes in approved pressure containers.	
	SPILLS AND DISPOSAL	
Spills:	Cut off source of leak. If the release is large, cut off all ignition sources and evacuate all non-essential personnel from the area. If possible, ventilate the area. If the incident is significant, seek immediate assistance from local fire authorities and police. If possible, monitor the vapour concentration until dissipated.	
Disposal:	If possible, allow to evaporate. Large volumes should be removed by tanker or by controlled burning. LP Gas can be disposed by approved incineration methods. Contact local supplier or fire brigade for further advice on disposal.	
	FIRE/EXPLOSION HAZARD	
Hazchem Code:	2WE	
Extinguishers:	Water spray or BC fire extinguisher.	
Procedures:	Stay out of gas or vapour. Use water to disperse unignited gas or vapour. Allow to burn out, if possible.	
Special Precautions:	Fire-fighters should wear full protection and breathing apparatus. LP Gas is heavier than air, and vapours will tend to flow downwards and accumulate in low-lying areas such as drains and pits at ground level.	
Containers:	Cool fire exposed containers with water spray. If	
Reactivity:	Stable	
Incompatibilities:	Oxidisers	
Combustion Products:	Hazardous combustion products of carbon dioxide (carbon monoxide under poor conditions of combustion) and smoke may be produced. Hazardous polymerisation will not occur.	
	US NFPA Classification:	
Health:	1	
Flammability:	3	

l:	
Reactivity:	0

© 2008 | Gameco | All rights reserved | Contact Us Terms & Conditions LPG & Natural Gas Equipment and Instruments ALL SALES ARE SUBJECT TO THE COMPANY'S GENERAL TERMS & CONDITIONS OF SALE

SPAM POISON SITEMASTER CAS

GASOLINE

ICSC: 1400

Benzin

ICSC # 1400

86290-81-5 CAS# RTECS # DE3550000

UN# 1203

EC#

649-378-00-4

October 18, 2001 Peer reviewed					
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable.		NO open flames, NO sparks and NO smoking.		Powder, AFFF, foam, carbon dioxide.
EXPLOSION	Vapour/air mixtures explosive.	are	Closed system, ventilation, explosion-proof electrical equipment and lighting. Prebuild-up of electrostatic cha (e.g., by grounding).	vent	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE					
•INHALATION	Confusion. Cough. I Drowsiness. Dullnes Headache.	Dizziness. s.	Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.
•SKIN	MAY BE ABSORB skin. Redness.	ED! Dry	Protective gloves. Protective clothing.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.		Safety spectacles or eye protection in combination v breathing protection.	with	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Nausea. Vomiting. (See Inhalation).		Do not eat, drink, or smoke during work.		Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Refer for medical attention.
SPILLAGI	E DISPOSAL		STORAGE	·	PACKAGING &

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING
Evacuate danger area! Consult an expert! Remove all ignition sources. Cover the spilled material with dry earth, sand or non-combustible material. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: self-contained breathing apparatus.	Fireproof.	Marine pollutant. Note: H, P T symbol R: 45-65 S: 53-45 UN Hazard Class: 3 UN Packing Group: I

SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the

ICSC: 1400

Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDL H. values.

GASOLINE ICSC: 1400

I	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:		
M	MOBILE LIQUID	The substance can be absorbed into the body by inhalation of its vapour, through the skin		
P	PHYSICAL DANGERS: The vapour is heavier than air and may travel	and by ingestion.		
-	along the ground; distant ignition possible.	INHALATION RISK:		
0	The vapour mixes well with air, explosive mixtures are easily formed. As a result of	A harmful contamination of the air can be reached very quickly on evaporation of this		
R	flow, agitation, etc., electrostatic charges can	substance at 20°C.		
T	be generated.	EFFECTS OF SHORT-TERM		
A	CHEMICAL DANGERS:	EXPOSURE:		
	***	The substance is irritating to the eyes the skin and the respiratory tract If this liquid is		
N	OCCUPATIONAL EXPOSURE LIMITS: TLV: 300 ppm as TWA 500 ppm as STEL	swallowed, aspiration into the lungs may		
T	A3 (confirmed animal carcinogen with	result in chemical pneumonitis. The substance may cause effects on the central		
	unknown relevance to humans); (ACGIH 2004),	nervous system		
D		EFFECTS OF LONG-TERM OR		
A		REPEATED EXPOSURE: The liquid defats the skin. The substance may		
т		have effects on the central nervous system liver This substance is possibly carcinogenic		
A		to humans.		
A				
PHYSICAL PROPERTIES	Boiling point: 20-200°C Relative density (water = 1): 0.70 - 0.80 Solubility in water, g/100 ml: none Relative vapour density (air = 1): 3 - 4	Flash point: <-21°C Auto-ignition temperature: about 250°C Explosive limits, vol% in air: 1.3-7.1 Octanol/water partition coefficient as log Pow: 2-7		
ENVIRONMENTA DATA	The substance is harmful to aquatic organisms			
NOTES				
Depending on the dep	gree of exposure, periodic medical examination is	suggested.		
NFPA Code: H1; F3; R0; Transport Emergency Card: TEC (R)-30S1203				
	ADDITIONAL INFORMA	TION		
ICSC: 1400 GASOLINE (C) IPCS, CEC, 1994				
li N	leither NIOSH, the CEC or the IPCS nor any per	son acting on behalf of NIOSH the CEC or the		
· I	PCS is responsible for the use which might be ma ollective views of the IPCS Peer Review Commit	de of this information. This card contains the		

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

HYDROGEN

ICSC: 0001

 H_2

Molecular mass: 2.0 (cylinder)

ICSC # 0001

CAS # 1333-74-0

RTECS # MW8900000

UN# EC# 1049

001-001-00-9

March 06, 2002 Peer reviewed

TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Extremely flammable. Many reactions may cause fire or explosion.	NO open flames, NO sparks, and NO smoking.	Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with water spray, powder, carbon dioxide.
EXPLOSION	Gas/air mixtures are explosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Use non-sparking handtools, Do no handle cylinders with oily hands.	In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.
EXPOSURE			
•INHALATION	Suffocation.	Closed system and ventilation	Presh air, rest. Artificial respiration may be needed. Refer for medical attention.
•SKIN	Serious frostbite.	Cold-insulating gloves.	Refer for medical attention.
•EYES		Safety spectacles.	
•INGESTION			
			PACKAGING &

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING
Remove all ignition sources. Evacuate danger area! Consult an expert! Ventilation. Remove vapour with fine water spray.		F+ symbol R: 12 S: 2-9-16-33 UN Hazard Class: 2.1

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0001

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994, No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

HYDROGEN

ICSC: 0001

HIDROGE	• •				
I	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:			
M	ODOURLESS COLOURLESS COMPRESSED GAS	The substance can be absorbed into the body by inhalation.			
P	PHYSICAL DANGERS: The gas mixes well with air, explosive	INHALATION RISK: On loss of containment, a harmful			
О	mixtures are easily formed. The gas is lighter				
R	CHEN STATE DAY DAY DAY				
T	CHEMICAL DANGERS: Heating may cause violent combustion or explosion. Reacts violently with oxygen	EFFECTS OF SHORT-TERM EXPOSURE: Simple asphyxiant, See Notes.			
. A	halogens strong oxidants causing fire and explosion hazard. Metal catalysts, such as	EFFECTS OF LONG-TERM OR			
N	platinum and nickel, greatly enhance these reactions.	REPEATED EXPOSURE:			
T	OCCUPATIONAL EXPOSURE LIMITS:				
. D	TLV: Simple asphyxiant (ACGIH 2002).				
A					
T	·	•			
A					
PHYSICAL, PROPERTIES	Boiling point: -253°C Relative vapour density (air = 1): 0.07 Flash point: flammable gas	Auto-ignition temperature: 500-571 ℃ Explosive limits, vol% in air: 4-76			
ENVIRONMENTAL DATA	·				
	NOTES				
High concentrations in the air cause a deficiency of oxygen with the risk of unconsciousness or death. Check oxygen content before entering area. No odour warning if toxic concentrations are present. Measure hydrogen concentrations with suitable gas detector (a normal flammable gas detector is not suited for the purpose). Transport Emergency Card: TEC (R)-20S1049 NFPA Code: H0; F4; R0;					
	ADDITIONAL INFORMA	TION			
ICSC: 0001		HYDROGEN			
(C) IPCS, CEC, 1994					

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH

DIMETHYL DISULFIDE

ICSC: 1586

Methyl disulfide Disulfide, dimethyl- $C_2H_6S_2$

Molecular mass: 94.2

ICSC # 1586 CAS # 624-92-0 RTECS # <u>JO1927500</u> UN# 2381

April 21, 2005 Peer reviewed

TYPES OF					
HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable. Gives off irritating or toxic fumes (or gases) in a fire.		NO open flames, NO sparks, and NO smoking.		Powder, water spray, foam, carbon dioxide.
EXPLOSION	Above 24°C explosive vapour/air mixtures may be formed.		Above 24°C use a closed system, ventilation, and explosion-proof electrical equipment.		In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE					
•INHALATION	Headache. Nausea, Dizziness. Drowsiness.		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.
-skin	Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.		Safety goggles		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
·INGESTION	(See Inhalation).		Do not eat, drink, or smoke during work.		Rinse mouth. Give a slurry of activated charcoal in water to drink. Do NOT induce vomiting. Refer for medical attention.
SPILLAGI	LAGE DISPOSAL		STORAGE	PA	CKAGING & LABELLING
Evacuate danger area! Consult an expert! Personal protection: filter respirator for organic gases and vapours. Ventilation. Remove all ignition sources. Collect leaking liquid in sealable containers. Do NOT wash away into sewer.		ore in an area without drain or	R: S: UN Hazard Class: 3 UN Packing Group: II		
SEE IMPORTANT INFORMATION ON BACK					
ICSC: 1586 Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.					

DIMETHYL DISULFIDE

ICSC: 1586

1						
M	PHYSICAL STATE; APPEARANCE: LIQUID, WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and by ingestion.				
<u> </u>	PHYSICAL DANGERS:	INHALATION RISK:				
0	CHEMICAL DANGERS:	No indication can be given about the rate in which a				
R	The substance decomposes on burning producing toxic and corrosive fumes including sulfur oxides Reacts	harmful concentration in the air is reached on evaporation of this substance at 20°C.				
T	violently with oxidants	EFFECTS OF SHORT-TERM EXPOSURE: The substance is mildly irritating to the skin and is				
A	OCCUPATIONAL EXPOSURE LIMITS: TLV not established.	irritating to the eyes and the respiratory tract The substance may cause effects on the central nervous				
N	MAK not established.	system.				
T		EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:				
D						
A						
T						
A						
PHYSICAL PROPERTIES	Boiling point: 110°C Melting point: -85°C Relative density (water = 1): 1.06 Solubility in water, g/100 ml at 20°C: 0.25 (very poor) Vapour pressure, kPa at 25°C: 3.8	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.08 Flash point: 24°C c.c. Auto-ignition temperature: >300°C Explosive limits, vol% in air: 1.1-16 Octanol/water partition coefficient as log Pow: 1.77				
ENVIRONMENTAL DATA						
	NOTES					
Transport Emergency Card: TEC (R)-30GF1-I-II						
	ADDITIONAL INFORMATION					
ICSC: 1586	(Ĉ) IPCS, CEC, 1994	DIMETHYL DISULFIDE				
Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is						

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs; NIOSH RELs and NIOSH IDLH values.

HYDROGEN SULFIDE

ICSC: 0165

Sulfur hydride H₂S Molecular mass: 34.1 (cylinder)

ICSC# 0165 CAS# 7783-06-4 RTECS#MX1225000 UN# 1053

EC# 016-001-00-4

				- 1	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Extremely flammable.		NO open flames, NO sparks, and NO smoking.		Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with water spray, powder, carbon dioxide.
EXPLOSION			Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding) if in liquid state. Do NOT use compressed air for filling, discharging, or handling.		In case of fire: keep cylinder cool by spraying with water.
EXPOSURE			AVOID ALL CONTACT!		IN ALL CASES CONSULT A DOCTOR!
•inhalation	Headache. Dizziness. Cough. Sore throat. Nausea. Laboured breathing. Unconsciousness. Symptoms may be delayed (see Notes).		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Half-upright position. Artificial respiration if indicated. No mouth-to-mouth artificial respiration. Refer for medical attention.
-skin	ON CONTACT WITH LIQUID: FROSTBITE.		Cold-insulating gloves.		ON FROSTBITE: rinse with plenty of water, do NOT remove clothes. Refer for medical attention.
•EYES	Redness. Pain. Severe deep burns.		Safety goggles, or eye protection in combination with breathing protection.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION			Do not eat, drink, or smoke during work.		
SPILLAGE DISPOSAL		STORAGE	PA	CKAGING & LABELLING	
Remove all ignition sources. Ventilation.		rous monitoring system with nous monitoring system with T+ symbol N symbol R: 12-26-50 S: 1/2-9-16-28-36/37-45-61 UN Hazard Class: 2.3 UN Subsidiary Risks: 2.1		vmbol nbol -26-50 2-9-16-28-36/37-45-61 Hazard Class: 2.3	

HYDROGEN SULFIDE

ICSC: 0165

I .	PHYSICAL STATE; APPEARANCE: COLOURLESS COMPRESSED LIQUEFIED GAS, WITH CHARACTERISTIC ODOUR OF	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation.			
" M	ROTTEN EGGS.				
1	,	INHALATION RISK:			
P O	PHYSICAL DANGERS: The gas is heavier than air and may travel along the ground; distant ignition possible. As a result of	A harmful concentration of this gas in the air will be reached very quickly on loss of containment.			
U	flow, agitation, etc., electrostatic charges can be	EFFECTS OF SHORT-TERM EXPOSURE:			
R	generated.	The substance irritates the eyes and the respiratory tract. The substance may cause effects on the central			
т	CHEMICAL DANGERS: Heating may cause violent combustion or	nervous system Exposure may result in unconsciousness. Exposure may result in death.			
A	explosion. The substance decomposes on burning producing toxic gas (sulfur oxides). Reacts violently	Inhalation of gas may cause lung codema (see			
N	with strong oxidants, causing fire and explosion hazard. Attacks many metals and some plastics.	observation is indicated. Rapid evaporation of the liquid may cause frostbite.			
Т	OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF LONG-TERM OR REPEATED			
D	TLV: 10 ppm (as TWA) (ACGIH 2000). TLV: 15 ppm (STEL) (ACGIH 2000). MAK: 10 ppm; 15 mg/m³; (1999)	EXPOSURE:			
A	OSHA PEL: C 20 ppm 50 ppm 10-minute				
T	maximum peak NIOSH REL: C 10 ppm (15 mg/m³) 10-minute				
A	NIOSH IDLH: 100 ppm				
PHYSICAL PROPERTIES	Boiling point: -60°C Melting point: -85°C Solubility in water, g/100 ml at 20°C: 0.5 Relative vapour density (air = 1): 1.19	Flash point: Flammable Gas Auto-ignition temperature: 260°C Explosive limits, vol% in air: 4.3-46			
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms.				
NOTES					

(C) IPCS, CEC, 2000

The symptoms of lung oedema often do not become manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation are therefore essential. Specific treatment is necessary in case of poisoning with this substance; the appropriate means with instructions must be available. The odour warning when the exposure limit value is exceeded is insufficient.

> Transport Emergency Card: TEC (R)-20G43 NFPA Code: H4; F4; R0;

ADDITIONAL INFORMATION HYDROGEN SULFIDE

IMPORTANT LEGAL NOTICE:

ICSC: 0165

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

ATTACHMENT I EMISSION UNIT TABLE

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit	Emission	Englacian Unit Description	Year	Decises	T 3 d	Control Davido
ID ¹	Point ID ²	Emission Unit Description	Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device
Coal and Lime	estone Handlir	ng Sizing, Storage, & Preparat	ion			
Various	TP(s)	Transfer Points (TP) and Conveyors (BC)	2010	See L3-7	New	Various
CR1	CR1	Coal Crusher	2010		New	FE/BH
CR7	CR7	Limestone Crusher	2010		New	FE
FH1,3,5,7,9	VF1,3,5,7,9	Coal Feed Bunkers	2010		New	VF1,3,5,7,9
FH2,4,6,8,10	VF2,4,6,8,10	Limestone Feed Bunkers	2010		New	VF2,4,6,8,10
os	os	Stockpiles	2010		New	Various
HR	HR	Haulroads	2010	NA	New	WT/WC
Gasifier Feed	and PDQ Gas	sifier Units				
CR2	A1/1	Mill and Heater	2010	See L3-7	New	BH1
CR3	A1/2	Mill and Heater	2010		New	BH2
CR4	A1/3	Mill and Heater	2010		New	внз
CR5	A1/4	Mill and Heater	2010		New	BH4
CR6	A1/5	Mill and Heater	2010		New	BH5
CR2-CR6	A1/1-5	Mill and Heater Cold Start	2010	,	New	BH1-5
SUV1	A2/1	SUV1	2010	See L10	New	VF12
SUV2	A2/2	SUV2	2010		New	VF14
LH1-LH6	B1/1	LH1-LH6, FDB1	2010		New	BH6-BH12
LH7-LH12	B1/2	LH7-LH12, FDB2	2010		New	BH13-BH19

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴		
		<u> </u>			:			
Gasifier Fe	ed and PDQ Gasifier Units (C	ontinued)						
FL-ST	B2	FL-ST	2010	See L10	New	NA		
GFB1	B3/1	GFB1	2010		New	VF11		
GFB2	B3/2	GFB2	2010		New	VF13		
CO Shift - I	Not an Emission Source Excep	ot for Fugitive l	_eaks (COS)) - See L14				
CO2/H2S F	Removal (Acid Gas Removal)	(CO2/H2SR) S	See L18					
CO2/H2SR	C2	2 CO2/H2SR 2010 See L18 New						
Sour Water	r Stripper – Not an Emissions	Source Except	for Fugitive	Leaks - See	L22			
Mercury Re	emoval – Not an Emissions So	urce Except fo	or Fugitive Le	eaks - See L2	26			
Methanol S	Synthesis Unit – Not an Emissi	ons Source Ex	cept for Fug	itive Leaks -	See L30			
Sulfur Reco	overy – Not an Emissions Sou	rce Except for	Fugitive Lea	ıks - See L34				
PSA Syste	m – Not an Emissions Source	Except for Fug	gitive Leaks-	See L38				
CO₂Purifica	ation - See L42							
CO₂P	C1	CO ₂ P	2010	See L42	New	NA		
Air Separat	tion Units – Not an Emissions	Source - See	L46					
Methanol to	o Gasoline (MTG) - See L50-6	5						
SURGH	E1	SURGH	2010	See L54	New	NA		
SURH	E2	SURH	2010	See L58	New	NA		

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
Methanol	to Gasoline (MTG) (Contir	nued)			_	
RCH	E3	RCH	2010	See L62	New	NA
RGSI	E4 (1)	RGSI	2010	See L50	New	NA
FL	E5	FL	2010	See L50	New	NA
СТ	СТ	Cooling Tower	2010	See L70	New	NA
TK1-3	TK1-3	Gasoline Storage	2010	See L74	New	NA
TK4-5	TK4-5	LPG Storage Tanks	2010	See L90	New	NA
TK6	TK6	Methanol Storage Tank (with fugitives)	2010	See L79	New	NA
TK7	TK7	Sulfur Storage Tank (with loading)	2010	See L95	New	NA
LR1-2	LR1-2	Loading Racks with Vapor Recovery	2010	See L84- 87	New	NA
GF	NA	Gasoline Fugitives (GF)	2010	See N17	New	NA
F	F	SUSB	2010	See L66	New	NA
G	G	Flare Pilot Flame Only (FPF)	2010	See M1	New	NA

Note 1: E4 is now sent to CO₂ Purification which emits to atmosphere at point C1.

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table 1	Emissions	Data						
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match Em	Unit Vented This Point ission Units Table t Plan)	De (Musi Emission	ion Control evice t match Units Table of Plan)			All Regulated Pollutants - Chemical Name/CAS ³	Maximo Uncontrol	um Potential led Emissions ⁴	Maximu Controlle	ım Potential d Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶	Emission Concentration 7 (ppmv or mg/m ⁴
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gasivapory	·	
2	altic Olehan Otana				·					•				· .	
Coal and Limestone Han Transfer Points and Conveyors	Point Source No Stack	Various	Transfer Points and		achment N	NA	NA	PM PM10	14.64 7.52	36.02 17.47	4.92 2.60	11.09 5.39	Solid	AP-42	NA
CR1	Point	CR1	Conveyors Coal Crusher	FE	FE/BH		NA	PM PM10	20.76	90.93 43.30	0.21 0.10	0.91 0.43	Solid	AP-42/EE	NA
CR7	Point	CR7	Limestone Crushers	F	FE		NA	PM PM10	0.54 0.24	0.45 0.20	0.11 0.05	0.09 0.04	Solid	AP-42	NA
√F1,3,5,7,9	Vertical	FH1,3,5,7,	Coal Feed Bunkers	VF1,3 ,5,7,9	Vent Filter	NA	NA	PM PM10	0.35 0.18	1.52 0.73	0.07 0.04	0.30 0.15	Solid	AP-42	NA
VF2,4,6,8,10	Vertical	FH2,4,6,8,	Limestone Feed Bunkers	VF2,4 ,6,8,	Vent Filter	NA	NA	PM PM10	0.97 0.46	0.81	0.19 0.09	0.16 0.08	Solid	AP-42	NA
Stockpiles	Vertical /Fugitive	Various	Stockpiles		N	NA	NA	PM PM10	7.20 7.20	31.20 31.20	0.36 0.36	1.56 1.56	Solid	AP-42/EE	NA
Haulroads	Fugitive	Various	Haulroads	WI	-/WC	NA	NA	PM PM10	35.86 6.99	96.25 18.77	5.37 1.04	14.44 2.81	Solid	AP-42	NA
Gasifier Feed and PDQ	Gasifier Units			'		•	•						•		
A1/1 (for A1/1 through A1/5, one unit is in standby and not operating and the other four units, two units per	Vertical	CR2	Mill and Heater	BH1	Bag- house	NA	NA	NOX CO VOC	1.41 1.14 0.46	6.17 5.00 2.0	1.41 1.14 0.46 0.56	6.17 5.00 2.0 2.45	Gas Gas Gas Solid	EE	NA
gasifier, are operating when the full plant is in operation)								PM PM10	0.56 0.56	2.45 2.45	0.56	2.45	Solid		

							Table 1	: Emissions I	Data		•				
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match Em	Unit Vented This Point ission Units Table it Plan)	De (Mus Emission	ion Control evice t match Units Table ot Plan)	Emissi (chemical	ime for on Unit processes ly)	All Regulated Pollutants - Chemical Name/CAS ³	Maxim Uncontrol	um Potential led Emissions ⁴	Maximu Controlle	ım Potential d Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
				,											
A1/2	Vertical	CR3	Mill and	BH2	Bag-	NA	NA	NOx	1.41	6.17	1.41	6.17	Gas	EE	NA
			Heater		house			co	1.14	5.00	1.14	5.00	Gas		
								voc	0.46	2.0	0.46	2.0	Gas		
								PM	0.56	2.45	0.56	2.45	Gas		
								PM10	0.56	2.45	0.56	2.45	Solid		
													Solid		
1/3 Vertical	Vertical	CR4	Mill and	ВНЗ	Bag-	NA	NA	NOx	1.41	6.17	1.41	6.17	Gas	EE	NA
			Heater		house			co	1.14	5.00	1.14	5.00	Gas		
								voc	0.46	2.0	0.46	2.0	Gas		
								PM	0.56	2.45	0.56	2.45	Gas		
								PM10	0.56	2.45	0.56	2.45	Solid		
										·			Solid		
A1/4	Vertical	CR5	Mill and	BH4	Bag-	NA	NA	NOx	1.41	6.17	1.41	6.17	Gas	EE	NA
			Heater		house			co	1.14	5.00	1.14	5.00	Gas		
								voc	0.46	2.0	0.46	2.0	Gas		
								PM	0.56	2.45	0.56	2,45	Gas		
								PM10	0.56	2.45	0.56	2.45	Solid		
					•								Solid		
A1/5	Vertical	CR6	Mill and	BH5	Bag-	NA	NA	NOx	1.41	6.17	1.41	6.17	Gas	EE	NA
			Heater		house			co	1.14	5.00	1.14	5.00	Gas		
								voc	0.46	2.0	0.46	2.0	Gas		
				PM	0.56	2.45	0.56	2.45	Gas						
				PM10	0.56	2.45	0.56	2.45	Solid						

							Table 1	: Emissions I	Data						
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match Em	Unit Vented This Point ission Units Table t Plan)	De (Mus Emission	ion Control evice t match Units Table of Plan)	Vent Ti Emission (chemical on	on Unit processes	All Regulated Pollutants - Chemical Name/CAS ³	Maximu Uncontroll	um Potential led Emissions ⁴	Maximu Controlled	m Potential I Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	ib/hr .	ton/yr	lb/hr	ton/yr	Gas/vapur)		
								·							·
A1/1 through A1/5	Vertical	CR2	Mill and	BH1	Bag-	NA	NA	NOx	7.25	0.58	7.25	0.58	Gas	EE	NA
Cold Startup (only one		through	Heater	thru	houses			SO2	3.00	0.24	3.00	0.24	Gas		
source is used for coals startup with natural gas		CR6		BH5				co	5.375	0.43	5.375	0.43	Gas		
when hydrogen is not								voc	0.46	0.0096	0.46	0.0096	Gas		
available for fuel, remaining units are			•					РМ	2.55	0.204	2.55	0.204	Solid		
started on hydrogen)								PM10	2.55	0.204	2.55	0.204	Solid		
A2/1 Vertica	Vertical	SUV1	SUV1	VF12	Vent	NA	NA	SO2	0.67	0.03	0.67	0.03	Gas	EE	NA
					Filter			co	1.11	0.05	1.11	0.05	Gas		
								РМ	1.11	0.05	1.11	0.05	Solid		
				1			Ì	PM10	1.11	0.05	1.11	0.05	Solid		
A2/2	Vertical	SUV1	SUV2	VF14	Vent	NA	NA	SO2	0.67	0.03	0.67	0.03	Gas	EE	NA
					Filter			co	1.11	0.05	1.11	0.05	Gas		
								РМ	1.11	0.05	1.11	0.05	Solid		
								PM10	1.11	0.05	1.11	0.05	Solid		
B1/1	Vertical	LH1-LH6,	LH1-LH6,	BH6-	Bag-	NA	NA	SO2	1.435	6,28	1.435	6.28	Gas	EE	NA
		FDB1	FDB1	BH12	house			co	0.065	0.275	0.065	0.275	Gas		
								РМ	0.25	1.10	0.25	1.10	Solid		
								PM10	0.25	1.10	0.25	1.10	Solid		
B1/2	Vertical	LH7-LH12,	LH7-LH12.	BH13-	Bag-	NA.	NA	SO2	1.435	6.28	1.435	6.28	Gas	EE	NA .
	- 5.0.5	FDB2	FDB2	BH19	house			СО	0,065	0.275	0.065	0.275	Gas		
								PM	0.25	1.10	0.25	1.10	Solid		
								PM10	0.25	1,10	0.25	1.10	Solid		

lahla	1.	-mic	eeinne	s Data

Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match Em	Unit Vented This Point ission Units Table it Plan)	De (Must Emission	on Control vice match Units Table t Plan)	Vent Ti Emission (chemical on	on Unit processes	All Regulated Pollutants - Chemical Name/CAS ³	Maximi Uncontrol	um Potential led Emissions ⁴	Maximu Controlle	ım Potential d Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	- Cus vapsi)		
								_							
B2/1	Vertical	FL ST	FL ST	NA	NA	NA	NA	NOx	333	5.0	333	5.0	Gas	EE	NA
								SO2	1,066	16.0	1,066	16.0	Gas		
								co	827	12.4	827	12.4	Gas		
			,					VOC	0.084	0.00125	0.084	0.00125	Gas		
						-		cos	9.9	0.3	9.9	0.3	Gas		
								H2S	51.3	0.7	51.3	0.7	Gas		
	·							Ni(CO)4	1.237	0.037	1.237	0.037	Gas		
								HCN	2.27	0.07	2.27	0.07	Gas		
								HCL	2.29	0.07	2.29	0.07	Gas		
								Hg	3.42	0.11	3.42	0.11	Liquid/Solid		
B2/2	Vertical	FL ST	FL ST	NA	NA	NA	NA	NOx	333	5.0	333	5.0	Gas	EE	NA
(See B2/1 for Total								SO2	1,066	16.0	1,066	16.0	Gas		
HAPS from the sources which occur during								со	827	12.4	827	12.4	Gas		
startup for B2/1 and B2/2)								voc	0.084	0.00125	0.084	0.00125	Gas		
B3/1	Vertical	GFB1	GFB1	VF11	Vent	NA	NA	SO2	0.135	Emergency	0.135	Emergency	Gas	EE	NA
(emergency release					Filter			со	0.0115	Only	0.0115	Only	Gas		
only)								PM	0.05		0.05		Solid		
							,	PM10	0.05		0.05		Solid		
B3/2	Vertical	GFB2	GFB2	VF13	Vent	NA	NA	SO2	0.135	Emergency	0.135	Emergency	Gas	EE	NA
(emergency release					Filter			со	0.0115	Only	0.0115	Only	Gas		
only)								PM	0.05		0.05		Solid		
								PM10	0.05		0.05	1	Solid		
Gasification Fugitives	Leaks Etc.	NA ·	NA	NA	NA	NA	NA	со	See	8.8	See	1.009	Gas	EE	NA ·
- a		•••						H2S/	Note	0.061/	Note	0.006/	Gas		
								SO2 eq		0.115		0.011	Gas		

					F	MISSIM		tachment J S DATA SUI	MMARY SH	IFFT					
								: Emissions							
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match Em	Unit Vented This Point ission Units Table of Plan)	De (Mus Emission	ion Control evice t match Units Table ot Plan)	Vent T Emissi (chemical on	me for on Unit processes	All Regulated Pollutants - Chemical Name/CAS ³	Maximu	ım Potential ed Emissions ⁴	Maximum Controlled	Potential Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
CO Shift - Not an Emissi	on Source except t	or fugitive lea	ks												
Upstream including	Leaks Etc.	NA	NA	NA	NA	NA	NA	со	See Note	2.65	See Note	0.35	Gas	EE	NA
reactors								H2S/		0.025/		0.004/	Gas		
								SO2 eq		0.047		0.008	Gas		
Downstream reactors	Leaks Etc.	NA	NA	NA	NA	NA	NA	со	See Note	2.17	See Note	0.276	Gas	EE	NA
CO2/H2S Removal (Acid	Gas Removal)														
C2 \	Vertical	CO2/H2SR	CO2/H2S	NA	, NA	NA	NA	NOx	957.6	0.96	957.6	0.96	Gas	EE	NA
			Removal	}	٠		ł	SO2	168.1	0.17	168.1	0.17	Gas		
								co	2,375	2.40	2,375	2.40	Gas		
								voc	5.81	0.006	5.81	0.006	Gas		
								Hg	See B2/1	See B2/1	See B2/1	See B2/1	Gas		
								МЕОН	5.73	0.006	5.73	0.006	Gas		
Fugitive Leaks	Leaks Etc.	NA	NA	NA	ŇA	NA	NA	co	See Note	9.33	See Note	0.99	Gas	EE	NA
								H2S/		0.066/		0.005/	Gas		
	!							SO2 eq		0.124		0.01	Gas		
								VOC/MEOH		32.83		1.029	Gas		
Sour Water Stripper - N	ot an Emissions So	urce except fo	or fugitives			r -	T				T	ı			
Sour Gas Fugitives	Leaks Etc.	NA	NA	NA	NA	NA	NA	H2\$/	See Note	0.684/	See Note	0.085/	Gas	EE	NA
(all units with sour gas)							<u> </u>	SO2 eq		1.288	<u></u>	0.160	Gas		
Mercury Removal - Not	an Emissions Sou	rce													
Methanol Synthesis Unit	- Not an Emission	s Source exce	ept for fugitive	leaks							т	1			
Fugitive Leaks	Leaks Etc.	NA	NA	NA	NA	NA	NA	co	See Note	18.53	See Note	1.71	Gas	EE	NA
						<u>.</u>		VOC/MEOH		6.26	<u></u>	0.299	Gas		
Sulfur Recovery - Not a	n Emissions Source	e except for fu	gitive leaks	г	-		1				·				
Fugitive Leaks	Leaks Etc.	NA	NA	NA	NA	NA ·	NA	H2S/	See Note	1.73/	See Note	0.297/	Gas	EE	NA
								SO2 eq		3.26		0.560			

Attachment J **EMISSION POINTS DATA SUMMARY SHEET** Table 1: Emissions Data Emission Point ID No. Emission Point Type¹ **Emission Unit Vented** Air Pollution Control Vent Time for All Regulated Maximum Potential Maximum Potential Emission Form or Est. Method Emission Concentration 7 Controlled Emissions 5 (Must match Emission Units Through This Point **Emission Unit** Pollutants -Uncontrolled Emissions 4 Phase Used 6 Device Table-& Plot Plan) (Must match Emission Units Table (Must match (ppmv or mg/m4) (chemical processes Chemical (At exit conditions, & Plot Plan) Emission Units Table Name/CAS3 only) Solid, Liquid or & Plot Plan) Gas/Vapor) (Speciate ID No. ID No. Short Term² Max (hr/yr) Source Device lb/hr (b/hr ton/yr ton/yr VOCs Type & HAPS) PSA System - Not an Emissions Source except for fugitive leaks Fugitive Leaks Leaks Etc. NΑ NA NA NA NA NA CO See Note 19.05 See Note 2.39 Gas EE NA CO₂Purification C1 CO CO NA NA NA SO₂ EE Vertical NA 11.56 46.25 11.56 46.25 Gas NΑ Purification Purification CO 0.504 1.974 0.504 1.974 Gas Air Separation Units - Not an Emissions Source Methanol to Gasoline (MTG) E1 Vertical SURGH SURGH NA NA NA NA NOx 4.01 1.69 4.01 1.69 Gas EE NA CO 1.93 1.24 1.93 1.24 Gas VOC 0.162 0.07 0.162 0.07 Gas PM 0.223 0.10 0.10 Solid 0.223 PM10 0.223 0.10 0.223 0.10 Solid E2 Vertical SURH SURH NA NA NA NA NOx 15.64 4.4 15.64 4.4 Gas EE NA CO 11.44 3.22 11.44 3.22 Gas VOC 0.18 0.65 0.65 0.18 Gas PM 0.89 0.25 0.89 0.25 Solid PM10 0.89 0.25 0.89 0.25 Solid E3 RCH RCH Vertical NA NA NA NA NOx 0.55 1.65 0.55 1.65 Gas EE NA CO 0.381 1.20 0.381 1.20 Gas VOC 0.07 0.07 Gas 0.022 0.022 PM 0.03 0.09 0.03 0.09 Solid PM10 0.03 0.09 0.03 0.09 Solid E4 (now sent to CO2 Purification and part of emissions point C1)

NOTE: Maximum hourly emissions form source (leaks, etc.) cannot be quantified.

							Table 1	Emissions	Data						
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Throug	on Unit Vented gh This Point Emission Units Table Plot Plan)	De (Mus Emission	tion Control evice st match Units Table ot Plan)	Emissi	on Unit processes	All Regulated Pollutants - Chemical Name/CAS ³	Maxim Uncontrol	um Potential led Emissions ⁴	Maximu Controlle	m Potential d Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gasivapuri		
			•				,	· ·							
E5	Vertical	FL	FL	NA	NA	NA	NA	NOx	21.3	0.43	21.3	0.43	Gas	EE	NΑ
								co	51.88	1.04	51.88	1.04	Gas		
								voc	19.96	0.4	19.96	0.4	Gas		
Fugitive Leaks	Leaks Etc.	NA	NA	NA	NA	NA	NA	voc	See	117.73	See	11.74	Gas	EE	NA
								VOC/MEOH	Note	34.77	Note	0.725	Gas		
Cooling Tower															
CL	Vertical	CL	Cooling Tower	NA	NA	NA	NA	PM PM10	7.71 7.71	33.77 33.77	7.71 7.71	33.77 33.77	Solid Solid	AP-42	NA
Gasoline Storage											I		·	I I	-
TK1, 2, and 3	Vertical	TK1-3	TK1, 2, and 3	IFL	IFL	NA	NA	voc	1.61	7.053	1.61	7.053	Gas	TANKS	NA
(See N19 for Individual HAPS)								HAPS	0.0390	0.1710	0.0390	0.1710			
Gasoline Fugitives	Fugitive	Gasoline	Gasoline	NA	NA	NA	NA	voc	1.573	6.891	0.101	0.440	Gas	AP-42	NA
(See N19 for Individual HAPS)		Fugitives	Fugitives					HAPS	0.593	2.618	0.0381	0.162		EE	·
TK4 and 5 (LPG storage	pressure tanks wh	ich are not	a source)												
TK6 (with fugitives)	Vertical	TK6	Methanol Tank	IFL	IFL	NA	NA	VOC/MEOH	1.563	6.848	0.235	1.023	Gas	TANKS/ AP42	NA
TK7 (with loading)	Vertical	TK7	Sulfur Storage	NA	NA	NA	NA	H2S	0.006	0.026	0.006	0.026	Gas	EE	NA
								·							

EMISSION POINTS DATA SUMMARY SHEET

Table 1: Emissions Data

Maximum Potential

Maximum Potential

Emission Form or

Est. Method

Emission _

Vent Time for

(Must match Emission Units Table-& Plot Plan)	Emission Cont. 13po	Through (Must match Er	n This Point nission Units Table of Plan)	(Mus Emission	evice st match Units Table ot Plan)	Emissi (chemical on	processes	Pollutants - Chemical Name/CAS ³		ed Emissions ⁴	Controlled	d Emissions ⁵	Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Used ⁶	Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/vapor)		
Loading Racks with Vap	or Recovery							·				4818.84			
LR1 and LR2	Vertical	LR1 and	Loading	VR	VR	NA	NA	voc	267.68	1,172	4.82	21.10	Gas	AP-42	NA
(including fugitives)		LR2	Racks					HAPS	12.06	52.92	0.1169	0.5119		EE	
(See N19 for Individual HAPS)														· ·	
F	Vertical	SUSB	SUSB	NA	NA	NA	NA	NOx	13.92	2.67	13.92	2.67	Gas	EE	NA
	}							SO2	0.31	0.06	0.31	0.06	Gas		
								co	10.11	1.94	10.11	1.94	Gas		
								voc	0.44	0.09	0.44	0.09	Gas		
	1			ĺ	ĺ		ľ	PM	0.61	0.12	0.61	0.12	Solid		
								PM10	0.61	0.12	0.61	0.12	Solid		
G	Vertical		pending on hal mode.	F	I lare - Pilo	t Flame O	nly	NOx	0.36	1.58	0.36	1.58	Gas	EE	NA
		орстано	iai ilload.					SO2	0.0033	0.015	0.0033	0.015	Gas		
								co	0.35	1.54	0.35	1.54	Gas		
								voc	0.0051	0.022	0.0051	0.022	Gas		
								PM	0.0071	0.031	0.0071	0.031	Solid		
								PM10	0.0071	0.031	0.0071	0.031	Solid		

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Emission Unit Vented

Emission Point ID No.

Emission Point Type¹

Air Pollution Control

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify

frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, etc. DO NOT LIST CO₂, H₂O, N₂, O₃, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m²) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

		Ta	ble 2: Release Paran	neter Data				
Emission	Inner		Exit Gas		Emission Point I	Elevation (ft)	UTM Coo	rdinates (km)
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp.	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
						Facility Coordinates =	4,162.9517	417.917
Coal and Limestone Handling Sizing, Storage, and Preparation								
Transfer Points and Conveyors	Not Applicable							
Crushers	Not Applicable							
Stockpiles	Not Applicable							
VF1,3,5,7,9	TBD	TBD	TBD	TBD -	TBD	TBD	TBD	TBD
VF2,4,6,8,10	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Haulroads	Not Applicable							
Gasifier Feed and PDQ Gasifier Units								
A1/1	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/2	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/3	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/4	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD ·	TBD
A1/5	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/1 Cold Startup	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD .
A1/2 Cold Startup	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/3 Cold Startup	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/4 Cold Startup	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A1/5 Cold Startup	TBD	TBD	Est: 20,010	TBD	TBD	TBD	TBD	TBD
A2/1	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
A2/2	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
B1/1	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
B1/2	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD

EMISSION POINTS DATA SUMMARY SHEET

Table 2: Release Parameter Data

		Ta	ble 2: Release Paran	neter Data				
Emission	Inner		Exit Gas		Emission Point	Elevation (ft)	UTM Cod	rdinates (km)
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
						Facility Coordinates =	4,162.9517	417.917
B2	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
B3/1	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
B3/2	TBD	TBD	Est: 8,870	TBD	TBD	TBD	TBD	TBD
CO Shift - Not an Emission Source	Not Applicable							
CO2/H2S Removal (Acid Gas Removal)								
C2	TBD	TBD	Est: 508,100	TBD	TBD	TBD	TBD	TBD
Sour Water Stripper – Not an Emissions Source	Not Applicable							
Mercury Removal – Not an Emissions Source	Not Applicable							
Methanol Synthesis Unit - Not an Emissions Source	Not Applicable							
Sulfur Recovery - Not an Emissions Source	Not Applicable				_			
PSA System – Not an Emissions Source	Not Applicable				-			
CO₂Purification							-	
C1	TBD	TBD	Est: 508,100	TBD	TBD	TBD	TBD	TBD
Air Separation Unit - Not an Emissions Source					_			
Methanol to Gasoline (MTG)					_			
E1	TBD	TBD	Est: 748	TBD	TBD	TBD	TBD	TBD
E2	TBD	TBD	Est: 17,930	TBD	TBD	TBD	TBD	TBD
E3	TBD	TBD	Est: 537	TBD	TBD	TBD	TBD	TBD
E4 (now sent to CO ₂ Purification and part of emissions point C1)								
E5	TBD	TBD	Est: 11,100	TBD	TBD	TBD	TBD	TBD
Cooling Tower					14			
СТ	TBD	TBD	Drift	TBD	TBD	TBD	TBD	TBD
Gasoline Storage								
TK1	TBD	TBD	. NA	TBD	TBD	TBD	тво	TBD
TK2	TBD	TBD	NA	TBD	TBD	TBD	TBD	TBD
ткз	TBD	TBD	NA	TBD	TBD	TBD	TBD	TBD

EMISSION POINTS DATA SUMMARY SHEET

Table 2: Release Parameter Data

		10	ible 2. Release Palaili	eter Data				
Emission	Inner		Exit Gas		Emission Point I	Elevation (ft)	UTM Coord	linates (km)
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
						Facility Coordinates =	4,162.9517	417,917
Loading Racks with Vapor Recovery								· Marketa
LR1 and LR2	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
F	TBD	Est. 320	Est: 18,030	TBD	TBD	TBD	TBD	TBD
G	TBD		Pilot Flame Only	TBD	TBD	TBD	TBD	TBD

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions, which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☑ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	$\ oxed{oxed}$ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET. Leak information for emissions are in Attachment J and Information is in Uhde Attachment 3 in Attachment N.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
•	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants [*]	Maximum Potential Uncontrolled Emissions ²	ial Uncontrolled ons ²	Maximum Potential Controlled Emissions 3	tential issions ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used [‡]
Haul Road/Road Dust Emissions Paved Haul Roads	$\begin{array}{c} \text{TSP} \\ \text{PM}_{10} \end{array}$	35.86 6.99	96.25 18.77	5.37 1.04	14.44 2.81	AP-42
Unpaved Haul Roads	Not Applicable					
Storage Pile Emissions	$\begin{array}{c} \text{TSP} \\ \text{PM}_{10} \end{array}$	7.20 7.20	31.20 31.20	0.36 0.36	1.56 1.56	EE
Loading/Unloading Operations	VOC	See Attachme	nt J and Attachmer	See Attachment J and Attachment N for Speciated VOC/HAPS	OC/HAPS	
Wastewater Treatment Evaporation & Operations	Not Applicable					
Equipment Leaks	VOC	See Attachme	nt J and Attachme	See Attachment J and Attachment N for Speciated VOC/HAPS	'OC/HAPS	
General Clean-up VOC Emissions	Not Applicable					
Other	Not Applicable					

¹List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, COcs, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute

batch). ⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L EMISSIONS UNIT DATA SHEET(S)

Affected Source Sheet

Source Specific Emissions Data: Solid Materials Sizing, Handling and Storage Facilities

Required Information Regarding Dust Control Equipment Measures

- 1. If water or chemical sprays are to be used on conveyors, transfer points, stockpiles, etc... for dust control, the location of all spray bars or spray systems should be shown on the plot plans and/or line drawings. The following information should be provided for each spray system:
 - a. Design water flow through spray bar
 - b. Type and amount of chemicals used and the mix ratio of chemical to water used at the sprays.
 - c. Methods employed to winterize sprays (e.g. keep sprays from freezing and becoming inoperable during cold weather)
- 2. A detailed written description should be submitted of dust control measures/programs that will be employed on haul roads and in areas of vehicle activity around material stockpiled. The haulways and areas to be treated should be shown by shading or similar description on the plant plan. The following points should be specifically addressed:
 - a. Equipment (e.g. water trucks, fixed spray bars, wheel and truck underbody washers, etc...) that will be used in this dust control program.
 - b. Frequency of application of water and chemical to roads and stockpile areas during dry periods.
 - c. Amount of chemical suppressants to be used, if applicable, in pounds or gallons per square yard of surface to be treated.
 - d. Type of haulroad or haulway surface(s) that will be maintained (e.g. coarse gravel, reddog, etc...)
 - e. Approximate maximum length of haulroads (miles or feet).
 - f. Maximum daily truck traffic on haulroads (number of trucks).
- 3. If full or partial enclosures are to be used to minimize dust entrainment, a drawing of each such enclosure should be submitted (for example at truck dump bins, breakers, conveyor transfer points).
- 4. If particulate control devices such as baghouses or scrubbers are to be used, complete an appropriate <u>Air Pollution Control Device Sheet</u> and furnish a drawing showing details of enclosures and ductwork associated with these control systems.

AFFECTED SOURCE SHEET

Source Specific Emissions Data: Solid Materials Sizing, Handling, and Storage Facilities

Plot Plan(s) and Line Drawing(s)

- a. Finish the plot plan(s) of the plant area which contains sufficient detail to show the scaled layout of the equipment involved in each materials handling system (e.g. conveyors, transfer points, crushers, screens, bins, stockpiles, truck dump bins, etc...). Show equipment or buildings described in other sections of this application on the plot plan as appropriate. The guidelines for Plot Plans should be followed to the extent possible.
- b. Furnish the line drawing(s) or schematic(s) showing each component or facet of each materials handling system (e.g. conveyors, transfer points, stockpiles, crushers, screens, bins etc...). Show process equipment described in other sections of this application as needed for clarity.
- c. On the line drawing(s) or schematic(s) furnished in accordance with item (b) assign an ID number to each conveyor, transfer point (including truck, barge and rail car loading/unloading etc...), storage structure, stockpile, crusher, and screening unit. If any equipment is shown on the line drawing(s) which was described in other sections of this application, use the ID numbers assigned to the equipment in those other sections and indicate equipment name or type (e.g. rotary dryer, vertical kiln etc...)
- d. To the extent possible, note the numbers assigned for equipment and storage facilities as per item (c) on the Plot Plans(s).
- e. The assigned ID numbers for equipment and transfer points must be used to complete Tables 1, 2, and 3 following.

