

#### VIA HAND-DELIVERY

20 December 2013

Mr. Steve Pursley West Virginia Department of Environmental Protection Division of Air Quality 601 57<sup>th</sup> Street SE Charleston, WV 25304

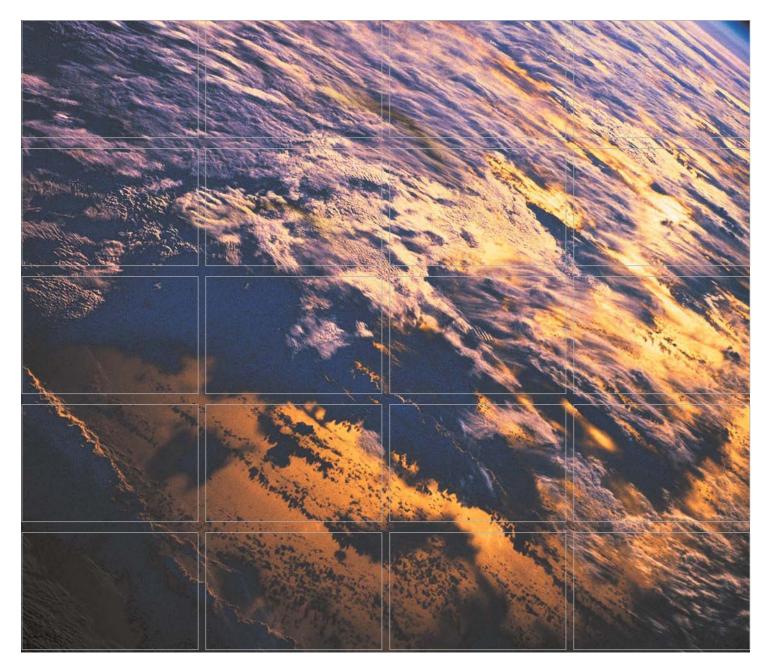
Dear Mr. Pursley:

On behalf of Moundsville Power, LLC enclosed are three (3) copies and a CD of a revised air permit application to construct a proposed new natural gas-fired combined-cycle combustion turbine electric power plant. The original application was submitted to the Department on October 4, 2013. This revision reflects changes in project equipment and design that have evolved since the October 2013 submittal, including:

- Change in General Electric (GE) combustion turbine model from Frame 7FA.05 to 7FA.04, and the addition of duct firing. These changes result in an overall decrease in the nominal electric generating capacity of the plant from 615 megawatts (MW) to 525 MW;
- Changes in combustion turbine startup and shutdown amounts, durations, and emissions;
- Slight changes in the sizes and emission rates for the proposed Auxiliary Boiler and Fire Water Pump, as well as a reduction in proposed annual Auxiliary Boiler operations;
- Elimination of a natural gas-fired Fuel Gas Heater;
- Minor changes in the circulating water rate and TDS concentrations for the proposed Cooling Tower.

This revision also addresses Items 1-4 of your November 4, 2013 incompleteness letter. Items 1 and 2 will be addressed in the upcoming re-publication of the legal ad pertaining to this supplemental application material. Items 3 and 4 are addressed within the enclosed revision.

The incompleteness letter also contained 17 items pertaining to air quality modeling. These items were addressed in a revised modeling protocol that was submitted to the Department on November 27, 2013.


As we discussed during our November 7, 2013 meeting, Moundsville Power hopes to obtain WVDEP approval by June 2014 to allow us to maintain our project schedule. We greatly appreciate the attention you have given to this project so far, and look forward to working with you to meet this aggressive schedule.

Please call me at (716) 856-3333 or Mr. Dave Fewell of ERM at (304) 757-4777 ext. 102 if you have any questions or need any additional information.

Sincerely, Jon M. Williams

Managing Member Moundsville Power, LLC

Enclosures



# Moundsville Power, LLC

Air Permit Application – Revision 1 Combined-Cycle Power Plant Project Moundsville, Marshall County, West Virginia

December 2013

Environmental Resources Management 200 Princeton South, Suite 160 Ewing, NJ 08628 (609) 895-0050



www.erm.com

# TABLE OF CONTENTS

| 1.0 | INTI | RODUCT                    | ION                   |                                         | 1  |  |  |
|-----|------|---------------------------|-----------------------|-----------------------------------------|----|--|--|
|     | 1.1  | PROJE                     | CT DESCRI             | PTION                                   | 1  |  |  |
|     |      | 1.1.1                     | Combusti              | on Turbines                             | 3  |  |  |
|     |      | 1.1.2                     | Auxiliary             | Boiler                                  | 4  |  |  |
|     |      | 1.1.4                     | Emergenc              | cy Generator                            | 5  |  |  |
|     |      | 1.1.5                     | Fire Wate             | r Pump                                  | 5  |  |  |
|     |      | 1.1.6                     | Cooling T             | 'ower                                   | 6  |  |  |
|     | 1.2  | PROJE                     | CT SCHEDI             | JLE                                     | 6  |  |  |
|     | 1.3  | APPLI                     | CATION OI             | RGANIZATION                             | 6  |  |  |
| 2.0 | EXIS | STING AI                  | R QUALITY             | (                                       | 7  |  |  |
|     |      | 2.1.1                     | PM <sub>2.5</sub> (19 | 97 Annual NAAQS)                        | 7  |  |  |
|     |      | 2.1.2                     | SO <sub>2</sub> (2010 | ) 1-Hour NAAQS)                         | 8  |  |  |
|     |      | 2.1.3                     | РМ2.5 (20             | 12 Annual NAAQS)                        | 8  |  |  |
| 3.0 | AIR  | PERMIT                    | TING CONS             | SIDERATIONS                             | 9  |  |  |
|     | 3.1  | OVER                      | VIEW                  |                                         | 9  |  |  |
|     | 3.2  | REGULATORY CONSIDERATIONS |                       |                                         |    |  |  |
|     | 3.3  | AIR CO                    | ONTAMINA              | NT EMISSIONS                            | 10 |  |  |
|     |      | 3.3.1                     | Emission              | Sources                                 | 10 |  |  |
|     |      | 3.3.2                     | Potential             | Emissions                               | 11 |  |  |
|     |      |                           | 3.3.2.1               | Combustion Turbines                     | 12 |  |  |
|     |      |                           | 3.3.2.2               | Auxiliary Boiler                        | 15 |  |  |
|     |      |                           | 3.3.2.3               | Emergency Generator and Fire Water Pump | 16 |  |  |
|     |      |                           | 3.3.2.5               | Cooling Tower                           | 18 |  |  |
|     |      |                           | 3.3.2.6               | Project Emissions Summary               | 18 |  |  |
|     |      | 3.3.3                     |                       | s Air Pollutant Emissions               | 20 |  |  |
|     |      | 3.3.4                     |                       | se Gas Emissions                        | 22 |  |  |
|     |      |                           | 3.3.4.1               | Combustion Equipment                    | 22 |  |  |
|     |      |                           | 3.3.4.2               | Circuit Breakers                        | 22 |  |  |
|     |      | 3.3.5                     | Ammonia               | e Emissions                             | 23 |  |  |
|     | 3.4  |                           |                       | SIGNIFICANT DETERIORATION (PSD)         | 24 |  |  |
|     |      | 3.4.1                     | Applicabi             | 0                                       | 24 |  |  |
|     |      | 3.4.2                     |                       | lable Control Technology                | 26 |  |  |
|     |      |                           | 3.4.2.1               | BACT Analysis Process                   | 26 |  |  |

|     |        | 3.4.2.2                                             | BACT Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                   |
|-----|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|     |        | 3.4.2.3                                             | Additional PSD Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67                                                                   |
| 3.5 | NON-A  | TTAINME                                             | NT NEW SOURCE REVIEW (NA-NSR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                   |
| 3.6 | APPLIC | CABLE RE                                            | QUIREMENTS REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68                                                                   |
|     | 3.6.1  | Federal F                                           | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                                                                   |
|     |        | 3.6.1.1                                             | New Source Performance Standards (NSPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                   |
|     |        | 3.6.1.2                                             | NSPS for GHGs (40 CFR Part 60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                   |
|     |        | 3.6.1.3                                             | Acid Rain Program (40 CFR Parts 72-76, 45 CSR 33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71                                                                   |
|     |        | 3.6.1.4                                             | National Emissions Standards for Hazardous Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |
|     |        |                                                     | Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                   |
|     |        | 3.6.1.5                                             | Compliance Assurance Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                   |
|     |        | 3.6.1.6                                             | Chemical Accident Prevention Provisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73                                                                   |
|     |        | 3.6.1.7                                             | Clean Air Interstate Rule and Cross-State Air Pollutic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m                                                                    |
|     |        |                                                     | Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                   |
|     |        | 3.6.1.8                                             | PM <sub>2.5</sub> Implementation Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                   |
|     |        | 3.6.1.9                                             | Mandatory Reporting of Greenhouse Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                   |
|     | 3.6.2  | State Red                                           | <i>quirements</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76                                                                   |
|     |        | 3.6.2.1                                             | 45 CSR 02 (To Prevent and Control Particulate Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |
|     |        |                                                     | Pollution from Combustion of Fuel in Indirect Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
|     |        |                                                     | Exchangers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76                                                                   |
|     |        | 3.6.2.2                                             | 45 CSR 10 (To Prevent and Control Air Pollution from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n the                                                                |
|     |        |                                                     | Emission of Sulfur Oxides)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76                                                                   |
|     |        | 3.6.2.3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
|     |        |                                                     | Episodes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76                                                                   |
|     |        | 3.6.2.4                                             | 45 CSR 13 (Permits for Construction, Modification,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
|     |        |                                                     | Relocation and Operation of Stationary Sources of Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |
|     |        |                                                     | Pollutants, Notification Requirements, Administrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                    |
|     |        |                                                     | Updates, Temporary Permits, General Permits, Permi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ssion                                                                |
|     |        |                                                     | to Commence Construction, and Procedures for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|     |        |                                                     | Evaluation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76                                                                   |
|     |        | 3.6.2.5                                             | 45 CSR 14 (Permits for Construction and Major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|     |        |                                                     | Modification of Major Stationary Sources of Air Pollu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion                                                                 |
|     |        |                                                     | for the Prevention of Significant Deterioration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77                                                                   |
|     |        | 3.6.2.6                                             | 45 CSR 16 (Standards of Performance for New Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıary                                                                 |
|     |        |                                                     | Sources)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                   |
|     |        | 3.6.2.7                                             | 45 CSR 19 (Permits for Construction and Major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|     |        |                                                     | Modification of Major Stationary Sources of Air Pollu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion                                                                 |
|     |        |                                                     | Which Cause or Contribute to Nonattainment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77                                                                   |
|     |        | 3.6.2.8                                             | 45 CSR 27 (To Prevent and Control the Emissions of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Гохіс                                                                |
|     |        |                                                     | Air Pollutants)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77                                                                   |
|     |        | 3.6.2.9                                             | 45 CSR 30 (Requirements for Operating Permits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77                                                                   |
|     |        | 3.6.2.10                                            | 45 CSR 33 (Acid Rain Provisions and Permits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                   |
|     |        | 3.6.2.4<br>3.6.2.5<br>3.6.2.7<br>3.6.2.8<br>3.6.2.9 | <ul> <li>45 CSR 11 (Prevention of Air Pollution Emergency<br/>Episodes)</li> <li>45 CSR 13 (Permits for Construction, Modification,<br/>Relocation and Operation of Stationary Sources of Air<br/>Pollutants, Notification Requirements, Administrative<br/>Updates, Temporary Permits, General Permits, Permit<br/>to Commence Construction, and Procedures for<br/>Evaluation)</li> <li>45 CSR 14 (Permits for Construction and Major<br/>Modification of Major Stationary Sources of Air Pollu<br/>for the Prevention of Significant Deterioration)</li> <li>45 CSR 16 (Standards of Performance for New Station<br/>Sources)</li> <li>45 CSR 19 (Permits for Construction and Major<br/>Modification of Major Stationary Sources of Air Pollu</li> <li>45 CSR 19 (Permits for Construction and Major<br/>Modification of Major Stationary Sources of Air Pollu</li> <li>45 CSR 27 (To Prevent and Control the Emissions of T<br/>Air Pollutants)</li> <li>45 CSR 30 (Requirements for Operating Permits)</li> </ul> | 7<br>ssion<br>tion<br>7<br>tion<br>7<br>tion<br>7<br>Toxic<br>7<br>7 |

|            | 3.6.2.11            | 45 CSR 34 (Emission Standards for Hazardous Air<br>Pollutants) | 78 |
|------------|---------------------|----------------------------------------------------------------|----|
| 4.0        | SUMMARY             |                                                                | 79 |
| <b>5.0</b> | AIR PERMIT APPLICAT | TION                                                           | 81 |

#### LIST OF TABLES

- TABLE 3-1MOUNDSVILLE POWER PROJECT AIR<br/>CONTAMINANT EMISSION SOURCES
- TABLE 3-2STEADY STATE EMISSIONS COMBUSTIONTURBINES
- TABLE 3-3STARTUP AND SHUTDOWN EMISSIONS -<br/>COMBUSTION TURBINES
- TABLE 3-4TOTAL EMISSIONS COMBUSTION TURBINES
- TABLE 3-5POTENTIAL EMISSIONS AUXILIARY BOILER
- TABLE 3-6POTENTIAL EMISSIONS EMERGENCY<br/>GENERATOR
- TABLE 3-7POTENTIAL EMISSIONS -FIRE WATER PUMP
- TABLE 3-8POTENTIAL EMISSIONS COOLING TOWER
- TABLE 3-9SHORT-TERM EMISSIONS SUMMARY
- TABLE 3-10ANNUAL EMISSIONS SUMMARY
- TABLE 3-11HAP EMISSIONS SUMMARY
- TABLE 3-12GHG EMISSIONS SUMMARY
- TABLE 3-13PSD AND NA-NSR APPLICABILITY SUMMARY
- TABLE 3-14PROPOSED NOX BACT
- TABLE 3-15PROPOSED CO BACT
- TABLE 3-16PROPOSED PM, PM10, AND PM2.5 BACT
- TABLE 3-17PROPOSED VOC BACT
- TABLE 3-18PROPOSED GHG BACT
- TABLE 3-19EMISSION STANDARDS FOR EMERGENCY<br/>ENGINES

LIST OF APPENDICES

### APPENDIX A - CONCEPTUAL PLANT LAYOUT DRAWINGS

# APPENDIX B - AIR QUALITY DISPERSION MODELING PROTOCOL (REVISED NOVEMBER 27, 2013)

APPENDIX C – COMPARISON OF GHG EMISSION RATES AND HEAT RATES FOR COMBUSTION TURBINES

APPENDIX D - AIR PERMIT APPLICATION FORMS

# 1.0 INTRODUCTION

### 1.1 **PROJECT DESCRIPTION**

Moundsville Power, LLC (Moundsville Power) proposes to construct, install, and operate a proposed new combined-cycle combustion turbine (CT) electric power plant (Project).

The Project will be located at an existing Honeywell site in Moundsville, Marshall Country, West Virginia. The plant will occupy approximately 40 acres of the 280 acre site. The Project site is zoned for industrial use, and provides multiple strategic advantages that will allow the plant to produce low cost base load electricity.

The plant will tie into the American Electric Power (AEP) high voltage transmission system in the area, and sell its output into the Pennsylvania-New Jersey-Maryland Interconnection LLC (PJM) regional electric grid.

This new plant requires preconstruction approval of an air permit under the federal Prevention of Significant Deterioration (PSD) program (40 CFR 52.21) and under West Virginia Department of Environmental Protection (WVDEP or The Department) 45 CSR 13 and 14. The original air permit application for this project was submitted to the Department on October 4, 2013. This revised application reflects comments provided by WVDEP and changes in project equipment and design that have evolved since the October 2013 submittal, including:

• Change in General Electric (GE) combustion turbine model from Frame 7FA.05 to 7FA.04, and the addition of duct firing to the Heat Recovery Steam Generators (HRSGs). These changes result in an overall decrease in the nominal electric generating capacity of the plant from approximately 615 megawatts (MW) to approximately 525 MW<sup>1</sup>;

<sup>&</sup>lt;sup>1</sup> Plant output varies by several factors, including ambient temperature, relative humidity, fuel, load level, whether duct firing or evaporative cooling are in use, etc. 525.6 MW is the expected plant output at a 92 °F ambient temperature design condition, 45% relative humidity, at base load, firing a natural gas/ethane fuel mix, with duct firing, and with the combustion turbine evaporative cooling systems off.

- Changes in combustion turbine startup and shutdown amounts, durations, and emissions;
- Minor changes in the sizes and emission rates for the proposed Auxiliary Boiler and Fire Water Pump, as well as a reduction in proposed annual Auxiliary Boiler operations;
- Elimination of a natural gas-fired Fuel Gas Heater;
- Minor changes in the circulating water rate and Total Dissolved Solids (TDS) concentrations for the proposed Cooling Tower.

The emission sources now associated with the Project are:

- Two (2) General Electric (GE) Frame 7FA.04 advanced combinedcycle combustion turbines (CTs), each with HRSGs equipped with duct firing;
- One (1) Auxiliary Boiler with a maximum heat input of 100 million British Thermal Units per hour (MMBtu/hr);
- One (1) 1,500-kilowatt (kW) Emergency Generator;
- One (1) 251-horsepower (hp) emergency Fire Water Pump;
- One (1) wet, mechanical draft Cooling Tower consisting of ten (10) cells.

Appendix A contains conceptual plant layout drawings.

# 1.1.1 Combustion Turbines

Electricity will be generated using two (2) combined-cycle combustion turbines, each with a nominal output of approximately 197 MW and a heat input of approximately 2,087 million British Thermal Units per hour (MMBtu/hr)<sup>2</sup>, on a Higher Heating Value (HHV) basis. Electricity generated by the combustion turbines will be routed through a local electrical substation and sold on the grid.

The highly efficient combined-cycle combustion turbines (CCGT-1 and CCGT-2) will be equipped with inlet evaporative cooling systems, which are used to increase the density of the combustion air, thereby increasing fuel and mass flow and, in turn, power output. The air density increase is accomplished by evaporating water into the inlet air, which decreases its temperature and correspondingly increases its density.

Each combustion turbine will be coupled with a HRSG to produce steam and achieve higher electric power output. The HRSGs contain a series of heat exchangers designed to recover the heat from the combustion turbine exhaust gas and produce steam, as in a boiler. The Project now includes the installation of duct burners to produce additional steam in the HRSGs for additional power output from the steam turbine generators. The maximum duct firing level for each combustion turbine/HRSG module is expected to be 65 MMBtu/hr on a Lower Heating Value (LHV) basis, which equates to 72.1 MMBtu/hr on a HHV basis. The fuel for the duct burners will be the same as for the combustion turbines: either pipelinequality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane. Steam generated in the HRSGs is routed to a steam driven

<sup>&</sup>lt;sup>2</sup> Combustion turbine output and heat input vary by several factors, including ambient temperature, relative humidity, fuel, load level, whether duct firing or evaporative cooling are in use, etc. 196.9 MW is the expected combustion turbine output under several operating cases. 2,087 MMBtu/hr is the expected heat input for a single combustion turbine at a 10 °F ambient temperature design condition, 60% relative humidity, at base load, firing natural gas, with 100% duct firing, and with the evaporative cooling system off.

electric generator. This generator produces up to an additional 203 MW<sup>3</sup> of electricity that will also be routed through a local electrical substation and sold on the grid.

The combustion turbines will be equipped with dry low-NO<sub>x</sub> (DLN) combustors. These combustion controls, along with Selective Catalytic Reduction (SCR) systems, will control emissions of nitrogen oxides (NO<sub>x</sub>) from the combustion turbines. Oxidation Catalysts will be used to control carbon monoxide (CO) and volatile organic compounds (VOC) emissions from the combustion turbines. The SCRs and Oxidation Catalysts will be incorporated into the HRSGs, at locations where the emission control reactions optimally occur.

The SCRs involve the injection of aqueous ammonia (NH<sub>3</sub>) with a concentration of less than 20% by weight into the combustion turbine exhaust gas streams. Ammonia reacts with NO<sub>x</sub> in the combustion turbine exhaust gas streams, reducing it to elemental nitrogen (N<sub>2</sub>) and water vapor (H<sub>2</sub>O). The aqueous ammonia will be stored on-site in one (1) storage tank with a capacity of 20,000 gallons. The aqueous ammonia storage tank will not normally vent to the atmosphere. It will be equipped with pressure relief valves that would only vent in the event of an emergency. The Oxidation Catalysts do not require the use of reagents.

Each combustion turbine will have its own exhaust stack. Each stack is expected to be 180.5 feet above grade.

For permitting and emissions estimating purposes, this application assumes that the combustion turbines will operate 8,760 hours per year (hr/yr).

# 1.1.2 Auxiliary Boiler

A 100 MMBtu/hr Auxiliary Boiler will be used to produce steam for plant support. The Auxiliary Boiler will burn either pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane. The

<sup>&</sup>lt;sup>3</sup> Steam turbine generator output input varies by several factors, including ambient temperature, relative humidity, combustion turbine fuel, load level, whether duct firing or evaporative cooling are in use, etc. 203.33 MW is the expected steam turbine generator output at a at a 73.4 °F ambient temperature design condition, at 60% relative humidity, with the combustion turbines at base load, firing a natural gas/ethane fuel mix, with duct firing, and the evaporative cooling systems off.

Auxiliary Boiler will be equipped with ultra low-NO<sub>x</sub> burners (ULNB) and flue gas recirculation (FGR) to control NO<sub>x</sub> emissions.

For permitting and emissions estimating purposes, this application assumes that the Auxiliary Boiler will operate the equivalent of 2,000 hr/yr.

# 1.1.4 Emergency Generator

A 1,500 kW Emergency Generator (EG-1) will be used for emergency backup electric power. The fuel for the Emergency Generator will be ultra low sulfur diesel (ULSD), with a sulfur content no greater than 0.0015% by weight. The Emergency Generator will be periodically operated for short periods per manufacturer's maintenance instructions to ensure operational readiness in the event of an emergency.

The ULSD fuel for the Emergency Generator will be stored in a 3,000 gallon Emergency Generator Tank (ST-2).

The Emergency Generator will operate no more than 100 hr/yr for maintenance and readiness testing. Other than maintenance and readiness testing, these engines will be used only for emergency purposes. For permitting and emissions estimating purposes, this application assumes that the Emergency Generator will operate a maximum of 500 hr/yr.

# 1.1.5 Fire Water Pump

A 251 hp Fire Water Pump (FP-1) will be used for plant fire protection. The fuel for the Fire Water Pump will also be ULSD, with a sulfur content no greater than 0.0015% by weight. The Fire Water Pump will also be periodically operated for short periods per manufacturer's maintenance instructions to ensure operational readiness in the event of an emergency.

The ULSD fuel for the Fire Water Pump will be stored in a 500 gallon Fire Water Pump Tank (ST-1).

The Fire Water Pump will operate no more than 100 hr/yr for maintenance and readiness testing. Other than maintenance and readiness testing, the Fire Water Pump will be used only for emergency purposes. For permitting and emissions estimating purposes, this application assumes that the Fire Water Pump will operate a maximum of 500 hr/yr.

# 1.1.6 *Cooling Tower*

A wet, mechanical draft Cooling Tower will be used to cool the plant's steam driven electric generator. Make-up water is added to the Cooling Tower as necessary to account for water evaporated in the Cooling Tower. Air from the Cooling Tower will be vented through emission point CT-1. Steam condensate from the steam generator is routed back to the HRSGs for reuse.

The make-up cooling water for the Cooling Tower will come from the nearby Ohio River. High efficiency drift eliminators will be used to control particulate matter (PM) emissions from the Cooling Tower.

For permitting and emissions estimating purposes, this application assumes that the Cooling Tower will operate 8,760 hr/yr.

# 1.2 **PROJECT SCHEDULE**

As discussed during a November 7, 2013 meeting with WVDEP air permitting and modeling staff, Moundsville Power wishes to obtain WVDEP air permit approval by June 2014 to provide sufficient time for equipment ordering, fabrication, construction, and installation, and achieve commercial operation in Summer 2017.

# 1.3 APPLICATION ORGANIZATION

This application is organized into the following major sections:

- Section 2.0 provides a description of the existing site conditions;
- Section 3.0 includes the analysis of potential air quality impacts from the Project; and
- Section 4.0 summarizes conclusions;
- Section 5.0 discusses the air permit application.

The United States Environmental Protection Agency (USEPA) and state agencies, such as the West Virginia Department of Environmental Protection (WVDEP), monitor concentrations of the "criteria" pollutants NO<sub>X</sub>, sulfur dioxide (SO<sub>2</sub>), PM, ozone, CO, and lead (Pb) in ambient air at various locations throughout the United States. If monitoring data indicates that the concentration of a pollutant exceeds the National Ambient Air Quality Standard (NAAQS) in any area, then that area is classified as a "non-attainment area" for that pollutant, meaning that the area is not meeting the ambient standard. Conversely, any area in which the concentration of a criteria pollutant is below the NAAQS is classified as an "attainment area" indicating that the NAAQS is being met.

The attainment/non-attainment designations are made by states and USEPA on a pollutant-by-pollutant basis. Therefore, the air quality in an area may be designated attainment for some pollutants and non-attainment for other pollutants at the same time. For example, many cities are designated non-attainment for ozone, but are in attainment for the other criteria pollutants.

Since the late 1980s, the NAAQS for PM covered " $PM_{10}$ ," which represents PM less than 10 microns in diameter. In 1997, USEPA revised the NAAQS for PM and added a standard for a new form of PM known as  $PM_{2.5}$ , which is PM less than 2.5 microns in diameter.  $PM_{2.5}$ , or "fine particulates," is a pollutant of concern because the small size of the particles allows them to be inhaled deeply into the lungs, and the particles contribute to atmospheric haze and other air quality issues.

The entire State of West Virginia, including the Project location in Marshall County, is in attainment of the NAAQS for all criteria pollutants, except SO<sub>2</sub>, which is discussed in more detail below.

# 2.1.1 PM<sub>2.5</sub> (1997 Annual NAAQS)

Marshall County had been designated as non-attainment for the 1997 annual  $PM_{2.5}$  NAAQS. The 1997 annual  $PM_{2.5}$  NAAQS is set at 15 micrograms per cubic meter ( $\mu g/m^3$ ).

On March 8, 2012, the State of West Virginia through the West Virginia Department of Environmental Protection (WVDEP) formally submitted a request to redesignate the West Virginia portion of the Wheeling Area from nonattainment to attainment of the 1997 annual PM<sub>2.5</sub> NAAQS.

Concurrently, West Virginia submitted a maintenance plan for the area as a State Implementation Plan (SIP) revision to ensure continued attainment throughout the area over the next 10 years.

On December 11, 2012 (77 FR 73575), USEPA published a notice of proposed rulemaking (NPR) determining that the Wheeling Area, which includes Marshall County, has attained the 1997 annual PM<sub>2.5</sub> NAAQS and that the area has met the requirements for redesignation under section 107(d)(3)(E) of the Clean Air Act (CAA). In the December 11, 2012 NPR, USEPA proposed to approve WVDEP's request to change the legal definition of the West Virginia portion of the Wheeling Area from nonattainment to attainment for the 1997 annual PM<sub>2.5</sub> NAAQS.

On September 30, 2013 (78 FR 59841), USEPA finalized this rulemaking, approving the 1997 annual PM<sub>2.5</sub> NAAQS redesignation request, maintenance plan, comprehensive emissions inventory, and insignificance determination for transportation conformity for the West Virginia portion of the area, based on USEPA's determination that the area has met the criteria for redesignation to attainment specified in the Clean Air Act (CAA).

# 2.1.2 SO<sub>2</sub> (2010 1-Hour NAAQS)

Effective October 4, 2013, parts of Marshall County, specifically the Clay, Franklin, and Washington Tax Districts, are designated as non-attainment for the 2010 1-hour SO<sub>2</sub> NAAQS of 75 parts per billion (ppb). The proposed Project is located in the Clay Tax District. Therefore, the proposed Project area is considered non-attainment for SO<sub>2</sub>.

# 2.1.3 *PM*<sub>2.5</sub> (2012 Annual NAAQS)

On December 14, 2012, USEPA adopted a revised annual  $PM_{2.5}$  NAAQS of 12 µg/m<sup>3</sup>. Attainment or non-attainment designations have not yet been made relative to this NAAQS. USEPA is scheduled to make final designations by December 2014. Historical ambient monitoring data has shown annual  $PM_{2.5}$  concentrations above 12 µg/m<sup>3</sup>. However,  $PM_{2.5}$  concentrations measured at ambient monitors located in both Moundsville and Wheeling have been trending downward for over a decade. This downward trend in ambient  $PM_{2.5}$  concentrations is likely to continue, as detailed in the revised air quality dispersion modeling protocol submitted on November 27, 2013. A copy of this revised protocol is provided in **Appendix B**.

#### 3.1 OVERVIEW

Potential air pollutant emissions from the Project were evaluated to ensure that the Project will meet all applicable regulatory limits and requirements. The proposed Project was also evaluated to determine whether its emissions are predicted to have any significant impacts on the existing ambient air quality in the region. This evaluation was completed through air quality dispersion modeling studies that predict the ambient air concentrations resulting from emission sources associated with the proposed Project.

#### 3.2 **REGULATORY CONSIDERATIONS**

The USEPA has defined concentration-based NAAQS for several pollutants, which are set at levels considered protective of the public health and welfare. Specifically, the NAAQS have been defined for six (6) "criteria" pollutants, including PM, SO<sub>2</sub>, CO, nitrogen dioxide (NO<sub>2</sub>), ozone, and Pb.

Three (3) forms of particulate matter are regulated: total suspended particulate (known as PM or TSP), PM<sub>10</sub>, and PM<sub>2.5</sub>. Emission limits and air pollution control requirements are generally more stringent for sources located in areas that do not currently attain a NAAQS for a particular pollutant (known as "non-attainment" areas). The air quality in Marshall County and the vicinity of the proposed Project is in attainment (or unclassifiable) for all pollutants, except SO<sub>2</sub>.

Potential emissions from new and modified emission sources in nonattainment areas are evaluated through the Non-Attainment New Source Review (NA-NSR) permitting program. The goal of the NA-NSR program is to allow construction of new emission sources and modifications to existing sources, while ensuring that progress is made towards attainment of the NAAQS. Triggering NA-NSR for a given pollutant requires mitigation of adverse air quality impacts through implementation of the most stringent levels of air pollution control, known as the Lowest Achievable Emission Rate (LAER), as well as requiring emission "offsets" to be obtained for subject pollutants. Potential emissions from new and modified sources in attainment areas are evaluated through the Prevention of Significant Deterioration (PSD) program. The goal of the PSD program is to ensure that emissions from major sources do not degrade air quality. Triggering PSD requires air pollution control known as the Best Available Control Technology (BACT) and additional impact assessments.

The proposed Moundsville Power Project has the potential to emit the criteria pollutants PM, PM<sub>10</sub>, PM<sub>2.5</sub>, CO, NO<sub>2</sub>, SO<sub>2</sub>, and Pb; ozone precursors; several hazardous air pollutants (HAPs); and greenhouse gases (GHGs). Because the area in which the proposed Project will be located is non-attainment for SO<sub>2</sub>, and attainment/unclassifiable for the other criteria pollutants, applicability of both the PSD and NA-NSR regulations were assessed to ensure no adverse impacts would be caused by the Project. These evaluations are contained in Sections 3.4 (PSD) and 3.5 (NA-NSR).

Other federal and State air quality regulations apply to the proposed Project. These regulations apply either because of the type of emission source to be constructed, or because of the pollutants to be emitted from the Project. These regulations, discussed in Section 3.6, specify limits on pollutant emissions, and impose recordkeeping and reporting requirements.

# 3.3 AIR CONTAMINANT EMISSIONS

# 3.3.1 *Emission Sources*

The emission sources planned as part of the Moundsville Power Project include:

- Two (2) GE Frame 7FA.04 advanced combined-cycle combustion turbines, each with a nominal output of 197 MW and a heat input of 2,087 MMBtu/hr, and each with a HRSG equipped with duct burners;
- One (1) 100-MMBtu/hr Auxiliary Boiler;
- One (1) 1,500-kW Emergency Generator;
- One (1) 251-hp emergency Fire Water Pump;
- One (1) wet, mechanical draft Cooling Tower.

Table 3-1 summarizes the specifications for the proposed equipment.

# Table 3-1Moundsville Power Project - Air Contaminant Emission Sources

| Component<br>(Number of<br>Units)          | Type/Model                             | Size/Capacity                                                   | Fuel(s)                                                      | Proposed Maximum<br>Operations                                                                       |
|--------------------------------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Combustion<br>Turbines/Duct<br>Burners (2) | GE Frame 7FA.04                        | CTs: 2,087 MMBtu/hr<br>197 MW<br>Duct Burners:<br>72.1 MMBtu/hr | Natural gas<br>or<br>0-25% ethane,<br>75-100%<br>Natural gas | 8,760 hr/yr per<br>CT/duct burner                                                                    |
| Auxiliary Boiler<br>(1)                    | To be determined prior to construction | 100 MMBtu/hr                                                    | Natural gas<br>or<br>0-25% ethane,<br>75-100%<br>Natural gas | 2,000 hr/yr                                                                                          |
| Emergency<br>Generator (1)                 | To be determined prior to construction | 1,500-kW                                                        | ULSD                                                         | 500 hr/hr (limited to<br>emergency use and<br>100 hr/yr for<br>maintenance and<br>readiness testing) |
| Emergency Fire<br>Water Pump (1)           | To be determined prior to construction | 251-hp                                                          | ULSD                                                         | 500 hr/yr (limited to<br>emergency use and<br>100 hr/yr for<br>maintenance and<br>readiness testing) |
| Cooling Tower<br>(1)                       | To be determined prior to construction | 159,000 gpm                                                     | N/A                                                          | 8,760 hr/yr                                                                                          |

# 3.3.2 *Potential Emissions*

Potential emissions from the Project emission sources were estimated using various calculation methodologies including vendor data, emission factors from USEPA's Compilation of Air Pollutant Emission Factors (AP-42) publication, material balances, New Source Performance Standards (NSPS) emission standards, and/or engineering calculations. Backup emission calculations are provided in Attachment N of the Air Permit Application Forms package in **Appendix D** of this application.

### 3.3.2.1 *Combustion Turbines*

# 3.3.2.1.1 Steady State Operations

Potential emissions of NO<sub>x</sub>, CO, SO<sub>2</sub>, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), and carbon dioxide (CO<sub>2</sub>) from the combustion turbines were based on vendor specifications provided by GE.

Potential short-term (lb/hr) emission rates were determined based on the GE data, which encompasses the expected range of combustion turbine operating loads and ambient temperatures, with and without the use of inlet air evaporative cooling, and with and without duct firing. The GE data addresses both pipeline-quality natural gas firing and the firing of a blend of pipeline-quality natural gas and up to 25% ethane. From the GE data, the potential short-term emission rates for NO<sub>x</sub>, CO, SO<sub>2</sub>, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, H<sub>2</sub>SO<sub>4</sub>, and CO<sub>2</sub> for the combustion turbines were established by selecting the maximum lb/hr emission rates across the expected operating load and ambient temperature ranges.

Potential annual (tons/yr) emissions were then calculated by multiplying the maximum short-term emission rates by 8,760 hr/yr, then dividing by 2,000 to convert pounds to tons.

Pb emissions were estimated using AP-42 emission factors.

Maximum short-term and annual emissions from the combustion turbines during steady state operations are summarized in Table 3-2.

|                       | 10                                 | СТ                              | 2 CTs                              |                                 |  |
|-----------------------|------------------------------------|---------------------------------|------------------------------------|---------------------------------|--|
| Pollutant             | Short Term<br>Emissions<br>(lb/hr) | Annual<br>Emissions<br>(ton/yr) | Short Term<br>Emissions<br>(lb/hr) | Annual<br>Emissions<br>(ton/yr) |  |
| VOC <sup>(2)</sup>    | 5.3                                | 23.1                            | 10.6                               | 46.3                            |  |
| NO <sub>x</sub> (3)   | 15.2                               | 66.6                            | 30.4                               | 133.2                           |  |
| CO                    | 9.2                                | 40.5                            | 18.5                               | 80.9                            |  |
| $SO_2$                | 0.5                                | 2.4                             | 1.1                                | 4.8                             |  |
| $PM/PM_{10}/PM_{2.5}$ | 7.6                                | 33.1                            | 15.1                               | 66.2                            |  |
| Pb                    | 0.001                              | 0.004                           | 0.002                              | 0.01                            |  |
| $H_2SO_4$             | 0.351                              | 1.5                             | 0.7                                | 3.1                             |  |
| CO <sub>2</sub>       | 254,005                            | 1,112,542                       | 508,010                            | 2,225,084                       |  |
| CH <sub>4</sub>       | 6.9                                | 30.2                            | 13.8                               | 60.5                            |  |
| N <sub>2</sub> O      | 0.5                                | 2.0                             | 0.9                                | 4.0                             |  |
| GHG (Mass Basis)      | 254,178                            | 1,112,574                       | 508,025                            | 2,225,149                       |  |
| GHG (CO2e Basis)      | 254,315                            | 1,113,898                       | 508,629                            | 2,227, 797                      |  |

 Table 3-2
 Steady State Emissions - Combustion Turbines/Duct Burners<sup>(1)</sup>

(1) Emissions are post-HRSG stack emissions.