Table 1: Affected Storage Activity

					· · · · · · · · · · · · · · · · · · ·
ID Number	OS1	B1 & B2	FH1,3,5,7,9	 	
Affected Source Name	OS1	B1 & B2	FH1,3,5,7,9		
Type Storage ¹	os	В	В		
Material Stored	Coal	Coal	Coal		
Typical Moisture Content (%)	5	5	5		
Avg % of material passing 200 mesh sieve	5	5	5		
Maximum Total Yearly Throughput in storage (tons)	3,030,960	3,030,960	3,030,960		
Maximum Quantity of Material in Storage ² (tons)	40,000	50 each	50		
Maximum Stockpile Base Area (sq. ft.)	196,020	NA	NA		
Maximum Stockpile height (ft)	90	NA	NA		
Type dust controls during storage³	FE/BH	PE	FE		
Method of material load- in to bin or stockpile ⁴	ST	TD	SS		
Type dust controls during load-in ⁵	FE/BH	PE	VF		
Method of material load- out to bin or stockpile ⁴	UC	UC	Feeder to Roller Mill		
Type dust controls during load-out ⁶	FE	FE	FE		

Table 1: Affected Storage Activity (Continued)

ID Number	OS2	FH2,4,6,8,10	FCS	SSP	SB
Affected Source Name	OS2	FH2,4,6,8,10	FCS	SSP	SB
Type Storage ¹	os	В	В	Enclosed Pile	В
Material Stored	Limeston e	Limestone	Fly Ash	Aggreg	ate/Slag
Typical Moisture Content (%)	1	1	1	1	1
Avg % of material passing 200 mesh sieve	5	5	100	5	5
Maximum Total Yearly Throughput in storage (tons)	166,440	166,440	61,320	604,440	604,440
Maximum Quantity of Material in Storage ² (tons)	20,000	50 Each	200	200,000	100
Maximum Stockpile Base Area (sq. ft.)	87,120	NA	NA	Building	NA
Maximum Stockpile height (ft)	25	NA	NA	NA	NA
Type dust controls during storage ³	ВН	PE	FE	FE	FE
Method of material load- in to bin or stockpile⁴	TD	SS	SS	SS	SS
Type dust controls during load-in ⁵	N	VF	FE	FE	FE
Method of material load- out to bin or stockpile ⁴	UC	Feeder to Roller Mill	FC	UC	FC
Type dust controls during load-out⁵	FE	FE	PE	FE	PE

Table 2: Conveying and Transfer

I able 2:	Type	g and Transfer Material		I Conveying	Туре	Approximate
Number	Conveyor	Handled [(Note		insfer Rate	Dust Control	Material Moisture
· .	Transfer Point ⁶	material transferred] ⁷	Max. TPH	Max. TPY	Meaşures	Content (%)
Coal Conv	eyors					
BC1	ВС	+1½"	346	3,030,960	PE	5
BC2	BC	+1½"	346	3,030,960	PE	5
ВС3	ВС	+1½"	346	3,030,960	PE	5
BC4	ВС	+1½"	346	3,030,960	PE	5
BC5	ВС	+1½"	346	3,030,960	PE	5
BC6	ВС	+11/2"	346	3,030,960	PE	5
Ash/Aggre	gate Conveyo	rs			<u>,</u>	
BC7	ВС	+1½"	69	604,440	PE	1
BC8	ВС	+1½"	100	604,440	PE	1
BC9	ВС	+1½"	100	604,440	PE	1
Filter Cak	e Conveyor					
BC10	ВС	+11/2"	100	604,440	PE	1
Limestone	Conveyors			••••••••••••••••••••••••••••••••••••••		
BC11	ВС	+1½"	100	166,440	PE	1
BC12	ВС	+1½"	100	166,440	PE	1
Coal Tran	sfer Points		·		-l	
TPC1	07	+11/2"	346	3,030,960	PE	5
TPC2	07	+1½"	346	3,030,960	PE	5
TPC3	ОТН3	+1½"	346	3,030,960	FE	5
TPC4	ОТН3	+11/2"	346	3,030,960	FE	5
TPC5	01/OTH4	+1½"	346	3,030,960	FE	5
TPC6	01/OTH4	+1½"	346	3,030,960	FE	5
TPC7	01/OTH5	+1½"	346	3,030,960	PE	5
TPC8	01/OTH5	+1½"	346	3,030,960	PE	5
TPC9	ОТН5	+1½"	346	3,030,960	PE	5
TPC10	ОТН7	+1½"	346	3,030,960	FE	5

ID Number	Type Conveyor	Material Handled [(Note		l Conveying ansfer Rate	Type Dust	Approximate Material
	or Transfer Point ⁶	nominal size of material transferred] ⁷	Max. TPH	Max. TPY	Control Meaşures	Moisture Content (%)
TPC11	01	+1½"	346	3,030,960	FE	5
TPC12	03	+1½"	346	3,030,960	FE	5
Limestone	Transfer Poi	nts			·•	···
TPL1	06	+1½"	100	166,440	N	1
TPL2	ОТН7	+1½"	100	166,440	FE	1
TPL3	ОТН4	+1½"	100	166,440	FE	1
TPL4	ОТН4	+11/2"	100	166,440	FE	1
TPL5	03	+1½"	100	166,440	FE	1
Ash/Aggre	gate Transfer	Points		•		
TPA1	ОТН5	+1½"	69	604,440	FE	1
TPA2	ОТН7	+1½"	100	604,440	FE	1
TPA3	01	+1½"	100	604,440	FE	1
TPA4	03	+1½"	100	604,440	FE	1
TPA5	08	+1½"	100	604,440	PE	1
Filter Cak	e Transfer Po	ints			· · · · · · · · · · · · · · · · · · ·	
TPFC1	03	Fine	7	61,320	FE	1
TPFC2	08	Fine	100	61,320	PE	1
OTH1: En	dloader loadi	ng from stockpile	OTH7: S	tockpile to und	erpile reclaim	conveyor
OTH2: En	dloader to bir	1	ОТН8: С	verflow Chute		
OTH3: Bi	n to conveyor					· · · · · · · · · · · · · · · · · · ·
OTH4: Co	onveyor to/fro	m crusher or				
OTH5: Cr	usher or conv	eyor to stockpile			-	
OTH6: Sc	reen to crushe	er				

Table 3: Crushing and Screening

ID Nur	nber	CR1	CR7	CR2-CR6	
Type Crusher		Coal Crusher/Sizer	Limestone Crusher	Roller Mills	
Material	Sized	Coal	Limestone	Coal/Limestone	
Maximum	Tons/hour	346	100	360	
Material Throughput	Tons/year	3,030,960	166,440	3,197,500	
Material size	d from/to: ⁹	+1½" -1½" x ½"	+1½" 1½" x ½"	+1½" 1½" x ½" to Fine	
Typical moist as crushed o (%	r screened	5.0	1.0	1.0	
Type dust	control	FE/BH	FE	BAG	
Stack	height (ft)	N/A	N/A	N/A	
Parameters	diameter (ft)	N/A	N/A	N/A	
	Volume (ACFM)	N/A	N/A	N/A	
	Temp (°F)	N/A	N/A	N/A	
Maximum	hour/day	24	24	24	·
Operating Schedule	day/year	365	365	365	
	hour/year	8,760	8,760	8,760	
Approximat	Jan-Mar	25	_25	25	
e Percentage	April-June	25	25	25	
of Operation	July-Sept	25	25	25	
from:	Oct-Dec	25	25	25	
Maximum Particulate Emissions	lb/hour	20.76 Uncontrolled PM	0.54 Uncontrolle d PM	0.57 Controlled Each	
	Ton/year	90.93 Uncontrolled PM	0.45 Uncontrolle d PM	2.48 Controlled Each	

Describe method of determining emissions and dust control efficiencies (if by test on a similar unit provide report, if by emission factor reference emission factors):

Emissions from crushing operations were estimated using factors from General Permit G10-B or AP-42. Control efficiencies were obtained from an DAQ guidance document included with the 1993 Title V Certified Emission Statement.

- 1 Type Storage Code as follows: (Note capacity of each bin, building or enclosure)
 - OS Open Stockpile
 - B Bin or Storage Silo (full enclosure)
 - SB Storage Building (full enclosure)
 - E- Enclosure (walls but no top)
 - SWF- Stockpiles with wind fences
 - OTH- Other Specify in footnote or attachment
- 2. Give maximum and average quantity of material in storage at any given time (e.g. silo capacity, stockpile size, etc...)
- 3. TYPE DUST CONTROLS DURING STORAGE

If storage is by other than by bin or full enclosure Code as follows:

- N None
- WS- Water Sprays
- C- Spraying with chemical surfactant
- OTH- Other Specify in footnote or attachment
- 4. METHOD OF PLACING MATERIAL ONTO STOCKPILE OR INTO BINS OR LOADING OUT FROM STOCKPILES OR BINS Code as follows:
 - C- Clamshell
 - **TD-** Truck Dumping
 - FE- Front Endloader
 - ST- Stacking Tubes
 - MS- Mobile Conveyor Stacker
 - SS- Stationary Conveyor Stacker
 - P- Pneumatic Conveyor Stacker
 - FC- Fixed Height Chute from bins
 - TC- Telescoping Chute from bins
 - UC- Under-pole or under-bin reclaim conveyor
 - RC- Reclaim Conveyor (rake or bucket reclaim conveyor reclaiming from surface of stockpile)
 - OTH- Other Describe in a footnote or attachment
- 5. TYPE DUST CONTROLS Code as follows:
 - N- None
 - WS- Water Sprays
 - WSA- Water Sprays with Wetting Agents
 - CS- Chemical Dust Suppressant (sprays, etc...)
 - FE- Full Enclosures
 - PE- Partial Enclosures
 - MD- Minimization of material drop height
 - EM- Enclosure and evacuation to mechanical collector
 - EB- Enclosure and evacuation to baghouse

- ES- Enclosure and evacuation to scrubber OTH- Other describe in footnote or attachment
- 6. TYPE CONVEYOR OR TRANSFER POINT Code as follows:

Conveyors

- **BC-** Belt Conveyor
- VC- Vibrating Conveyor
- SC- Screw Conveyor
- DL- Drag-link conveyor
- **BE-** Bucket Elevator
- **PS-** Pneumatic System
- OTH- Other describe in footnote or attachment

Transfer Points

- 01- Conveyor to Conveyor
- 02- Conveyor to Bucket Elevator
- 03- Conveyor to Hopper or Bin
- 04- Bucket Elevator to Hopper or Bin
- 05- Pneumatic conveyor to bin
- 06- Truck Dumping onto ground
- 07- Truck Dumping into hopper
- 08- Loading trucks through stationary chute
- 09- Loading trucks through telescoping chute
- 10- Loading Trucks by endloader
- 11- Railcar unloading-side or bottom dumping
- 12- Railcar unloading-rotary unloader
- 13- Railcar loading /unloading by pneumatic system
- 14- Railcar loading through stationary source
- 15- Railcar loading through telescopic chute
- 16- Railcar loading by front end-loader
- 17- Railcar loading by railcar
- 18- Barge loading/unloading by clamshell
- 19- Barge unloading bucket ladder unloader
- 20- Barge unloading from a fixed-height conveyor or stationary chute
- 21- Barge loading variable height conveyor or telescoping chute
- 22- Other describe in footnote or attachment
- 7. If more than one material is handled by the listed conveyor or transfer point list each material and furnish the requested data in the table for each material.
- 8. Describe type of unit such as hammermill, ball mill, double-deck (DD) screen, double roll (DR) crusher, etc...
- 9. Describe nominal size reduction, example +2"/ -%

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Gasifier Feed and PDQ Gasifier Units

1. Name or type and model of proposed affected source:

The Gasifier Feed and PDQ Gasifier Unit includes the feed dust bunkers (FDB1 and 2) the Lock Hopper System (Lock Hopper No. 1 (LH1) through No. 12 (LH12)), the Gasifier Feed Bin (GFB1 and 2), the Start Up Vessel (SUV1 and 2), and the PDQ Gasifier Unit (PDQ1 and 2). These units are specifically designed for each process and the final design has not been completed. There are two identical sets of units for this facility. The process information for them follows.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See the Process Flow Diagram

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

Gasifiers In	Process Line	kg/hr	tons/hr
Coal	2	309,868.00	342
Oxygen from ASU	29	230,439.00	255
Water from MTG	20	135,273.00	150
Recycle Water	19	445,730.00	492

4. Name(s) and maximum amount of proposed material(s) produced per hour:

Gasifiers Out	Process Line	kg/hr	tons/hr
Syngas ex Scrubber	3	1,121,958.00	1,237
Sour Gas from PDQ	10	1,214.32	2

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

Controlled combustion of coal.

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Co	mbustion Data	(if applicat	ole):			
(a)	Type and amo	ount in app	ropriate units of fu	el(s) to be burned:		
				 		
(b)	Chemical ana and ash:	ilysis of pro	posed fuel(s), exc	cluding coal, including	j maximum pe	ercent sultur
C1		-4-l 1 00/	and 0.040/ avi	£		
Coai	with approxim	ately 18%	ash and 0.84% sul	iur.		
` '	Theoretical coursel in N		air requirement	(ACF/unit of fuel):	See above	combustion
160	quitements in N		2 000	05	40.1	
		@	2,000	°F and ——————	40 bars =	psia.
(d)) Percent exces	ss air: Se	ee above combusti	on requirements in N	o. 3.	
(e)	Type and BTU	J/hr of burn	ners and all other t	firing equipment plan	ned to be use	d:
	NA					
	- 1					
- 40	16 1 :			make		.:-:
(1)	coal as it will		source of fuel, ide	ntify supplier and sea	ims and give	sizing of the
Vario	ous seams will	be used up	on determination	that the seams are ap	propriate for	the source
oper	ation.					
·						
(g)) Proposed ma	ximum des	ign heat input:	NA ·	× 10	⁶ BTU/hr.
7. Pr	ojected operati	ng schedul	e:			
Hours	/Day 2	24	Days/Week	7 Week	s/Year 5	52

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:

@	°F and	psia

		B1 ⁽¹⁾	B2 ⁽²⁾	B3 ⁽³⁾			
		Lock	Flare at	Feed Bin			
		Hoppers	Start Up				
a.	NO _X	NA NA	333 5.0	NA NA	lb/hr tpy	NA	grains/ACF
b.	SO ₂	1.435 6.28	1,066 16.0	0.135 Emergency Only	lb/hr tpy	NA	grains/ACF
c.	со	0.065 0.275	827 12.4	0.0115 Emergency Only	lb/hr tpy	NA	grains/ACF
d.	PM ₁₀	0.25 2.2	NA NA	0.05 Emergency Only	lb/hr tpy	NA	grains/ACF
e.	Hydrocarbons	NA	NA	NA	lb/hr and tpy	NA	grains/ACF
f.	VOCs	NA	0.084 0.00125	NA	lb/hr and tpy	NA	grains/ACF
g.	Pb	NA	NA	NA	lb/hr and tpy	NA	grains/ACF

^{1.} There are two emission points identified as B1/1 and B1/2 which have the same emissions estimate. The above information is for one point. B1/1 is for gasifier train No. 1 and B1/2 is for gasifier train No. 2. This is a continuous emissions point.

3. There are two emission points identified as B3/1 and B3/2 which have the same emissions estimate. The above information is for one point. B3/1 is for gasifier train No. 1 and B3/2 is for gasifier train No. 2. This is an emergency

· · · · · · · · · · · · · · · · · · ·		h. Specify other(s)
grains/ACF	lb/hr	NA
grains/ACF	lb/hr	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

^{2.} Start ups are estimated at 30 starts per year at one hour per each start up of the gasifiers. This is a worst case estimate for the process starts and includes both gasifiers. There are two emission points B2/1 and B2/2. The above emission is for one point.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. **MONITORING** RECORDKEEPING Assure the flare is in operation when material is Maintain records of Method 22 or Method 9 being vented from this source to the flare. monitoring. Monitor the lock hopper and feed bin discharge Maintain a log of the coal and limestone fed to for opacity under Method 22 or Method 9. the system. REPORTING TESTING Monitor the lock hopper and feed bin discharge None Proposed for opacity under Method 22 or Method 9.

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

These units are specifically designed for each process and the final design has not been completed. Operating ranges and maintenance procedures will be identified during final design of each unit within the system. The procedures as identified will be followed.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): CO Shift

1. Name or type and model of proposed affected source:

The CO Shift Unit includes the Raw Gas Superheater (RGS), CO Shift Reactor (COS), Heat Recovery Exchangers No. 1 and No. 2 (HR1 and HR2), Condensate Separators No. 1 and No. 2 (CD1 and CD2), Final Cooler (FC), Syngas Compressor (SGC), and a Safety Vent on Line to the Flare (COS-SVA1). There is only one (1) CO Shift unit and the final design has not been completed.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See the process flow diagram.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

CO Shift In	Process Line	kg/hr	tons/hr
Syngas exiting Scrubber	3	1,121,958.00	1,237
Tail Gas from PSA	15	18,635.38	21
		Total =	1,258

4. Name(s) and maximum amount of proposed material(s) produced per hour:

CO Shift Out	Process Line	kg/hr	tons/hr
Syngas ex CO Shift	4	702,352.70	775
Sour Water	18	447,886.00	494
		Total =	1,269

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable): NOT APPLICABLE					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
	(h)	Chemical analysis of pr	roposed fuel(s)	evoluding coal, in	cluding maxim	um nercent sulfur
	(0)	and ash:	opooda radice,	Choidding Codi, ii.	oldding max	um poroont cana.
						·
			·			
	(c)	Theoretical combustion	air requirement	t (ACF/unit of fue):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of but	rners and all oth	er firing equipme	nt planned to b	e used:
		,				
	(f)	If coal is proposed as a coal as it will be fired:	a source of fuel,	identify supplier a	and seams and	give sizing of the
						
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.					
7.	7. Projected operating schedule:					
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: This unit does not vent except during upset conditions when venting will occur through the safety vent in the line to the flare. °F and @ psia lb/hr grains/ACF NO_X a. SO_2 lb/hr grains/ACF b. lb/hr CO grains/ACF C. lb/hr grains/ACF d. PM_{10} lb/hr grains/ACF Hydrocarbons f. **VOCs** lb/hr grains/ACF lb/hr grains/ACF g. Pb Specify other(s) lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
None Proposed	None Proposed					
·						
REPORTING	TESTING					
None Proposed	None Proposed					
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PRORECTION OF THE PROPERTY OF	OPÓSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR					
10. Describe all operating ranges and mainte	nance procedures required by Manufacturer to					
maintain warranty						
	ess and the final design has not been completed.					
	will be identified during final design of each unit					
within the system. The procedures as identified	The state of the s					
p. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
•						
Ī						

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): CO2/H2S Removal

1. Name or type and model of proposed affected source:

The CO2/H2S Removal Unit includes the Absorber Column (AC), Solvent Flash I and II Columns (SF1 and SF2), CO2 Stripper (ST), Hot Regeneration Column (HRC), MEOH/H2O Separation (MWS), CO2 Wash Column (CWC) and Line Safety Vents (LSV1, LSV2, and LSV3). There is only one (1) CO2/H2S Removal Unit and the final design has not been completed. The emission point from this source is C2 which is on the line from the Absorber Column headed to the Mercury Scrubber and vents to the flare during start up.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See the process flow diagram.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

CO2/H2S Removal System In	Process Line	kg/hr	tons/hr
Syngas ex CO Shift	4	702,352.70	775
Claus Tail Gas	30	6277	7
		Total =	782

4. Name(s) and maximum amount of proposed material(s) produced per hour:

CO2/H2S Removal System Out	Process Line	kg/hr	tons/hr
CO2 to Purification	16	462,593.08	511
Acid Gas From AGR	9	7252.294	8
Syngas to MEOH	5	255200	282
		Total =	801

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	mbustion Data (if applica	able): NOT APPL	ICABLE		
	(a)	Type and amount in app	propriate units of f	uel(s) to be bur	ned:	
	(b)	Chemical analysis of prand ash:	oposed fuel(s), ex	cluding coal, in	cluding maxim	um percent sulfur
		and asn.				
						•
	(0)	The austical combustion	air requirement (A	OF/weit of final	١.	
	(C)	Theoretical combustion	air requirement (A	CF/unit of fuel):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bur	ners and all other	firing equipme	nt planned to b	e used:
l						
	(f)	If coal is proposed as a	source of fuel, ide	entify supplier a	and seams and	give sizing of the
		coal as it will be fired:				
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating schedu	le:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of podevices were used:	ollutants that would be	emitted from t	his affected so	urce if no control		
@		°F and	t		psia		
		C2 ⁽¹⁾					
a.	NO _X	957.6 0.96	lb/hr tpy	NA	grains/ACF		
b.	SO ₂	168.1 0.17	lb/hr	NA	grains/ACF		
C.	СО	2,375 2.40	lb/hr tpy	NA	grains/ACF		
d.	PM ₁₀	NA	lb/hr	NA	grains/ACF		
e.	Hydrocarbons	NA	lb/hr	NA	grains/ACF		
f.	VOCs	5.81 0.006	lb/hr tpy	NA	grains/ACF		
g.	Pb	NA	lb/hr	NA	grains/ACF		
	1. This is a start up emission only and is estimated at four (4) starts per year and 0.5 hours per start.						
h.	Specify other(s)						
	NA		lb/hr		grains/ACF		
			lb/hr		grains/ACF		
			lb/hr		grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 					
MONITORING	RECORDKEEPING				
None Proposed	None Proposed				
	·				
	·				
•	·				
REPORTING	TESTING				
None Proposed	None Proposed				
	·				
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE				
REPORTING. PLEASE DESCRIBE THE PRORECTORD RECORD KEEPING.	DPOSED FREQUENCY OF REPORTING OF THE				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR				
10. Describe all operating ranges and mainten maintain warranty	nance procedures required by Manufacturer to				
	ess and the final design has not been completed. will be identified during final design of each unit will be followed.				

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Sour Water Stripper

 Name or type and model of proposed affected sour 	1.	Name or type	and model	of proposed	affected source
--	----	--------------	-----------	-------------	-----------------

The Sour Water Stripper includes the SW Feed Vessel (SWSFV), the Feed/Effluent Heat Exchanger (FEHE), the Sour Water Stripper (SWS), Line Safety Vent (SWSLSV), SWS Overhead Condenser (SWSOC) and the SWS Reboiler (SWSRB). These units are sepecifically designed for each process and the final design has not been completed. There is one (1) sour water stripper unit for this facility.

- 2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
- 3. Name(s) and maximum amount of proposed process material(s) charged per hour:

Sour Water Stipper In	Process Line	kg/hr	tons/hr
Sour Water	18	447,886	494
		Total =	494

4. Name(s) and maximum amount of proposed material(s) produced per hour:

Sour Water Stipper Out	Process Line	kg/hr	tons/hr
Recycle Water	19	445,730	492
Sour Gas to SRU	25	2,156	3
		Total =	495

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	mbustio	n Da	ta (if app	licable): NOT A	PPLICA	ABLE		
	(a)	Type a	nd a	nount in	appropriate units	s of fuel(s) to be bui	rned:	
	(b)	Chemic and as		nalysis of	proposed fuel(s	s), exclud	ding coal, in	cluding maxim	um percent sulfur
	(c)	Theore	tical	combusti	ion air requireme	ent (ACF	/unit of fuel	l):	
				@			°F and		psia.
	(d)	Percen	t exc	ess air:					
	(e)	Туре а	nd B	TU/hr of I	burners and all o	other firing	ng equipme	nt planned to b	e used:
	` '	••						·	
	(f)			oposed a		el, identi	fy supplier a	and seams and	give sizing of the
		_							***
	(g)	Propos	ed n	naximum	design heat inpu	ut:			× 10 ⁶ BTU/hr.
7.	Pro	ojected o	opera	ating sche	edule:				
Но	urs/	Day		24	Days/Week		7	Weeks/Year	52

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:

This unit does not vent except during upset conditions when venting will occur through the safety vent in the line to the to the SWS Overhead Condenser and the venting is sent to the flare.

@	2	°F and	psia
a.	NO _X	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	со	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 						
MONITORING	RECORDKEEPING					
None Proposed	None Proposed					
•						
	,					
DECORTING	7707110					
REPORTING	TESTING					
None Proposed	None Proposed					
	i					
	·					
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.						
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	OSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.						
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to					
maintain warranty						
-	ss and the final design has not been completed.					
	vill be identified during final design of each unit					
within the system. The procedures as identified						
Within the System. The proceeded as isometre	will be lefte wea.					

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as ass	signed on <i>Equip</i>	ment List I	Form): N	Mercury Removal	ĺ
Name or type and model	of proposed aff	ected sour	ce:		
This is a mercury removal ac process. There is one (1) for	• •	Γhe Syngas	from the A	AGR system passo	es through this
On a separate sheet(s), f made to this source, cle features of the affected s	arly indicated th	ne change(s). Provi	de a narrative de	escription of al
3. Name(s) and maximum a	amount of propo	sed proces	ss materia	al(s) charged per	hour:
Mercury Removal In Syngas to MeOH	Process Line 5	kg/hr 255,200	tons/hr 282		
Note: Mercury weight is not in	ncluded in the syn	gas weight.			
4. Name(s) and maximum a	amount of propo	sed materi	ial(s) prod	uced per hour:	· · · · · · · · · · · · · · · · · · ·
Mercury Removal Out Syngas to MeOH	Process Line 5	kg/hr 255,200	tons/hr 282		
Note: Mercury weight is not in	ncluded in the syn	gas weight.			
5. Give chemical reactions,	if applicable, th	at will be in	nvolved in	the generation o	of air pollutants
Adsorption of Mercu	ary				

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	. Combustion Data (if applicable): NOT APPLICABLE					
	(a) Type and amount in app	oropriate units o	f fuel(s) to be bur	ned:		
	(b) Chemical analysis of pr and ash:	oposed fuel(s),	excluding coal, in	cluding maximu	ım percent sulfur	
	(c) Theoretical combustion	air requirement	(ACF/unit of fuel):		
	@		°F and		psia.	
	(d) Percent excess air:		15.100 - 1000			
	(e) Type and BTU/hr of bur	ners and all oth	er firing equipmer	nt planned to be	e used:	
	(f) If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier a	and seams and	give sizing of the	
	(g) Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.	
7.	Projected operating schedu	ıle:				
Но	ours/Day 24	Days/Week	7	Weeks/Year	52	

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: This unit does not vent. °F and @ psia lb/hr NO_X grains/ACF lb/hr b. SO₂ grains/ACF grains/ACF C. CO lb/hr d. PM₁₀ lb/hr grains/ACF grains/ACF Hydrocarbons lb/hr e. f. **VOCs** lb/hr grains/ACF Pb lb/hr grains/ACF g. Specify other(s) lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

grains/ACF

grains/ACF

lb/hr

lb/hr

<u> </u>	
with the proposed operating parameters. compliance with the proposed emissions lim	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate lits.
MONITORING	RECORDKEEPING
None Proposed	None Proposed
	•
REPORTING	TESTING
None Proposed	None Proposed
	•
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTION OF THE PROPERTY OF T	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
	ess and the final design has not been completed.
, , , ,	will be identified during final design of each unit
within the system. The procedures as identified	will be followed.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Methanol Synthesis Unit

	1.	Name or t	ype and	model o	fproposed	affected	source
--	----	-----------	---------	---------	-----------	----------	--------

The Methanol Synthesis Unit includes the MUG Compressor (COMP), the Recycle Compressor (RCOMP), Feed Preheater (FPH), MeOH Converter (MEOHC), Product Condenser (PC), Flash Drum I and II (FLD1 and FLD2), Steam Drum (SD), Recovery Cooler (RC), and Line Safety Vents No. 1 through No. 3 (LSV1 through LSV3). These units are specifically designed for each process unit and the final design has not been completed. There is one (1) Methanol Synthesis Unit.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See the process flow diagram.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

Methanol Synthesis Unit In Process Line kg/hr tons/hr Syngas to MeOH 5 255,200 282

4. Name(s) and maximum amount of proposed material(s) produced per hour:

 Methanol Synthesis Unit Out
 Process Line
 kg/hr
 tons/hr

 Methanol
 6
 238,395.60
 263

 Gas to PSA
 12
 19,518.54
 22

 Total =
 285

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applica	ble): NOT APP	LICABLE		
	(a) Type and amount in app	propriate units of	fuel(s) to be bur	ned:	
	(b) Chemical analysis of prand ash:	oposed fuel(s), e	excluding coal, in	cluding maximu	m percent sulfur
	and asm.				
					-
	(a) The question I according to		(AOT)	\.	
	(c) Theoretical combustion	air requirement	(ACF/unit of fuel):	
	@		°F and		psia.
	(d) Percent excess air:	•			
	(e) Type and BTU/hr of bur	ners and all othe	er firing equipme	nt planned to be	used:
					•
	(f) If coal is proposed as a coal as it will be fired:	source of fuel, i	dentify supplier a	and seams and g	ive sizing of the
					•
	(g) Proposed maximum de	sign heat input:		:	× 10 ⁶ BTU/hr.
7.	Projected operating schedu	le:			
Но	ours/Day 24	Days/Week	7 .	Weeks/Year	52

Projected amount of pollutants that would be emitted from this affected source if no control devices were used: This unit does not vent except during upset conditions when venting will occur through the safety vent to the flare and steam will release to atmosphere. °F and psia @ lb/hr grains/ACF NO_X a. lb/hr grains/ACF b. SO₂ CO lb/hr grains/ACF C. lb/hr grains/ACF d. PM₁₀ lb/hr grains/ACF Hydrocarbons f. **VOCs** lb/hr grains/ACF lb/hr grains/ACF g. Pb Specify other(s) lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING
MONITORING RECORDKEEPING
None Proposed None Proposed
DEDODTINO TECTINO
REPORTING None Proposed None Proposed
None Proposed
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.
10. Describe all operating ranges and maintenance procedures required by Manufacturer to
maintain warranty
This unit is specifically designed for each process and the final design has not been completed.
Operating ranges and maintenance procedures will be identified during final design of each unit
within the system. The procedures as identified will be followed.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Sulfur Recovery

1. Name or type and model of proposed affected source:

The Sulfur Recovery Unit includes the Claus Furnace (CF), Waste Heat Boiler (WHB), Condenser I through III (SRCD1 through SRCD3), Reheater I and II (RH1 and RH2), Claus Reactor I and II (CLR1 and CLR2), Feed /Effluent Heat Exchanger (FEHESR), Tailgas Heater (TGH), Hydrogenation Reactor (HR), Tail Gas Scrubber (TGS), Recycle Gas Compressor (RGC), Cooler No. 1 and No. 2 (CL1 and CL2), Sulfur Storage Tank (STK), and Line/Safety Vents No. 1 through No. 3 (SRLSF1 through SRLSF3). These units are specifically designed for each process unit and the final design has not been completed. There is one (1) Sulfur Recovery Unit.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See the process flow diagram.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

Sulfur Recovery In	Process Line	kg/hr	tons/hr
Acid Gas From AGR	9	7,252.29	8
Sour Gas to SRU	25	2,156	3
Sour Gas from PDQ	10	1,214.32	2
_		Total =	13

4. Name(s) and maximum amount of proposed material(s) produced per hour:

Sulfur Recovery Out	Process Line	kg/hr	tons/hr
Claus Tail Gas	30	6,277	7
Solid Sulfur	11	2,669.53	3
		Total =	10

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applicable):									
	(a) Type and amount in appropriate units of fuel(s) to be burned:								
Т	he A	acid Gas is combusted to	allow removal of	Sulfur. The m	aterial is comb	ustible.			
	(b)	Chemical analysis of prand ash:	oposed fuel(s), ex	cluding coal, in	cluding maxim	um percent sulfur			
						,			
N	Mole percent is shown on the mass balance sheet in the calculations.								
	(c)	Theoretical combustion	air requirement (A	CF/unit of fuel):				
		@		°F and		psia.			
	(d)	Percent excess air:	JA						
	(e)	Type and BTU/hr of bur	ners and all other	firing equipme	nt planned to b	e used:			
		Claus Furnace							
_	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, ide	entify supplier a	and seams and	give sizing of the			
		NA							
	(g)	Proposed maximum de	sign heat input:	NA		× 10 ⁶ BTU/hr.			
7.	Pro	pjected operating schedu	ıle:						
Нс	urs/	Day 24	Days/Week	7	Weeks/Year	52			

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: This unit does not vent except during upset conditions when venting will occur through the safety vent to the flare and steam will release to atmosphere. °F and psia @ lb/hr grains/ACF NO_X a. lb/hr grains/ACF SO₂ b. lb/hr grains/ACF C. CO lb/hr grains/ACF PM_{10} d. lb/hr grains/ACF Hydrocarbons lb/hr grains/ACF **VOCs** f. lb/hr grains/ACF Pb g. Specify other(s) lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

with the proposed operating parameters. If compliance with the proposed emissions lim	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	Track the amount of sulfur produced.
Trone i Toposed	Truck the unfount of surface produced.
:	
•	
	·
REPORTING	TESTING
None Proposed	None Proposed
·	
·	
•	
	·
	·
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROI MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	PROSED FREQUENCY OF REPORTING OF THE
TECTING DE SAGE DECORROS ANY PROPOSED EM	OCIONO TEOTINO FOR THIS RECOFER FOURING HEAT AND
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	
	ess and the final design has not been completed.
· · · · · · · · · · · · · · · · · · ·	
, , , , , , , , , , , , , , , , , , , ,	will be identified during final design of each unit
within the system. The procedures as identified	will be followed.
<u>-</u>	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as a	assigned on Equip	ment List Foi	rm): PSA Sy	stem		
1. Name or type and mod	lel of proposed aff	ected source	- :			
The PSA System includes the Adsorber Vessel I thought IV (AV1 through AV4) and an Off Gas						
Drum (OGD). This system		_	,	• ,		
specifically designed for e	•		•	•		
	ach process unit ar	id the illiar de	sign has not oc	en completed. 11	ilere is	
one (1) PSA System.						
 On a separate sheet(s) made to this source, of features of the affected 	learly indicated th	e change(s).	. Provide a na	arrative description		
See the process flow di	agram.					
3. Name(s) and maximum	n amount of propo	sed process	material(s) cha	arged per hour:		
PSA System In	Process Line	kg/hr	tons/hr			
Gas to PSA	12	19,518.54	22			
	12	1,010.01	22			
·						
4. Name(s) and maximum	a amount of propo	sed material/	(s) produced p	or hour:		
Name(s) and maximum	ranjount of propo-	sca material	(s) produced pr	si noui.		
DCA Symtom Out	Dunana Lina	1/h	+/l			
PSA System Out	Process Line	kg/hr	tons/hr			
Tail Gas from PSA	15	18,635.38	21			
Tan Gas Hom TSA	13	10,033.30	21			
5. Give chemical reaction	s if applicable th	at will be invo	olved in the ge	neration of air pol	lutants:	
o. Civo chomical reaction	o, n apphoable, an	ut 11111 DO 11111	5110 a 111 a 10 g 01	ioradion or an por	idianio.	
See Attachment G – Process Description						
		,				

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Со	mbustion [Data (if applica	able): NOT AP	PLICABLE		
	(a)	Type and	amount in ap	propriate units o	of fuel(s) to be but	rned:	
	(b)	Chemical and ash:	analysis of pr	roposed fuel(s),	excluding coal, in	ncluding maxim	um percent sulfur
	(c)	Theoretic	al combustion	air requiremen	t (ACF/unit of fuel):	
			@		°F and		psia.
	(d)	Percent e	xcess air:				
	(e)	Type and	BTU/hr of bur	ners and all oth	er firing equipme	nt planned to be	e used:
					•	•	
	(f)		oroposed as a will be fired:	source of fuel,	identify supplier a	and seams and	give sizing of the
ľ							ĺ
			<u>.</u> .				
		-	·	sign heat input:		·	× 10 ⁶ BTU/hr.
7.	Pro	jected ope	erating schedu	ıle:		1	
Но	urs/	Day	24	Days/Week	7	Weeks/Year	52

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: This unit does not vent and does not have safety vents in the lines. °F and psia @ lb/hr grains/ACF a. NO_X lb/hr SO₂ grains/ACF b. C. CO lb/hr grains/ACF PM₁₀ d. lb/hr grains/ACF Hydrocarbons lb/hr grains/ACF grains/ACF f. **VOCs** lb/hr lb/hr grains/ACF Pb g. Specify other(s) lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

·	
	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	None Proposed
•	
DEDODTINO	TESTING
REPORTING	
None Proposed	None Proposed
•	
1	
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO	DPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
TESTING DI EASE DESCRIPE ANY PROPOSED EMI	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
	ess and the final design has not been completed.
Operating ranges and maintenance procedures	will be identified during final design of each unit
within the system. The procedures as identified	will be followed.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): CO₂ Purification (CO₂P)

1.	Name	or type	and I	model	of	proposed	affected	source:
----	------	---------	-------	-------	----	----------	----------	---------

The CO₂Purification Unit (CO₂P) refines CO₂ for the process and sends CO₂ back to the Coal Preparation units for blanket gas and vents to emission point C1. This process will be either CO₂ Stripping or Catalytic Purification. This unit is specifically designed for each process and the final design has not been completed. There is one (1) CO₂ Purification unit.

2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

There is no preliminary design for this unit.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

CO ₂ Purification In	Process Line	kg/hr	tons/hr
CO ₂ to Purification	16	462,593.08	511
E4	31	9,597	11
		Total =	522

4. Name(s) and maximum amount of proposed material(s) produced per hour:

CO ₂ Purification Out	Process Line	kg/hr	tons/hr
CO ₂ to Atmosphere	17	346873.89	383
CO ₂ to Coal Preparation	26	115719.1873	128
		Total =	511

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

CO₂ Purification

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	6. Combustion Data (if applicable): NOT APPLICABLE					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
	(b) Chemical analysis of p and ash:	roposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur	
-	(a) The continual combination		(ACE/mit of final)			
	(c) Theoretical combustion	n air requirement	(ACF/unit of fuer).		
	@		°F and		psia.	
	(d) Percent excess air:					
	(e) Type and BTU/hr of bu	rners and all oth	er firing equipmer	nt planned to be	e used:	
	(-) .)		····· 5 - -			
		·				
	(f) If coal is proposed as coal as it will be fired:	a source of fuel,	identify supplier a	and seams and	give sizing of the	
	(g) Proposed maximum de	esign heat input:			× 10 ⁶ BTU/hr.	
7.	Projected operating sched	ule:				
Но	ours/Day 24	Days/Week	7	Weeks/Year	52	

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:

This unit does not vent except during upset conditions when venting will occur through the safety vent in the line to the flare.

		safety vent in the	line to the fl	are.	
@)	°F and	d .		psia
		C1			grains/ACF
a.	NO _X	NA	lb/hr	NA	
b.	SO ₂	11.56 46.25	lb/hr tpy	NA	grains/ACF
c.	СО	0.5093 1.974	lb/hr tpy	NA	grains/ACF
d.	PM ₁₀	NA	lb/hr	NA	grains/ACF
e.	Hydrocarbons	NA	lb/hr	NA	grains/ACF
f.	VOCs	NA	lb/hr	NA	grains/ACF
g.	Pb	NA	lb/hr	NA	grains/ACF
h.	Specify other(s)	1			
	NA		lb/hr		grains/ACF
			lb/hr		grains/ACF
			lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	None Proposed
Trone Troposea	
	·
	·
REPORTING	TESTING
-	
None Proposed	None Proposed
	·
	·
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROI MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTOR RECORD KEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10 Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	The procedures required by managements
l ·	ogg and the final decise has not been completed
	ess and the final design has not been completed.
Operating ranges and maintenance procedures v	will be identified during final design of each unit
within the system. The procedures as identified	will be followed.
· · · · · · · · · · · · · · · · · · ·	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Air Separation Units

1. Na	me or type and	model of proposed aff	fected source:		
and 2 and 2 OP2), and N	(AC1 and AC2), I (DC1 and DC2), I Oxygen Evaporiz ICOMP2). These	ts include Air Compress Multipass Heat Exchang Expansion Turbine 1 and zer 1 and 2 (OEVAP1 and units are specifically desi wo (2) Air Separation Un	ger 1 and 2 (MP) 12 (ETRB1 and d OEVAP2), and igned for each p	HE1 and MPHE2), Di ETRB2), Oxygen Pun d Nitrogen Compresso rocess unit and the fina	istillation Column 1 np 1 and 2 (OP1 and or 1 and 2 (NCOMP1 al design has not been
ma	ade to this source	et(s), furnish a sketch ce, clearly indicated tl ected source which ma	he change(s).	Provide a narrativ	re description of all
See	e the process flow	w diagram.			
	ime(s) and maxi	mum amount of propo	osed process i	material(s) charged	per hour:
4. Na	me(s) and maxi	mum amount of propo	osed material(s) produced per hou	ur:
	eparation Out en from ASU	Process Line 29	kg/hr 230,439.00	tons/hr 255	
This	is per each ASL	J.			
5. Giv	ve chemical read	ctions, if applicable, th	nat will be invo	olved in the generati	on of air pollutants:
NA					
* The	e identification no	umber which appears	here must corr	respond to the air po	allution control device

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6. Combustion Data (if applica	ble): NOT APP	LICABLE				
(a) Type and amount in app	(a) Type and amount in appropriate units of fuel(s) to be burned:					
				·		
(b) Chemical analysis of property and ash:	oposed fuel(s), e	xcluding coal, in	cluding maximu	ım percent sulfur		
and doll.						
(c) Theoretical combustion	oir roquirement /	ACE/unit of fuel	\.			
(c) Theoretical combustion	an requirement).			
@		°F and		psia.		
(d) Percent excess air:						
(e) Type and BTU/hr of bur	ners and all othe	r firing equipmer	nt planned to be	used:		
·						
(f) If coal is proposed as a coal as it will be fired:	source of fuel, id	lentify supplier a	ind seams and	give sizing of the		
				·		
(g) Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.		
7. Projected operating schedu	ıle:					
Hours/Day 24	Days/Week	7	Weeks/Year	52		

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: These units do not release regulated air pollutants. °F and @ psia lb/hr grains/ACF NO_X a. lb/hr grains/ACF SO₂ b. CO lb/hr grains/ACF C. lb/hr grains/ACF d. PM₁₀ Hydrocarbons lb/hr grains/ACF e. f. **VOCs** lb/hr grains/ACF Pb lb/hr grains/ACF g. Specify other(s) lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF lb/hr grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	None Proposed
•	
DEDODTING	TESTING
REPORTING	
None Proposed	None Proposed
	· ·
	I E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTION OF THE PROPERTY OF T	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	
	ocess and the final design has not been completed.
	will be identified during final design of each unit
within the system. The procedures as identified	will be followed.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Methanol to Gasoline (MTG)

1. Name or type and model of proposed affected source:

The Methanol to Gasoline Unit includes the MTG Reaction Unit: Separation, Methanol Recovery (SMR); Methanol Vaporization/HP Steam Generation (MVS);DME Reactor and MTG Reactors (DMR); MTG Reactors Regeneration Systems (MTGRS); GasLiquid /Liquid Separationm (GLS); Deethanizer (DE); Stabilizer (STB); Methanol Recovery(MR); Absorber (AB); HGT Reactors (HGT); HGT Product Stripper(PS). These units are specifically designed for each process unit and the final design has not been completed. The units in each grouping above are detailed in Attachment I on Pages I11 thought I18. The units include Emission Points E1 through E5. E1 is the Regeneration Heater (SURGH), E2 is the Reactivation Heater (SURH), E3 is the HGT Heater (RCH), E4 is Process Waste Regeneration Gas Silencer (RGSL), and E5 is the flaring of the tail gas when both no process use available.

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See MGT process flow diagrams.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

MTG In	Process Line	kg/hr	tons/hr
Methanol	6	238,395.60	263

4. Name(s) and maximum amount of proposed material(s) produced per hour:

MTG Out	Process Line	kg/hr	tons/hr
LPG	7	10,759	12
Gasoline	8	87,400	97
Tail Gas from MTG	28	3,257	4
Water from MTG	20	135,273	150
		Total =	263

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

See Attachment G – Process Description

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable): Combustion on Other Sheets									
	(a) Type and amount in appropriate units of fuel(s) to be burned:									
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulful and ash:									
	(c) Theoretical combustion air requirement (ACF/unit of fuel):									
			@	200	°F a	nd	psia.			
	(d)	Percent exc	ess air:							
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:									
							·			
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:									
							-			
<u> </u>			<u>.</u>							
(g) Proposed maximum design heat input: × 10 ⁶ B										
7.	7. Projected operating schedule:									
Но	urs/	Day	24	Days/Week	7	Weeks/Ye	ar 52			

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:

This unit does not vent except during upset conditions and regeneration when venting will occur through the safety vent to the flare and to atmosphere. See Following Sheets for Emission Points E1 through E3.

@		°F and				psia			
	See Following Sheets for E1, E2, and E3	E4 ⁽¹⁾	E5 ⁽²⁾						
a.	NO _x	NA	21.3 0.43	lb/hr tpy	NA	grains/ACF			
b.	SO ₂	NA	NA	lb/hr	NA	grains/ACF			
c.	СО	NA	51.88 1.04	lb/hr tpy	NA	grains/ACF			
d.	PM ₁₀	NA	NA	lb/hr	NA	grains/ACF			
e.	Hydrocarbons	NA	NA	lb/hr	NA	grains/ACF			
f.	VOCs	NA	19.96 0.4	lb/hr tpy	NA	grains/ACF			
g.	Pb	NA	NA	lb/hr	NA	grains/ACF			
	E4 is sent to the CO ₂ Purifier and is now part of C1. E5 emissions occur and estimated four (4) times a year at 10 hours each.								
h.	Specify other(s)								
		lb/hr grains/ACF							
	lb/hr grains/ACF								

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING	RECORDKEEPING				
None Proposed	Amount of LPG and Gasoline Produced				
Troposeu					
·					
REPORTING	TESTING				
None Proposed	None Proposed				
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE				
REPORTING. PLEASE DESCRIBE THE PRO	OBOOED EDECHENOY OF DEPORTING OF THE				
	OPOSED FREQUENCY OF REPORTING OF THE				
RECORDKEEPING.					
TESTING. PLEASE DESCRIBE ANY PROPOSED EM	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR				
POLLUTION CONTROL DEVICE.					
	nance procedures required by Manufacturer to				
maintain warranty					
These units are specifically designed for each process and the final design has not been completed.					
Operating ranges and maintenance procedures will be identified during final design of each unit					
within the system. The procedures as identified will be followed.					
within the system. The procedures as identified	will be followed.				
· · · · · · · · · · · · · · · · · · ·					
·					

Emission Unit Data Sheet

(INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): NA

Manufacturer: MTG Start-Up/Regeneration Gas Heater(SURGH) (E1) - Manufacturer Not Selected	Model No. Manufacturer Not Selected Serial No.
3. Number of units: 1	4. Use Used in the start up of the process and in regeneration of the MTG catalysist
5. Rated Boiler Horsepower: NA hp	Boiler Serial No.: Manufacturer Not Selected
7. Date constructed: 2010	8. Date of last modification and explain: NA
9. Maximum design heat input per unit: Main Burn	10. Peak heat input per unit: Regeneration
30 ×10 ⁶ BTU/hr	30 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
NA LB/hr	Hours/Day NA
NA LB/III	Days/Week NA
NA psig	Weeks/Year NA
13. Type of firing equipment to be used: ☐ Pulverized coal ☐ Spreader stoker ☐ Oil burners ☐ Natural Gas Burner ☑ Others, specify Syngas	14. Proposed type of burners and orientation: ☐ Vertical ☐ Front Wall ☐ Opposed ☑ Tangential ☐ Others, specify
15. Type of draft: ⊠ Forced ☐ Induced	16. Percent of ash retained in furnace: NA %
17. Will flyash be reinjected? ☐ Yes ☒ No	18. Percent of carbon in flyash: NA %
Stack or Vent Data Manu	facturer Not Selected
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F
21. Height: NA ft.	22. Stack serves: This equipment only
23. Gas flow rate: NA ft³/min	Other equipment also (submit type and rating of all other equipment exhausted through this stack or
24. Estimated percent of moisture: Na %	vent)

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Syngas:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	ft ³ /hr	TPH	101,351 ft³/hr
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	87.46 ×106 ft ³ /hr
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	None
	Ash (%)				Maximum	Trace
	BTU Content	BTU/Gal.	BTU/ft ³	BTU/ft³	BTU/lb	296 BTU/ft³
	Source					Process
	Supplier					NA
	Halogens (Yes/No)					NA
	List and Identify Metals					NA
26.	6. Gas burner mode of control: 27. Gas burner manufacture:					
	☐ Manual ☐ Automatic hi-low ☐ Automatic full modulation ☐ Automatic on-off 28. Oil burner manufacture:					
29.	If fuel oil is used, h	ow is it atomized?		☐ Steam Pressu d Air ☐ Rotary Cu ify		
30.	Fuel oil preheated:	☐ Yes [☐ No 3	1. If yes, indicate te	emperature:	°F
32.	Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel:			s described above		
22	Emission rate at ra	°F,	PSIA, !b/hr	% mc	oisture	<u> </u>
\vdash	33. Emission rate at rated capacity: Ib/hr 34. Percent excess air actually required for combustion of the fuel described: %					
<u> </u>	, croom cacess all		Coal Character			
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

Pollutant	nts will be emitted from the boiler before controls? Pounds per Hour Ib/hr/tpy		
СО	1.93/1.24		
Hydrocarbons	NA		
NO _x	4.01/1.69		
Pb	NA		
PM ₁₀	0.223/0.10		
SO ₂	NA		
VOCs	0.162/0.07		
Other (specify)			

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour lb/hr/tpy			
СО	1.93/1.24			
Hydrocarbons	NA			
NO _x	4.01/1.69			
Pb	NA			
PM ₁₀	0.223/0.10			
SO ₂	NA			
VOCs	0.162/0.07			
Other (specify)				

39. How will waste material from the process and control equipment be disposed of? NA

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. NA

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet? Yes

42.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.					
	Monitor the emission point for opacity via Method 9 and Method 22.					
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.					
	Testing will be conducted as required by DAQ.					
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Record hours of operation for the unit.					
	Record nours of operation for the difft.					
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None proposed.					
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. The manufacturer has not been selected for this unit. Operating ranges and maintenance procedures identified by the manufacturer will be followed.					

Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): NA

Manufacturer: MTG Start-Up/Reactivation Heater (SURH) (E2) - Manufacturer Not Selected	Model No. Manufacturer Not Selected Serial No.
3. Number of units: 1	4. Use Used in the start up of the process and in regeneration of the MTG catalysist
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: Manufacturer Not Selected
7. Date constructed: 2010	8. Date of last modification and explain: NA
Maximum design heat input per unit: Main Burn	10. Peak heat input per unit: Regeneration
120 ×10 ⁶ BTU/hr	120 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output: NA LB/hr NA psig	12. Projected Operating Schedule: Hours/Day NA Days/Week NA Weeks/Year NA
13. Type of firing equipment to be used: ☐ Pulverized coal ☐ Spreader stoker ☐ Oil burners ☐ Natural Gas Burner ☐ Others, specify Syngas	14. Proposed type of burners and orientation: ☐ Vertical ☐ Front Wall ☐ Opposed ☐ Tangential ☐ Others, specify
15. Type of draft: ⊠ Forced ☐ Induced	16. Percent of ash retained in furnace: NA %
17. Will flyash be reinjected? ☐ Yes ☒ No	18. Percent of carbon in flyash: NA %
Stack or Vent Data Manu	facturer Not Selected
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F
21. Height: NA ft.	22. Stack serves: ☑ This equipment only
23. Gas flow rate: NA ft³/min	 Other equipment also (submit type and rating of all other equipment exhausted through this stack or
24. Estimated percent of moisture: Na %	vent)

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Syngas:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	ft ³ /hr	TPH	405,405 ft ³ /hr
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	227.9 ×106 ft³/hr
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	None
	Ash (%)				Maximum	Trace
	BTU Content	BTU/Gal.	BTU/ft³	BTU/ft³	BTU/lb	296 BTU/ft³
	Source					Process
	Supplier		·			NA
	Halogens (Yes/No)					NA
	List and Identify Metals					NA
26.	26. Gas burner mode of control: 27. Gas burner manufacture:					
	☐ Manual ☐ Automatic hi-low ☐ Automatic full modulation ☐ Automatic on-off 28. Oil burner manufacture:					
29.	If fuel oil is used, h	ow is it atomized? [☐ Oil Pressure ☐ Compresse ☐ Other, spec	☐ Steam Pressund Air ☐ Rotary Cuify		
30.	Fuel oil preheated:	Yes [□ No 3	1. If yes, indicate te	mperature:	°F
32.	actual cubic feet (A	ACF) per unit of fue	l: ˙	ombustion of the fue		s described above
33.	Emission rate at ra	°F, ted capacity:	PSIA, lb/hr	% mc	pisture	
	34. Percent excess air actually required for combustion of the fuel described:					<u></u>
			Coal Character			
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

Pollutant	Pounds per Hour lb/hr/tpy			
co	11.44/3.22			
Hydrocarbons	NA			
NO _x	15.64/4.4			
Pb	NA			
PM ₁₀	0.89/0.25			
SO ₂	NA			
VOCs	0.65/0.18			

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour lb/hr/tpy			
СО	11.44/3.22			
Hydrocarbons	NA			
NO _x	15.64/4.4			
Pb	NA		1 ***	
PM ₁₀	0.89/0.25			
SO ₂	NA			
VOCs	0.65/0.18			
Other (specify)				

- 39. How will waste material from the process and control equipment be disposed of? NA
- 40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. NA
- 41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet? Yes

42.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed				
	operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges				
	and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.				
	Monitor the emission point for opacity via Method 9 and Method 22.				
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.				
	Testing will be conducted as required by DAQ.				
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.				
	Record hours of operation for the unit.				
	DEPORTING: Disease describe the managed fraguency of sometime of the according to				
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None proposed.				
40	Describe all apprehing responses and resistances are described by Manufactures to resistance and resistances are described by Manufactures are				
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. The manufacturer has not been selected for this unit. Operating ranges and maintenance procedures identified by the manufacturer will be followed.				

Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): NA

Manufacturer: HGT Reactor Charge Heater (RCH) (E3) - Manufacturer Not Selected	Model No. Manufacturer Not Selected Serial No.
3. Number of units: 1	4. Use Used in the start up of the process and in regeneration of the MTG catalysist
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: Manufacturer Not Selected
7. Date constructed: 2010	8. Date of last modification and explain: NA
9. Maximum design heat input per unit: Main Burn	10. Peak heat input per unit: Regeneration
4.0 ×10 ⁶ BTU/hr	4.0 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
NA LB/hr	Hours/Day 24
	Days/Week 7
NA psig	Weeks/Year 52
13. Type of firing equipment to be used: ☐ Pulverized coal ☐ Spreader stoker ☐ Oil burners ☐ Natural Gas Burner ☑ Others, specify Syngas	14. Proposed type of burners and orientation: ☐ Vertical ☐ Front Wall ☐ Opposed ☑ Tangential ☐ Others, specify
15. Type of draft: ⊠ Forced ☐ Induced	16. Percent of ash retained in furnace: NA %
17. Will flyash be reinjected? ☐ Yes ☒ No	18. Percent of carbon in flyash: NA %
Stack or Vent Data Manu	facturer Not Selected
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F
21. Height: NA ft.	22. Stack serves: ☑ This equipment only
23. Gas flow rate: NA ft³/min	Other equipment also (submit type and rating of all other equipment exhausted through this stack or
24. Estimated percent of moisture: Na %	vent)

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Syngas:
	Quantity (at Design Output)	gph@60°F	ft³/hr	ft ³ /hr	TPH	13,514 ft³/hr
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	85.41 ×10 ⁶ ft³/hr
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	None
	Ash (%)				Maximum	Trace
	BTU Content	BTU/Gal.	BTU/ft ³	BTU/ft³	BTU/lb	296 BTU/ft³
	Source					Process
	Supplier					NA
	Halogens (Yes/No)					NA
	List and Identify Metals					NA
26.	Gas burner mode o		omatic hi-low	27. Gas burner man	ufacture:	
	Automatic full m			28. Oil burner manu	facture:	
29.	If fuel oil is used, he	ow is it atomized? [☐ Steam Pressuled Air ☐ Rotary Cubify		
	Fuel oil preheated:			31. If yes, indicate te		°F
32.	Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel:					
33	@ Emission rate at ra	°F, ···	PSIA, lb/hr	% mc	pisture	
		actually required fo		ne fuel described:	%	
			Coal Character			
35.	Seams:		.,			
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

Pollutant	Pounds per Hour lb/hr/tpy				
со	0.381/1.20				
Hydrocarbons	NA				
NO _x	0.55/1.65				
Pb	NA				
PM ₁₀	0.03/0.09				
SO ₂	NA				
VOCs	0.022/0.07				
Other (specify)					

1. Estimated to operate 8,000 hours per year total.

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour lb/hr/tpy				
СО	0.381/1.20				
Hydrocarbons	NA				
NO _x	0.55/1.65				
Pb	NA				
PM ₁₀	0.03/0.09				
SO ₂	NA				
VOCs	0.022/0.07				
Other (specify)	NA				

39. How will waste material from the process and control equipment be disposed of? NA

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. NA

41. Have you included the $\it air\ pollution\ rates$ on the Emissions Points Data Summary Sheet? Yes

42.	Proposed Monitoring, Recordkeeping, Rep Please propose monitoring, recordkeeping, a			compliance with	the proposed
	operating parameters. Please propose testin limits.				
	MONITORING PLAN: Please list (1) describ and how they were established for monitor	ing to demonstrate			
	equipment operation or air pollution control of Monitor the emission point for opacity v		Method 22.		
	TESTING PLAN: Please describe any propo device.	sed emissions testi	ing for this process	equipment or air p	ollution control
		- i -			
	Testing will be conducted as required by	DAQ.			
	RECORDKEEPING: Please describe the pr		ning that will accou	mnany the monito	rina
		anasea recorakeel			·······
		oposea recorakeep	ping that will accor	. ,	
	Record hours of operation for the unit.	oposea recorakee	ping that will accor		
		oposea recorakee	ping that will accor	. ,	. •
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
		oposea recorakee	ping that will accom		
	Record hours of operation for the unit.				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit.				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	Record hours of operation for the unit. REPORTING: Please describe the proposed				
	REPORTING: Please describe the proposed None proposed.	d frequency of repo	orting of the record	dkeeping.	
43.	REPORTING: Please describe the proposed None proposed.	d frequency of repo	orting of the record	dkeeping.	
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenant.	d frequency of repo	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed.	d frequency of repo	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenant.	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.
43.	REPORTING: Please describe the proposed None proposed. Describe all operating ranges and maintenan The manufacturer has not been selected	d frequency of reported for this unit. Of	orting of the record	dkeeping. urer to maintain w	/arranty.

Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): NA

Manufacturer: Start Up Steam Boiler (SUSB) (F) - Manufacturer Not Selected	2. Model No. Manufacturer Not Selected Serial No.			
3. Number of units: 1	4. Use Used in the start up of the process			
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: Manufacturer Not Selected			
7. Date constructed: 2010	8. Date of last modification and explain: NA			
Maximum design heat input per unit: Main Burn	10. Peak heat input per unit: Regeneration			
81.84 ×10 ⁶ BTU/hr	81.84 ×10 ⁶ BTU/hr			
11. Steam produced at maximum design output:	12. Projected Operating Schedule:			
NA LB/hr	Hours/Day 24			
NA LB/III	Days/Week 96 Hours Per Startup			
NA psig	Weeks/Year 4 Startups and Week			
13. Type of firing equipment to be used: ☐ Pulverized coal ☐ Spreader stoker ☐ Oil burners ☑ Natural Gas Burner ☐ Others, specify Syngas	14. Proposed type of burners and orientation: ☐ Vertical ☐ Front Wall ☐ Opposed ☐ Tangential ☐ Others, specify			
15. Type of draft: ⊠ Forced ☐ Induced	16. Percent of ash retained in furnace: NA %			
17. Will flyash be reinjected? ☐ Yes ☒ No	18. Percent of carbon in flyash: NA %			
Stack or Vent Data Manu	facturer Not Selected			
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F			
21. Height: NA ft.	22. Stack serves: ☑ This equipment only			
23. Gas flow rate: NA ft³/min	 Other equipment also (submit type and rating of all other equipment exhausted through this stack or 			
24. Estimated percent of moisture: Na %	vent)			

		<u>-</u>				
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	83,890 ft ³ /hr	ft³/hr	TPH	
	Annually	×10 ³ gal	32.22×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	·
	Sulfur	Maximum: wt. % Average: wt. %	20 ppmv	gr/100 ft ³	Maximum: wt. %	
	Ash (%)		Trace		Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,020 BTU/ft ³	BTU/ft³	BTU/lb	
	Source		Pipeline			
	Supplier		Not Selected			
	Halogens (Yes/No)		NA			
	List and Identify Metals		NA			
26.	Gas burner mode		omatic hi-low	27. Gas burner mar	nufacture:	
	Automatic full n			28. Oil burner manu	ıfacture:	
29.	If fuel oil is used, h	ow is it atomized? [☐ Steam Pressu ed Air ☐ Rotary Cu cify		
	Fuel oil preheated			31. If yes, indicate to	<u> </u>	°F
32.		ACF) per unit of fue	!:	ombustion of the fu		s described above
33	@ Emission rate at ra	°F,	PSIA, Ib/hr	% m	oisture	
┝─	Percent excess air			ne fuel described:	%	
``	T CICCIII CACCOS AII	actually required it	Coal Character		76	
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	

Pollutant		Pounds per Hour lb/hr/tpy			
СО	10.11/1.94		 		
Hydrocarbons	NA				
NO _x	13.92/2.67				
Pb	NA				
PM ₁₀	0.61/0.12				
SO ₂	0.31/0.06				
VOCs	0.44/0.09				

1. 4 times per year, each 96 hours

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour lb/hr/tpy			
со	10.11/1.94			
Hydrocarbons	NA			
NO _x	13.92/2.67			
Pb	NA		-	
PM ₁₀	0.61/0.12			
SO ₂	0.31/0.06			
VOCs	0.44/0.09			
Other (specify)				

39. How will waste material from the process and control equipment be disposed of? $NA \ \ \,$

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. NA

41. Have you included the air pollution rates on the Emissions Points Data Summary Sheet? Yes

12.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chand how they were established for monitoring to demonstrate compliance with the operate equipment operation or air pollution control device.					
	Monitor the emission point for opacity via Method 9 and Method 22.					
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment device.	or air pollution control				
	Testing will be conducted as required by DAQ.					
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the	monitoring.				
	Record hours of operation for the unit.					
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None proposed.					
	None proposed.					
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to main The manufacturer has not been selected for this unit. Operating ranges and maint identified by the manufacturer will be followed.					

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Cooling Tower (CT)

1. Name or time and model of proposed offected courses	
Name or type and model of proposed affected source:	
The Ladered Dark Cooking Towns and the cooking for all and account on in the gratery. The wait	
The Induced Draft Cooling Tower supplies cooling for all process water in the system. The uni	
is specifically designed for each process unit and the final design has not been completed. There	e
is one (1) Cooling Tower.	
	_
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to	be
made to this source, clearly indicated the change(s). Provide a narrative description of	all
features of the affected source which may affect the production of air pollutants.	
No process flow diagram for cooling tower.	
3. Name(s) and maximum amount of proposed process material(s) charged per hour:	
o. Hamo(o) and maximum amount of proposod proposod material(o) ondigod por moun.	
Hot water at an anticipated 308,167 gallons per minute.	
4. Name(s) and maximum amount of proposed material(s) produced per hour:	\neg
4. Name(s) and maximum amount of proposed material(s) produced per near.	
Cooled water.	
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutan	ts:
Not Applicable	
Not Applicable	

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applica	ible): NOT APF	PLICABLE		
(a) Type and amount in app	propriate units of	f fuel(s) to be bur	ned:	
(b) Chemical analysis of pr	anasad fual(s)	avaluding cool in	oludina mavim	um paraent sulfur
and ash:	oposed idei(s), (excluding coal, in	Cidding maxim	um percem sunui
		•		
(c) Theoretical combustion	air requirement	(ACF/unit of fuel):	
@		°F and		psia.
(d) Percent excess air:				
(e) Type and BTU/hr of bur	ners and all other	er firing equipme	nt planned to b	e used:
				:
(f) If coal is proposed as a coal as it will be fired:	source of fuel,	dentify supplier a	and seams and	give sizing of the
(g) Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7. Projected operating schedu	ıle:			
Hours/Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of polluta devices were used:	ants that would be	emitted from	this affected sou	ırce if no control
@		°F and	d		psia
a.	NO _X	NA	lb/hr	NA	grains/ACF
b.	SO ₂	NA	lb/hr	NA	grains/ACF
C.	СО	NA	lb/hr	NA	grains/ACF
d.	PM ₁₀	7.71 33.77	lb/hr tpy	NA	grains/ACF
e.	Hydrocarbons	NA	lb/hr	NA	grains/ACF
f.	VOCs	NA	lb/hr	NA	grains/ACF
g.	Pb	NA	lb/hr	NA	grains/ACF
h.	Specify other(s)		1		
	NA		lb/hr		grains/ACF
			lb/hr		grains/ACF
			lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	None Proposed
None Proposed	Trone Proposed
•	
REPORTING	TESTING
	None Proposed
None Proposed	None Proposed
•	
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROPERTY OF THE PROPERTY	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTOR RECORD KEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	
	ess and the final design has not been completed.
	will be identified during final design of each unit
within the system. The procedures as identified	
within the system. The procedures as identified	will be followed.
•	
· · · · · · · · · · · · · · · · · · ·	

EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for each new or modified bulk liquid storage tank as shown on the Equipment List Form and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION: ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. USEPA'S AP-42; SECTION 7.1; "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFOR	RMATION (required)
Bulk Storage Area Name	2. Tank Name
Gasoline Storage Area	TK1 throught TK3 (3 identical tanks)
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	4. Emission Point Identification No. (as assigned on Equipment List Form)
TK1 throught TK3 (3 identical tanks)	TK1 throught TK3 (3 identical tanks)
5. Date of Commencement of Construction (for existing	tanks) 2010
6. Type of change ⊠ New Construction □	New Stored Material
7. Description of Tank Modification (if applicable) NA	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tank	
7B. If YES, explain and identify which mode is cover completed for each mode). NA	ed by this application (Note: A separate form must be
7C.Provide any limitations on source operation aff production variation, etc.):	ecting emissions, any work practice standards (e.g.
NA	
II. TANK INFORM	ATION (required)
8. Design Capacity (specify barrels or gallons). Use the	internal cross-sectional area multiplied by internal height.
2,000,000 gallons per tank (3 identical tanks)	
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
100	35
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
35	17.5
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
NA	17.5
12. Nominal Capacity (specify barrels or gallons). To design liquid levels and overflow valve heights.	his is also known as "working volume" and considers

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
91,980,000	N/A
14. Number of Turnovers per year (annual net throu- 45.99	ghput/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min) NA	
16. Tank fill method	☐ Splash ⊠ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems
17A. Volume Expansion Capacity of System (gal) N/A	17B. Number of transfers into system per year
18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof	flat roof cone roof dome roof double deck roof
	diaphragm
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	d rivets
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	tust
22A. Is the tank heated?	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to ta	ınk.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	of Tanks
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tail	nks
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	•
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	ck one)
25E. Is the Floating Roof equipped with a weather shie	ld? YES NO

25F. Describe deck fittings; indicate	the number of eac	h type of fitting:				
201. Describe deck fittings, indicate	25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH					
BOLT COVER, GASKETED:	UNBOLTED COVE		UNBOLTED COVER, UNGASKETED:			
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COVE		UNBOLTED COVER, UNGASKETED:			
	COLUM	N WELL	I Company of the Comp			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN - SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:			
	! LADDE!	R WELL	<u> </u>			
PIP COLUMN – SLIDING COVER, GA			SLIDING COVER, UNGASKETED:			
	GAUGE-HATCH	/SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)			
WEIGHTED MECHANICAL ACTUATI		BREAKER WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
	RIM	: /ENT				
WEIGHTED MECHANICAL GASKETED:			ANICAL ACTUATION, UNGASKETED:			
	DECK DRAIN (3-	NCH DIAMETER)				
OPEN:	,	90% CLOSED:				
STUB DRAIN						
1-INCH DIAMETER:	0.00	<i>₽.</i> √ 111 t				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating R	oof Tanks Does Not Apply
26A. Deck Type: Bolted Welded	
26B. For Bolted decks, provide deck construction:	
100000	
26C. Deck seam:	
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
☐ Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in t	nis section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft² day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be store	ed in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Masimo, um Manau Duaga.				
Maximum Vapor Pressu	ire			
39F. True (psia)				
<u>39G. Reid (psia)</u> Months Storage per Yea				
39H. From				
39I. To				
	VI. EMISSIONS A	ND CONTROL DE	VICE DATA (required)	
40. Emission Control De	evices (check as many	/ as apply): 🔲 Doe	s Not Apply	
☐ Carbon Adsorpti	on ¹			
☐ Condenser ¹				
☐ Conservation Ve	ent (psig)			
Vacuum Se	etting	Pressur	e Setting	
	ef Valve (psig)			
☐ Inert Gas Blanke	et of			
☐ Insulation of Tar	nk with			
Liquid Absorption				
	•			
☐ Refrigeration of				
☐ Refrigeration of ☐ Rupture Disc (ps	sia)			
Rupture Disc (ps	•			
☐ Rupture Disc (ps☐ Vent to Incinerat	or ¹			
☐ Rupture Disc (ps☐ Vent to Incinerat☐ Other¹ (describe	or ¹ e):	rol Device Sheet		
☐ Rupture Disc (ps☐ Vent to Incinerat☐ Other¹ (describe¹ Complete appropr	or ¹ ·): <u>riate Air Pollution Cont</u>		ere or elsewhere in the a	application).
Rupture Disc (ps Vent to Incinerat Other¹ (describe Complete appropr LEXPECTED TO STATE TO ST	or ¹ ·): <u>riate Air Pollution Cont</u> Rate (submit Test Dat	a or Calculations he	ere or elsewhere in the a	
☐ Rupture Disc (ps☐ Vent to Incinerat☐ Other¹ (describe¹ Complete appropr	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss	Annual Loss	application). Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 41. Expected Emission Material Name & CAS No.	or ¹ ·): <u>riate Air Pollution Cont</u> Rate (submit Test Dat	a or Calculations he	Annual Loss	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 41. Expected Emission Material Name &	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss	Annual Loss (lb/yr)	
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe Complete appropr Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 1. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 1. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 1. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹
Rupture Disc (ps Rupture Disc (ps Vent to Incinerat Other¹ (describe ¹ Complete appropr 11. Expected Emission Material Name & CAS No.	or ¹ b): riate Air Pollution Cont Rate (submit Test Dat Breathing Loss	a or Calculations he Working Loss Amount Unit	Annual Loss (lb/yr)	Estimation Method ¹

EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for each new or modified bulk liquid storage tank as shown on the Equipment List Form and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. USEPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

	I. GENERAL INFOR	IVIATIC	n (requirea)		
1. Bulk Storage Area Na	me	2. T	ank Name		
Methanol Storage T			K6		
Tank Equipment Ider Equipment List Form)	itification No. (as assigned on		mission Point Id <i>quipment List Fo</i>	dentification No. (rm)	(as assigned on
TK6		Ţ	K6		
5. Date of Commencement	ent of Construction (for existing t	anks)	2010		
	New Construction	lew St	ored Material	Other Tank N	/lodification
Description of Tank M	odification (if applicable)				
NA					
	ore than one mode of operation none product stored in the tank		☐ Yes	⊠ No	
7B. If YES, explain and completed for each	identify which mode is covere mode).	ed by t	his application	(Note: A separat	te form must be
NA					
7C. Provide any limitation production variation	ons on source operation affe, etc.):	ecting	emissions, any	/ work practice	standards (e.g.
NA					
	II. TANK INFORM	ATION	(required)		
Design Capacity (sp height.	ecify barrels or gallons). Use	the in	ernal cross-sec	tional area multi	plied by internal
	2,000,00	_			
9A. Tank Internal Diamete	• •	9B. T	ank Internal Heig	ght (or Length) (ft)	
	100			35	
10A. Maximum Liquid F	· · ·	10B.	Average Liquid	• • • •	
	35			17.5	
11A. Maximum Vapor S	Space Height (ft)	11B.	Average Vapo	or Space Height (fl	i) ·
	<u>NA</u>			17.5	- <u>-</u>
	specify barrels or gallons). The and overflow valve heights.	his is	also known as '	working volume	" and considers

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
700 Million	1,917,808		
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)			
Approx	imately 350		
15. Maximum tank fill rate (gal/min) NA			
16. Tank fill method ☐ Submerged	☐ Splash ⊠ Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe)	flat roof cone roof dome roof		
☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	double deck roof		
☑ Internal Floating Roof vertical column su			
☐ Variable Vapor Space lifter roof			
☐ Pressurized spherical cylindrical ☐ Underground			
☐ Other (describe)			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:			
Riveted Gunite lined Epoxy-coated			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted		
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to ta	nk.		
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Ro	of Tanks		
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tar	nks Does Not Apply		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type:	<u> </u>		
25C. Is the Floating Roof equipped with a Secondary S	eal?		
25D. If YES, how is the secondary seal mounted? (che	ck one)		
25E. Is the Floating Roof equipped with a weather shie	ld?		

25F. Describe deck fittings; indicate	the number of eac	h type of fitting:			
3.,		SHATCH			
BOLT COVER, GASKETED:	UNBOLTED COVE		UNBOLTED COVER, UNGASKETED:		
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COVE	IGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		NI NATELI	1		
BUILT-UP COLUMN - SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
	LADDE	R WELL			
PIP COLUMN – SLIDING COVER, GA			SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:	0,1002 1,11011	SLIDING COVER,	UNGASKETED:		
	ROOF LEG OR	HANGER WELL			
WEIGHTED MECHANICAL ACTUATION, GASKETED:		MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
	VACUUM	RREAKER	:		
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:		
	DIM \	· /ENT			
WEIGHTED MECHANICAL GASKETED:			ANICAL ACTUATION, UNGASKETED:		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:	,	90% CLOSED:			
	CTUD	DRAIN			
1-INCH DIAMETER:	3106	DRAIN			
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES I	F NECESSARY)		

26. Complete the following section for Internal Fl	ating Roof Tanks	☐ Does Not Apply
26A. Deck Type:	ed	
26B. For Bolted decks, provide deck construct	on:	
26C. Deck seam: ☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide ☐ Continuous sheet construction 7 feet wide ☐ Continuous sheet construction 5 × 7.5 fee ☐ Continuous sheet construction 5 × 12 feet ☐ Other (describe)		
26D. Deck seam length (ft)	26E. Area of	deck (ft ²)
For column supported tanks:	26G. Diamete	er of each column:
26F. Number of columns:		
IV. SITE INFORMANTION (co. 27. Provide the city and state on which the d		
27. Flovide the city and state off which the d	ita in triis section are b	aseu.
28. Daily Average Ambient Temperature (°F)		
29. Annual Average Maximum Temperature (°F)		·
30. Annual Average Minimum Temperature (°F)		
31. Average Wind Speed (miles/hr)		
32. Annual Average Solar Insulation Factor (BTU	(ft ² ·day))	
33. Atmospheric Pressure (psia)		
V. LIQUID INFORMATION (ptional if providing TANK	S Summary Sheets)
34. Average daily temperature range of bulk liqui	<u> </u> :	
34A. Minimum (°F)	34B. Maximu	ım (°F)
35. Average operating pressure range of tank:		<u> </u>
35A. Minimum (psig)	35B. Maximu	ım (psig)
36A. Minimum Liquid Surface Temperature (°I) 36B. Corresp	oonding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F	37B. Corresp	ponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°	38B. Corresp	oonding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to	be stored in tank. Add ad	dditional pages if necessary.
39A. Material Name or Composition		
39B. CAS Number		
39C. Liquid Density (lb/gal)		
39D. Liquid Molecular Weight (lb/lb-mole)		
39E. Vapor Molecular Weight (lb/lb-mole)		

A BURGVING LING STANAY MYAAAS						
Maximum Vapor Press 39F. True (psia)	ure					
'' '						
39G. Reid (psia) Months Storage per Ye						
39H. From						
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
40. Emission Control D						
☐ Carbon Adsorp						
☐ Condenser ¹						
☐ Conservation V	ent (nsia)					
Vacuum S		Pi	essure Se	ttina		
☐ Emergency Rel	- ·		000010	,g		
☐ Inert Gas Blank						
· ·						
☐ Insulation of Ta						
☐ Liquid Absorption						
Refrigeration of						
Rupture Disc (p	••					
☐ Vent to Incinera						
☐ Other¹ (describe	•					
	riate Air Pollution Cont					
41. Expected Emission	Rate (submit Test Dat	a or Calculation	ons here o	r elsewhere in the appli	cation).	
Material Name &	Breathing Loss	Working	Loss	Annual Loss	1	
CAS No.	(lb/hr)	Amount	Units	(lb/yr)	Estimation Method ¹	
Methanol			Canka 1 N	Donout	Tanks 4.0	
I	See Att	tachment N T	aims 4.0	Report		
	See Att	tachment N 1	aiks 4.0	Report	2 00222	
	See Att	tachment N 1	aiks 4.0	Keport		
	See Att	tachment N	aliks 4.0	Report		
	See Att	tachment N	aiks 4.0	Report		
	See Att	tachment N	aiks 4.0	Report		
	See Att	tachment N	Taiks 4.0	Keport		
	See Att	tachment N	(dik5 4.0	Report		
	See Att	tachment N	CALLS 4.0	Report		
	See Att	tachment N	1 (4) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	Keport		
	See Att	tachment N	CLIES 4.0	Report		
	See Att	tachment N	aliks 4.0	Report		
	See Att	tachment N 1	(A)	Keport		
	See Att	tachment N	aliks 4.0	Report		
	See Att	tachment N	aliks 4.0	Report		
	See Att	tachment N	CLIES 4.0	Report		
	See Att	tachment N	aliks 4.0	Report		
	n Factor, MB = Materi			ar Source, ST = Simila		
Throughput Data, O =	on Factor, MB = Materi Other (specify)	al Balance, S	S = Simila	ar Source, ST = Simila	r Source Test,	
Throughput Data, O =	on Factor, MB = Materi Other (specify)	al Balance, S	S = Simila		r Source Test,	

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): LR1						
1. Loading Area Name: Rail Loading Rack						
Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): □ Drums □ Marine Vessels □ Rail Tank Cars □ Tank Trucks						
3. Loading Rack or Transfer Point Data:						
Number of pumps	• • • • • • • • • • • • • • • • • • •	(Gravity Feed			
Number of liquids	loaded	. 2	2			
Maximum number vessels, tank truct and/or drums load	ks, tank cars,		5			
Does ballasting o Yes	of marine vessels occu	ur at this lo	oading area?	? pes not apply		
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: Tanks are cleaned at a remote service location and/or are dedicated to fuel service.						
6. Are cargo vessels pressure tested for leaks at this or any other location? ☑ Yes ☐ No If YES, describe: Pressure tests that are required would be conducted at a remote service location.						
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):						
Maximum	Jan Mar.	Apr.	- June	July - Sept.	Oct Dec.	
hours/day	24	24		24	24	
days/week	7	7		7	7	
weeks/quarter						

8. Bulk Liquid D	oata (add pages as necessa	nry):					
Pump ID No.		Gravity feed is anticipated to load rail cars.					
Liquid Name		Gasoline	LPG ⁽²⁾				
Max. daily throughput (1000 gal/day)		756	5,760 (1,000 lbs/hr)				
Max. annual throughput (1000 gal/yr)		275,940	210,240.0 (1,000 lbs/hr)				
Loading Method ¹		SUB	SUB				
Max. Fill Rate (gal/min)		2,000	2,000				
Average Fill Time (min/loading)		15	15				
Max. Bulk Liquid Temperature (°F)		80	NA				
True Vapor Pr	essure ²	9.9 psia	NA				
Cargo Vessel Condition ³		U	U				
Control Equipment or Method ⁴		VR	VB				
Minimum control efficiency (%)		99	NA				
Maximum	Loading (lb/hr)	4.82	NΑ				
Emission Rate	Annual (tpy)	21.10	NA				
Estin	nation Method ⁵	AP-42	NA		-		
¹ BF = Bottom F		SUB = Subme	ged Fill	•			
² At maximum b	oulk liquid temperature		<u>-</u>				
³ B = Ballasted	Vessei, C = Cleaned, U = U	ncleaned (dedi	cated service	, O = otl	ner (des	scribe)	
⁴ List as many a Sheets):CA = C SC = Scrubb TO = Thermal	s apply (complete and subrarbon Adsorption LO	nit appropriate A = Lean Oil A = Compressor- CRC = Compre	Air Pollution (dsorption Refrigerationession-Refrige	Control E CO = C Absorpt ration-C	Device Condension Condension	ation	
⁵ EPA = EPA E	mission Factor as stated in	AP-42					

MB = Material Balance

O = other (describe)

TM = Test Measurement based upon test data submittal

⁽¹⁾ Total of Railcar and Tank Truck Loading(2) Vapor balance system with pressure, no anticipated emissions.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING None Proposed	RECORDKEEPING Track Daily and Yearly Throughput
REPORTING None Proposed	TESTING None Proposed

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

This is a loading rack system which has not been selected. Manufacturer's operating ranges and maintenance procedures will be followed as recommended.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number	er (as assigned on <i>Equ</i>	uipment List Form): LI	R2	
1. Loading Area Nar	ne: Truck Loading Rack	ζ		
2. Type of cargo ves	sels accommodated :		r point (check as man c Cars ⊠ Tank l	
3. Loading Rack or	Fransfer Point Data:			
Number of pumps	3	1		
Number of liquids	loaded	2		
vessels, tank trucl	Maximum number of marine 1 vessels, tank trucks, tank cars, and/or drums loading at one time			
Does ballasting of Yes	of marine vessels occu		? pes not apply	
	g location, compound remote service location		argo vessels using thi fuel service.	s transfer point:
	s pressure tested for I Yes ressure tests that are requ	□ No		eation.
7. Projected Maxim	um Operating Schedu	le (for rack or transfe	r point as a whole):	
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.
hours/day	24	24	24	24
days/week	7	7	7	7
weeks/quarter	13	13	13	13

Pump ID No.		Gravity feed is anticipated to load tank trucks.					
Liquid Name		Gasoline	LPG				
Max. daily throughput (1000 gal/day)		See Page	L85				1
Max. annual throughput (1000 gal/yr)		See Page L85					
Loading Method ¹		SUB	SUB				
Max. Fill Rate (gal/min)		2,000	2,000	<i>i</i>			
Average Fill Time (min/loading)		15	15				
Max. Bulk Liquid Temperature (°F)		65	NA		,		
True Vapor Pressure ²		6.37	NA				
Cargo Vessel Condition 3		U	U				
Control Equipment or Method ⁴		VR	VB				
Minimum control efficiency (%)		99	99				
Maximum	Loading (lb/hr)	See Page L85					
Emission Rate	Annual (tpy)	See Page L85					# - -
Estimation Method ⁵		See Page L85					
¹ BF = Bottom I	Fill SP = Splash Fill	SUB = Subme	erged Fill	Ļ			
² At maximum I	oulk liquid temperature						
³ B = Ballasted	Vessel, C = Cleaned, U = Uı	ncleaned (dec	licated ser	vice), O =	other (d	describe)	
Carbon Adsorp Scrubber (Absorption Thermal Oxida)		dsorption essor-Refriger Compression-	CO = Cor ration-Abso Refrigerat	ndensatio orption ion-Conde	n ensatior	1	:CA = SC = TO = VB =
5 FDA - FDA F	Twissian Fastar as stated in	AD 42					

⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING None Proposed	RECORDKEEPING Track Daily and Yearly Throughput
REPORTING None Proposed	TESTING None Proposed

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

This is a loading rack system which has not been selected. Manufacturer's operating ranges and maintenance procedures will be followed as recommended.

EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for each new or modified bulk liquid storage tank as shown on the Equipment List Form and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & VOFTHIS FORM. HOWEVER, SECTIONS I, II, AND VI OFTHIS FORMMUST BE COMPLETED. USEPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFOR	RMATION (required)
Bulk Storage Area Name	2. Tank Name
LPG Storage Area	TK4 and TK5 (2 identical tanks)
Tank Equipment Identification No. (as assigned on Equipment List Form)	4. Emission Point Identification No. (as assigned on Equipment List Form)
TK4 and TK5 (2 identical tanks)	TK4 and TK5 (2 identical tanks)
5. Date of Commencement of Construction (for existing	tanks) 2010
6. Type of change ⊠ New Construction □	New Stored Material
7. Description of Tank Modification (if applicable) NA	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	
7B. If YES, explain and identify which mode is cover completed for each mode).	ed by this application (Note: A separate form must be
NA	
7C. Provide any limitations on source operation aft production variation, etc.):	ecting emissions, any work practice standards (e.g.
NA	
II. TANK INFORM	IATION (required)
height.	the internal cross-sectional area multiplied by internal
	rical Tank (Ball Tank)
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
36.75	26.25
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
36.75	18
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
NA	18
12. Nominal Capacity (specify barrels or gallons). To design liquid levels and overflow valve heights.	his is also known as "working volume" and considers

13A. Maximum a	innual throughput (gal/yr) 13E	Maximum daily throughput (gal/day)
14. Number of Tu	rnovers per year (annual net throughpu	ut/maximum tank liquid volume)
15. Maximum tank t	fill rate (gal/min) NA	
16. Tank fill method	d ☐ Submerged ☐ S	Splash 🖂 Bottom Loading
17. Complete 17A	and 17B for Variable Vapor Space Tank Sy	ystems Does Not Apply
17A. Volume Exp	pansion Capacity of System (gal) 17E	Number of transfers into system per year
18. Type of tank (cł ☐ Fixed Roof	- · · · · · · · · · · · · · · · · · · ·	flat roof cone roof dome roof
☐ Domed Exte	ating Roof pontoon roof ernal (or Covered) Floating Roof	
1	ating Roof vertical column suppor	
·	oor Space lifter roof dia ⊠ spherical cylindrical	apnragm
☐ Undergroun		
Other (descr	ribe)	
III. TANK CONS	STRUCTION & OPERATION INFORMATION	ON (optional if providing TANKS Summary Sheets)
19. Tank Shell Co ☐ Riveted	onstruction: (PRESURE TANK FOR LF Gunite lined Epoxy-coated rive	<u> </u>
20A. Shell Color		
	(if metal and unlined):	inte 200. Teal East Failited New
	☐ Light Rust ☐ Dense Rust	☐ Not applicable
22A. Is the tank I	heated?	
22B. If YES, prov	vide the operating temperature (°F)	
22C. If YES, plea	ase describe how heat is provided to tank.	
23. Operating Press	sure Range (psig): Not Selected to	
24. Complete the fo	ollowing section for Vertical Fixed Roof Ta	anks Does Not Apply
24A. For dome r	oof, provide roof radius (ft)	
24B. For cone ro	oof, provide slope (ft/ft)	
25. Complete the fo	ollowing section for Floating Roof Tanks	☐ Does Not Apply
25A. Year Interi	nal Floaters Installed:	
25B. Primary Se (check one		· ·
25C. Is the Float	ing Roof equipped with a Secondary Seal?	☐ YES ☐ NO
25D. If YES, how	v is the secondary seal mounted? (check or	ne) Shoe Rim Other (describe):
25E. Is the Float	ing Roof equipped with a weather shield?	☐ YES ☐ NO

L91 of L100

			131.01.1	
25F. Describe deck fittings; indicate			nk Not Selected	
ACCESS HATCH				
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	 		1	
	AUTOMATIC GAL			
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
• .				
	1 		1	
		N WELL		
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:	
	LADDE	D \A/ICL I	1	
DID COLLIMAL OLIDING COVED CO		R WELL	SUIDING COVER UNIOAGUETED	
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN —	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	/SAMPLE PORT		
SLIDING COVER, GASKETED:	5, 15 SE 71, 11 OF	SLIDING COVER,	UNGASKETED:	
CEIDING GOVER, GROKETES.		; CLIDING COVER,	ONO ONE LED.	
		· · ·		
	ROOF LEG OR	HANGER WELL		
WEIGHTED MECHANICAL			SAMPLE WELL-SLIT FABRIC SEAL	
	ACTUATION, UNC		(10% OPEN AREA)	
, in the second	1 1 1			
		DDEAKED	<u>i</u>	
		BREAKER		
WEIGHTED MECHANICAL ACTUATI	ON, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
	P.15.4.1	/FNT		
MEIOUTED MEOUVANION		VENT	ANIONI ACTUATION INC.	
WEIGHTED MECHANICAL GASKETED:	ACTUATION	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:	
	DECK DRAIN (3-1	NCH DIAMETER)		
OPEN:	DEOIT DIVAIN (0-1	90% CLOSED:		
OFEN.		SUM CLUGLD.		
		1 1 1		
<u> </u>	STUR	DRAIN		
1-INCH DIAMETER:	. 0100	□. 5 (ii t		
I HOLLDIANETELL.				
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)	
]			······································	
	•			

26. Complete the following section for Internal Floating R	oof Tanks Does Not Apply
26A. Deck Type: ☐ Bolted ☐ Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
	T
26D. Deck seam length (ft)	26E. Area of deck (ft²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	if are siding TANKS Company on Chapter
27. Provide the city and state on which the data in the	if providing TANKS Summary Sheets)
27. Flovide the city and state on which the data in the	is section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft²-day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be store	ed in tank. Add additional pages if necessary.
39A. Material Name or Composition LPC	3
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia)	sure				
39G. Reid (psia) Months Storage per Ye	ear		_		
39H. From					
39I. To					
	VI. EMISSIONS A	ND CONTR	OL DEVICE	DATA (required)	
40. Emission Control [Devices (check as many	y as apply):	Does No	t Apply	
☐ Carbon Adsorp	otion ¹				
☐ Condenser ¹					
☐ Conservation V	/ent (psig)				
Vacuum S	Setting		Pressure Se	etting	
	lief Valve (psig)				
☐ Inert Gas Blank	ket of				
☐ Insulation of Ta	ank with				
☐ Liquid Absorpti	on (scrubber) ¹				
☐ Refrigeration of	f Tank				
☐ Rupture Disc (psig)				
☐ Vent to Incinera	ator ¹				
☐ Other¹ (describ	oe):				
¹ Complete appro	priate Air Pollution Cont	rol Device S	neet.		
41. Expected Emission	n Rate (submit Test Dat	a or Calcula	tions here o	r elsewhere in the app	lication).
	1	1			
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	m
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
2		Amount	Units		Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
CAS No.		Amount	Units	(lb/yr)	Estimation Method ¹
LPG	(lb/hr)	Pressure	Units tank with no	(lb/yr) emissions anticipated.	
CAS No. LPG 1 EPA = EPA Emission	n Factor, MB = Material	Pressure	Units tank with no	(lb/yr) emissions anticipated.	Estimation Method ¹ Source Test, Throughput
CAS No. LPG 1 EPA = EPA Emission Data, O = Other (spec	n Factor, MB = Material	Pressure Balance, SS	Units tank with no	(lb/yr) emissions anticipated. Source, ST = Similar S	Source Test, Throughput

EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for each new or modified bulk liquid storage tank as shown on the Equipment List Form and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & VOFTHIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. USEPA'S AP-42, Section 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/)

	I. GENERAL INFOR	MAHON (requii	ea)
1. Bulk Storage Area Nar	ne	2. Tank Name	
Sulfure Storage Tanl	ς · · · · · · · · · · · · · · · · · · ·	Liqu	id Sulfur Storage Tank
3. Tank Equipment Iden Equipment List Form)	ification No. (as assigned on	4. Emission F Equipment	Point Identification No. (as assigned on List Form)
TK7		TK7	
5. Date of Commenceme	nt of Construction (for existing t	anks)	
6. Type of change ⊠	New Construction	lew Stored Mate	rial
7. Description of Tank Mo	dification (if applicable)		
	ore than one mode of operation one product stored in the tank		⊠ No
7B. If YES, explain and i completed for each i		ed by this appli	cation (Note: A separate form must be
7C.Provide any limitation production variation,		ecting emission	ns, any work practice standards (e.g.
	II. TANK INFORM	ATION (require	i)
• • • • •	ecify barrels or gallons). Use TIONS FOR THIS TANK A		ss-sectional area multiplied by internal ALIZED.
9A. Tank Internal Diamete	(ft)	9B. Tank Intern	al Height (or Length) (ft)
10A. Maximum Liquid H	eight (ft)	10B. Averag	e Liquid Height (ft)
11A. Maximum Vapor S	pace Height (ft)	11B. Averag	e Vapor Space Height (ft)
	pecify barrels or gallons). The number of the second control of th		vn as "working volume" and considers s.

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
3,416,400	9,360
14. Number of Turnovers per year (annual net throug	hput/maximum tank liquid volume) 25
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	☐ Splash ⊠ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tan	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
NA NA	NA
18. Type of tank (check all that apply):	
☑ Fixed Roof <u>X</u> vertical horizontal	flat roof cone roof dome roof
other (describe)	
External Floating Roof pontoon roof	double deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof vertical column su	pport self-supporting
☐ Variable Vapor Space lifter roof	— · · · · · · · ·
Pressurized spherical cylindrical	
☐ Underground	
Other (describe)	
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction: Tank construction will be	be appropriate for liquid sulfur storage.
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	
20A. Shell Color 20B. Roof Color	
	200. Teal East Fainted
21. Shell Condition (if metal and unlined): New tank.	
☐ No Rust ☐ Light Rust ☐ Dense Ri	ust Not applicable
22A. Is the tank heated? ⊠ YES ☐ NO	
22B. If YES, provide the operating temperature (°F)	~250
22C. If YES, please describe how heat is provided to tal	nk. Electrical or steam.
23. Operating Pressure Range (psig): Ambient	
24. Complete the following section for Vertical Fixed Roo	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) NA	
24B. For cone roof, provide slope (ft/ft) NA	
25. Complete the following section for Floating Roof Tan	ks 🛛 Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	Shoe Seal
(check one)	ent Seal
25C. Is the Floating Roof equipped with a Secondary S	eal? YES NO
25D. If YES, how is the secondary seal mounted? (chee	
202. II 120, not to and observating four mounted. (one	
25E. Is the Floating Roof equipped with a weather shiel	d?

25F. Describe deck fittings; indicate	the number of eac	n type of fitting:	
	ACCESS		
BOLT COVER, GASKETED:	UNBOLTED COVE		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COVE		UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN - SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
	:	R WELL	
PIP COLUMN – SLIDING COVER, GA			SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER,	UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUATI		BREAKER WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DIM	/ENT	
WEIGHTED MECHANICAL GASKETED:			ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-	NCH DIAMETER)	
OPEN:	PEON BIONIA (0-)	90% CLOSED:	
		DDAIN	
1-INCH DIAMETER:	SIUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)
· .		<u> </u>	

26. Complete the following section for Internal	Floating Ro	of Tank	S	Does Not Apply	
26A. Deck Type: Bolted We	elded		_		
26B. For Bolted decks, provide deck constru	ction:				
26C. Deck seam:					
☐ Continuous sheet construction 5 feet wid					
Continuous sheet construction 7 feet with					
Continuous sheet construction 5 × 7.5 fe					
☐ Continuous sheet construction 5 × 12 fe ☐ Other (describe)	et wide				
				·	
26D. Deck seam length (ft)		26E.	Are	a of deck (ft²)	
For column supported tanks:		26G.	Dia	meter of each column:	
26F. Number of columns:					
IV. SITE INFORMANTION		·		<u>-</u>	s)
27. Provide the city and state on which the Charleston, West Virginia	data in th	is secti	on a	re based.	
28. Daily Average Ambient Temperature (°F)			54.9)	
29. Annual Average Maximum Temperature (°I	=)		65.8	3	
30. Annual Average Minimum Temperature (°F	;)		44.1		
31. Average Wind Speed (miles/hr) 6.0					
32. Annual Average Solar Insulation Factor (BTU/(ft²-day))					
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION	(optional i	fprovidi	ng T	ANKS Summary Sheet	s)
34. Average daily temperature range of bulk liquid: 260F controlled heated tank.					
34A. Minimum (°F) 260 34B.		34B.	Ма	ximum (°F) 260	
35. Average operating pressure range of tank:					
35A. Minimum (psig)		35B.	Ma	ximum (psig)	
36A. Minimum Liquid Surface Temperature (°F)		36B.	Co	rresponding Vapor Pres	ssure (psia)
37A. Average Liquid Surface Temperature (°F)		37B.	Col	responding Vapor Pres	ssure (psia)
(,				(,)
38A. Maximum Liquid Surface Temperature (°F)		38B.	Col	rresponding Vapor Pres	ssure (psia)
39. Provide the following for each liquid or gas	to be store	d in tank	. Ac	ld additional pages if ne	ecessary.
39A. Material Name or Composition	Molten S				
39B. CAS Number	7704	-34-9		• •	
39C. Liquid Density (lb/gal)	17.1	6			
39D. Liquid Molecular Weight (lb/lb-mole)	32 (\$	Sulfur)			
39E. Vapor Molecular Weight (lb/lb-mole)	34 (H2S)			
					

Maximum Vapor Press					
39F. True (psia)	ure	1mm Hg	@ 362°F		
39G. Reid (psia)					
Months Storage per Ye 39H. From	ear	Stored Ye	ear Round		
39l. To					
	VI. EMISSIONS A	ND CONTR	OL DEVICE	DATA (required)	
40. Emission Control D					
☐ Carbon Adsorp		,			
☐ Condenser ¹	don				
	/a.m.t. /m.a.i.m.\				
□ Conservation V					
Vacuum S	Setting NA			Pressure Setti	ng NA
☐ Emergency Rel	lief Valve (psig)				
☐ Inert Gas Blank	et of				
☐ Insulation of Ta	nk with				
Liquid Absorption	on (scrubber) ¹				
☐ Refrigeration of	•				
☐ Rupture Disc (p					
- "	= -				
☐ Vent to Incinera					
☐ Other¹ (describ	•				
	priate Air Pollution Cont				
41. Expected Emission	n Rate (submit Test Dat	ta or Calculat	ions here or	elsewhere in the appl	ication).
Material Name &	Breathing Loss	Working	g Loss	Annual Loss	Estimation Mathad
Material Name & CAS No.	Breathing Loss (lb/hr)	Working	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
		Amount	-		Estimation Method ¹ EE
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783-	(lb/hr)	Amount	-	(lb/yr)	
CAS No. Hydrogen Sulfide 7783- 06-4	(lb/hr) 0.017 lbs/	Amount	Units	(lb/yr) 145.05	EE
CAS No. Hydrogen Sulfide 7783- 06-4	(lb/hr) 0.017 lbs/	Amount	Units	(lb/yr) 145.05	

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	See Emissions Estimates in Section N
s=	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Coal In	40	0.11	15	126,290	WC/85	70
2	Limestone In	40	0.11	5	6,935	WC/85	70
3	Ash Out	40	0.11	9	27,740	WC/85	70
4	Sulfur Out/Misc. Trucking (in and out)	40	0.45	2	9,428	WC/85	70
5							
6							
7							
8							

Source: AP-42 Fifth Edition - 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

=	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s=	Surface meterial silt content (%)	See Emissions Estimates in Section N
L=	Surface dust loading (lb/mile)	
W=	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

Item No.	Uncontrolle	d (PM/PM10)	Controlled	(PM/PM10)
item No.	lb/hr	TPY	lb/hr	TPY
1	14.47/2.82	60.92/11.88	2.17/0.42	9.14/1.78
2	4.82/0.94	3.35/0.65	0.72/0.14	0.50/0.10
3	8.68/1.69	13.38/2.61	1.30/0.25	2.01/0.39
4	7.89/1.54	18.60/3.63	1.18/0.23	2.79/0.54
5				
6				
7				
8				
TOTALS	35.86/6.99	96.25/18.77	5.37/1.04	14.44/2.81

ATTACHMENT M AIR POLLUTION CONTROL DEVICE(S)

(FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): FL

Equipment Information

1.	Manufacturer: Manufacturer Not Selected (G) Model No.	2. Method:
3.	Provide diagram(s) of unit describing capture syst capacity, horsepower of movers. If applicable, state Manufacturer Not Selected	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used:	
	☐ Steam-assisted ☐ Air-assisted	☐ Pressure-assisted ☐ Non-assisted
5.	Maximum capacity of flare: NA	6. Dimensions of stack: NA
	scf/min	Diameter ft.
	scf/hr	Height ft.
7.	Estimated combustion efficiency:	8. Fuel used in burners:
	(Waste gas destruction efficiency)	⊠ Natural Gas
	Estimated: 98 %	☐ Fuel Oil, Number
	Minimum guaranteed: 98 %	Other, Specify:
9.	Number of burners:	11. Describe method of controlling flame:
	Rating: BTU/hr	
10.	Will preheat be used? ☐ Yes ☐ No	
12.	Flare height: ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min
13.	Flare tip inside diameter: ft	scf/hr
15.	Number of pilot lights:	16. Will automatic re-ignition be used?
	Total BTU/hr	☐ Yes ☐ No
17.	If automatic re-ignition will be used, describe the me	ethod:
18.	Is pilot flame equipped with a monitor?	S □ No
	If yes, what type? ☐ Thermocouple ☐ Infr	a-Red
		mera with monitoring control room
	☐ Other, Describe:	
19.	Hours of unit operation per year: 8,760	

Steam Injection

20.	Will steam injection be used	d? ☐ Yes	□No		Steam pressure Minimum Expected:	_	PSIG
					Design Maximum:		
22.	Total Steam flow rate:		LB/hr	23.	Temperature:		°F
24.	Velocity		ft/sec	25.	Number of jet streams		
26.	Diameter of steam jets:		in	27.	Design basis for steam i	-	
28	How will steam flow be con	trolled if steam	injection is	IISO/		_B steam/LB h	/drocarbon
20.	Trow will steam now be some	tioned it steam	injection to	400	u :		
	Cha	aracteristics of	f the Waste	e Ga	s Stream to be Burned		
29.	Name	Quan Grains of H	tity ₂ S/100 ft ³		Quantity (LB/hr, ft³/hr, etc)	Source o	f Material
l							
				1			
	· · · · · · · · · · · · · · · · · · ·						
30.	Estimate total combustible	to flare:			LB/h	r or ACF/hr	
L	(Maximum mass flow rate o	of waste das)			scfm		
31.	Estimated total flow rate to	_		be I	burned, carrier gases, au	ixiliary fuel, etc	::
22	Cive composition of corrier		or ACF/hr				
32.	Give composition of carrier	gases.					
33.	Temperature of emission st	tream: °F		34.	Identify and describe all	auxiliary fuels	
	Heating value of emission s	•					BTU/scf BTU/scf
	-	BTU/ft ³					BTU/scf
	Mean molecular weight of e):				BTU/scf
25	MW = lb/lb-m Temperature of flare gas:	°F		36	Flare gas flow rate:	scf/min	DEW C
_	Flare gas heat content:	BTU/ft ³		_	Flare gas exit velocity:	scf/mir	
-	Maximum rate during emerg		<u>_</u>			 	<u>'</u> /min
	Maximum rate during emer						U/min
	Describe any air pollution	control device					
	reheating, gas humidification	on):					
42.	Describe the collection mat	erial disposal s	ystem:				
43	Have you included <i>Flare C</i>	ontrol Device i	n the Emiss	sion	s Points Data Summary	Sheet?	