(2) VOC emissions are expressed as methane (CH<sub>4</sub>).

(3)  $NO_x$  emissions are expressed as nitrogen dioxide ( $NO_2$ ).

# 3.3.2.1.2 Startups and Shutdowns

After one (1) year of "continuous" operation, each combustion turbine is estimated to undergo 260 startups per year. Of these 260 startups, approximately 208 are expected to be hot startups, 48 are expected to be warm startups, and four (4) are expected to be cold startups. Accordingly, approximately 260 shutdowns per year are expected.

A hot start is defined as a start following 8 hours of shutdown or less. A warm start is defined as a start following 48 hours of shutdown. A cold start is defined as a start following 72 hours of shutdown or more. Any start following more than 8 hours of shutdown or less than 72 hours of shutdown is classified as a warm start. Table 3-3 summarizes startup and shutdown emissions and event durations for each combustion turbine, as well as the total startup and shutdown emissions from the two (2) combustion turbines.

MOUNDSVILLE POWER

DECEMBER 2013

| -         |                           | Emissions        | Duration    | No. Events | Total<br>Duration | Emissions | Emissions<br>(tons/yr) | Emissions<br>(tons/yr) |
|-----------|---------------------------|------------------|-------------|------------|-------------------|-----------|------------------------|------------------------|
| Туре      | Pollutant                 | (lb/event)       | (min/event) | per Year   | (hr/yr)           | (1b/yr)   | 1 CT                   | 2 CT                   |
|           | $NO_x$ (as $NO_2$ )       | 10               | 25          | 200        | 0 ( <b>F</b>      | 2         | • •                    | 1.0                    |
| <u>.</u>  | Hot                       | 19               | 25          | 208        | 86.7              | 3,952     | 2.0                    | 4.0                    |
| Startups  | Warm                      | 33               | 40          | 48         | 32.0              | 1,584     | 0.8                    | 1.6                    |
|           | Cold                      | 47               | 55          | 4          | 3.7               | 188       | 0.1                    | 0.2                    |
| Shutdowns |                           | 5                | 14          | 260        | 60.7              | 1,300     | 0.7                    | 1.3                    |
|           |                           |                  |             |            | Total             | 7,024     | 3.5                    | 7.0                    |
|           | СО                        |                  |             |            |                   |           |                        |                        |
|           | Hot                       | 273              | 25          | 208        | 86.7              | 56,784    | 28.4                   | 56.8                   |
| Startups  | Warm                      | 280              | 40          | 48         | 32.0              | 13,440    | 6.7                    | 13.4                   |
|           | Cold                      | 1381             | 55          | 4          | 3.7               | 5,524     | 2.8                    | 5.5                    |
| Shutdowns |                           | 175              | 14          | 260        | 60.7              | 45,500    | 22.8                   | 45.5                   |
|           |                           |                  |             |            | Total             | 121,248   | 60.6                   | 121.2                  |
|           | VOC (as CH <sub>4</sub> ) |                  |             |            |                   |           |                        |                        |
|           | Hot                       | 55               | 25          | 208        | 86.7              | 11,440    | 5.7                    | 11.4                   |
| Startups  | Warm                      | 56               | 40          | 48         | 32.0              | 2,688     | 1.3                    | 2.7                    |
|           | Cold                      | 380              | 55          | 4          | 3.7               | 1,520     | 0.8                    | 1.5                    |
| Shutdowns |                           | 46               | 14          | 260        | 60.7              | 11,960    | 6.0                    | 12.0                   |
|           |                           |                  |             |            | Total             | 27,608    | 13.8                   | 27.6                   |
|           | PM/PM <sub>10</sub> /PM   | I <sub>2.5</sub> |             |            |                   |           |                        |                        |
|           | Hot                       | 2.7              | 25          | 208        | 86.7              | 562       | 0.3                    | 0.6                    |
| Startups  | Warm                      | 4.3              | 40          | 48         | 32.0              | 206       | 0.1                    | 0.2                    |
|           | Cold                      | 6                | 55          | 4          | 3.7               | 24        | 0.01                   | 0.02                   |
| Shutdowns |                           | 1.5              | 14          | 260        | 60.7              | 390       | 0.2                    | 0.4                    |
|           |                           |                  |             |            | Total             | 1,182     | 0.6                    | 1.2                    |

#### Table 3-3Startup and Shutdown Emissions - Combustion Turbines<sup>(1), (2)</sup>

<sup>(1)</sup>Startup and shutdown emission rates obtained from GE performance data.

<sup>(2)</sup> Startup and shutdown emission rates were not calculated for SO<sub>2</sub>, Pb, H<sub>2</sub>SO<sub>4</sub>, or GHGs. Worst-case emissions for those pollutants were assumed to be steady-state operation.

# 3.3.2.1.3 Total Combustion Turbine/Duct Burner Emissions

Table 3-4 summarizes the total annual emissions from the combustion turbines/duct burners, including emissions from both steady state operations and combustion turbine startup and shutdown events.

| Pollutant                              | Maximum Annual<br>Steady State Emissions:<br>2 CTs<br>(tons/yr) | Startup and<br>Shutdown<br>Emissions: 2 CTs<br>(tons/yr) | Total<br>Emissions: 2<br>CTs<br>(tons/yr) |
|----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| VOC (as CH <sub>4</sub> )              | 46.3                                                            | 27.6                                                     | 73.9                                      |
| NO <sub>x</sub> (as NO <sub>2</sub> )  | 133.2                                                           | 7.0                                                      | 140.2                                     |
| CO                                     | 80.9                                                            | 121.2                                                    | 202.2                                     |
| $SO_2$                                 | 4.8                                                             | (1)                                                      | 4.8                                       |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 66.2                                                            | 1.18                                                     | 67.4                                      |
| Pb                                     | 0.01                                                            | (1)                                                      | 0.01                                      |
| $H_2SO_4$                              | 3.1                                                             | (1)                                                      | 3.1                                       |
| GHG (CO <sub>2</sub> e Basis)          | 2,227,797                                                       | <b></b> (1)                                              | 2,227,797                                 |

### Table 3-4Total Emissions - Combustion Turbines/Duct Burners<sup>(1)</sup>

<sup>(1)</sup> Startup and shutdown emission rates were not calculated for SO<sub>2</sub>, Pb, H<sub>2</sub>SO<sub>4</sub>, or GHGs. Worstcase emissions for those pollutants were assumed to be steady-state operation.

#### 3.3.2.2 Auxiliary Boiler

Auxiliary Boiler emissions were based on performance information from a potential vendor.  $PM_{10}$  and  $PM_{2.5}$  emissions were assumed equal to PM emissions. Short-term SO<sub>2</sub> emissions were conservatively based on a sulfur content of the fuel of 2.0 grains per 100 dry standard cubic feet (gr/100 dscf). In addition, AP-42 factors were used for estimating emissions of Pb and HAPs from the boiler. HAP emissions are discussed in Section 3.3.3. The following assumptions were made to calculate Auxiliary Boiler emissions:

- Use of both pipeline-quality natural gas firing and the firing of a blend of pipeline-quality natural gas and up to 25% ethane;
- Use of low-NO<sub>x</sub> burners with FGR; and
- Maximum annual heat input of 200,000 MMBtu per year (MMBtu/yr), which is equivalent to 2,000 hr/yr of operation at a maximum heat input of 100 MMBtu/hr.

MOUNDSVILLE POWER

DECEMBER 2013

Potential emissions of regulated pollutants from the Auxiliary Boiler are summarized in Table 3-5.

| Pollutant                              | Maximum Short Term<br>Emission Rate | Maximum Annual<br>Emissions |
|----------------------------------------|-------------------------------------|-----------------------------|
|                                        | (1b/ hr)                            | (tons/yr)                   |
| VOC (as CH <sub>4</sub> )              | 0.6                                 | 0.6                         |
| NO <sub>x</sub> (as NO <sub>2</sub> )  | 2.0                                 | 2.0                         |
| CO                                     | 4.0                                 | 4.0                         |
| $SO_2$                                 | 0.06                                | 0.06                        |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.5                                 | 0.5                         |
| Pb                                     | 4.85E-05                            | 4.85E-05                    |
| $H_2SO_4$                              | 4.46E-03                            | 4.46E-03                    |
| GHG (CO <sub>2</sub> e Basis)          | 12,081                              | 12,081                      |

# Table 3-5Potential Emissions - Auxiliary Boiler

#### 3.3.2.3 Emergency Generator and Fire Water Pump

Potential emissions of regulated pollutants from the Emergency Generator and Fire Water Pump are summarized in Tables 3-6 and 3-7, respectively. The vendor for the Emergency Generator has not yet been selected. Emissions for the Emergency Generator were estimated based on emission factors from potential vendors, and/or the applicable NSPS emission standards for stationary compression ignition (CI) reciprocating internal combustion engines (RICE) specified in 40 CFR 60, Subpart IIII.

 $PM_{10}$  and  $PM_{2.5}$  emissions were assumed to equal PM emissions. The emission factors assume operation of the Emergency Generator at full load, which is reasonable given its expected use.

The vendor for the Fire Water Pump has not yet been selected. However, the Fire Water Pump emissions will not exceed the emission limits specified in NSPS Subpart IIII. As such,  $NO_x$ , PM and  $PM_{10}$ , and CO emissions from the Fire Water Pump are based on the applicable emission standards for these pollutants in NSPS Subpart IIII. Emissions of VOC,  $SO_2$  and HAPs and were based on AP-42 emission factors.

Per 40 CFR 60, Subpart IIII, total hours for maintenance and readiness testing will not exceed 100 hr/yr. Other than maintenance and readiness testing, these units are utilized only for emergency purposes, and guidance for estimating potential emissions from emergency units is to assume maximum annual operation of 500 hr/yr.

For both the Fire Water Pump and the Emergency Generator, potential emissions were calculated based on 500 hr/yr of operation.

HAP emission estimates are discussed in Section 3.3.3.

| Pollutant                     | Emergency<br>Generator<br>Maximum Short<br>Term Emissions | Emergency<br>Generator<br>Maximum Annual<br>Emissions |
|-------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
|                               | (1b/hr)                                                   | (tons/yr)                                             |
| VOC (as CH <sub>4</sub> )     | 1.24                                                      | 0.31                                                  |
| $NO_x$ (as $NO_2$ )           | 11.2                                                      | 2.79                                                  |
| CO                            | 11.53                                                     | 2.88                                                  |
| $SO_2$                        | 0.02                                                      | 0.006                                                 |
| $PM/PM_{10}/PM_{2.5}$         | 0.40                                                      | 0.10                                                  |
| Pb                            |                                                           |                                                       |
| $H_2SO_4$                     |                                                           |                                                       |
| GHG (CO <sub>2</sub> e Basis) | 2,416                                                     | 604                                                   |

### Table 3-6Potential Emissions - Emergency Generator

#### Table 3-7Potential Emissions - Fire Water Pump

| , , ,                                  | Fire Water Pump<br>Maximum Short<br>Term Emissions<br>(lb/hr) | Fire Water Pump<br>Maximum Annual<br>Emissions<br>(tons/yr) |  |
|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|--|
| VOC (as CH <sub>4</sub> )              | 0.17                                                          | 0.04                                                        |  |
| · · · · ·                              | 1.49                                                          | 0.37                                                        |  |
| CO                                     | 1.44                                                          | 0.36                                                        |  |
| $SO_2$                                 | 0.003                                                         | 7.4E-04                                                     |  |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.08                                                          | 0.021                                                       |  |
| Pb                                     |                                                               |                                                             |  |
| $H_2SO_4$                              |                                                               |                                                             |  |
| GHG (CO2e Basis)                       | 309                                                           | 77                                                          |  |

### 3.3.2.5 Cooling Tower

Potential emissions from the proposed Cooling Tower are limited to PM emissions. The drift emissions from the Cooling Towers are limited to the particulate associated with dissolved solids in liquid droplets that become entrained in the air stream exiting the Cooling Tower. The particle size distribution is dependent on several factors including the design of the Cooling Tower, the efficiency of the drift eliminators, and the concentration of TDS in the circulating water.

PM emission estimates from the proposed Cooling Towers are based on a water circulation rate of 159,000 gallons per minute (gpm), a drift rate of 0.0005% of the circulating water rate, a maximum TDS content in the make-up cooling water of 300 mg/L, and a maximum of six (6) cycles of concentration in the circulating water.

Based on the Reisman and Frisbie method, "Calculating Realistic  $PM_{10}$ Emissions from Cooling Towers" (Reisman and Frisbie, 2002),  $PM_{10}$ emissions are estimated to be less than 50% of the PM emissions at the assumed TDS concentration (i.e. a maximum of 3,000 mg/L in the circulating water). Likewise,  $PM_{2.5}$  emissions are estimated to be less than 0.2% of the PM emissions at the assumed TDS concentration.

Potential emissions from the Cooling Tower are summarized in Table 3-8.

| Pollutant         | Maximum Short Term<br>Emissions | Maximum Annual<br>Emissions |  |  |
|-------------------|---------------------------------|-----------------------------|--|--|
|                   | (lb/hr)                         | (tons/yr)                   |  |  |
| PM                | 0.72                            | 3.2                         |  |  |
| $PM_{10}$         | 0.5                             | 2.1                         |  |  |
| PM <sub>2.5</sub> | 0.0016                          | 0.0068                      |  |  |

# Table 3-8Potential Emissions - Cooling Tower

# 3.3.2.6 Project Emissions Summary

Table 3-9 summarizes the potential short-term emissions rates for the proposed Project. Potential annual emissions from the Project are summarized in Table 3-10.

#### Table 3-9Short-Term Emissions Summary

| Emission Unit                         | PM         | PM <sub>10</sub> and PM <sub>2.5</sub> <sup>6</sup> | $SO_2$      | NO <sub>X</sub><br>(as NO <sub>2</sub> ) | СО          | VOC<br>(as CH4) | $H_2SO_4$  | Pb          |
|---------------------------------------|------------|-----------------------------------------------------|-------------|------------------------------------------|-------------|-----------------|------------|-------------|
| CT/Duct Burner<br>(each) <sup>1</sup> | 7.6 lb/hr  | 7.6 lb/hr                                           | 0.5 lb/hr   | 15.2 lb/hr                               | 9.2 lb/hr   | 5.3 lb/hr       | 0.35 lb/hr | 0.001 lb/hr |
| Auxiliary Boiler <sup>3</sup>         | 0.5 lb/hr  | 0.5 lb/hr                                           | 0.06 lb/hr  | 2.00 lb/hr                               | 4.00 lb/hr  | 0.60 lb/hr      |            |             |
| Emergency Generator                   | 0.40 lb/hr | 0.40 lb/hr                                          | 0.02 lb/hr  | 1.24 lb/hr                               | 11.53 lb/hr | 1.24 lb/hr      |            |             |
| Fire Water Pump <sup>4</sup>          | 0.08 lb/hr | 0.08 lb/hr                                          | 0.003 lb/hr | 1.49 lb/hr                               | 1.44 lb/hr  | 0.17 lb/hr      |            |             |
| Cooling Tower <sup>5</sup>            | 0.72 lb/hr | 0.5/0.0016 lb/hr                                    |             |                                          |             |                 |            |             |

<sup>1</sup> Emissions based on GE-supplied data, except for Pb, which is based on AP-42, Section 1.4.

 $^{\rm 2}$  Emissions based on emission factors in AP-42, Section 1.4.

<sup>3</sup> All emissions factors from a potential boiler vendor, except for SO<sub>2</sub> and Pb, which are based on AP-42, Section 1.4.

<sup>4</sup> NO<sub>x</sub>, CO, VOC, PM, and PM<sub>10</sub> emission factors based on NSPS Subpart IIII. SO<sub>2</sub> emission based on sulfur content of ULSD fuel.

<sup>5</sup>Emissions based on a maximum TDS concentration of 3,000 mg/L in the circulating water, and the Reisman/Frisbie method to estimate the PM<sub>10</sub> and PM<sub>2.5</sub> fractions.

<sup>6</sup> Assumes PM<sub>2.5</sub> is equivalent to PM<sub>10</sub>, except for the Cooling Tower.

| Unit                                | VOC<br>(as CH4) | NO <sub>x</sub><br>(as NO <sub>2</sub> ) | СО    | SO <sub>2</sub> | <b>PM</b> <sub>10</sub> | PM   | PM <sub>2.5</sub> | Рb      | H <sub>2</sub> SO <sub>4</sub> | CO <sub>2</sub> e |
|-------------------------------------|-----------------|------------------------------------------|-------|-----------------|-------------------------|------|-------------------|---------|--------------------------------|-------------------|
| CTs (2): Steady<br>State            | 46.3            | 133.2                                    | 80.9  | 4.8             | 66.2                    | 66.2 | 66.2              | 0.01    | 3.07                           | 2,227,797         |
| CTs (2):<br>Startups &<br>Shutdowns | 27.6            | 7.0                                      | 121.2 |                 | 1.2                     | 1.2  | 1.2               |         |                                |                   |
| Auxiliary Boiler                    | 0.60            | 2.00                                     | 4.0   | 0.06            | 0.50                    | 0.50 | 0.50              | 4.9E-05 | 0.004                          | 12,081            |
| Emergency<br>Generator              | 0.3             | 2.8                                      | 2.9   | 0.01            | 0.10                    | 0.10 | 0.10              |         |                                | 604               |
| Fire Water<br>Pump                  | 0.04            | 0.37                                     | 0.36  | 0.00            | 0.02                    | 0.02 | 0.02              |         |                                | 77                |
| Cooling Tower                       |                 |                                          |       |                 | 2.1                     | 3.2  | 0.01              |         |                                |                   |
| Circuit Breakers                    |                 |                                          |       |                 |                         |      |                   |         |                                | 58                |
| Total                               | 74.8            | 145.3                                    | 209.4 | 4.8             | 70.1                    | 71.2 | 68.0              | 0.01    | 3.1                            | 2,240,618         |

Table 3-10Annual Emissions Summary (tons/yr)

#### 3.3.3 Hazardous Air Pollutant Emissions

Appropriate AP-42 sections (Section 1.4 for natural gas combustion, Section 3.3 for Gasoline and Diesel Industrial Engines, and Section 3.4 for Large Stationary Diesel and All Stationary Dual-fuel Engines) provide emission factors for organic and metal compounds resulting from combustion, some of which are HAPs. Estimated HAP emissions from the proposed Project are summarized in Table 3-11. A facility is considered a "major" source of HAPs if it has the potential to emit 10 tons/yr or more of any individual HAP, or 25 tons/yr or more of all HAPs combined. As shown in Table 3-11, maximum emissions of any single HAP are 5.54 tons/yr (formaldehyde), and estimated total HAP emissions from the Project are 12.1 tons/yr. Therefore, the Project is not a major source of HAPs.

| Hazardous Air<br>Pollutant (HAP) | One CT<br>(lb/hr) | One DB<br>(lb/hr) | Auxiliary<br>Boiler (lb/hr) | Emergency<br>Generator<br>(lb/hr) | Fire Water<br>Pump (lb/hr) | Facility<br>Total<br>(tons/yr) |
|----------------------------------|-------------------|-------------------|-----------------------------|-----------------------------------|----------------------------|--------------------------------|
| 2-Methylnaphthalene              | NA                | 1.68E-06          | 2.33E-06                    | NA                                | NA                         | 1.70E-05                       |
| Acetaldehyde                     | 8.356E-02         | NA                | NA                          | 3.72E-04                          | 1.45E-03                   | 7.32E-01                       |
| Acrolein                         | 1.34E-02          | NA                | NA                          | 1.16E-04                          | NA                         | 1.17E-01                       |
| Arsenic                          | NA                | 1.40E-05          | 1.94E-05                    | NA                                | NA                         | 1.42E-04                       |
| Benzene                          | 2.50E-02          | 1.47E-04          | 2.04E-04                    | 1.15E-02                          | 1.76E-03                   | 2.24E-01                       |
| Cadmium                          | NA                | 7.70E-05          | NA                          | NA                                | NA                         | 6.74E-04                       |
| Chromium                         | NA                | 9.80E-05          | 1.36E-04                    | NA                                | NA                         | 9.94E-04                       |
| Cobalt                           | NA                | 5.88E-06          | 8.16E-06                    | NA                                | NA                         | 5.97E-05                       |
| Dichlorobenzene                  | NA                | 8.40E-05          | 1.17E-04                    | NA                                | NA                         | 8.52E-04                       |
| Ethylbenzene                     | 6.68E-02          | NA                | NA                          | NA                                | NA                         | 5.85E-01                       |
| Fluoranthene                     | NA                | 2.10E-07          | 2.91E-07                    | NA                                | NA                         | 2.13E-06                       |
| Fluorene                         | NA                | 1.96E-07          | 2.72E-07                    | NA                                | NA                         | 1.99E-06                       |
| Formaldehyde                     | 6.26E-01          | 5.25E-03          | 7.28E-03                    | 1.17E-03                          | 2.23E-03                   | 5.54E+00                       |
| Hexane                           | NA                | 1.26E-01          | 1.75E-01                    | NA                                | NA                         | 1.28E+00                       |
| Manganese                        | NA                | 2.66E-05          | 3.69E-05                    | NA                                | NA                         | 2.70E-04                       |
| Mercury                          | NA                | 1.82E-05          | 2.52E-05                    | NA                                | NA                         | 1.85E-04                       |
| Naphthalene                      | 2.71E-03          | 4.27E-05          | 5.92E-05                    | 1.92E-03                          | 1.60E-04                   | 2.47E-02                       |
| Nickel                           | NA                | 1.47E-04          | 2.04E-04                    | NA                                | NA                         | 1.49E-03                       |
| Phenanathrene                    | NA                | 1.19E-06          | 1.65E-06                    | NA                                | NA                         | 1.21E-05                       |
| POM                              | 4.59E-03          | NA                | NA                          | 3.13E-03                          | 3.18E-04                   | 4.11E-02                       |
| Pyrene                           | NA                | 3.50E-07          | 4.85E-07                    | NA                                | NA                         | 3.55E-06                       |
| Toluene                          | 2.71E-01          | 2.38E-04          | 3.30E-04                    | 4.15E-03                          | 7.73E-04                   | 2.38E+00                       |
| Xylenes                          | 1.34E-01          | NA                | NA                          | 2.85E-03                          | 5.39E-04                   | 1.17E+00                       |
| Maximum Individua                | 1 HAP             |                   |                             |                                   |                            | 5.54                           |
| Total HAPs                       |                   |                   |                             |                                   |                            | 12.1                           |

# Table 3-11HAP Emissions Summary

MOUNDSVILLE POWER

DECEMBER 2013

# 3.3.4 Greenhouse Gas Emissions

# 3.3.4.1 *Combustion Equipment*

Potential GHG emissions [i.e.  $CO_2$ , methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O)] were estimated for all combustion sources associated with the Project. Potential emissions of  $CO_2$  from the combustion turbines were based on vendor specifications provided by GE. For all other pollutants and combustion equipment, the emission factors and methodology were obtained from USEPA's Mandatory Greenhouse Gas Reporting Rule at 40 CFR 98. GHG emissions on an individual and carbon dioxide equivalent (CO<sub>2</sub>e) basis are summarized in Table 3-12. In 40 CFR 98, USEPA defines CO<sub>2</sub>e emissions to be equivalent to  $CO_2$  emissions plus 25 times the CH<sub>4</sub> emissions plus 298 times the N<sub>2</sub>O emissions, utilizing the applicable Global Warming Potentials (GWPs).<sup>4</sup>

Potential GHG emissions from the combustion turbines/duct burners, Auxiliary Boiler, Emergency Generator, and Fire Water Pump are all based on their maximum annual heat inputs, the CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O emission factors listed in 40 CFR 98, Subpart C (General Stationary Fuel Combustion Sources), and the applicable GWPs.

# 3.3.4.2 *Circuit Breakers*

The Project includes the installation of circuit breakers that contain sulfur hexafluoride (SF<sub>6</sub>), which is a GHG. Planned SF<sub>6</sub>-containing circuit breakers include two (2) Generator Circuit Breakers, each with approximately 25 pounds (lbs) of SF<sub>6</sub>, and three (3) Switchyard Breakers, each with approximately 325 lbs of SF<sub>6</sub>.

SF<sub>6</sub> is a fluorinated compound with unique chemical properties that make it an efficient electrical insulator used for electrical insulation, arc quenching, and current interruption in high-voltage electrical equipment. SF<sub>6</sub> is used in sealed and safe systems, which under normal circumstances

<sup>&</sup>lt;sup>4</sup> On November 15, 2013, USEPA Administrator Gina McCarthy signed rule revisions that changed the GWP for CH<sub>4</sub> from 21 to 25, and the GWP for N<sub>2</sub>O from 310 to 298. The final rule revisions are expected to be published in the *Federal Register* in December 2013.

do not leak gas to the atmosphere. Hence,  $SF_6$  leakage into the atmosphere is expected to be minimal.

Potential SF<sub>6</sub> fugitive emissions were calculated assuming a worst-case leak rate of 0.5% per year, which has been taken from USEPA's technical paper titled, "SF<sub>6</sub> Leak Rates from High Voltage Circuit Breakers - EPA Investigates Potential Greenhouse Gas Emissions Source," by J. Blackman, Program Manager, USEPA and M. Averyt, ICF Consulting, and Z. Taylor, ICF Consulting. This leak rate was applied to the number of components and anticipated SF<sub>6</sub> content of each component, as described above. The annual CO<sub>2</sub>e emission rate was calculated by multiplying the mass emission rate of SF<sub>6</sub> by its GWP of SF<sub>6</sub>, 22,800.<sup>5</sup>

Potential annual GHG emissions from the Project are summarized in Table 3-12.

| Unit                    | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | $SF_6$    | CO <sub>2</sub> e |
|-------------------------|-----------------|-----------------|------------------|-----------|-------------------|
| •                       | (tons/yr)       | (tons/yr)       | (tons/yr)        | (tons/yr) | (tons/yr)         |
| CTs/Duct Burners        | 2,225,084       | 60.5            | 4.0              |           | 2,227,797         |
| Auxiliary Boiler        | 12,058          | 3.3E-01         | 5.0E-02          |           | 12,081            |
| Emergency Generator     | 602             | 2.4E-02         | 4.9E-03          |           | 604               |
| Fire Water Pump         | 77              | 3.1E-03         | 6.3E-04          |           | 77                |
| Circuit Breakers        |                 |                 |                  | 2.56E-03  | 58                |
| Total CO <sub>2</sub> e | 2,237,821       | 59              | 4                | 2.56E-03  | 2,240,618         |

Table 3-12GHG Emissions Summary

Emissions estimated based on 40 CFR 98, Subpart C.

 $CO_2e = CO_2 \text{ emissions} + 25(CH_4 \text{ emissions}) + 298(N_2O \text{ emissions}) + 22,800(SF_6 \text{ emissions})$ 

# 3.3.5 Ammonia Emissions

The SCRs that will control  $NO_x$  emissions from the combustion turbines/duct burners involve the injection of aqueous ammonia with a

<sup>&</sup>lt;sup>5</sup> The rule revisions signed by USEPA Administrator Gina McCarthy on November 15, 2013 changed the GWP for SF<sub>6</sub> from 23,900 to 22,800. The final rule revisions are expected to be published in the *Federal Register* in December 2013.

concentration of less than 20% by weight into the combustion turbine exhaust gas streams. The aqueous ammonia will be injected via injection grids located upstream of each SCR catalyst. The SCR catalyst beds provide active sites where, as the combustion turbine exhaust gases pass through the beds, the vast majority of the ammonia reacts with  $NO_x$  in the exhaust stream, reducing it to elemental nitrogen and water vapor.

Small amounts of unreacted ammonia that pass through the catalysts and emitted to the atmosphere are known as "ammonia slip". A review of recently permitted combined-cycle natural gas-fired combustion turbine projects, including those that have installed similar model GE units (Frame 7FA), indicates that many are permitted with ammonia slip limits of 5 ppmvd @ 15% O<sub>2</sub>. Accordingly, Moundsville Power proposes an ammonia slip limit of 5 ppmvd @ 15% O<sub>2</sub>.

# 3.4 PREVENTION OF SIGNIFICANT DETERIORATION (PSD)

# 3.4.1 Applicability

The proposed Project was evaluated to determine whether potential emissions of PSD-regulated pollutants would classify the Project as a major source under PSD. For most PSD pollutants, the major source threshold is either 100 tons/yr or 250 tons/yr, depending on the type of source. For the proposed Project, a 250 tons/yr major source threshold applies pursuant to 40 CFR 52.21(b)(1)(i)(b) because it does not fit into one of the source categories with a 100 tons/yr major source threshold under 40 CFR 52.21(b)(1)(i)(a).

In 2010, USEPA finalized regulations, referred to as the "Tailoring Rule," governing the permitting of GHG emissions from major stationary sources under PSD. In the absence of the Tailoring Rule, any source that had the potential to emit GHG at levels greater than the major source thresholds of 100 or 250 tons/yr would be subject to PSD (similar to all the other pollutants). However, the 100/250 tons/yr threshold is extraordinarily low for GHGs given that GHGs (particularly  $CO_2$ ) are emitted in much larger quantities from combustion sources than traditional pollutants such as  $NO_X$  or  $SO_2$ . As such, USEPA "tailored" PSD regulations to increase the significance threshold, and adopted a phased approach to implementing PSD requirements for GHGs.

The Tailoring Rule defines new sources that have GHG emissions greater than 100,000 tons/yr, or existing sources that have been modified and result in GHG emissions increases of greater than 75,000 tons/yr, as major sources under PSD. Regulated GHGs are defined as the aggregate sum of six (6) GHGs, including CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF<sub>6</sub>). However, combustion sources generally do not emit HFCs, PFCs, or SF<sub>6</sub>. The proposed Project is considered a new source, and is therefore subject to a 100,000 tons/yr major source threshold for GHGs. Potential GHG emissions from the proposed Project are approximately 2.24 million tons/yr, which is above the 100,000 tons/yr major source threshold. Therefore, the proposed Project is a major source of GHGs under PSD.

With PSD, if a source emits one or more pollutants in major amounts, the source is considered major. Then, all attainment pollutants, even those emitted in non-major amounts, must be reviewed for PSD applicability by comparing their potential annual emissions to the applicable Significant Emissions Rates (SERs). Emissions greater than or equal to the applicable SER subject the pollutant to PSD.

The proposed Project emits GHGs in major amounts. Therefore, emissions of all PSD-regulated pollutants must be compared to their respective SERs. As summarized in Table 3-13, potential emissions of NO<sub>x</sub>, CO, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, and GHGs trigger PSD. For these pollutants, Moundsville Power must:

- Demonstrate use of BACT for pollutants with significant emissions (Section 3.4.2);
- Assess the ambient impact of emissions using dispersion modeling; if the impact is significant, evaluate (through refined dispersion modeling) compliance with the NAAQS and consumption of air quality increments. An air quality dispersion modeling protocol was submitted on October 4, 2013. A revised protocol was submitted on November 27, 2013. A copy of the revised protocol is provided in **Appendix B**; and
- Conduct additional impact assessments that analyze impairment to visibility, soils, and vegetation as a result of the modification, as well as impacts on Class I areas (The air quality dispersion modeling analyses will be used to conduct these assessments).

SO<sub>2</sub> is a non-attainment pollutant. Therefore, SO<sub>2</sub> emissions are not subject to PSD requirements. Rather, SO<sub>2</sub> emissions must be addressed

under NA-NSR requirements. However, as discussed further in Section 3.5, SO<sub>2</sub> emissions do not trigger NA-NSR requirements.

| Pollutant                                                          | Potential<br>Project<br>Emissions<br>(tons/yr) | PSD<br>Significant<br>Emissions Rate<br>(tons/yr) | NA-NSR<br>Major<br>Threshold<br>(tons/yr) | Triggers<br>PSD or<br>NA-NSR? |
|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------|
| $NO_X$ (as $NO_{2)}$                                               | 145.3                                          | 40                                                | PSD                                       | Y                             |
| СО                                                                 | 209.4                                          | 100                                               | PSD                                       | Y                             |
| $\begin{array}{c} PM^1 \\ PM_{10}{}^1 \\ PM_{2.5}{}^1 \end{array}$ | 71.2<br>70.1<br>68.0                           | 25<br>15<br>10                                    | PSD<br>PSD<br>PSD                         | Y<br>Y<br>Y                   |
| VOC (as CH <sub>4</sub> )                                          | 74.8                                           | 40                                                | PSD                                       | Y                             |
| Pb<br>SO <sub>2</sub>                                              | 0.01<br>4.8                                    | 0.6<br>NA-NSR                                     | PSD<br>100                                | N<br>N                        |
| $H_2SO_4$                                                          | 3.1                                            | 7                                                 | PSD                                       | Ν                             |
| GHG (CO <sub>2</sub> e)                                            | 2,240,618                                      | 100,000                                           | PSD                                       | Y                             |

# Table 3-13PSD and NA-NSR Applicability Summary

<sup>1</sup> PM<sub>2.5</sub> and PM<sub>10</sub> assumed to be equal to total PM, except for the Cooling Tower.

# 3.4.2 Best Available Control Technology

Based on projected potential emissions, BACT is required for NO<sub>x</sub>, CO, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, and GHG emissions from all Project emissions sources (combustion turbines/duct burners, Auxiliary Boiler, Emergency Generator, Fire Water Pump, and Cooling Tower). This section summarizes the BACT determinations for these pollutants.

# 3.4.2.1 BACT Analysis Process

BACT is defined in 45 CSR 14-2.12 of the WVDEP air pollution control regulations as:

2.12. "Best available control technology (BACT)" means an emissions limitation (including a visible emissions standard) based on the maximum degree of reduction for each regulated NSR pollutant which would be emitted from any proposed major stationary source or major modification

which the Secretary, on a case-by-case basis, taking into account energy, environmental and economic impacts and other costs, determines is achievable for such source or modification through application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment or innovative fuel combustion techniques for control of such pollutant. In no event shall application of best available control technology result in emissions of any pollutant which would exceed the emissions allowed by any federally enforceable emissions limitations or emissions limitations enforceable by the Secretary. If the Secretary determines that technological or economic limitations on the application of measurement methodology to a particular emissions unit would make the imposition of an emissions standard infeasible, a design, equipment work practice, operational standard or combination thereof, may be prescribed instead to satisfy the requirement for the application of best available control technology. Such standard shall, to the degree possible, set forth the emissions reduction achievable by implementation of such design, equipment, work practice or operation, and shall provide for compliance by means which achieve equivalent results.

BACT analyses are conducted using USEPA's "top-down" BACT approach, as described in USEPA's *Draft New Source Review Workshop Manual*<sup>6</sup>. The five (5) basic steps of a top-down BACT analysis are:

- Step 1: Identify potential control technologies
- Step 2: Eliminate technically infeasible options
- Step 3: Rank remaining control technologies by control effectiveness
- Step 4: Evaluate the most effective controls and document results
- Step 5: Select BACT

The first step is to identify potentially "available" control options for each emission unit triggering PSD, for each pollutant under review. Available options consist of a comprehensive list of those technologies with a

<sup>&</sup>lt;sup>6</sup> (USEPA 1990).

potentially practical application to the emission unit in question. The list includes technologies used to satisfy BACT requirements, innovative technologies, and controls applied to similar source categories.

For this analysis, the following sources were investigated to identify potentially available control technologies:

- USEPA's RACT/BACT/LAER Clearinghouse (RBLC) database;
- USEPA's New Source Review website;
- In-house experts;
- Similar permitting projects;
- State air regulatory agency contacts;
- Technical books and articles;
- The USEPA Region 4 National Combustion Turbine Spreadsheet;<sup>7</sup>
- State permits issued for similar sources that have not yet been entered into the RBLC; and
- Guidance documents and personal communications with state agencies.