M2 of M30

The state of the s	
44. Proposed Monitoring, Recordkeeping, Reporting,	and Testing porting in order to demonstrate compliance with the
	testing in order to demonstrate compliance with the
MONITORING:	RECORDKEEPING:
Monitor the emission point for opacity via Method	
9 and Method 22.	Record Recording as required in 50.16.
Janu Wemou 22.	
	·
REPORTING:	TESTING:
None Proposed	None Proposed
None Proposed	None Proposed
·	·
	ocess parameters and ranges that are proposed to be
	strate compliance with the operation of this process
equipment or air control device.	and the state of t
	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
pollution control device.	emissions testing for this process equipment on an
	emissions testing for this process equipment on air
pollution control device.	
45. Manufacturer's Guaranteed Capture Efficiency for each	ch air pollutant.
	nd is anticipated to be 100% for vents and emission
sources that are vented to the flare.	-
	·
46. Manufacturer's Guaranteed Control Efficiency for eac	h air nollutant
98%	an dir politicant.
3070	
·	
17 Describe all an arching represent maintenance process	adversarias de la Marchaetura et maintain warrante
47. Describe all operating ranges and maintenance proce	
	cess and the final design has not been completed.
	will be identified during final design or purchase of
the flare system. The procedures as identified wi	ill be followed.

(CONDENSER SYSTEM)

Control Device ID No. (must match Emission Units Table): LR1 and LR2

Manufacturer: Not Selected Model No.	Temperature condensation Surface
Model No. 3. Control Device Name: VR	☐ Surface ☐ Contact
	Other, specify
4. Provide diagram of condenser: Manufacturer not Select	oted
Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
6. Heat exchanger area: NA (Not Available) ft ³	7. Reported removal efficiency: 99 %
8. Coolant Used: NA	9. Refrigeration capacity: Ref. NA tons
10. Composition of coolant: NA	11. Internal operating temperature: NA °F
12. Specific heat of coolant: NA BTU/lb.°F, at 77°F	13. Temperature of condensation: NA °F
Average Operation:	Maximum Operation:
14. Coolant Temperature: NA	15. Coolant Temperature: NA
Inlet: °F	Inlet: °F
Outlet: °F	Outlet: °F
16. Gas Temperature: NA	17. Gas Temperature: NA
Inlet: °F	Inlet: °F
Outlet: °F	Outlet: °F
18. Gas flow rate: NA ft³/min	19. Gas flow rate: ft³/min
20.0.1.10. 1. 374	
20. Coolant flow rate per condenser: NA Type:	21. Coolant flow rate per condenser: NA Type:
Туре:	Туре:
Type: Water: gal/min	Type: Water: gal/min
Type: Water: gal/min Air: ft³/min	Type: Water: gal/min Air: ft³/min

26.	Pollutant	Guaranteed Control Eff		Cor	centration ppmv	Specific BTU/lb-r		at of Vaporation BTU/lb-mol
A	VOC	99			NA	NA		NA
В							-	
С								
D								
E								
F								
G				·				
	Total Concentration in ppm	ıv						
		Er	nission Gas	(Va	oor) Stream			
27.	Before Condenser NA			28.	After Cond	denser NA		
	Inlet vapor flow rate:	ft³/min			Inlet vapor	flow rate:	ft ³	/min
	Influent vapor temperature	: °F			Influent va	oor tempera	ature:	°F
	Effluent vapor temperature	: °F			Effluent va	por tempera		°F
29.			INLET		1		OUTLE	1
	Pollutant	Vapor Pressure	Condensati Temperati		Rate lb/hr	Rate lb/hr	Vapor Pressure	Condensation Temperature
Α	VOC	6.347	65		NA	NA	6.347	NA
В								
С								
D								
E								
F								
G	·					_		_
	Total of the POLLUTANT I	b/hr						·
	Moisture content: NA%					_		
31.	Describe any air pollution reheating, gas humidificati Manufacturer not Select	on):	ce inlet and	outle	t gas condit	ioning proc	esses (e.g.,	gas cooling, ga
32.	Describe the collection ma Material will be returned		al system:					
33.	Have you included Conde	nser Contro	<i>I Device</i> in th	ne Er	nissions Poi	nts Data Sเ	ımmary She	et?

34. Proposed Monitoring, Recordkeeping, Reporting, Please propose monitoring, recordkeeping, and re proposed operating parameters. Please propose proposed emissions limits.	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:	RECORDKEEPING:
None Proposed	Record operating times.
REPORTING:	TESTING:
None Proposed	None Proposed
	·
	·
monitored in order to demons equipment or air control device. RECORDKEEPING: Please describe the proposed repollution control device.	cocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air
pollution control device.	
35. Manufacturer's Guaranteed Capture Efficiency for ea Manufacturer not Selected, Estimated at 99% for	
36. Manufacturer's Guaranteed Control Efficiency for eac Manufacturer not Selected, Estimated at 99% for	
	·
37. Describe all operating ranges and maintenance proce Manufacturer not Selected. Manufacturer ope followed are required by manufacturer.	edures required by Manufacturer to maintain warranty. rating ranges and maintenance procedures will be

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): <u>BH1 through BH5 (For Roller Mills with Heating)</u> Baghouse design/selection will be made to meet the controlled emissions requirements. The information contained within this form is yet to be determined.

	Equipment information a		
1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA	
	Model No.	Number of compartment online to operation:	or normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, hood face velocity and hood collection efficier	air volume, ncy.
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enhance □ Other, Specify	☐ Closed Pressure ☐ Closed Suction	on
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass Cotton Weight oz./sq.yd Teflon Thickness in Others, specify	 7. Bag Dimension: Diameter Length 8. Total cloth area: 9. Number of bags: 10. Operating air to cloth ratio: 	in. ft. ft ²
11.	Baghouse Operation: Continuous	☐ Automatic ☐ Intermittent	
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: Max. per yr:	15. Collection efficiency: Rating: Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
	Gas flow rate into the collector: ACFM ACFM: Design: PSIA Maximum: Water Vapor Content of Effluent Stream:	I at °F and PSIA Average Expected: Ib. Water/lb. Dry Air	PSIA PSIA
┢	. Gas Stream Temperature: °F	19. Fan Requirements: OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre	essure Drop: High Low	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:	grain/scf Outlet:	grain/scf

22. Type of Pollutant(s) to be collected	d (if particul	ate give specific	c type):			•••
23. Is there any SO ₃ in the emission s	stream? [□ No □ `	Yes SO	3 conte	ent:	ppmv
24. Emission rate of pollutant (specify		i .	t maximum (operating cond	litions:
Pollutant		lb/hr	IN grains/a	acf	Ol lb/hr	UT grains/acf
- Conduction	<u> </u>	18/11	gramon	401		9.41113/401
						
	Davida 6	Nine Dietwikustie	n of Inlet			
25. Complete the table:	Particle S	Size Distributio to Collecto		Frac	tion Efficiency	of Collector
Particulate Size Range (microns)	Weigl	ht % for Size R	ange	V	Veight % for S	ize Range
0-2					· · · · · · · · · · · · · · · · · · ·	
2 – 4						
4 – 6	-					
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20	. 1.					
20 – 30						
30 – 40						
40 – 50					·	
50 – 60						
60 – 70						·
70 – 80						
80 – 90						
90 – 100						
>100						

Continuous Opacity Persure Drop Alarms-Audible to Process Operator Visual opacity readings, Frequency: Other, specify: 27. Describe any recording device and frequency of log entries: 28. Describe any filter seeding being performed: 29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
□ Visual opacity readings, Frequency: □ Other, specify: 27. Describe any recording device and frequency of log entries: 28. Describe any filter seeding being performed: 29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
Other, specify: 27. Describe any recording device and frequency of log entries: 28. Describe any filter seeding being performed: 29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
 27. Describe any recording device and frequency of log entries: 28. Describe any filter seeding being performed: 29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
28. Describe any filter seeding being performed:29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
reheating, gas humidification):
30. Describe the collection material disposal system:
31. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet?

<u> </u>						
Please propose m	ring, Recordkeeping, Reporting, nonitoring, recordkeeping, and re g parameters. Please propose s limits.	eporting in order to	demonstrate demonstrate	compliance compliance	with with	the the
MONITORING:	· · · · · · · · · · · · · · · · · · ·	RECORDKEEPING:				
	!					
	ı					
	ı					
	l de la companya de					
REPORTING:		TESTING:				
	- ,					
	 	·				
	ı					
	ı					
MONITORING:	Please list and describe the promonitored in order to demons					
RECORDKEEPING:	equipment or air control device. Please describe the proposed reconstruction	cordkeening that will:	eccompany th	e monitorina		
REPORTING:	Please describe any proposed					air
	pollution control device.	-	-			
TESTING:	Please describe any proposed pollution control device.	_	or this proces	ss equipmer	nt on	air
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.				
34. Manufacturer's Gua	aranteed Control Efficiency for eac	h air pollutant.				
	1	·				
35. Describe all operati	ing ranges and maintenance proce	edures required by ivia	anutacturer to	maıntaın waı	ranty	

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): <u>BH6 and BH13 (For Feed Dust Bunkers)</u> Baghouse design/selection will be made to meet the controlled emissions requirements. The information contained within this form is yet to be determined.

		ind Filter Characteristics	
1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA	
	Model No.	Number of compartment online for operation: NA	r normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state		
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suction anced Fabric	
6.	Filter Fabric Bag Material: Nomex nylon	7. Bag Dimension: Diameter	in.
	☐ Polyester ☐ Polypropylene ☐ Acrylics ☐ Ceramics	Length	ft.
	☐ Fiber Glass	8. Total cloth area:	ft ²
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags:	·
	☐ Others, specify	10. Operating air to cloth ratio:	ft/min
11.	Baghouse Operation:	☐ Automatic ☐ Intermittent	·
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: Max. per yr:	15. Collection efficiency: Rating: Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: ACFM	1 at °F and	PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected:	PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air	
18.	Gas Stream Temperature: °F	19. Fan Requirements:	hp
_		OR OR	ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre		in. H₂O
	De Atrodos Localismos IIII	Low	in. H₂O
21.	Particulate Loading: Inlet:	grain/scf Outlet: grain/scf	ain/scf

22. Type of Pollutant(s) to be collecte	d (if particul	ate give specific	type):			· .
23. Is there any SO ₃ in the emission s	stream?	□ No □ Y	es SO	₃ conte	nt:	ppmv
24. Emission rate of pollutant (specify) into and o	ı		design		
Pollutant		lb/hr	N grains/	acf	O lb/hr	UT grains/acf
i Silutant		10/111	grains/	uci	10/111	granis/aci
<u> </u>						
25. Complete the table:	Particle S	ize Distribution to Collector	n at Inlet	Frac	tion Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size Ra	inge	٧	Veight % for S	Size Range
0 – 2						
2 – 4						
4 – 6			-			
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60	· .					
60 – 70						
70 – 80						
80 – 90		-				
90 – 100					<i>:</i>	
>100		· · · · · · · · · · · · · · · · · · ·				

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity Pressure Drop
	☐ Alarms-Audible to Process Operator
	☐ Visual opacity readings, Frequency:☐ Other, specify:
27.	Describe any recording device and frequency of log entries:
28.	Describe any filter seeding being performed:
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
30.	Describe the collection material disposal system:
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet?

	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:	RECORDKEEPING:
	·
	·
REPORTING:	TESTING:
monitored in order to demons equipment or air control device. RECORDKEEPING: Please describe the proposed reconstruction pollution control device.	cocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air
33. Manufacturer's Guaranteed Capture Efficiency for ea	ch air pollutant.
24 Manufacturaria Consented Control Efficiency for an	la aliana III. Alaa A
34. Manufacturer's Guaranteed Control Efficiency for each	an air poliutant.
35. Describe all operating ranges and maintenance proce	edures required by Manufacturer to maintain warranty.
	,

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): <u>BH7-12 and BH14-19 (For Lock Hoppers)</u> Baghouse design/selection will be made to meet the controlled emissions requirements. The information contained within this form is yet to be determined.

1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA			
	Model No.	Number of compartment online operation:	for normal		
4.	I. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volun capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.				
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suc anced Fabric	tion		
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass	7. Bag Dimension: Diameter Length 8. Total cloth area:	in. ft.		
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags:			
	☐ Others, specify	10. Operating air to cloth ratio:	ft/min		
11.	Baghouse Operation:	☐ Automatic ☐ Intermittent			
12. 	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:			
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other			
14.	Operation Hours: Max. per day: Max. per yr:	15. Collection efficiency: Rating: Guaranteed minimum:	% %		
	Gas Stream C	haracteristics			
16.	Gas flow rate into the collector: ACFN ACFM: Design: PSIA Maximum:	1 at °F and PSIA Average Expected:	PSIA PSIA		
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air			
18.	Gas Stream Temperature: °F	19. Fan Requirements: OR	hp ft ³ /min		
20.	Stabilized static pressure loss across baghouse. Pre	essure Drop: High Low	in. H ₂ O in. H ₂ O		
21.	Particulate Loading: Inlet:	grain/scf Outlet:	grain/scf		

22. Type of Pollutant(s) to be collecte	d (if particul	ate give	specific	type):			
23. Is there any SO ₃ in the emission s	stream? [☐ No	□ Y	es SC	3 conte	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of colle			design		
Pollutant		lb/	<u> </u>		oof	O	UT
Foliutarit	<u>.</u>	107	111	grains/	acı	ID/HI	grains/acf
	-						
				·			
25. Complete the table:	Particle S		ribution llector	at Inlet	Frac	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for	Size Ra	nge	\	Weight % for S	Size Range
0 – 2							
2 – 4							
4 – 6							
6 – 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20	N.						
20 – 30							
30 – 40							
40 – 50	· ·		*				·
50 – 60							
60 – 70							
70 – 80							
80 – 90							· -
90 – 100				·			
>100							

26.	. How is filter monitored for indications of deterioration (e.g., broken bags)? ☐ Continuous Opacity ☐ Pressure Drop ☐ Alarms-Audible to Process Operator		
	☐ Visual opacity readings, Frequency:		
27	Other, specify: Describe any recording device and frequency of log entries:		
21.	. Describe any recording device and frequency of log entires.		
28.	. Describe any filter seeding being performed:		
29.	. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas	cooling	, gas
	reheating, gas humidification):		
00			
30.	. Describe the collection material disposal system:		
24	Here you included Backeyes Control Backs in the Englisher Ballet Bath Control St. 12		
<u>3</u> 1.	. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet?		

32. Proposed Monitoring, Recordkeeping, Reporting,	
Please propose monitoring, recordkeeping, and re	eporting in order to demonstrate compliance with the
	testing in order to demonstrate compliance with the
proposed emissions limits.	
MONITORING:	RECORDKEEPING:
	·
REPORTING:	TESTING:
	·
MONITORING: Please list and describe the pr	ocess parameters and ranges that are proposed to be
	strate compliance with the operation of this process
equipment or air control device.	
	cordkeeping that will accompany the monitoring.
	emissions testing for this process equipment on air
pollution control device.	annianiana tantina fan thia managa annimmant an ain
TESTING: Please describe any proposed pollution control device.	emissions testing for this process equipment on air
33. Manufacturer's Guaranteed Capture Efficiency for ea	ich air pollutant.
34. Manufacturer's Guaranteed Control Efficiency for each	ch air nollutant
1 34. Mandiacturer's Guaranteed Control Emoleticy for each	or an politicalit.
35. Describe all operating ranges and maintenance proc	edures required by Manufacturer to maintain warranty
oo. Dooshoo an operating ranges and maintenance proc	

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): VF1-10 (For Feed Bunkers) Baghouse design/selection will be made to meet the controlled emissions requirements. The information contained within this form is yet to be determined.

	Equipment information a	ind Filter Characteristics	
1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA	
	Model No.	Number of compartment online operation:	for normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I		
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha □ Other, Specify	☐ Closed Pressure ☐ Closed Suction Closed Fabric	on
6.	Filter Fabric Bag Material: Nomex nylon	7. Bag Dimension: Diameter Length	in. ft.
	☐ Fiber Glass	8. Total cloth area:	ft ²
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags:	
	Others, specify	10. Operating air to cloth ratio:	ft/min
11.	Baghouse Operation:	☐ Automatic ☐ Intermittent	
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	. Operation Hours: Max. per day: Max. per yr:	15. Collection efficiency: Rating: Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
16.	. Gas flow rate into the collector: ACFM	<i>I</i> l at °F and	PSIA
<u> </u>	ACFM: Design: PSIA Maximum:	PSIA Average Expected:	PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air	
18.	. Gas Stream Temperature: °F	19. Fan Requirements: OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre		in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:		grain/scf

22. Type of Pollutant(s) to be collecte	d (if particul	ate give sp	pecific	type):			
	· ·						
23. Is there any SO ₃ in the emission s	stream? [No	☐ Y	es SO	3 conter	nt:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collec			design o		
B-0-44		11.7				lb/hr	OUT
Pollutant	·	lb/h	<u>r</u>	grains/a	аст	ID/Nr	grains/acf
	. "	· 					
25. Complete the table:	Particle S	Size Distri to Col		at Inlet	Fract	ion Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for S	ize Ra	nge	W	eight % for s	Size Range
0 – 2		· ·					
2-4							
4 – 6							
6 – 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							·
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							-
90 – 100	.'						
>100						<u>.</u>	

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? ☐ Continuous Opacity
	☐ Pressure Drop ☐ Alarms-Audible to Process Operator
	☐ Visual opacity readings, Frequency:
27.	Other, specify: Describe any recording device and frequency of log entries:
28.	Describe any filter seeding being performed:
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
30.	Describe the collection material disposal system:
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet?

	•			
32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the				
proposed emissions MONITORING:	s limits.	RECORDKEEPING:		
		TEOGRAPIA.		
REPORTING:		TESTING:		
MONITORING:		ocess parameters and ranges that are proposed to be trade compliance with the operation of this process		
DECORDIZEDINO.	equipment or air control device.			
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air		
TESTING:	pollution control device.	emissions testing for this process equipment on air		
12011110.	pollution control device.	comosions testing for this process equipment on an		
33. Manufacturer's Guaranteed Capture Efficiency for each air pollutant.				
34. Manufacturer's Guaranteed Control Efficiency for each air pollutant.				
•				
	<u>.</u>			
35. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.				
I				

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): <u>VF11-12 and VF13-14 (For Feed Bins and Startup Vessels)</u> Baghouse design/selection will be made to meet the controlled emissions requirements. The information contained within this form is yet to be determined.

	Equipment information a	ind i liter Oliaracteristics			
1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA			
	Model No.	Number of compartment online operation:	for normal		
4.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.				
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suctanced Fabric	ion		
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass Cotton Weight oz./sq.yd Teflon Thickness in Others, specify	 7. Bag Dimension:	in. ft. ft ² ft/min		
11.	Baghouse Operation: Continuous	☐ Automatic ☐ Intermittent			
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:			
13.	. Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other			
14.	Operation Hours: Max. per day: Max. per yr:	15. Collection efficiency: Rating: Guaranteed minimum:	% %		
	Gas Stream C	haracteristics			
16.	. Gas flow rate into the collector: ACFM ACFM: Design: PSIA Maximum:	I at °F and PSIA Average Expected:	PSIA PSIA		
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air			
18.	. Gas Stream Temperature: °F	19. Fan Requirements: OR	hp ft ³ /min		
20.	Stabilized static pressure loss across baghouse. Pre	essure Drop: High Low	in. H₂O in. H₂O		
21.	Particulate Loading: Inlet:	grain/scf Outlet:	grain/scf		

22. Type of Pollutant(s) to be collecte	d (if particul	ate give specific	type):			
23. Is there any SO ₃ in the emission s	stream?	□ No □ Y	es SO	3 conte	nt:	ppmv
24. Emission rate of pollutant (specify) into and o	1		design o	-	
Dalladand			IN			UT
Pollutant		lb/hr	grains/	acı	lb/hr	grains/acf
·						
25. Complete the table:	Particle S	Size Distributio to Collector		Fract	tion Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size R	ange	W	eight % for S	Size Range
0-2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						· .
50 – 60						
60 – 70						
70 – 80						
80 – 90		· · · · · · · · · · · · · · · · · · ·				
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity Pressure Drop Alarms-Audible to Process Operator Visual opacity readings, Frequency:		
27	Other, specify: Describe any recording device and frequency of log entries:		
21.	Describe any recording device and frequency of log entities.		
28.	Describe any filter seeding being performed:		
29	. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas	cooling	nas
20.	reheating, gas humidification):	cooming,	guo
30.	. Describe the collection material disposal system:		
21	. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet?		
J٦1.	. Have you moluded baynouse control bevice in the Emissions Folitis bata summary sheet?		

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
•		
REPORTING:		TESTING:
MONITORING:		ocess parameters and ranges that are proposed to be
	equipment or air control device.	trate compliance with the operation of this process
RECORDKEEPING:	Please describe the proposed re-	cordkeeping that will accompany the monitoring.
REPORTING:		emissions testing for this process equipment on air
TESTING:	pollution control device. Please describe any proposed	emissions testing for this process equipment on air
reonito.	pollution control device.	chilosono toding for the process equipment on the
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.
04 Manufactured 0		
34. Manuracturer's Gua	aranteed Control Efficiency for each	n air poliulant.
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Attachment M Air Pollution Control Device Sheet

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): <u>BHCS1-5 and BHLS1-2 (Stockpiles) Baghouse design/selection will be made to meet the controlled emissions requirements.</u> The information contained within this form is yet to be determined.

Equipment Information and Filter Characteristics

	Equipment information a	ma i inter entaractorictico	
1.	Manufacturer: Manufacturer Not Selected	2. Total number of compartments: NA	
	Model No.	Number of compartment online operation:	for normal
4.	Provide diagram(s) of unit describing capture system capacity, horsepower of movers. If applicable, state has been capacity as a second capacity of the capaci		
5.	Baghouse Configuration:	☐ Closed Pressure ☐ Closed Suct	ion
	(check one)	inced Fabric	
	☐ Other, Specify		
6.	Filter Fabric Bag Material: ☐ Nomex nylon ☐ Wool	7. Bag Dimension:	
	☐ Polyester ☐ Polypropylene	Diameter	in.
	☐ Acrylics ☐ Ceramics	Length	ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area:	ft ²
	☐ Teflon Thickness in	9. Number of bags:	
	☐ Others, specify	10. Operating air to cloth ratio:	ft/min
11.	Baghouse Operation: Continuous	☐ Automatic ☐ Intermittent	
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day:	15. Collection efficiency: Rating:	%
	Max. per yr:	Guaranteed minimum:	%
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: ACFM	at °F and	PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected:	PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air	
18.	Gas Stream Temperature: °F	19. Fan Requirements:	hp
<u> </u>		OR	.ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High	in. H₂O
	<u> </u>	Low	in. H₂O
21.	Particulate Loading: Inlet:	grain/scf Outlet:	grain/scf

22. Type of Pollutant(s) to be collecte	d (if particul	ate give specific	type):			
23. Is there any SO ₃ in the emission s	stream? [□ No □ Y	es SO	3 conten	<u>.</u> t:	ppmv
24. Emission rate of pollutant (specify						· · · · · · · · · · · · · · · · · · ·
			N			DUT
Pollutant	· · · · · · · · · · · · · · · · · · ·	lb/hr	grains/a	act	lb/hr	grains/acf
.*						
25. Complete the table:	Particle S	Size Distribution to Collector	n at Inlet	Fracti	on Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size Ra	ange	W	eight % for s	Size Range
0 – 2						
2 – 4	·					
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16					·	
16 – 20						
20 – 30						
30 – 40						· · · · · · · · · · · · · · · · · · ·
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity Pressure Drop Alarms-Audible to Process Operator Visual opacity readings, Frequency:
27	Other, specify: Describe any recording device and frequency of log entries:
21.	Describe any recording device and frequency of log entities.
28.	Describe any filter seeding being performed:
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
30.	Describe the collection material disposal system:
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet?

32. Proposed Monitor	ing, Recordkeeping, Reporting,	and Testing
		eporting in order to demonstrate compliance with the
		testing in order to demonstrate compliance with the
		resumy in order to demonstrate compliance with the
proposed emissions	s limits.	
MONITORING:		RECORDKEEPING:
		·
REPORTING:		TESTING:
REPORTING:		TESTING:
MONITORING:	Please list and describe the no	ocess parameters and ranges that are proposed to be
I WOM TOTAL OF		
		strate compliance with the operation of this process
	equipment or air control device.	
RECORDKEEPING:	Please describe the proposed re	cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed	emissions testing for this process equipment on air
	pollution control device.	3 7 4 4 4 4
TESTING:	Places describe one proposed	emissions testing for this process equipment on air
LESTING.		emissions testing for this process equipment on air
•	pollution control device.	
33 Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant
1		
1		
24 Manufacturar's Gus	aranteed Control Efficiency for each	h air pollutant
34. Manufacturer's Gua	aranteed Control Eniciency for eac	ir ali poliutant.
•		
,		
•		
•		
		
35. Describe all operation	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.
1		
ĺ		
ĺ		
·		

ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS

															Controlled							-41						
		VO.		02		0		М		A ₁₀		ос		APS		l ₂ S		os		CO).		CN		ICI		lg		ОН
Emission Point	lb/hr	ton/yr	lb/hr_	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	- Ib/hr	ton/yr	1b/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	Ib/hr	ton/yr	b/hr	ton/yr
Transfer Points and Conveyers	1000000000	7 24 2 30 40 (12)		Contract of the Contract of th	THE REAL PROPERTY.	SMANNE HAR	0.21	0.91	0.1	6.4 ₹ 5.39 0.43		793034	100 W.W.	1000 1570	CAR CONTRACT	VIOLENCE SERVICES	E DOOR SANGER	Ber Mile	of Chapter States	Berg Charles	ANA MARKAGAMA	Company of the	d describe Action	STATE OF STREET	S TOTAL SECTION	NUSAGARAN S	CG-CC SANSKER (CC)	TOTAL SPORTS
CR1 CR7 #KKH PRESENTED	2002004	303633.00	200000000000000000000000000000000000000	A A SOFT	Electric de	and the same						0.00	0.000000000	1972,000,00	A 22 TH 2015	02720200	STILL BY THE	SHACON	57,100,20	2000	and the same	002000 ASS	Take the same	12360 383	24397830	135 and	18000000000	2450
VF 1, 3, 5, 7, 9		200000000000	AND MANUE	ALL PROPERTY.	MANAGE STORY	ACAMERA-12-76	0.07	0,3	0.04	0.15		KAPAWA MANA	2-47/4/300000															
VF 2/3/6/8/10 *K # 15 ***	65	SHOW AND	建	海外的	的概念物化	1000000		**************************************	(*************************************			100	* S. W. W. W.	1 TOWN	部の金を	并是为他的	30000000000000000000000000000000000000	的神经后来	法加纳	共产的金融	学、文字、	1.50	S04-27-20	1000000	語を確認	安全	でを記する	50000000000000000000000000000000000000
Stockpiles				_			0.36	1.56	0,36	1.56			2 1702177 505 5 5 7					NAME OF TAXABLE PARTY.	1	THE PERSON NAMED IN	A SECRET OF SEC.	1.70 0 100000000	100 CO 100 CO	T THE REAL PROPERTY AND ADDRESS OF THE PARTY A	disable and	14 - 20 Em 1 10 1	CO. CO. CO. CO.	200000000000000000000000000000000000000
Haufroads (A. 1997)		STATISTICS OF	新城市 388	34 May 1999		(April 1991)	0.56		0,56	2.49			Mark San	No. of the last	10 mm	1994 Sept. (1985)	CALL STATE OF THE SECOND	Per Page 2	SHAP GOVE	C. 212 (98)	Call Sept 200	1.00	NAME OF STREET	1.00	100 A	F-97-37/2004	20 x 9 40 40 4	Same Section
A1/1 A1/2/super-seasons and a seasons are seasons as a season	1,4		WHEN PERSON SHAPE	- Chromosophers	1.14			2,45	J. 20.56				2 (000 various)	\$45000mm005	100 mm (200	A-100-CON-	an estendado	united picks in	BOAT SERVICES	The Control of the	White the same of the	144445566	1 A SOURCE IS	STE MANER	0.0230329000	6382 C.C.	NAME OF	2015-21018
A1/3	14	6.17		1170 Kalana 1280	1.14		0.56	2.45	0.56	2.45		1000-0-000	2	F/04424-2021	Berndell (Albanie)	75 FF 90/2256	ALC: NO. OF PERSONS	A.C. STORY STATE	300000000000000000000000000000000000000	2000 - 2000 tapan	G9-14/44-1-1-20	E TOMOUTAL STAR	TO A STREET, SEC.	C. G. Charles and C. China	TO SERVICE COMMISSION OF THE PERSON OF THE P	Et man acoustic	SATER STATE	1,000,000,000
NAMES OF THE PERSON OF	200.00			A CONTRACT		1900 295					**************************************	SAMO S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F-12	2000	144 184 18	D. W. Carlo	G534554	(A-24-34)	\$300 PM	Exercise Services	1022200	PRINCIPAL STATE	100	2022	200	21.00	E-CHOCKER'S
A1/5	1.4	6.17			1.14	5	0.56	2.45	0.56	2.45		3	2															
A1/1 through A1/5 Gold Startup	7.2	0,58					\$02,02,55	0.204				×.0.009	5 200	1505000		尼尔·纳 尔斯	新物理等的	200000	100円と2000円	THE PARTY OF	世際的特別的	Project Or Str	20 10 00 00 00 00		经验的股份	ASSESSED FOR	CARL WAY	PARTIES NO.
A2/1	17.04	Andrew Company	0.67		1.11		1.11	0.05	1.11	0.05		3.00203.3500		724-91-2020-000	100000000000000000000000000000000000000	1202022000	ASSESSED NAMED	Tring and the second	200	12022020000000	8500000	EARTH STATE	MARK STREET	SWEET ALSO	08/08/2020	2000 SWIEST	200,906,00	550,000,000
A2/2 +	C17.754	200000000000000000000000000000000000000	1.435	6.28	0.065	0.275		1.1		1.1		SHOW SHOW	S SIGNATURE	E COS RECEIVAÇÃO	SPINISHED IN	35000000000	C CONTRACTOR	SKY SKIENSEN	A THE CASE AND ASSESSED.	Share and the second	ALCOHOL BOSIO	a merosesser.	THE TARRES	E007/556/592	207/20/20/20/20	867560766	TO-SECTION SINGS	201000-04-9-134
B1/2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	506065380				20000		%±24.0.25			1963 (H) 194		A 844503	100000000	42.50E-04	100000000000000000000000000000000000000	12352000122	100000	第8003248	5,035	502.75762	CONTRACTOR OF	200 25 000	WE ZONNES	Sec. 2019.13	XXXX XX	3 March 1983	ones are	W4040-26
82/1	333	5 5	1066	16	827	12.4					0.084	0.0012	5	0.587	51,3	0.7	9,9	0.3	1,237	0.037	2,27	0,0	7 2.29	0.07	3.42	0,11		
82/2	36%33	3 196	海河1066	3516	阿爾里827	3 V 124	高級	2000	有些数据	は大きななど	200000	% (0.0012	September 1		Part 4 W	12 m		CONTRACTOR OF STREET	W-24 PC 22	张学等	No. of Contract	6170	《各种教育基	できる。	S. 425R 20.8	自動が	大学工作 版	A CONTRACTOR
B3/1			0.135		0.0115		0.05		0.05									A118W-09-1-		ACCUPANCE OF THE PARTY OF THE P	AND THE PERSON NAMED IN					San P. Calabratica		***************************************
B3/2	45500	1 10 Care 10 C	0.135		\$40.0115			TO SHAPE OF	0.05	250	S246	100000000000000000000000000000000000000	PER IN	STATE OF STREET	\$200 minus			CONTRACTOR OF	CONTROL OF	10 HOURS HAVE	15.00	4-5200-3200-00	400960CACH	\$ 201 ST CAN	CACAGO	機能が認め	ST. ST. STATE	30.00 T. 3.0.7.
Gasification Fugitives (1) (3) Upstream including Reactors (1)	200 G-200 200	a wasananca	CONTRACTOR SEC	0.011	To be even to be	1.009	100000000000	TATION CO. MAN	34.6220534250	TO SERVICE AND ADDRESS OF THE	704000000000	1 000000000000000000000000000000000000	E 1 204 90000	100 March 1970	Carlotte by the books	0.006		Salakir sektor	645-Callage	WHEN SPIE	Discussion Co. No.	Seattle Carette		and the state of t	20.000	5520442330000	100000000	PENANTAL SEE
Downstream Reactors (7)	内 [1] [1] [1]	C BREENWAY CO	TANKS TOR	PK10000	SISSAMOR	0.276	200 C	accobe core	PARTY SECTION	(A)	5.5000000000	1 100 C 100 C 100 C	S. S	AMERICAN STREET	10330000	100000	The section is	R. R. BOOK SKING	1436-1569-1500	DOMESTICATED	第1500 ARRESTAN	(New York Control of the Control of	BIRNING SE	1905(9429-1788)	A MENNSON DESCRIPTION	Tradesta Case	600 TENEDO	42.000.000
O2 CARACTER CONTROL OF THE CONTROL OF T	1 salensaters	26000000000	Samora be'a	DUMBER 1747	G0000000000000000000000000000000000000	0.276	65.00 (45.00 pt	800000000000000000000000000000000000000	PEARSON TRANS	SATES CONTRACT	223900000	250000	5 33.793.07	10000000000000000000000000000000000000	Protestant Carlo	168.55.466.55.60	Charles de Mila	6000-1000	6.000	1000 Southern	-	100, 200 E-0.2	220025-2225	MONTH AND AND AND	WALL SHOWS	26050000000	5/13	2850 006
CO./H ₂ S Removal Fugitive Leaks (1) (a)	120000000	0.00	Merch town	0.01	100000000000000000000000000000000000000	0.99	- ALEXANDER CONTRACTOR	1220	SWAMMER PROPERTY	N. M. SPANSON	a managamen	1.02		1,02		0.005		THE STATE OF THE S	- Jack-Monday	100000000000000000000000000000000000000	S. S	301100000000	120 7-100	100000000000000000000000000000000000000			33772 10752	1,029
Sour Gas Fugitives (*)	SEC STATISTICS	0.000000000	Ang Jacobs		PROBLEM:		:62 EMP45	18005000000	Acond de	Barrier no	24.71.20.36							100000	G Secret	- 12 A 2 2	2000	16 M 192%	5000	A Sale Same	5365000	200	数据发展	63312X
MEOH Fugitive Leaks (2)	200 85 7 650	51.79615399399	CACCAL AND	3000	Mark Korosz (Apr	1 71	NOTIFICAL PROPERTY.	COCKAS COMPANY	3444,000abaryas	*********	A STANSFORM	0.29		0.296		100.000.000	Tower-base cognysis	#355PALETIS 28	MELIO PROPERTY	3070.07.2000.44	0.0000000000000000000000000000000000000	995299 S. N.O.Y.	111111111111111111111111111111111111111	Part Section 2	1.0000010000	3.35 W. L. S.	3-24773343	0,299
S Recovery Fugitive Leaks (1) (8)	1000000000		CONTRACTOR	3056	1519957.00		2012794-22005	Section 18	Port Track	Section 12	822020		2			0.297	32962	50 A STA 2 4	16.00 (6.70)	0.00	4860	120000	5.00	20.50	400A325A2	(925-456)	THE WAY	
PSA System Fugitive Leaks (2)	347307.9 47592		PROMESSES OF	Part appropriate	PACIFICACIONIS	2.39	P. P. J. L. W. W.	NO DE CONTRA	77.04.00.00.00.00.00.00.00.00.00.00.00.00.	227.27.30		2.59.00.00.00.00			147.00.00.00.00.00.00	A STATE OF THE PARTY OF	1.112.77.22.22.22.22.22.22.22.22.22.22.22.22						1					
C1 - A-NOS SARSON CONTRACTOR	100 AT 100		11.56	246.25	56 € 0.504	1.974	Service Control		S.S. W. S.E. A.W.	FE 18 13 25	2×2625	200	4.0×3.000	1000	WARPING.	X21/401-100	F-323 (0) 257	What is	100,700	700000	100000	1. Sec. 15.	100	加州城市	100000	A 2000 C	建设建设	10000
E1	4.0	1 1,69		Ĭ	1,93	1,24	0.223	0.1	0,223	0.1		0.0														-		
E2 ************************************			与世级成	2000年中			0.89				**************************************			40.00		100 To 100	73 APR 625	100 C	200000	0.275700	The state of the s	1000	180 COO	580K (F80)	C. 185 C. 1978	TO BELLEVIA	\$20.00 m	S. 0000
E3	0.5	1.65	CHARLES AND SECTION	SOURCEMENT OF FIRE	0,381	1.2		0.09	0.03	0.09		0.0			SOURCE STATE	Herricalistic COS	100000000000000000000000000000000000000	564050500	STATE OF THE PARTY	A PARTIES AND THE SAME	Power Share		- A	A Particular Systems (Control of	Photography (Co.)	CARGO CONTRACTOR	Name of Street	Charles and
E4 (now sent to C1)	21.			\$50,000,000	51.88	1.04		PROJECTION OF	(180)を持ちの原理	400000000000000000000000000000000000000	19.96	0.		200000000000000000000000000000000000000	See and Court Prints	A THE COLUMN TWO IS NOT THE COLUMN TWO IS NO	NAMES OF THE PARTY	Heater Designation	NAMES OF STREET	5.000.000000	2 2-53-61-04:00mg	Sandancere	7 -325 60000000000	Section Contracts	HOUSE SEATING	000000000000000000000000000000000000000	2,000,000,000	500 200 4100
MTG Fugitive Leaks (9				400000			200 B	200350	\$45.00 A	50 7554			d setting or	0.72	1896/6/2	8-07-9-4-5E	2000	1000	100 SEA SE	1 575 2 7 05	200	200	1000	SEPTEMBER 1	270220	D. AND SECTION AND	100	20.725
CI	174-32-14-2385	95.055,000	STORES TROUBLES	Court Stowers	SEPTIMES OF SERVICE	75-27-0140-1907	7.71	33.77	7.71	33.77		237-4-2-5-0	as accompanient	50 AC 100	WE CO. L.	1.00.3.00.00	10.114.0004.90942	32032030	7 (44.75) (4.75)		1							
TK1/2/and 3	Zi raka	1000000	SW 4	20042942	100 40 to	0.000.200	VALUE OF STREET	ATTEMPT OF THE	电热器	功能也改	DE 26 1.61	49-27,05	3 200,003			100		TO SECTION	0.00	The state of	A CONTRACTOR	(** N. 17)	"我们没有	W. C. C.	A STATE OF	沙型的	Service Service	
Gasoline Fugitives											0,101	0.4		0.162														
TK6 (With fugitives)	100000	R 7/3/A			SECSION OF	海洋海峡	公安 2000年	多次领域	有限的	Carl San Sh	0.235	×31:02			200			13000	200	Colonial VI	1000	4000	300000	22,500,000	AND ASSESSED.	STATE OF	0.235	206/a.1.023
TK7 (with loading)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000000000000000000000000000000000000	0,006		AND DECEMBER OF THE PARTY OF TH	Contraction of the Contraction o	NO PORTUGE AND	20 Marian Printer	Zamiletelis (March	\$1200m - 1800 PRO	Later History	1 400 200 645	0.006		0,006			Dicher Hausen	10920	Barrella / 8042	1642887433344	955 SECREMENT	600000000000000000000000000000000000000	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	345A 400L 1000.0	BOOK HOLD ON THE	20000000	340.00 \$00000000
LR1 and LR2 (including Argitives)	13.9		0.31			1.94			0,61	0.12	0.44			7 988 0.5118	/ PRE/ 图 (2000)	HE WOOD SHARE	CHANGE COM	2007 9 8 8 8	1 660 G C C C C C C C C C C C C C C C C C C	Section Control	R. W. 17 54	10 met (2000) 12 met	10,300,000,000	300,125,036	为效性种类	A STATE OF THE PARTY.	\$25 PROBE \$ 724	The street of the state of
G (Leading Rack)			* 30,0033			34 31 54							2 395453758	NONWARR	in the second second	100-2105-200	Example 2	30000000XX	SUBJECT STREET	250000000	SEXES NATURE	4423335	1970/25/65/0	Zeminary.	100000000000000000000000000000000000000	S. P. S. S. S.	toma and	200.000
TOTAL PTE	a una da Mar	48.64		92.13		67.159	armaphasyla.	75.215	I WAS KNOWN CO.	57.125		51.534		3,5169		1,123		0.3		0.037		0.0		0.07		0.11		3.082
TO INC. TO		40,01		02.10		377100				37.144			·															

SO2 measurement was calculated from H2S emissions as an SO2 equivalent.
 Maximum hourly emissions from source (leaks, etc) cannot be quantified.

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Coal Summary of Emissions

Source	Regulated	Potential (U	ncontrolled)	Actual (Co	ontrolled)	
Description	Air Pollutant	Emis	sions	Emissions		
		lb/hour	tpy	lb/hour	tpy	
Transfer Points	TSP	4.20	16.72	1.50	5.60	
	PM10	2.00	7.96	0.71	2.67	
Crusher	TSP	20.76	90.93	0.21	0.91	
	PM10	9.89	43.30	0.10	0.43	
-	PTE TSP =	24.96	107.65	1.71	6.51	
	PTE PM10 =	11.89	51.26	0.81	3.10	
Stockpiles	TSP	4.80	20.80	0.24	1.04	
	PM10	4.80	20.80	0.24	1.04	
Haulroads	TSP	14.47	60.92	2.17	9.14	
	PM10	2.82	11.88	0.42	1.78	
	Total TSP =	19.27	81.72	2.41	10.18	
	Total PM10 =	7.62	32.68	0.66	2.82	

Total TSP =	44.23	189.37	4.12	16.69	7
Total PM10 =	19.51	83.94	1.47	5.92	٦

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Batch or Continuous Drops

AP-42 Section 11.2.3 (9/88) emission factor equation: $e = k * 0.0032 * [(U/5)^{1.3} / (M/2)^{1.4}]$ lb/ton

Defining transfer point empirical expression variables, where:

e= ? k= 0.74

lb/ton

4 dimensionless mph (mean wir

U = 7 M = 5.0

mph (mean wind speed in WV) % Moisture Content

Calculating transfer point emission factor using above equation:

e = 0.0010 lb/ton

0.0010

0.0010

0.0010

313,750
346
8,304
3,030,960

Rounding to = Control ID **Emissions Transfer Capacities (1)** е Device Uncontrolled Controlled lb/T Effic(%) (lb/hr) tons/hour tons/year Type (lb/hr) (tpy) (tpy) TPC1 346 3,030,960 0.0010 PE 50 0.35 1.52 0.18 0.76 TPC2 346 0.0010 PE 50 0.35 0.00 0.18 0.00 TPC3 3,030,960 0.0010 FΕ 80 346 0.35 1.52 0.07 0.30 TPC4 346 3,030,960 0.0010 FE 80 0.35 1.52 0.07 0.30 TPC5 346 3,030,960 0.0010 FE 80 0.35 1.52 0.07 0.30 TPC6 346 3,030,960 0.0010 FE 80 0.35 1.52 0.07 0.30 TPC7 346 3,030,960 0.0010 PΕ 50 0.35 1.52 0.18 0.76 PΕ 50 0.76 TPC8 3,030,960 0.0010 0.18 346 0.35 1.52 TPC9 346 3,030,960 0.0010 PE 50 0.35 1.52 0.18 0.76

NOTES:

TPC10

TPC11

TPC12

346

346

346

3,030,960

3,030,960

3,030,960

FE

PE

FΕ

80

50

80

TSP :

PM10⁽²⁾ =

0.35

0.35

0.35

4.20

2.00

1.52

1.52

1.52

16.72

7.96

0.07

0.18

0.07

1.50

0.71

0.30

0.76

0.30

5.60

2.67

Crusher

							Rou	nding to =			
ID	Ca	pacity	е	Co	ntrol	Emissions					
		-		De	Uncor	trolled	Controlled				
	tons/hour	tons/year	lb/T ⁽¹⁾	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
CR1	346	3,030,960	0.06	вн	99	20.76	90.93	0.21	0.91		
					TSP =	20.76	90.93	0.21	0.91		
					PM10 ⁽²⁾ =	9.89	43.30	0.10	0.43		

^{1.} Secondary crushing factor 0.06 lb/ton from DAQ General Permit G10-C.

^{3.} Control efficiency from DAQ General Permit G10-C Refernce Document.

Conversions						
lbs/kg 2.205						
lbs/ton	2,000					

^{1.} Emissions are calculated for worst case scenario. If a zero has been entered, the transfer point is not part of the worst case scenario.

^{2.} PM10=PM/2.1.

^{2.} PM10=PM/2.1.

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Vehicular Activity Paved Haulroads

Source	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	TSP	TSP	Device	Efficiency	TSP	TSP
				(Ib/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	. (tpy)
PR	15	126,290	0.11	8.77	14.47	60.92	WT/WC	85	2.17	9.14
				Total	14.47	60.92		Total	2.17	9.14

Source	•	Number of Trucks/Hour	Number of Trucks/Year	Miles Per Trip	Emission Factor ⁽¹⁾	Uncontrolled PM ₁₀	Uncontrolled PM ₁₀	Control Device	Control Efficiency	Controlled PM ₁₀	Controlled PM ₁₀
					(Ib/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
PR		15	126,290	0.11	1.71	2.82	11.88	WT/WC	85	0.42	1.78
					Total	2.82	11.88		Total	0.42	1.78

	EIIISSION F	actors.	
	TSP	PM ₁₀	
k =	0.082	0.016	dimensionless, particle size multiplier
sL =	8	8 .	surface material silt content (g/m²)
W _{truck} =	40	40	tons, mean vehicle weight
P =	157	157	no. days/year with 0.01 in of rain
N =	365	365	days/year
C=	0.00047	0.00047	factor for exhaust, brake wear and tire wear
e =	8.77	1.71	lb/VMT truck
Total Load W	ength In (ft) = Length (mi) = Hauled (tpy) = /eight (tons) = ks Per Year =	Road 600 0.11 3,030,960 24 126,290	
Total I	Hauled (tph) =	346	
Load W	/eight (tons) =	24	
	ks Per Hour =	15	
Empty Truck W	/eight (tons) =	28	
Loaded Truck W	/eight (tons) =	52	
Average Truck V	/eight (tons) =	40	

 $E = [k*(sL/2)^0.65*(W/3)^1.5 - C]*(1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT) 1. AP42, 13.2.1.$

Checked By: CCS By: PEW

Date: November 17, 2008 - Revised May 2009 Date: December 3, 2008 - Revised May 2009

Stockpile

Stockpile is enclosed in a building and the building is vented through baghouses.

Concentation =	5 mg/m3	Industry Standard
Flow Rate =	5,664 m3/hr	Calculated
	200,000 ft3/hr	Estimated
Emissions =	28,320 mg/hr	Calculated
	0.06 lb/hr	Calculated
	0.26 tpy	Calculated
Estimated Maximum Units =	4 No.	Estimated
Total Emissions =	0.24 lb/hr	Calculated
	1.04 tpy	Calculated
Baghouse Control Efficiency (2) =	95 %	Estimated

2

Round to =

Source/Emission Point	Emissions						
	Uncontr	olled(2)	Controlled				
·	(lb/hr)	(tpy)	(lb/hr)	(tpy)			
Baghouse No. CS1	1.20	5.20	0.06	0.26			
Baghouse No. CS2	1.20	5.20	0.06	0.26			
Baghouse No. CS3	1.20	5.20	0.06	0.26			
Baghouse No. CS4	1.20	5.20	0.06	0.26			
PM	4.80	20.80	0.24	1.04			
PM10	4.80	20.80	0.24	1.04			

1. PM (TSP) = PM10

2. Back calculated and assumes indicated control efficiency.

Conversions Factors					
1 lb =	453,600 mg				
1 ft3	0.02832 m3				
1 ton =	2,000 lbs				
1 vr =	8,760 hrs				

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Limestone Summary of Emissions

Source	Regulated	Potential (U	ncontrolled)	Actual (Co	ontrolled)	
Description	Air Pollutant	Emis	sions	Emissions		
		lb/hour	tpy	lb/hour	tpy	
Transfer Points	TSP	4.85	4.05	1.73	1.45	
	PM10	2.31	1.93	0.82	0.69	
Crusher	TSP	0.54	0.45	0.11	0.09	
	PM10	0.24	0.20	0.05	0.04	
	PTE TSP =	5.39	4.50	1.84	1.54	
	PTE PM10 =	2.55	2.13	0.87	0.73	
Stockpiles	TSP	2.40	10.40	0.12	0.52	
	PM10	2.40	10.40	0.12	0.52	
Haulroads	TSP	4.82	3.35	0.72	0.50	
	PM10	0.94	0.65	0.14	0.10	
	Total TSP =	7.22	13.75	0.84	1.02	
	Total PM10 =	3.34	11.05	0.26	0.62	

Total TSP =	12.61	18.25	2.68	2.56
Total PM10 =	5.89	13.18	1.13	1.35

By: PEW

Checked By: CCS

Througput

16,919.65

19

456

166,440

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Batch or Continuous Drops

AP-42 Section 11.2.3 (9/88) emission factor equation: $e = k * 0.0032 * [(U/5)^{1.3} / (M/2)^{1.4}]$ lb/ton

Defining transfer point empirical expression variables, where:

 $\begin{array}{llll} e = & ? & lb/ton & KG/H \\ k = & 0.74 & dimensionless & TPH^{(2)} \\ U = & 7 & mph \ (mean \ wind \ speed \ in \ WV) & TPD = \\ M = & 1.0 & \% \ Moisture \ Content & TPY = \\ \end{array}$

Calculating transfer point emission factor using above equation:

e = 0.0097 lb/ton

ID	Transfer Capacities (1)		е	Co	ntrol		Em	nissions	
		•		De	vice	Uncon	trolled	Con	trolled
	tons/hour (2)	tons/year	lb/T	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TPL1	100	166,440	0.0097	N	0	0.97	0.81	0.97	0.81
TPL2	100	166,440	0.0097	FE	80	0.97	0.81	0.19	0.16
TPL3	100	166,440	0.0097	FE	80	0.97	0.81	0.19	0.16
TPL4	100	166,440	0.0097	FE	80	0.97	0.81	0.19	0.16
TPL5	100	166,440	0.0097	FE	80	0.97	0.81	0.19	0.16
					TSP =	4.85	4.05	1.73	1.45
					PM10 ⁽³⁾ =	2.31	1.93	0.82	0.69

NOTES:

- 1. Emissions are calculated for worst case scenario. If a zero has been entered, the transfer point is not part of the worst case scenario.
- 2. Actual feed rate to the plant system is 19 tons per hour. Estimated filling rate of bin is 100 tons per hour.
- 3. PM10=PM/2.1.

Crusher

ID	Capacity		е	Co	ntrol		Em	issions	
.				De	evice	Uncon	trolled	Con	rolled
	tons/hour	tons/year	lb/T ⁽¹⁾	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
CR7									
PM	100	166,440	0.0054	FE	80	0.54	0.45	0.11	0.09
PM10	1 .		0.0024	FE	80	0.24	0.20	0.05	0.04
					TSP =		0.45	0.11	0.09
					PM10 ⁽²⁾ =	0.24	0.20	0.05	0.04

^{1.} Tertiary crushing factos (PM 0.0054 lb/ton and PM10 0.0024 lb/ton) from AP-42, Section 11.19.2, Table 11.19.2-2.

Conversions					
lbs/kg 2.205					
lbs/ton	2,000				

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Vehicular Activity Paved Haulroads

Source	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
•	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	TSP	TSP	Device	Efficiency	TSP	TSP
	<u> </u>		1 1	(lb/VMT)	(lb/hr)	_(tpy)		(%)	(lb/hr)	(tpy)
PR	5	6,935	0.11	8.77	4.82	3.35	WT/WC	85	0.72	0.50
				Totai	4.82	3.35		Total	0.72	0.50

Source	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	PM ₁₀	PM ₁₀	Device	Efficiency	PM ₁₀	PM ₁₀
	·			(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
PR	5	6,935	0.11	1.71	0.94	0.65	WTWC	85	0.14	0.10
				Total	0.94	0.65		Total	0.14	0.10

k =	0.082	0.016	dimensionless, particle size multiplier
sL=	. 8	8	surface material silt content (g/m²)
W _{truck} =	40	40	tons, mean vehicle weight
P =	157	157	no. days/year with 0.01 in of rain
N =	365	365	days/year
C=	0.00047	0.00047	factor for exhaust, brake wear and tire wear
. е=	8.77	1.71	Ib/VMT truck
		Road	
	Length In (ft) =	600	
	Length (mi) =	0.11	
To	tal Hauled (tpy) =	166,440	
Loa	d Weight (tons) =	24	
٦	rucks Per Year =	6,935	

PM₁₀

Emission Factors⁽¹⁾

TSP

Total Hauled (tph) = Load Weight (tons) = Trucks Per Hour = 100 24 5 28 52 40 Empty Truck Weight (tons) = Loaded Truck Weight (tons) = Average Truck Weight (tons) =

 $E = [k*(sL/2)^{o}.65*(W/3)^{h}.5-C]*(1-(P/4*N) = lb / Vehicle Mile Traveled (VMT) 1. AP42, 13.2.1.$

By: PEW Checked By: CCS

Date: November 17, 2008 - Revised May 2009 Date: December 3, 2008 - Revised May 2009

Stockpile

Stockpile is enclosed in a building and the building is vented through baghouses.

Concentation =	5 mg/m3	Industry Standard
Flow Rate =	5,664 m3/hr	Calculated
	200,000 ft3/hr	Estimated
Emissions =	28,320 mg/hr	Calculated
	0.06 lb/hr	Calculated
	0.26 tpy	Calculated
Estimated Maximum Units =	2 No.	Estimated
Total Emissions =	0.12 lb/hr	Calculated
	0.52 tpy	Calculated
Baghouse Control Efficiency (2) =	95 %	Estimated

Round to =

Source/Emission Point		Emissions					
		Uncontr	olled(2)	Con	trolled		
		(lb/hr)	(tpy)	(lb/hr)	(tpy)		
Baghouse No. LS1		1.20	5.20	0.06	0.26		
Baghouse No. LS2		1.20	5.20	0.06	0.26		
	PM	2.40	10.40	0.12	0.52		
PM	/110	2.40	10.40	0.12	0.52		

1. PM (TSP) = PM10

2. Back calculated and assumes indicated control efficiency.

Conversions Factors						
1 lb =	453,600 mg					
1 ft3	0.02832 m3					
1 ton =	2,000 lbs					
1 yr =	8,760 hrs					

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Ash Summary of Emissions

Source Regulated		Potential (U	ncontrolled)	Actual (Controlled)		
Description	Air Pollutant	Emissions		Emiss	ions	
		lb/hour	tpy	lb/hour	tpy	
Transfer Points	TSP	5.59	15.25	1.69	4.04	
	PM10	3.21	7.58	1.07	2.03	
	PTE TSP =	5.59	15.25	1.69	4.04	
	PTE PM10 =	3.21	7.58	1.07	2.03	
<u> </u>		<u> </u>	<u> </u>			
Haulroads	TSP	8.68	13.38	1.30	2.01	
	PM10	1.69	2.61	0.25	0.39	
	Total TSP =	8.68	13.38	1.30	2.01	
	Total PM10 =	1.69	2.61	0.25	0.39	

Total TSP =	14.27	28.63	2.99	6.05
Total PM10 =	4.90	10.19	1.32	2.42

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Batch or Continuous Drops: Ash/Aggregate

AP-42 Section 11.2.3 (9/88) emission factor equation: $e = k * 0.0032 * [(U/5)^{1.3} / (M/2)^{1.4}]$ lb/ton

Defining transfer point empirical expression variables, where:

e = lb/ton 0.74 dimensionless U = mph (mean wind speed in WV) 7 % Moisture Content M = 1.0

Througput KG/H 62,500 TPH 69 TPD = 1,656 604,440

Calculating transfer point emission factor using above equation:

0.0097 lb/ton

Rounding to =

10	Tonnefer	Onnesities (4)	r		Indual			inding to -	
ID	i ranster	Capacities (1)	е	. 00	ntrol		Em	issions	
			1	De	evice	Uncor	trolled	Con	trolled
	tons/hour	tons/year	lb/T	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TPA1	69	604,440	0.0097	FE	80	0.67	2.93	0.13	0.59
TPA2	100	604,440	0.0097	FE	80	0.97	2.93	0.19	0.59
TPA3	100	604,440	0.0097	FE	80	0.97	2.93	0.19	0.59
TPA4	100	604,440	0.0097	FE	80	0.97	2.93	0.19	0.59
TPA5	100	604,440	0.0097	PE	50	0.97	2.93	0.49	1.47
					TSP =	4.55	14.65	1.19	3.83
					PM10 =	2.17	6.98	0.57	1.82

Batch or Continuous Drops: Filter Cake (Estimated at 10% of Ash/Aggregate)

AP-42 Section 11.2.3 (9/88) emission factor equation: $e = k * 0.0032 * [(U/5)^{1.3} / (M/2)^{1.4}]$ lb/ton

Defining transfer point empirical expression variables, where:

lb/ton e = k = 0.74 dimensionless mph (mean wind speed in WV) 11= 7 M = 1.0 % Moisture Content

Througput						
KG/H	6,250					
TPH	7					
TPD =	168					
TPY =	61.320					

Calculating transfer point emission factor using above equation:

0.0097 lb/ton

Rounding to =

ID	Transfer (ansfer Capacities (1)e		Co	ntrol		Em	ssions	
				De	vice	Uncor	trolled	Con	trolled
	tons/hour	tons/year	lb/T	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TPFC1	7	61,320	0.0097	FE	80	0.07	0.30	0.01	0.06
TPFC2	100	61,320	0.0097	PE	50	0.97	0.30	0.49	0.15
					TSP =	1.04	0.60	0.50	0.21
PM10 and	TSP assumed	d equal in this ca	ase.		PM10 =	1.04	0.60	0.50	0.21

Conversions						
lbs/kg	2.205					
lbs/ton	2,000					

1	otals for	Ash and A	ggregate	
TSP =	5.59	15.25	1.69	4.04
PM10 =	3.21	7.58	1.07	2.03

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

C=

Date: December 3, 2008 - Revised May 2009

Vehicular Activity

Paved Haulroads

Source	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	TSP	TSP	Device	Efficiency	TSP	TSP
·				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
PR	9	27,740	0.11	8.77	8.68	13.38	WT/WC	85	1.30	2.01
				Total	8.68	13 38		Total	1.30	2.01

Source	Number of	Number of	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	Trucks/Hour	Trucks/Year	Per Trip	Factor (1)	PM ₁₀	PM ₁₀	Device	Efficiency	PM ₁₀	PM ₁₀
				(Ib/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
PR	9	27,740	0.11	1.71	1.69	2.61	WT/WC	85	0.25	0.39
				Total	1.69	2.61		Total	0.25	0.39

	Emission Factors (1)						
	TSP	PM ₁₀					
k =	0.082	0.016					
sL =	8	8					
truck =	40	40					
P =	157	157					
N =	365	365					

0.00047 1.71

0.00047

dimensionless, particle size multiplier surface material silt content (g/m²) tons, mean vehicle weight no. days/year with 0.01 in of rain days/year factor for exhaust, brake wear and tire wear

Ib/VMT truck

Road Length In (ft) = 600 Length (mi) =

Length (mi) =

Total Hauled (tpy) =

Load Weight (tons) =

Trucks Per Year = 0.11 665,760 24 27,740 Total Hauled (tph) = Load Weight (tons) = Trucks Per Hour = 200 24 9

Empty Truck Weight (tons) = Loaded Truck Weight (tons) = Average Truck Weight (tons) = 28 52 40

 $E = [k*(sL/2)^{\circ}0.65*(W/3)^{\circ}1.5-C]*(1-(P/4^{\circ}N) = lb / Vehicle Mile Traveled (VMT) 1. AP42, 13.2.1.$

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Sulfur and Misc Trucking Summary of Emissions

Source	Regulated	Potential (U	ncontrolled)	Actual (Co	ontrolled)
Description	Air Pollutant	Emiss	Emissions		ions
		lb/hour	tpy	lb/hour	tpy
		·			
Haulroads	TSP	7.89	18.60	1.18	2.79
-	PM10	1.54	3,63	0.23	0.54
	Total TSP =	7.89	18.60	1.18	2.79
* . **	Total PM10 =	1.54	3.63	0.23	0.54

Total TSP =	7.89	18.60	1.18	2.79
Total PM10 =	1.54	3.63	0.23	0.54

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Vehicular Activity

Paved Haulroads

	Source	Number of Trucks/Hour	Number of Trucks/Year	Miles Per Trip	Emission Factor ⁽¹⁾	Uncontrolled TSP	Uncontrolled TSP	Control Device	Control Efficiency	Controlled TSP	Controlled TSP
Ĺ					(Ib/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
	PR	2	9,428	0.45	8.77	7.89	18.60	WT/WC	85	1.18	2.79
_					Total	7.89	18.60		Tota!	1.18	2.79

Source	Number of Trucks/Hour	Number of Trucks/Year	Miles Per Trip	Emission Factor (1)	Uncontrolled PM ₁₀	Uncontrolled PM ₁₀	Control Device	Control Efficiency	Controlled PM ₁₀	Controlled PM ₁₀
PR	2 _	9,428	0.45	(lb/VMT) 1.71	(lb/hr) 1.54	(tpy) 3.63	WT/WC	(%) 85	(ib/hr) 0.23	(tpy) 0.54
				Total	1.54	3.63		Total	0.23	0.54

dimensionless, particle size multiplier

no. days/year with 0.01 in of rain factor for exhaust, brake wear and tire wear lb/VMT truck

surface material silt content (g/m²) tons, mean vehicle weight

k =	0.082	0.016
sL =	8	8
W _{truck} =	40	40
P =	157	157
C=	0.00047	0.00047
e =	8.77	1.71
		Road
	Length In (ft) =	2,400
	Length (mi) =	0.45
Tota	Hauled (tpy) =	226,271
Load '	Weight (tons) =	. 24
Tru	icks Per Year =	9,428
Tota	I Lieuted (tale) -	
	Hauled (tph) =	26
	Weight (tons) =	24
Tru	icks Per Hour =	2
Empty Tauck	Weight (tons) =	28
	Weight (tons) =	52
	Weight (tons) =	40
Average Truck	* * organic (torilo) =	40

Emission Factors⁽¹⁾

TSP 0.082 PM₁₀

Through	put
KG/H (Sulfur)	2,669.53
KG/H (LPG)	10,759
KG/H (MISC)	10,000
TPH	25.83
TPD =	620
TPY =	226,271

Conver	sions
lbs/kg	2.205
lbs/ton	2,000

 $E = [k*(sL/2)^0.65*(W/3)^1.5 - C]*(1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT) 1. AP42, 13.2.1.$

Cooling Tower
Particulate Matter PTE

By: PEW Checked By: CCS

Date: November 17, 2008 - Revised May 2009 Date: December 3, 2008 - Revised May 2009

Cooling Tower Emissions

Liquid drift is assumed to be PM10 and will be added to PM and PM10 totals. Emissions estimated by AP-42 Section 13.4, Wet Cooling Towers.

Water Flow = 18,490,000 gallon per hour (Uhde 70,000 m3/hr)

308,167 gallons per minute

Circulating Water TDS = 5,000 ppm (estimated)

Design Drift Rate = 0.001 % Drift (estimated)

Operating Hours = 8,760 hrs/year Liquid Drift = 7.71 lbs/hr 33.77 tpy

Rounding to = 2

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Methanol System (Vapor Sources)

					POTEN	ITIAL	AC	TUAL
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	VOC Emissions (lb/hr)	VOC Emissions (ton/yr)	VOC Emissions (lb/hr)	VOC Emissions (ton/yr)
Valves	20	5.97E-03	0.263	1.152	0.263	1.152	0.032	0.138
Pressure Relief Valves	. 5	1.04E-01	1.146	5.019	1.146	5.019	0.138	0.602
Connectors	20	1.83E-03	0.081	0.355	0.081	0.355	0.006	0.025
Compressor Seals	4	1.83E-03	0.016	0.070	0.016	0.070	0.002	0.007
			Total VOC	= TOC Emissions	1.506	6.596	0.178	0.772
lb/kg = 2.2046			-			Round to =	3	

1. Table 5-1 and 5-2 (Reduction by LDAR) of Protocol for Equipment Leak Emissions Estimate (EPA-453/R-95-017) dated November 1995.

Valves 88 % Reduction Table 5-2

Connectors 93 % Reduction Table 5-2

Table 5-1

Compressor Seals

88 % Reduction 93 % Reduction 90 % Reduction

Methanol Tank

	TANKS 4.0 Output					Total Emissions		
	"		Losses(lbs/yr					
Components	Components Rim Seal Loss Withdrawl Loss Deck Fitting Deck Seam Loss Total Emissions Loss					lb/hr ⁽¹⁾	tpy	
Methyl alcohol	122.31	133.97	245.39	0	501.68	0.057	0.251	
					Round to =	3	3	

1. Based on

8,760 hours per year.

	Tota		
POTE	NTIAL	ACT	UAL
VOC ar	d HAP	VOC a	nd HAP
lb/hr	tpy	lb/hr	tpy
1.563	6.847	0.235	1.023

By: PEW

Date: November 17, 2008 - Revised May 2009

Checked By: CCS
Date: December 3, 2008 - Revised May 2009

Gasoline Emissions (Fugitive, Tanks, and Loading Racks)

Gasoline System Fugitives

*	Fugiti	ives for Ali Sou	rces with Ga	ısoline				
					POTEN	√TIAL	ACT	TUAL
Source Type	Number of Sources	Emission Factor(1) (kg/hr/sour ce)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	VOC Emissions (lb/hr)	VOC Emissions (ton/yr)	VOC Emissions (lb/hr)	VOC Emission (ton/yr)
Valves	12	2.68E-02	0.71	3.11	0.709	3.105	0.085	0.373
Pump Seals (Sealless Design)	3	1.14E-01	0.75	3.30	0.754	3.302	0.008	0.033
Connectors	200	2.50E-04	0.11	0.48	0.110	0.483	800.0	0.034
		Tota	VOC = TOC	Emissions =	1.573	6.891	0.101	0:440
	Total Uncont	rolled HAPS (Pr	orated on TA	NKS Output)=	0.593	2.618	Round to =	3
1. Table 5-1 and 5-2 (Reduction by LDAR) of	Protocol for Equipment I	eak Emissions	Estimate (EP.	A-453/R-95-0°	17) dated Noven	nber 1995.	_	
Valves	88 % Reduction	Table 5-2						
Pump Seals (Sealless								
Design)	99 % Reduction	Table 5-1						
Connectors	93 % Reduction	Table 5-2						

Gasoline Tanks

	TANKS 4.0	Output (for one tar	nk)			One Tank C	alculated	Three Tanks		
		Losses(II	os)			Total Emissions				
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions	lb/hr ⁽³⁾	tpy	lb/hr	фу	lb/yr
Gasoline (RVP 13)	1,506.60	173.47	3,022.61	0	4,702.69	0.53684	2.351	1.61	7.053	14,106
Unidentified Components	1,483.37	129.34	2,976.02	0	4,588.73	0.52383	2.294	25	NA.	NA.
Benzene	6.56	3,12	13.16	0	22.85	0.00261	0.011	0.0078	0.033	66
Isooctane	0	6.94	0	- 0	6.94	0.00079	0.003	0.0024	0.009	18
Toluene	7.13	12.14	14.31	0	33.58	0.00383	0.017	0.0115	0.051	102
Ethylbenzene	0.46	2.43	0.93	0	3.82	0.00044	0.002	0.0013	0.006	12
Xylene (-m)	1.93	12.14	3.86	0	17.93	0.00205	0.009	0.0062	0.027	54
Isopropyl benzene	0.07	0.87	0.15	0	1.09	0.00012	0.001	0.0004	0.003	6
1,2,4- Trimethylbenzene	0.15	4.34	0.31	0	4.8	0.00055	0.002	0.0017	0.006	12
Cyclohexane	0.91	0.42	1.82	0	3.15	0.00036	0.002	0.0011	0.006	12
Hexane (-n)	6.01	1.73	12.05	0	19.79	0.00226	0.01	0.0068	0.03	60

1. Based on

8,760

hours per year.

Gasoline Loading Racks (LR1 and LR2)

VOC losses from loading gasoline to truck or railcar with the control of the vapor recovery system. AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

L=	12.4	6 SPM/T lb/1,000 gallons
S=	0.	6 Saturation Factor (5.2.1)
P=	9.	9 psia (Vapor Pressure RVP13 AP-42 Table 7.1-2)
M=		2 MW lb/lb-mole
T=		0 Degrees F
÷-	5.4	0 Degrees P /f + 460\

L uncontrolled =	8.50	lb/1,000 gallons
Total Gallons Per Hour =	31,500	gph
Total Gallons Per Year =	275,940,000	gpy
Collection Efficiency =	99.2	% (MACT Level)
Vapor Losses =	2.14	lbs/hr
	9.38	tpy
Control Efficiency =	99	%
L controlled =	0.08	lb/1,000 gallons
Total Gallons Per Hour =	31,500	gph
Total Gallons Per Year =	275,940,000	gpy
L uncontrolled =	267.68	lbs/hr
	1172.43	tpy
L controlled =	2.68	lbs/hr
	11.72	tpy
Total (point and fugitive) =	4.82	lbs/hr
	21.10	tpy

	olled (VOC)
267.68	lbs/hr.
1172	tpy
Uncotro	lied HAPS
(Prorated ba	sed on TANKS)
12.06	lbs/nr
52.92	tpy

By: PEW Date: November 17, 2008 - Revised May 2009

Checked By: CCS
Date: December 3, 2008 - Revised May 2009

Gasoline Emissions (Fugitive, Tanks, and Loading Racks)

Summary of Gasoline Fugitives and Tanks Emissions

Components	Speciation from Tanks 4.0	Decimal Percentage to Use Speciating Fugitives		Gasoline Tani (Fugitive)	(G	asione Tanks			Loading Rac (Fugitive)	ks		Loading Racks (Controlled)	
_	lb/yr	NA NA	lb/hr	lb/yr	tpy	lb/hr	lb/yr	tpy	lb/hr	lb/yr	tpy	lb/hr	lb/yr	tpy
Gasoline (RVP 13)	14,106	1	0.1010	880.00	0.4400	1.6105	14,106	7.05	2.1400	18,760	9,380	2.6768	23,449	11.724
Benzene	66	0.00468	0.0074	64.40	0.0322	0.0078	66	0.033	0.0100	87.80	0.0439	0.0125	109.80	0.0549
Isooctane	18	0.00128	0.0020	17.60	0.0088	0.0024	18	0.009	0.0027	24.00	0.0120	0.0034	30.00	0.0150
Toluene	102	0.00723	0.0114	99,60	0.0498	0.0115	102	0.051	0.0155	135.60	0.0678	0.0194	169.60	0.0848
Ethylbenzene	12	0.00085	0.0013	11.80	0.0059	0.0013	12	0.006	0,0018	16.00	0.0080	0.0023	20.00	0.0100
Xylene (-m)	54	0.00383	0.0060	52,80	0.0264	0.0062	54	0.027	0.0082	71.80	0.0359	0.0103	89.80	0.0449
Isopropyl benzene	6	0.00043	0.0007	6.00	0.0030	0.0004	6	0.003	0.0009	8.00	0.0040	0.0012	10.00	0.0050
1,2,4-								,						
Trimethylbenzene	12	0.00085	0.0013	11.80	0.0059	0.0017	12	0.006	0.0018	16.00	0.0080	0.0023	20.00	0.0100
Cyclohexane	12	0.00085	0.0013	11.80	0.0059	0.0011	12	0.006	0.0018	16.00	0.0080	0.0023	20.00	0.0100
Hexane (-n)	60	0.00425	0.0067	58.60	0.0293	0.0068	60.000	0.030	0.0091	79.80	0.0399	0.0114	99.60	0.0498
Total HAPS			0.0381	334.40	0.1672	0.0390	342.00	0.1710	0.0518	455.00	0.2275	0.0651	568.80	0.2844
	Rounding Column to =	5	4	Ž	4									

Components	Total Gasoline Tanks					
· •	lb/hr	lb/yr	tpy			
Gasoline (RVP 13)	1.7115	14986.0000	7,4930			
Benzene	0.0152	130,4000	0.0652			
Isooctane	0.0044	35.6000	0.0178			
Toluene	0.0229	201.6000	0,1008			
Ethylbenzene	0.0026	23.8000	0.0119			
Xylene (-m)	0.0122	106.8000	0.0534			
Isopropyl benzene	0.0011	12.0000	0.0060			
1,2,4-Trimethylbenzene	0.0030	23.8000	0.0119			
Cyclohexane	0.0024	23.8000	0.0119			
Hexane (-n)	0.0135	118.6000	0.0593			
Total HAPS	0.0771	676.4000	0.3382			

Components	Total Loading					
	lb/hr	lb/yr	tpy			
Gasoline (RVP 13)	4.8168	42208.6086	21.1043			
Benzene	0.0225	197.6000	0.0988			
Isooctane	0.0061	54.0000	0.0270			
Toluene	0.0349	305.2000	0.1526			
Ethylbenzene	0.0041	36.0000	0.0180			
Xylene (-m)	0.0185	161.6000	8080.0			
isopropyl benzene	0.0021	18.0000	0.0090			
1,2,4-Trimethylbenzene	0.0041	36.0000	0.0180			
Cyclohexane	0.0041	36.0000	0.0180			
Hexane (-n)	0.0205	179.4000	0.0897			
Total HAPS	0.1169	1023.8000	0.5119			

Components	Total					
	ib/hr	lb/yr_	tpy			
Gasoline (RVP 13)	6.5283	57194.6086	28.5973			
Benzene	0.0377	328.0000	0.1640			
Isooctane	0.0105	89.6000	0.0448			
Toluene	0.0578	506,8000	0.2534			
Ethylbenzene	0.0067	59.8000	0.0299			
Xylene (-m)	0.0307	268.4000	0.1342			
Isopropyl benzene	0.0032	30.0000	0.0150			
1,2,4-Trimethylbenzene	0.0071	59.8000	0.0299			
Cyclohexane	0.0065	59.8000	0.0299			
Hexane (-n)	0.0340	298.0000	0.1490			
Total HAPS	0.1940	1700.2000	0.8501			

Sulfur Tank Emissions H2S PTE

Potesta & Associates, Inc. Project No. 0101-08-0324

By: PEW

Checked By: CCS

Date: November 17, 2008 - Revised May 2009

Date: December 3, 2008 - Revised May 2009

Sulfur Tank Filling

Assume =

5 % H2S is lost to vapor

10 ppm H2S in Sulfur

Throughput =

2669.53 kg/hr

5886.314 lb/hr

51,564,110.64 lbs/yr

H2S Emisions =

0.003 lb/hr 8,760 hrs/yr

51,564,200.00 say (lbs/yr) 141,271.78 lbs/day

26.280 lbs/yr 0.0130 tpy

Sulfur Vehicle Filling (Assume same loss as filling tank)

0.003 lb/hr

0.013 tpy

Total H2S Losses =

0.006 lb/hr

0.026 tpy

Round to =

Conversions =

2.205 lbs/kg

2000 lbs/tons

REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08

By: PEW	Checked By: CCS
Date: November 17, 2008 - Revised May 2009	Date: December 3, 2008 - Revised May 2009

This is a mass balance conversion of the Emission Unit Data Sheets in Section L

Round to =	0		
Round to -	U	2.205	lho/ka
			lbs/tons
Opelfion In	December Line		
Gasifier In	Process Line	kg/hr	tons/hr
Coal	2	309,868.00	342
Oxygen from ASU	29	230,439.00	255
Water from MTG	20	135,273.00	150
Recycle Water	19	445,730.00	492
Gasifier Out	Process Line	kg/hr	tons/hr
Syngas ex Scrubber	3	1,121,958.00	1,237
Sour Gas from PDQ	10	1,214.32	2
		·	
·			
	i		
CO Shift In	Process Line	kg/hr	tons/hr
Syngas ex Scrubber	3	1,121,958.00	1.237
Tail Gas from PSA	15	18,635.38	21
Tall Gas Hoth For	15	Total =	1,258
		i Otal –	1,230
CO Ch:# O.#	Process Line	lea/br	tono/br
CO Shift Out		kg/hr	tons/hr
Syngas ex CO Shift	4	702,352.70	775 404
Sour Water	18	447,886.00	494
		Total =	1,269
CO2/H2S Removal System	_		
CO2/H2S Removal System In	Process Line	kg/hr	tons/hr
Syngas ex CO Shift	4	702,352.70	775
Claus Tail Gas	30	6,277	7
		Total =	782
CO2/H2S Removal System Out	Process Line	kg/hr	tons/hr
CO2 to Purification	16	462,593.08	511
Acid Gas From AGR	9	7,252.29	8
Syngas to MEOH	5	255,200	282
-7G 1	-		

REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08

By: PEW				Checked E	y: CCS
Date: November 17, 2008 - Rev	vised May 2009	Date: Decei	mber 3, 2008	- Revised M	lay 2009
		Total =	801		
Sour Water Stripper In	Process Line	kg/hr	tons/hr		
Sour Water	18	447,886.00	494		
		Total =	494		
Sour Water Stripper Out	Process Line	kg/hr	tons/hr		
Recycle Water	19	445,730.00	492		
Sour Gas to SRU	25	2,156	3		
		Total =	495		
Mercury Removal In	Process Line	kg/hr	tons/hr		
Syngas to MEOH	5	255,200	282		
Mercury Removal Out	Process Line	kg/hr	tons/hr		
Syngas to MEOH	5	255,200	282		
Methanol Synthesis Unit In	Process Line	kg/hr	tons/hr		
Syngas to MEOH	5	255,200	282		
Methanol Synthesis Unit Out	Process Line	kg/hr	tons/hr		
Methanol	6	238,395.60	263		
Gas to PSA	12	19,518.54	22		
		Total =	285		
Sulfur Recovery In	Process Line	kg/hr	tons/hr		
Acid Gas From AGR	9	7,252.29	8		
Sour Gas to SRU	25	2,156	3		
Sour Gas from PDQ	10	1,214.32	2		
		Total =	13		
Sulfur Recovery Out	Process Line	kg/hr	tons/hr		
Claus Tail Gas	30	6,277	7		
Solid Sulfur	11	2,669.53	3		
		Total =	10		
PSA System In	Process Line	kg/hr	tons/hr		
Gas to PSA	12	19,518.54	22		
PSA System Out	Process Line	kg/hr	tons/hr		

REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08

By: PEW		EIVIII MEIT I 12		Checked By:	
Date: November 17, 2008 - Revis	ed May 2009	Date: Decen	nber 3, 2008	- Revised May	2009
Tail Gas from PSA	15	18,635.38	21		
CO Purification In	Process Line	kg/hr	tons/hr		
CO2 to Purification	16	462,593.08	511		
MTG Regen Offgas to Purification	31	9,597.00	11		
		Total =	522		
CO Purification Out	Process Line	kg/hr	tons/hr		
CO2 to Atmoshere	17	346,873.89	383		
CO2 to Coal Preparation	26	115,719.1873	128		
		Total =	511		
Air Separation Out	Process Line	kg/hr	tons/hr		
Oxygen from ASU	29	230,439.00	255		
MTG In	Process Line	kg/hr	tons/hr		
Methanol	6	238,395.60	263		
MTG Out	Process Line	kg/hr	tons/hr		
LPG	7	10,759	12		
Gasoline	. 8	87,400	97		
Tail Gas from MTG	28	3,257	4		
Water from MTG	20	135,273	150		
		Total =	263		
Gasoline Estimated Production =	18,000	bbl/d			
	42	gai/bbl			
	756,000	gal/d			
	31,500	gal/hr			
	275,940,000	gal/yr			
No. of Tanks =	3				
Througput of Each Tank =	91,980,000	gal/yr			
Tank Size =	2,000,000	gal			
Turnovers =	45.99	No.			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	TK-1 Through TK-3 Charleston West Virginia TransGas Internal Floating Roof Tank Gasoline Storage Tanks Emissions Per Each Tank
Description.	Scotling Clarify Little Extraction of Land. Cart.
Tank Dimensions	
Diameter (ft):	100.00
Volume (gallons):	2,000,000.00
Tumovers:	45.99
Self Supp. Roof? (y/n):	Y Y
No. of Columns:	0.00
Eff. Col. Diam. (ft):	0.00
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	Shoe-mounted
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Welded
Deck Fitting/Status	

Deck Fitting/Status	Quantity
Access Hatch (24-in. Diam.)/Unboited Cover, Ungasketed Automatic Gauge Float Well/Unboited Cover, Ungasketed	1
Roof Leg or Hanger Well/Adjustable	32
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	. 1
Vacuum Breaker (10-in. Diam.)Weighted Mech. Actuation, Gask.	1

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-1 Through TK-3 - Internal Floating Roof Tank Charleston, West Virginia

			Liquid Surt. Bulk peratura (deg F) Temp			Bulk		(psia)	Vapor Mol.	Liquid Mess	Vapor Mass	Mol.	Basis for Vapor Pressure
lixture/Companent	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
asoline (RVP 13)	All	56.67	51,31	62.04	55.00	6.5261	N/A	N/A	62.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		92.00	Option 4: RVP=13, ASTM Slope=3
2.4-Trimethylbenzene	,					0,0179	N/A	N/A	120,1900	0.0250	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
enzene						1,0642	N/A	NA	78,1100	0.0180	0.0044	78.11	Option 2: A=6.905, B=1211.033, C=220.79
cyclohexane						1,1063	N/A	N/A	84,1600	0.0024	0.0006	84.16	Option 2: A=6.841, B=1201.53, C=222.65
thylbenzene						0.0966	N/A	N/A	106,1700	0.0140	0.0003	106,17	Option 2: A=6.975, B=1424.255, C=213.21
exane (-n)						1.7536	N/A	NA	86,1700	0,0100	0.0046	86.17	Option 2: A=8.876, B×1171,17, C=224.41
poctane							N/A	N/A	114,2200	0.0400	0.0000	114.22	
oprapyl benzene						0.0424	N/A	N/A	120,2000	0,0050	0.0000	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
krene						0.2974	N/A	N/A	92,1300	0.0700	0.0047	92.13	Option 2: A=6.954, B=1344.8, C=219.48
identified Components						8.4085	N/A	N/A	61.7207	0.7456	0.9846	89.36	
viene (-m)						0.0803	N/A	N/A	106.1700	0.0700	0.0013	106.17	Option 2: A=7.009, B=1462,266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-1 Through TK-3 - Internal Floating Roof Tank Charleston, West Virginia

Annual Emission Calcaulations	***
Rim Seal Losses (lb):	1,506.599
Seal Factor A (lb-mote/ft-yr):	1.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.1519
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	6.528
Tank Diameter (ft):	100.900
Vapor Molecular Weight (lb/lb-mole):	62,000
Product Factor:	1.000
Withdrawal Losses (fb):	173.474
Number of Columns:	0.000
Effective Column Diameter (ft):	0.000
Annual Net Throughput (gal/yr.):	91,980,000.000
Shell Clingage Factor (bbl/1000 sqft):	0.001
Average Organic Liquid Density (lb/gal):	5.600
Tank Diameter (ft):	100,000
Deck Fitting Losses (lb):	3,022.614
Value of Vapor Pressure Function:	0.151:
Vapor Molecular Weight (fb/fb-mole):	62.000
Product Factor:	1.000
Tot. Roof Fitting Loss Fact.(lb-mols/yr):	321.000
Deck Seam Losses (lb):	0,000
Deck Seam Length (ft):	0.000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.000
Deck Seam Length Factor(ft/sqft):	0.000
Tank Diameter (ft):	100.000
Vapor Molecular Weight (lb/lb-mole):	62,000
Product Factor:	1.000
Total Losses (ib):	4,702.687

Roof Filting/Status Quantity Refull-mole/yr Roof Filting (Loss Factors KFa(lb-mole/yr mph*n)) m Lossee(lb)						
Access Factor (24-In 10em Junioral Cover, Originates Automatic Surger Float Welf/Unbolted Cover, Originates 4 1 14.00 5.40 1.10 131.8274 Automatic Surger Float Welf/Unbolted Cover, Originates 5 1 14.00 5.40 1.10 131.8274 Roof Leg or Hanger Welf/Edulatable 32 7.90 0.00 0.00 2,380.4286 Sarota Pilica Valer (24-In 1948)	Roof Fitting/Status	Quantity			, m	Losses(lb)
Access Factor (24-In 10em Junioral Cover, Originates Automatic Surger Float Welf/Unbolted Cover, Originates 4 1 14.00 5.40 1.10 131.8274 Automatic Surger Float Welf/Unbolted Cover, Originates 5 1 14.00 5.40 1.10 131.8274 Roof Leg or Hanger Welf/Edulatable 32 7.90 0.00 0.00 2,380.4286 Sarota Pilica Valer (24-In 1948)	- Andrew Control of the Control of t	warmen of the second of the second of the second of	- And the Control of		**************************************	
	Automatic Gauge Float Well/Unbotted Cover, Ungasketed	1 1 32 1	14.00 7.90	5.40 0.00	1.10	131.8274 2,380,4266

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-1 Through TK-3 - Internal Floating Roof Tank Charleston, West Virginia

	Losses(lbs)											
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions							
Gasoline (RVP 13)	1,506.60	173.47	3,022.61	0.00	4,702.69							
Hexane (-n)	6.01	1.73	12.05	0.00	19,79							
Benzene	6.56	3.12	13.16	0.00	22.85							
Isooctane	0.00	6.94	0.00	0.00	6.94							
Toluene	7.13	12.14	14.31	0.00	33,58							
Ethylbenzene	0.46	2.43	0.93	0.00	3.82							
Xylene (-m)	1.93	12.14	3.86	0.00	17.93							
isopropyi benzene	0.07	0.87	0.15	0.00	1.09							
1,2,4-Trimethylbenzene	0.15	4.34	0.31	0.00	4.80							
Cyclohexane	0.91	0.42	1.82	0.00	3.15							
Unidentified Components	1,483.37	129.34	2,976.02	0.00	4,588.73							

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Access Hatch (24-in. Diam.) Unbolted Automatic Gauge Float Well/Unbolted Roof Leg or Hanger Well/Unbolted Sample Pipe or Well (24-in. Diam.) Slit Vacuum Breaker (10-in. Diam.) Weight	Cover, Ungasketed Fabric Seal 10% Open	1 1 32 1
Deck Fitting/Status		Quantity
Deck Characteristics Deck Fitting Category: Deck Type:	Typical Welded	
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe Shoe-mounted	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good	
Type of Tank: Description: Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	100.00 2,000,000.00 30.00 Y	
Identification User Identification: City: State: Company:	IFR Methanol Tank Charleston West Virginia Trans Gas	

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

IFR Methanol Tank - Internal Floating Roof Tank Charleston, West Virginia

Andrew Control of the													
Michigan III	Month	Ten	aily Liquid Su nperature (de Min.		Liquid Bulk Temp (deg F)	Vapor Ava.	Pressure Min.	(psia) Max.	Vapor Moi, Weight,	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Mixture/Component	MOSIUI	Avg.	410517.	tviua.	(usy)	•							
Parking and the particul of th													
Methyl alcohol	All	56.67	51,31	62.04	55.00	1.2977	N/A	NA	32,0400			32.04	Option 2: A=7.897, B=1474,08, G=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

IFR Methanol Tank - Internal Floating Roof Tank Charleston, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	122.3130
Seal Factor A (lb-mole/fi-vr):	1,6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.0239
Vapor Pressure at Daily Average Liquid	
Surface Temperature (paia):	1.2977
Tank Diameter (ft).	100.0000
Vapor Molecular Weight (lb/lb-mole):	32.0400
Product Factor:	1,0000
Withdrawal Losses (lb):	133.9734
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	60,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gel):	6.6300
Tank Diameter (ft):	100.0000
Deck Fitting Lasses (fb):	245.3905
Value of Vapor Pressure Function:	0.0239
Vapor Molecular Weight (lb/lb-mole):	32,0400
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(tb-mole/yr);	321.0000
Deck Seam Losses (ib):	0.0000
Deck Seam Length (ff):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/fl-yr):	0.0000
Deck Seem Length Factor(fl/sqft);	0.0000
Tank Diameter (ft):	100,0000
Vapor Molecular Weight (lb/lb-mole):	32,0400
Product Factor:	1,0000
Total Losses (ib):	501.6769

Roof Filling/Status	Quantity		Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	· m	Losses(ib)
- Andrews - Andr		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A STATES OF THE PARTY OF THE PA
Access Hatch (24-in, Diam.)/Unbolted Cover, Ungaskeled	1 .	36.00	5.90	1.20	27.5204
Automatic Gauge Float Welf/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	10.7024
Roof Leg or Hanger Well/Adjustable	32	7.90	0.00	0.00	193.2546
Sample Pipe or Well (24-in. Diam.)/Skit Fabric Seal 10% Open	1	12,00	0.00	0.00	9,1735
Vacuum Breaker (10-in, Diam Weighted Mech, Actuation, Gask,	1	6.20	1.20	0.94	4.7396

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

IFR Methanol Tank - Internal Floating Roof Tank Charleston, West Virginia

	Losses(lbs)					
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions	
Methyl alcohol	122.31	133.97	245.39	0.00	-501.68	

Transgas Development Systems

Task Order 1 under
Services Agreement for Construction Permitting Support

Response on DEP Questions

Prepared by Uhde

Table of Content

1	Introduction	3
2	Discussion on Hazardous Air Pollutants	4
3	Explanation on Emission Points	12
4	Block Flow Diagram	30
5	Emission Summary	32

1 Introduction

1.1 General

Additional to the Information contained in the permit application, the West Virginia DEP requested more detailed data for the valuation of hazardous air pollutions emissions and explanatory discussion on the information basis for the calculation of the emissions of the CTL plant (questions 2 and 5 of the letter from DEP to TGDS, dated January 8th 2009).

Further, to visualize the emissions points, a block flow diagram showing the emissions points separately as well as all lines (including safety valves) going to flare have been requested (question 3 of mentioned letter).

Uhde has been commissioned by TGDS with task order No. 1 under the Services Agreement for Construction Services Support to supply response on above mentioned questions.

1.2 Basis for Emission Calculation

All emission calculations have to the maximum extent possible been based on commercial operating experience for the technologies applied in the TGDS CTL plant, especially the Puertollano IGCC applying the PRENFLO gasification process, which has more than 10 years operational experience up to date as well as the New Zealand Synfuel Plant applying the MTG process, which was operated for more than 10 years from the mid 1980's up to the mid 1990's.

All base values for the emissions and the calculation methods applied have been developed specifically for the TGDS CTL plant utilizing proprietary in-house modeling and calculation tools based on project specific design basis data, such as coal and fuel gas specifications, and applying the experience and know-how from operating data and proven start-up and operating procedures from the mentioned commercial plants.

2 Discussion on Hazardous Air Pollutants

General

- The discussion on Hazardous Air Pollutants (HAPS) hereafter reflects the current status of engineering work done for the TGDS CTL facility
- The list HAPS from the EPA website (http://www.epa.gov/ttn/atw/188polls.html) was compared with the material balance of the individual process Units.
- Concentration of the HAPS are taken from the material balance. If not available from the material balance, values are estimated according experience from existing plants (e.g. Puertollano).
- In addition to the identification and, where possible, quantification of HAPS in the CTL facility, the mechanism of formation as well as possible emission of HAPS and emission control is shortly described.
- References for emission points given relate to the Block Flow Diagram under chapter 4 hereof.
- Flare emission for emergency cases not considered in maximum emission calculations. Startup and continuous emissions basis explained in chapter 3.
- For all HAPS (except HCl) a flare destruction efficiency from 98% is assumed, e.g. under chapter 2.1.4 during start-up 98% of the COS will be converted to SOx in the flame, etc.
- For leak HAPS emission refer to section 3.16

2.1 Carbonyl sulfide (COS)

2.1.1 Place of formation / use

Gasification Reactor

In the Gasification Reactor a part of the sulfur, coming with the coal into the reactor, reacts to COS.

2.1.2 Mechanism of formation

S + CO -> COS

2.1.3 Balance

2.1.3.1 Production Rate

Stream Number		3	4a	4	9	10
Concentration	mol%	0.01310	0.01295	0.02240	4.35124	0.00020
Flowrate	mol/h	7.47	7.47	7.47	7.85	0.01
	kg/h	448.2	448.2	448.2	471	0.6

2.1.4 Emissions to atmosphere and emission control

There will be no continuous emission:

- Process closed to atmosphere
- Relief to flare during start-up (B2/1 and B2/2) Pressure relief to flare (emergency relief; c1, c2); conversion of COS to SOx in flare.

Maximum COS emission during start-up (relief periods and flow rates see chapter 3.5):

Flow rate during start-up: 224.1 kg/h (one gasifier)

Destruction rate: 98%

Hourly emission: $224.1 \text{ kg/h} \times 0.02 = 4.482 \text{ kg/h} (9.9 \text{ lb/hr})$

Yearly emission: 60 starts per yr x 1 hr/start x 9.9 lb/hr / 2000 lb/ton = 0.3 tons/yr.

 During normal operation a part of COS is hydrolysed on COS Shift section to H2S; remaining COS is converted in sulfur recovery (Claus) plant to pure sulfur and CO2

2.2 Hydrogen Sulfide (H2S)

2.2.1 Place of formation / use

Gasification Reactor

In the Gasification Reactor most of the sulfur, coming with the coal into the reactor, reacts to H2S.

2.2.2 Mechanism of formation

S + H2 -> H2S

2.2.3 Balance

2.2.3.1 Production Rate

Stream Number		3	4a	4	9	10	25
Concentration	mol%	0.12	0.12	0.2	39.29	1.46	3.93
Flowrate	mol/h	68.44	69.22	66.72	70.88	0.81	2.39
	kg/h	2327.0	2353.5	2268.5	2410.0	27.5	81.3

2.2.4 Emissions to atmosphere and emission control

There will be no continuous emission

- Process closed to atmosphere

 Relief to flare during start-up (B2/1 and B2/2) Pressure relief to flare (emergency relief; c1, c2); conversion of H2S in SOx in flare

Maximum H2S emission during start-up (relief periods and flow rates see chapter 3.5):

Flow rate during start-up: 1163.5 kg/h (one gasifier)

Destruction rate: 98%

Hourly emission: $1163.5 \text{ kg/h} \times 0.02 = 23.27 \text{ kg/h} (51.3 \text{ lb/hr})$

Yearly emission: 60 starts per yr x 1 hr/start x 51.3 lb/hr / 2000 lb/ton = 0.7 tons/yr.