After identifying potential technologies, the second step is to eliminate technically infeasible options from further consideration. To be considered feasible for BACT, a technology must be both available and applicable.

The third step is to rank the technologies not eliminated in Step 2 in order of descending control effectiveness for each pollutant of concern. If the highest ranked technology is proposed as BACT, it is not necessary to perform any further technical or economic evaluation. Potential adverse impacts, however, must still be identified and evaluated.

The fourth step entails an evaluation of energy, environmental, and economic impacts for determining a final level of control. The evaluation begins with the most stringent control option and continues until a technology under consideration cannot be eliminated based on adverse energy, environmental, or economic impacts. The economic or "cost-

<sup>7</sup> Compiled by USEPA Region 4 staff, available at: <u>http://www.epa.gov/region4/air/permits/national\_ct\_list.xls</u>. effectiveness" analysis is conducted in a manner consistent with USEPA's *OAQPS Control Cost Manual, Fifth Edition*<sup>8</sup> and subsequent revisions.

The fifth and final step is to select as BACT the emission limit from application of the most effective of the remaining technologies under consideration for each pollutant of concern.

#### 3.4.2.2 BACT Analyses

For the top-down BACT evaluation, a review was performed of the RBLC database, recent permits issued from across the U.S., the USEPA Region 4 Combustion Turbine Spreadsheet, and other available literature.

# 3.4.2.2.1 NO<sub>x</sub> BACT

#### Combustion Turbines/Duct Burners

#### Step 1 - Identify Potential Control Technologies

Several combustion and post-combustion technologies are available for controlling turbine  $NO_x$  emissions. Combustion controls minimize the amount of  $NO_x$  created during the combustion process, and post-combustion controls remove  $NO_x$  from the exhaust stream after the combustion has occurred.

The three (3) basic strategies for reducing  $NO_x$  the from the combustion process are:

- (1) Reduction of the peak combustion temperatures;
- (2) Reduction in the amount of time the air and fuel mixture is exposed to the high combustion temperature; and
- (3) Reduction in the oxygen  $(O_2)$  level in the primary combustion zone.

The following discusses potential control technologies for the proposed combined-cycle combustion turbines:

<sup>8</sup> (USEPA 1996)

MOUNDSVILLE POWER

### **Pre-Combustion Control Technologies**

The two (2) pre-combustion control technologies that reduce  $NO_x$  emissions from combustion turbines are water or steam injection, and DLN combustors.

### Water or Steam Injection

The injection of water or steam into a combustion turbine's combustors quenches the flame and absorbs heat, thus reducing combustion temperatures. The reduced temperatures in turn reduce the formation of thermal NO<sub>x</sub>. Combined with a post-combustion control technology, water or steam injection typically can achieve NO<sub>x</sub> emissions of 25 ppmvd @15% O<sub>2</sub>, but with the added economic, energy, and environmental expense of producing, storing, and consuming demineralized water.

### **DLN** Combustors

Conventional combustors are diffusion-controlled, with fuel and air are injected separately. This method of combustion results in combustion "hot spots," which produce higher levels of thermal  $NO_x$ . Lean premix and catalytic technologies are two available types of DLN combustors that are alternatives to conventional diffusion-controlled combustors. DLN combustors reduce the combustion hot spots that result in thermal  $NO_x$  formation.

With lean premix DLN combustors, the mechanisms for reducing thermal NO<sub>x</sub> through formation are:

(1) using excess air to reduce flame temperatures (i.e., lean combustion);(2) reducing combustor residence time to limit exposure in a high-temperature environment;

(3) mixing fuel and air in an initial "pre-combustion" stage to produce a lean and uniform fuel/air mixture that is delivered to a secondary stage where combustion takes place; and/or

(4) achieving two-stage combustion using a primary fuel-rich combustion stage to limit the amount of  $O_2$  available to combine with elemental nitrogen (N<sub>2</sub>) and then a secondary lean burn-stage to complete combustion in a cooler environment.

Lean premix DLN combustors have only been developed for gas fuel-fired combustion turbines. The more-advanced designs are capable of achieving 70 to 90% NO<sub>x</sub> emission reductions, with resulting NO<sub>x</sub> concentrations typically in the range of 9 to 25 ppmvd @15% O<sub>2</sub>.

As the name implies, catalytic combustors use a catalyst to allow the combustion reactions to occur at lower peak flame temperatures, which reduce thermal NO<sub>x</sub> formation. Catalytic combustors use a flameless catalytic combustion module, followed by completion of combustion at lower temperatures downstream of the catalyst.

### **Post-Combustion Control Technologies**

The three (3) available post-combustion  $NO_x$  emission controls for combustion turbines are:

(1) SCR;
(2) SCONO<sub>x</sub><sup>™</sup> (also known as EM<sub>x</sub><sup>™</sup>); and
(3) Selective Non-Catalytic Reduction (SNCR).

Both SCR and  $EMx^{TM}$  use catalyst beds to control NO<sub>x</sub> emissions. Combined with DLN combustors or water/steam injection, these technologies are capable of achieving NO<sub>x</sub> emissions levels of 2 ppmvd @15% O<sub>2</sub> for combined-cycle combustion turbines.  $EM_x$  <sup>TM</sup>uses a hydrogen regeneration gas to convert the NO<sub>x</sub> to elemental nitrogen (N<sub>2</sub>) and water. Like SCR, SNCR also uses ammonia to control NO<sub>x</sub> emissions, but without a catalyst.

### Selective Catalytic Reduction

SCR is a post-combustion control technology designed to control NO<sub>x</sub> emissions from combustion turbines. SCR systems for combined-cycle combustion turbines are typically placed inside the HRSGs, and consist of a catalyst bed with an ammonia injection grid located upstream of the catalyst. The ammonia, in this case aqueous ammonia with a concentration of less than 20% by weight, is vaporized and injected directly into the exhaust stream, where it reacts with NO<sub>x</sub> and O<sub>2</sub> in the presence of the catalyst to form N<sub>2</sub> and water vapor.

These reactions normally occur at relatively high temperatures (e.g. 1,600 °F to 2,100 °F). However, the placement of a catalyst in the exhaust stream lowers the activation energy of the reaction, which allows the reaction to take place at lower temperatures (typically 650 °F to 850 °F).

The catalyst consists of a support system with a catalyst coating typically of titanium dioxide (TiO<sub>2</sub>), vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>), or zeolite. Typically, a small amount of ammonia is not consumed in the reactions and is emitted in the exhaust stream. These ammonia emissions are referred to as "ammonia slip."

### $EM_{x}^{TM}$

 $EM_x^{TM}$  uses a single catalyst to remove NO<sub>x</sub> emissions from combustion turbine exhaust gas by oxidizing nitric oxide (NO) to nitrogen dioxide (NO<sub>2</sub>) and then absorbing the NO<sub>2</sub> onto a catalytic surface using a potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) absorber coating. The potassium carbonate coating reacts with NO<sub>2</sub> to form potassium nitrites and nitrates, which are deposited onto the catalyst surface. The optimal temperature window for operation of the EMx<sup>TM</sup> catalyst is from 300 °F to 700 °F. EM<sub>x</sub><sup>TM</sup> does not use ammonia. Therefore, there are no ammonia emissions from this technology.

When all of the potassium carbonate absorber coating has been converted to  $N_2$  compounds,  $NO_x$  can no longer be absorbed and the catalyst must be regenerated. Regeneration is accomplished by passing a dilute hydrogenreducing gas across the surface of the catalyst in the absence of  $O_2$ . Hydrogen in the gas reacts with the nitrites and nitrates to form water and  $N_2$ . Carbon dioxide (CO<sub>2</sub>) in the gas reacts with the potassium nitrite and nitrates to form potassium carbonate, which is the absorbing surface coating on the catalyst. The regeneration gas is produced by reacting natural gas with a carrier gas (such as steam) over a steam-reforming catalyst.

# Selective Non-Catalytic Reduction

Like SCR, Selective Non-Catalytic Reduction (SNCR) involves injection of ammonia or urea CO(NH<sub>2</sub>)<sub>2</sub> with proprietary conditioners into the exhaust gas stream without a catalyst. SNCR technology requires temperatures in the range of 1,600 to 2,100 °F. SNCR is not available for combustion turbines, because combustion turbine exhaust temperatures are typically 1,000 °F, significantly below the 1,600 °F minimum temperature required for effective SNCR performance.

# **Step 2 - Eliminate Technically Infeasible Options**

# **Pre-Combustion Control Technologies**

# Water or Steam Injection

The use of water or steam injection is considered a feasible technology for reducing NO<sub>x</sub> emissions to about 25 ppmvd @ 15% O<sub>2</sub> when firing gaseous fuel under most ambient conditions. Combined with SCR, water or steam injection can achieve NO<sub>x</sub> levels of 2 ppmvd @ 15% O<sub>2</sub>, but at slightly lower thermal efficiencies compared to DLN combustors.

### **DLN** Combustors

DLN combustors are a feasible technology for reducing NO<sub>x</sub> emissions from the proposed combustion turbines. DLN combustors are capable of achieving NO<sub>x</sub> emission of 9 to 25 ppmvd @ 15% O<sub>2</sub> over a relatively wide operating range (e.g. 50% to 100% load). When combined with SCR, DLN combustors can achieve NO<sub>x</sub> emissions of 2 ppmvd @ 15% O<sub>2</sub>.

A catalytic combustion technology known as XONON<sup>™</sup> has been demonstrated successfully in a 1.5 MW simple-cycle combustion turbine pilot facility, and is commercially available for combustion turbines rated at up to 10 MW. However, catalytic combustors such as XONON<sup>™</sup> have not been demonstrated on industrial F Class combustion turbines such as those proposed by Moundsville Power. Therefore, the XONON<sup>™</sup> catalytic combustion technology is not considered feasible for the proposed combustion turbines.

# **Post-Combustion Control Technologies**

# Selective Catalytic Reduction

SCR, with an ammonia slip of less than 5 ppmvd @ 15%  $O_2$ , is considered a feasible technology for reducing combustion turbine  $NO_x$  emissions to 2 ppmvd @ 15%  $O_2$  when firing gaseous fuel. SCR has been successfully installed and used on numerous simple-cycle and combined-cycle combustion turbines.

# ЕМхтм

The demonstrated application for  $EMx^{TM}$  is currently limited to combinedcycle combustion turbines under approximately 50 MW in size. The combustion turbines proposed for this Project are nominal 197 MW units. Therefore,  $EMx^{TM}$  technology is not considered feasible for achieving the proposed NO<sub>x</sub> limit of 2.0 ppmvd @ 15% O<sub>2</sub>.

# Selective Non-Catalytic Reduction

SNCR requires a temperature window that is higher than the exhaust temperatures from gaseous fuel-fired combustion turbines. Therefore, SNCR is not considered technically feasible for the proposed combustion turbines.

# **Step 3 - Rank Remaining Control Technologies by Control Effectiveness**

Based on the preceding discussions, the use of water/steam injection, DLN combustors, and SCR are the technically feasible  $NO_x$  control technologies available for the proposed combustion turbines. DLN combustors were selected because they can achieve lower  $NO_x$  emission rates from the

combustion turbines over either water or steam injection, without the economic, energy, and environmental disbenefit of producing, storing, and consuming demineralized water.

Furthermore, DLN combustors result in slight improvements in thermal efficiency over water/steam injection  $NO_x$  control alternatives. When used in combination with SCR, these technologies can control  $NO_x$  emissions from the combustion turbines to 2.0 ppmvd @ 15%  $O_2$  with and without duct firing.

There are potential environmental and energy impacts associated with the use of SCR. First, SCRs require replacement of the catalyst beds after several years. The waste catalyst must be disposed of in accordance with state and federal regulations regarding normal waste disposal. Because of the precious metal content of the catalysts, they may also be recycled to recover the precious metals. Sulfur compounds in the exhaust gas may react with the ammonia reagent, forming ammonia salts, which may increase PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions. SCRs also have energy impacts. Due to their location downstream of the combustion turbine exhaust, SCR catalysts increase the back pressure on the combustion turbines, which results in slightly decreased power output. This slightly decreased output leads to slightly increased pollutant emissions on a mass per unit power output basis.

Although there are potential environmental and energy impacts associated with the use of SCR, these impacts are not considered significant enough to preclude the use of SCR for NO<sub>x</sub> emission control.

Available permits and BACT determinations were reviewed to identify NO<sub>x</sub> emission rates that have been achieved in practice for other comparable gaseous fuel-fired combustion turbine projects. The majority of the projects had permitted NO<sub>x</sub> emission rates equal to or greater than 2.0 ppmvd @ 15% O<sub>2</sub>.

Only one (1) facility, for an IDC Bellingham combined-cycle plant proposed in Massachusetts, had a NO<sub>x</sub> emission limit below the 2.0 ppmvd @ 15% O<sub>2</sub> level proposed as BACT by Moundsville Power. The IDC Bellingham facility was permitted with a not-to-exceed limit of 2.0 ppmvd @ 15% O<sub>2</sub>, but the permit also required the unit to maintain emissions below 1.5 ppmvd @ 15% O<sub>2</sub> during normal operations. However, the IDC Bellingham facility was never built. Therefore, these emission limits were not achieved in practice. As a result, Moundsville Power's proposed emission rate of 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing is the lowest  $NO_x$  emission rate achieved in practice for similar sources and, therefore, represents BACT for  $NO_x$  emissions.

### **Step 4 - Evaluate Most-Effective Controls and Document Results**

Based on the information presented in this BACT analysis, the proposed NO<sub>x</sub> emission rate of 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing is the lowest NO<sub>x</sub> emission rate achieved in practice at similar sources. Therefore, an assessment of the economic and environmental impacts is not necessary.

# Step 5 - Select BACT

The proposed BACT for NO<sub>x</sub> emissions from the proposed combustion turbines is the use of DLN combustors and SCR, along with good combustion practices, to control NO<sub>x</sub> emissions to 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing.

# <u>Auxiliary Boiler</u>

There is currently no technically feasible add-on control technology to reduce  $NO_x$  emissions from gaseous fuel-fired Auxiliary Boilers of the size proposed for the Moundsville Power Project.  $NO_x$  is minimized in these units through good combustion practices, as well as flue gas recirculation (FGR) and ultra low-NO<sub>x</sub> burners (ULNB).

FGR provides for the recycling of fuel gas into the air-fuel mixture at the burner to help cool the burner flame. ULNB may incorporate a variety of techniques including FGR, steam injection, or a combination of techniques. ULNB combines the benefits of FGR and LNB control technologies. ULNB are designed to recirculate hot, oxygen-depleted flue gas from the flame or firebox back into the combustion zone. By doing this, the average oxygen concentration is reduced in the flame without reducing the flame temperatures below which is necessary for optimal combustion efficiency. Reducing oxygen concentrations in the flame reduces the amount of fuel NO<sub>x</sub> generated. Although these efficient combustion techniques are targeted to reduce NO<sub>x</sub> emissions, they have a collateral impact of minimizing CO formation.

Moundsville Power proposes a NO<sub>x</sub> emission level of 0.02 lb/MMBtu as BACT for the Auxiliary Boiler. Upon conducting a review of available permits and determinations for comparable boilers, Moundsville Power identified several recent permits for comparable boilers. One boiler, at the Cricket Valley Energy Center, a proposed combined-cycle power plant located in the Town of Dover, Dutchess County, New York, includes a 60 MMBtu/hr auxiliary boiler permitted NO<sub>x</sub> emissions of 0.011 lb/MMBtu. PacifiCorp's Lake Side Power Plant in Utah County, Utah, includes two (2) 61.2 MMBtu/hr natural gas-fired auxiliary boilers that have permitted NO<sub>x</sub> emission limits of 0.017 lb/MMBtu on a 3-hour average basis.

Both of these sites have boilers with  $NO_x$  emission limits below the 0.02 lb/MMBtu level proposed by Moundsville Power. However, the Cricket Valley facility has not been constructed. PacifiCorp's Lake Side Power Plant was commissioned in 2007, and presumably the auxiliary boilers are able to comply with their permitted  $NO_x$  emission limits of 0.017 lb/MMBtu on a 3-hour average basis.

However, given the expected limited hours of operation for the proposed Auxiliary Boiler (<2,000 hr/yr), the decrease in NO<sub>x</sub> emissions if the boiler were required to achieve a NO<sub>x</sub> emission level of 0.017 b/MMBtu would be no more than 0.3 tons/yr.

Therefore, Moundsville Power proposes BACT for the Auxiliary Boiler at a  $NO_x$  emission level of 0.02 lb/MMBtu. This level will be achieved using good combustion practices, along with ULNB and FGR.

### Emergency Generator

Moundsville Power proposes BACT for NO<sub>X</sub> and VOC for the 1,500-kW Emergency Generator as the applicable emission rates specified in 40 CFR 60, Subpart IIII. The Subpart IIII emission standard is 4.8 g/hp-hr for NO<sub>X</sub> plus Non-Methane Hydrocarbons (NMHC). The level proposed for the Emergency Generator (2.8 g/hp-hr) is the same or lower than those listed in the RBLC for combined NO<sub>x</sub> plus NMHC. Although there are several determinations that list NO<sub>x</sub> emission rates below 4.8 g/hp-hr, when combined NO<sub>x</sub> plus NMHC (i.e. VOC) is evaluated, none of the engines listed have limits more stringent than 4.8 g/hp-hr.

Separately, one permit, Cricket Valley has a proposed NO<sub>x</sub> limit of 2.13 g/hp-hr, along with a VOC limit of 0.1 g/hp-hr. However, this facility has not been constructed. Therefore, the limit has not been demonstrated in practice. Therefore, Moundsville Power did not identify any engines of similar size used for emergency purposes that currently demonstrate in practice emission rates below that proposed for the Emergency Generator.

Given the intended use of the Emergency Generator only for emergency purposes, with its operations limited to emergency events and no more than 100 hr/yr for maintenance and readiness testing, the environmental

benefit associated with establishing emission limits below the Subpart IIII limit of 4.8 g/hp-hr is small. However, as BACT for the Emergency Generator, Moundsville Power proposes an emission limit of 2.8 g/hp-hr for NO<sub>x</sub> plus NMHC along with the use of ULSD fuel and good combustion practices, and limiting operations to emergency events and no more than 100 hr/yr for maintenance and readiness testing.

#### Fire Water Pump

Moundsville Power proposes BACT for  $NO_x$  and VOC for the 251-hp Fire Water Pump as the applicable emission rates specified in 40 CFR 60, Subpart III. The Subpart III emission standard is 3.0 g/hp-hr for  $NO_x$  plus NMHC. The Fire Water Pump will use ULSD fuel to ensure operation even during periods when natural gas is unavailable.

Review of the RBLC determinations and recent permits for similar equipment indicates emission limits equal to 3.0 g/hp-hr, or at less stringent levels (e.g. Live Oaks, Wolverine Power Supply Cooperative, Avenal, and Pioneer Valley). As with the Emergency Generator, although there are several determinations that list NO<sub>x</sub> or VOC emission levels below 3.0 g/hp-hr, when combined NO<sub>x</sub> plus NMHC is evaluated, no listings have limits more stringent than 3.0 g/hp-hr.

Although Cricket Valley lists a NO<sub>x</sub> emission level of 2.6 g/hp-hr, it also lists a VOC emission level of 0.97 g/hp-hr. Therefore, the comparable NO<sub>x</sub> plus NMHC value for Cricket Valley is 3.57 g/hp-hr (2.6+0.97), compared to Moundsville Power's proposed limit of 3.0 g/hp-hr.

Based on the review of existing permit limits for engines of similar size and duty as the Fire Water Pump, Moundsville Power concludes that BACT for NO<sub>x</sub> and VOC is the use of ULSD and good combustion practices, along with limiting use to emergency events and no more than 100 hr/yr for maintenance and readiness testing. The proposed BACT is a combined NO<sub>x</sub> plus NMHC emission rate of 3.0 g/hp-hr.

The proposed  $NO_x$  BACT for all sources is summarized in Table 3-14.

# Table 3-14Proposed NOx BACT

| Emission Source                        | Proposed NO <sub>x</sub> BACT                                                                                                                                                |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combustion<br>Turbines/Duct<br>Burners | 2 ppmvd @ 15% O <sub>2</sub> (with and without duct firing)<br>Use of SCR, dry low-NO <sub>X</sub> combustor design, and efficient<br>combustion (good combustion practices) |
| Auxiliary Boiler                       | 0.02 lb/MMBtu                                                                                                                                                                |
|                                        | Use of good combustion practices, ULNB, and FGR.                                                                                                                             |
| Emergency Generator                    | 2.8 g/hp-hr (NMHC+NO <sub>X</sub> )                                                                                                                                          |
|                                        | Use of ULSD fuel and good combustion practices; operation<br>limited to emergency use and no more than 100 hr/yr for<br>maintenance and readiness testing.                   |
| Fire Water Pump                        | 3.0 g/hp-hr (NMHC+NO <sub>X</sub> )                                                                                                                                          |
|                                        | Use of ULSD fuel and good combustion practices; operation<br>limited to emergency use and no more than 100 hr/yr for<br>maintenance and readiness testing.                   |

# 3.4.2.2.2 CO BACT

Combustion Turbines/Duct Burners

# Step 1 - Identify Potential Control Technologies

CO is formed during the combustion process as a result of incomplete combustion of the carbon present in the fuel. Effective combustor design and post-combustion control using an Oxidation Catalyst are the potential technologies for controlling CO emissions from combustion turbines. As noted above in the NO<sub>x</sub> BACT analysis, the EMx<sup>TM</sup> and XONON<sup>TM</sup> technologies were determined not to be feasible for the proposed combustion turbines, so they have not been considered further here.

### **Combustion Controls**

CO formation is minimized by designing the combustion system to allow complete mixing of the combustion air and fuel and maximize the oxidization of fuel carbon to  $CO_2$ . Higher combustion temperatures tend to reduce CO formation, but increase  $NO_x$  formation. Water/steam injection or DLN combustors tend to lower combustion temperatures in order to reduce  $NO_x$  formation, potentially increasing CO formation.

However, using good combustor design and following best operating practices minimizes CO formation while reducing combustion temperatures and NO<sub>x</sub> emissions.

### **Oxidation Catalysts**

Oxidation Catalysts typically use precious metal catalyst beds. Like SCR systems for combined-cycle combustion turbines, Oxidation Catalysts are typically located within the HRSG where the temperature is in the range of 700 °F to 1,100 °F. The catalyst enhances oxidation of CO to  $CO_2$ , without the addition of any chemical reagents, because there is sufficient  $O_2$  in the exhaust gas stream for the oxidation reactions to proceed in the presence of the catalyst alone. Catalyst volume is dependent upon the exhaust flow, temperature, and the desired removal efficiency. The catalyst material is subject to loss of activity over time due to physical deterioration or chemical deactivation. Oxidation Catalyst vendors typically guarantee catalyst life for three (3) years.

Both efficient combustion and add-on controls, such as Oxidation Catalysts, can be used alone or in combination to achieve CO emission reductions. Oxidation Catalysts have been successfully installed and used on numerous simple-cycle and combined-cycle combustion turbines.

### **Step 2 - Eliminate Technically Infeasible Options**

Using good combustor design, following best operating practices, and using Oxidation Catalyst are technically feasible options for controlling CO emissions from the proposed combustion turbines.

There are potential environmental and energy impacts associated with the use of Oxidation Catalysts. Oxidation Catalysts require replacement of the catalyst beds after several years. The waste catalyst must be disposed of in accordance with state and federal regulations regarding normal waste disposal. Because of the precious metal content of the catalyst, they may also be recycled to recover the precious metals. Some of the SO<sub>2</sub> in the exhaust gas will oxidize to sulfur trioxide (SO<sub>3</sub>). The higher the operating temperature, the higher the potential for oxidation of SO<sub>2</sub> to SO<sub>3</sub> oxidation. The SO<sub>3</sub> may react with moisture in the flue gas to form H<sub>2</sub>SO<sub>4</sub>. The increase in H<sub>2</sub>SO<sub>4</sub> emission may increase PM<sub>10</sub> and PM<sub>2.5</sub> emissions. The oxidation of CO results in increased CO<sub>2</sub> emissions, and CO<sub>2</sub> is a GHG. Oxidation Catalysts also have energy impacts. Due to their location downstream of the combustion turbine exhaust, Oxidation Catalysts increase the backpressure on the combustion turbines, which results in

slightly decreased power output. This slightly decreased output leads to increased pollutant emissions on a mass per unit power output basis.

Although there are potential environmental and energy impacts associated with the use of Oxidation Catalysts, these impacts are not considered significant enough to preclude their use for CO emission control.

Step 3 - Rank Remaining Control Technologies by Control Effectiveness

Based on the preceding discussion, good combustion practices and Oxidation Catalysts are both available and technically feasible technologies to control CO emissions from combustion turbines. Together, DLN combustors and good combustion practices, although primarily used to minimize NO<sub>x</sub> emissions, have been effective in minimizing CO emissions from combustion turbines, including those with duct firing. These are the only practical efficient combustion alternatives currently available and used on combined-cycle combustion turbines/duct burners. Moundsville Power proposes to control CO emissions these techniques to meet a CO emission limit of 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing.

Available permits and BACT determinations were reviewed to identify CO emission rates that have been achieved in practice for other comparable gaseous fuel-fired combustion turbine projects. The majority of the projects had permitted CO emission rates equal to or greater than 2.0 ppmvd @ 15% O<sub>2</sub>. However, the following projects were identified that have CO emission rates lower than 2.0 ppmvd @ 15% O<sub>2</sub>.

- (1) Competitive Power Ventures (CPV) Warren;
- (2) Kleen Energy Systems; and
- (3) Astoria Energy LLC

These projects are discussed in more detail below.

### **CPV** Warren

CPV Warren is a combined-cycle power plant proposed to be located in Front Royal, Warren County, Virginia. Originally developed by Competitive Power Ventures (CPV), the project was sold to Virginia Electric Power and Power Company (Dominion Virginia Power) in 2008.

A final PSD permit for a nominal 1,300 MW combined-cycle plant was issued by the Virginia Department of Environmental Quality (VDEQ) on December 21, 2010. This final PSD permit includes CO emission limits of 1.5 and 2.4 ppmvd @ 15% O<sub>2</sub>, on a 1-hour averaging basis, for operating conditions without and with duct firing, respectively. Based on publically available information, Dominion expects commercial operation of the Warren facility to occur in late 2014 or early 2015. The plant is expected to consist of three (3) Mitsubishi Model M501GAC combustion turbines. Since the plant has not begun operation, these BACT limits for VOC have not yet been achieved in practice.

#### **Kleen Energy Systems**

The Kleen Energy Systems combined-cycle facility in Middletown, Connecticut began commercial operation in July 2011. The combustion turbines used by Kleen Energy Systems are Siemens SGT6-5000F. The permitted CO emission limits are 1.5 and 0.9 ppmvd @ 15% O<sub>2</sub> for operation with and without duct firing, respectively. Initial stack testing apparently demonstrated compliance with these CO emission limits. However, given the lack of long-term operation and compliance with these emission limits, these CO emission levels are not considered "achieved in practice" at this time.

#### Astoria Energy LLC

The Astoria Energy, LLC facility, located in the Astoria section of Queens, New York City is permitted for CO emissions of 1.5 ppmvd @ 15% O<sub>2</sub>, with or without duct firing. The Astoria Energy plant began operation in 2011 and uses GE Frame 7FA combustion turbines. However, because the Astoria Energy plant was located in a CO non-attainment area, the 1.5 ppmvd @ 15% O<sub>2</sub> was a LAER, rather than BACT, limit.

#### Step 4 - Evaluate Most-Effective Controls and Document Results

The proposed CO emission rate of 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing is the lowest CO emission rate achieved or verified with long-term compliance records for other similar facilities. Since Moundsville Power is proposing to use combustion turbines with DLN combustors and Oxidation Catalysts to reduce CO and VOC emissions (the top control alternative), an assessment of the economic and environmental impacts is not necessary.

### Step 5 - Select BACT

BACT for CO emissions from the proposed combustion turbines is good combustion design and the use of Oxidation Catalysts to control CO emissions to 2.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing.

### <u>Auxiliary Boiler</u>

There is currently no technically feasible add-on control technology to reduce CO emissions from gaseous fuel-fired Auxiliary Boilers of the size proposed for the Moundsville Power Project. CO is minimized in these units through good combustion practices. For boilers, good combustion can include low-NO<sub>x</sub> burners (LNB), FGR, and ULNB that each support effective combustion that minimizes CO formation.

FGR provides for the recycling of fuel gas into the air-fuel mixture at the burner to help cool the burner flame. ULNB may incorporate a variety of techniques including FGR, steam injection, or a combination of techniques. These burners combine the benefits of FGR and LNB control technologies. ULNB are designed to recirculate hot, oxygen-depleted flue gas from the flame or firebox back into the combustion zone. By doing this, the average oxygen concentration is reduced in the flame without reducing the flame temperatures below which is necessary for optimal combustion efficiency. Reducing oxygen concentrations in the flame reduces the amount of fuel NO<sub>x</sub> generated. Although these efficient combustion techniques are targeted to reduce NO<sub>x</sub> emissions, they have a collateral impact of minimizing CO formation.

There have been several auxiliary boilers permitted with CO limits between 0.02 and 0.04 lb/MMBtu. Moundsville Power proposed to equip its Auxiliary Boiler with both ULNB and FGR. The proposed CO emission level for the Auxiliary Boiler is 0.04 lb/MMBtu. This emission level is equivalent to those found in the RBLC for recently permitted units of similar design. Therefore, BACT is the use of good combustion practices to achieve an emissions limit of 0.04 lb/MMBtu for the Auxiliary Boiler.

### Emergency Generator and Fire Water Pump

Moundsville Power proposes that BACT for the Emergency Generator and Fire Water Pump is the CO emission rate of 2.6 g/hp-hr specified in 40 CFR 60, Subpart IIII. This emergency equipment will be operated on ULSD fuel, with a sulfur content no greater than 0.0015% by weight.

Generally, for engines of these sizes proposed for the Project, good combustion practices are used to limit CO emissions. Review of recent permits and the RBLC for similar equipment indicates that good combustion practices are considered BACT. However, some of the BACT determinations resulted in lower emissions levels using good combustion practices.

The permits for Cricket Valley and Avenal list CO levels of 0.53 g/hp-hr and 0.447 g/hp-hr, respectively, for units similar to the proposed Fire Water Pump. Mankato Energy Center in Minnesota lists four (4) 290-hp fire water pumps with 0.25 g/hp-hr CO emission rates, and the LA County Probation Facility in California lists a 240-hp fire water pump with a CO emission rate of 0.44 g/hp-hr.

Based on the limited hours of operation for the Fire Water Pump for only emergency purposes (<< 500 hr/yr), the decrease in CO emissions should the Fire Water Pump be required to comply with a limit as low as 0.25 g/hp-hr would be no more than 0.33 tons/yr. Moundsville Power believes that there is no appreciable environmental benefit in going below the NSPS Subpart IIII limits.

For the Emergency Generator, recent permits and RBLC data reflect CO emission levels that are approximately equivalent to that proposed by Moundsville Power, with two (2) exceptions: Maidsville in West Virginia with a 1,801-hp emergency engine with a 2.23 g/hp-hr CO emission rate, and the Salt Creek Gas Plant in Texas with a 2,000-hp emergency engine and CO emission rate of 2.04 g/hp-hr. However, given the limited hours of use for emergency purposes (<< 500 hr/yr) and minimal emissions reduction (0.62 tons/yr) should the Emergency Generator be required to comply with a limit as low as 2.04 g/hp-hr, Moundsville Power believes that there is no appreciable environmental benefit to going below the NSPS Subpart IIII limit.

Based on these findings, CO BACT for the Emergency Generator and Fire Water Pump is good combustion practices and the use of ULSD fuel, in combination with limited annual operating hours, and achieving a CO emission level of 2.6 g/hp-hr.

The proposed CO BACT for all sources is summarized in Table 3-15.

# Table 3-15Proposed CO BACT

| Emission Source                        | Proposed CO BACT                                                                                                   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Combustion<br>Turbines/Duct<br>Burners | 2 ppmvd @ 15% O <sub>2</sub> (with or without duct firing)<br>Use of Oxidation Catalysts and efficient combustion. |
| Auxiliary Boiler                       | 0.04 lb/MMBtu<br>Good combustion practices.                                                                        |
| Emergency Generator                    | 2.6 g/hp-hr<br>Use of ULSD fuel and good combustion practices.                                                     |
| Fire Water Pump                        | 2.6 g/hp-hr<br>Use of ULSD fuel and good combustion practices.                                                     |

# 3.4.2.2.3 PM, PM<sub>10</sub>, and PM<sub>2.5</sub> BACT

Particulate matter emissions result from each combustion source associated with the Project, as well as the mechanical draft Cooling Tower. The following summarizes the BACT evaluation conducted for each significant piece of equipment with respect to PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions.

### Combustion Turbines/Duct Burners

PM from gaseous fuel combustion has been estimated to be less than 1 micron in equivalent aerodynamic diameter, has filterable and condensable fractions, and usually consists of hydrocarbons of larger molecular weight that are not fully combusted (USEPA, 2006). Because the particulate matter typically is less than 2.5 microns in diameter, this BACT discussion assumes the control technologies for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> are the same.

# **Step 1 – Identify Potential Control Technologies**

### **Pre-Combustion Control Technologies**

The major sources of PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions from gaseous fuelfired combustion turbines equipped with SCR for post-combustion control of  $NO_x$  emissions are:

- (1) the conversion of fuel sulfur to sulfates and ammonium sulfates;
- (2) unburned hydrocarbons that can lead to the formation of PM in the exhaust stack; and
- (3) PM in the ambient air entering the combustion turbines through their inlet air filtration systems, and the aqueous ammonia dilution air.

The use of clean-burning, low-sulfur fuels such as pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane will result in minimal formation of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> during combustion. Best combustion practices will ensure proper air/fuel mixing ratios to achieve complete combustion, minimizing emissions of unburned hydrocarbons that can lead to the formation of PM emissions. In addition to good combustion practices, the use of high-efficiency filtration on the inlet air and SCR dilution air systems will minimize the entrainment of PM into the combustion turbine exhaust streams.

# **Post-Combustion Control Technologies**

There are several post-combustion PM control systems potentially feasible to reduce PM and PM<sub>10</sub> emissions from combustion turbines/duct burners including:

- (1) Cyclones/centrifugal collectors;
- (2) Fabric filters/baghouses;
- (3) Electrostatic precipitators (ESPs); and
- (4) Scrubbers.

Cyclones/centrifugal collectors are generally used in industrial applications to control large diameter particles (>10 microns). Cyclones impart a centrifugal force on the gas stream, which directs entrained particles outward. Upon contact with an outer wall, the particles slide down the cyclone wall, and are collected at the bottom of the unit. The design of a centrifugal collector provides for a means of allowing the clean gas to exit through the top of the device. Cyclones are inefficient at removing small particles. Fabric filters/baghouses use a filter material to remove particles from a gas stream. The exhaust gas stream flows through filters/bags onto which particles are collected. Baghouses are typically employed for industrial applications to provide particulate emission control at relatively high efficiencies.

ESPs are used on a wide variety of industrial sources, including certain boilers. ESPs use electrical forces to move particles out of a flowing gas stream onto collector plates. The particles are given an electric charge by forcing them to pass through a region of gaseous ion flow called a "corona". An electrical field generated by electrodes at the center of the gas stream forces the charged particles to ESP's collecting plates.

Removal of the particles from the collecting plates is required to maintain sufficient surface area to clean the flowing gas stream. Removal must be performed in a manner to minimize re-entrainment of the collected particles. The particles are typically removed from the plates by "rapping" or knocking them loose, and collecting the fallen particles in a hopper below the plates.

Scrubber technology may also be employed to control PM in certain industrial applications. With wet scrubbers, flue gas passes through a water (or other solvent) stream, whereby particles in the gas stream are removed through inertial impaction and/or condensation of liquid droplets on the particles in the gas stream.

# Step 2 - Eliminate Technically Infeasible Options

The pre-combustion control technologies identified above (i.e. cleanburning, low-sulfur fuels, good combustion practices, high-efficiency filtration of the combustion turbine inlet and SCR dilution air systems) are available and technically feasible for reducing PM emissions from the combustion turbine exhaust streams.

Each of the post-combustion control technologies described above (i.e. cyclones, baghouses, ESPs, scrubbers) are generally available. However, none of these technologies is considered practical or technically feasible for installation on gaseous fuel-fired combustion turbines.