- During normal operation H2S is converted in sulfur recovery (Claus) plant to pure sulfur and water

2.3 Nickel Carbonyl

2.3.1 Place of formation / use

Gasification Reactor

Stainless steel pipes

Under certain pressure and temperature conditions Nickel from stainless steel pipes (or SS internals from e.g. vessel) reacts with the CO of the syngas.

2.3.2 Mechanism of formation

Ni + 4 CO -> Ni(CO)4

2.3.3 Balance

2.3.3.1 Production Rate

Hold (order of magnitude: ppm only)

2.3.4 Emissions to atmosphere and emission control

There will be no continuous emission

- Process closed to atmosphere
- Relief to flare during start-up (B2/1, B2/2) and pressure relief (emergency relief; c1) to flare will cause nickel emissions (destruction from nickel carbonyl to nickel and CO2 in the flame of the flare).
- Nickel emission not quantifiable, but conservative estimated significantly lower than 0.1 ton/yr.
 Maximum Nickel emission (based on measurement in commercial gasification plant) during start-up (relief periods and flow rates see chapter 3.5):
 - Flowrate of the syngas (one gasifier): 560979 kg/h
 - Concentration of Nickel in syngas: max. 0.8 ppmwt (measured value in commercial gasification plant)
 - Hourly emission (one gasifier): $560979 \text{ kg/h} \times 0.8 \text{ ppm} = 0.561 \text{ kg/h} (1.237 \text{ lb/hr})$
 - Yearly emission: 60 starts per yr x 1 hr/start x 1.237 lb/hr / 2000 lb/ton = 0.037 tons/yr
- Nickel carbonyl is converted in sulfur recovery (Claus) plant to pure nickel and CO2. Nickel will be adsorbed by the sulfur catalyst

2.4 Hydrogen Cyanide (HCN)

2.4.1 Place of formation / use

Gasification Reactor

2.4.2 Mechanism of formation

N + C + H -> HCN

2.4.3 Balance

2.4.3.1 Production Rate

Stream Number		3	4a	4	9	10	25
Concentration	mol%	0.0067	0.0066	0.001	0.1943	0.5774	0.64
Flowrate	mol/h	3.82	3.81	0.334	0.351	0.320	0.389
	kg/h	103.2	102.8	9.01	9.46	8.64	10.49

2.4.4 Emissions to atmosphere and emission control

There will be no continuous emission

- Process closed to atmosphere

- Relief to flare during start-up (B2/1, B2/2) and emergency pressure relief;(c1) will convert HCN to NOv

Maximum HCN emission during start-up (relief periods and flow rates see chapter 3.5):

Flow rate during start-up: 51.6 kg/h (one gasifier)

Destruction rate: 98%

Hourly emission: $51.6 \text{ kg/h} \times 0.02 = 1.03 \text{ kg/h} (2.27 \text{ lb/hr})$

Yearly emission: 60 starts per yr x 1 hr/start x 2.27 lb/hr / 2000 lb/ton = 0.07 tons/yr

- During normal operation the main part of HCN is converted in CO-Shift to H2O, N2 and CO2

- HCN not converted in the CO-Shift is converted in sulfur recovery (Claus) plant to pure H2O, N2 and CO2

2.5 Hydrochloric Acid (HCI)

2.5.1 Place of formation / use

Gasification Reactor

2.5.2 Mechanism of formation

CI2 + H2 -> 2 HCI

2.5.3 Balance

2.5.3.1 Production Rate

Formed in the gasification reactor the concentration in syngas before quench: 0.0068 mol% (68 ppm) Flowrate 60.5 kg/h (1.67 kmol/h). After quench of the syngas maximum concentration 1 ppm

2.5.4 Emissions to atmosphere and emission control

There will be no continuous emission

- Process closed to atmosphere
- Relief to flare during start-up (B2/1, B2/2 after quench) and emergency pressure relief (b3/1; b3/2).
- Maximum HCl emission during start-up (relief periods and flow rates see chapter 3.5):
 Flowrate of the syngas (one gasifier): 28516.8 kmol/hr
 Concentration of HCl after quench: 1 ppm
 Hourly emission (one gasifier): 28516.8 kmol/hr x 1ppm x 36.45 kg/kmol = 1.04 kg/h (2.29 lb/hr)
 - Yearly emission: 60 starts per yr x 1 hr/start x 2.29 lb/hr / 2000 lb/ton = 0.07 tons/yr (no HCl destruction in flare)
- During normal operation the quench of the PDQ gasifier and the scrubber wash out the gaseous HCl from the syngas, then HCl will be neutralized with caustic soda.

2.6 Mercury

2.6.1 Place of formation / use

Gasification Reactor (Component of the feed coal)

2.6.2 Mechanism of formation

Released from coal during gasification.

2.6.3 Balance

2.6.3.1 Production Rate

Depending on mercury in the feed coal (none specified in design coal).

2.6.4 Emissions to atmosphere and emission control

There will be no continuous emission

- Process closed to atmosphere
- Relief to flare during start-up (B2/1, B2/2 and C2) and pressure relief (emergency relief; c1) to flare will cause mercury emissions.
- Maximum Mercury emission during start-up (relief periods see chapter 3.5 and 3.7):
 Average Mercury concentration in typical hard coal: 0.1 ppm (maximum: 1 ppm)
 Feed stream of hard coal (one gasifier): 154934 kg/h
 Concentration of Mercury: 0.1 ppm (maximum: 1 ppm)
 Hourly emission: 154934 kg/h x 0.1 ppm = 0.155 kg/h (0.342 lb/hr) [Maximum: 1.55 kg/h (3.42 lb/hr)]
 - Yearly emission: (60 starts per yr x 1 hr/start + 4 starts per yr * 0.5 hr/start) x 0.342 lb/hr / 2000 lb/ton = 0.011 tons/yr (Maximum: 0.11 tons/yr)
- During normal operation mercury is adsorbed from the syngas in a fixed bed adsorber behind the acid gas removal.

... / 10

2.7 Trace Components of Coal

2.7.1 Place of formation / use

The ash from coal can typically contain several trace components listed as HAPS:

- Antimony
- Arsenic
- Beryllium
- Chromium
- Cobalt
- Lead
- Manganese
- Mercury
- Nickel
- Selenium

2.7.2 Mechanism of formation

During gasification of the coal, these components will be enclosed in the slag.

2.7.3 Balance

2.7.3.1 Production Rate

Depending on trace components in the feed coal (none specified in design coal).

2.7.4 Emissions to atmosphere and emission control

There will be no emission

- HAPS are enclosed from slag.
- Solid material will be kept wet, to avoid particle emissions
- During pressure relief (emergency relief; b3/1, b3/2) to flare the slag will be held in the Knock-Out Drum.

2.8 Methanol

2.8.1 Place of formation / use

Methanol Reactor Rectisol Gas cleaning

2.8.2 Mechanism of formation

CO + 2 H2 -> CH3OH

Methanol is used as solvent in Rectisol plant

2.8.3 Balance

Acc. vendor Information methanol concentration in Syngas downstream acid gas removal is 0.0036 mol% (0.05 wt%). Flow rate stream 5 (ex acid gas removal) @ 100% load: 130 kg/h.

2.8.3.1 Production Rate

Stream 6: 7671.00 kmol/h total with 93.38 mol% Methanol 7163 kmol/h (229 216 kg/h) pure Methanol Circulation rate Rectisol: hold kg/h

2.8.4 Emissions to atmosphere and emission control

There will be no continuous emissions

- Process closed to atmosphere
 - Relief to flare during start-up (C2) and pressure relief to flare (emergency relief c3, d1)
 - Maximum Methanol emission during start-up (relief periods and flow rates see chapter 3.7): Flow rate during start-up: 130 kg/h

Destruction rate: 98%

Hourly emission: $130 \text{ kg/h} \times 0.02 = 2.6 \text{ kg/h} (5.73 \text{ lb/hr})$

Yearly emission: 4 starts per yr x 0.5 hr/start x 5.73 lb/hr / 2000 lb/ton = 0.006 tons/yr).

- Pressure less vessels and tanks are equipped with appropriate emission control (e.g. inert gas blanketing)
- Methanol formed in methanol reactor will be converted to gasoline

2.9 MTG Gasoline

2.9.1 Place of formation

DME and MTG Reactor

2.9.2 Mechanism of formation

2 CH3OH -> CH3OCH3 + H2O

(DME Reactor)

n CH3OCH3 -> HC + H2O

(MTG Reactor)

2.9.3 Balance

2.9.3.1 Production Rate

Certain HAPS are formed during the MTG reaction process (Ex MTG Reactor) and are contained in the Raw MTG Gasoline. Some HAPS are degraded in the Heavy Gasoline Treatment (HGT) and show a lower concentration in the Final Gasoline product (Balance Stream 8).

Name	CAS Number	Concentration	
	Number	Raw MTG Gasoline	Final Gasoline product (Stream 8)
Methanol	67-56-1	25 ppm	32 ppm
N-Hexane	110-54-3	0.541 mol%	0.735 mol%
Benzene	71-43-2	0.355 mol%	0.486 mol%
Toluene	108-88-3	1.02 mol%	1.61 mol%
Ethyl benzene	100-41-4	0.245 mol%	0.371 mol%
o-Xylene	95-47-6	1.13 mol%	1.93 mol%
m-Xylene	108-36-3	1.08 mol%	2.11 mol%
p-Xylene	106-42-3	2.87 mol%	4.51 mol%
Durene (Isopropyl benzene)	98-82-8	0.025 mol% (250ppm)	0.05 mol% (500 ppm)
Naphthalene	91-20-3	0.011 mol% (110 ppm)	> 1 ppm
1-Methylnaphthalene	90-12-0	0.539 mol%	> 1 ppm
Acetaldehyde	75-07-7	35 ppm	26 ppm
Metyl-Ethyl-Ketone MEK 1)	78-93-3	0.0375 mol% (375 ppm)	0.05 mol% (500 ppm)
Total Flow Rate		102325 kg/h	87400 kg/h

¹⁾ Delisted

2.9.4 Emissions to atmosphere and emission control

There will be no emissions

- Process closed to atmosphere
- Emergency pressure relief to flare (emergency relief e1)
- Pressure less vessels and tanks are equipped with appropriate emission control (e.g vapor recovery)
- Gasoline is the product of the plant and has to be handled with the usual care similar to crude oil based gasoline

3 Explanation on Emission Points

General:

- For more details of emission points A1, A2, B1, B2 and B3 please refer to Attachment 2.

- Hydrogen supplied to the MTG plant is no direct source of emission (a higher or lower hydrogen supply from the PSA to the MTG respectively doesn't lead to change in the overall plant emission)
- PSA Tailgas is recirculated inside the CTL facility and therefore is no direct source for emissions
- MTG Tailgas during normal plant operation is recirculated inside the CTL facility and therefore
 is no direct source for emissions; only when both gasifiers are down at the same time (i.e. the
 coal to methanol plant is shutdown) and the MTG plant is continued to operate using methanol
 feed from the storage, MTG Tailgas is flared (Emission Point E5)
- Emission calculations have been based on available data and information according to current status of engineering work done for the TGDS CTL project
- Data not calculable at the time being has been estimated based on previous experience (backed up by commercial experience, where possible)
- Start-up emissions have been considered as far as possible
- Emissions by emergency relief have not been considered (refer to emergency relief points as identified in section 4)
- For VOC emission in flare during start-up of gasifier (Emission Point B2) only the methane concentration of the syngas is considered, as syngas contain no other hydrocarbons. AP-42 values are based on a mixture of propane and propylene and do not represent flaring of syngas.
- For VOC emission in flare during start-up of acid gas removal (Emission Point C2), additionally to the methane contained in syngas, methanol entrained in syngas from the Absorber has been considered (as per section 2.8.4).

3.1 A1 Coal Preparation Vent Mill

Continuous emission originates from hot gas generator as well as from coal; gas circulation (and venting rates) in the coal preparation is calculated based on Design Coal data from TGDS; Coal Preparation is a commercially proven design. During normal operation fired with hydrogen, during start-up fired with natural gas.

- CO

Hydrogen is used as heating medium for the drying step; CO comes only from coal devolatilization; specific CO from coal devolatilization has been estimated based on tests that Uhde has performed for other coal.

- NOx

Specific NOx acc. coal preparation vendor (100 ppmv)

- SOx

Only during cold start-up (Heating medium natural gas); Calculated acc. max. sulfur content of natural gas specified by TGDS

- PM

Particle emissions from baghouse filter: industrial standard

- VOC

Value has been calculated based on specific VOC from tests that UHDE has performed for other coal.

3.2 B3 Dry Dust Feeding

Release of overpressure of Feed Bin via pressure control valve – normally no flow to atmosphere (no emission). Gas release only during malfunction of pressure control of the Feed Bin (Gas composition like emission point A2).

3.3 A2 Dry Dust Feeding

Emission only during start-up; Flow rate is determined based on design for feeding cycle, which is derived from the design as commercially demonstrated in the PRENFLO plant in Puertollano, Spain (30 starts per year per gasifier; i.e. overall 60 gasifier start per year).

- CO

CO residual content in CO2 carrier gas is reduced to less than 1 ppm by CO2 purification step; This can be achieved by state-of-the-art catalytic purification or CO2 stripping;

- NOx

Not applicable (The CO2 contains no NOx)

- SOx

Residual sulfur content specified by AGR vendor (performance demonstrated in commercial plants); the number given is a conservative approach, as the CO2 purification step would further reduce sulfur content.

- PM

Particle emissions from baghouse filter: industrial standard

- VOC

Not applicable (The CO2 contains no VOCs)

3.4 B1 Dry Dust Feeding

In the coal feeding; CO2 (used as carrier gas) is vented during the depressurization of the coal lock hoppers; vent rates are determined by the design of the feeding cycle, which is derived from design as commercially proven in the PRENFLO plant in Puertollano; Calculation is based on 8760 hours operating time per year at full capacity, which is a very conservative approach (real operating hours will be less).

- CC

CO residual content in CO2 carrier gas (some of which is vented during feeding process) is reduced to less than 1 ppm by CO2 purification step; This can be achieved by state-of-the-art catalytic purification or CO2 stripping;

NOx

Not applicable (The CO2 contains no NOx)

- SOx

Residual sulfur content specified by AGR vendor (performance demonstrated in commercial plant); the number given is a conservative approach, as the CO2 purification step would further reduce sulfur content.

- PM

Particle emissions from baghouse filter: industrial standard

... / 15

- VOC

Not applicable (The CO2 contains no VOCs)

3.5 B2 Raw Syngas

Emissions are from flaring of raw syngas during start-up of the gasifier; Flaring rate and time is calculated based on commercially proven start-up procedure in PRENFLO plant in Puertollano; Number of start-ups per year has been estimated from commercial experience in Puertollano and other gasification plants, modified by adjustments made in current design such as integration of redundancies, inclusion of lessons learnt etc (30 start per gasifier per year; per start 1hr; max. 620 tons/hr syngas per gasifier).

- CO

Specific CO concentration in flare offgas: assumption acc. flare vendor information (1000 ppmv)

- NOx

Specific NOx concentration in flare offgas: assumption acc. flare vendor information (250ppmv)

- SOx

Calculated acc. conservative assumption of max. sulphur (H2S) content of syngas based on coal sulfur content; to reduce SOx emission, low sulfur start-up coal has to used during start-ups rather than design coal (e.g. PRB coal). This is readily available from the market. A typical PRB coal composition has been used for calculation of the sulfur concentration;

- PM

Not applicable (smokeless flare acc. table 13.5-1 of AP42)

- VOC

Not applicable (only small methane content in syngas causes some HC emissions)

3.6 C1 CO2 Offgas

Through C1 emissions originating from the CO2 removed in the AGR as well as from the Regeneration Off-gas of the MTG plant are release, as further explained in the following.

CO2 from AGR

Continuous emission of CO2 produced during the CO Shift of syngas for adjusting the required H2: CO ratio for downstream MeOH synthesis, which is selectively removed in the AGR (total flow rate: 382.4 tons/hr);

- CC

CO residual content is reduced to less than 1 ppmv by CO2 purification step; This can be achieved by state-of-the-art catalytic purification or CO2 stripping;

Flow rate offgas: 7883.5 kmol/h CO concentration offgas: 1 ppmv

CO flow rate: $7883.5 \text{ kmol/h} \times 1 \text{ ppmv} / 10^6 = 0.00788 \text{ kmol/h}$

Molecular weight CO: 28 kg/kmol

CO flow rate: 0.00788 kmol/h x 28 kg/kmol = 0.22 kg/h

Conversion factor: 1 lb = 0.454 kg

Hourly CO flow rate: 0.22 kg/h / 0.454 kg/lb = 0.49 lb/h

Yearly CO flow rate: 0.49 lb/h x 8000 h / 2000 lb/ton = 1.96 tons/yr

NOx

Not applicable (The CO2 offgas contains no NOx)

... / 16

- SOx

Residual sulfur content specified by AGR vendor (performance demonstrated in commercial plant); the number given is a conservative approach, as the CO2 purification step would further reduce sulfur content.

Flow rate offgas: 7883.5 kmol/h SOx concentration offgas: 10 ppmv

SOx flow rate: $7883.5 \text{ kmol/h} \times 10 \text{ ppmv} / 10^6 = 0.0788 \text{ kmol/h}$

Molecular weight SOx: 66 kg/kmol

SOx flow rate: $0.0788 \text{ kmol/h} \times 66 \text{ kg/kmol} = 5.20 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly SOx flow rate: 5.20 kg/h / 0.454 kg/lb = 11.56 lb/h

Yearly SOx flow rate: $11.56 \text{ lb/h} \times 8000 \text{ h} / 2000 \text{ lb/ton} = 46.25 \text{ tons/yr}$

- PM

Not applicable (The CO2 offgas contains no PM)

- VOC

Not applicable (The CO2 offgas contains no VOCs)

Regeneration Off-Gas

Emission is caused by venting of regeneration Off-gas from the MTG plant (regeneration of catalyst). Calculation of flow rates and emission periods based on actual design and commercial plant experience

- CO

Calculation of emissions based on maximum specific CO concentration of regeneration offgas emitted to atmosphere; regeneration offgas will be routed to CO2 purification section to remove any CO contained down to less than 1 ppm prior to emitting to atmosphere

CO concentration of regeneration offgas emitted: 1 ppmv

Yearly Emission:

Yearly Regen Offgas Flowrate: 10088680 m3n/yr = 356.3 MMscf/yr

CO flow: $10088680 \text{ m}^3\text{n/yr} \times 1 \text{ ppmv} / 10^6 = 10.1 \text{ m}^3\text{n/hr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 10.1 m³n/yr / 22.414 m³/kmol x 28 kg/kmol =12.6 kg/yr

Conversion factor: 1 lb = 0.454 kg

Yearly CO flow rate: 25206 kg/yr / 0.454 kg/lb = 27.76 lb/yr

55519.8 lb/yr / 2000 lb/ton = 0.014 tons/yr

Max. Hourly Emission:

Max Hourly Regen Offgas Flowrate: 7000 m3n/hr = 247 203 scf/hr

CO flow: $7000 \text{ m}^3\text{n/hr} \times 2000 \text{ ppmv} / 10^6 = 0.007 \text{ m}^3\text{n/hr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 0.007 m3n/hr / 22.414 m3/kmol x 28 kg/kmol =0.0087 kg/hr

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly CO flow rate: 17.5 kg/hr / 0.454 kg/lb = 0.0193 lb/hr

- NOx

Not applicable (Regeneration temperatures too low for NOx formation)

- SOx

Not applicable (No sulfur in regeneration gas or catalyst)

... / 17

Not applicable (Regeneration gas does not contain any particle matter)

- VOC

Not applicable (Regeneration gas used is nitrogen / air and does not contain VOC)

Total

- CO

Yearly Emission AGR CO2 + Regeneration Off-Gas = Total 1.96 tons/yr + 0.014 tons/yr = 1.974 tons/yr

Max. Hourly Emission
AGR CO2 + Regeneration Off-Gas = Total
0.49 lb/hr + 0.0193 lb/hr = 0.5093 lb/hr

- NOx Not applicable

- SOx

Yearly Emission AGR CO2 + Regeneration Off-Gas = Total 46.25 tons/yr + 0.0 tons/yr = 46.25 tons/yr

Max. Hourly Emission AGR CO2 + Regeneration Off-Gas = Total 11.56 lb/hr + 0.0 lb/hr = 11.56 lb/hr

- PM Not applicable

VOC
 Not applicable

3.7 C2 Acid Gas Removal

Emissions are from flaring of clean syngas during start-up. Flaring rate and times has been based on a typical start-up sequence as demonstrated in commercial plants. Number of start-ups has been estimated based on availability figures drawn from commercial experience, the specific TGDS plant design (e.g. parallel trains etc.) and modified by adjustments made such as integration of redundancies, inclusion of lessons learnt etc (4 starts per year; 0.5 hr per start, with 50% load; i.e. max. 140 tons/hr syngas)).

- CC

Specific CO concentration in flare offgas: assumption acc. flare vendor information (1000 ppmv)

Syngas rate to flare: 140 tons/hr Flue gas rate: 863207 m³n/h

CO concentration flue gas: 1000 ppmv

CO flow: 863207 m³n/h x 1000 ppmv / 10⁶ = 863.207 m³n/h

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 863.207 m³n/h / 22.414 m³/kmol x 28 kg/kmol = 1079 kg/h

Conversion factor: 1 lb = 0.454 kg

Hourly CO flow rate: 1079 kg/h / 0.454 kg/lb = 2375 lb/h

Yearly CO flow rate: 2375 lb/h x 4 starts per year x 0.5 h / 2000 lb/ton = 2.4 tons/yr

- NOx

Specific NOx concentration in flare offgas: assumption acc. flare vendor information (250 ppmv)

... / 18

Syngas rate to flare: 140 tons/hr Flue gas rate: 863207 m³n/h

NOx concentration flue gas: 250 ppmv

NOx flow: $863207 \text{ m}^3\text{n/h} \times 250 \text{ ppmv} / 10^6 = 215.80 \text{ m}^3\text{n/h}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $215.80 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 442.9 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly NOx flow rate: 481.4 kg/h / 0.454 kg/lb = 957.6 lb/h

Yearly NOX flow rate: $957.6 \text{ lb/h} \times 4 \text{ starts per year} \times 0.5 \text{ h} / 2000 \text{ lb/ton} = 0.96 \text{ tons/yr}$

-SO

Calculated based on conservative assumed average sulfur content of syngas flared of 100 ppmv during start-up. Conservative estimate, as normally the physical solvent process applied in the AGR achieves design specification for sulfur (less than 1 ppm) very quickly.

Syngas rate to flare: 140 tons/hr Syngas rate to flare: 11561 kmol/h SOx concentration syngas gas: 100 ppmv

Molecular weight SOx: 66 kg/mol

SOx flow: $11561 \text{ kmol/h} \times 100 \text{ ppm} \times 66 \text{ kg/kmol} / 10^6 = 76.3 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly SOx flow rate: 76.3 kg/h / 0.454 kg/lb = 168.1 lb/h

Yearly SOx flow rate: $168.1 \text{ lb/h} \times 4 \text{ starts per year } \times 0.5 \text{ h} / 2000 \text{ lb/ton} = 0.17 \text{ tons/yr}$

- PM

Not applicable (smokeless flare acc. table 13.5-1 of AP42)

- VOC

Total flow rate to flare: 11561.1 kmol/h (50% load)

Methane (HC) concentration: 0.006 mol%

Methane (HC) flow: 11561.1 kmol/h x 0.006 mol% / 100 mol% = 0.695 kmol/h

Heating value methane 890000 kJ/kmol

Methane heat flow: 0.695 kmol/h x 890000 kJ/koml / 3600 s/h / 1000 kJ/MJ = 0.172 MW

Conversions factor: 1 MMBTU/hr = 0.29308 MW

Methane heat flow: 0.172 MW / 0.29308 MW/MMBTU/hr = 0.585 MMBTU/hr Emission factor Total Hydrocarbons acc. table 13.5-1 of AP 42: 0.14 lb/10^6BTU Hourly HC emission: 0.585 MMBTU/hr x 0.14 lb/10^6BTU = 0.082 lb/hr methane Hourly VOC emission: 0.082 lb/hr + 5.73 lb/hr MeOH (refer to section 2.8.4) = 5.81

Yearly HC emission: 0.082 lb/hr x 4 starts/yr x 0.5 hr/starts / 2000 lb/tons = 0.000082 tons/yr

Yearly VOC emission: 0.000082 tons/yr + 0.006 tons/yr MeOH (refer to section 2.8.4) = 0.006 tons/yr

3.8 E1 MTG Reaction

Emissions from flue gas of fired heater used during start-up and regeneration of MTG catalyst; Calculation of flow rates and emission periods based on actual design and commercial plant experience (Average 25887.5 MMBTU/yr; Max. 30 MMBTU/hr). During normal operation heater is fired with syngas, during front end shut down (i.e. operation of MTG plant from storage, no syngas available) no regeneration of catalyst will be performed, i.e. heater will not be operated. Syngas (used as fuelgas) has a lower heating value (LHV) of 296 BTU/scf. Therefore average fuelgas flowrate is 87.46 MMscf/yr (max. 101351 scf/hr). Flue Gas Flow rate can be derived from fuelgas flowrate (for syngas fuelgas) by multiplying with a factor of 3.02.

- CO

CO specific concentration based on industrial standard for fired heaters (120 ppmv)

Yearly Emission:

Flue gas rate: 7475169 m³n/yr = 264 MMscf/hr

... / 19

CO concentration flue gas: 120 ppmv

CO flow: $7475169 \text{ m}^3\text{n/yr} \times 120 \text{ ppmv} / 10^6 = 897.02 \text{ m}^3\text{n/yr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 897.02 m³n/yr / 22.414 m³/kmol x 28 kg/kmol = 1120.6 kg/yr

Conversion factor: 1 lb = 0.454 kg

Yearly CO flow rate: 1120.6 kg/yr / 0.454 kg/lb = 2468.2 lb/yrYearly CO flow rate: 2468.2 lb/yr / 2000 lb/ton = 1.24 tons/yr

Max. Hourly Emissions:

Max. flue gas rate: $8862 \text{ m}^3\text{n/hr} = 306080 \text{ scf/hr}$

CO concentration flue gas: 120 ppmv

CO flow: 8862 m³n/hr x 120 ppmv / $10^6 = 1.063$ m³n/hr

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 1.063 m³n/hr / 22.414 m³/kmol x 28 kg/kmol =1.33 kg/hr

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly CO flow rate: 1.33 kg/hr / 0.454 kg/lb = 1.93 lb/hr

- NOx

NOx specific concentration based on industrial standard for fired heaters (100 ppmv)

Yearly Emission:

Flue gas rate: 7475169 m3n/yr = 264 MMscf/hr

NOx concentration flue gas: 100 ppmv

NOx flow: $7475169 \text{ m}^3\text{n/yr} \times 100 \text{ ppmv} / 10^6 = 747.5 \text{ m}^3\text{n/yr}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $747.5 \text{ m}^3\text{n/yr} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 1534.1 \text{ kg/yr}$

Conversion factor: 1 lb = 0.454 kg

Yearly NOx flow rate: 1534.1.1 kg/yr / 0.454 kg/lb = 3379 lb/yrYearly NOx flow rate: 3679 lb/yr / 2000 lb/ton = 1.69 tons/yr

Max. Hourly Emissions:

Max. flue gas rate: 8862 m3n/hr = 306080 scf/hr

NOx concentration flue gas: 100 ppmv

NOx flow: $8862 \text{ m}^3\text{n/hr} \times 100 \text{ ppmv} / 10^6 = 0.886 \text{ m}^3\text{n/hr}$

Molecular weight NOx: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $0.886 \text{ m}^3\text{n/hr} / 22.414 \text{ m}^3\text{/kmol} \times 46 \text{ kg/kmol} = 1.82 \text{ kg/hr}$

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly NOx flow rate: 1.82 kg/hr / 0.454 kg/lb = 4.01 lb/hr

- SO_Y

Not applicable (Heated with sulfur-free syngas)

- PM

Based on natural gas estimated PMs (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower, as soot formation from syngas is lower than from natural gas):

Yearly Emission Heat Requirement 25887.5 MMBTU/yr

... / 20

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Yearly PM emission: 25887.5 MMBTU/yr x 7.6 lb/10^6 scf / (1020 MMBTU/ 10^6 scf) = 192.9 lb/yr

192.9 lb/yr / 2000 lb/ton = 0.10 tons/yr

Max. Hourly Emission:

Max. Heat Requirement 30 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Max. Hourly PM emission: 30 MMBTU/hr x 7.6 lb/10^6 scf / (1020 MMBTU/ 10^6 scf) = 0.223 lb/hr

- VOC

Based on natural gas estimated VOC (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower since syngas has no source VOC):

Yearly Emissions:

Heat Requirement 25887.5 MMBTU/yr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Yearly VOC emission: 25887.5 MMBTU/yr x 5.5 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 139.6 lb/yr

139.6 lb/yr / 2000 lb/ton = 0.07 tons/yr

Max. Hourly Emissions

Max. Heat Requirement 30 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Max. Hourly VOC emission: 30 MMBTU/yr x 5.5 lb/10^6 scf / (1020 MMBTU /10^6 scf) = 0.162 lb/hr

3.9 E2 MTG Reaction

Emissions from flue gas of fired heater used during start-up and regeneration /reactivation of MTG catalyst; Calculation of flow rates and emission periods based on actual design and commercial plant experience (67466.4 MMBTU/yr; Max. 120 MMBTU/hr). During normal operation heater is fired with syngas, during front end shut down (i.e. operation of MTG plant from storage, no syngas available) no regeneration of catalyst will be performed, i.e. heater will not be operated. Syngas (used as fuelgas) has a lower heating value (LHV) of 296 BTU/scf. Therefore average fuelgas flowrate is 227.9 MMscf/yr (max. 405405 scf/hr). Flue Gas Flow rate can be derived from fuelgas flowrate (for syngas fuelgas) by multiplying with a factor of 3.02.

- CO

CO specific concentration based on industrial standard for fired heaters (120 ppmv)

Yearly Emission:

Flue gas rate: 19479418 m³n/yr = 687.9 MMscf/yr

CO concentration flue gas: 120 ppmv

CO flow: $19479418 \text{ m}^3\text{n/yr} \times 120 \text{ ppmv} / 10^6 = 2337.5 \text{ m}^3\text{n/yr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 2337.5 m³n/yr / 22.414 m³/kmol x 28 kg/kmol = 2920 kg/yr

Conversion factor: 1 lb = 0.454 kg

... / 21

Yearly CO flow rate: 2920 kg/yr / 0.454 kg/lb = 6432 lb/yr Yearly CO flow rate: 6432 lb/yr / 2000 lb/ton = 3.22 tons/yr

Max. Hourly Emission:

Max. flue gas rate: 34647 m3n/hr = 1223547 scf/hr

CO concentration flue gas: 120 ppmv

CO flow: $34647 \text{ m}^3\text{n/hr} \times 120 \text{ ppmv} / 10^6 = 4.16 \text{ m}^3\text{n/hr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 4.16 m³n/hr / 22.414 m³/kmol x 28 kg/kmol =5.19 kg/hr

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly CO flow rate: 5.19 kg/hr / 0.454 kg/lb = 11.44 lb/hr

-NOx

NOx specific concentration based on industrial standard for fired heaters (100 ppmv)

Yearly Emission:

Flue gas rate: 19479418 m³n/yr = 687.9 MMscf/yr

NOx concentration flue gas: 100 ppmv

NOx flow: $19479418 \text{ m}^3\text{n/yr} \times 100 \text{ ppmv} / 10^6 = 1948 \text{ m}^3\text{n/yr}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $1948 \text{ m}^3\text{n/yr} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 3997.9 \text{ kg/yr}$

Conversion factor: 1 lb = 0.454 kg

Yearly NOx flow rate: 3997.9 kg/yr / 0.454 kg/lb = 8806 lb/yrYearly NOx flow rate: $8806 \text{ lb/yr} / 2000 \text{ lb/ton} \approx 4.4 \text{ tons/yr}$

Max. Hourly Emissions:

Max. flue gas rate: 34647 m3n/hr= 1223547 scf/hr

NOx concentration flue gas: 100 ppmv

NOx flow: $34647 \text{ m}^3\text{n/hr} \times 100 \text{ ppmv} / 10^6 = 3.46 \text{ m}^3\text{n/hr}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $3.46 \text{ m}^3\text{n/hr} / 22.414 \text{ m}^3\text{/kmol} \times 46 \text{ kg/kmol} = 7.1 \text{ kg/hr}$

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly NOx flow rate: 7.1 kg/hr / 0.454 kg/lb = 15.64 lb/hr

- SOx

Not applicable (Heated with sulfur-free syngas)

- PM

Based on natural gas estimated PMs (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower, as soot formation from syngas is lower than from natural gas):

Yearly Emission:

Heat Requirement 67466.4 MMBTU/yr

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Yearly PM emission: 67466.4 MMBTU/yr x 7.6 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 502.7 lb/yr

502.7 ib/yr / 2000 ib/ton = 0.25 tons/yr

Max. Hourly Emission:

Max. Heat Requirement 120 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

... / 22

Max. Hourly PM emission: 120 MMBTU/hr x 7.6 lb/10^6 scf / (1020 MMBTU/ 10^6 scf) = 0.89 lb/hr

- VOC

Based on natural gas estimated VOC (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower since syngas has no source VOC)::

Yearly Emission

Heat Requirement 67466.4 MMBTU/yr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Yearly VOC emission: 67466.4 MMBTU/yr x 5.5 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 363.8 lb/yr

363.8 lb/yr / 2000 lb/ton = 0.18 tons/yr

Max. Hourly Emission:

Max. Heat Requirement 120 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Max. Hourly VOC emission: 120 MMBTU/yr x 5.5 lb/10^6 scf / (1020 MMBTU /10^6 scf) = 0.65 lb/hr

3.10 **E3 MTG HGT**

Emissions from flue gas of fired heater used as pre-heater for the heavy gasoline treatment step in the MTG plant. Calculation of flow rates based on actual design and commercial plant experience (25280 MMBTU/yr; Max. 4 MMBTU/hr). During normal operation heater is fired with syngas, during front end shut down (i.e. operation of MTG plant from storage, no syngas available), operation with MTG fuel gas (this will be 4 times a year, each 10 hours, refer also to Emission Point E5). Syngas (used as fuelgas) has a lower heating value (LHV) of 296 BTU/scf. Therefore average fuelgas flowrate is 85.41 MMscf/yr (max. 13514 scf/hr). Flue Gas Flow rate can be derived from fuelgas flowrate (for syngas fuelgas) by multiplying with a factor of 3.02.

- CO

CO specific concentration based on industrial standard for fired heaters (120 ppmv)

Yearly Emission:

Flue gas rate: $7296000 \text{ m}^3\text{n/yr} = 258 \text{ MMscf/yr}$

CO concentration flue gas: 120 ppmv

CO flow: $7296000 \text{ m}^3\text{n/yr} \times 120 \text{ ppmv} / 10^6 = 875.5 \text{ m}^3\text{n/yr}$

Molecular weight CO: 28 kg/mol Molar volume: 22,414 m³/kmol

CO flow: 875.5 m³n/yr / 22.414 m³/kmol x 28 kg/kmol = 1094 kg/yr

Conversion factor: 1 lb = 0.454 kg

Yearly CO flow rate: 1094 kg/yr / 0.454 kg/lb = 2409 lb/yrYearly CO flow rate: 2409 lb/yr / 2000 lb/ton = 1.20 tons/yr

Max. Hourly Emission:

Max. flue gas rate: 1155 m3n/hr = 40812 scf/hr

CO concentration flue gas: 120 ppmv

CO flow: $1155 \text{ m}^3\text{n/hr} \times 120 \text{ ppmv} / 10^6 = 0.14 \text{ m}^3\text{n/hr}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: 0.14 m³n/hr / 22.414 m³/kmol x 28 kg/kmol =0.17 kg/hr

Conversion factor: 1 lb = 0.454 kg

... / 23

Maximum Hourly CO flow rate: 0.17 kg/hr / 0.454 kg/lb = 0.381 lb/hr

- NOx

NOx specific concentration based on industrial standard for fired heaters (100 ppmv)

Yearly Emission:

Flue gas rate: 7296000 m3n/yr = 258 MMscf/yr

NOx concentration flue gas: 100 ppmv

NOx flow: $7296000 \text{ m}^3\text{n/yr} \times 100 \text{ ppmv} / 10^6 = 729.6 \text{ m}^3\text{n/yr}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $729.6 \text{ m}^3\text{n/yr} / 22.414 \text{ m}^3\text{/kmol} \times 46 \text{ kg/kmol} = 1497.4 \text{ kg/yr}$

Conversion factor: 1 lb = 0.454 kg

Yearly NOx flow rate: 1497.4 kg/yr / 0.454 kg/lb = 3298.2 lb/yr Yearly NOx flow rate: 3298.2 lb/yr / 2000 lb/ton = 1.65 tons/yr

Max. Hourly Emissions:

Max. flue gas rate: 1155 m3n/hr = 40812 scf/hr

NOx concentration flue gas: 100 ppmv

NOx flow: $1155 \text{ m}^3\text{n/hr} \times 100 \text{ ppmv} / 10^6 = 0.12 \text{ m}^3\text{n/hr}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $0.12 \text{ m}^3\text{n/hr} / 22.414 \text{ m}^3\text{/kmol} \times 46 \text{ kg/kmol} = 0.25 \text{ kg/hr}$

Conversion factor: 1 lb = 0.454 kg

Maximum Hourly NOx flow rate: 0.26 kg/hr / 0.454 kg/lb = 0.55 lb/hr

- SOx

Not applicable (Heated with sulfur free syngas)

- PM

Based on natural gas estimated PMs (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower, as soot formation from syngas is lower than from natural gas):

Yearly Emission:

Heat Requirement 25280 MMBTU/yr

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Yearly PM emission: 25280 MMBTU/yr x 7.6 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 188.4 lb/yr

188.4 lb/yr / 2000 lb/ton = 0.09 tons/yr

Max. Hourly Emission:

Max. Heat Requirement 4 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Max. Hourly PM emission: 4 MMBTU/hr x 7.6 lb/10 6 scf / (1020 MMBTU/ 10 6 scf) = 0.03 lb/hr

- VOC

Based on natural gas estimated VOC (since syngas is used as fuel gas (main components CO and H2) the real values will be significantly lower since syngas has no source VOC):

Yearly Emission:

Heat Requirement 25280 MMBTU/yr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

... / 24

Average heating value of natural gas: 1020 BTU/scf

Yearly VOC emission: 25280 MMBTU/yr x 5.5 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 163.3 lb/yr

163.3 lb/yr / 2000 lb/ton = 0.07 tons/yr

Max. Hourly Emission:

Max. Heat Requirement 4 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Max. Hourly VOC emission: 4 MMBTU/yr x 5.5 lb/10^6 scf / (1020 MMBTU /10^6 scf) = 0.022 lb/hr

3.11 E4 MTG Reaction

MTG Regeneration Off-Gas is routed to the CO2 purification (Stream 31). All emissions of the Regeneration Off-Gas is added to Emission Point C1.

3.12 E5 MTG Separation

Emission is caused by flaring of MTG tail gas, when MTG plant is in operation (using MeOH feed from storage) and entire front end plant is down – in this case tailgas cannot be recycled to front end plant as normally. Flaring rate is based on actual design and commercial plant experience. Flaring periods are derived from availability data of commercial plants for different plant sections, as well as current design and modification such as lessons learnt etc. (4 times per year, each 10 hr, total flow rate 3.89 tons/h); The approach to calculate emissions based on complete flaring MTG tailgas is conservative, because actually part of the tail gas could also be utilized as fuel gas in fired heaters of the MTG process. This will further reduce the emissions.

- CC

Specific CO concentration in flare offgas: assumption acc. flare vendor information (1000 ppmv)

Flowrate to flare: 7780 lb/hr

Flue gas rate: 18853 m³n/h = 665781 scf/hr CO concentration flue gas: 1000 ppmy

CO flow: $18853 \text{ m}^3\text{n/h} \times 1000 \text{ ppmv} / 10^6 = 18.85 \text{ m}^3\text{n/h}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: $18.85 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 28 \text{ kg/kmol} = 23.55 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly CO flow rate: 23.55 kg/h / 0.454 kg/lb = 51.88 lb/h

Yearly CO flow rate: 51.88 lb/h x 4 times per year x 10 h / 2000 lb/ton = 1.04 tons/yr

- NOx

Specific NOx concentration in flare offgas: assumption acc. flare vendor information (250 ppm)

Flowrate to flare: 7780 lb/hr

Flue gas rate: 18853 m³n/h = 665781 scf/hr NOx concentration flue gas: 250 ppmv

NOx flow: $18853 \text{ m}^3\text{n/h} \times 250 \text{ ppmv} / 10^6 = 4.71 \text{ m}^3\text{n/h}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $4.71 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 9.67 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly NOx flow rate: 9.67 kg/h / 0.454 kg/lb = 21.3 lb/h

Yearly NOX flow rate: 21.3 lb/h x 4 times per year x 10 h / 2000 lb/ton = 0.43 tons/yr

- SOx

Not applicable (no sulfur in tailgas)

... / 25

- PM

Not applicable (smokeless flare acc. table 13.5-1 of AP42)

- VOC

Flow rate to flare: 7780 lb/hr Heating value: 18325 BTU/lb

Heat input to flare: 7780 lb/hr x 18325 BTU/lb = 142 600 000 BTU/hr = 142.6 MMBTU/hr

Emission factor Total Hydrocarbons acc. table 13.5-1 of AP 42: 0.14 lb/MMBTU Total Hydrocarbons emission: 142.6 MMBTU/hr x 0.14 lb/MMBTU = 19.96 lb/hr Yearly HC emission: 19.96 lb/hr x 4 times per yr x 10 hr/times per yr = 798.4 lb/yr

798.4 lb/yr / 2000 lb/tons = 0.4 tons/yr

3.13 F Start-up Steam Boiler

Emission results from firing of natural gas in a start-up steam boiler (81.84 MMBTU/hr) during cold start-up of the plant; Flow rates and periods for fuel gas are derived from calculation based on assumed steam requirements and start-up time for CTL plant start-up as per other design studies for CTL plants (4 starts per year, each 96 hr); Operation with natural gas, which has an heating value of 1020 BTU/scf. Fuelgas flow rate is 83890 scf/hr. Flue gas rate can be derived from fuel gas flowrate (for natural gas) by multiplying with a factor of approx. 12.9.

- CC

CO specific concentration based on industrial standard for fired heaters (120 ppmv)

Flue gas rate: 30631 m³n/h = 1081724 scf/hr

CO concentration flue gas: 120 ppmv

CO flow: $30631 \text{ m}^3\text{n/h} \times 120 \text{ ppmv} / 10^6 = 3.68 \text{ m}^3\text{n/h}$

Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: $3.68 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 28 \text{ kg/kmol} = 4.59 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly CO flow rate: 4.59 kg/h / 0.454 kg/lb = 10.11 lb/h

Yearly CO flow rate: 10.11 lb/h x 4 starts per year x 96 h per start / 2000 lb/ton = 1.94 tons/yr

- NOx

NOx specific concentration based on industrial standard for fired heaters (100 ppmv)

Flue gas rate: 30631 m³n/h = 1081724 scf/hr NOx concentration flue gas: 100 ppmv

NOx flow: $30831 \text{ m}^3\text{n/h} \times 100 \text{ ppmv} / 10^6 = 3.08 \text{ m}^3\text{n/h}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $3.08 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 6.32 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly NOx flow rate: 6.32 kg/h / 0.454 kg/lb = 13.92 lb/h

Yearly NOX flow rate: 13.92 lb/h x 4 starts per year x 96 h per start / 2000 lb/ton = 2.67 tons/yr

- SOx

Calculated acc. max. sulfur content of natural gas specified by TGDS

Fuel gas rate: 2380 m³n/h = 83890 scf/hr

Molar volume: 22.414 m³/kmol

Fuel gas rate: 2380 m³n/h / 22.414 = 106 kmol/h Sulfur concentration syngas gas: 20 ppmv

Molecular weight sulfur: 66 kg/mol

SOx flow: 106 kmol/h x 20 ppm x 66 kg/kmol / $10^6 = 0.14$ kg/h

Conversion factor: 1 lb = 0.454 kg

Hourly SOx flow rate: 0.14 kg/h / 0.454 kg/lb = 0.31 lb/h

Yearly SOx flow rate: 0.31 lb/h x 4 starts per year x 0.5 h / 2000 lb/ton = 0.06 tons/yr

... / 26

- PM

Based on natural gas estimated PMs: Heat Requirement 81.84 MMBTU/hr

Average heating value of natural gas: 1020 BTU/scf

Emission factor acc. Table 1.4-2 of AP 42 (PM total): 7.6 lb/10^6 scf

Hourly PM emission: 81.84 MMBTU/yr x 7.6 lb/10^6 scf / 1020 MMBTU/yr /10^6 scf = 0.61 lb/hr

Yearly PM emission: 0.61 lb/yr / 2000 lb/ton x 4 start/yr x 96 hr/start = 0.12 tons/yr

- VOC

Based on natural gas estimated VOC (since syngas is used as fuel gas (main components CO and H2) the real values will be lower):

Heat Requirement 81.84 MMBTU/hr

Emission factor acc. Table 1.4-2 of AP 42 (VOC): 5.5 lb/10^6 scf

Average heating value of natural gas: 1020 BTU/scf

Hourly VOC emission: 81.84 MMBTU/hr x 5.5 lb/10⁶ scf / 1020 MMBTU/yr /10⁶ scf = 0.44 lb/yr

Yearly VOC emission: 0.44 lb/yr / 2000 lb/ton x 4 start/yr x 96 hr/start = 0.09 tons/yr

3.14 G Flare

Emission result from pilot flame operation of the flare (operating with natural gas); Flow rates and number of pilot burners are based on typical flare data; Flare Flue gas flow can be derived from natural gas feed to pilot burners multiplied with factor of approx. 12.7

- CO

Specific CO concentration in flare offgas: assumption based on conversion rate of 99.5 (typical value

for natural gas burning in flare)

Natural gas flow rate to flare: 25 m³n/h = 880 scf/hr

Natural gas conversion rate: 99.5 % Molecular weight CO: 28 kg/mol Molar volume: 22.414 m³/kmol

CO flow: $(1-0.995) \times 25 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 28 \text{ kg/kmol} = 0.16 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly CO flow rate: 0.15 kg/h / 0.454 kg/lb = 0.35 lb/h

Yearly CO flow rate: 0.35 lb/h x 8760 h / 2000 lb/ton = 1.54 tons/yr

- NOx

Specific NOx concentration in flare offgas: assumption acc. flare vendor information (250 ppmv)

Natural gas flow rate to flare: 25 m³n/h = 880 scf/hr

Flue gas rate: 317.5 m³n/h = 11176 scf/hr NOx concentration flue gas: 250 ppmv

NOx flow: $317.5 \times 250 \text{ ppmv} / 10^6 = 0.08 \text{ m}^3\text{n/h}$

Molecular weight NO2: 46 kg/mol Molar volume: 22.414 m³/kmol

NOx flow: $0.08 \text{ m}^3\text{n/h} / 22.414 \text{ m}^3/\text{kmol} \times 46 \text{ kg/kmol} = 0.164 \text{ kg/h}$

Conversion factor: 1 lb = 0.454 kg

Hourly NOx flow rate: 0.164 kg/h / 0.454 kg/lb = 0.36 lb/h

Yearly NOX flow rate: 0.36 lb/h x 8760 h / 2000 lb/ton = 1.58 tons/yr

- SOx

Calculated acc. max. sulfur content of natural gas specified by TGDS

Natural gas flow rate to flare: 25 m³n/h = 880 scf/hr

Molar volume: 22.414 m³/kmol

Natural gas flow rate to flare: 25 m³n/h / 22.414 m³/kmol = 1.12 kmol/h

SOx concentration natural gas: 20 ppmv Molecular weight SOx: 66 kg/mol

SOx flow: 1.12 kmol/h x 20 ppm x 66 kg/kmol / $10^6 = 0.0015$ kg/h

... / 27

Conversion factor: 1 lb = 0.454 kg

Hourly SOx flow rate: 0.0015 kg/h / 0.454 kg/lb = 0.0033 lb/h

Yearly SO flow rate: 0.0033 lb/h x 8760 h / 2000 lb/ton = 0.015 tons/yr

- PM

Flow rate to flare for pilot burners: 25 m3n/h = 880 scf/hr

Conversions factor: 1 scf = 0.02686 m³n

Flow rate: $25 \text{ m}^3\text{n/h} / 0.02686 \text{ m}^3\text{n/scf} = 931 \text{ scf/hr}$

Emission factor total PM acc. table 1.4-2 of AP 42: 7.6 lb/10^6scf Hourly PM emission: 931 scf/hr x 7.6 lb/10^6scf / 10^6 = 0.0071 lb/hr

Yearly PM emission: 0.0071 lb/hr x 8760 hr/yr = 62.2 lb/yr

62.2 lb/yr / 2000 lb/tons = 0.031 tons/yr

- VOC

Flow rate to flare for pilot burners: 25 m³n/h = 880 scf/hr

Conversions factor: 1 scf = 0.02686 m³n

Flow rate: $25 \text{ m}^3\text{n/h} / 0.02686 \text{ m}^3\text{n/scf} = 931 \text{ scf/hr}$

Emission factor VOC acc. table 1.4-2 of AP 42: 5.5 lb/10^6scf

Hourly VOC emission: 931 scf/hr x 5.5 lb/10^6scf / 10^6 = 0.0051 lb/hr

Yearly VOC emission: 0.0051 lb/hr x 8760 hr/yr = 44.9 lb/yr

44.5 lb/yr / 2000 lb/tons = 0.022 tons/yr

3.15 Safety Valves

All safety relieve valves or rupture discs open only in case of emergencies or malfunctions. Typical relief cases are for example:

- § Fire / Explosion
- S Power failure
- S Utility (e.g. cooling water, stream) failure
- S Operator failure

List of main safety valves

Safety Valve Number	Operation	Blow of	Remark
a1/1 to a1/5	Coal Preparation	to atm	
b1/1 and b1/2	Coal Dust Feeding	to atm	
b2/1 and b2/2	Gasification/Scrubbing	to flare	
b3/1 and b3/2	Slag Removal	to flare	
c1	CO Shift	to flare	
c2	Sour Water Stripping	to flare	1
c3	Acid Gas Removal	to flare	
c4	CO2 Offgas	to atm	
c5	CO Shift Steam Boiler	to atm	
c6	Sulfur Recovery	to atm	
c7	Sulfur Recovery Tail Gas	to atm	
d1	Methanol Reaction	to flare	
d2	Methanol Reaction	to atm	
e1	MTG	to flare	
e2	MTG	to atm	

3.16 Leak emissions estimate

The calculation of the fugitive emissions are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates). Potential emission calculation is based on table 2-1, emission control is based on table 5-1 and 5-2.

For Detail calculation refer to attachment 3.

Leak emission overview CO

Unit	Potential	Actual
	ton/yr	ton/yr
Gasification incl. scrubbing	8.80	1.01
CO-Shift	4.82	0.63
Acid Gas Removal	9.33	0.99
Methanol Synthesis	18.53	1.71
PSA	19.05	2.39
	Total	6.73

... / 29

Leak emission overview SOx (H2S as SOx equivalent)

Unit	Potential	Actual
	ton/yr	ton/yr
Gasification incl. scrubbing	0.115	0.011
CO-Shift	0.047	0.008
Acid Gas Removal	0.124	0.01
Slurry & Sour Water Stripping, Sulfur Recovery (Sour Gas)	1.288	0.16
Sulfur Recovery (Acid Gas)	3.26	0.560
	Total	0.749

Leak emission overview H2S (HAP)

Unit	Potential	Actual
	ton/yr	ton/yr
Gasification incl. scrubbing	0.061	0.006
CO-Shift	0.025	0.004
Acid Gas Removal	0.066	0.005
Slurry & Sour Water Stripping, Sulfur Recovery (Sour Gas)	0.684	0.085
Sulfur Recovery (Acid Gas)	1.73	0.297
	Total	0.397

Leak emission overview VOC

Unit	Potential	Actual	
	ton/yr	ton/yr	
Acid Gas Removal	32.83	1.03	
Methanol Synthesis	6.26	0.30	
MTG	117.73	11.74	
	Total	13.07	

Leak emission overview Methanol (HAP)

Unit	Potential	Actual	
	ton/yr	ton/yr	
Acid Gas Removal	32.83	1.03	
Methanol Synthesis	6.26	0.30	
MTG	34.77	0.73	
	Total	2.06	

4 Block Flow Diagram

Please find requested Block Flow Diagram as Attachment 1 hereto.

The points a1, b1, b2, b3, c1, c2, c3, c4, c5, c6, c6, d1, d2, e1 and e2 indicate emergency relieve points (safety valve or rupture disk) and therefore are not considered for overall emission calculation.

4.1 Stream Numbers and designations

Following hereafter is a short description of each stream shown in the Block Flow Diagram

I Otto a see N.L.	Other and Department of	Barrel
Stream No.	Stream Description	Remark
1	Coal as received from Coal Stockpile	-
	to Coal Preparation	
2	Coal Dust (dried) from Coal Prepara-	
	tion to Gasification	
3	Raw Syngas from Gasification to CO	Flared during start-up of
	Shift	gasification (Emission
		Point B2)
4	Shifted Syngas from CO Shift to Acid	
	Gas Removal	
5	Clean Syngas from Acid Gas Re-	Flared during start-up of
	moval to Methanol	Acid Gas Removal; Used
		also as fuel gas for fired
	· ·	heaters in the MTG plant
,		(Emission Points E1, E2,
<u> </u>		E3)
6	Crude Methanol from Methanol Plant	
	to MTG Plant	
7	LPG Product	
8	Gasoline Product	
9	Acid Gas from Acid Gas Removal to	
	Sulfur Recovery Plant	
10	Sour Gas from Gasification to Sulfur	
	Recovery Plant	
11	Elementary Sulfur Product	
12	Hydrogen Rich Gas to PSA	
14	Hydrogen to MTG Plant	
15	PSA Tail Gas from PSA to CO Shift	
16	CO2 from Acid Gas Removal to CO2	
	Purification	
17	CO2 from CO2 Purification to Atmos- Emission Point C	
	phere	originating from Stream
		16 and Stream 31
18	CO Shift Condensate to Sour Water	
	Stripper	
19	Stripped Condensate from Sour Wa-	
	ter Stripper to Gasification	
20	MTG Condensate from MTG Plant to	

	Gasification		
21	Water from Gasification to Water Treatment		
22	Make-up water from Water Treatment to Gasification		
23a	Slag from Gasification to Battery Limit		
23b	Filter Cake from Gasification to Battery Limits		
24	Lime from Lime Stockpile to Coal Preparation		
25	Sour Gas from Sour Gas Stripper to Sulfur Recovery Plant		
26	CO2 from CO2 purification to Coal Preparation and Gasification	Used for pressurizing and carrier gas in coal feeding (Source for Emission Point A2, B1, B3)	
27	CO2 released from coal feeding (gasi- fication plant) to atmosphere during pressurization and feeding cycle	Emission Point B1	
29	Oxygen from Air Separation to Gasification		
30	Tail Gas Recycle from Sulfur Recovery Plant to Acid Gas Removal		
31	MTG Regeneration Off-Gas	New stream	

Emission Summary 5

In the "Remarks" columns the letters C, D and S have following meaning:

C: Continuous during normal operation D: Discontinuous during normal operation

S: Occurs during start-up

CO:

Emission	Yearly Emission (as short	Max. Emissions	Remarks
Point	tons / year)	(as lbs/hr)	
A1	20.43	5.375	C+S
A2	<<0.1	<< 1.1	S
B1	0.55	0.13	C + S
B2	24.8	827	S
B3	-	- ,	Emergency relief
			only
C1	1.974	0.51	C + S
C2	2.4	2375	S
E1	1.24	1.93	D + S
E2	3.22	11.44	D + S
E3	1.2	0.381	C + S
E5	1.04	51.88	D
F	1.94	10.11	S
G	1.54	0.35	С
Leaks	6.73	n.a. 1	С
Total TPY	68.06		

Note 1: Max. Emissions from leaks cannot be quantified

NOx

Emission	Yearly Emission (as short	Max. Emissions	Remarks
Point	tons / year)	(as lbs/hr)	
A1	25.26	7.25	C + S
A2	-	-	S
B1	-	-	C + S
B2	10	333	S
B3	-	-	Emergency relief only
C1	-	-	C + S
C2	0.96	957.6	S
E1	1.69	4.01	D + S
E2	4.4	15.64	D + S
E3	1.65	0.55	C + S
E5	0.43	21.3	D
F	2.67	13.92	S
G	1.58	0.36	С
Total TPY	48.7		

SOx

Emission	Yearly Emission (as short		Remarks
Point	tons / year)	(as lbs/hr)	·
A1	0.24	3	C+S
A2	0.06	0.67	S
B1	12.56	2.87	C + S
B2	32	1066	S
B3	-	-	Emergency relief only
C1	46.25	11.56	C + S
C2	0.17	168.1	S
E1		-	D + S
E2	-	-	D + S
E3	- 1	-	C + S
E5	-	-	D
F	0.06	0.31	S
G	0.015	0.0033	С
Leaks	0.749	n.a. ¹	С
Total TPY	92.104		

Note 1: Max. Emissions from leaks cannot be quantified

РМ

Emission	Yearly Emission (as short	Max. Emissions	Remarks
Point	tons / year)	(as lbs/hr)	,
A1	10.004	2.55	C + S
A2	<<0.1	<<1.1	S
B1	2.2	0.5	C+S
B2	-	-	S
B3	_	-	Emergency relief only
C1		<u> </u>	C + S
C2	-	-	S
E1	0.1	0.223	D + S (figures based
1			on natural gas firing
			=> however Syngas
			firing will be applied)
E2	0.25	0.89	D + S (figures based
			on natural gas firing
			=> however Syngas
			firing will be applied)
E3	0.09	0.03	C + S (figures based
			on natural gas firing
			=> however Syngas
			firing will be applied)
E5	-	-	D
F	0.12	0.61	S
G	0.031	0.0071	С
Total TPY	12.895		

... / 34

Emission	Yearly Emission (as short	Max. Emissions	Remarks
Point	tons / year)	(as lbs/hr)	
A1	8	1.83	C + S
A2	-	-	S
B1	-	- '	C + S
B2	0.0025	0.084	S (methane)
B3	-	-	Emergency relief only
C1	-	-	C + S
C2	<<0.1	5.81	S
E1	0.07	0.162	D + S (figures based on natural gas firing => however Syngas
	·		firing will be applied)
E2	0.18	0.65	D + S (figures based on natural gas firing => however Syngas firing will be applied)
E3	0.07	0.022	C + S (figures based on natural gas firing => however Syngas firing will be applied)
E5	0.4	19.96	D
F	0.09	0.44	S
G	0.022	0.0051	С
Leaks	13.07	n.a. 1	C
Total TPY	22.005		

Note 1: Max. Emissions from leaks cannot be quantified

... / 35

HAPS:

Component	Yearly Emission (as short tons / year)	Max. Emissions (as lbs/hr)	Emission Point	Remark
COS	0.3	9.9	B2	S
H2S	1.097	51.3 ¹	B2	S/C
Nickel Carbonyl	0.037	1.237	B2	S
HCN	0.07	2.27	B2	S
HCI	0.07	2.29	B2	S
Mercury	0.11	3.42	B2, C2	S
Methanol	2.066	5.73 1	C2	S/C
Total TPY	3.75			

Note 1: Figure excluding leak emissions, as max. emissions from leaks cannot be quantified

ATTACHMENT 2

TO TASK ORDER 1

RESPONSE ON DEP QUESTIONS

TRANSGAS DEVELOPMENT SYSTEMS, LLC

CTL PROJECT

Description of Emission Sources and Calculation in the Coal Preparation and Gasification

PREPARED BY

UHDE

TABLE OF CONTENTS

CTL Plant, Short Description of Emission Sources

1	Coal Preparation (Unit 111)	3
2	Coal Dust Feeding (Unit 112)	9
3	Gasification (Unit 113)	13

May 2009 Page 2

1 Coal Preparation (Unit 111)

During the normal operation several process trains pulverize and dry the feed for the gasification. The feed is heated up to $80 - 110\,^{\circ}\text{C}$ in an inert atmosphere and the most of the moisture vaporizes. Fuel gas and steam are used for heat generation.

The water vapor containing gas is filtered in bag filters and discharged into the atmosphere – Emission Points A1. This gas contains following impurities:

- Particulate matter the concentration is below 10 mg/m3 (wet basis),
 5 mg/m3 is applied for TGDS CTL, which is industrial standard.
- Sulfur oxides the concentration of SOx depends on concentration of sulfur compounds in the fuel gas and in other gases supplied to the gas burner. For TGDS plant set-up pure hydrogen will be used as fuel gas; SOx emission only occurs during start-ups, when entire plant is down, i.e. when no hydrogen is available
- S Carbon monoxide and NOx from the gas burner typical concentrations for nature gas combustion are 120 ppmv CO and 100 ppmv NOx @3% O₂. To reduce this emissions a gas with high hydrogen content can be used as fuel gas and the fuel gas based heating can be partly replaced by steam heating.
 - If the fuel gas and other gases fed to burner contain such nitrogen compounds as NH3 or HCN, these components are an additional source of NOx.
 - For TGDS CTL pure hydrogen will be applied as fuel gas with the exception of start-up, when entire plant is down, i.e. when no hydrogen is available; Therefore CO from fuel gas only occurs during those events.
- S Gases and vapors releases from the feed during milling and heating, mainly CO and VOC. The concentration depends on feedstock. For unknown feedstocks Uhde carry out milling and drying tests to determine these emissions.

Emission Points A1 for the whole plant:

§ NO_x

Normal Operation:

- o 100 ppmvd NO_x @3% O₂ (industrial standard)
- hot gas generation, dry basis @3% O₂ 7 967 m³_n/h for each gasifier train on the basis of 100% heat required being generated by combustion;
 - TGDS design: 78.1% of required heat is generated by combustion and 21.9% by steam condensation
- o resulting NO_x emission, calculated as NO₂:

7 967 m3n/hr x 100 ppmv NOx x 2 gasifiers x 25 tons/y x 78.1% (heat required by fuel gas) / 22,4 kmol / m3n x 46 kg/kmole (molecular weight of NO2) x 8760 h / year = 22.645 metric ton / year;

=> 24.68 tons/year (1 short ton = 0.9072 metric ton)

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 24.68 tons/year \div 4 = 6.17 tons/year

Start-up:

- Natural Gas used during start-up of coal preparation, when no hydrogen available
- o 100 ppmv NOx in Offgas
- hot gas generation, 32 218 m3n/hr with Start-up coal
- o resulting NO_x emission:

32 218 m3n/hr x 100 ppmv NOx x 2 gasifiers x 4 (times per year) x 10 hours (start-up time) / 22,4 kmol / m3n x 46 kg/kmole (molecular weight of NOx) = 0.53 metric ton / year;

=> 0.58 tons/year (1 short ton = 0.9072 metric ton)

Overall: 25.26 tons/year

Hourly emission:

=> 24.68 ton/year * 2000 lb/ton / 8760 h/y = 5.63 lb/h

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 5.63 lb/h \div 4 = 1.41 lb/h Hourly emission during start-up:

=> 0.58 ton/year * 2000 lb/ton / 10h/y / 4 times per y / 4 coal preparation trains = 7.25 lb/h

Only one of total five emissions point is in operation during start-up

§ Particulate mater

Normal Operation:

- 5 mg/m3 PM concentration (industrial standard)
- o 204 000 m3/h offgas from baghouse filter
- o resulting emission:

5 mg/m3 x 204 000 m3/h x 8760 hr /year = 8.9 metric tons / year

=> 9.8 tons/year (1 short ton = 0.9072 metric ton)

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 9.8 tons/year \div 4 = 2.45 tons/year

Start-up:

- 5 mg/m3 PM concentration (industrial standard)
- 463 000 m3/h offgas from baghouse filter with start-up coal
- resulting emission:

5 mg/m3 x 463 000 m3/h x 2 gasifier x 4 x 10hr /year = 0.185 metric tons / year

=> 0.204 tons/year (1 short ton = 0.9072 metric ton)

Overall: 10.004 tons/year

Hourly Emission:

=> 9.8 ton/year * 2000 lb/ton / 8760 h/y = 2.24 lb/h

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 2.24 lb/h \div 4 = 0.56 lb/h Hourly emission during start-up:

=> 0.204 tons/year * 2000 lb/ton / 10h/y / 4 times per y / 4 coal preparation trains = 2.55 lb/h

Only one of total five emissions point is operation during start-up

- § VOC from the feedstock (normal operation and start-up)
 - 3.5 mg VOC/kg (dry ash free) coal based on investigation of other coal
 - o coal throughput, daf 260 tons/h
 - o resulting emission:
 - 3.5 mg VOC/kg (daf) x 260 tons/h x 8760 hours/yr = 8 tons/y
 - => 8 ton/year * 2000 lb/ton / 8760 h/y = 1.83 lb/h

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 8.0 tons/year \div 4 = 2.0 tons/year and 1.83 lb/h \div 4 = 0.4575 lb/h

S CO from the feedstock

Normal Operation: Coal only from devolatilization

- o 7.1 mg/kg coal dry based on investigation of a previous coal
- coal throughput
- 291 metric tons/h coal dry
- o resulting emission:

7.1 mg/kg coal dry x 290 000 kg/hr coal dry * 8760 hours / year = 18095 kg/yr CO => 20 tons / yr (1 short ton = 0.9072 metric ton) There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is 20.0 tons/year \div 4 = 5.0 tons/year

Start-up:

- Natural Gas used during start-up of coal preparation, when no hydrogen available
- o 120 ppmv CO in Offgas
- o hot gas generation, 32 218 m3n/hr with Start-up coal
- o resulting CO emission:

32 218 m3n/hr x 120 ppmv CO x 2 gasifiers x 4 (times per year) x 10 hours (start-up time) / 22,4 kmol / m3n x 28 kg/kmole (molecular weight of CO) = 0.39 metric ton / year;

 \Rightarrow 0.43 tons/year (1 short ton = 0.9072 metric ton)

Overall: 20.43 tons/year

Hourly Emission:

=> 20 ton/year * 2000 lb/ton / 8760 h/y = 4.57 lb/h

There are four (4) A1 points operating at a time with a total of five points (A1/1, A1/2, A1/3, A1/4, & A1/5) so the maximum emission rate from an individual A1 emission point is $4.57 \text{ lb/h} \div 4 = 1.1425 \text{ lb/h}$ Hourly Emission during start-up:

=> 0.43 * 2000 lb/ton / 10h/y / 4 times per y / 4 coal preparation trains = <math>5.375 lb/h

Only one of total five emissions point is operation during start-up

Only during start-up:

- Natural Gas used during start-up of coal preparation, when no hydrogen available
- o 20 ppmv H2S in Natural Gas
- o hot gas generation, 47 968 m3n/hr with Start-up coal
- o resulting SO_x emission:
- 47 968 m3n/hr x 20 ppmv H2S x 2 gasifiers x 4 (times per year) x 10 hours (start-up time) / 22,4 kmol / m3n x 64 kg/kmole (molecular weight of SOx) = 0.22 metric ton / year;
- => 0.24 tons/year (1 short ton = 0.9072 metric ton)
- => 0.24 ton/year * 2000 lb/ton / 40 h/y / 4 coal preparation trains = 3 lb/h (Note: only one coal train started at a time, i.e. one gasifier at 50% load)

May 2009 Page 8

2 Coal Dust Feeding (Unit 112)

The feedstock from the coal preparation enters the feed dust bunker via the cyclone filter, from where it flows by gravity to the lock hoppers.

Once a lock hopper is filled with feed dust, the lock hopper is pressurized from atmospheric pressure to about 1 to 2 bar above the feed bin working pressure with an inert gas (N2 or CO2). The selection of inert gas depends on the field of application of the product gas (Syngas) of the gasification process.

The pressurized feed dust from one or more lock hoppers is continuously supplied via a dense phase conveying system to the feed feed bin and the empty lock hopper is depressurized. The gas from lock hoppers is preliminary filtered in dust filter, expanded, filtered again in a filter placed above the feed dust bunker and discharged into the atmosphere (Emission Points B1).

The released lock hopper gas contains particulate mater. If the inert gas contains any impurities, e.g. CO, these impurities are discharded into the atmosphere.

The pressure in Feed Bin is about 5 bar higher than the gasifier pressure and it is controlled and kept on the right level by injection of a inert gas into the feed bin or recycle of a relative small amount of gas. In case of failure of the gas recycle the relieved gas is discharged into the atmosphere (<u>Emission Points B3</u>). This gas contains the inert gas impurities and additional a small amount of particulate mater.

Before start-up of a Gasifier the dense phase conveying system is taken into operation and a specified steady feeding stream in pipes downstream lock hoppers has to be adjusted. However, the feed is not routed into the Gasifier but into the start-up vessel, where the dust is settled down and the gas is dedusted and discharged into the atmosphere (Emission Points A2).

If a low sulfur start up feedstock is used, the feed bin has to be emptied first. The feed bin content - normal sulfur feedstock - has to be recycled pneumatically via Start-up Vessel to the Feed Dust Bunker. The transport gas is dedusted and released into the atmosphere (Emission Points A2).

May 2009 Page 9

Emission Points B1:

- § Particulate mater
 - o 5 mg/m3 PM (industrial standard from baghouse)
 - o discharge from lock hoppers 45 300 m3/h @ 0.9 bar, 90 ℃
 - feedstock change
 30 times/year/train
 32.000 m³n /feed change
 - o resulting emission:

45 300 m3n/h x 5 mg/m3 x 8760 h/yr + 30 starts/yr/train x 32 000 m3n/h * 5 mg/m3 * 2 trains = 1.99 metric tons / yr => 2.2 tons/y (1 short ton = 0.9072 metric ton)

=> 2.2 ton/year * 2000 lb/ton / 8760 h/y = 0.50 lb/h

There are two (2) B1 points (B1/1 & B1/2) operating at a time so the maximum emission rate from an individual B1 emission point is 2.2 tons/year \div 2 = 1.1 tons/year and 0.50 lb/h \div 2 = 0.25 lb/h

§ CO

- o 1 ppmv CO in the CO₂ stream
- o discharge from lock hoppers 45 300 m³_n/h
- feedstock change
 30 times/year/train
 32.000 m³_n/feed change
- o resulting emission:

(1 ppmv CO * 45 300 m3n/h x 8760 h/yr + 32 000 m3n/feed change * 30 starts/year/train * 2 trains * 1ppmv CO) / 22.4 kmol /m3n * 28 kg/kmole (molecular weight of CO) = 0.5 metric tons => 0.55 tons/y (1 short ton = 0.9072 metric ton)

=> 0.55 ton/year * 2000 lb/ton / 8760 h/y = 0.13 lb/h

There are two (2) B1 points (B1/1 & B1/2) operating at a time so the maximum emission rate from an individual B1 emission point is 0.55 tons/year \div 2 = 0.275 tons/year and 0.13 lb/h \div 2 = 0.065 lb/h

§ SOx

- o 10 ppmv SOx in the CO₂ stream
- o discharge from lock hoppers 45 300 m³_n/h
- feedstock change 30 times/year/train
 32.000 m³n/feed change
- o resulting emission:

(10 ppmv x 45300 m3n/h x 8760 h/yr + 32 000 m3n/feed change * 30 starts/year/train * 2 trains * 10 ppmv SOx)/ 22.4 kmol/m3n * 64 kg/kmole (molecular weight of SOx) = 11.4 metric tons => 12.56 tons/y (1 short ton = 0.9072 metric ton)

=> 12.56 ton/year * 2000 lb/ton / 8760 h/y = 2.87 lb/h

There are two (2) B1 points (B1/1 & B1/2) operating at a time so the maximum emission rate from an individual B1 emission point is 12.56 tons/year \div 2 = 6.28 tons/year and 2.87 lb/h \div 2 = 1.435 lb/h

Emission Points B3: (failure of feed bin gas recycle)

Emergency release only (doesn't typically occur) => not considered

Emission Points A2 (start-up feeding):

- § fuel change and start-up each gasifier 30 times/y
- start-up time is approximately 3 hours
- § gas discharge 30 000 m³_n/start-up
- § CO
 - o content
- 1 ppmv
- o CO emission:

30 000 m3n/start-up x 30 starts/yr/train x 2 trains x 1 ppmv CO / 22.4 kmol/m3n x 28 kg/kmole (mol. Wt. CO) << 0.1 tons/y (1 short ton = 0.9072 metric ton)

- => 0.1 ton/y * 2000 lb/ton * 1/60 Starts/yr => << 3.33 lb/Start
- => 3.33 lb/Start / 3 hr/Start = 1.11lb/hr (maximum emission)

- Particulate mater
 - o content

5 mg/m3 (industrial standard baghouse)

o emission

30 000 m3n/start-up x 30 starts/yr/train x 2 trains x 5 mg/m3 PM << 0.1 tons/y (1 short ton = 0.9072 metric ton)

- => 0.1 ton/y * 2000 lb/ton * 1/60 Starts/y => << 3.33 lb/Start
- => 3.33 lb/Start / 3 hr/Start = 1.11 lb/hr (maximum emission)

§ SOx

- o content
- 10 ppmv
- o SOx emission:

30 000 m3n/start-up x 30 starts/yr/train x 2 trains x 10 ppmv SOx / 22.4 kmol/m3n x 64 kg/kmole (mol. Wt. SOx) = 0.06 tons/y (1 short ton = 0.9072 metric ton)

- => 0.06 ton/y * 2000 lb/ton * 1/60 Starts/y = 2 lb/Start
- => 2 lb/Start / 3 hr/Strart = 0.67 lb/hr (maximum emission)

3 Gasification (Unit 113)

In the PRENFLOTM gasifier the feed particles are partially oxidized with oxygen to be supplied from an air separation unit. Liquid slag is flowing down the cooled wall of the gasifier and falls through the quench zone into the slag pool. From there it is discharged via the slag removal.

The generated raw gas and fly ash are also conducted downwards and leave the gasifier though the opening at the bottom into the quench zone. Here the raw gas is quenched by a free down flow water film and additionally cooled and saturated by water spray nozzles. The remaining fly ash is removed from the gas by scrubbing. The dedusted gas is routed to the CO-Shift.

There is no emission source during the normal operation.

During the start-up the main burners are started one after the other at a reduced pressure, e.g. at 15 bar. The generated gas cannot be forwarded to the CO-Shift, as long as the required specification – composition and pressure - is not achieved. The gas generated by all burners would cause a quick pressure increase in the closed gas space. However, the pressure increase rate is limited. To reduce the pressure increase rate a part of the generated gas is sent to the flare (Emission Source B2), where the combustible gases are almost completely burned. However, a small part of CO remains unburned (typical 0.5%), H2S and COS are converted to SOx and NOx are formed. Also during the gasifier shutdown the pressure in the Gasification has to be reduced, therefore the gas is sent to the Flare. At decreasing pressure, the efficiency of sulfur removal decreases, therefore, a part of the sulfur is emitted via Flare as SOx.

May 2009 Page 13

Emission Source B2, gas from Gasification, discharge through Flare:

- S Gas production during start-up of one Gasifier: 100 000 m³_n /start-up
- S Number of starts: 30 per year per gasifier
- S Start-up with PRB-coal or other low sulfur coal (used as start-up coal for SOx emission reduction)
 - o Sulfur emission
 - § H2S- content in raw gas based on 0.5%S in coal: 0.17%
 - § SOx emission:

100 000 m3n/start-up x 30 starts x 2 gasifiers x 0.17% / 22.4 kmol/m3n x 64 kg/kmole (mol. Weight SO2) = 29 metric tons/ yr => 32 tons/y (1 short ton = 0.9072 metric ton)

=> 32 ton/y * 1/(30 hr/y) / 2 gasifiers * 2000 lb/ton = 1066 lb/hr There are two (2) B2 points (B2/1 & B2/2) operating at a time so the maximum emission rate from an individual B2 emission point is 32.0 tons/year \div 2 = 16.0 tons/year and 1066 lb/hr

o CO emission

- S CO- content in gas 60%
- S CO combustion rate in flare 99.5%
- S CO emission:

100 000 m3n/start-up x 30 starts x 2 gasifiers x 60% (CO concentration in syngas) x 0.5% (CO remaining after combustion) / 22.4 kmol/m3n x 28 (molecular wt. CO) = 22.5 metric tons/yr => 24.8 tons tons/y (1 short ton = 0.9072 metric ton)

=> 24.8 ton/y * 1/(30 hr/y) / 2 gasifiers * 2000 lb/ton = 827 lb/h There are two (2) B2 points (B2/1 & B2/2) operating at a time so the maximum emission rate from an individual B2 emission point is 24.8 tons/year ÷ 2 = 12.4 tons/year and 827 lb/h

NOx emission

- § NO_x in flare offgas 250 ppmv (industrial standard)
- § Flare offgas during start-up: 296 000 m3n/start-up
- § NO_x emission

296 000 m3n/start-up x 30 starts x 2 gasifiers x 250 ppmv / 22.4 kmol/m3n x 46 kg/kmole(molecular wt. NO2) = 9.1 metric tons/yr => 10 tons/y (1 short ton = 0.9072 metric ton) => 10 ton/y * 1/(30 hr/y) / 2 gasifiers * 2000 lb/ton = 333 lb/h There are two (2) B2 points (B2/1 & B2/2) operating at a time so the maximum emission rate from an individual B2 emission point is 10.0 tons/year \div 2 = 5.0 tons/year and 333 lb/h

o VOC emission

- S Total flow rate to flare: 28516.8 kmol/h (one gasifier)
- Methane (HC) concentration: 0.0025 mol%
- Methane (HC) flow: 28516.8 kmol/h x 0.0025 mol% / 100 mol% = 0.713 kmol/h
- S Heating value methane 890000 kJ/kmol
- § Methane heat flow: 0.713 kmol/h x 890000 kJ/koml / 3600 s/h / 1000 kJ/MJ = 0.176 MW
- S Conversions factor: 1 MMBTU/hr = 0.29308 MW
- Methane heat flow: 0.172 MW / 0.29308 MW/MMBTU/hr = 0.601 MMBTU/hr
- Emission factor Total Hydrocarbons acc. table 13.5-1 of AP 42: 0.14 lb/10^6BTU
- S Hourly HC emission: 0.601 MMBTU/hr x 0.14 lb/10^6BTU = 0.084 lb/hr
- S Yearly HC emission: 0.084 lb/hr x 30 starts/yr x 2 gasifier x 1 hr/starts / 2000 lb/tons = 0.0025 tons/yr
- S There are two (2) B2 points (B2/1 & B2/2) operating at a time so the maximum emission rate from an individual B2

TGDS CTL Project, West Virginia

emission point is 0.0025 tons/year \div 2 = 0.00125 tons/year and 0.084 lb/h

ATTACHMENT 3

TO TASK ORDER 1

RESPONSE ON DEP QUESTIONS

TRANSGAS DEVELOPMENT SYSTEMS, LLC

CTL PROJECT

FUGITIVE EMISSIONS

PREPARED BY

UHDE

Fugitive emissions CO

Gasification

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of CO fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of CO in the Syngas is approx. 30%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

Table 1 CO Leak Emission Estimate for gasification incl. scrubbing

Component	Quantity	Emission	Potential			Actual			
		Factor acc. Table 2-1							
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²	
Valves	200	0.00597	0.358	0.789	3.5	0.0036	0.008	0.035	
Compressor	0	0.228	0	0	0	0	0	0	
Pressure Relief Valve	4	0.104	0.125	0.28	1.2	0.0125	0.028	0.12	
Connectors 11	500	0.00183	0.275	0.61	2.7	0.085	0.189	0.84	
Open-ended lines	200	0.0017	0.102	0.22	1.0	0.001	0.0022	0.01	
Sampling connections	10	0.0150	0.045	0.10	0.4	0.0005	0.001	0.004	
· · · · · ·		Total			8.8			1.009	

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

CO-Shift

Sep 2009

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of CO fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x Wf x # components

The weight fraction (Wf) of CO in the Syngas (incl. Reactors) is estimated with 36%. The weight fraction (Wf) of CO in the Syngas (from Reactors) is estimated with 29%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors 69% Pressure Relief Valves 90% Others 99%

²² Based on 8760 hr/yr

Table 1: CO Leak Emission Estimate for CO-Shift up-stream & incl. reactors

Component	Quantity	Emission Factor acc. Table 2-1	Potential			Actual		
<u> </u>		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	50	0.00597	0.107	0.236	1.03	0.001	0.002	0.01
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	1	0.104	0.037	0.082	0.36	0.004	0.009	0.04
Connectors 11	150	0.00183	0.099	0.218	0.96	0.031	0.068	0.30
Open-ended lines	50	0.0017	0.031	0.068	0.30	0.0003	0.0007	0.003
Sampling connections	0	0.0150	0	0	0	0	0	0
		Total			2.65			0.35

Table 2: CO Leak Emission Estimate for CO-Shift downstream reactors

Component	Quantity	Emission Factor	Potential			Actual		
		acc. Table 2-1						
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	50	0.00597	0.087	0.019	0.84	0.0009	0.002	0.008
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	1	0.104	0.030	0.066	0.29	0.003	0.0066	0.029
Connectors 11	150	0.00183	0.079	0.174	0.76	0.024	0.054	0.236
Open-ended lines	50	0.0017	0.025	0.055	0.24	0.0003	0.0006	0.003
Sampling connections	1	0.0150	0.004	0.009	0.04	0	0	0
		Total			2.17			0.276

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Acid Gas Removal

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of CO fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of CO in the Syngas is estimated with 29%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

²² Based on 8760 hr/yr

Table 1 CO Leak Emission Estimate for Acid Gas Removal

Component	Quantity	Emission		Potential			Actual		
		Factor acc. Table 2-1							
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²	
Valves	200	0.00597	0.346	0.763	3.34	0.003	0.0066	0.033	
Compressor	2	0.228	0.132	0.291	1.28	0.001	0.0022	0.013	
Pressure Relief Valve	5	0.104	0.151	0.333	1.46	0.015	0.0331	0.146	
Connectors 11	500	0.00183	0.265	0.584	2.56	0.082	0.1808	0.794	
Open-ended lines	100	0.0017	0.049	0.108	0.48	0.0005	0.0011	0.005	
Sampling connections	5	0.0150	0.022	0.049	0.21	0.0002	0.0004	0.002	
		Total			9.33			0.99	

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Methanol Synthesis

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of CO fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of CO in the Syngas is estimated with 86%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors 69% Pressure Relief Valves 90% Others 99%

Table 1 CO Leak Emission Estimate for Methanol Synthesis

Component	Quantity	Emission		Potentia	al		Actual	
		Factor acc. Table 2-1				·	. •	
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	100	0.00597	0.513	1.131	4.96	0.005	0.0110	0.049
Compressor	2	0.228	0.392	0.864	3.79	0.004	0.0088	0.039
Pressure Relief Valve	5	0.104	0.447	0.985	4.32	0.045	0.0992	0.43
Connectors 11	250	0.00183	0.393	0.866	3.80	0.122	0.2690	1.178
Open-ended lines	100	0.0017	0.146	0.322	1.41	0.0014	0.0031	0.014
Sampling connections	2	0.0150	0.026	0.057	0.25	0.0003	0.0007	0.003
		Total			18.53			1.71

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

PSA

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of CO fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor $x W_f x \#$ components

²² Based on 8760 hr/yr

²² Based on 8760 hr/yr

The weight fraction (W_f) of CO in the Syngas is estimated with 86%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90% Others

99%

Table 1 CO Leak Emission Estimate for PSA

Component	Quantity	Emission Factor	Potential			Actual			
		acc. Table 2-1		· · · · · · · · · · · · · · · · · · ·					
		(kg/hr/source)	kg/h	lb/h	ton/yr²	kg/h	lb/h	ton/yr ²²	
Valves	200	0.00597	1.027	2.264	9.92	0.010	0.022	0.01	
Compressor	0	0.228	0	0	0	0	0	0	
Pressure Relief Valve	.0	0.104	0	0	0	0	0	0	
Connectors 11	500	0.00183	0.787	1.735	7.60	0.244	0.538	2.36	
Open-ended lines	100	0.0017	0.146	0.322	1.41	0.001	0.0022	0.014	
Sampling connections	1	0.0150	0.013	0.029	0.12	0.00001	0.00002	0.001	
		Total			19.05			2.39	

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Fugitive Emissions H2S

Gasification

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of H2S fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x Wf x # components

The weight fraction (Wf) of H2S in the Syngas is approx. 0.21%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

Table 1 H2S Leak Emission Estimate for gasification incl. scrubbing

Component	Quantity	Emission Factor acc. Table 2-1	Potential		Actual			
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	200	0.00597	0.0025	0.0055	0.024	2.5E-5	5.5E-5	2.2E-4
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	4	0.104	0.0009	0.0020	0.009	9.0E-6	2.0E-5	8.7E-5
Connectors 11	500	0.00183	0.0019	0.0042	0.018	5.9E-4	1.3E-3	5.6E-3
Open-ended lines	200	0.0017	0.0007	0.0015	0.007	7.0E-6	1.6E-5	6.7E-5
Sampling connections	10	0.0150	0.0003	0.0006	0.003	3.0E-6	6.6E-6	2.8E-5
		Total			0.061			0.006
		SO2 Equivalent			0.115			0.011

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

²² Based on 8760 hr/yr

²² Based on 8760 hr/yr

CO-Shift

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of H2S fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x Wf x # components

The weight fraction (Wf) of H2S in the Syngas is approx. 0.32%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90% Others

99%

Table 1 H2S Leak Emission Estimate for CO-Shift

Component	Quantity	Emission Factor acc. Table 2-1	Potential			Actual		
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	50	0.00597	0.0010	0.0022	0.010	1.0E-5	2.2E-5	1.0E-3
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	1	0.104	0.0003	0.0007	0.003	3.0E-5	6.6E-5	3.0E-4
Connectors 11	150	0.00183	0.0009	0.0020	0.009	2.8E-4	6.2E-4	2.8E-3
Open-ended lines	50	0.0017	0.0003	0.0007	0.003	3.0E-6	6.6E-6	3.0E-5
Sampling connections	0	0.0150	0	0	0	0	0	0
		Total			0.025			0.004
		SO2 Equivalent			0.047			0.008

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Sour Gas

Units: Slurry Stripping, Sour Water Stripping, Sulfur Recovery

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of H2S fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x Wf x # components

The weight fraction (Wf) of H2S in the acid gas is approx. 2%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

²² Based on 8760 hr/yr

Table 1 H2S Leak Emission Estimate for all unit with sour gas

Component	Quantity	Emission		Potentia	J		Actual	
		Factor						
		acc. Table 2-1						
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	200	0.00597	0.0239	0.053	0.231	0.0002	0.0004	0.002
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	8	0.104	0.0166	0.037	0.160	0.0017	0.0037	0.016
Connectors 11	600	0.00183	0.0220	0.0485	0.212	0.0068	0.0150	0.066
Open-ended lines	200	0.0017	0.0068	0.0150	0.066	0.00007	0.0002	0.0007
Sampling connections	5	0.0150	0.0015	0.0033	0.015	0.00002	0.00004	0.0002
·		Total			0.684			0.085
		SO2			1.288			0.160
		Equivalent						

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Acid Gas Removal

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of H2S fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of CO in the Syngas is estimated with 0.32%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

Table 1 H2S Leak Emission Estimate for Acid Gas Removal

Component	Quantity	Emission Factor acc. Table 2-1	Potential			Actual		
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	100	0.00597	0.002	0.0044	0.020	0.00002	0.00004	0.0002
Compressor	2	0.228	0.0015	0.0033	0.014	0.00001	0.00003	0.0001
Pressure Relief Valve	2	0.104	0.0007	0.0015	0.006	0.00007	0.00015	0.0006
Connectors 11	250	0.00183	0.0015	0.0033	0.014	0.0005	0.0011	0.004
Open-ended lines	50	0.0017	0.0003	0.0007	0.003	3.0E-6	6.6E-6	0.00003
Sampling connections	2	0.0150	0.001	0.0022	0.009	0.00001	0.00002	0.00009
		Total			0.066			0.005
		SO2 Equivalent			0.124			0.01

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Acid Gas in Sulfur Recovery Unit (one recovery train)

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of H2S fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

²² Based on 8760 hr/yr

²² Based on 8760 hr/yr

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x Wf x # components

The weight fraction (Wf) of H2S in the acid gas is approx. 40%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90% Others

Table 1 H2S Leak Emission Estimate for sulfur recovery

Component	Quantity	Emission	Potential				Actual	
		Factor acc. Table 2-1						
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves	25	0.00597	0.060	0.132	0.58	0.0006	0.0013	0.006
Compressor	0	0.228	0	0	0	0	0	0
Pressure Relief Valve	1	0.104	0.042	0.092	0.40	0.0042	0.0093	0.124
Connectors 11	75	0.00183	0.055	0.121	0.53	0.0170	0.0375	0.164
Open-ended lines	25	0.0017	0.017	0.037	0.16	0.0002	0.0004	0.002
Sampling connections	1	0.0150	0.006	0.013	0.06	0.00006	0.0001	0.0006
		Total			1.73			0.297
		SO2			3.26			0.560
		Equivalent						

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

Fugitive emissions VOC

Acid gas removal

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of VOC fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of Methanol in liquid steams is estimated with 100%. The weight fraction (W_f) of Methanol in gaseous steams is estimated with 100%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors Pressure Relief Valves 90%

69%

Others

99%

²² Based on 8760 hr/yr

Table 1 VOC (Methanol) Leak Emission Estimate for acid gas removal

Component	Quantity	Emission Factor acc. Table 2-1	Potential		Actual			
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves gas	25	0.00597	0.149	0.328	1.44	0.0015	0.0033	0.014
Valves light liquid	250	0.00403	1.008	2.222	9.73	0.0101	0.0222	0.097
Compressor	0	0.228	0	0	0	0	0	0
Pump seals light liquid	10	0.0199	0.199	0.439	1.92	0.0020	0.0044	0.019
Pressure Relief Valve	2	0.104	0.208	0.459	2.01	0.021	0.0463	0.201
Connectors 11 Gas	(75) / 20 ³³	0.00183	0.137	0.302	1.33	0.0113	0.0249	0.110
Connectors 11 light liquid	(700)/ 100 ³³	0.00183	1.281	2.824	12.37	0.0567	0.1250	0.548
Open-ended lines Gas	25	0.0017	0.043	0.095	0.41	0.0004	0.0009	0.004
Open-ended lines LL	150	0.0017	0.255	0.562	2.46	0.0026	0.0057	0.024
Sampling connections Gas	4	0.0150	0.006	0.013	0.58	0.00006	0.0001	0.006
Sampling connections LL	4	0.0150	0.006	0.013	0.58	0.00006	0.0001	0.006
		Total			32.83			1.029

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

MeOH Synthesis

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of VOC fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_i) of Methanol in liquid steams is estimated with 96%. The weight fraction (W_i) of Methanol in gaseous steams is estimated with 15%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors 69% Pressure Relief Valves 90% Others 99%

²² Based on 8760 hr/yr

³³ Number in parenthesis represents total number; second number (not in parenthesis) remaining number of connectors not welded; weld control efficiency 100% acc. Table 5-1

LL Light Liquid

Table 1 VOC (Methanol) Leak Emission Estimate for Methanol Synthesis

Component	Quantity	Emission		Potential			Actual	
		Factor						
		acc. Table 2-1						
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves gas	25	0.00597	0.022	0.049	0.21	0.0002	0.0004	0.0021
Valves light liquid	40	0.00403	0.155	0.342	1.50	0.0016	0.0035	0.015
Compressor	0.	0.228	0	0	0	0	0	0
Pump seals light liquid	1	0.0199	0.019	0.042	0.18	0.0019	0.0042	0.0018
Pressure Relief Valve	1	0.104	0.016	0.035	0.15	0.0016	0.0035	0.0015
Connectors 11 Gas	(75) / 20 ³³	0.00183	0.137	0.302	1.33	0.0113	0.0249	0.110
Connectors 11 light liquid	(120) /30 ³³	0.00183	0.211	0.465	2.04	0.0170	0.0374	0.164
Open-ended lines Gas	25	0.0017	0.006	0.013	0.06	0.00006	0.0001	0.0006
Open-ended lines LL	40	0.0017	0.065	0.143	0.63	0.0007	0.0015	0.0063
Sampling connections Gas	1	0.0150	0.002	0.004	0.02	0.00002	0.00004	0.0002
Sampling connections LL	1	0.0150	0.014	0.031	0.14	0.0001	0.0002	0.0014
		Total			6.26			0.299

¹¹ Acc. Tab 5-2 (Reduction by LDAR)

LL Light Liquid

MTG

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. The calculations of VOC fugitive emissions is based on the current status of engineering work.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of Methanol in liquid steams is estimated with 96%. The weight fraction (W_f) of Methanol in gaseous steams is estimated with 96%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors 69% Pressure Relief Valves 90% Others 99%

Table 1 VOC (Methanol) Leak Emission Estimate for MTG

Component	Quantity	Emission	ssion Potential		Actual			
	4.5	Factor				ļ		
		acc. Table 2-1					<u> </u>	
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves gas	250	0.00597	1.433	3.159	13.84	0.014	0.0309	0.14
Valves light liquid	40	0.00403	0.155	0.342	1.49	0.002	0.0044	0.015
Compressor	0	0.228	0	0	0_	0	0	0
Pump seals light liquid	1	0.0199	0.019	0.042	0.18	0.0002	0.0004	0.002
Pressure Relief Valve	1	0.104	0.100	0.220	0.96	0.01	0.0220	0.096
Connectors 11 Gas	(750) /70 ³³	0.00183	1.37	3.020	13.26	0.0397	0.0875	0.383
Connectors 11 light liquid	(100) /10 ³³	0.00183	0.183	0.403	1.77	0.0057	0.0126	0.055
Open-ended lines Gas	150	0.0017	0.245	0.540	2.36	0.0025	0.0055	0.024
Open-ended lines LL	40	0.0017	0.065	0.143	0.63	0.0007	0.0015	0.006
Sampling connections Gas	0	0.0150	0	0	0	0	0	0
Sampling connections LL	2	0.0150	0.029	0.064	0.28	0.0003	0.0007	0.003
		Total			34.77			0.725

²² Based on 8760 hr/yr

³³ Number in parenthesis represents total number; second number (not in parenthesis) remaining number of connectors not welded; weld control efficiency 100% acc. Table 5-1

1 Acc. Tab 5-2 (Reduction by LDAR)

2 Based on 8760 hr/yr

3 Number in parenthesis represents total number; second number (not in parenthesis) remaining number of connectors not welded; weld control efficiency 100% acc. Table 5-1 LL Light Liquid

Fugitive emissions VOC (Methanol free)

All available literature describes fugitive emission of VOCs for Refinery or organic chemical industry. So all calculations of VOC fugitive emissions will be in the accuracy of a rough estimate.

All calculation are based on the report EPA-453/R-95-017 (1995 Protocol for Equipment Leak Emission Estimates).

The fugitive emissions are calculated based on the EPA's average emission factor approach:

Emission = Factor x W_f x # components

The weight fraction (W_f) of VOC in liquid steams is estimated with 100%. The weight fraction (W_t) of VOC in gaseous steams is estimated with 50%.

Used Control efficiencies for the calculation of the actual fugitive emissions:

Connectors

69%

Pressure Relief Valves 90%

Others

99%

Table 2 VOC Leak Emission Estimate for MTG

Component	Quantity	Emission Factor acc. Table 2-1	Potential		Actual			
		(kg/hr/source)	kg/h	lb/h	ton/yr ²²	kg/h	lb/h	ton/yr ²²
Valves gas	200	0.00597	0.597	1.316	5.76	0.006	0.013	0.058
Valves light liquid	650	0.00403	2.620	5.776	25.29	0.026	0.057	0.253
Compressor	2	0.228	0.228	0.503	2.20	0.002	0.004	0.022
Pump seals light liquid	7	0.0199	0.139	0.306	1.35	0.001	0.001	0.014
Pressure Relief Valve	20	0.104	1.04	2.293	10.04	0.104	0.229	1.004
Connectors 11 Gas	500	0.00183	0.458	1.010	4.42	0.142	0.313	1.37
Connectors 11 light liquid	1500	0.00183	2.745	6.052	26.51	0.851	1.876	8.22
Open-ended lines Gas	100	0.0017	0.085	0.187	0.82	0.001	0.002	0.0008
Open-ended lines LL	250	0.0017	0.425	0.937	4.10	0.004	0.009	0.041
Sampling connections Gas	4	0.0150	0.03	0.066	0.30	0.0003	0.0007	0.003
Sampling connections LL	15	0.0150	0.225	0.496	2.17	0.002	0.004	0.022
		Total			82.96			11.01

11 Acc. Tab 5-2 (Reduction by LDAR)

22 Based on 8760 hr/yr

LL Light Liquid

Table 3 Total VOC Leak Emission Estimate for MTG

Table 6 Total VOC Leak Emission Estimate for WTG							
	Potential	Actual					
	ton/yr	ton/					
VOC(MeOH)	34.77	0.725					
VOC (MeOH Free)	82.96	11.01					
Total VOC	117.73	11.74					

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, AND TESTING PLANS

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, AND TESTING PLANS

Transgas Development Systems, LLC will work with DAQ to identify and address Monitoring, Recordkeeping, Reporting, and Testing Plans. See Section L for proposed Monitoring, Recordkeeping, Reporting, and Testing Plans.

ATTACHMENT P PUBLIC NOTICE

EXAMPLE LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the application process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR 13 (45-13-8) or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur.

The applicant, utilizing the format for the Class I legal advertisement appearing below, shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged, the nature of the permit being sought, the proposed start-up date for the source and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, and 4.) the county.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM₁₀, VOC, SO₂, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that TransGas Development Systems, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Regulation 13 Construction Permit for a coal to gasoline plant to be located off of West Virginia State Route 52 near Wharncliffe, in Mingo County, West Virginia.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: NOx, of 50 tons per year (tpy), SOx of 84 tpy, CO of 90 tpy, VOC of 40.52 tpy, HAPS of 7.47, PM of 95.76 tpy of which 29.81 tpy is fugitive, and PM10 of 67.19 tpy of which 10.13 tpy is fugitive.