The particles emitted from gaseous fuel-fired are typically less than 1 micron in diameter. Cyclones are not effective on particles with diameters of 10 microns or less. Therefore, a cyclone/centrifugal collection device is not a technically feasible alternative.

Baghouses, ESPs, and scrubbers have never been applied to commercial combustion turbines burning gaseous fuels. Baghouses, ESPs, and scrubbers are typically used on solid or liquid-fuel fired sources with high PM emission concentrations, and are not used in gaseous fuel-fired applications, which have inherently low PM emission concentrations. None of these control technologies is appropriate for use on gaseous fuel-fired combustion turbines because of their very low PM emissions levels, and the small aerodynamic diameter of PM from gaseous fuel combustion. Review of the RBLC, as well as USEPA and state permit databases, indicates that post-combustion controls have not been required as BACT for gaseous fuel-fired fired combined-cycle combustion turbines. Therefore, the use of baghouses, ESPs, and scrubbers is not considered technically feasible.

Moundsville Power proposes that PM,  $PM_{10}$ , and  $PM_{2.5}$  BACT for the combustion turbines/duct burners is the employment of good combustion practices, along with the use of clean fuels such as pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane, and inlet air filtration to achieve an emission limit of 7.6 lb/hr for PM,  $PM_{10}$ , and  $PM_{2.5}$ , with or without duct firing.

**Step 3 - Rank Remaining Control Technologies by Control Effectiveness** The use of clean-burning fuels, good combustion practices, and inlet air filtration are the technically feasible technologies to control PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions to no more than 7.6 lb/hr with or without duct firing. This is equivalent to an emission rate of 0.005 lb/MMBtu or less.

Review of recent permits and the RBLC for combustion turbines/duct burners indicates that the proposed PM,  $PM_{10}$ , and  $PM_{2.5}$  emission rates are lower than those specified in permits for similar plants, such as the International Station Power Plant, Mankato Energy Center, Caithness Bellport Energy Center, and Cricket Valley Energy Project. These projects tend to have PM,  $PM_{10}$ , and  $PM_{2.5}$  emission rates on the order of 0.012 Ib/MMBtu.

#### **Step 4 - Evaluate Most Effective Controls and Document Results**

Based on the information presented in this BACT analysis, using proposed good combustion practice, pipeline quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane, and inlet air filtration to control PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions to no more than 7.6 lb/hr with or without duct firing. This is consistent with BACT at other similar sources. Therefore, an assessment of the economic and environmental impacts is not necessary.

### Step 5 – Select BACT

The proposed BACT for PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions from the combustion turbines is the use of clean-burning fuels, good combustion practices, and inlet air filtration to control PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions to no more than 7.6 lb/hr with or without duct firing.

#### Auxiliary Boiler

The technologies potentially available to control PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions from small boilers ( $\leq$ 100 MMBtu/hr) are the same as those described above for combustion turbines/duct burners:

- (1) Cyclones/centrifugal collectors;
- (2) Fabric filters/baghouses;
- (3) ESPs; and
- (4) Scrubbers.

However, a similar rationale eliminates the use of cyclones due to their inability to control particles smaller than 10 microns in diameter. In addition, the other add-on particulate control techniques have not been employed to remove PM from relatively small, natural gas-fired combustion units, such as the proposed Auxiliary Boiler.

A review of the RBLC, as well as USEPA and state permit databases indicates that there are no small boilers employing post-combustion control equipment to reduce PM, PM<sub>10</sub>, and PM<sub>2.5</sub> to achieve BACT. The determinations for small boilers identify the selection of clean fuels (i.e., low-sulfur, low-ash content) and good combustion practices as BACT for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions.

The proposed Auxiliary Boiler is a unit capable of firing pipeline quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane that will employ good combustion practices to minimize PM, PM<sub>10</sub>, and PM<sub>2.5</sub> to achieve BACT emission levels.

Although BACT is a technology based standard, Moundsville Power evaluated the consistency of other relevant permits to identify the level of emissions determined as BACT. The proposed PM emission rate of 0.005 lb/MMBtu for the Auxiliary Boiler is comparable to similar units noted in the RBLC and in recently issued permits. There is one facility, the Wolverine Power Supply Cooperative, LLC with a proposed PM BACT limit of 0.11 lb/hr (0.00152 lb/MMBtu) for an Auxiliary Boiler firing diesel fuel. The RBLC and other permits reviewed for equipment that is installed and operating identify the use of natural gas and good combustion practices as BACT for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> for small boilers ( $\leq$ 100 MMBtu/hr). Accordingly, the proposed BACT for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> is an emission limit of 0.005 lb/MMBtu achieved using pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane and good combustion practices.

### Emergency Generator and Fire Water Pump

Moundsville Power proposes that BACT for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> for the Emergency Generator and the Fire Water Pump is an emission limit of 0.09 g/hp-hr and 0.15 g/hp-hr, respectively. The emission standard for CI RICE specified in 40 CFR 60, Subpart IIII is 0.15 g/hp-hr. Based on the definition of BACT, the facility must at a minimum meet or improve upon the limit established in the NSPS. The facility proposes to operate the emergency equipment using ULSD as fuel.

A literature review to establish a list of potential control technologies available for emergency engines concludes that there are currently no facilities employing post-combustion controls on RICE engines of these sizes to achieve BACT for PM,  $PM_{10}$ , and  $PM_{2.5}$ . The use of good combustion practices and clean fuels, such as ULSD, are relied upon to achieve BACT for PM,  $PM_{10}$ , and  $PM_{2.5}$ .

For the Emergency Generator, a review of recent permits and the RBLC includes determinations with emission levels as low as 0.03 g/hp-hr for similar sized engines, with BACT described as good combustion practices (e.g. International Station). As evidenced by the wide variety of emission levels listed in the RBLC, different engine vendors and models specify a wide range of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions. Given the expected limited hours of operation for the Emergency Generator (<<500 hr/yr), the decrease in PM emissions if the engine were required to achieve an emission level of 0.03 g/hp-hr for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> would be no more than 0.067 tons/yr.

For the Fire Water Pump, a review of recent permits and the RBLC for similar equipment indicates values in line with a 0.15 g/hp-hr limit or higher (i.e., Live Oaks, Wolverine and Pioneer Valley). However, there are instances of permit limits below the NSPS Subpart IIII standard of 0.15 g/hp-hr. For example, Cricket Valley lists a PM limit of 0.0875 g/hp-hr, and the RBLC lists a limit as low as 0.07 g/hp-hr (i.e., Mankato Energy Center) for a similar sized RICE. However, based on the expected limited hours of operation for the Fire Water Pump (<< 500 hr/yr), the net potential decrease in PM emissions if the engine were required to comply with a limit as low as 0.07 g/hp-hr would be only 0.011 tons/yr.

Given the limited operating role of the equipment to support the facility during emergency periods and for periodic maintenance and readiness testing, and the small emission reductions associated with achieving the lower PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emission rates listed in the RBLC; there is no appreciable environmental benefit associated with achieving PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emission levels below the proposed values of 0.09 g/hp-hr and 0.15 g/hp-hr for the Emergency Generator and the Fire Water Pump, respectively. Therefore, BACT for PM, PM<sub>10</sub>, and PM<sub>2.5</sub> for the Emergency Generator and Fire Water Pump is the exclusive use of ULSD and good combustion practices to achieve an emission limit of 0.09 g/hp-hr and 0.15 g/hp-hr, respectively.

### Cooling Tower

Actual drift loss rates from wet cooling systems, including those proposed for this Project, are affected by a variety of factors, including the type and design of the cooling system, capacity, velocity of air flow, density of the air in the Cooling Tower, and the TDS concentration in the circulating water. Commercially available techniques used to limit PM, PM<sub>10</sub>, and PM<sub>2.5</sub> drift from wet Cooling Towers, with the most efficient options presented first, are discussed below.

Drift eliminators are incorporated into Cooling Tower systems to remove as many water droplets from the air leaving the system as possible. Types of drift eliminators include herringbone (blade-type), wave form, and cellular (or honeycomb) designs; system materials of construction may include ceramics, fiber reinforced cement, fiberglass, metal, plastic, or wood. Designs may include other features, such as corrugations and water removal channels, to enhance the drift removal further. Drift eliminators are considered standard in the power sector. The drift rate as a percentage of circulating water flow rates varies with the specific project, and typically ranges from 0.01 to 0.0005% of circulating water flow rates. Higher efficiency drift eliminators can achieve drift loss rates of 0.0005% of the circulating water flow rates.

Another approach to reducing PM emissions is by limiting TDS concentrations in the circulating water. In general, water droplets released

as drift from wet Cooling Towers contain TDS concentrations equivalent to the solids concentrations in the circulating water. Reducing the TDS concentrations in the water, including by managing the cycles of concentrations, minimizes drift. In any particular project, TDS concentrations are defined primarily by the water source and the concentration cycles.

Maintaining low air velocities is an additional technique to reduce PM emissions from Cooling Towers. Particulate entrainment rates are influenced by air velocities in the system, so maintaining low (or optimum design) air velocities can reduce the drift.

Moundsville Power proposes to install a Cooling Tower equipped with high-efficiency drift eliminators that will achieve a minimum of a 0.0005% drift, which is the most effective technique to reduce PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions based on a review of RBLC determinations, recent permits, and evaluation of available literature.

A review of the RBLC data and several other recently permitted Cooling Towers throughout the U.S. conclude that the levels proposed by Moundsville Power were either equivalent to, or lower than, those for other permitted sources. Therefore, the proposed BACT for the Cooling Tower is the installation of the high efficiency mist eliminators with a drift loss of 0.0005%.

The proposed PM,  $PM_{10}$ , and  $PM_{2.5}$  BACT for all sources is summarized in Table 3-16.

# Table 3-16Proposed PM, PM10, and PM2.5 BACT

| Emission Source                     | Proposed PM, PM <sub>10</sub> , and PM <sub>2.5</sub> BACT                                                                                                                                                                                             |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combustion<br>Turbines/Duct Burners | 7.6 lb/hr (with or without duct firing)<br>Use of pipeline-quality natural gas or a blend of pipeline-quality natural<br>gas and up to 25% ethane, good combustion practices, combustion<br>turbine inlet air filtration, SCR dilution air filtration. |
| Auxiliary Boiler                    | 0.005 lb/MMBtu<br>Use of pipeline-quality natural gas or a blend of pipeline-quality natural<br>gas and up to 25% ethane and good combustion practices                                                                                                 |
| Emergency Generator                 | 0.09 g/hp-hr<br>Use of ULSD and good combustion practices                                                                                                                                                                                              |
| Fire Water Pump                     | 0.15 g/hp-hr<br>Use of ULSD and good combustion practices                                                                                                                                                                                              |
| Cooling tower                       | Use of high efficiency drift eliminators with a drift loss of $\leq$ 0.0005%                                                                                                                                                                           |

# 3.4.2.2.4 VOC BACT

### Combustion Turbines/Duct Burners

### Step 1 - Identify Potential Control Technologies

Like CO emissions, VOC emissions occur from incomplete combustion. Effective combustor design and post-combustion control using Oxidation Catalysts are the available technologies for controlling VOC emissions from combustion turbines. The GE Frame 7FA industrial combustion turbines proposed by Moundsville Power are able to achieve relatively low uncontrolled VOC emissions because their combustors have firing temperatures of approximately 2,500 °F with exhaust temperatures of approximately 1,000 °F. A DLN combustor-equipped combustion turbine

MOUNDSVILLE POWER

using an Oxidation Catalyst can achieve VOC emissions in the 1 to 2 ppmvd @ 15% O<sub>2</sub> range. As noted above in the NO<sub>x</sub> BACT analysis, the  $EM_x^{TM}$  and XONON<sup>TM</sup> technologies were determined not to be feasible for the proposed combustion turbines, so they have not been considered further here.

#### **Good Combustion Controls**

As previously discussed, VOCs are formed from incomplete combustion of the carbon present in the fuel. VOC formation is minimized by designing the combustors to completely oxidize the fuel carbon to  $CO_2$ . This is achieved by ensuring that the combustors are designed to allow complete mixing of the combustion air and fuel at combustion temperatures with an excess of combustion air. Higher combustion temperatures tend to reduce VOC formation, but at the expense of increased NO<sub>x</sub> formation. The use of water/steam injection or DLN combustors tends to lower combustion temperatures to reduce NO<sub>x</sub> formation, but potentially increases VOC formation. However, good combustor design and best operating practices will minimize VOC formation while reducing the combustion temperatures and NO<sub>x</sub> emissions.

#### **Oxidation Catalysts**

Oxidation Catalysts typically use precious metal catalyst beds. Like SCR systems for combined-cycle combustion turbines, Oxidation Catalysts are typically placed inside the HRSGs. The catalyst enhances oxidation of VOC to CO<sub>2</sub>, without the addition of any chemical reagents. Oxidation Catalysts have been successfully installed on numerous simple- and combined-cycle combustion turbines.

### **Step 2 - Eliminate Technically Infeasible Options**

Good combustor design and the use of Oxidation Catalysts are both technically feasible options for controlling VOC emissions from the proposed combustion turbines.

#### Step 3 - Rank Remaining Control Technologies by Control Effectiveness

Based on the preceding discussions, using good combustor controls and Oxidation Catalysts are technically feasible combustion turbine VOC emission control technologies. Moundsville Power proposes to control VOC emissions using these techniques to meet VOC emission limits of 2.0 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively.

Available permits and BACT determinations were reviewed to identify VOC emission rates that have been achieved in practice for other comparable gaseous fuel-fired combustion turbine projects. The majority of the projects had permitted VOC emission rates equal to or greater than the levels proposed by Moundsville Power (2.0 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively).

However, the following projects were identified with VOC emission rates lower than those proposed by Moundsville Power.

- (1) FPL Turkey Point Power Plant;
- (2) FPL West County Energy Center;
- (3) Georgia Power Plant McDonough-Atkinson;
- (4) Calpine Russell City Energy Center; and
- (5) CPV Warren.

These projects are discussed in more detail below.

#### FPL Turkey Point Power Plant

FPL's Turkey Point Power Plant Unit 5 is a combined-cycle plant located in Miami-Dade County, Florida. It has VOC permit limits of 1.9 and 1.3 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively. The 1.3 ppmvd @ 15% O<sub>2</sub> limit without duct firing is less stringent than the 1.0 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. The 1.9 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. The 1.9 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. Turkey Point Unit 5 consists of four (4) GE Frame 7FA combustion turbines, and began commercial operation in May 2007. The 1.9 and 2.0 ppmvd @ 15% O<sub>2</sub> VOC limits with duct firing are effectively equivalent.

### FPL West County Energy Center

FPL's West County Energy Center Unit 3 is a combined-cycle plant located in Loxahatchee, northern Palm Beach County, Florida. It has VOC permit limits of 1.5 and 1.2 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively. The 1.2 ppmvd @ 15% O<sub>2</sub> limit without duct firing is less stringent than the 1.0 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. The 1.5 ppmvd @ 15% O<sub>2</sub> limit with duct firing is more stringent than the 2.0 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. West County Energy Center Unit 3 consists of three (3) Mitsubishi Power Systems Model M501G combustion turbines, and began commercial operation in June 2011. Given the lack of long-term operation and compliance with these emission limits, these CO emission levels are not considered achieved in practice at this time.

### Georgia Power Plant McDonough-Atkinson

Georgia Power's Plant McDonough-Atkinson Units 4, 5, and 6 are combined-cycle units located in Smyrna, Cobb County, Georgia. Each unit consists of two (2) Mitsubishi Heavy Industries, LTD (MHI) Model M501G combustion turbines. Each unit has VOC permit limits of 1.8 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively. The 1.0 ppmvd @ 15% O<sub>2</sub> limit (1-hour basis) without duct firing matches the 1.0 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. The 1.8 ppmvd @ 15% O<sub>2</sub> limit (3-hour average) with duct firing is slightly more stringent than the 2.0 ppmvd @ 15% O<sub>2</sub> limit proposed by Moundsville Power. Units 4, 5, and 6 became operational in January 2012, May 2012, and October 2012, respectively. Given the lack of long-term operation and compliance with these emission limits, these CO emission levels are not considered achieved in practice at this time.

### Calpine Russell City Energy Center

Calpine's Russell City Energy Center has a VOC permit limit of 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing. The 1.0 ppmvd @ 15% O<sub>2</sub> limit without duct firing which matches the limit proposed by Moundsville Power. The 1.0 ppmvd @ 15% O<sub>2</sub> limit with duct firing is more stringent than the limit proposed by Moundsville Power. However, construction of the Russell City Energy Center has not been completed. Therefore, longterm demonstration of compliance with this VOC emission rate and averaging period has not been demonstrated in practice.

### **CPV** Warren

CPV Warren is a combined-cycle power plant proposed to be located in Front Royal, Warren County, Virginia. Originally developed by Competitive Power Ventures (CPV), the project was sold to Virginia Electric Power and Power Company (Dominion Virginia Power) in 2008.

A final PSD permit for a nominal 1,300 MW combined-cycle plant was issued by the Virginia Department of Environmental Quality (VDEQ) on December 21, 2010. This final PSD permit includes VOC emission limits of 0.7 ppm and 1.6 ppmvd @ 15% O<sub>2</sub>, on a 3-hour averaging basis, for operating conditions without and with duct firing, respectively. The CPV Warren facility was permitted with Oxidation Catalysts and good combustion practices for CO emission control. The plant has not yet been constructed. Based on publically available information, Dominion expects commercial operation of the Warren facility to occur in late 2014 or early 2015. The plant is expected to consist of three (3) Mitsubishi Model M501GAC combustion turbines. Since the plant has not begun operation, these BACT limits for VOC have not yet been achieved in practice.

### **Step 4 - Evaluate Most Effective Controls and Document Results**

The proposed VOC emission rates of 2.0 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively, are the lowest VOC emission rates achieved or permitted for other similar facilities. Therefore, an assessment of the economic and environmental impacts is not necessary.

### **Step 5 - Select BACT**

Moundsville Power proposed that BACT for VOC emissions from the combustion turbines is good combustion design and the use of Oxidation Catalysts to achieve VOC emissions rates of 2.0 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively.

The proposed VOC emission rates of 2.0 and 1.0 ppmvd @ 15% O<sub>2</sub> with and without duct firing, respectively, are the lowest VOC emission rates demonstrated in practice or permitted for other facilities using good combustion practices and Oxidation Catalysts.

### Auxiliary Boiler

There is currently no technically feasible add-on control technology to reduce VOC emissions from gaseous fuel-fired Auxiliary Boilers of the size proposed for the Moundsville Power Project. VOC emissions are minimized in these units through good combustion practices, ULNB, and FGR, which support effective combustion that minimizes VOC formation.

Moundsville Power proposes a VOC emission level of 0.006 lb/MMBtu as BACT for the Auxiliary Boiler. A review of available permits and RBLC determinations for small boilers identified several recent permits with VOC limits. Several RBLC determinations have VOC emission levels in the 0.002 to 0.006 lb/MMBtu range. One recent permit, Cricket Valley Energy Center in New York, is the only permit reviewed with a value below 0.002 lb/MMBtu. The permitted VOC emission limit for the 60 MMBtu/hr auxiliary boiler at Cricket Valley Energy Center is 0.0015 lb/MMBtu. However, because the Cricket Valley Energy Center has not been constructed at this time, the VOC value of 0.0015 lb/MMBtu has not been achieved in practice.

Given the expected limited hours of operation for the proposed Auxiliary Boiler (<2,000 hr/yr), the decrease in VOC emissions if the boiler were required to achieve a VOC emission level of 0.002 lb/MMBtu would be no more than 0.4 tons/yr. Therefore, Moundsville Power concludes that BACT for VOC is an emission level of 0.006 lb/MMBtu. Moundsville Power will achieve this emission level by using pipeline quality natural gas and employing good combustion practices.

Emergency Generator and Fire Water Pump

See NO<sub>x</sub> BACT evaluations in Section 3.4.2.2.1.

The proposed VOC BACT for all sources is summarized in Table 3-17.

# Table 3-17Proposed VOC BACT

| Emission Source                     | Proposed VOC BACT                                                                                                                 |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Combustion Turbines/Duct<br>Burners | 1 ppmvd @ 15% O <sub>2</sub> (without duct firing)<br>2 ppmvd @ 15% O <sub>2</sub> (with duct firing)                             |
|                                     | Oxidation Catalysts and good combustion practices                                                                                 |
| Auxiliary Boiler                    | 0.006 lb/MMBtu                                                                                                                    |
|                                     | Use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane and good combustion practices |
| Emergency Generator                 | 2.8 g/hp-hr NMHC+NO <sub>X</sub>                                                                                                  |
|                                     | Use of ULSD and good combustion practices                                                                                         |
| Fire Water Pump                     | 3.0 g/hp-hr NMHC+NO <sub>X</sub>                                                                                                  |
|                                     | Use of ULSD and good combustion practices                                                                                         |

# 3.4.2.2.5 GHG BACT

The GHG Tailoring Rule regulates emissions from six (6) covered GHGs: CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs, and SF<sub>6</sub>. Typically, GHG emissions are listed in terms of CO<sub>2</sub>e. GHG emissions associated with combustion equipment are limited to CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O. In calculating CO<sub>2</sub>e emissions, GWPs are used to normalize emissions of pollutants such as CH<sub>4</sub> and N<sub>2</sub>O, which are deemed to have a greater detrimental impact on a per pound basis than CO<sub>2</sub>. The GWP for CO<sub>2</sub> is set at 1, while CH<sub>4</sub> and N<sub>2</sub>O have GWPs of 25 and 298, respectively. The evaluation of technologies to minimize GHG emissions typically focuses on CO<sub>2</sub> emissions and mechanisms to reduce CO<sub>2</sub> emissions, which dominates the CO<sub>2</sub>e emission value for combustion based equipment. As such, the BACT evaluation presented in this document refers to CO<sub>2</sub> as the primary GHG pollutant for proposed Project equipment.

In general, there are two strategies available to minimize GHG emissions for electric generating units (EGUs): (1) add-on control via carbon capture systems to strip  $CO_2$  from the flue gas stream for subsequent re-use or sequestration, and (2) energy efficiency methods.

An important consideration for power plants is the source definition. USEPA permit guidance indicates that the Clean Air Act does not provide latitude for a permitting authority to redefine a source as part of a BACT evaluation. The proposed Project is a base load electric generating facility using gaseous fuel-fired combined-cycle combustion turbine technology. Only technologies that are relevant to the proposed equipment and fit within the business objectives of a facility should be considered in Step 1 of a BACT evaluation. For example, factors such as fuel type (coal versus solar or wind), or operational parameters (i.e., base load versus peak shaving) would be considered part of the "source definition" for power plants.

# Combustion Turbines/Duct Burners

# Step 1 - Identify Potential Control Technologies

# Carbon Capture and Storage

Carbon capture and storage (CCS) is the only potentially available add-on control option at this time. In order to capture  $CO_2$  emissions from the flue gas,  $CO_2$  must be separated from the exhaust stream. This can be accomplished by a variety of technologies that may include:

- Pre-combustion systems designed to separate CO<sub>2</sub> and hydrogen in the high-pressure synthetic gas typically produced at Integrated Gasification Combined-Cycle (IGCC) power plants; and
- Post-combustion systems that separate CO<sub>2</sub> from flue gas such as:
  - Chemical absorption using an aqueous solution of amines as chemical solvents; or

• Physical absorption using physical absorption processes such as Rectisol or Selexol.

Separation can be facilitated using oxygen combustion, which employs oxygen instead of ambient air for make-up air supplied for combustion. Applicability of different processes to particular applications will depend on temperature, pressure, CO<sub>2</sub> concentrations, and the presence or absence of contaminants in the gas or exhaust stream.

After  $CO_2$  is separated, it must be prepared for beneficial reuse or transport to a sequestration or storage facility, if a storage facility is not locally available for direct injection. In order to transport  $CO_2$ , it must be compressed and delivered via pipeline to a storage facility. Although beneficial reuse options are developing, such as the use of captured material to enhance oil or gas recovery from well fields in the petroleum industry, currently, the demand for  $CO_2$  for such applications is well below the quantity of  $CO_2$  that is available for capture from EGUs.

Without a market to use the recovered  $CO_2$ , the material would instead require sequestration, or permanent storage. Sequestration of  $CO_2$  is generally accomplished by injecting captured  $CO_2$  at high pressures into deep subsurface formations for long-term storage. These subsurface formations must be either local to the point of capture, or accessible via pipeline, to enable the transportation of recovered  $CO_2$  to the permanent storage location. Storage facilities typically include:

- 1) Geologic formations;
- 2) Depleted oil and gas reservoirs;
- 3) Unmineable coal seams;
- 4) Saline formations;
- 5) Basalt formations; or
- 6) Terrestrial ecosystems.

Once injected, the pressurized  $CO_2$  remains "supercritical" and behaves like a liquid. Supercritical  $CO_2$  is denser and takes up less space than gaseous  $CO_2$ . Once injected, the  $CO_2$  occupies pore spaces in the surrounding rock. Saline water that already resides in the pore space would be displaced by the denser  $CO_2$ . Over time, the  $CO_2$  can dissolve in residual water, and chemical reactions between the dissolved  $CO_2$  and rock can create solid carbonate minerals, more permanently trapping the  $CO_2$ .

#### Thermal Efficiency

An emissions reduction strategy focused on energy efficiency primarily deals with increasing the thermal efficiency of a combustion turbine. Higher thermal efficiency means that less fuel is required for a given output, which results in lower GHG emissions. Maximizing EGU efficiency is an alternative available to reduce the consumption of fuel required to generate a fixed amount of output. The largest efficiency losses for a combined-cycle combustion turbine are inherent in the design of the combustion turbine and the heat recovery system. The mechanical input to the combustion turbine compressor consumes energy, and is integral to how a combustion turbine works. Therefore, there is no opportunity for efficiency gains other than the differences in design between manufacturers or models. Heat recovery in the exhaust gas is another point of efficiency loss. Heat recovery efficiency depends upon the design of the heat recovery system, and varies between manufacturers and models.

The efficiency of the combustion turbines/duct burners employed can vary widely. One alternative to reduce CO<sub>2</sub> emissions is to maximize combustion turbine efficiency through various design techniques. Any increase in energy efficiency within the operation of the combustion turbine yields reductions in the generation of CO<sub>2</sub> emissions on a per unit output basis. For example, combustion turbine suppliers typically offer several different models with a variety of efficiency ratings.

### Combustion Air Cooling

A common method used to improve the energy efficiency of combustion turbines is to cool the combustion air entering the combustion turbines during the summer months. Cooling the combustion air via heat exchanger systems maximizes the expansion of the air molecules and enhances the work the expanding gases perform on the turbine blades, hence producing higher amounts of electricity. A higher electric output improves the overall efficiency of the EGU. Based on general guidance available and recent analyses conducted regarding combustion air cooling, achievable reductions in fuel usage and CO<sub>2</sub> emissions may range from 10  $-15\%^{\circ}$ .

<sup>&</sup>lt;sup>9</sup> (Hyperion Energy Center Best Available Control Technology (BACT) Analysis for Emissions of Carbon Dioxide, March 2009).

#### Cogeneration/Combined Heat & Power

Cogeneration, or Combined Heat and Power (CHP), is the operation of a combustion system to generate both heat for electric power generation and useful thermal energy for a process. The electric power is distributed for use, while the thermal energy is used locally to support heating systems or industrial processes. A CHP system allows for the use of energy in the form of heat to provide thermal energy that would otherwise be lost in cooling water for a traditional EGU. For combustion turbine systems, the more likely CHP technique would be to provide space heating for nearby buildings or to provide makeup heat to nearby coal-fired EGUs (likely application for power plants with combustion turbine and coal-fired EGUs onsite). The use of this otherwise lost heat would thereby improve the overall efficiency of the EGU or process, and subsequently reduce overall  $CO_2$  emissions, on an equivalent basis.

The use of a CHP system provides an opportunity to extract additional energy from heat otherwise lost in a traditional EGU. However, this type of system requires the removal of steam from the steam turbine, which reduces the amount of electric power generation recognized in the CHP. This electrical energy is instead transformed to thermal energy for use on a more local basis. The advantage to a CHP system is the net improvement of overall fuel efficiency compared to a traditional EGU operation.

### Lower Carbon Fuels

Carbon dioxide is produced as a combustion product of any carboncontaining fuel. All fossil fuels contain varying amounts of fuel-bound carbon that is converted during the combustion process to produce CO and CO<sub>2</sub>. However, the use of lower carbon content gaseous fuels such as pipeline-quality natural gas or ethane, compared to the use of higher carbon-containing fuels such as coal, pet-coke or residual fuel oils, can reduce CO<sub>2</sub> emissions from combustion.

Natural gas and ethane combustion result in significantly lower GHG emissions than coal combustion (117.0 lb/MMBtu and 131.4 lb/MMBtu, for natural gas and ethane, respectively, versus 205.6 lb/MMBtu for bituminous coal).<sup>10</sup> The use of lower carbon containing fuels in combustion turbines is an effective means to reduce the generation of CO<sub>2</sub> during the combustion process.

<sup>&</sup>lt;sup>10</sup> 40 CFR 98, Subpart C, Table C-1.

# **Step 2 - Eliminate Technically Infeasible Options**

### Carbon Capture and Storage

In general, the availability of add-on control options to remove GHGs from an EGU exhaust stream is limited. CCS is the only potentially available add-on control option at this time, and even this technology is limited and infantile in its development.

Although numerous carbon capture, storage, and beneficial CO<sub>2</sub> use demonstration projects are in various stages of planning and implementation across the globe, including several in the U.S. that are funded by the Department of Energy (DOE), the technologies needed for a full-scale generating facility are not yet commercially available. In fact, President Obama formed an Interagency Task Force on Carbon Capture and Storage, co-chaired by DOE and USEPA, in early 2010 to develop a federal strategy for overcoming the barriers to the widespread, costeffective deployment of CCS within 10 years, with an ultimate goal of bringing several commercial demonstration projects online by 2016<sup>11</sup>.

Without a market to use the recovered CO<sub>2</sub>, the material would instead require sequestration, or permanent storage. The geological formations near the Moundsville Power Project provide limited, if any, alternatives to adequately and permanently store recovered CO<sub>2</sub>.

Extensive characterization studies would be needed to determine the extent and storage potential for  $CO_2$  from Moundsville Power sources. These studies would take several years of investigation, including drilling characterization wells, and would likely require small-scale injection testing before determining their full-scale viability.

There are neither local geologic reservoirs, nor pipelines dedicated to CO<sub>2</sub> transport available near the proposed Project at this time. In addition, carbon capture technologies have yet to be demonstrated on a full-scale power generation facility. Therefore, options involving CCS are not currently considered feasible for this Project.

<sup>&</sup>lt;sup>10</sup>U.S. Interagency Task Force on Carbon Capture and Storage. "Report of the Interagency Task Force on Carbon Capture and Storage." August 2010. Available online:

http://www.epa.gov/climatechange/downloads/CCS-Task-Force-Report-2010.pdf

### Thermal Efficiency

The use of a combustion turbine with a higher thermal efficiency is a technically feasible alternative to one with a lower thermal efficiency rating.

### Combustion Air Cooling

Although combustion air cooling is considered technically feasible, other options such as a more efficient combustion turbine are considered more effective in terms of overall net environmental benefit. The proposed combustion turbines will be equipped with inlet evaporative cooling systems, which are a form of combustion air cooling.

#### Cogeneration/Combined Heat & Power

For a CHP system to be beneficial, there must be a local need for thermal energy, because thermal energy cannot be effectively transported over extended distances. Given the proposed use of an extremely efficient combustion turbine operated in an efficient combined-cycle mode, there is no reasonable net environmental benefit of a CHP system for the proposed Project. Therefore, CHP is not considered technically feasible for this Project.

#### Lower Carbon Fuels

The use of lower carbon content gaseous fuels such as pipeline-quality natural gas or ethane, compared to the use of higher carbon-containing fuels such as coal, pet-coke or residual fuel oils, is a technically feasible alternative to reduce CO<sub>2</sub> emissions.

### Step 3 - Rank Remaining Control Technologies by Control Effectiveness

Moundsville Power proposes to use a high thermal efficiency combustion turbine model, GE Frame 7FA.04, operated in combined-cycle mode. The proposed combustion turbines feature an extremely low heat rate when operating in combined-cycle mode, which translates to high efficiency because a low heat rates means less fuel is combusted to produce a unit amount of electric power output.

The table in **Appendix C** of this application contains a comparison of GHG emission rate and heat rate information for various combustion turbine projects, both simple-cycle and combined-cycle. Available information is regarding size, configuration,  $CO_2$  or GHG emission rates, and heat rates is summarized. The relevant information for the Moundsville Power combustion turbines is included in this table.

Comparisons among the various combustion turbines are somewhat complicated in that different bases can be used to establish certain parameters. For example, combustion turbine outputs can be specified on a net or gross basis, and can vary based on fuel, load, ambient temperature, whether duct firing is occurring, and other factors. GHG emission rates can be specified on a LHV or HHV basis. Nevertheless, in context, the Moundsville Power combustion turbines compare favorably with other recent combustion turbine projects in terms of output-based GHG emission rates and heat rates, which indicates that the proposed combustion turbines represent an efficient design that has been accepted as BACT for GHGs in other PSD permits.

The proposed combustion turbines will be equipped with inlet evaporative cooling systems, which are a form of combustion air cooling.

Moundsville Power proposes the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane. Natural gas and ethane are lower carbon containing fuels that yield reduced GHG emissions.

### Step 4 - Evaluate Most Effective Controls and Document Results

Based on the information presented in this BACT analysis and consistent with BACT at other similar sources, Moundsville Power proposes to employ the following GHG control techniques as part of this Project:

- (1) Use of a high thermal efficiency combustion turbine model, GE Frame 7FA.04, operated in combined-cycle mode;
- (2) Use of inlet evaporative cooling systems, which are a form of combustion air cooling;
- (3) Use of lower carbon containing fuels (pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane);

In addition, Moundsville Power proposes a facility-wide GHG emissions limit as GHG BACT for the Project. The proposed GHG emission limit from the combustion turbines, Auxiliary Boiler, Emergency Generator, Fire Water Pump, and Circuit Breakers is 2,240,618 tons/yr, on a CO<sub>2</sub>e basis. GHG emissions from the Project's combustion sources will be calculated in accordance with the methodology and emission factors noted in 40 CFR 98, Subparts C and D, as applicable. GHG emissions from the Project's Circuit Breakers will be calculated in accordance with the methodology and emission factors noted in 40 CFR 98, Subpart DD, as applicable.

#### **Step 5 - Select BACT**

For GHG BACT, Moundsville Power proposes to employ the following GHG control techniques:

- Use of a high thermal efficiency combustion turbine model, GE Frame 7FA.04, operated in combined-cycle mode;
- (2) Use of inlet evaporative cooling systems, which are a form of combustion air cooling;
- (3) Use of lower carbon containing fuels (pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane);

Moundsville Power also proposes a facility-wide GHG emissions limit. The proposed GHG emission limit from the Combustion Turbines, Auxiliary Boiler, Emergency Generator, Fire Water Pump, and Circuit Breakers is 2,240,618 tons/yr, on a CO<sub>2</sub>e basis. GHG emissions from the Project's combustion sources will be calculated in accordance with the methodology and emission factors noted in 40 CFR 98, Subparts C and D, as applicable. GHG emissions from the Project's Circuit Breakers will be calculated in accordance with the methodology and emission factors noted in 40 CFR 98, Subpart DD, as applicable.

### <u>Auxiliary Boiler</u>

There are currently no technically feasible add-on control technologies to reduce GHG emissions from the Auxiliary Boiler. Therefore, GHG emissions from these sources will be controlled by the exclusive use of pipeline-quality natural gas and good combustion practices.

### Emergency Generator and Fire Water Pump

There is currently no technically feasible add-on control technology to reduce GHG emissions from the Emergency Generator and Fire Water Pump. Therefore, Moundsville Power proposes to limit GHG emissions from these sources by using ULSD and good combustion practices.

### Circuit Breakers

Sulfur hexafluoride (SF<sub>6</sub>) gas is typically used in the circuit breakers associated with electricity generation equipment. Potential sources of SF<sub>6</sub> emissions include equipment leaks from SF<sub>6</sub> containing equipment, releases from gas cylinders used for equipment maintenance and repair operations, and SF<sub>6</sub> handling operations.

- (1) Use of dielectric oil or compressed air circuit breakers that contain no  $SF_6$  or other GHG pollutants; and
- (2) Use of modern SF<sub>6</sub> circuit breakers designed to be totally enclosed systems.

Potential alternatives to SF<sub>6</sub> were addressed in the National Institute of Standards and Technology (NTIS) Technical Note 1425, *Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6.17.* According to this document, SF<sub>6</sub> is a superior dielectric gas for nearly all high voltage applications. It is easy to use, exhibits exceptional insulation and arc-interruption properties, and has proven its performance by many years of use and investigation. It is clearly superior in performance to the air and oil insulated equipment used prior to the development of SF<sub>6</sub>-insulated equipment. The report concluded that although "…various gas mixtures show considerable promise for use in new equipment, particularly if the equipment is designed specifically for use with a gas mixture… it is clear that a significant amount of research must be performed for any new gas or gas mixture to be used in electrical equipment." Therefore, Moundsville Power believes there are currently no technically feasible options to the use of SF<sub>6</sub>.

Circuit breakers with insulating gases other than  $SF_6$  are not yet commercially available, and certainly any use of less effective insulation material to control emissions of just 58 tons/yr of CO<sub>2</sub>e would not be warranted, even if it were available. As such, non-SF<sub>6</sub> circuit breakers will be eliminated. The only remaining feasible control is to use a modern, totally enclosed SF<sub>6</sub> circuit breakers.

In comparison to older SF<sub>6</sub> circuit breakers, modern breakers are designed as totally enclosed pressure systems with far lower potential for SF<sub>6</sub> emissions. Therefore, Moundsville Power proposes to implement modern state-of-the-art, gas-tight circuit breakers with the implementation of an inspection and maintenance program to identify and repair leaks. Moundsville Power will monitor SF<sub>6</sub> emissions from the circuit breakers annually according to the requirements of the Mandatory Greenhouse Gas Reporting Rule for Electrical Transmission and Distribution Equipment Use (40 CFR 98, Subpart DD). Annual emissions of SF<sub>6</sub> will be calculated according to the mass balance approach in Equation DD-1 of Subpart DD.

The proposed GHG BACT for all sources is summarized in Table 3-18.

#### Table 3-18 Proposed GHG BACT

| <b>Emission Source</b>              | Proposed GHG BACT                                                                                                                                                                        |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combustion Turbines/Duct<br>Burners | Use of high thermal efficiency GE Frame 7FA.04<br>combustion turbines, use of lower carbon<br>containing natural gas or a blend of pipeline-<br>quality natural gas and up to 25% ethane |
| Auxiliary Boiler                    | Exclusive use of pipeline quality natural gas or<br>a blend of pipeline-quality natural gas and up<br>to 25% ethane                                                                      |
| Emergency Generator                 | Use of ULSD fuel and good combustion practices                                                                                                                                           |
| Fire Water Pump                     | Use of ULSD fuel and good combustion practices                                                                                                                                           |
| Circuit Breakers                    | Totally enclosed SF <sub>6</sub> circuit breakers and leak detection and repair program                                                                                                  |

3.4.2.3 Additional PSD Analyses

The PSD regulations require additional analyses beyond BACT assessments. These additional analyses include:

- Assessment of compliance with NAAQS and PSD increments;
- An evaluation of whether the Project results in any impairment to visibility, soils, and vegetation that would occur as a result of the new source, and of general commercial, residential, industrial, and other growth associated with the new source. Furthermore, impacts on Class I areas must be analyzed to determine compliance with Class I increments and to assess the impacts of new emissions on air quality related values (AQRVs); and
- An evaluation of the Project's impacts on PSD Class I Areas.

These analyses will be addressed when the air quality dispersion modeling analyses are conducted.

#### MOUNDSVILLE POWER

#### 3.5 NON-ATTAINMENT NEW SOURCE REVIEW (NA-NSR)

The Moundsville Power Project is located in Marshall County, which is designated as a non-attainment area for  $SO_2$ . If emissions of  $SO_2$  from the Project are greater than 100 tons/yr, the Project will trigger the requirements of NA-NSR.

As indicated in Table 3-13, potential annual SO<sub>2</sub> emissions are less than the NA-NSR trigger threshold for new sources. Therefore, the proposed Project is not subject to NA-NSR for SO<sub>2</sub>.

### 3.6 APPLICABLE REQUIREMENTS REVIEW

This section briefly outlines the federal and State air quality requirements to which the proposed Moundsville Power Project will be subject, in addition to the PSD and NA-NSR requirements presented previously.

## 3.6.1 Federal Requirements

3.6.1.1 New Source Performance Standards (NSPS)

# 3.6.1.1.1 *Combustion Turbines*

The combustion turbines are subject to 40 CFR 60 Subpart KKKK, "Standards of Performance for Stationary Combustion Turbines." All stationary gas turbines with a heat input at a peak load equal to or greater than 10.7 gigajoules per hour (10 MMBtu/hr), based on the higher heating value of the fuel, which commenced construction, modification, or reconstruction after 18 February 2005 are subject to this NSPS Subpart KKKK. Note that stationary combustion turbines regulated under Subpart KKKK are exempt from the requirements of Subpart GG.

The Subpart KKKK emission limits are:

- NO<sub>x</sub> 15 ppmvd @ 15% O<sub>2</sub> or 0.43 lb/MW-hr gross energy output; and
- SO<sub>2</sub> 0.90 lb/MW-hr gross energy output or 0.060 lb/MMBtu.

Subpart KKKK includes general compliance requirements (60.4333), monitoring requirements (60.4335-60.4370), reporting requirements (60.4375-60.4395), and performance testing (60.4400-60.4415). Moundsville Power will also be subject to applicable notification, monitoring and reporting and related applicable provisions of 40 CFR 60.7 and 60.8.

The proposed combustion turbines will meet the applicable emission limits and provisions of NSPS Subpart KKKK.

# 3.6.1.1.2 *Auxiliary Boiler*

The Auxiliary Boiler is subject to 40 CFR 60 Subpart Dc, "Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units" because the rated heat input of the Auxiliary Boiler, 100 MMBtu/hr, is greater 10 MMBtu/hr and less than or equal to 100 MMBtu/hr. Subpart Dc requirements for an auxiliary boiler that only burns natural gas or other gaseous fuels include:

- Notification of the date of construction and actual startup (60.48c(a));
- Fuel and fuel use records (60.48c(f) and (g)); and
- Maintenance of required records for two (2) years from the date of the record (60.48c(i)).

The proposed Auxiliary Boiler will meet the applicable emission limits and provisions of NSPS Subpart Dc.

# 3.6.1.1.3 *Emergency Generator and Fire Water Pump*

The Emergency Generator and Fire Water Pump are subject to 40 CFR 60, Subpart IIII - *Standards of Performance for Stationary Compression Ignition Internal Combustion Engines* and the associated fuel, monitoring, compliance, testing, notification, reporting, and recordkeeping requirements (40 CFR 60.4200 *et seq*.) and related applicable provisions of 40 CFR 60.7 and 60.8. Emission limits for these engines are noted in Table 3-36. Note that both engines are not subject to the Tier 4 requirements under Subpart IIII because they both will have cylinder displacement less than 10 liters per cylinder (L/cyl.).

The emission standards in NSPS Subpart IIII applicable to the Emergency Generator and Fire Water Pump are summarized in Table 3-19 below. The proposed Emergency Generator and Fire Water Pump will meet the applicable emission limits and provisions of NSPS Subpart IIII.

#### Table 3-19 Emission Standards for Emergency Engines (g/hp-hr)

| Emergency Engine                                                                                                                 | Model Year     | NMHC+NO <sub>x</sub> | CO  | PM   |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|-----|------|
| 251-hp Fire Water Pump<br>130 <kw<225 (100<hp<300)<="" td=""><td>2006 and after</td><td>3</td><td>2.6</td><td>0.15</td></kw<225> | 2006 and after | 3                    | 2.6 | 0.15 |
| 1,500-kW Emergency Generator<br><10 L/cyl. and <2,237 kW (3,000 hp)                                                              | 2006 and after | 4.8                  | 2.6 | 0.15 |

3.6.1.2 NSPS for GHGs (40 CFR Part 60)

On September 20, 2013, USEPA proposed a revised Carbon Pollution Standard that would set national limits on the amount of GHG emissions allowed for new power plants. The rule will be promulgated under authority of Section 111 of the Clean Air Act (i.e., NSPS), and applies to new electric utility generating units (EGUs).

USEPA is proposing to codify the CO<sub>2</sub> standards of performance in the same subparts – Da and KKKK, depending on the types of units – that currently include the standards of performance for conventional pollutants. However, USEPA is co-proposing an alternative to codify the CO<sub>2</sub> standards in a new subpart, TTTT, as in USEPA's original April 2012 proposal.

This new proposal was issued after USEPA received and reviewed more than 2.5 million public comments on the April 2012 Carbon Pollution Standard. Concurrent with this proposal, USEPA is rescinding the original April 2012 proposed rule.

In a change from the April 2012 proposal, USEPA is now proposing a standard of performance for natural gas-fired stationary combustion turbines and for fossil fuel-fired utility boilers and integrated gasification combined-cycle (IGCC) units called the Best System of Emission Reduction (BSER). This is the most controversial part of the rule.

For affected gas turbine EGUs, the proposed limits are based on the performance of a combined-cycle design with two (1) size categories. Larger units with a heat input rating greater than 850 MMBtu/hr will be required to meet a standard of 1,000 pounds of CO<sub>2</sub> per gross megawatthour (lb-CO<sub>2</sub>/MW-hr gross). Units rated less than or equal to 850 MMBtu/hr will be subjected to a standard of 1,100 lb-CO<sub>2</sub>/MW-hr gross. The proposed rule specifies that compliance with these limits would be

based on a 12-month rolling average basis, updated after each new operating month.

USEPA states that it considers modern and efficient natural-gas combinedcycle (NGCC) as BSER for new affected combustion turbines (Subpart KKKK sources). USEPA decided that CCS could not be considered as BSER for gas-fired combustion turbines due to: 1) the significantly lower concentration of CO<sub>2</sub> in the flue gas; 2) there is only one (1) CCS demonstration project on a NGCC facility; and 3) the potential of significant impacts to electricity prices and reliability of the imposition of CCS on few coal fired units.

Moundsville Power will continue to monitor this rulemaking, and will evaluate its applicability to the Project upon its promulgation. The proposed combustion turbines would meet the proposed standard of 1,000 lb- $CO_2/MW$ -hr gross for units with a heat input rating greater than 850 MMBtu/hr.

3.6.1.3 Acid Rain Program (40 CFR Parts 72-76, 45 CSR 33)

The proposed combustion turbines meet the definition of an "affected unit" as defined in 40 CFR 72.6, and are therefore subject to the requirements of the Acid Rain Program, including emissions standards (40 CFR 72.9) and monitoring requirements (40 Part 75), among other requirements. In addition, Moundsville Power is required to apply for, and obtain, an Acid Rain permit, pursuant to 40 CFR 72.30. The terms of the Acid Rain permit will be incorporated into the facility's Title V operating permit when it is issued by WVDEP in the future. Pursuant to 40 CFR 72.30(b)(2)(ii), the Acid Rain permit application must be submitted to the permitting authority at least 24 months before the date on which a unit commences operation. With commencement of operation expected in the first or second quarter of 2017, the Acid Rain permit application must be submitted sometime in the first or second quarter of 2015.

#### 3.6.1.4 National Emissions Standards for Hazardous Air Pollutants

National Emissions Standards for Hazardous Air Pollutants (NESHAPs) are federal HAP requirements in 40 CFR 63 that apply generally to "major" sources of HAPs, defined as facilities with the potential to emit 10 tons/yr or more of any single HAP, or 25 tons/yr or more of all HAPs. HAP standards, known as Maximum Achievable Control Technology (MACT) standards, for major HAP sources are established for classes or categories

MOUNDSVILLE POWER

DECEMBER 2013

of sources. There are, at present, no source category MACT standards for combustion turbines such as those proposed by Moundsville Power. Some MACT standards, known as "area source MACT" standards, apply to minor source HAP facilities.

The total potential HAP emissions for the facility are projected to be less than 25 tons/yr for all HAPs combined. Therefore, the Project is not considered a major HAP source, and so no source-specific MACT standards apply.

There is an area source MACT for industrial, commercial and institutional boilers and process heaters (40 CFR 63, Subpart JJJJJJJ), known as "Boiler MACT". Boiler MACT does not apply to any of the proposed combustion sources because the only source considered an "affected source" under Subpart JJJJJJJ is the Auxiliary Boiler and, according to 40 CFR 63.11195, a natural gas-fired boiler is not subject to Subpart JJJJJJJ.

The Emergency Generator and Fire Water Pump are subject to 40 CFR 63, Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines ("RICE MACT") and the associated fuel, monitoring, compliance, testing, notification, reporting, and recordkeeping requirements.

#### 3.6.1.5 *Compliance Assurance Monitoring*

Compliance Assurance Monitoring (CAM) applies to emissions units at "major" sources that are required to obtain a Title V operating permit, and that meet all three of the following criteria (40 CFR 64.2a):

"(1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant (or a surrogate thereof), other than an emission limitation or standard that is exempt under paragraph (b)(1) of this section;

(2) The unit uses a control device to achieve compliance with any such emission limitation or standard; and

(3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100% of the amount, in tons/yr, required for a source to be classified as a major source."

Exemptions from CAM in 40 CFR 64.2(b)(1) include:

(i) Emission limitations or standards proposed by the Administrator after November 15, 1990 pursuant to section 111 [NSPS] or 112 [NESHAP] of the Act.

(ii) Stratospheric ozone protection requirements under Title VI of the Act.

(iii) Acid Rain Program requirements pursuant to sections 404, 405, 406, 407(a), 407(b), or 410 of the Act.

(iv) Emission limitations or standards or other applicable requirements that apply solely under an emissions trading program approved or promulgated by the Administrator under the Act that allows for trading emissions within a source or between sources.

(v) An emissions cap that meets the requirements specified in 70.4(b)(12) or 71.6(a)(13)(iii) of this chapter.

(vi) Emission limitations or standards for which a Part 70 or 71 [Title V operating] permit specifies a continuous compliance determination method, as defined in 64.1...

The proposed Project was evaluated for CAM applicability. Only the combustion turbines are equipped with control devices (SCR and Oxidation Catalysts) and have pre-controlled emissions of applicable regulated air pollutants emissions (NO<sub>x</sub> and CO) in excess of 100 tons/yr. However, the combustion turbines are subject to the NSPS Subpart KKKK, and will be equipped with Continuous Emissions Monitoring Systems (CEMS) for NO<sub>x</sub> and CO, which are considered a continuous compliance determination method. Therefore, the combustion turbines are exempt from CAM under 40 CFR 64.2(a)(1) and (b)(1)(i).

#### 3.6.1.6 *Chemical Accident Prevention Provisions*

These provisions, in 40 CFR 68, apply to a wide variety of facilities that handle, manufacture, store, or use toxic or highly flammable substances. Ammonia is one of the potentially covered substances. However, the ammonia reagent planned for the SCRs is aqueous ammonia, at a concentration of less than 20% by weight. The aqueous ammonia is planned to be stored in one (1) storage tank, with a capacity of 20,000

gallons. The use of aqueous ammonia with a concentration of less than 20% by weight ensures that the provisions of 40 CFR 68 will not apply.

#### 3.6.1.7 Clean Air Interstate Rule and Cross-State Air Pollution Rule

The Clean Air Interstate Rule (CAIR) was a federal rule promulgated in March 2005 that implements a cap and trade program on power plant NO<sub>X</sub> and SO<sub>2</sub> emissions in the eastern half of the United States. This rule was promulgated for implementation under 40 CFR 97. WVDEP has promulgated implementing regulations for CAIR under 45 CSR 39-41. According to 40 CFR 97.4, CAIR applies to any emission unit that, at any time after January 1, 1995, has a nameplate electric generating capacity of greater than 25 MWe, and sells any amount of electricity or has a maximum design heat input of greater than 250 MMBtu/hr.

On July 6, 2011, the USEPA finalized the Cross-State Air Pollution Rule (CSAPR), which replaces CAIR. The first phase of compliance begins January 1, 2012 for annual SO<sub>2</sub> and annual NO<sub>X</sub> emissions, and May 1, 2012 for ozone season NO<sub>X</sub> emissions.

However, in August 2012, the U.S. Court of Appeals for the D.C. Circuit issued a ruling that vacated CSAPR in its entirety and remanded the rule back to USEPA for reconsideration and revision. The CAIR program described above remains in place until the issues with CSAPR are resolved. At the time of this filing, the U.S. Supreme Court has agreed to review the D.C. Circuit Court's decision on CSAPR, and USEPA has filed its opening merits brief with the U.S. Supreme Court.

The CAIR program remains in place until the issues with CSAPR are resolved. Like the Acid Rain program, CAIR also requires Moundsville Power to apply for, and obtain, the applicable CAIR permits for  $NO_x$  and  $SO_2$ . Under the CAIR program, these permit applications must be submitted to the permitting authority at least 18 months prior to the date on which a unit commences operation. With commencement of operation expected in the first or second quarter of 2017, the CAIR permit applications must be submitted sometime in the third or fourth quarter of 2015.

The Moundsville Power combustion turbines are expected to be subject to CSAPR when a final rule is in place because West Virginia is an affected state, and the rule is expected to apply to any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any

time, on or after January 1, 2005, a generator with nameplate capacity of more than 25 MWe producing electricity for sale.

#### 3.6.1.8 *PM*<sub>2.5</sub> *Implementation Rule*

The PM<sub>2.5</sub> Implementation Rule<sup>12</sup> became effective on July 15, 2008 for nonattainment areas. Marshall County had been designated as nonattainment for the 1997 annual PM<sub>2.5</sub> NAAQS of 15  $\mu$ g/m<sup>3</sup>. However, on September 30, 2013, USEPA finalized rulemaking approving the area's redesignation to attainment. Therefore, this rule currently does not apply.

#### 3.6.1.9 Mandatory Reporting of Greenhouse Gases

The Mandatory Greenhouse Gas Reporting Rule (40 CFR Part 98) applies to direct GHG emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject  $CO_2$  underground for sequestration or other reasons. In general, the threshold for reporting is 25,000 metric tons or more of  $CO_{2e}$  per year. Reporting is at the facility level, except for certain suppliers of fossil fuels and industrial GHGs.

At the Moundsville Power facility, the Auxiliary Boiler is addressed in Subpart C (General Stationary Fuel Combustion Sources) and the combustion turbines are addressed in Subpart D (Electricity Generation). Pursuant to 40 CFR 98.30(b)(2), emergency generators and emergency equipment as defined in 40 CFR 98.6 are not included in the source category under Subpart C. Therefore, the Emergency Generator and the Fire Water Pump are exempt from reporting under the rule.

Under Subparts C and D, emissions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O must be determined and reported to USEPA in accordance with the following requirements:

- Procedure to estimate emissions (98.33, 98.43);
- Monitoring and QA/QC Requirements (98.34, 98.44);
- Procedures for Estimating Missing Data (98.35, 98.45);
- Data Reporting Requirements (98.36, 98.46); and
- Records that Must Be Retained (98.37, 98.47).

<sup>&</sup>lt;sup>12</sup> See 73 FR 28321.

Moundsville Power will be required to submit an annual report of GHG emissions and data. The facility will be required to use the electronic GHG reporting tool (e-GGRT) developed by USEPA. The annual report of the previous calendar year's data is due on March 31 of each year.

#### 3.6.2 State Requirements

The proposed Project will be subject to a number of WVDEP air quality requirements including, but not limited to, the following:

3.6.2.1 45 CSR 02 (To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers)

The Auxiliary Boiler is a natural gas-fired indirect heat exchanger with a design heat input capacity greater than 10 MMBtu/hr. The Auxiliary Boiler will comply with the applicable PM emission limits and visible emission standards in the rule.

3.6.2.2 45 CSR 10 (To Prevent and Control Air Pollution from the Emission of Sulfur Oxides)

The Auxiliary Boiler is a natural gas-fired indirect heat exchanger with a design heat input capacity greater than 10 MMBtu/hr. The Auxiliary Boiler will comply with the applicable SO<sub>2</sub> emission limits in the rule.

3.6.2.3 45 CSR 11 (Prevention of Air Pollution Emergency Episodes)

When requested by the WVDEP Director, Moundsville Power will prepare standby plans for reducing air pollutant emissions during Air Pollution Alerts, Air Pollution Warnings, and Air Pollution Emergencies.

3.6.2.4 45 CSR 13 (Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation)

This permit application is being submitted pursuant to 45 CSR 13 for the construction of the proposed Project.

3.6.2.5 45 CSR 14 (Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration) As described above in Section 3.4, the proposed Project will be subject to PSD for NO<sub>x</sub>, CO, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, and GHGs. 3.6.2.6 45 CSR 16 (Standards of Performance for New Stationary Sources) As described above in Section 3.6.1.1, the proposed combustion turbines will be subject to NSPS Subpart KKKK in 40 CFR 60. The proposed Auxiliary Boiler will be subject to NSPS Subpart Dc in 40 CFR 60. The proposed Emergency Generator and Fire Water Pump will be subject to NSPS Subpart IIII in 40 CFR 60. 3.6.2.7 45 CSR 19 (Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution Which Cause or Contribute to Nonattainment) As described above in Section 3.5, the proposed Project will not trigger NA-NSR for any non-attainment pollutants (i.e.  $SO_2$ ). 3.6.2.8 45 CSR 27 (To Prevent and Control the Emissions of Toxic Air Pollutants) The proposed Project will not utilize equipment that will be subject to the provisions of this rule. 3.6.2.9 45 CSR 30 (Requirements for Operating Permits) The proposed Project will require a Title V Operating Permit. Pursuant to 45 CSR 30-4.1.a.2, Moundsville Power must file a complete application to obtain the Title V operating permit within 12 months after the Project commences operation, which is expected to occur in 2016. 3.6.2.10 45 CSR 33 (Acid Rain Provisions and Permits) As described above in Section 3.6.1.3, the proposed combustion turbines will be subject to certain provisions of the Acid Rain program, including the permitting provisions.

DECEMBER 2013

#### 3.6.2.11 45 CSR 34 (Emission Standards for Hazardous Air Pollutants)

As described above in Section 3.6.1.4, the Emergency Generator and Fire Water Pump are subject to 40 CFR 63, Subpart ZZZZ ("RICE MACT") and its associated fuel, monitoring, compliance, testing, notification, reporting, and recordkeeping requirements.

#### 4.0 SUMMARY

The emissions sources evaluated in this application include the combustion turbines, Auxiliary Boiler, the Emergency Generator, Fire Water Pump, and Cooling Tower.

Emissions from the proposed Project trigger PSD requirements for  $NO_x$ , CO, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, VOC, and GHG. No pollutants trigger NA-NSR. Emissions of all other regulated pollutants, including HAPs, will be below regulatory thresholds.

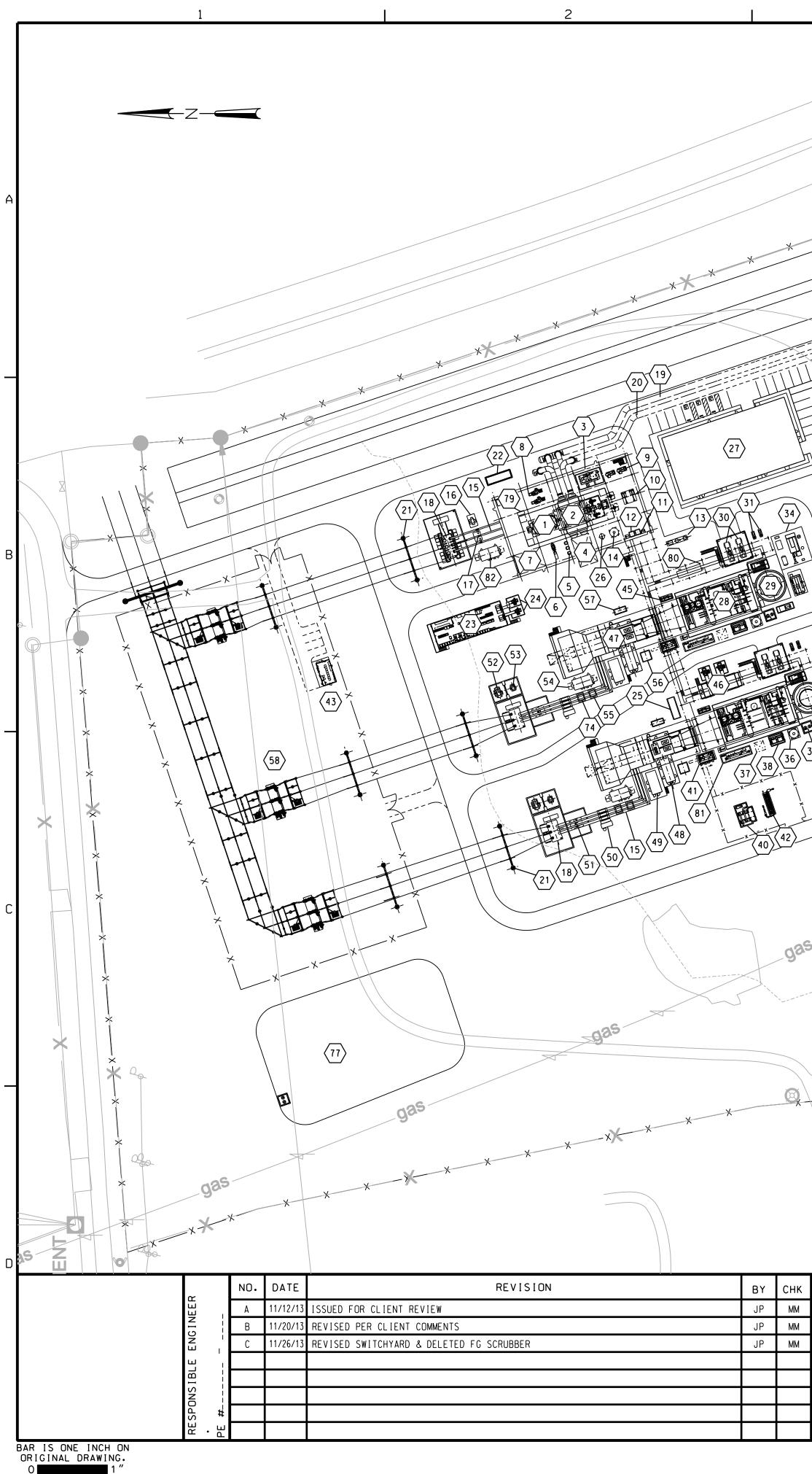
Because emissions of  $NO_x$ , CO, PM,  $PM_{10}$ ,  $PM_{2.5}$ , VOC, and GHG trigger PSD, Moundsville Power is required to meet BACT for these pollutants, and conduct impact assessments to ensure that emissions will not adversely affect ambient air quality. BACT will be achieved using the following controls.

- NO<sub>x</sub> emissions will be controlled using SCR and dry low-NO<sub>x</sub> combustor technologies for the combustion turbines; ULNB and FGR for the Auxiliary Boiler; and efficient combustion and limited hours of operation for the Emergency Generator and the Fire Water Pump.
- CO emissions from the combustion turbines will be controlled using Oxidation Catalysts and good combustion practices. CO emissions from the Auxiliary Boiler will be controlled through the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane, as well as good combustion practices. CO emissions from the Emergency Generator and Fire Water Pump will be controlled using ULSD and good combustion practices.
- PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the combustion turbines will be controlled by the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane, along with filtration of the inlet air and SCR dilution air systems. PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the Auxiliary Boiler will be controlled by the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane. PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the Auxiliary Boiler will be controlled by the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane. PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the Emergency Generator and Fire Water Pump will be

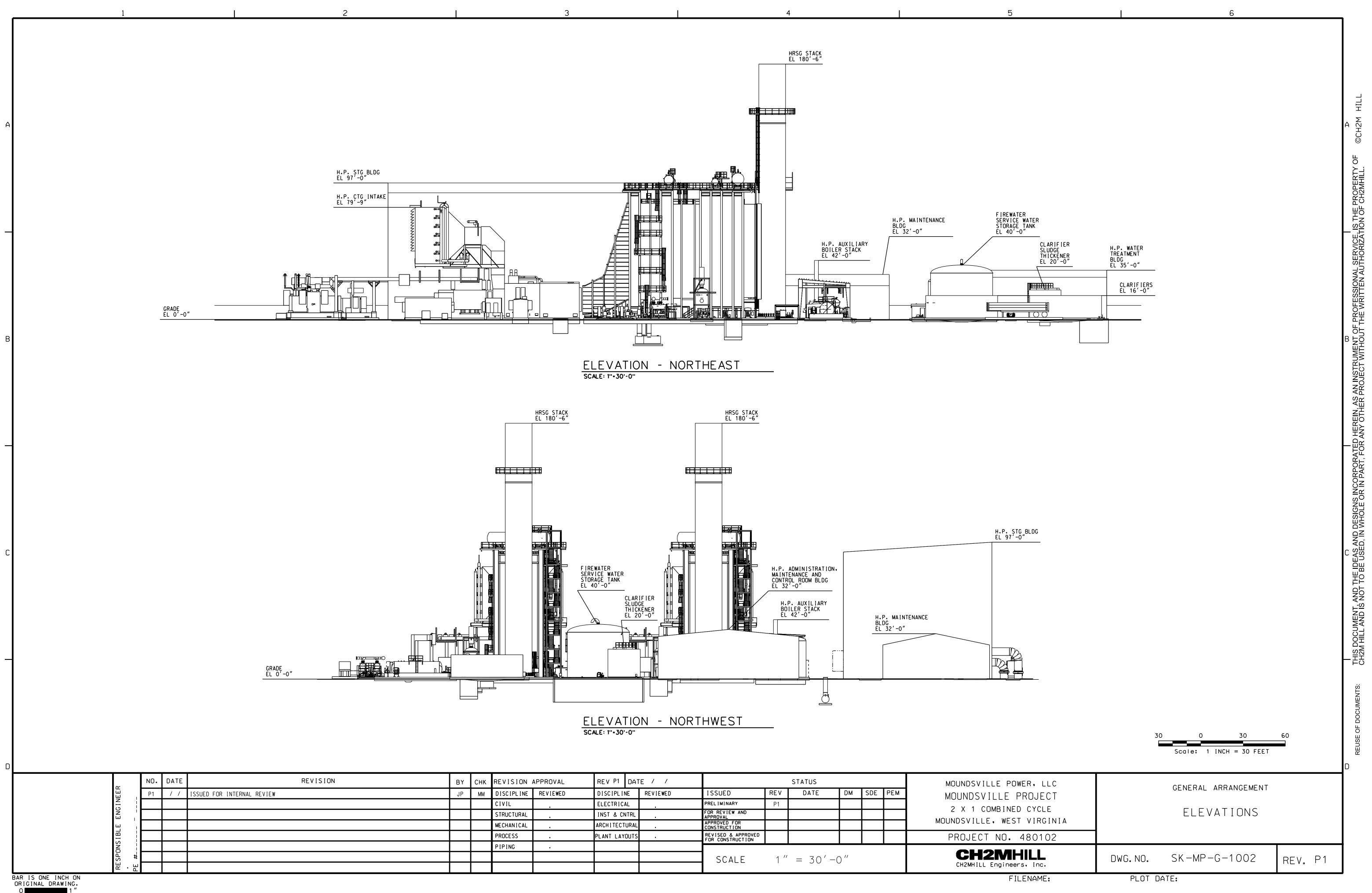
controlled by use of engines with emissions less than or equal to NSPS Subpart IIII standards, the ULSD and limited annual operating hours. PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the wet mechanical draft Cooling Tower will be controlled by using high efficiency drift eliminators with a drift loss not to exceed 0.0005%.

- VOC emissions from the combustion turbines will be controlled using Oxidation Catalysts and good combustion practices. VOC emissions from the Auxiliary Boiler will be controlled by the use of pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane, as well as good combustion practices. VOC emissions from the Emergency Generator and Fire Water Pump will be controlled using ULSD and good combustion practices.
- GHG emissions from the combustion turbines will be controlled by using high efficiency combustion turbines, and the use of lower carbon containing fuels (i.e., pipeline-quality natural gas or a blend of pipeline-quality natural gas and up to 25% ethane). GHG emissions from the Auxiliary Boiler will be minimized by the exclusive use of pipeline-quality natural gas. GHG emissions from the Emergency Generator and Fire Water Pump will be minimized by the use of ULSD and limited annual operating hours. GHG emissions from the Circuit Breakers will be controlled by using totally enclosed SF<sub>6</sub> circuit breakers and implementing a leak detection and repair program.

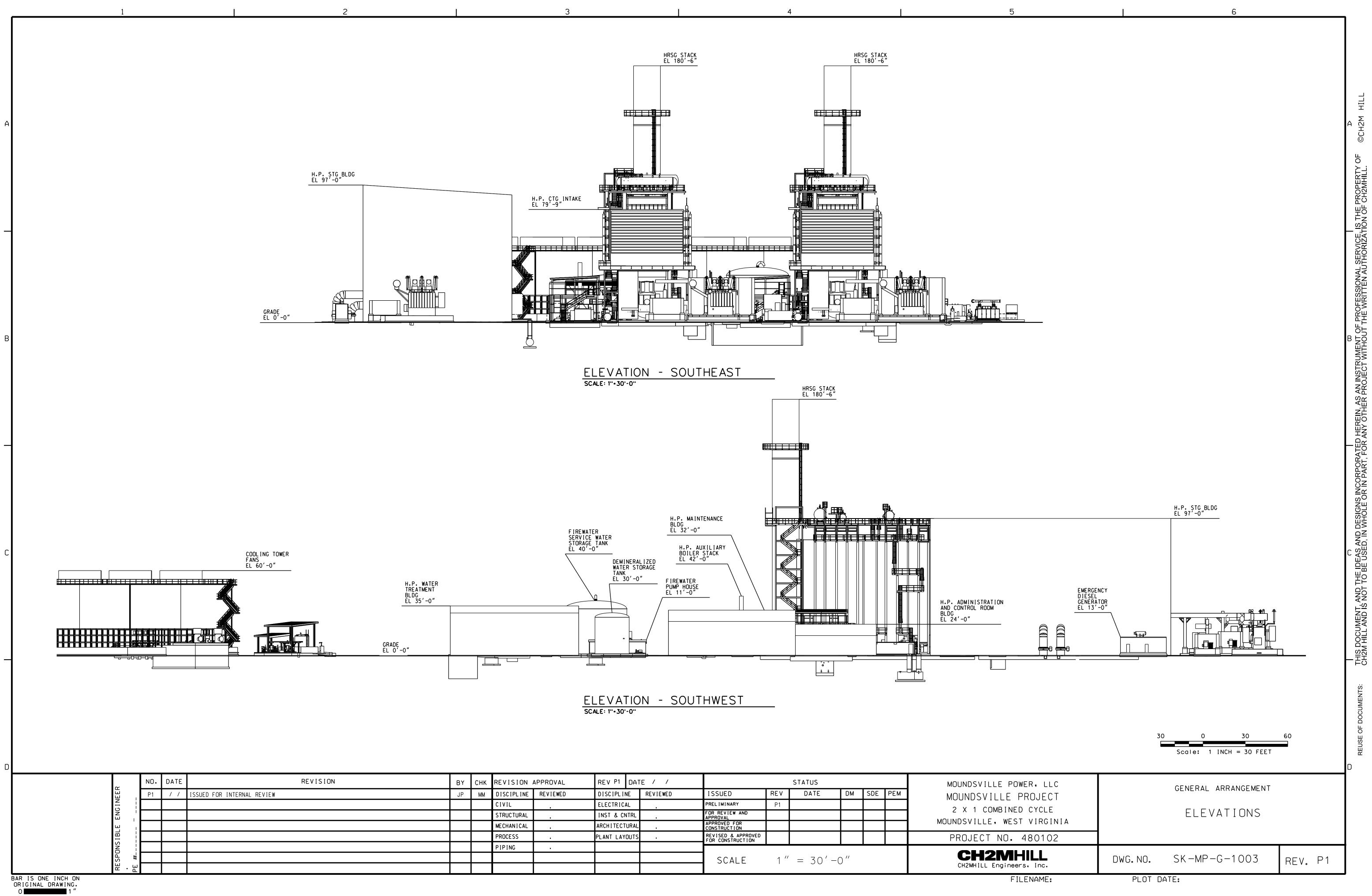
Emissions from the proposed Project are not predicted to cause any significant adverse impacts to air quality. Specifically, emissions from the proposed Project will not adversely affect ambient air quality or PSD increments. The Project's impacts on visibility in the surrounding Class I areas are likely to be minimal.