Startup of operation is planned to begin on or about the 1st day of May, 2013. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Insert Date) day of December, 2008.

By: TransGas Development Systems, LLC
Adam Victor
President
630 First Avenue, Suite 30G
New York, New York 10013-3799

ATTACHMENT Q BUSINESS CONFIDENTIAL CLAIMS

Precautionary Notice — Claims of Confidentiality

The person submitting this information may assert that some or all of the information submitted is entitled to confidential treatment as provided by West Virginia Legislative Rule 45CSR31, entitled "Confidential Information." Information covered by such a claim will be disclosed by the Division of Air Quality (DAQ) only to the extent, and by means of the procedures, set forth in 45CSR31. Please contact the West Virginia Secretary of State's Office at 304/558-6000 to obtain a copy of 45CSR31 in order to ensure that all required procedures are followed.

Information concerning the "types and amounts of air pollutants discharged," as that term is defined in WVCSR §45-31-2.4, shall not be claimed as confidential.

Any claim of confidentiality shall be made in accordance with the requirements of 45CSR31 and must accompany the information at the time it is submitted to the DAQ. If no claim of confidentiality is made at the time of submission or is not made in accordance with the requirements of 45CSR31, the DAQ may make the information available to the public without further notice.

Included below are procedures to be followed in submitting information claimed as confidential. This information is intended to assist a person with claiming confidential information and is not meant to relieve a person of his/her obligation to review the provisions of 45CSR31 and to comply with such rule. The procedures are as follows:

- 1. Indicate clearly the items of information claimed confidential by marking each page with the term "Claimed Confidential," with the date of such claim of confidentiality. With the exception of documents of a size greater than 8½" x 14", information claimed confidential must be submitted on colored paper.
- 2. Include a cover document which justifies the claim of confidentiality in accordance with the specific criteria under WVCSR §45-31-4.1. A sample cover document is attached for your information and use. The cover document will be available for public disclosure and must include the following information:
 - (a) The identity of the person making the submission of information claimed confidential:
 - (b) The reason for the submission of information;
 - (c) The name, an address in the State of West Virginia and telephone number of the designee who shall be contacted in accordance with 45CSR31;
 - (d) Identification of each segment of information within each page that is submitted as confidential and the justification for each segment claimed confidential, including the criteria under WVCSR §45-31-4.1;

(cofc.wpd) WVDEP-DAQ: Revised 3/02

- (e) The period of time for which confidential treatment is desired (e.g., until a certain date, until the occurrence of a specified event or permanently); and,
- (f) Signature of a responsible official or an authorized representative of such person.
- 3. At the same time as the information claimed confidential is submitted to the DAQ on colored paper, a complete set of the information, including the cover document previously required under paragraph 2, must be submitted on white paper with the information claimed to be confidential blacked or whited out and the words "Redacted Copy Claim of Confidentiality" marked clearly on each such page, so that the information is suitable for public disclosure. In the case of drawings and blueprints, mark each page with the words "Redacted Copy Claim of Confidentiality," include the title or legend of the drawing, and black or white out the information claimed confidential. The redacted page may be 8½" x 11" in size.
- 4. In the case of a permit application or supplemental information to an application, DAQ requires an applicant to submit three (3) copies of the application. Of those three (3) copies, one (1) must be a complete set of the application containing the information claimed confidential on colored paper and two (2) must be redacted copies. The DAQ reserves the right, however, to request additional copies of the information containing the confidential material.

Attachment

Attachment Q Business Confidential Claim

This form contains each of the required elements for the cover document required under 45CSR31. The person submitting this form may wish to attach an additional page(s) to provide

adequate justification under the ARationale@ section of the form.

Company Name	TransGas Development Systems, LLC	Responsible O		
Company Address	630 First Avenue	Confidential Information Designee in State of WV	Name	Patrick Ward
	Suite 30G		Title	Senior Engineer
	New York, NY 10016-3799		Address	7012 MacCorkle Avenue, S.E.
Person/Title Submitting	Adam Victor			Charleston, WV 25304
Confidential Information	l		Phone	(304) 342-1400
			Fax	(304) 343-9031

Reason for Submittal of Confidential Information: Allow review of information pertaining to DAQ issuing a Regulation 13 Permit Application.

Identification of Confidential Information	Rationale for Confidential Claim	Confidential Treatment Time Period		
All Marked Confidential Information	Provide justification that the criteria set forth in ' 45CSR31-4.1.a - e have been met. The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parities involved in the application process and design of the facility.	This information is to be maintained confidential; there is no timeframe for expiration of confidential treatment.		
	See Page Q2 of Q2.			
Responsible Official Name:	(Car Co	1 Carolo		
Responsible Official Title:	President	President		
Date Signed:	12/3/08			

NOTE: Must be signed and dated in BLUE INK.

Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.

4.1.a. The claim of confidentiality has not expired by its terms, nor been waived or withdrawn;

The confidentially agreements do not have an expiration date due to the nature of the information contained in the application.

4.1.b. The person asserting the claim of confidentiality has satisfactorily shown that it has taken reasonable measures to protect the confidentiality of the information, and that it intends to continue to take such measures:

The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parities involved in the original development of the processes, the design of the facility, and the permit application process.

4.1.c. The information claimed confidential is not, and has not been, reasonably obtainable without the person's consent by other persons (other than governmental bodies) by use of legitimate means (other than discovery based on a showing of special need in a judicial or quasi-judicial proceeding);

The information available herein is not available and is not to be made available to outside parties.

4.1.d. No statute specifically requires disclosure of the information; and

TransGas Development Systems, LLC believes there are no statutes that require disclosure of the information.

- 4.1.e. Either--
- 4.1.e.1. The person has satisfactorily shown that disclosure of the information is likely to cause substantial harm to the business's competitive position; or

This is a unique facility with many parties involved in preparing and providing information on the systems. Release of this information could cause substantial harm to TransGas Development Systems, LLC competitive position in the coal to gasoline market.

4.1.e.2. The information is voluntarily submitted information, and its disclosure would likely to impair the State's ability to obtain necessary information in the future.

The State should not disclose this information to anyone.

Item/Information	Attachment Q - Addendum Item/Information Reason for Confidential Status Timeframe					
is in the state of	Negoti for Golffiedhar States	Tonellane				
Attachment L						
Audelinent F	Provides information on unique interlinks and operating parameters					
Gasifier Feed and PDQ Gasifier Units - Item 3 and 4 (Page L10)	between units in PDQ Process.	No Expiration of Confidential Status				
Cashier Feed and F.D.Q. Gashier Office Ficent 5 and 4 (Fage E.16)	Detween units in 1 DQ 1 recess.	140 Expiration of Confidential Status				
PSA System - Item 4 (Page L38)	Provides unique process information.	No Expiration of Confidential Status				
tologo de la constante de la c						
Attachment N						
	Provides information on unique interlinks and operating parameters	hi e di con				
Mass Balance (N20,21, and 22)	between units.	No Expiration of Confidential Status				
Amondia. Constant and Information						
Appendix - Supplemental Information	Provides unique start-up sequence and unique interlinks between					
Start-Up Description (Page 3 through Page 23)	units.	No Expiration of Confidential Status				
Process Description (Page 5 through Page 12)	Provides confidential design criteria/information.	No Expiration of Confidential Status				
Process Description (Fage 5 through Fage 12)	Provides information on unique interlinks between units in the MTG	No Expiration of Confidential Status				
Process Description (Page 27 through Page 35)	Process.	No Expiration of Confidential Status				
Basic Process Flow Diagram 1-1, PDQ Gasification	Provides information on unique process configuration.	No Expiration of Confidential Status				
MTG Process Flow Diagrams	Provides information on unique process configuration.	140 Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, Separation, Methanol		·				
Recovery	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, Methanol Vaporization/HP	Trondo miermateri en anque proceso connigeration.	THE EXPIRATION OF COMMONTAL STATES				
Steam Generation	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, DME Reactor, MTG	Tronder internation on anique process sornigated on.	THE EXPIREMENT OF COMMEDITATION CONTROL				
Reactors	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, MTG Reactors	To nace in an	The Expiration of Commonitor Clare				
Regeneration System	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, Gas/Liquid/Liquid						
Separation	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Reaction Unit, Methanol Vaporization/HP						
Steam Generation	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Separation Unit, Deethanizer	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Separation Unit, Stabilizer	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Separation Unit, Methanol Recovery	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, MTG Separation Unit, Absorber	Provides information on unique process configuration.	No Expiration of Confidential Statu				
Process Flow Diagram, Heavy Gasoline Treatment Unit, HGT Reactors	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram, Heavy Gasoline Treatment Unit, HGT Product	Troylade information on unique process configuration.	TWO Expiration of Confidential Status				
Stripper	Provides information on unique process configuration.	No Expiration of Confidential Status				
Process Flow Diagram-Mass Balance	Provides information on unique interlinks and operating parameters.	No Expiration of Confidential Status				
	Provides information on unique intentities and operating parameters.					

APPENDIX SUPPLEMENTAL INFORMATION

Transgas CTL/MTG Project West-Virginia, USA	Code	UAN		UA
Start-up Desc	cription CTL	Pag	Pa	ge - 1 - of 23
Ove	rall	Rev	. 00	

START-UP DESCRIPTION COAL TO LIQUIDS PLANT

OVERALL SEQUENCE

		}	ļ		·
00	17.10.08	Hg			
Rev.	Date	Prepared	Checked	Approved	Description
Print da	ate : 10/17/2008				

Print date: 10/17/2008

5:59:18 PM

Egrm; EISPE1HE.dot / 01.09.1999 / Word 97

0/17/2008

C:\Data\Heinritz\Projects\Vergasung\Transgas\CTL_MTG_Start-up_Description.doc

Transgas	CTL/MT	G Project	
West	, Virginia,	USA	

UAN 06-98-63104 UA

Start-up Description CTL
Overall

Page Page - 2 - of 23

Rev. 01

Table of contents

- 1 Start-up overall sequence General
- Start-up conditions for the Main Units
 2.1 Coal Milling and Drying system
 2.2 Coal Sluicing and Feeding
- 3 Gasifier Section. Unit 13, 14, 15, 16, 17
- 4 Remarks
- 5 Warming-up and conditioning of Sour CO-Shift Catalyst
 - 5.1 Sulphiding Process
 - 5.2 Start-up of sulfided catalyst
 - 5.3 Operation conditions
- 6 Preparation of Sour Water Stripping
- 7 Preparation of the CO₂/H₂S Removal Unit
- 8 Preparation of Sulphur Recovery Unit
- 9 Preparation of Tail Gas Treatment Unit
- 10 Warming-up/Start-up of PDQ Gasifier + Gas Treatment
- 11 Shut-Down of PDQ Gasifier
- 12 Start-up Methanol Plant
- 13 Start-up Methanol to Gasoline Plant

Transgas	CTL/MT	G Project
	. Virginia.	

UAN

UA

06-98-63104

Page Page - 3 - of 23

Start-up Description CTL Overall

01 Rev. gim; EISPETHE.doi / 01.09.1999 / Word 97

17.10.08

Transgas CTL/MTG Project West, Virginia, USA

Code

UAN 06-98-63104 UA

. 1"

Start-up Description CTL Overall

Page Page - 4 - of 23
Rev. 01

Transgas	CTL/MT	G Project
West	. Virginia.	USA

UAN

UA

06-98-63104

Start-up Description CTL Overall

1HE.dot / 01.09,1999 / Word 97

17.10.08

Transgas CTL/MTG Project West, Virginia, USA

Code

UAN 06-98-63104

Rev.

UA

Page | Page - 6 - of 23

01

Start-up Description CTL Overall

17.10.08

Transgas CTL/MTG Project West, Virginia, USA

UAN 06-98-63104 UΑ

Start-up Description CTL Overall

Page - 7 - of 23 Rev. 01

Transgas CTL/MTG Project	Code
West, Virginia, USA	

UAN 06-98-63104 UA

Page - 8 - of 23 Page Rev. 01

Start-up Description CTL Overall

Transgas CTL/MTG Project West, Virginia, USA

Code

UAN 06-98-63104 UA

)4

Start-up Description CTL Overall

Page Page - 9 - of 23
Rev. 01

-orm; EISPETHE.dot / 01.09.1999 / Word 97 REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08 17.10.08

3,1999 / Word 9/

17.10.08

Transgas CTL/MTG Project West, Virginia, USA	Code	UAN 06-98-	63104	UA
Start-up Description CTI			Pag	e - 14 - of 23

Transgas CTL/MTG Project West, Virginia, USA

Code

UAN

UA

06-98-63104

Page Page - 15 - of 23
Rev. 01

Start-up Description CTL Overall

EINPETHE GOL/ Ut. 09. 1999 7 World 97

/ 6 DIOW / 6661-60-10 / 1

Transgas (CT	L/MT	G	Project
West.	Vir	ainia.	US	SA

UAN 06-98-63104 UA

Page - 17 - of 23 Page

Start-up Description CTL Overall

17.10.08

Transgas	CTL/MT	G Project
West	, Virginia,	USA

UAN 06-98-63104

Rev.

UA

Page

Page - 18 - of 23

Start-up Description CTL Overall

REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08

17.10.08

Transgas	CTL/MT	G Project
West	. Virginia.	USA

UAN 06-98-63104 UA

Start-up Description CTL
Overall

Page - 20 - of 23

Rev. 0

UA

Page - 21 - of 23

17.10.08

CTL/MTG Project	Code	

UAN 06-98-63104

UΑ

Page - 22 - of 23

Start-up Description CTL Page Overall Rev.

Transgas	CTL/MT	G Project
West	. Virginia.	USA

UAN

UA

06-98-63104

Page - 23 - of 23

Start-up Description CTL Overall

....

17.10.08

TRANSGAS DEVELOPMENT SYSTEMS, LLC

CTL PROJECT

Process Description CTL Plant

PREPARED BY

UHDE

Uhde

TGDS CTL Project, West Virginia

- 1) All information and/ or data provided by Uhde shall not be deemed as a commercial or technical proposal and in particular do not contain any definite "not-to-exceed prices".
- (2) All information and/ or data have to be reviewed on the basis of more sufficient and detailed initial data to be provided by Transgas Development Systems, LLC and in consequence the information and/ or data provided by Uhde may differ considerably from such reviewed data.
- (3) Uhde, however, makes no representations or warranties, express or implied, as to the quality, accuracy and completeness of the information and/ or data provided hereunder. The receiving party accepts all risk of use of and reliance on the provided information and/ or data.
- (4) Uhde shall in no event be liable to the receiving party for loss of profit, loss of assets, loss of business opportunities, loss of use, loss of production, or any financial or economic loss, or for any indirect, incidental, special or consequential loss or damages, irrespective whether such liability should be based on contract, warranty, tort (including negligence), strict liability or otherwise.

TABLE OF CONTENTS

CTL Plant, Process Description

1	Gasification	5
1.2	Coal Preparation (Unit 111)	6
1.3	Coal Dust Feeding (Unit 112)	8
1.4	Gasification (Unit 113)	9
1.5	Slag Removal (Unit 114)	10
1.6	Slag Fines Removal (Unit 115)	11
1.7	Scrubbing System (Unit 116)	11
1.8	Water Pretreatment (Unit 117)	12
2	Gas Treatment	13
2.1	CO-Shift System (Unit 233)	13
2.2	CO ₂ / H ₂ S Removal (Unit 235)	15
2.3	Sour Water Stripping (Unit 238)	18
2.4	Mercury Removal (Unit 239)	20
2.5	Sulphur Recovery (Unit 241)	21

Uhde

TGDS CTL Project, West Virginia

3	Methanol Synthesis and MTG	25
3.1	Methanol Synthesis (Unit 331)	25
3.2	Methanol to Gasoline (MTG)	27
4	Air Separation Unit (Unit 478), Instrument and Plant Air System (Unit 684)	37
5	Utilities	38
5.1	Nitrogen / HP Gas System (Unit 586)	38
5.2	Chemical Distribution (Unit 619)	39
5.3	Flare System (Unit 665)	40
5.4	Fire Fighting System (Unit 699)	40
6	PSA System (Unit 335)	41
6.1	General	41
6.2	Adsorption and Regeneration Cycles	42
6.3	Hydrogen Product	43
6.4	Tail Gas	43

1 Coal Preparation and Gasification

1.1 Introduction

The PRENFLO[™] Direct Quench (PDQ) process is an innovative coal gasification process and an alternative design of the proven PRENFLO[™] technology, which has been successfully installed in its PSG (PRENFLO[™] Steam Generation) version in the world's largest IGCC in Puertollano, Spain.

The PDQ process has been developed specifically for the hydrogen and chemical applications.

The "slagging" gasifier set-up features a cylindrical, cooled (membrane-wall) reactor cage provided with protrusions (muffles) for coal burners arranged horizontally in an opposed-firing configuration. By installing the burners with a small angle to the radial, a swirling motion is imposed upon the gas flow pattern inside the reactor cage, which will impose a centrifugal movement of the liquid slag formed during gasification towards the cylindrical cage wall. The syngas produced during gasification is led down to the slagbath surface, diverted upwards and quenched with water (direct quench).

The liquid slag flows downward along the vertical cylindrical wall through a (slag) tap in the conical bottom of the cage into a water bath (slagbath) where it solidifies and scatters into small granules. The arrangement thereby ensures a simple and effective segregation between the syngas (product) on the one hand and the bulk of the slag/ash on the other. Fly ash will partially be washed out by quench water, partially be entrained with the syngas.

The membrane-wall reactor cage is installed inside a vessel providing the pressurised containment. The membrane-wall tubes are cooled by raising steam.

The gasification consists of several parallel trains. Only one train is described exemplary for all.

The gasification comprises a number of subsystems, which will be described individually:

1.2 Coal Preparation (Unit 111)

The Coal Milling and Drying Unit consists of several identical process trains. During normal operation one train provides the feed for one gasification train.

The system configuration has been selected to satisfy the following two major requirements:

- safe operation of dried, pulverized coal, i.e. an inert atmosphere
- minimize energy consumption, i.e. use a recycle of conveying and drying gas.

Coal from the coal bunker is transported by weighing belts to the mill. Each mill is equipped with its own bunker.

The bunkers are vented with the bunker vent fans through the bunker filters

The coal feeder controls the mill capacity. The total feed stream is gravity-dropped

straight into the mill

In the coal (roller) mills the raw coal is milled and dried under a slight under-pressure and under inert conditions (low oxygen concentration). Potential hazards of self-

ignition and dust explosions are thereby excluded
The inert gas flow transports the pulverized coal to the rotary classifier, from which
the coarse particles are returned to the mill.
The inert gas loaded with fine particles is sent to the bag house filter, a fabric type
filter, for separation.
The pulverized coal is transported from the bag house filter to the pulverized coal
storage vessel (Unit 121/2) using transportation screws and rotary feeders.
23.1.32 12.22 (2.m. 12.1.2) 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3 23.1.3

1.3 Coal Dust Feeding (Unit 112)

The coal from the coal preparation enters the coal dust bunker via the cyclone filter on top of the coal dust bunker, from where it is fed to the Plant. The coal flows by gravity to the lock hoppers placed under the coal dust bunker. Each lock hopper is connected to one outlet cone of the coal dust bunker. Once a lock hopper is filled with coal dust, the lock hopper is disconnected and pressurized from atmospheric pressure to about 1 to 2 bar above the coal feed bin working pressure. This is done by connecting the lock hopper to an inert gas system (N2 or CO2). The selection of inert gas depends on the field of application of the product gas (Syngas) of the gasification process. After opening the valve at the outlet of the lock hopper the pressurized coal dust from one or more lock hopper is continuously supplied via a dense phase conveying

system to the coal feed bin. The transport medium of the conveying system is also an inert gas system (N2 or CO2). working pressure of the coal feed bin is about 5 bar higher than the gasifier pressure. Each Vessel of the coal preparation and coal dust feeding is connected to the cyclone filter placed above the coal dust bunker. Each lock hopper is additionally equipped with a coarse filter.

1.4 Gasification (Unit 113)

The coal dust enters the via the burners into the PRENFLO[™] gasifier. The coal particles are partially oxidized with oxygen to be supplied from an air separation unit (ASU). Liquid slag is flowing down the cooled wall of the gasifier and falls through the quench zone into the slag pool. From there it is discharged via the slag removal.

The generated raw gas and fly ash are also conducted downwards and leave the gasifier though the opening at the bottom into the first quench zone. Here the raw gas is quenched by a free down flow water film and additionally cooled and saturated by water spray nozzles further down in the quench zone.

The saturated raw gas leaves the pressure vessel with a temperature of about 220 °C.

Scrubbed fly ash from the raw gas is collected in the slag collecting vessel and in the surrounding water bath. The water overflow of the collecting vessel flows together with fly ash particles into the surrounding water bath. The surplus water exits the water bath and is pumped by the Quench Water Circulating Pump to the quench nozzles. Additionally a continuous water stream is withdrawn from the water bath to the Slurry Recovery System to avoid an accumulation of solids.

1.5 Slag Removal (Unit 114)

The granulated slag is	s discharged from the	slag collecting vessel	to the slag lock
hoppers			
<u> </u>			
The lock hoppers are	connected via a junc	tion piece to the outlet	of the slag crusher
or the slag collecting v	vessel outlet. The loc	k hoppers are respons	ible for the
discharge and cooling	of the granulated sla	ng coming from the sla	g collecting vessel.
Cooling of slag is real	ized by injecting	water into the	lower part of a lock
hopper			
	· · · · · · · · · · · · · · · · · · ·		
-			

A slag extractor is placed under each of the lock hoppers for receiving the slag during emptying of the lock hopper. The coarse material is removed from the slag extractor. The remaining water, which contains the fines—a combination of slag fines and unburned coal—is pumped to the slurry recovery.

1.6 Slag Fines Removal (Unit 115)

The key elements of the slu	rry recovery are the slurry flash vessels with integrated
heat exchangers. The slurry	flash vessel I is fed by the discharged slurry coming from
the gasifier water bath.	
	The slurry then enters the Slurry Flash Vessel II at the
bottom	. The filtrate preheaters I and II, which are
integrated in the slurry flash	vessels are fed in counter current flow with
process water coming from	the process water tank, which is preheated with flash gas
from the depressurized sluri	ry.
The remaining slurry and the	e slurry coming from the slag extractor enter the slurry
flash vessel 3.	

The flash gas of the three vessels are combined and sent to the sulfur recovery unit. The flashed slurry is transferred by the slurry pump to the clarifier in the slurry filtration system.

1.7 Scrubbing System (Unit 116)

The raw gas, withdrawn from the gasifier is sent to the scrubbing system consisting of the venturi scrubber and the downstream scrubber. In the scrubbing system the raw gas the remaining fly ash particles as well undesired trace components are removed. The scrubbed gas is handed over to further gas treating.

The scrubber system has a continuous water circulation. The water accumulating in the bottoms of the scrubber is circulated via the scrubber circulating pump and the LP-boiler back to the scrubber and the venturi scrubber.

1.8 Water Pretreatment (Unit 117)

A flocculent is added to the flashed slurry from the slurry recovery before it is fed to the clarifier. In the clarifier the flashed slurry is separated into a solid rich stream and clear overflow water stream. The overflow water is collected as process water in the process water tank

To avoid an accumulation of chlorides in the water system a continuous blow down of process water is send to the waste water treatment.

The solid rich underflow of the clarifier is transported via the clarifier bottoms pump to the sludge storage tank. This tank supplies the belt filter press unit continuously with sludge via the sludge pump. The processed filter cake is sent to the coal yard. The filtrate of the belt filter press is sent to the filtrate tank. From the tank the filtrate pumped via the filtrate pump back to the clarifier and also for scrubbing purpose to the belt filter.

2 Gas Treatment

2.1 CO-Shift System (Unit 233)

2.1.1 General

The raw syngas coming from the wet scrubbing (Unit 116) consists mainly of hydrogen (H₂) and carbon monoxide (CO). The amount of hydrogen in the raw syngas is too low to satisfy the required H2/CO ratio for the downstream Methanol Synthesis Unit.

Therefore additional hydrogen has to be produced by a CO-shift process. This is achieved by processing a major part of the raw syngas in the CO-Shift Unit.

As the feedgas contains sulphur components, the catalyst to be used has to be sulphur tolerant and is referred to as sour shift catalyst.

The carbon monoxide (CO) is converted catalytically with water (H_2O) into hydrogen (H_2) and carbon dioxide (CO_2).In addition the applied catalyst reduces hydrogen cyanide (HCN) and carbonyl sulphide (COS) in presence of water to ammonia (NH3) and carbon monoxide (CO) and to hydrogen sulphide (H2S) and carbon dioxide (CO2) near to equilibrium levels.

Due to the direct quench configuration in the Gasification Unit 116 the water content of the raw syngas is high enough to fulfil the water vapour needs of the CO shift reaction. The steam to dry gas ratio is sufficient to provide the required steam for the reaction as well as to moderate the temperature increase in the shift reactor.

2.1.2 Process Flow

The raw syngas coming from the wet scrubbing (Unit 116) at a temperature of approx. 218 °C is fed via Rawgas Superheater which heat up the rawgas to reaction temperatur to the Sour Shift Reactor. In order to control the H2/CO ratio at Battery Limits of the CO Shift Unit a bypass is installed across the one CO Shift Reactor 2330R001. The inlet temperature to the shift reactor is controlled by a by-pass across the Rawgas Superheater. Only one shift reactor is foreseen. This insures that a major part of raw syngas is routed across the CO shift catalyst and simultaneously treated for COS / HCN hydrolysis. This reduces the load of these components to the downstream H2S/CO2 Removal Unit 2350.

The considerable heat of reaction of this process is being used for the production of saturated HP-steam in the downstream Heat Recovery (e.g. Shift Gas Cooler, saturated LP-steam in Syngas Cooler 1 and for warming up of boiler feed water in Syngas Cooler 2).

The steam contained in the raw syngas is only partially consumed by the conversion reaction. The remaining part is condensed and separated from the gas during cooling of the syngas. The formed process condensate is separated in Condensate Separator I and directly recycled back to the gasifcation unit via Condensate Pump I. Final cooling of the shifted gas is carried out by air cooling in the Syngas Air Cooler and by water cooling.

The process condensate from this further cooling is separated in Condensate Separators II and routed to the Sour Water Stripping Unit 328.

The cooled gas gas is pressurised further by Syngas Compressor before routing to the H2S/CO2-Removal Unit 235.

2.2 CO₂ / H₂S Removal (Unit 235)

2.2.1 General

The Rectisol Wash is a physical wash system with methanol as preferable solvent. It removes the acid gases CO2, H2S, COS and HCN from a feed gas from a gasification unit. The Rectisol Wash Unit consists of a methanol wash section, recycle gas compression, CO2 product recovery section, hot regeneration section and the methanol/water separation. In addition a small recycle feed gas from the sulphur recovery unit is treated. The process description refers to the corresponding simplified PFD

2.2.2 Process Flow

Feed Gas Precooling (not shown)

The feed gas is supplied to B.L. of the Rectisol plant from the upstream CO Shift unit. After mixing of the internal recycle gas and injection of methanol, the feed gas is cooled down against cold product gases. The mixture of the cooled down feed gas is routed to the Absorber Column (methanol wash column).

The condensed loaded methanol/water is separated in a upstream knock out drum and fed to the MeOH / H₂O Separation.

Absorber Column (methanol wash column)

In the lower section of the wash column HCN is removed by the cold methanol. H_2S and COS is washed out in the middle section, the CO_2 is removed in the upper section. The heat of solution in the CO_2 section is covered partially by warming up of the methanol, partially by a cooling stage (cooling medium evaporating refrigerant). As the solubility of CO_2 in methanol is less than the solubility of H_2S and COS, the

TGDS CTL Project, West Virginia

methanol flow in the CO_2 removal section is greater than in the H2S removal section. The methanol surplus from the CO_2 removal section is taken off from the upper chimney tray of the column, this methanol is only loaded with CO_2 . The stream, which is drawn off from the sulfur removal section (lower chimney tray), is additionally loaded with COS and H_2S . For the HCN removal section only a very small split stream of the total solvent is required.

The small solvent stream also loaded with HCN is drawn off the bottom of the column. One part of this methanol is pumped as methanol injection into the feed gas. The other part is fed as HCN/methanol/water mixture into the HCN Separation Column after being warming up.

Solvent Flash I (Recovery of CO and H2)

After subcooling the two main loaded methanol streams from the side draws of the Absorber Column are expanded to an intermediate pressure in order to recover dissolved hydrogen and to limit the CO content in the CO2 product and in the tailgas.

Option 1: The flashed gases are recompressed and recycled into the feed gas to the Rectisol wash unit to recover CO $+H_2$.

Option 1:If there is demand on heating gas for the coal preparation (milling) this gas can also used as fuel gas.

Solvent Flash II (CO2 Production)

CO2 is recovered by warming up and expansion of loaded methanol streams into the CO2 production column. H2S is removed from the CO2 product in this column by means of a part of the sulphur free methanol from, routed to the top. The overhead of the CO2 column is sent to the CO₂ Wash Column

The flashed CO₂ warmed up in is passed through the CO₂ Wash Column for methanol removal. Wash medium is demineralised water. The wash water from the column bottom loaded with methanol is pumped and warmed-up into the MeOH/ H₂O Rectifier (methanol/water separation) for methanol recovery.

TGDS CTL Project, West Virginia

Hydrogenated tailgas from the sulfur recovery can also be fed to this column

CO₂ Stripper

The flashed solvent from the Flash Solvent II column contains to much CO_2 for the sourgas. In this column CO_2 is stripped off the methanol by means of LP-Nitrogen in order to revover the CO_2 and to increase the H2S concentration in the H2S fraction. The solvent washed CO_2 top fraction is routed to the Solvent Flash II column and the bottom product which contans the H_2S is pumped to the Hot Regeneration Column.

Hot Regeneration Column

The H_2S enriched solvent is regenerated in this column. All dissolved acid gases are stripped off by means of methanol vapour, generated in a reboiler, heated by steam. The lean methanol from the bottom of the column is pumped back to the Absorber (wash) Column. Before reuse the lean solvent is cooled down. Methanol vapour is condensed from the H2S fraction leaving the top. The column overhead product is H_2S enriched sourgas which is routed to the sulfur recovery unit together with the overhead fraction of the HCN Separation Column.

HCN Separation Column

The HCN/methanol/water mixture from bottom of Absorber Column is fed to the HCN separation column, where HCN is removed by stripping. The column is heated by means of steam in a reboiler. After passing the condenser in the top of the column for methanol condensation the remaining uncondensed vapour (enriched in HCN) is mixed to the H2S fraction from the hot regeneration column.

Methanol/Water Separation

The bottom product from the HCN Separation Column and the wash water from the bottom of the CO₂ Wash Column together with condensate from the feed knock out drum is separated in the methanol/water separation column by distillation to methanol (top) and waste water (bottom). The column is heated by steam, as reflux lean

methanol from the hot regeneration column is used. The methanol vapour from the top supports the stripping in the Hot Regeneration Column, the waste water is routed to B.L. after being cooled down. This water stream contains impurities contained in the feed gas.

CO2 Wash Column

 CO_2 , warmed up in, is passed through the CO_2 Wash Column for methanol removal. The methanol free CO_2 is compressed cooled down and used as sluicing gas in the coal gasification. Wash medium is demineralised water. The wash water from the column bottom loaded with methanol is pumped and warmed-up into the Methanol/Water Separation for methanol recovery.

2.3 Sour Water Stripping (Unit 238)

2.3.1 General

The Sour Water Stripping Unit 2380 treats process condensate from the CO Shift Unit 233 and from the tailgas treating section of Sulphur Recovery Unit 241 for removal of H2S, CO2, NH3 and HCN. The removal of this components is accomplished by stripping with water vapour in a stripper column equipped with packings.

2.3.2 Process Flow

In SWS Feed Vessel sour water from the CO Shift Unit 233 is flashed and collected in order to provide a stable continuous feed to the Sour Water Stripper. The vessel is equpped with a balance line between the vessle and the stripper top section.

CONFIDENTIALITY 12-08-08

TGDS CTL Project, West Virginia

The sour water is pumped from SWS Feed Vessel to the top of Sour Water Stripper via the Feed/Effluent Exchanger. In the Feed/Effluent Exchanger the sour water is heated by exchanging heat with the stripped water leaving Sour Water Stripper at the bottom.

The Sour Water Stripper can be equpped with structured packings or with Pall Rings. The packing is divided into three beds of which the top bed is used as a washing section for the sour water reflux coming from the SWS Reflux vessel. In the other packed bed sections of Sour Water Stripper, the sour water is contacted in counter current flow with steam from SWS Reboiler. The feed distributor of the Sour Water Stripper is located between the first and the second packed bed section.

LP steam is used for operation of SWS Reboiler. The major part of the vapours from the top of Sour Water Stripper is condensed in SWS Overhead Condenser. The outlet temperature of this air cooler is approx. 80°C to prevent salt formation. The remaining sour gas is separated from the formed condensate in SWS Reflux Vessel and sent to the Sulphur Recovery Unit 241.

The condensate is returned to Sour Water Stripper as reflux by SWS Reflux Pump.

The stripped water is reused and sent back to the Scrubbing Unit 116 via the Feed/Effluent Exchanger.

2.4 Mercury Removal (Unit 239)

2.4.1 General

The Mercury Removal Unit 239 is located downstream of the CO2/H2S-Removal Unit 235 which is based on the Rectisol process. Although the Rectisol unit removes the major part of mercury from the syngas due to the very low operating temperatures during absorption an additional adsorbent vessel is foreseen downstream of the CO2/H2S removal in order to assure a complete separation of an mercury that might be left over.

2.4.2 Process Flow

The Mercury Removal Unit consists of only one piece of equipment – the Mercury Adsorber. The vessel is equipped with a bed of impregnated activated carbon which is specially designed for mercury adsorption. The treated, completely dry syngas enters the vessel at the top and leaves the vessel as purified syngas at the bottom.

2.5 Sulphur Recovery (Unit 241)

2.5.1 General

The Sulphur Recovery Unit 241 processes H2S, CO2 and NH3 containing sour gas from stripping of process condensates in Sour Water Stripping Unit 238 and H2S, COS, CO2 and HCN containing acid gas from the CO2/H2S Removal Unit 235. NH3 and HCN are decomposed to less dangerous components, sulphur containing components are converted to elemental sulphur and CO2 passes this unit as inert component.

The produced liquid sulphur is collected, degassed and solidified. The residual tailgas of the sulphur recovery process is hydrogenated and recycled back to the CO2/H2S Removal Unit 2350.

The H2S contained in the combined feeds is partially combusted with oxygen coming from Unit 478, producing the intermediate product sulphur dioxide according to the reaction:

$$H_2S + 3/2 O_2 \qquad \leftrightarrow \qquad SO_2 + H_2O$$

 $2 H_2S + SO_2 \qquad \leftrightarrow \qquad 3/x S_x + 2 H_2O$

Both reactions can be summarised to:

$$H_2S + 1/2 O_2 \leftrightarrow 1/x S_x + H_2O$$

Water (H2O) is a side product of all of these reactions. They are executed in one thermal and two catalytic steps in series. In all steps the gaseous sulphur species are in thermal equilibrium with liquid sulphur:

$$S_x = 12 S_2 \leftrightarrow 4 S_6 \leftrightarrow 3 S_8 \leftrightarrow S_{Liquid}$$

The vapours from Unit 115 and the vapours from Unit 238 contain ammonia. This ammonia is decomposed to nitrogen and hydrogen in this thermal step

The produced liquid sulphur is routed to the collecting and degassing system.

Because the catalytic conversion is not complete, the tail gas at the outlet of the last pass of the sulphur condenser contains un-reacted H₂S and SO₂ as well as gaseous sulphur species acc. to their vapour pressures. Therefore, this tail gas is treated for hydrogenation of this sulphur components, pressurised and sent back to the CO₂

/H₂S Removal Unit.

Process Flow

Sulphur Recovery

The NH3 containing sour gases from Unit 115 and Unit 238 are combined and introduced to the unit separately from the acid gas produced by Unit 235.

Pressure control valves in the feed lines control the pressure in the tops of the columns, from which the feeds originate.

The ammonia containing sour gas and a portion of the acid, ratio controlled by the flow of feeds, are fed together with the required oxygen to the central part of the Claus Furnace Burner, while the other portion of acid gas is routed to the outer part. This burner is integrated to the combustion chamber of Claus Furnace.

Due to the low H2S content of the combined sour gas and acid gas feeds, pure oxygen is needed to reach the required temperature for ammonia destruction in the Claus furnace.

The required oxygen is supplied directly from Unit 478. A feed forward control is setting oxygen to acid gas ratio. This feed back control ensures the correct stoichiometric conditions for the partial combustion reaction and with this, an optimum sulphur recovery.

The heat of reaction of the partial combustion of H2S is used primarily for production of saturated MP Steam in the Claus Furnace Waste Heat Boiler. The produced steam is released pressure controlled, whereas the required boiler feed water flows level controlled to the steam drum.

Further cooling of the process gas is performed in the first pass of Sulphur Condenser where elemental sulphur vapours are condensed and separated from the gas by an integrated sulphur separator. The transferred heat is used for production of LP-Steam in the outer shell of this heat exchanger.

The process gas is reheated in Reheater I and routed to the Claus Reactor I. The required inlet temperature is controlled by steam flow to the First Reheater.

In the first converter the formation of sulphur is continued resulting in an increase of gas temperature. The formed sulphur vapour is condensed again in the second pass of Sulphur Condenser. After separation of the liquid sulphur the process gas is reheated again in Reheater II, routed across Claus Reactor II for further reaction and cooled in third pass of Sulphur Condenser for sulphur condensation and separation.

The LP steam produced in Sulphur Condenser is released pressure controlled to the header. A part of the LP steam is consumed internally in the Sulphur Recovery Unit for tracing of sulphur lines and other various heating purposes.

The liquid sulphur separated from the process gas in Sulphur Condenser flows by gravity to the first compartment of the Sulphur Pit via sulphur locks.

TGDS CTL Project, West Virginia

Tailgas Treating and Compression

As the reaction of H2S and COS to elemental sulphur is not complete the tailgas from Sulphur Condenser III has to be treated for hydrogenation before it can be recycled to the CO2/H2S Removal Unit 235.

The tailgas is mixed with pure hydrogen to provide the required amount of hydrogen for the catalytic reaction. The hydrogen flow is controlled by analysis of the H2 content in the reactor effluent gas.

The tailgas is heated in the Feed/Effluent Exchanger and subsequently in the MPsteam heated Tailgas Heater to the required reaction temperature.

The heated gas passes the Hydrogenation Reactor and cooled in the Feed / Effluent Exchanger. The tailgas is routed to the Tail Gas Scrubber to wash out any traces of unconverted sulphur and for further cooling.

The washing and cooling effect is performed by recycling the main portion of the scrubber bottom product through Recycle Water Cooler back to the top of the scrubber. The heat is removed by means of cooling water.

The formed condensate is drawn off from the cooling cycle level controlled at the bottom or Tail Gas Scrubber and sent to the Gas Condensate Drum.

The treated and cooled tailgas from the top of Tail Gas Scrubber is compressed to approx. 3 bara in the Recycle Gas Compressor and sent cooled by a water cooler to the regeneration section of the CO2/H2S Removal Unit 235.

Sulphur Degassing and Solidification

The sulphur separated from the process gas in the Sulphur Condenser I –III flow by gravity via Sulphur Locks to the first compartment of the Sulphur Pit.

TGDS CTL Project, West Virginia

By circulation and the intensive contact with stripping air, the total of the sulphur is degassed

Sulphur can be delivered in liquid form or in a separate working step as flakes.

3 Methanol Synthesis and MTG

3.1 Methanol Synthesis (Unit 331)

3.1.1 Synthesis Loop

The make-up gas coming from the Front-End Section is mixed with recovered hydrogen and compressed in MUG Compressor.

The synthesis loop recycle stream is mixed with the make-up gas coming from the MUG compressor and enters the circulator where it is compressed to synthesis inlet pressure.

The syngas mixture is first sent to the Feed Preheater, where it is heated to the reactor inlet temperature while cooling down the reactor product gas. The converter inlet temperature is controlled by bypassing feed shell side of the heat exchanger. The feed gas enters the MeOH converter and directly flows to the catalyst where methanol production reaction proceeds.

Crossing the isothermal zone, the reaction goes on while temperature is kept almost constant by releasing the reaction heat to heatexchanger plates in the reaction area where steam is raised.

TGDS CTL Project, West Virginia

The product gas leaves the converter passing the gas-gas exchanger where it is cooled. The methanol formed in the product gas is condensed in the product condenser (air and water cooler); in the Flash Drum I the liquid raw product is separated from the recycle gas, which is sent to the suction of the recycle compressor.

A gas stream is purged from the synthesis loop and it is sent to the common Hydrogen Recovery Unit of the overall plant.

The raw methanol from is let down in the Flash Drum II where most of the dissolved gases are flashed and separated from the liquid.

The flash gas is sent to the B.L.'s via a pressure control valve while the raw methanol is made available at Battery Limits via a level control valve.

3.1.2 Steam Generation System

The heat exchange plates inside the MeOH Converter act as a boiler with forced circulation.

BFW is added directly to the Steam Drum. The circulation in the exchanger plates is ensured by BFW pumps.

The saturated MP steam generated by recovering the reaction heat is sent pressure controlled to the Battery Limits. The steam pressures can be adjusted to control the boiling temperature in the Steam Generation System separately for external and internal plates; accordingly, the heat transfer in the catalyst is strictly controlled.

Methanol to Gasoline (MTG) 3.2

3.2.1 MTG Reaction Section (Unit 332)

Methanol Vaporizing

DME and MTG Reactors

Regeneration System

Gas - Liquid - Liquid Separation

3.2.2 Separation Section (Unit 333)

Deethanizer

Stabilizer

Gasoline Splitter / Methanol Recovery

3.2.3 Heavy Gasoline Treatment Section (Unit 334)

HGT Reactors

HGT Product Stripper

TGDS CTL Project, West Virginia

4 Air Separation Unit (Unit 478), Instrument and Plant Air System (Unit 684)

For Air separation a commercially available Package Unit (ASU) will be used,. The number of parallel units will be adjusted to the total oxygen demand and ASU capacity respectively. A liquid storage for both oxygen and nitrogen will be foreseen. Medium pressure nitrogen and high pressure will be taken out of an appropriate process step of the ASU, so compression can be saved.

For Instrument and Plant Air supply two sources will be used. Part of the air required will be taken from the air compressor in the, another part will be supplied by an Instrument and Plant Air Compressor, delivered with Instrument and Plant Air System. By this it is supply of instrument and plant air is ensured even if air separation units are out of operation, e.g. to operate MTG section and utilities. Compressed air will be dried for instrument air and fed to the plant via Instrument Air Receiver. Furthermore compressed air will be fed to the plant without drying as plant via Plant Air Receiver.

5 Utilities

5.1 Nitrogen / HP Gas System (Unit 586)

The Nitrogen/ HP gas system provides nitrogen on different pressure levels, as well as HP gas on different temperature levels to all consumers within the plant. For LP Level nitrogen already pressurized is taken from the ASU. The HP gas will be CO₂ taken from the Rectisol Unit235, which is compressed by CO₂ Compressor. It can be used directly with compressor outlet temperature of 120°C in the Coal Feeding Unit 1121/2 and after further heating by Blow Back Heater in the Gasification Unit 113.

For start-up Nitrogen from ASU is fed to the CO₂ Compressor, compressed and used as HP Gas.

Medium Pressure Nitrogen is fed from ASU to Nitrogen Compressor. Pressurized Nitrogen is sent to consumers via MP Nitrogen Buffer Vessel .

5.2 Chemical Distribution (Unit 619)

A 20 wt% caustic solution is used to minimize winterising requirements. Since caustic is normally marketed at higher concentrations, the caustic is diluted with demin water from B.L. during the filling of the caustic storage tank via the caustic mixer. To unload the caustic the caustic fill pump is used. In case winterisation is required, caustic will be circulated permanently by Caustic Injection Pump via the Caustic Preheater. Supply of caustic to the plant is also done by Caustic Injection Pump.

Hydrochloric acid in a 15 wt% acid solution is used in the gasification slurry system to reach the necessary pH-concentration. Since acid is normally marketed at higher concentrations, on site dilution is foreseen with demin water. The demin water used for dilution is routed via the scrubber to the Acid Storage Tank to wash out acid traces from the vent gases leaving the tank during loading time.

To unload the acid the acid fill pump is used. In case winterisation is required, acid will be circulated permanently by Acid Injection Pump via the Acid Preheater. Supply of Acid to the plant is also done by Acid Injection Pump.

5.3 Flare System (Unit 665)

For flare gases there are foreseen separate headers in the gasification plant, MTG plant and for sour gases. For sour gas an extra flare stack is provided. The other flare gases are sent via Flare Condensate Knock Out Drum to the Flare Stack. Both flare stacks are equipped with mol sieves to prevent back flow of air into the system. Both flare stacks get nitrogen blanketing. At the top of the stacks are Pilot Burners

Condensate will be transferred by Flare Condensate Pump to waste water treatment.

5.4 Fire Fighting System (Unit 699)

Fire fighting will be done mainly by two ring headers, one for the gasifcation ring header (which needs enhanced pressure because of its height, and one for the other parts of the plant. Both ring headers are equipped with hydrants.

Fire fighting water will be held available in the Fire Water Tank. A Jockey Pump will keep the system under pressure. Fire Water Pump (electric drive and diesel engine drive) will supply the ring headers with fire fighting water. Pressure for the gasification ring header is enhanced by Fire Water Booster Pump.

Further Fire Fighting equipment such as estinguishers etc. will be considered during further engineering.

6 PSA System (Unit 335)

6.1 General

The pressure swing adsorption process is based on physical adsorption phenomena, whereby highly volatile compounds with low polarity as represented by hydrogen or helium, are practically non-adsorbable compared to molecules such as CO2, CO, N2 and hydrocarbons. Hence most impurities in a hydrogen-containing stream can be selectively adsorbed and high-purity hydrogen product is obtainable.

The pressure swing adsorption process is working between two pressure levels:

- Adsorption of impurities is carried out at high pressure to increase the partial pressure and, therefore, the loading of the impurities on the adsorbent material.
- Desorption or regeneration takes place at low pressure to reduce the residual loading of the impurities as much as possible, in order to achieve a high product purity, high delta loading adsorption I desorption and subsequently a high hydrogen recovery.

The process works at ambient temperature. There is no heat required for the regeneration. Changes in temperature are caused only by heat of adsorption and desorption and depressurization. This feature results in an extremely long lifetime of the adsorbent material as no hydrothermal effect will deactivate the adsorbent.

6.2 Adsorption and Regeneration Cycles

Adsorption

The feed gas flows through the adsorbers in upward direction. The impurities are selectively adsorbed - water, heavy hydrocarbons, light hydrocarbons, CO and nitrogen - from bottom to the top. High-purity hydrogen flows to the product line.

The adsorbers on adsorption are on staggered cycles resulting in a highly flexible purification unit which is not influenced by fluctuations of the composition, temperature and pressure of the feed gas.

The proposed PSA system allows a high performance by maximum utilization of the hydrogen stored in an adsorber at the end of adsorption for pressure equalization, repressurization and purging of other adsorbers.

Regeneration

After the adsorption step, the adsorber is regenerated in four basic steps:

- The adsorber is depressurized to a low-pressure level co-current to the feed flow. The co-current depressurization uses the hydrogen stored in the adsorber to repressurize and purge other adsorbers.
- The adsorber is depressurized in the counter-current direction to tail gas pressure (blow-down step) to remove the impurities from the adsorbent.
- The adsorber is purged at tail gas pressure with pure hydrogen to desorb the residual impurities from the adsorbent.
- The adsorber is re-pressurized to adsorption pressure with pure hydrogen coming from adsorbers on the depressurization step.

Pressure Equalization

In order to recover most of the hydrogen stored in an adsorber at the end of the adsorption step, several equalizations are performed.

6.3 Hydrogen Product

High purity hydrogen according to specification is discharged to the hydrogen product line from the top of the adsorber vessels presently on adsorption. Its pressure is equivalent to feed gas pressure minus pressure loss across the PSA unit.

6.4 Tail Gas

The tail gas system homogenizes variations in tail gas composition, flow and pressure. It consists of the tail gas drum(s) and appropriate control devices.

The control of the tail gas is performed as follows: The tail gas flows out of the tail gas system under flow control. The set point of the flow controller is provided by the process control system taking into account feed flow, purge gas flow and tail gas system conditions.

The tail gas stream is compressed and recycled to the CO Shift unit.

MTG Process Flow Diagrams

Chde ET100 TO 604 REDACTED CLAINFOE CONFEDENTIALFFY 12-08-08

eren a meta posa, e è seva re ma

200 Type of Securent Does he TODS CTL PROJECT REDACTED CLAIM OF CONFIDENTIALITY 12-08-08

18 Unde : Sand Sand 1GDS CTL PROJECT REDACTED CLAIM OF CONFIDENTIALITY 12-08-08

Unde 18 TODS CIL PROJECT An Later Year REDACTED CLAIM OF CONFIDENTIALITY 12-08-08

REDACTED - CLAIM OF CONFIDENTIALITY 12-08-08