In conclusion, an evaluation of the Project and its potential emissions indicates that the Moundsville Power Project will meet all applicable State and federal air quality requirements.

#### 5.0 AIR PERMIT APPLICATION


**Appendix D** contains completed and certified versions of all the relevant WVDEP Division of Air Quality application forms and attachments. In the air permit application submitted to WVDEP in October 2013, Moundsville Power provided a check for \$14,500, payable to the "WVDEP Air Pollution Control Fund", for the applicable air permitting fees.

Appendices


Appendix A – Conceptual Plant Layout Drawings



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NT LEGEND                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESCRIPTION<br>INE GENERATOR (STG) (TURBINE DECK)                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACE CONDENSER (GROUND FLOOR)                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IL SKID (GROUND FLOOR)<br>TUBE REMOVAL AREA                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PUMPS (GROUND FLOOR)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STEAM CONDENSER (MEZZANINE LEVEL)<br>MPONENT DROP ZONE (ALL LEVELS)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L VACUUM PUMPS (MEZZANINE LEVEL)                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LING WATER PUMPS (GROUND FLOOR)                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LING WATER HEAT EXCHANGERS (GROUND FLOOR)<br>SKID W/ TOTE (GROUND FLOOR) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VENGER FEED SKID (GROUND FLOOR)                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R SEPARATOR W/ SUMP PUMPS<br>RECIEVER                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HASE BUS DUCT                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION TRANSFORMER<br>A CABINET                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STEP-UP TRANSFORMER (GSU)                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G WATER SUPPLY<br>G WATER RETURN                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIESEL GENERATOR<br>DISTRIBUTION CENTER (PDC)                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RVICE TRANSFORMERS                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LING WATER EXPANSION TANK<br>TION / CONTROL ROOM & MAINTENANCE BUILDING  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERY STEAM GENERATOR (HRSG)                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D WATER PUMPS W/ ENCLOSURE                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ZER RECIRCULATING PUMPS                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMISSIONS MONITORING SYSTEM (CEMS)                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OWN SUMP W/ PUMPS                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMOVAL AREA                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IA FLOW CONTROL SKID                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OALESCING FILTERS W/ KNOCKOUT DRUM                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TARTUP HEATERS                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EGULATING STATION<br>CONTROL ROOM                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MONIA STORAGE TANK AND PUMPS                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R SKID<br>TION SERVICE TRANSFORMERS                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TURBINE GENERATOR (CTG)                                                  |
| 0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0       300       300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOR CIRCUIT BREAKER                                                      |
| 000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00         000       00 <td< td=""><td>UXILIARY TRANSFORMER (UAT)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UXILIARY TRANSFORMER (UAT)                                               |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TION TRANSFORMER                                                         |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILDING / EXCITER                                                         |
| 56         SUITO-MARK           57         FILE           60         CORULATI           61         AUXILIARY           62         CORULATI           63         AUXILIARY           64         AIR COMPRES           65         DEWINATE           66         CORULATI           67         FIREWATE           68         CLARIFIER           70         CLARIFIER           71         CLARIFIER           72         CLARIFIER           73         CLARIFIER           74         ALARIFIER           75         SO           76         SS ARE           77         CLARIFIER           78         SS ARE           79         SS ARE           70         CLARIFIER           71         CLARIFIER           72         CLARIFIER           73         SS ARE           74         SS ARE           75         SS ARE           76         SS ARE           77         SS ARE           78         SS ARE           79         SS ARE           71         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| 39       CODULATI         60       CIRCULATI         61       AUXILIARY         62       CIRCULATI         63       MARKATES         64       AIRCOMPRESS         65       DEMARTES         66       PERMATES         67       FIREWATES         68       FIREWATES         71       CLARTIFER         72       CLARTIFER         73       FILTER PRE         74       ALCULAR M         75       DINT BERM         76       -52         77       -68         78       -70000000         79       CCC2011LI         71       -66         72       CLARTIFER         73       FILTER PRE         74       ALCULAR M         75       DINT BERM         76       -52         77       -68         78       -70000000         79       -70000000         79       -700000000         70       -7000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OTECTION CO2 SKID                                                        |
| Image: Second                               | WER W/ INTAKE SCREENS                                                    |
| Image: Second                               | G WATER PUMPS                                                            |
| 63       WATER TEC.         65       DEMINERATE         66       PERMATE         68       FIREWATER         63       CLARIFER         70       CLARIFER         71       CLARIFER         75       DENTAR         76       -FILTER PER         77       -FRANCE         78       HYDROGEN         79       CLEAREL         71       -FRANCE         73       FILTER PER         74       AC UNK RI         75       DERITER PER         80       SILEM / W         81       -FILEL AS I         82       STG EXCIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COOLING WATER PUMP<br>G WATER CHEMICAL FEED BUILDING                     |
| 65     DEMINERAL       66     PREMATER       66     PREMATER       68     FIREWATER       68     FIREWATER       69     O.AMFITER       70     O.AMFITER       71     O.LARTIFIER       72     O.LARTIFIER       73     FILTER PRI       74     A.C.LINK RI       75     J.S.Z.REF       76     J.S.Z.REF       77     -68 ADREF       78     HODORE       80     STEAM / WI       81     FUEL GAST       82     STO EXCIT       83     FUEL CAST       84     FUEL CAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TMENT BUILDING                                                           |
| 66       PERMEATE         67       FIRMATE         69       CLARTIER         70       CLARTIER         71       CLARTIER         73       FILTER PR         74       AC LINK R         75       DIRT DEFM         76       -32 ADRE         77       -66 ADRE         78       HYDDORDENS         80       STEAM / W         81       FULC AST         82       STEAM / W         81       FULC AST         82       STEAM / W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSORS, AIR DRYERS AND AIR RECEIVERS<br>ZED WATER STORAGE TANK AND PUMPS  |
| Image: Second                               | TORAGE TANK AND MAKEUP PUMPS                                             |
| III       69       CLARIFIER         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X         X       X       X       X       X       X </td <td>PUMP HOUSE ENCLOSURE / SERVICE WATER STORAGE TANK AND PUMPS</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUMP HOUSE ENCLOSURE / SERVICE WATER STORAGE TANK AND PUMPS              |
| X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SLUDGE PUMPS                                                             |
| X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SLUDGE THICKENER AND PUMPS<br>/ BACKWASH SUMP                            |
| 75         DIRT BERM           76         .52 ACRE F           77         .68 ACRE F           78         HYDROGEN S           79         .C02 BOTTLE           80         STEAM / W/           81         FUEL CAS F           82         STG EXCIT/           80         CC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS                                                                       |
| 76       .52 ACRE F         77       .68 ACRE F         78       HYDROGEN S         79       C02 BOTILE         80       STEAM / WU         81       FUEL GAS F         82       STG EXCITA         80       COL         80       COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |
| 78         HYDROGEN           79         CO2 BOTTLE           80         STEAM / W/           81         FUEL GAS F           82         STG EXCIT/           80         CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETENTION POND W/ PUMPS                                                   |
| 79         C02 BOTTLE           80         STEAM / W/           81         FUEL GAS F           82         STG EXCIT/           80         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETENTION POND W/ PUMPS<br>TORAGE TRAILER                                 |
| 81     FUEL GAS F       82     STG EXCITA       80     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RACK                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TER SAMPLE LAB ENCLOSURE<br>ERFORMANCE HEATER                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TION COMPARTMENT                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80 160                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 INCH = 80 FEET                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L ARRANGEMENT                                                            |
| CIVIL FLECTRICAL PRELIMINARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| STRUCTURAL INST & CNTRL FOR REVIEW AND 2X1 CUMBINED CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OT PLAN                                                                  |
| MECHANICAL ARCHITECTURAL APPROVED FOR<br>CONSTRUCTION MOUNDSVILLE, WEST VIRGINIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |
| PROCESS . PLANT LAYOUTS . REVISED & APPROVED FOR CONSTRUCTION PROVED FOR CONSTRUCTINCTICON PROVED FOR CONSTRUCTION PROVED FOR |                                                                          |
| PIPING .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |
| SCALE 1" = 80'-0" CH2MHILL Engineers, Inc. DWG.NO. SK-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-G-1000 REV. C                                                          |
| FILENAME: PLOT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                        |



| < | REVISION A | APPROVAL | REV P1    | DAT  | E / /    |                                        |     | STATUS |       |     |     | MOUNDSVILLE POW            |
|---|------------|----------|-----------|------|----------|----------------------------------------|-----|--------|-------|-----|-----|----------------------------|
|   | DISCIPLINE | REVIEWED | DISCIPLI  | NE   | REVIEWED | ISSUED                                 | REV | DATE   | DM    | SDE | PEM | MOUNDSVILLE P              |
|   | CIVIL      | •        | ELECTRIC  | AL   | •        | PRELIMINARY                            | P1  |        |       |     |     | 2 X 1 COMBINED             |
|   | STRUCTURAL | •        | INST & CN | NTRL | •        | FOR REVIEW AND<br>APPROVAL             |     |        |       |     |     |                            |
|   | MECHANICAL | •        | ARCHITECT | URAL | •        | APPROVED FOR<br>CONSTRUCTION           |     |        |       |     |     | MOUNDSVILLE, WEST          |
|   | PROCESS    | •        | PLANT LAY | OUTS | •        | REVISED & APPROVED<br>FOR CONSTRUCTION |     |        |       |     |     | PROJECT NO.                |
|   | PIPING     | •        |           |      |          |                                        |     |        |       |     |     |                            |
|   |            |          |           |      |          | SCALE                                  | 1 ″ | = 30′- | -0 ′′ |     |     | CH2NH<br>CH2MHILL Engineer |
|   |            |          |           |      |          | <b>.</b>                               |     |        |       |     |     |                            |



| REVISION A | APPROVAL | REV P1    | DAT  | E / /    |                                        |     | STATU | IS    |      |     |     | MOUNDSVILLE POV            |
|------------|----------|-----------|------|----------|----------------------------------------|-----|-------|-------|------|-----|-----|----------------------------|
| DISCIPLINE | REVIEWED | DISCIPLIN | NE   | REVIEWED | ISSUED                                 | REV | DA    | TE    | DM   | SDE | РЕМ | MOUNDSVILLE F              |
| CIVIL      | •        | ELECTRICA | AL   | •        | PRELIMINARY                            | P1  |       |       |      |     |     |                            |
| STRUCTURAL | •        | INST & CN | ITRL |          | FOR REVIEW AND<br>APPROVAL             |     |       |       |      |     |     | 2 X 1 COMBINED             |
| MECHANICAL | •        | ARCHITECT | URAL |          | APPROVED FOR<br>CONSTRUCTION           |     |       |       |      |     |     | MOUNDSVILLE, WEST          |
| PROCESS    | •        | PLANT LAY | OUTS | •        | REVISED & APPROVED<br>FOR CONSTRUCTION |     |       |       |      |     |     | PROJECT NO.                |
| PIPING     | •        |           |      |          |                                        |     |       |       |      |     |     |                            |
|            |          |           |      |          | SCALE                                  | 1 ″ | = 3   | 30′-0 | ) '' |     |     | CH2MH<br>CH2MHILL Engineer |
|            |          |           | -    |          |                                        |     |       |       |      |     |     |                            |

Appendix B – Air Quality Dispersion Modeling Protocol (Revised November 27, 2013) *Appendix C – Comparison of GHG Emission Rates and Heat Rates for Combustion Turbines* 

Moundsville Power LLC Comparison of GHG Emission Rates and Heat Rates for Combustion Turbines

| Project Informat                                                                                                                                                                            | ion                     |                                     | of GHG Emission Rates and Heat Rate                                                              | Othe                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Facility                                                                                                                                                                                    | Location                | Туре                                | Size/Configuration                                                                               | GHG Emission Rate                                                                                                                                                                                                                             |
|                                                                                                                                                                                             |                         |                                     | Proposed Project (Combined-                                                                      | ·Cycle)                                                                                                                                                                                                                                       |
| Moundsville Power LLC                                                                                                                                                                       | Moundsville, WV         | General Electric 7FA.04             | 182.5 MW, Gross, 59°F                                                                            | 1,211 lb CO₂/MW-hr, Gross, 59°F, NG Firing, CTG Or<br>1,213 lb CO₂e/MW-hr, Gross, 59°F, NG Firing, CTG O<br>791 lb CO₂/MW-hr, Gross, 59°F, NG Firing, Combined-<br>793 lb CO₂e/MW-hr, Gross, 59°F, NG Firing, Combined-                       |
|                                                                                                                                                                                             |                         |                                     | Proposed Regulations                                                                             |                                                                                                                                                                                                                                               |
| 40 CFR Part 60 (NSPS) Subpart TTTT<br>Standards of Performance for Greenhouse<br>Gas Emissions from New Stationary<br>Sources: Electric Utility Generating Units<br>(as proposed 9/20/2013) |                         |                                     | New combined-cycle trains > 25 MW;<br>existing units and simple-cycle trains<br>are not affected | Units ≤ 850 MMBtu/hr heat input:<br>1,100 lb CO <sub>2</sub> /MW-hr<br>(gross output, 12-operating month average)<br>Units > 850 MMBtu/hr heat input:<br>1,000 lb CO <sub>2</sub> /MW-hr<br>(gross output, 12-operating month annual average) |
|                                                                                                                                                                                             |                         |                                     | Projects with Simple-Cycle Combus                                                                | tion Turbines                                                                                                                                                                                                                                 |
| ExTex LaPorte LP<br>Mountain Creek SES                                                                                                                                                      | Dallas County, TX       | Siemens SGT6-5000F(4) or equivalent | 201.2 MW gross, ISO                                                                              | 1,169 lb CO <sub>2</sub> e/MW-hr, 12-month rolling average                                                                                                                                                                                    |
| El Paso Electric Company<br>Montana Power Station                                                                                                                                           | East El Paso County, TX | General Electric LMS100             | 100 MW each; simple-cycle; 400 MW<br>total                                                       | 277,840 tons/yr CO <sub>2</sub> e for each of the 4 turbines<br>(365-day rolling average)                                                                                                                                                     |
|                                                                                                                                                                                             |                         |                                     | Site-wide 220 MW                                                                                 | 187,318 tons/yr CO <sub>2</sub> e per turbine                                                                                                                                                                                                 |
| Cheyenne Prairie<br>Generating Station                                                                                                                                                      | Cheyenne, WY            | General Electric LM6000 PF Sprint   | 2 combined-cycle turbines                                                                        | 1,600 lb CO2 per MW-hr,<br>(12-month rolling average)                                                                                                                                                                                         |
| Black Hills Corporation                                                                                                                                                                     |                         |                                     | 3 simple-cycle turbines                                                                          | 1,100 lb CO2 per MW-hr,<br>(12-month rolling average)                                                                                                                                                                                         |
| Puget Sound Energy                                                                                                                                                                          |                         | Four turbine options                | Simple-cycle with number of units<br>required to achieve about 200 MW<br>increase                | Based on "worst cased emissions"                                                                                                                                                                                                              |
| Fredonia Generating Station                                                                                                                                                                 | Fredonia, WA            | General Electric 7FA.05             | 207 MW each                                                                                      | 1,299 lb CO <sub>2</sub> e/MW-hr                                                                                                                                                                                                              |
| Expansion Project                                                                                                                                                                           |                         | General Electric 7FA.04             | 181 MW each                                                                                      | 1.310 lb CO <sub>2</sub> e/MW-hr                                                                                                                                                                                                              |
|                                                                                                                                                                                             |                         | Siemens SGT6-5000F4                 | 197 MW each                                                                                      | 1,278 lb CO <sub>2</sub> e/MW-hr                                                                                                                                                                                                              |
|                                                                                                                                                                                             |                         | General Electric LMS100             | 197 MW each                                                                                      | 1,138 lb CO <sub>2</sub> e/MW-hr                                                                                                                                                                                                              |

| ner Inform                        | nation                                                                                                                                                                                                        |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Heat Rate                                                                                                                                                                                                     |
|                                   | (Btu/kW-hr)                                                                                                                                                                                                   |
|                                   |                                                                                                                                                                                                               |
| Dnly<br>Only<br>-Cycle<br>1-Cycle | 10,387 Btu/kW-hr HHV 59°F, NG Firing, CTG Only<br>9,365 Btu/kW-hr LHV 59°F, NG Firing, CTG Only<br>6,793 Btu/kW-hr HHV 59°F, NG Firing, Combined-Cycle<br>6,125 Btu/kW-hr LHV 59°F, NG Firing, Combined-Cycle |
|                                   |                                                                                                                                                                                                               |
| 2)                                |                                                                                                                                                                                                               |
|                                   |                                                                                                                                                                                                               |
|                                   | 10,001 (12-month rolling average)<br>9,620 (Base load/ISO)                                                                                                                                                    |
|                                   | 9,299                                                                                                                                                                                                         |
|                                   | N/A                                                                                                                                                                                                           |
|                                   | N/A                                                                                                                                                                                                           |
|                                   |                                                                                                                                                                                                               |

Moundsville Power LLC Comparison of GHG Emission Rates and Heat Rates for Combustion Turbines

| Project Informa                                                    | tion                                | 1                                                                                                                                            | n of GHG Emission Rates and Heat Rate                                                                                                                               | Other Inform                                                                                                              | ation                                                |
|--------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Facility                                                           | Location                            | Туре                                                                                                                                         | Size/Configuration                                                                                                                                                  | GHG Emission Rate                                                                                                         | Heat Rate<br>(Btu/kW-hr)                             |
|                                                                    |                                     |                                                                                                                                              | Projects with Combined-Cycle Combu                                                                                                                                  | stion Turbines                                                                                                            |                                                      |
| Lower Colorado River Authority<br>Thomas G. Ferguson Plant         | Llano, TX                           | General Electric 7FA                                                                                                                         | 195 MW each; 590 MW for 2-2-1<br>combined-cycle configuration                                                                                                       | 0.459 ton CO <sub>2</sub> / net MW-hr (918 lb CO <sub>2</sub> / net MW-hr)<br>(365-day rolling average)                   | 7,720 (365-day rolling average), without duct firing |
| Coronado Ventures                                                  | Harlingen, TX                       | Three options                                                                                                                                | Combined-cycle with 271 MW steam<br>turbine in 2x2x1 configuration                                                                                                  | 918.5 lb CO <sub>2</sub> /MW-hr                                                                                           | 7,720 (365-day rolling average), without duct firing |
| La Paloma Energy Center, LLC                                       | Harlingen, 1A                       | General Electric 7FA                                                                                                                         | 183 MW each                                                                                                                                                         | 910.5 10 CO <sub>2</sub> / MIVV-III                                                                                       | 7,720 (565-day folling average), without duct firing |
|                                                                    |                                     | Siemens SGT6-5000F(4)                                                                                                                        | 205 MW each                                                                                                                                                         |                                                                                                                           |                                                      |
|                                                                    |                                     | Siemens SGT6-5000F(5)                                                                                                                        | 232 MW each                                                                                                                                                         |                                                                                                                           |                                                      |
| Calpine Corporation<br>Channel Energy Center, LLC                  | Pasadena, TX                        | Siemens 501F (FD3)                                                                                                                           | 180 MW combined-cycle with 475<br>MMBtu/hr duct burner                                                                                                              | 918.5 lb CO <sub>2</sub> /MW-hr                                                                                           | 7,730, without duct firing                           |
| Calpine/Bechtel<br>Joint Development<br>Russell City Energy Center | Hayward, CA                         | Siemens-Westinghouse 501FD3                                                                                                                  | 2,038.6 MMBtu/hr each; 200<br>MMBtu/hr duct burners; 2 combined-<br>cycle trains                                                                                    | 119.0 lb CO <sub>2</sub> e/MMBtu                                                                                          | 7,730, without duct firing                           |
| Palmdale Hybrid Power Project                                      | Palmdale, CA                        | General Electric 7FA                                                                                                                         | 154 MW each; 2x2x1 combined-cycle<br>with 267 MW steam turbine                                                                                                      | 774 lb CO <sub>2</sub> / net MW-hr (site-wide average)<br>117 lb CO <sub>2</sub> /MMBtu (30-day average for each turbine) | 6,970                                                |
| Cricket Valley Energy Center                                       | Dover, NY                           | General Electric 7FA.05                                                                                                                      | Three combined-cycle units with 596.8<br>MMBtu/hr duct burners                                                                                                      | 3,576,943 tons CO <sub>2</sub> e maximum: emissions from 3 combined-cycle<br>units<br>(12-month rolling average)          | 7,605, without duct firing                           |
| Pioneer Valley Energy Center                                       | Westfield, MA                       | Not specified                                                                                                                                | 431 MW combined-cycle unit                                                                                                                                          | N/A                                                                                                                       | 6,840, without duct firing                           |
| PacifiCorp Energy<br>Lake Side 2 Project                           | UT                                  | Siemens 501F (FD3)                                                                                                                           | 180 MW combined-cycle with 475<br>MMBtu/hr duct burner                                                                                                              | 950 lb CO <sub>2</sub> e per MW-hr<br>(12-month rolling average)                                                          | N/A                                                  |
| Gateway Cogeneration 1, LLC<br>Smart Water Project                 | Prince George, VA                   | N/A                                                                                                                                          | Combined-cycle                                                                                                                                                      | N/A                                                                                                                       | 8,983                                                |
| Sevier Power Company<br>Sevier Power Project                       | UT                                  | Two natural gas fired combined-cycle<br>combustion turbines with heat<br>recovery steam generators                                           | 580 MW (expected generating capacity)                                                                                                                               | 2,019,226 tons CO2e<br>(12-month rolling average)                                                                         | N/A                                                  |
| Newark Energy Center Project                                       | Newark, NJ                          | GE F class natural gas fired combined-<br>cycle combustion turbines                                                                          | 655 MW (plant)                                                                                                                                                      | 1,030,168 tons CO2 per turbine<br>(12-month rolling average)                                                              | 6,005, without duct firing                           |
| Old Bridge Clean Energy Center                                     | Old Bridge,<br>Middlesex County, NJ | 700 MW natural gas-fired combined-<br>cycle power plant                                                                                      | N/A                                                                                                                                                                 | 950 lb CO2e/MW-hr (12-month rolling average)<br>121.521 lb CO2e/MMBtu                                                     | N/A                                                  |
| Christian County Generation LLC                                    | Taylorville, IL                     | F-class combustion turbine (either<br>Siemens or GE); Two combined-cycle<br>combustion turbines firing either SNG<br>or pipeline natural gas | Two combustion turbines and the<br>plant have nominal gross electrical<br>generating capacity of 716 MW;<br>Nominal net electrical generating<br>capacity of 602 MW | 2,307,110 tons/yr CO <sub>2</sub> e (12-month rolling average)<br>1,201 lb CO <sub>2</sub> /MW-hr                         | N/A                                                  |

*Appendix D – Air Permit Application Forms* 

| WEST VIRGINIA DEPARTMEN<br>ENVIRONMENTAL PROTECT<br>DIVISION OF AIR QUA<br>601 57 <sup>th</sup> Street, SE<br>Charleston, WV 25304<br>(304) 926-0475<br>www.dep.wv.gov/dag                                                                                                                          | TION AI                                                                                      | PPLICATION FOR<br>AND<br>TITLE V PERMIT<br>(OPTION)                                                          | REVISION                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13<br>CONSTRUCTION ONDIFICATION RELOC<br>CLASS I ADMINISTRATIVE UPDATE TEMPO<br>CLASS II ADMINISTRATIVE UPDATE AFTER                                                                                                                                       | CATION ADMINIST<br>DRARY SIGNIFICA<br>R-THE-FACT IF ANY BOX                                  | CK TYPE OF 45CSR30<br>RATIVE AMENDMENT<br>ANT MODIFICATION<br>ABOVE IS CHECKED, INC.<br>N AS ATTACHMENT S TO |                                                                    |  |
| FOR TITLE V FACILITIES ONLY: Please refer to<br>(Appendix A, "Title V Permit Revision Flowchard                                                                                                                                                                                                     |                                                                                              |                                                                                                              |                                                                    |  |
|                                                                                                                                                                                                                                                                                                     | Section I. General                                                                           |                                                                                                              |                                                                    |  |
| 1. Name of applicant (as registered with the WV S<br>Moundsville Power, LLC                                                                                                                                                                                                                         | Secretary of State's Office):                                                                | 2. Federal Employ<br>46                                                                                      | er ID No. <i>(FEIN):</i><br>6-1954749                              |  |
| 3. Name of facility (if different from above):<br>Same                                                                                                                                                                                                                                              |                                                                                              | 4. The applicant is the:<br>☐ OWNER ☐ OPERATOR ⊠ BOTH                                                        |                                                                    |  |
| 5A. Applicant's mailing address:<br>1214 3 <sup>rd</sup> Street<br>Box 1138<br>Moundsville, West Virginia 26041                                                                                                                                                                                     | 5B. Facility's p<br>NA                                                                       | resent physical address:                                                                                     |                                                                    |  |
| <ul> <li>6. West Virginia Business Registration. Is the ap</li> <li>If YES, provide a copy of the Certificate of Inc</li> <li>change amendments or other Business Regist</li> <li>If NO, provide a copy of the Certificate of Aut</li> <li>amendments or other Business Certificate as A</li> </ul> | corporation/Organization/L<br>ration Certificate as Attachr<br>chority/Authority of L.L.C./F | imited Partnership (on<br>nent A.                                                                            |                                                                    |  |
| 7. If applicant is a subsidiary corporation, please p                                                                                                                                                                                                                                               | rovide the name of parent co                                                                 | prporation:                                                                                                  |                                                                    |  |
| <ul> <li>8. Does the applicant own, lease, have an option t</li> <li>If YES, please explain: Option to Buy</li> <li>If NO, you are not eligible for a permit for this</li> </ul>                                                                                                                    | o buy or otherwise have con                                                                  |                                                                                                              | ? ⊠ YES □ NO                                                       |  |
| Type of plant or facility (stationary source) to be co<br>administratively updated or temporarily permitte<br>crusher, etc.): Electric Power Generation Unit                                                                                                                                        |                                                                                              | int, primary Classi                                                                                          | American Industry<br>ification System<br>S) code for the facility: |  |
| . DAQ Plant ID No. (for existing facilities only):<br>NA                                                                                                                                                                                                                                            | 11B. List all current 45CS associated with this                                              | R13 and 45CSR30 (Title<br>process (for existing fac                                                          |                                                                    |  |

#### 12A.

| - | For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the |
|---|--------------------------------------------------------------------------------------------------------------------------|
|   | present location of the facility from the nearest state road:                                                            |

 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B.

Approximately three miles south of Moundsville, West Virginia located between State Route 2 and the Ohio River and adjacent to County Highway 2/19. Former Allied Chemical Plant site.

| 12.B. New site address (if applicable):<br>Chemical Plant Access Road South<br>Moundsville, West Virginia 26041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12C. Nearest city or town:<br>Moundsville, West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12D. County:<br>Marshall                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 12.E. UTM Northing (KM): 4,417.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12F. UTM Easting (KM): 517.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12G. UTM Zone: 17                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <ol> <li>Briefly describe the proposed change(s) at the<br/>Construction of an electric power generation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 14A. Provide the date of anticipated installation or change: Summer 2014       14B. Date of anticipated State         -       If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen:       14B. Date of anticipated State         Summer 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 14C. Provide a Schedule of the planned Installat<br>application as Attachment C (if more than o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 지수는 사람이 집에서 가지 않는 것이 아니는 것이 아니는 것이 아니는 것이 아니는 것이 없는 것이 같이 가지 않는 것이 같이 가지 않는 것이 같이 있다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e units proposed in this permit                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 15. Provide maximum projected <b>Operating Sche</b><br>Hours Per Day <b>24</b> Days Per Wee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cation:                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 16. Is demolition or physical renovation at an exis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ting facility involved? 🗌 YES 🛛 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 17. Risk Management Plans. If this facility is sub<br>changes (for applicability help see www.epa.go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 18. Regulatory Discussion. List all Federal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as <b>Attachment D</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | applicable requirements is also included in At<br>applicability and proposed demonstration(s) o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tachment S of this application<br>f compliance <i>(if known)</i> . Provide th                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as <b>Attachment D</b> .<br><b>Section II. Additiona</b><br>19. Include a check payable to WVDEP – Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | applicable requirements is also included in At<br>applicability and proposed demonstration(s) o<br>al attachments and supporting o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b>                                                                                                                                                                                                                                                  |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as <b>Attachment D</b> .<br><b>Section II. Additiona</b><br>19. Include a check payable to WVDEP – Division<br>45CSR13).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | applicable requirements is also included in At<br>applicability and proposed demonstration(s) o<br>al attachments and supporting of<br>of Air Quality with the appropriate application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b>                                                                                                                                                                                                                                                  |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additiona<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen                                                                                                                                                                                                                                                                                                                                                                                                                | applicable requirements is also included in At<br>applicability and proposed demonstration(s) o<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>or sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b><br>In fee (per 45CSR22 and<br>erty on which the stationary                                                                                                                                                                                       |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additiona<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen<br>– Indicate the location of the nearest occupied st                                                                                                                                                                                                                                                                                                                                                          | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>for sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>structure (e.g. church, school, business, reside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b><br>on fee (per 45CSR22 and<br>erty on which the stationary<br>nce).                                                                                                                                                                              |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as <b>Attachment D</b> .<br><b>Section II. Additiona</b><br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a <b>Table of Contents</b> as the first page<br>21. Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/o<br>source(s) is or is to be located as <b>Attachmen</b><br>– Indicate the location of the nearest occupied st<br>22. Provide a <b>Detailed Process Flow Diagram</b> (s                                                                                                                                                                                                                                                            | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>for sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>structure (e.g. church, school, business, reside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b><br>on fee (per 45CSR22 and<br>erty on which the stationary<br>nce).                                                                                                                                                                              |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as <b>Attachment D</b> .<br><b>Section II. Additiona</b><br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a <b>Table of Contents</b> as the first page<br>21. Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/o<br>source(s) is or is to be located as <b>Attachmen</b><br>– Indicate the location of the nearest occupied st<br>22. Provide a <b>Detailed Process Flow Diagram(s</b><br>device as <b>Attachment F</b> .                                                                                                                                                                                                                          | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>For sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>aructure (e.g. church, school, business, reside<br>s) showing each proposed or modified emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide the<br><b>focuments.</b><br>on fee (per 45CSR22 and<br>erty on which the stationary<br>nce).                                                                                                                                                                              |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additional<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen<br>– Indicate the location of the nearest occupied st<br>22. Provide a Detailed Process Flow Diagram(s<br>device as Attachment F.<br>23. Provide a Process Description as Attachmen                                                                                                                                                                                                                           | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>For sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>aructure (e.g. church, school, business, reside<br>s) showing each proposed or modified emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide the<br><b>focuments.</b><br>on fee (per 45CSR22 and<br>erty on which the stationary<br>nce).                                                                                                                                                                              |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additional<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen<br>– Indicate the location of the nearest occupied st<br>22. Provide a Detailed Process Flow Diagram(s<br>device as Attachment F.<br>23. Provide a Process Description as Attachmen                                                                                                                                                                                                                           | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>e of your application package.<br>for sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>structure (e.g. church, school, business, reside<br>s) showing each proposed or modified emissi<br>ent G.<br>ssible all changes made to the facility since th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide thi<br><b>focuments.</b><br>on fee (per 45CSR22 and<br>erty on which the stationary<br>nce).<br>ons unit, emission point and control                                                                                                                                      |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additional<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen<br>– Indicate the location of the nearest occupied st<br>22. Provide a Detailed Process Flow Diagram(s<br>device as Attachment F.<br>23. Provide a Process Description as Attachmen<br>– Also describe and quantify to the extent po<br>All of the required forms and additional information                                                                                                                  | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>a of Air Quality with the appropriate application<br>of Air Quality with the appropriate application<br>a of your application package.<br>For sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>Arructure (e.g. church, school, business, reside<br>(s) showing each proposed or modified emission<br>(s) showing each proposed or modified emission (s) showi | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide the<br><b>focuments.</b><br><b>for fee</b> (per 45CSR22 and<br>erty on which the stationary<br>nce).<br>ons unit, emission point and contro<br>ne last permit review (if applicable).                                                                                     |  |  |  |  |  |
| proposed process ( <i>if known</i> ). A list of possible<br>(Title V Permit Revision Information). Discuss a<br>information as Attachment D.<br>Section II. Additional<br>19. Include a check payable to WVDEP – Division<br>45CSR13).<br>20. Include a Table of Contents as the first page<br>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br>source(s) is or is to be located as Attachmen<br>– Indicate the location of the nearest occupied st<br>22. Provide a Detailed Process Flow Diagram(s<br>device as Attachment F.<br>23. Provide a Process Description as Attachmen<br>– Also describe and quantify to the extent po<br>All of the required forms and additional information<br>24. Provide Material Safety Data Sheets (MSDS<br>– For chemical processes, provide a MSDS for e               | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>a of your application package.<br>For sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>tructure (e.g. church, school, business, reside<br>s) showing each proposed or modified emission<br>and G.<br>ssible all changes made to the facility since the<br>can be found under the Permitting Section of D<br>S) for all materials processed, used or product<br>each compound emitted to the air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide th<br><b>focuments.</b><br><b>for fee</b> (per 45CSR22 and<br>erty on which the stationary<br>nce).<br>ons unit, emission point and contro<br>ne last permit review (if applicable).                                                                                      |  |  |  |  |  |
| <ul> <li>proposed process (<i>if known</i>). A list of possible<br/>(Title V Permit Revision Information). Discuss a<br/>information as Attachment D.</li> <li>Section II. Additional</li> <li>19. Include a check payable to WVDEP – Division<br/>45CSR13).</li> <li>20. Include a Table of Contents as the first page<br/>21. Provide a Plot Plan, e.g. scaled map(s) and/o<br/>source(s) is or is to be located as Attachmen<br/>– Indicate the location of the nearest occupied st</li> <li>22. Provide a Detailed Process Flow Diagram(s<br/>device as Attachment F.</li> <li>23. Provide a Process Description as Attachmen<br/>– Also describe and quantify to the extent po<br/>All of the required forms and additional information</li> <li>24. Provide Material Safety Data Sheets (MSDS)</li> </ul> | applicable requirements is also included in At<br>applicability and proposed demonstration(s) of<br>al attachments and supporting of<br>of Air Quality with the appropriate application<br>of Air Quality with the appropriate application<br>e of your application package.<br>for sketch(es) showing the location of the prop<br>at E (Refer to <i>Plot Plan Guidance</i> ) .<br>structure (e.g. church, school, business, reside<br>(s) showing each proposed or modified emission<br>ent G.<br>ssible all changes made to the facility since the<br>can be found under the Permitting Section of D<br>(s) for all materials processed, used or product<br>each compound emitted to the air.<br>e it as Attachment I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ttachment S of this application<br>f compliance <i>(if known)</i> . Provide th<br><b>focuments.</b><br><b>for fee</b> (per 45CSR22 and<br>erty on which the stationary<br>nce).<br>ons unit, emission point and contro<br><u>he last permit review (if applicable)</u> .<br><b>DAQ's website, or requested by phon</b><br>ed as <b>Attachment H</b> . |  |  |  |  |  |

| 28. Check all applicable Emissions Ur                                    |                                       | Gillion .                                                                                                                                        |
|--------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulk Liquid Transfer Operations                                          | Haul Road Emissions                   |                                                                                                                                                  |
| Chemical Processes                                                       | Hot Mix Asphalt Plant                 | Solid Materials Sizing, Handling and Storage                                                                                                     |
| Concrete Batch Plant                                                     | Incinerator                           | Facilities                                                                                                                                       |
| Grey Iron and Steel Foundry                                              | Indirect Heat Exchanger               | Storage Tanks                                                                                                                                    |
| General Emission Unit, specify                                           |                                       |                                                                                                                                                  |
| Fill out and provide the Emissions Unit                                  | Data Sheet(s) as Attachment L.        |                                                                                                                                                  |
| 29. Check all applicable Air Pollution                                   | Control Device Sheets listed below    | V.                                                                                                                                               |
| Absorption Systems                                                       | Baghouse                              | Flare                                                                                                                                            |
| Adsorption Systems                                                       | Condenser                             | Mechanical Collector                                                                                                                             |
| Afterburner                                                              | Electrostatic Precipitate             | or 🗌 Wet Collecting System                                                                                                                       |
| Items 28 through 31.                                                     | Calculations as Attachment N, o       | r attach the calculations directly to the forms listed in<br>proposed monitoring, recordkeeping, reporting and                                   |
|                                                                          | te compliance with the proposed en    | issions limits and operating parameters in this permit                                                                                           |
|                                                                          | nay not be able to accept all measur  | er or not the applicant chooses to propose such<br>res proposed by the applicant. If none of these plans<br>e them in the permit.                |
| 32. Public Notice. At the time that the                                  | application is submitted, place a C   | lass I Legal Advertisement in a newspaper of general                                                                                             |
|                                                                          | 그 친구에 집안 안 안에서 온 것 같아요. 말한 것에서 집안 가지? | R§13-8.3 through 45CSR§13-8.5 and Example Legal                                                                                                  |
| Advertisement for details). Please                                       | submit the Affidavit of Publicatio    | n as Attachment P immediately upon receipt.                                                                                                      |
| 33. Business Confidentiality Claims.                                     |                                       | dential information (per 45CSR31)?                                                                                                               |
|                                                                          | ding the criteria under 45CSR§31-4    | nitted as confidential and provide justification for each .1, and in accordance with the DAQ's <i>"Precautionary structions</i> as Attachment Q. |
|                                                                          | ection III. Certification o           |                                                                                                                                                  |
| 34. Authority/Delegation of Authority<br>Check applicable Authority Form |                                       | her than the responsible official signs the application.                                                                                         |
| Authority of Corporation or Other Bu                                     | siness Entity                         | Authority of Partnership                                                                                                                         |
| Authority of Governmental Agency                                         |                                       | Authority of Limited Partnership                                                                                                                 |
| Submit completed and signed Authority                                    | y Form as Attachment R.               |                                                                                                                                                  |
| All of the required forms and additional i                               | nformation can be found under the Pe  | ermitting Section of DAQ's website, or requested by phone                                                                                        |
| 35A Certification of Information. To                                     |                                       | sponsible Official (per 45CSR§13-2.22 and 45CSR§30-<br>n below.                                                                                  |
| 2.28) or Authorized Representative sha                                   | in check the appropriate box and sig  |                                                                                                                                                  |
|                                                                          |                                       |                                                                                                                                                  |

| SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | air contaminant sources identified in this application are in $\frac{12/20/13}{(Please use blue ink)}$                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35B, Printed name of signee: Jon M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Please use blue ink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Please use blue ink)<br>35C. Title: Managing Member                                                                                                                                                                                                                                                              |
| 35D. E-mail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36E. Phone: 716-856-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| jmwilliams@moundsville-power.com<br>36A. Printed name of contact person (if different from above): Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36B. Title:                                                                                                                                                                                                                                                                                                       |
| 200 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36D. Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36E. FAX:                                                                                                                                                                                                                                                                                                         |
| 36C. E-mail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36D. Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JOE. FAX.                                                                                                                                                                                                                                                                                                         |
| ☑ Attachment E: Plot Plan ☑ Attachment F: Detailed Process Flot ☑ Attachment G: Process Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w Diagram(s) 🛛 Attachm<br>X Attachm<br>X Attachm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ent N: Supporting Emissions Calculations<br>ent O: Monitoring/Recordkeeping/Reporting/Testing Plan<br>ent P: Public Notice<br>ent Q: Business Confidential Claims                                                                                                                                                 |
| <ul> <li>☑ Attachment F: Detailed Process Flot</li> <li>☑ Attachment G: Process Description</li> <li>☑ Attachment H: Material Safety Data</li> <li>☑ Attachment I: Emission Units Table</li> <li>☑ Attachment J: Emission Points Dat</li> <li>Please mail an original and three (3) co</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w Diagram(s) Attachm<br>Attachm<br>Sheets (MSDS) Attachm<br>a Summary Sheet Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attac | ent O: Monitoring/Recordkeeping/Reporting/Testing Plans<br>ent P: Public Notice<br>ent Q: Business Confidential Claims<br>ent R: Authority Forms<br>ent S: Title V Permit Revision Information                                                                                                                    |
| <ul> <li>☑ Attachment F: Detailed Process Flot</li> <li>☑ Attachment G: Process Description</li> <li>☑ Attachment H: Material Safety Data</li> <li>☑ Attachment I: Emission Units Table</li> <li>☑ Attachment J: Emission Points Dat</li> <li>Please mail an original and three (3) co<br/>address listed of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Attachm<br>w Diagram(s) Attachm<br>Sheets (MSDS) Attachm<br>a Summary Sheet Attachm<br>pies of the complete permit application. P<br>A TITLE V SOURCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent O: Monitoring/Recordkeeping/Reporting/Testing Plans<br>ent P: Public Notice<br>ent Q: Business Confidential Claims<br>ent R: Authority Forms<br>ent S: Title V Permit Revision Information<br>ion Fee<br>on with the signature(s) to the DAQ, Permitting Section, at                                          |
| <ul> <li>☑ Attachment F: Detailed Process Flot</li> <li>☑ Attachment G: Process Description</li> <li>☑ Attachment H: Material Safety Data</li> <li>☑ Attachment I: Emission Units Table</li> <li>☑ Attachment J: Emission Points Data</li> <li>Please mail an original and three (3) co<br/>address listed o</li> </ul> FOR AGENCY USE ONLY – IF THIS IS <ul> <li>□ Forward 1 copy of the application of</li> <li>□ For Title V Administrative Amendment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | Attachm<br>w Diagram(s) Attachm<br>Sheets (MSDS) Attachm<br>a Summary Sheet Attachm<br>pies of the complete permit application. P<br>A TITLE V SOURCE:<br>o the Title V Permitting Group and:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent O: Monitoring/Recordkeeping/Reporting/Testing Plan<br>ent P: Public Notice<br>ent Q: Business Confidential Claims<br>ent R: Authority Forms<br>ent S: Title V Permit Revision Information<br>ion Fee<br>on with the signature(s) to the DAQ, Permitting Section, at<br>lease DO NOT fax permit applications.  |
| <ul> <li>☑ Attachment F: Detailed Process Flot</li> <li>☑ Attachment G: Process Description</li> <li>☑ Attachment H: Material Safety Data</li> <li>☑ Attachment I: Emission Units Table</li> <li>☑ Attachment J: Emission Points Data</li> <li>Please mail an original and three (3) co<br/>address listed o</li> </ul> FOR AGENCY USE ONLY – IF THIS IS <ul> <li>□ Forward 1 copy of the application to</li> <li>□ For Title V Administrative Amendm</li> <li>□ NSR permit writer should no</li> <li>□ For Title V Minor Modifications:</li> <li>□ Title V permit writer should</li> </ul>                                                                                                                                                                                                                                                               | Attachm<br>w Diagram(s) Attachm<br>Sheets (MSDS) Attachm<br>a Summary Sheet Attachm<br>pies of the complete permit application. P<br>Attachm<br>a Summary Sheet Attachm<br>a Summary Sheet Attachm<br>a Summary Sheet Attachm<br>a Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>A                   | ent O: Monitoring/Recordkeeping/Reporting/Testing Plan<br>ent P: Public Notice<br>ent Q: Business Confidential Claims<br>ent R: Authority Forms<br>ent S: Title V Permit Revision Information<br>ion Fee<br>on with the signature(s) to the DAQ, Permitting Section, at<br>lease DO NOT fax permit applications.  |
| <ul> <li>☑ Attachment F: Detailed Process Flot</li> <li>☑ Attachment G: Process Description</li> <li>☑ Attachment H: Material Safety Data</li> <li>☑ Attachment I: Emission Units Table</li> <li>☑ Attachment J: Emission Points Data</li> <li>☑ Attachment J: Emission Points Data</li> <li>☑ Attachment J: Emission Points Data</li> <li>☑ Please mail an original and three (3) co<br/>address listed o</li> <li>☑ FOR AGENCY USE ONLY – IF THIS IS</li> <li>☑ Forward 1 copy of the application to<br/>NSR permit writer should not</li> <li>☑ For Title V Administrative Amendm</li> <li>☑ I Title V Permit writer should not</li> <li>☑ Title V permit writer should not</li> <li>☑ NSR permit writer should not</li> </ul> | Attachm<br>w Diagram(s) Attachm<br>Sheets (MSDS) Attachm<br>a Summary Sheet Attachm<br>pies of the complete permit application. P<br>Attachm<br>a Summary Sheet Attachm<br>is a Summary Sheet Attachm<br>a Summary Sheet Attachm<br>a Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm<br>Attachm                     | ent O: Monitoring/Recordkeeping/Reporting/Testing Plans<br>ent P: Public Notice<br>ent Q: Business Confidential Claims<br>ent R: Authority Forms<br>ent S: Title V Permit Revision Information<br>ion Fee<br>on with the signature(s) to the DAQ, Permitting Section, at<br>lease DO NOT fax permit applications. |

#### **Table of Contents**

- ATTACHMENT A BUSINESS CERTIFICATE
- ATTACHMENT B LOCATION MAP
- ATTACHMENT C SCHEDULE OF CHANGES
- ATTACHMENT D REGULATORY DISCUSSION
- ATTACHMENT E PLOT PLAN
- ATTACHMENT F DETAILED PROCESS FLOW DIAGRAMS
- ATTACHMENT G PROCESS DESCRIPTION
- ATTACHMENT H MATERIAL SAFETY DATA SHEETS
- ATTACHMENT I EQUIPMENT LIST FORM
- ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET
- ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET
- ATTACHMENT L EMISSIONS UNIT DATA SHEETS
- ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS
- ATTACHMENT O MONITORING, REPORTING, AND RECORDKEEPING PLAN
- ATTACHMENT P PUBLIC NOTICE
- ATTACHMENT Q BUSINESS CONFIDENTIAL CLAIMS
- ATTACHMENT R AUTHORITY FORMS
- ATTACHMENT S TITLE V PERMIT

# **Attachment A**

# WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

## ISSUED TO: MOUNDSVILLE POWER, LLC CHEMICAL PLANT ACCESS RD S MOUNDSVILLE, WV 26041-0000

#### BUSINESS REGISTRATION ACCOUNT NUMBER:

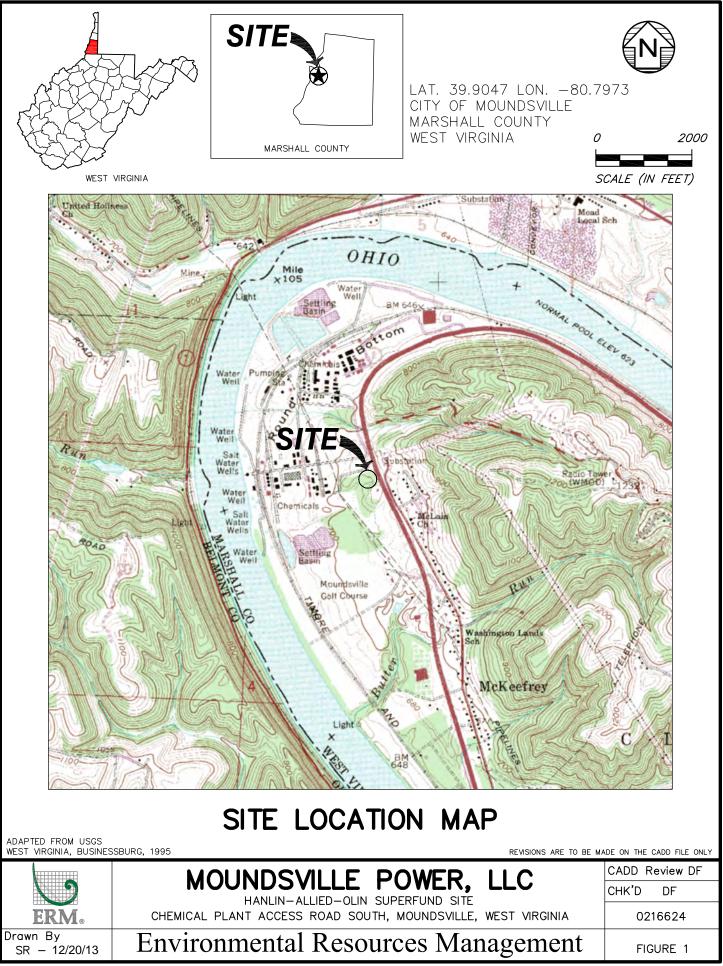
2280-1137

This certificate is issued on: 09/23/2013

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0016871488

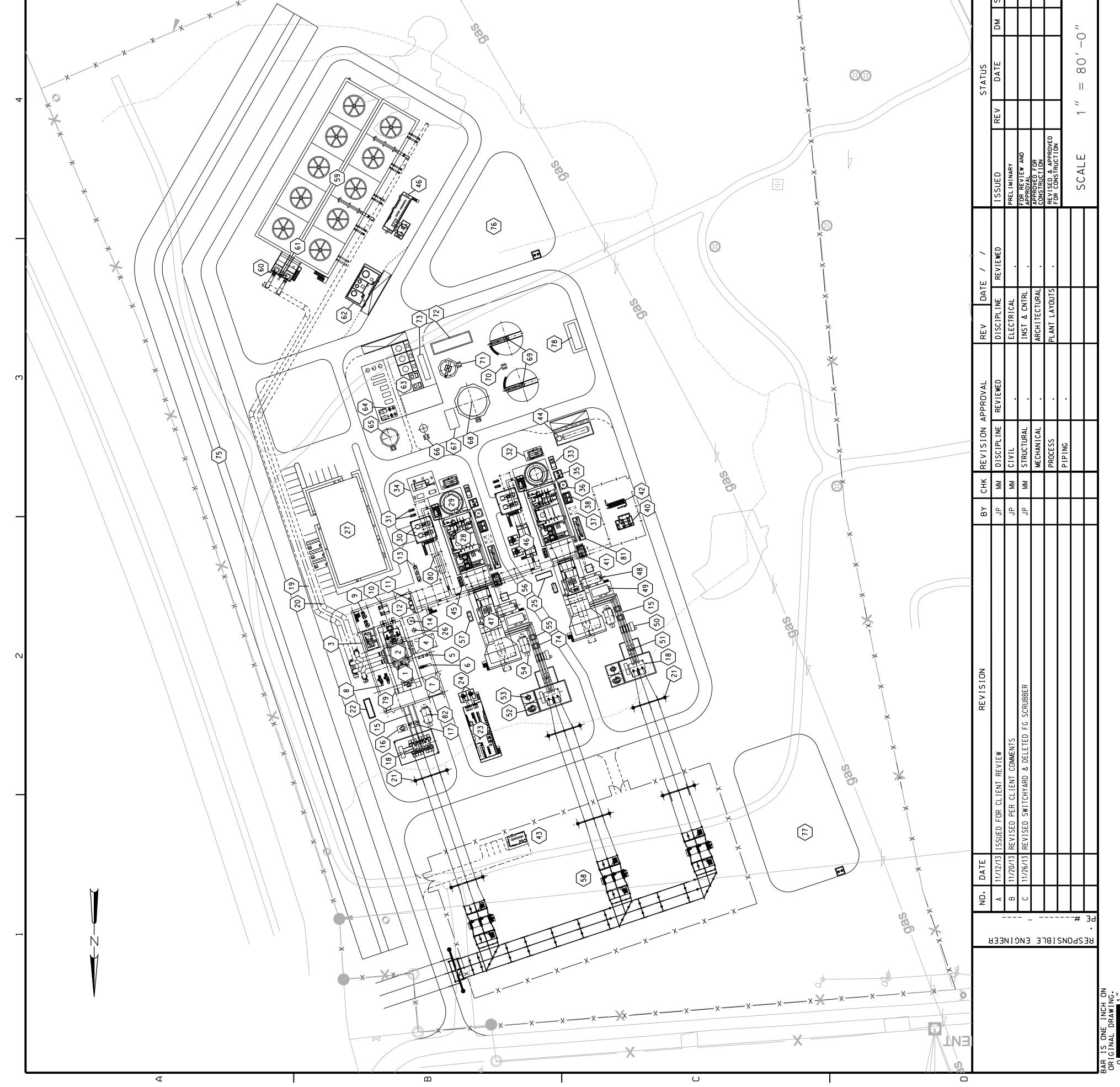
# **Attachment B**



# **Attachment C**

## Attachment C Schedule of Installation and Start-up

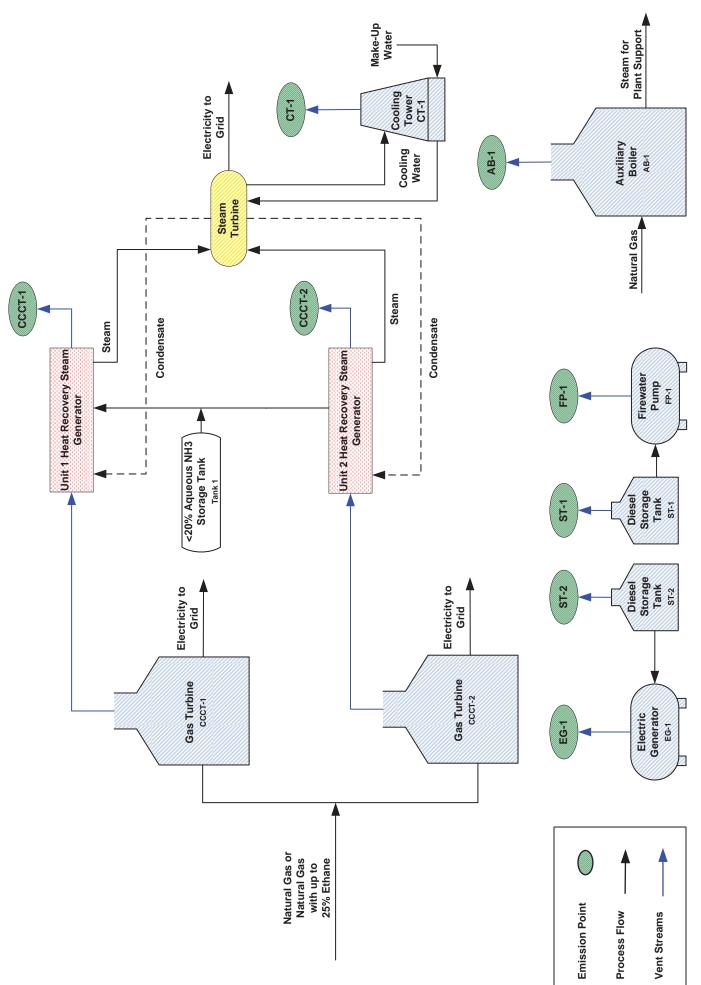
Moundsville Power has tentatively scheduled to begin construction related activities during the summer of 2014. Final installation of equipment and startup of the facility is tentatively scheduled for the summer of 2017. This schedule may vary depending on actual delivery of equipment, unforeseen construction delays, etc.


# **Attachment D**

## Attachment D Regulatory Discussion

The Plant will be designed and operated in accordance with applicable state and federal regulations. Regulations potentially impacting the proposed Plant are further discussed in Section 3.6 – Applicable Requirements Review of this permit application package.

# **Attachment E**


| о D CH2M HILL AND IS NOT TO BE USED, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CH2MHILL. ©CH2M HILL. ©CH2M HILL                                       |                                                                                                                                   |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| E     O     I     P     K       N     E00     I     P     M     M       N     E00     I     M     M     M       N     M     M     M     M     M       N     M     M     M     M     M       N     M     M     M     M     M       N     M     M     M     M     M       M     M | ceneral arrancement<br>PLOT PLAN                                                                                                  | DWG.ND. SK-MP-G-1000 REV. C<br>PLOT DATE: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SDE PEM MOUNDSVILLE POWER. LLC<br>MOUNDSVILLE PROJECT<br>2 X 1 COMBINED CYCLE<br>MOUNDSVILLE. WEST VIRGINIA<br>PROJECT NO. 480102 | CH2MHILL Engineers. Inc.<br>FILENAME:     |



# **Attachment F**







# **Attachment G**

## Attachment G Process Description

The Moundsville Power Plant will generate approximately 525 megawatts (MW)<sup>1</sup> of electricity that will be sold on the Pennsylvania-New Jersey-Maryland Interconnection LLC (PJM) regional electric grid. Pipeline-quality natural gas used by the plant's combustion turbines will be purchased from local suppliers, and will take advantage of the gas produced in nearby natural gas shale plays. In addition, the combustion turbines may fire a blend of pipeline-quality natural gas with up to 25% ethane.

Electricity will be generated using two (2) combined-cycle combustion turbines (CCGT-1 and CCGT-2), each rated at 197 MW (at various ambient temperature design conditions) and 2,087 million Btu per hour  $(MMBtu/hr)^2$ . Electricity generated by the combustion turbines will be routed through a local electrical substation and sold on the grid.

To enhance the plant's overall efficiency and increase the amount of electric generated by the plant, the hot exhaust gases from the combustion turbines is routed to downstream Heat Recovery Steam Generators (HRSGs). The HRSGs contain a series of heat exchangers designed to recover the heat from the turbines' exhaust gas and produce steam, as in a boiler. Each combustion turbine will have its own HRSG. Cooled exhaust gas passing through the HRSGs is vented to the atmosphere through emission points CCGT-1 and CCGT-2. The Selective Catalytic Reduction (SCR) and Oxidation Catalyst control devices used to reduce NO<sub>x</sub> and CO emissions from the combustion turbines will be incorporated into the HRSGs, at locations where the emission control reactions optimally occur.

<sup>&</sup>lt;sup>1</sup> Plant output varies by several factors, including ambient temperature, relative humidity, fuel, load level, whether duct firing or evaporative cooling are in use, etc. 525.6 MW is the expected plant output at a 92 °F ambient temperature design condition, 45% relative humidity, at base load, firing a natural gas/ethane fuel mix, with duct firing, and with the combustion turbine evaporative cooling systems off.

<sup>&</sup>lt;sup>2</sup> Combustion turbine output and heat input vary by several factors, including ambient temperature, relative humidity, fuel, load level, whether duct firing or evaporative cooling are in use, etc. 196.9 MW is the expected combustion turbine output under several operating cases. 2,087 MMBtu/hr is the expected heat input for a single combustion turbine at a 10 °F ambient temperature design condition, 60% relative humidity, at base load, firing natural gas, with 100% duct firing, and with the evaporative cooling system off.

The SCRs involve the injection of aqueous ammonia (NH<sub>3</sub>) with a concentration of less than 20% by weight into the combustion turbine exhaust gas streams. Ammonia reacts with NO<sub>x</sub> in the exhaust gas stream, reducing it to elemental nitrogen (N<sub>2</sub>) and water vapor (H<sub>2</sub>O). The aqueous ammonia will be stored on-site in one (1) storage tank, with a capacity of 20,000 gallons. The aqueous ammonia storage tank will not normally vent to the atmosphere. It will be equipped with pressure relief valves that would only vent in the event of an emergency. The Oxidation Catalysts do not require the use of chemical reagents.

Steam generated in the HRSGs is routed to a steam driven electric generator. This generator produces up to an additional 203 MW<sup>3</sup> of electricity that is also sold on the grid. Electricity generated by the two (2) combustion turbines and the single steam generator represent the plant's total electrical output.

Water from the plant's wet, mechanical draft Cooling Tower is used to cool the steam driven electric generator. Make-up water is added to the Cooling Tower as necessary to account for water evaporated in the Cooling Tower. Exhaust from the Cooling Tower is vented through emission point CT-1. Steam condensate from the steam generator is routed back to the HRSGs for reuse in the steam cycle.

Support equipment will also be used by the plant to assist with facility operations. A 100 MMBtu/hr Auxiliary Boiler is used to produce steam for plant support. In addition, a 1,500 kW (approximately 2,000 hp) Emergency Generator (EG-1) is used for emergency backup electric power, and a 251 hp Fire Water Pump (FP-1) will be used for plant fire protection. Both the Emergency Generator and the Fire Water Pump will run on ultra low sulfur diesel (USLD) fuel, and will be periodically operated for short periods per manufacturer's maintenance instructions to ensure operational readiness in the event of an emergency. The ULSD fuel will be stored in two (2) small storage tanks; the 500 gallon Fire Water Pump Tank (ST-1), and the 3,000 gallon Emergency Generator Tank (ST-2).

<sup>&</sup>lt;sup>3</sup> Steam turbine generator output input varies by several factors, including ambient temperature, relative humidity, combustion turbine fuel, load level, whether duct firing or evaporative cooling are in use, etc. 203.33 MW is the expected steam turbine generator output at a at a 73.4 °F ambient temperature design condition, at 60% relative humidity, with the combustion turbines at base load, firing a natural gas/ethane fuel mix, with duct firing, and the evaporative cooling systems off.

# **Attachment H**

## Attachment H MSDS

For informational purposes, attached is a typical MSDS for natural gas. Chemical compositions included in this MSDS may vary depending on vendor supply and were not used in determining maximum emission rates.

## **Material Safety Data Sheet**



SECTION 1 PRODUCT AND COMPANY IDENTIFICATION

### NATURAL GAS - SWEET

#### Company Identification

Appalachian/Michigan Business Unit Chevron North America Exploration and Production Company (a division of Chevron U.S.A. Inc.) 1550 Coraopolis Heights Road Moon Township, PA 15108 United States of America

#### **Transportation Emergency Response**

CHEMTREC: (800) 424-9300 or (703) 527-3887 Health Emergency Chevron Emergency Information Center: Located in the USA. International collect calls accepted. (800) 231-0623 or (510) 231-0623 Product Information Product Information: (412) 865-3408

#### SECTION 2 COMPOSITION/ INFORMATION ON INGREDIENTS

| COMPONENTS     | CAS NUMBER | AMOUNT        |
|----------------|------------|---------------|
| Methane        | 74-82-8    | < 88 %weight  |
| Ethane         | 74-84-0    | < 31 %weight  |
| Propane        | 74-98-6    | < 18 %weight  |
| Butane         | 106-97-8   | < 6 %weight   |
| Carbon dioxide | 124-38-9   | < 6 %weight   |
| Nitrogen       | 7727-37-9  | < 3 %weight   |
| Benzene        | 71-43-2    | < 2.5 %weight |

#### SECTION 3 HAZARDS IDENTIFICATION

\*\*\*\*

#### EMERGENCY OVERVIEW

- FLAMMABLE GAS. MAY CAUSE FLASH FIRE
- CONTENTS UNDER PRESSURE
- NO ODORANT ADDED; DETECTION OF LEAK VIA SENSE OF SMELL MAY NOT BE POSSIBLE
- MAY CAUSE DIZZINESS, DROWSINESS AND REDUCED ALERTNESS
- MAY CAUSE CANCER
- CONTAINS MATERIAL THAT MAY CAUSE DAMAGE TO:
- BLOOD/BLOOD FORMING ORGANS

#### IMMEDIATE HEALTH EFFECTS

Eye: Not expected to cause prolonged or significant eye irritation.

**Skin:** Contact with the skin is not expected to cause prolonged or significant irritation. Contact with the skin is not expected to cause an allergic skin response. Not expected to be harmful to internal organs if absorbed through the skin.

Ingestion: Material is a gas and cannot usually be swallowed.

**Inhalation:** This material can act as a simple asphyxiant by displacement of air. Symptoms of asphyxiation may include rapid breathing, incoordination, rapid fatigue, excessive salivation, disorientation, headache, nausea, and vomiting. Convulsions, loss of consciousness, coma, and/or death may occur if exposure to high concentrations continues. Excessive or prolonged breathing of this material may cause central nervous system effects. Central nervous system effects may include headache, dizziness, nausea, vomiting, weakness, loss of coordination, blurred vision, drowsiness, confusion, or disorientation. At extreme exposures, central nervous system effects may include respiratory depression, tremors or convulsions, loss of consciousness, coma or death. If this material is heated, fumes may be unpleasant and produce nausea and irritation of the eye and upper respiratory tract.

#### DELAYED OR OTHER HEALTH EFFECTS:

**Reproduction and Birth Defects:** This material is not expected to cause adverse reproductive effects based on animal data. This material is not expected to cause harm to the unborn child based on animal data.

**Cancer:** Prolonged or repeated exposure to this material may cause cancer. Contains benzene, which has been classified as a carcinogen by the National Toxicology Program (NTP) and a Group 1 carcinogen (carcinogenic to humans) by the International Agency for Research on Cancer (IARC).

**Target Organs:** Contains material that may cause damage to the following organ(s) following repeated inhalation at concentrations above the recommended exposure limit: Blood/Blood Forming Organs See Section 11 for additional information. Risk depends on duration and level of exposure.

#### SECTION 4 FIRST AID MEASURES

**Eye:** No specific first aid measures are required. As a precaution, remove contact lenses, if worn, and flush eyes with water.

**Skin:** No specific first aid measures are required. As a precaution, remove clothing and shoes if contaminated. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.

**Ingestion:** No specific first aid measures are required because this material is a gas.

**Inhalation:** During an emergency, wear an approved, positive pressure air-supplying respirator. Move the exposed person to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get immediate medical attention.

#### SECTION 5 FIRE FIGHTING MEASURES

SPECIAL NOTES: In case of fire do not extinguish. Stop flow of fuel and allow fire to burn out.

#### FIRE CLASSIFICATION:

OSHA Classification (29 CFR 1910.1200): Flammable gas.

NFPA RATINGS: Health: 1 Flammability: 4 Reactivity: 0

FLAMMABLE PROPERTIES:

Flashpoint: -162 °C (-260 °F) (Typical) Autoignition: 482 °C - 632 °C (900 °F - 1170 °F) Flammability (Explosive) Limits (% by volume in air): Lower: 3.8 Upper: 17

**EXTINGUISHING MEDIA:** Allow gas to burn if flow cannot be shut off safely. Apply water from a safe distance to cool container, surrounding equipment and structures. Container areas exposed to direct flame contact should be cooled with large quantities of water (500 gallons water per minute flame impingement exposure) to prevent weakening of container structure.

#### **PROTECTION OF FIRE FIGHTERS:**

**Fire Fighting Instructions:** Do not extinguish. Stop flow of fuel and allow fire to burn out. If flames are accidentally extinguished, explosive reignition may occur. Eliminate ignition sources. Keep people away. Isolate fire area and deny unnecessary entry. Immediately withdraw all personnel from area in case of rising sound from venting safety device or discoloration of the container. For unignited vapor cloud, use water spray to knock down and control dispersion of vapors. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out and danger of reignition has passed. See Section 7 for proper handling and storage. For fires involving this material, do not enter any enclosed or confined fire space without proper protective equipment, including self-contained breathing apparatus.

**Combustion Products:** Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be evolved when this material undergoes combustion.

#### SECTION 6 ACCIDENTAL RELEASE MEASURES

**Protective Measures:** Eliminate all sources of ignition in vicinity of released gas. If this material is released into the work area, evacuate the area immediately. Monitor area with combustible gas indicator. For large releases, warn public of downwind explosion hazard.

**Spill Management:** Stop the source of the release if you can do it without risk. Observe precautions in Exposure Controls/Personal Protection section of the MSDS. All equipment used when handling the product must be grounded. If possible, turn leaking containers so that gas escapes rather than liquid. Use water spray to reduce vapors or divert vapor cloud drift. Do not direct water at spill or source of leak. Prevent spreading of vapors through sewers, ventilation systems and confined areas. Isolate area until gas has dispersed.

**Reporting:** Report spills to local authorities and/or the U.S. Coast Guard's National Response Center at (800) 424-8802 as appropriate or required.

#### SECTION 7 HANDLING AND STORAGE

**Precautionary Measures:** This material presents a fire hazard. Gas can catch fire and burn with explosive force. Invisible gas spreads easily and can be set on fire by many sources such as pilot lights, welding equipment, and electrical motors and switches. Gases are heavier than air and may travel along the ground or into drains to possible distant ignition sources that may cause an explosive flashback. Do not breathe gas. Wash thoroughly after handling.

**Unusual Handling Hazards:** This product does not contain an odorant. Detection of leak via sense of smell, therefore, may not be possible.

**Static Hazard:** Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating and accumulating an electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures. For more information, refer to OSHA Standard 29 CFR 1910.106, 'Flammable and Combustible Liquids', National Fire Protection Association (NFPA 77, 'Recommended Practice on Static Electricity', and/or the American Petroleum Institute (API)

Recommended Practice 2003, 'Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents'.

**General Storage Information:** DO NOT USE OR STORE near heat, sparks, flames, or hot surfaces. USE AND STORE ONLY IN WELL VENTILATED AREA. Keep container closed when not in use. When working with this material, the minimal oxygen content should be 19.5% by volume under normal atmospheric pressure.

#### SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

#### **GENERAL CONSIDERATIONS:**

Consider the potential hazards of this material (see Section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment. If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, the personal protective equipment listed below is recommended. The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

#### ENGINEERING CONTROLS:

Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below the recommended exposure limits. Use in a well-ventilated area. Use explosion-proof ventilation equipment.

#### PERSONAL PROTECTIVE EQUIPMENT

**Eye/Face Protection:** No special eye protection is normally required. Where splashing is possible, wear safety glasses with side shields as a good safety practice.

**Skin Protection:** No special protective clothing is normally required. Where splashing is possible, select protective clothing depending on operations conducted, physical requirements and other substances in the workplace. Suggested materials for protective gloves include: Nitrile Rubber, Viton.

**Respiratory Protection:** Determine if airborne concentrations are below the recommended occupational exposure limits for jurisdiction of use. If airborne concentrations are above the acceptable limits, wear an approved respirator that provides adequate protection from this material, such as: Supplied-Air Respirator, or Air-Purifying Respirator for Organic Vapors.

Wear an approved positive pressure air-supplying respirator unless ventilation or other engineering controls are adequate to maintain a minimal oxygen content of 19.5% by volume under normal atmospheric pressure.

Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

| Component      | Agency   | TWA                  | STEL                  | Ceiling            | Notation        |
|----------------|----------|----------------------|-----------------------|--------------------|-----------------|
| Benzene        | ACGIH    | .5 ppm<br>(weight)   | 2.5 ppm<br>(weight)   |                    | Skin A1<br>Skin |
| Benzene        | CVX      | 1 ppm<br>(weight)    | 5 ppm<br>(weight)     |                    |                 |
| Benzene        | OSHA SRS | 1 ppm<br>(weight)    | 5 ppm<br>(weight)     |                    |                 |
| Benzene        | OSHA Z-2 | 10 ppm<br>(weight)   |                       | 25 ppm<br>(weight) |                 |
| Butane         | ACGIH    | 1000 ppm<br>(weight) |                       |                    |                 |
| Carbon dioxide | ACGIH    | 5000 ppm<br>(weight) | 30000 ppm<br>(weight) |                    |                 |
| Carbon dioxide | OSHA Z-1 | 9000 mg/m3           |                       |                    |                 |

#### **Occupational Exposure Limits:**

| Ethane   | ACGIH    | 1000 ppm<br>(weight) | <br> |                       |
|----------|----------|----------------------|------|-----------------------|
| Methane  | ACGIH    | 1000 ppm<br>(weight) | <br> |                       |
| Nitrogen | ACGIH    |                      | <br> | Simple<br>asphyxiant. |
| Propane  | ACGIH    | 1000 ppm<br>(weight) | <br> |                       |
| Propane  | OSHA Z-1 | 1800 mg/m3           | <br> |                       |

Consult local authorities for appropriate values.

#### SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Attention: the data below are typical values and do not constitute a specification.

Color: Colorless Physical State: Gas Odor: Odorless pH: Not Applicable Vapor Pressure: 760 mmHg Vapor Density (Air = 1): No data available Boiling Point: -162°C (-259.6°F) Solubility: Insoluble in water. Freezing Point: No data available Melting Point: -184°C (-299.2°F) Specific Gravity: 0.57 Density: No data available Viscosity: No data available

#### SECTION 10 STABILITY AND REACTIVITY

**Chemical Stability:** This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.

**Incompatibility With Other Materials:** May react with strong acids or strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.

Hazardous Decomposition Products: Carbon Dioxide (Elevated temperatures), Carbon Monoxide (Elevated temperatures)

Hazardous Polymerization: Hazardous polymerization will not occur.

#### SECTION 11 TOXICOLOGICAL INFORMATION

#### IMMEDIATE HEALTH EFFECTS

**Eye Irritation:** The eye irritation hazard is based on evaluation of data for similar materials or product components.

**Skin Irritation:** The skin irritation hazard is based on evaluation of data for similar materials or product components.

**Skin Sensitization:** The skin sensitization hazard is based on evaluation of data for similar materials or product components.

**Acute Dermal Toxicity:** The acute dermal toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Oral Toxicity: The acute oral toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Inhalation Toxicity: The acute inhalation toxicity hazard is based on evaluation of data for similar materials or product components.

#### ADDITIONAL TOXICOLOGY INFORMATION:

This product contains butane. An atmospheric concentration of 100,000 ppm (10%) butane is not noticeably irritating to the eyes, nose or respiratory tract, but will produce slight dizziness in a few minutes of exposure. No chronic systemic effect has been reported from occupational exposure.

#### This product contains benzene.

GENETIC TOXICITY/CANCER: Repeated or prolonged breathing of benzene vapor has been associated with the development of chromosomal damage in experimental animals and various blood diseases in humans ranging from aplastic anemia to leukemia (a form of cancer). All of these diseases can be fatal. In some individuals, benzene exposure can sensitize cardiac tissue to epinephrine which may precipitate fatal ventricular fibrillation.

REPRODUCTIVE/DEVELOPMENTAL TOXICITY: No birth defects have been shown to occur in pregnant laboratory animals exposed to doses not toxic to the mother. However, some evidence of fetal toxicity such as delayed physical development has been seen at such levels. The available information on the effects of benzene on human pregnancies is inadequate but it has been established that benzene can cross the human placenta.

OCCUPATIONAL: The OSHA Benzene Standard (29 CFR 1910.1028) contains detailed requirements for training, exposure monitoring, respiratory protection and medical surveillance triggered by the exposure level. Refer to the OSHA Standard before using this product.

This product may contain detectable but varying quantities of the naturally occurring radioactive substance radon 222. The amount in the gas itself is not hazardous, but since radon rapidly decays (t1/2 = 3.82days) to form other radioactive elements including lead 210, polonium 210, and bismuth 210, equipment may contain radioactivity. The radon decay products are solids and therefore may attach to dust particles or form films and sludges in equipment. Inhalation, ingestion or skin contact with radon decay products can lead to the deposit (or presence) of radioactive material in the respiratory tract, bone, blood forming organs, intestinal tract, and kidney, which may lead to certain cancers. The International Agency for Research on Cancer (IARC) has classified radon as a Group 1 carcinogen. Some studies of people occupationally exposed to radiation indicate an increased incidence of chromosomal aberrations; the clinical significance of this increase is unknown. Risks can be minimized by following good industrial and personal hygiene practices noted in the section on storage and handling.

#### SECTION 12 ECOLOGICAL INFORMATION

#### ECOTOXICITY

This material is not expected to be harmful to aquatic organisms. The ecotoxicity hazard is based on an evaluation of data for the components or a similar material.

#### ENVIRONMENTAL FATE

**Ready Biodegradability:** This material is expected to be readily biodegradable. The biodegradability of this material is based on an evaluation of data for the components or a similar material.

#### SECTION 13 DISPOSAL CONSIDERATIONS

Use material for its intended purpose or recycle if possible. This material, if it must be discarded, may meet the criteria of a hazardous waste as defined by US EPA under RCRA (40 CFR 261) or other State

and local regulations. Measurement of certain physical properties and analysis for regulated components may be necessary to make a correct determination. If this material is classified as a hazardous waste, federal law requires disposal at a licensed hazardous waste disposal facility.

#### SECTION 14 TRANSPORT INFORMATION

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

DOT Shipping Description: UN1971, NATURAL GAS, COMPRESSED, 2.1 ADDITIONAL INFORMATION - RQ (BENZENE) FOR SINGLE PACKAGES CONTAINING GREATER THAN OR EQUAL TO 10 LBS AND CONCENTRATION OF 200 PPM

IMO/IMDG Shipping Description: UN1971, NATURAL GAS, COMPRESSED, 2.1

ICAO/IATA Shipping Description: UN1971, NATURAL GAS, COMPRESSED, 2.1

#### SECTION 15 REGULATORY INFORMATION

EPCRA 311/312 CATEGORIES:

- Immediate (Acute) Health Effects: 1. 2.
  - Delayed (Chronic) Health Effects:
- 3. Fire Hazard:
- Sudden Release of Pressure Hazard: 4.

06,07

5. Reactivity Hazard:

#### **REGULATORY LISTS SEARCHED:**

| 01-1=IARC Group 1   | 03=EPCRA 313         |
|---------------------|----------------------|
| 01-2A=IARC Group 2A | 04=CA Proposition 65 |
| 01-2B=IARC Group 2B | 05=MA RTK            |
| 02=NTP Carcinogen   | 06=NJ RTK            |
| -                   | 07=PA RTK            |

The following components of this material are found on the regulatory lists indicated.

| Benzene        | 01-1, 02, 04, 05, |
|----------------|-------------------|
| Butane         | 05, 06, 07        |
| Carbon dioxide | 05, 06, 07        |
| Ethane         | 05, 06, 07        |
| Methane        | 05, 06, 07        |
| Nitrogen       | 05, 06, 07        |
| Propane        | 05, 06, 07        |
|                |                   |

#### CERCLA REPORTABLE QUANTITIES(RQ)/EPCRA 302 THRESHOLD PLANNING QUANTITIES(TPQ):

| Component | Component RQ | Component TPQ | Product RQ |
|-----------|--------------|---------------|------------|
| Benzene   | 10 lbs       | None          | 400 lbs    |

#### **CHEMICAL INVENTORIES:**

All components comply with the following chemical inventory requirements: AICS (Australia), DSL (Canada), EINECS (European Union), IECSC (China), KECI (Korea), PICCS (Philippines), TSCA (United States).

YES

YES

YES

YES

NO

#### SECTION 16 OTHER INFORMATION

**NFPA RATINGS:** Health: 1 Flammability: 4 Reactivity: 0

**HMIS RATINGS:** Health: 1\* Flammability: 4 Reactivity: 0

(0-Least, 1-Slight, 2-Moderate, 3-High, 4-Extreme, PPE:- Personal Protection Equipment Index recommendation, \*- Chronic Effect Indicator). These values are obtained using the guidelines or published evaluations prepared by the National Fire Protection Association (NFPA) or the National Paint and Coating Association (for HMIS ratings).

**REVISION STATEMENT:** This revision updates the following sections of this Material Safety Data Sheet: 2, 3, 4, 5, 6, 7, 8, 12, 15 **Revision Date:** NOVEMBER 01, 2011

#### ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:

| TLV - Threshold Limit Value                                          | TWA - Time Weighted Average                               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|
| STEL - Short-term Exposure Limit                                     | PEL - Permissible Exposure Limit                          |  |  |  |  |  |  |  |
|                                                                      | CAS - Chemical Abstract Service Number                    |  |  |  |  |  |  |  |
| ACGIH - American Conference of Governmental<br>Industrial Hygienists | IMO/IMDG - International Maritime Dangerous Goods<br>Code |  |  |  |  |  |  |  |
| API - American Petroleum Institute                                   | MSDS - Material Safety Data Sheet                         |  |  |  |  |  |  |  |
| CVX - Chevron                                                        | NFPA - National Fire Protection Association (USA)         |  |  |  |  |  |  |  |
| DOT - Department of Transportation (USA)                             | NTP - National Toxicology Program (USA)                   |  |  |  |  |  |  |  |
| IARC - International Agency for Research on                          | OSHA - Occupational Safety and Health                     |  |  |  |  |  |  |  |
| Cancer                                                               | Administration                                            |  |  |  |  |  |  |  |

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Chevron Energy Technology Company, 100 Chevron Way, Richmond, California 94802.

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.

# Attachment I

| Attachment I<br>Emission Units Table<br>(includes all emission units and air pollution control devices<br>that will be part of this permit application review, regardless of permitting status) |                                   |                                                           |                             |                    |                                            |                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------------|--------------------|--------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Emission<br>Unit ID <sup>1</sup>                                                                                                                                                                | Emission<br>Point ID <sup>2</sup> | Emission Unit Description                                 | Year Installed/<br>Modified | Design<br>Capacity | Type <sup>3</sup> and<br>Date of<br>Change | Control<br>Device <sup>4</sup>          |  |  |  |  |  |
| CCCT-1                                                                                                                                                                                          | CCCT-1                            | Combined-Cycle Combustion<br>Turbine                      | 2017                        | 2,087<br>MMBtu/hr  | New                                        | DLNC &<br>SCR,<br>Oxidation<br>Catalyst |  |  |  |  |  |
| CCCT-2                                                                                                                                                                                          | CCCT-2                            | Combined-Cycle Combustion<br>Turbine                      | 2017                        | 2,087<br>MMBtu/hr  | New                                        | DLNC &<br>SCR,<br>Oxidation<br>Catalyst |  |  |  |  |  |
| NA                                                                                                                                                                                              | NA                                | CCCT-1 Heat Recovery Steam<br>Generator with Duct Burners | 2017                        | 72.1<br>MMBtu/hr   | New                                        | NA                                      |  |  |  |  |  |
| NA                                                                                                                                                                                              | NA                                | CCCT-2 Heat Recovery Steam<br>Generator with Duct Burners | 2017                        | 72.1<br>MMBtu/hr   | New                                        | NA                                      |  |  |  |  |  |
| NA                                                                                                                                                                                              | NA                                | Steam Turbine Electric<br>Generator                       | 2017                        | 197 MW             | New                                        | NA                                      |  |  |  |  |  |
| CT-1                                                                                                                                                                                            | CT-1                              | Cooling Tower                                             | 2017                        | 159,000 gpm        | New                                        | NA                                      |  |  |  |  |  |
| AB-1                                                                                                                                                                                            | AB-1                              | Auxiliary Boiler                                          | 2017                        | 100 MMBtu/hr       | New                                        | ULNB,<br>FGR                            |  |  |  |  |  |
| FP-1                                                                                                                                                                                            | FP-1                              | Firewater Pump                                            | 2017                        | 251 hp             | New                                        | NA                                      |  |  |  |  |  |
| EG-1                                                                                                                                                                                            | EG-1                              | Emergency Electric Generator                              | 2017                        | 1,500 kW           | New                                        | NA                                      |  |  |  |  |  |
| ST-1                                                                                                                                                                                            | ST-1                              | Fire Water Pump Tank (ULSD)                               | 2017                        | 500 gallons        | New                                        | NA                                      |  |  |  |  |  |
| ST-2                                                                                                                                                                                            | ST-2                              | Emergency Generator Tank<br>(ULSD)                        | 2017                        | 3,000 gallons      | New                                        | NA                                      |  |  |  |  |  |
| NA                                                                                                                                                                                              | NA                                | Aqueous Ammonia Storage<br>Tank 1                         | 2017                        | 20,000 gallons     | New                                        | NA                                      |  |  |  |  |  |

<sup>1</sup> For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. <sup>2</sup> For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. <sup>3</sup> New, modification, removal <sup>4</sup> For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

# **Attachment J**

|                                                                                    |                                        |                                          |                                                                    |                                                                                                                                                  |                                                       |                            | Table 1                                                                              | I: Emissions D                                                                                                                                                                                                                                                                 | ata                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                    |                                                                                                                                                     |                                                                                                                                                               |
|------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table<br>& Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Ver<br>Through<br>(Must mate<br>Units Ta | ion Unit<br>nted<br>This Point<br>ch Emission<br>ble & Plot<br>an) | Air Pollution<br>Control Device<br>(Must match<br>Emission Units<br>Table & Plot Plan)<br>Vent Time t<br>Emission U<br>(chemical<br>processes or |                                                       | ion Unit<br>Emical         | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Unco                                                                                                                                                                                                                                                                           | n Potential<br>ntrolled<br>sions <sup>4</sup>                                                                                                                | Con                                                                                                                                                            | n Potential<br>trolled<br>sions <sup>5</sup>                                                                                                                | Emission<br>Form or<br>Phase<br>(At exit<br>conditions                                                                                                         | Est.<br>Method<br>Used <sup>6</sup>                                                                                | Emission<br>Concentration<br>7<br>(mg/m <sup>3</sup> )                                                                                              |                                                                                                                                                               |
|                                                                                    |                                        | ID No.                                   | Source                                                             | ID<br>No.                                                                                                                                        | Device<br>Type                                        | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                                                                       | & HAPS)                                                                                                                                                                                                                                                                        | lb/hr                                                                                                                                                        | ton/yr                                                                                                                                                         | lb/hr                                                                                                                                                       | ton/yr                                                                                                                                                         | , Solid,<br>Liquid or<br>Gas/<br>Vapor)                                                                            |                                                                                                                                                     |                                                                                                                                                               |
| CCCT-1                                                                             | Upward<br>Vertical<br>Stack            | CCCT- 1                                  | Comb.<br>Cycle<br>Combust<br>. Turbine                             | NA                                                                                                                                               | Low NOx<br>Burners &<br>SCR,<br>Oxidation<br>Catalyst | С                          | 8,760                                                                                | NO <sub>x</sub><br>CO<br>Total VOC<br>PM/PPM <sub>10</sub> /PM2.5<br>SO <sub>2</sub><br>Sulfur Acid Mist<br>Lead<br>Acetaldehyde<br>Acrolein<br>Benzene<br>Ethylbenzene<br>Formaldehyde<br>Hexane<br>Naphthalene<br>POM<br>Toluene<br>Xylenes<br>Total HAP<br>CO <sub>2e</sub> | 113.4<br>33.72<br>5.28<br>7.56<br>0.55<br>0.35<br>0.001<br>0.08<br>0.01<br>0.02<br>0.06<br>0.60<br>0.13<br>0.003<br>0.004<br>0.26<br>0.13<br>1.30<br>254.315 | 523.1<br>369.0<br>26.95<br>33.70<br>2.39<br>1.55<br>0.005<br>0.35<br>0.05<br>0.10<br>0.28<br>2.65<br>0.55<br>0.01<br>0.02<br>1.15<br>0.56<br>5.95<br>1,113.898 | 15.20<br>9.24<br>5.28<br>7.56<br>0.55<br>0.35<br>0.001<br>0.08<br>0.01<br>0.02<br>0.06<br>0.60<br>0.13<br>0.003<br>0.004<br>0.26<br>0.13<br>1.30<br>254,315 | 70.10<br>101.1<br>36.95<br>33.70<br>2.39<br>1.55<br>0.005<br>0.35<br>0.05<br>0.10<br>0.28<br>2.65<br>0.55<br>0.01<br>0.02<br>1.15<br>0.56<br>5.95<br>1,113,898 | Gas<br>Gas<br>Solid<br>Gas<br>Solid<br>Solid<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas | EE<br>EE<br>EE<br>EE<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>Sub. C | 4.2<br>2.6<br>1.5<br>2.1<br>0.2<br>0.1<br><0.001<br>0.02<br>0.004<br>0.007<br>0.02<br>0.2<br>0.03<br>0.001<br>0.001<br>0.08<br>0.04<br>0.4<br>70,410          |
| CCCT-2                                                                             | Upward<br>Vertical<br>Stack            | CCCT-2                                   | Comb.<br>Cycle<br>Combust<br>. Turbine                             | NA                                                                                                                                               | Low NOx<br>Burners &<br>SCR,<br>Oxidation<br>Catalyst | С                          | 8,760                                                                                | NO <sub>x</sub><br>CO<br>Total VOC<br>PM/PPM <sub>10</sub> /PM2.5<br>SO <sub>2</sub><br>Sulfur Acid Mist<br>Lead<br>Acetaldehyde<br>Acrolein<br>Benzene<br>Ethylbenzene<br>Formaldehyde<br>Hexane<br>Naphthalene<br>POM<br>Toluene<br>Xylenes<br>Total HAP<br>CO <sub>2e</sub> | 113.4<br>33.72<br>5.28<br>7.56<br>0.55<br>0.35<br>0.001<br>0.08<br>0.01<br>0.02<br>0.06<br>0.60<br>0.13<br>0.003<br>0.004<br>0.26<br>0.13<br>1.30<br>254,315 | 523.1<br>369.0<br>26.95<br>33.70<br>2.39<br>1.55<br>0.005<br>0.35<br>0.05<br>0.10<br>0.28<br>2.65<br>0.55<br>0.01<br>0.02<br>1.15<br>0.56<br>5.95<br>1,113,898 | 15.20<br>9.24<br>5.28<br>7.56<br>0.55<br>0.35<br>0.001<br>0.08<br>0.01<br>0.02<br>0.06<br>0.60<br>0.13<br>0.003<br>0.004<br>0.26<br>0.13<br>1.30<br>254,315 | 70.10<br>101.1<br>36.95<br>33.70<br>2.39<br>1.55<br>0.005<br>0.35<br>0.05<br>0.10<br>0.28<br>2.65<br>0.55<br>0.01<br>0.02<br>1.15<br>0.56<br>5.95<br>1,113,898 | Gas<br>Gas<br>Solid<br>Gas<br>Solid<br>Solid<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas | EE<br>EE<br>EE<br>EE<br>EE<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>Sub. C    | 4.2<br>2.6<br>1.5<br>2.1<br>0.2<br>0.1<br><0.001<br>0.02<br>0.004<br>0.007<br>0.02<br>0.2<br>0.03<br>0.001<br>0.001<br>0.001<br>0.08<br>0.04<br>0.4<br>70,410 |

• For turbines CCCT-1 and CCCT-2, annual NOx, CO, VOC, and PM represents combined steady state, start-up, and shutdown emission rates.

|                                                                                    |                                        |                                                                                                         |                           |                                                                                        |                | -                                                              | Table 1:       | Emissions Da                                                                                                    | ata                                                            |                       |                                                              |                       |                                                                          |                                     |                                                        |
|------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|--------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table<br>& Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Emission Unit<br>Vented<br>Through This<br>Point<br>(Must match<br>Emission Units<br>Table & Plot Plan) |                           | Air Pollution<br>Control Device<br>(Must match<br>Emission Units<br>Table & Plot Plan) |                | Vent Time for<br>Emission Unit<br>(chemical processes<br>only) |                | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>( <i>Speciate VOCs</i><br>& <i>HAPS</i> ) | Maximum<br>Potential<br>Uncontrolled<br>Emissions <sup>4</sup> |                       | Maximum<br>Potential<br>Controlled<br>Emissions <sup>5</sup> |                       | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concentration<br>7<br>(mg/m <sup>3</sup> ) |
|                                                                                    |                                        | ID No.                                                                                                  | Source                    | ID No.                                                                                 | Device<br>Type | Short Term <sup>2</sup>                                        | Max<br>(hr/yr) |                                                                                                                 | lb/hr                                                          | ton/yr                | lb/hr                                                        | ton/yr                | or Gas/Vapor)                                                            |                                     |                                                        |
| CT-1                                                                               | NA                                     | CT-1                                                                                                    | Cooling<br>Tower          | NA                                                                                     | NA             | С                                                              | 8,760          | PM<br>PM <sub>10</sub><br>PM <sub>2.5</sub>                                                                     | 0.72<br>0.48<br>0.002                                          | 3.15<br>2.51<br>0.007 | 0.72<br>0.48<br>0.002                                        | 3.15<br>2.51<br>0.007 | Solid<br>Solid<br>Solid                                                  | EE<br>EE<br>EE                      | 0.13<br>0.1<br><0.001                                  |
| ST-1                                                                               | Upward<br>Vertical<br>Stack            | ST-1                                                                                                    | Diesel<br>Storage<br>Tank | NA                                                                                     | NA             | С                                                              | 8,760          | Total VOC                                                                                                       | <0.001                                                         | <0.001                | <0.001                                                       | <0.001                | Gas                                                                      | AP-42                               | NA                                                     |
| ST-2                                                                               | Upward<br>Vertical<br>Stack            | ST-2                                                                                                    | Diesel<br>Storage<br>Tank | NA                                                                                     | NA             | С                                                              | 8,760          | Total VOC                                                                                                       | <0.001                                                         | <0.001                | <0.001                                                       | <0.001                | Gas                                                                      | AP-42                               | NA                                                     |

|                                                                                    |                                        |                                              |                                                                                                |                                                                                        | LIVIIO                                  |                                                                     |                | ATA SUMIMAN                                                                                                                                                                                         |                                                                                                        |                                                                                                        |                                                                                                        |                                                                                                        |                                                                                             |                                                                                                       |                                                                                                   |
|------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                                    |                                        |                                              |                                                                                                |                                                                                        |                                         | -                                                                   | Table 1        | : Emissions Da                                                                                                                                                                                      | ita                                                                                                    |                                                                                                        |                                                                                                        |                                                                                                        |                                                                                             |                                                                                                       |                                                                                                   |
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table<br>& Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Ve<br>Throu<br>Po<br><i>(Musi<br/>Emissi</i> | ion Unit<br>nted<br>gh This<br>oint<br><i>t match</i><br><i>ion Units</i><br><i>Plot Plan)</i> | Air Pollution<br>Control Device<br>(Must match<br>Emission Units<br>Table & Plot Plan) |                                         | Control Device Emission Unit<br>(Must match<br>Emission Units only) |                | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs<br>& HAPS)                                                                                                     |                                                                                                        | Pote<br>Cont                                                                                           | imum<br>ential<br>rolled<br>sions <sup>5</sup>                                                         | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid<br>or Gas/Vapor)              | Est.<br>Method<br>Used <sup>6</sup>                                                         | Emission<br>Concentration<br>7<br>(mg/m <sup>3</sup> )                                                |                                                                                                   |
|                                                                                    |                                        | ID No.                                       | Source                                                                                         | ID No.                                                                                 | Device<br>Type                          | Short Term <sup>2</sup>                                             | Max<br>(hr/yr) |                                                                                                                                                                                                     | lb/hr                                                                                                  | ton/yr                                                                                                 | lb/hr                                                                                                  | ton/yr                                                                                                 |                                                                                             |                                                                                                       |                                                                                                   |
| AB-1                                                                               | Upward<br>Vertical<br>Stack            | AB-1                                         | Aux.<br>Boiler                                                                                 | NA                                                                                     | Ultra<br>Low<br>NOx<br>Burners<br>& FGR | As<br>Required                                                      | 2,000          | NO <sub>x</sub><br>CO<br>Total VOC<br>PM/PPM <sub>10</sub> /PM2.5<br>SO <sub>2</sub><br>Sulfuric Acid Mist<br>Lead<br>Benzene<br>Formaldehyde<br>Hexane<br>Toluene<br>Total HAP<br>CO <sub>2e</sub> | 4.00<br>4.00<br>0.60<br>0.50<br>0.005<br><0.001<br><0.001<br>0.007<br>0.18<br><0.001<br>0.18<br>12,081 | 4.00<br>4.00<br>0.60<br>0.50<br>0.005<br><0.001<br><0.001<br>0.007<br>0.18<br><0.001<br>0.18<br>12,081 | 2.00<br>4.00<br>0.60<br>0.50<br>0.005<br><0.001<br><0.001<br>0.007<br>0.18<br><0.001<br>0.18<br>12,081 | 2.00<br>4.00<br>0.60<br>0.50<br>0.005<br><0.001<br><0.001<br>0.007<br>0.18<br><0.001<br>0.18<br>12,081 | Gas<br>Gas<br>Gas<br>Gas<br>Solid<br>Solid<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas | EE<br>EE<br>EE<br>AP-42<br>EE<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>Sub. C                  | 5.3<br>11<br>1.6<br>1.3<br>0.2<br>0.01<br>0.003<br>0.003<br>0.02<br>0.5<br>0.003<br>0.5<br>32,247 |
| FP-1                                                                               | Exhaust                                | FP-1                                         | Fire<br>Water<br>Pump                                                                          | NA                                                                                     | NA                                      | As<br>Required                                                      | 500            | NO <sub>x</sub><br>CO<br>Total VOC<br>PM/PPM <sub>10</sub> /PM2.5<br>SO <sub>2</sub><br>Acetaldehyde<br>Benzene<br>Formaldehyde<br>Toluene<br>Total HAP<br>CO <sub>2e</sub>                         | 1.49<br>1.44<br>0.17<br>0.08<br>0.003<br>0.002<br>0.002<br>0.002<br><0.001<br>0.007<br>309             | 0.37<br>0.36<br>0.04<br>0.02<br><0.001<br><0.001<br><0.001<br><0.001<br>0.002<br>77.3                  | 1.49<br>1.44<br>0.17<br>0.08<br>0.003<br>0.002<br>0.002<br>0.002<br><0.001<br>0.007<br>309             | 0.37<br>0.36<br>0.04<br>0.02<br><0.001<br><0.001<br><0.001<br><0.001<br>0.002<br>77.3                  | Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas                          | O- NSPS<br>O- NSPS<br>O- NSPS<br>O- NSPS<br>MB<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>Sub. C | 320<br>309<br>37<br>17<br>0.6<br>0.4<br>0.4<br>0.4<br>0.4<br>0.2<br>1.5<br>66,369                 |

|                                                                                    |                                        |                              |                                                                                                |                           |                                                            | -                                        | Table 1              | : Emissions Da                                                                                                                                                         | ta                                                                                         |                                                                                     |                                                                                            |                                                                                     |                                                                    |                                                                                                     |                                                                              |
|------------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table<br>& Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Ve<br>Throu<br>(Mus<br>Emiss | ion Unit<br>nted<br>gh This<br>oint<br><i>t match</i><br><i>ion Units</i><br><i>Plot Plan)</i> | Contro<br>(Musi<br>Emissi | ollution<br>I Device<br>t match<br>ion Units<br>Plot Plan) | Vent Ti<br>Emissic<br>(chemical µ<br>onl | on Unit<br>processes | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs<br>& HAPS)                                                                        | Pote                                                                                       | trolled                                                                             | Maxii<br>Pote<br>Contr<br>Emiss                                                            | ntial<br>olled                                                                      | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid,  | Est.<br>Method<br>Used <sup>6</sup>                                                                 | Emission<br>Concentration<br>7<br>(mg/m <sup>3</sup> )                       |
|                                                                                    |                                        | ID No.                       | Source                                                                                         | ID No.                    | Device<br>Type                                             | Short Term <sup>2</sup>                  | Max<br>(hr/yr)       |                                                                                                                                                                        | lb/hr                                                                                      | ton/yr                                                                              | lb/hr                                                                                      | ton/yr                                                                              | Liquid or<br>Gas/<br>Vapor)                                        |                                                                                                     |                                                                              |
| EG-1                                                                               | Exhaust                                | EG-1                         | Emerg.<br>Electric<br>Gen.                                                                     | NA                        | NA                                                         | As<br>Required                           | 500                  | NO <sub>x</sub><br>CO<br>Total VOC<br>PM/PPM <sub>10</sub> /PM2.5<br>SO <sub>2</sub><br>Benzene<br>Formaldehyde<br>Toluene<br>Xylenes<br>Total HAP<br>CO <sub>2e</sub> | 11.18<br>11.53<br>1.24<br>0.40<br>0.02<br>0.01<br>0.001<br>0.004<br>0.003<br>0.03<br>2,416 | 2.79<br>2.88<br>0.31<br>0.006<br>0.003<br><0.001<br>0.001<br><0.001<br>0.006<br>604 | 11.18<br>11.53<br>1.24<br>0.40<br>0.02<br>0.01<br>0.001<br>0.004<br>0.003<br>0.03<br>2,416 | 2.79<br>2.88<br>0.31<br>0.006<br>0.003<br><0.001<br>0.001<br><0.001<br>0.006<br>604 | Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas<br>Gas | O- NSPS<br>O- NSPS<br>O- NSPS<br>MB<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>AP-42<br>Sub. C | 298<br>308<br>33<br>11<br>0.5<br>0.3<br>0.03<br>0.1<br>0.08<br>0.8<br>64,488 |

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

<sup>2</sup> Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. **DO NOT LIST** H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>5</sup> Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

<sup>7</sup> Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m<sup>3</sup>) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO<sub>2</sub>, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

|                                                            |                   |               | Table 2: Rele                                                            | ease Parame       | ter Data                                         |                                                                                     |          |         |
|------------------------------------------------------------|-------------------|---------------|--------------------------------------------------------------------------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|----------|---------|
| Emission                                                   | Inner Exit Gas    |               | Emission Poir                                                            | nt Elevation (ft) | UTM Coordinates (km)                             |                                                                                     |          |         |
| Point ID<br>No.<br>(Must match<br>Emission<br>Units Table) | Diameter<br>(ft.) | Temp.<br>(°F) | Volumetric Flow <sup>1</sup><br>(acfm)<br><i>at operating conditions</i> | Velocity<br>(fps) | Ground Level<br>(Height above<br>mean sea level) | Stack Height <sup>2</sup><br>(Release height of<br>emissions above<br>ground level) | Northing | Easting |
| CCGT-1                                                     | 18.5              | 180.6         | 964,083                                                                  | 60                | 720                                              | 180.5                                                                               | 4,417.2  | 517.3   |
| CCGT-2                                                     | 18.5              | 180.6         | 964,083                                                                  | 60                | 720                                              | 180.5                                                                               | 4,417.2  | 517.3   |
| CT-1 <sup>(1)</sup>                                        | 30                | 66            | 1,800,000                                                                | 42                | 720                                              | 60                                                                                  | 4,417.2  | 517.3   |
| AB-1                                                       | 3.5               | 300           | 100,000                                                                  | 173               | 720                                              | 42                                                                                  | 4,417.2  | 517.3   |
| FP-1                                                       | 0.5               | 900           | 1,243                                                                    | 106               | 720                                              | 11                                                                                  | 4,417.2  | 517.3   |
| EG-1                                                       | 1.5               | 900           | 10,000                                                                   | 94                | 720                                              | 13                                                                                  | 4,417.2  | 517.3   |
| ST-1                                                       | NA                | Ambient       | NA                                                                       | NA                | 720                                              | NA                                                                                  | 4,417.2  | 517.3   |
| ST-2                                                       | NA                | Ambient       | NA                                                                       | NA                | 720                                              | NA                                                                                  | 4,417.2  | 517.3   |

(1) Cooling tower diameter, flow, and velocity are per individual cell.

# **Attachment K**

## Attachment K

## FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

|     | APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.) | Will there be haul road activities?                                                                                                                                                                     |
|     | □ Yes                                                                                                                                                                                                   |
|     | If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                                                          |
| 2.) | Will there be Storage Piles?                                                                                                                                                                            |
|     | □ Yes                                                                                                                                                                                                   |
|     | ☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.                                                                                                            |
| 3.) | Will there be Liquid Loading/Unloading Operations?                                                                                                                                                      |
|     | □ Yes                                                                                                                                                                                                   |
|     | If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                                                                         |
| 4.) | Will there be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                                                        |
|     | □ Yes                                                                                                                                                                                                   |
|     | If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                 |
| 5.) | Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)? |
|     | Yes No                                                                                                                                                                                                  |
|     | ☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.                                                                                              |
| 6.) | Will there be General Clean-up VOC Operations?                                                                                                                                                          |
|     | □ Yes                                                                                                                                                                                                   |
|     | If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                 |
| 7.) | Will there be any other activities that generate fugitive emissions?                                                                                                                                    |
|     | □ Yes                                                                                                                                                                                                   |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                                                                  |
|     | ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."                                                                            |

| FUGITIVE EMISSIONS SUMMARY                        | All Regulated Pollutants <sup>-</sup><br>Chemical Name/CAS <sup>1</sup>                                 | n Potential<br>d Emissions <sup>2</sup><br>ton/yr | Maximum<br>Controlled E<br>Ib/hr | Est. Method<br>Used <sup>4</sup> |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------------------|
| Haul Road/Road Dust Emissions<br>Paved Haul Roads | NA                                                                                                      | <br>                                              |                                  | <br>                             |
| Unpaved Haul Roads                                | No Haul of Bulk Raw<br>Materials or Products                                                            | <br>                                              |                                  | <br>                             |
| Storage Pile Emissions                            | NA                                                                                                      | <br>                                              |                                  | <br>                             |
| Loading/Unloading Operations                      | NA                                                                                                      | <br>                                              |                                  | <br>                             |
| Wastewater Treatment Evaporation & Operations     | NA                                                                                                      | <br>                                              |                                  | <br>                             |
| Equipment Leaks                                   | Most equipment leak<br>emissions will be natural gas<br>consisting most of non-<br>regulated chemicals. | <br>                                              |                                  | <br>                             |
| General Clean-up VOC Emissions                    | NA                                                                                                      | <br>                                              |                                  | <br>                             |

<sup>1</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. DO NOT LIST H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

<sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>4</sup> Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

# **Attachment L**

#### Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form):

#### Equipment Information: Combined Cycle Gas Turbine CCCT-1

| 1. Manufacturer: <b>GE or equivalent</b>                                                                                                                                                 | 2. Model No. <b>7FA.04</b><br>Serial No. <b>NA</b>                                                                                                                                                   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3. Number of units: 1                                                                                                                                                                    | 4. Use – Electric Generation                                                                                                                                                                         |  |  |  |  |  |
| 5. Rated Boiler Horsepower: NA hp                                                                                                                                                        | 6. Boiler Serial No.: <b>NA</b>                                                                                                                                                                      |  |  |  |  |  |
| 7. Date constructed: <b>2017</b>                                                                                                                                                         | <ol> <li>Date of last modification and explain:</li> <li>NA</li> </ol>                                                                                                                               |  |  |  |  |  |
| 9. Maximum design heat input per unit:                                                                                                                                                   | 10. Peak heat input per unit:                                                                                                                                                                        |  |  |  |  |  |
| <b>2,087</b> ×10 <sup>6</sup> BTU/hr                                                                                                                                                     | <b>2,087</b> ×10 <sup>6</sup> BTU/hr                                                                                                                                                                 |  |  |  |  |  |
| 11. Steam produced at maximum design output:<br>NA LB/hr<br>NA psig                                                                                                                      | 12. Projected Operating Schedule:<br>Hours/Day <b>24</b><br>Days/Week <b>7</b><br>Weeks/Year <b>52</b>                                                                                               |  |  |  |  |  |
| <ul> <li>13. Type of firing equipment to be used:</li> <li>Pulverized coal</li> <li>Spreader stoker</li> <li>Oil burners</li> <li>Natural Gas Burner</li> <li>Others, specify</li> </ul> | <ul> <li>14. Proposed type of burners and orientation:</li> <li>Vertical</li> <li>Front Wall</li> <li>Opposed</li> <li>Tangential</li> <li>Others, specify Dry Low NO<sub>x</sub> Burners</li> </ul> |  |  |  |  |  |
| 15. Type of draft: 🛛 Forced 🗌 Induced                                                                                                                                                    | 16. Percent of ash retained in furnace: <b>NA</b> %                                                                                                                                                  |  |  |  |  |  |
| 17. Will flyash be reinjected?   Yes  No                                                                                                                                                 | 18. Percent of carbon in flyash: NA %                                                                                                                                                                |  |  |  |  |  |
| Stack or                                                                                                                                                                                 | Vent Data                                                                                                                                                                                            |  |  |  |  |  |
| 19. Inside diameter or dimensions: <b>18.5</b> ft.                                                                                                                                       | 20. Gas exit temperature: <b>163-188</b> °F                                                                                                                                                          |  |  |  |  |  |
| 21. Height: 180.5 ft.                                                                                                                                                                    | 22. Stack serves:                                                                                                                                                                                    |  |  |  |  |  |
| 23. Gas flow rate: 673,600-1,116,483 ft <sup>3</sup> /min                                                                                                                                | Other equipment also (submit type and rating of all other equipment exhausted through this                                                                                                           |  |  |  |  |  |
| 24. Estimated percent of moisture: NA %                                                                                                                                                  | stack or vent)                                                                                                                                                                                       |  |  |  |  |  |

|     |                             |                                                         | Fuel Requi                                                |                                         |                                       |                   |
|-----|-----------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------|
| 25. | Туре                        | Fuel Oil No.                                            | Natural Gas or<br>Natural Gas<br>With up to 25%<br>Ethane | Gas (other,                             | Coal, Type:                           | Other:            |
|     | Quantity(atDesignOutput)    | NA<br>gph@60°F                                          | <b>2,026207</b><br>ft <sup>3</sup> /hr                    | <b>NA</b><br>ft <sup>3</sup> /hr        | NA<br>TPH                             |                   |
|     | Annually                    | ×10 <sup>3</sup> gal                                    | <b>17,750</b><br>×10 <sup>6</sup> ft <sup>3</sup> /yr     | ×10 <sup>6</sup> ft <sup>3</sup> /yr    | tons                                  |                   |
|     | Sulfur                      | Maximum:<br>wt. %<br>Average:<br>wt. %                  | <b>2.56</b><br>ppmw                                       | gr/100 ft <sup>3</sup>                  | Maximum:<br>wt. %                     |                   |
|     | Ash (%)                     |                                                         | NA                                                        |                                         | Maximum                               |                   |
|     | BTU Content                 | BTU/Gal.<br>Lbs/Gal.@60°F                               | <b>1,030</b><br>BTU/ft <sup>3</sup>                       | BTU/ft <sup>3</sup>                     | BTU/lb                                |                   |
|     | Source                      |                                                         | Evaluating<br>Suppliers                                   |                                         |                                       |                   |
|     | Supplier                    |                                                         | Evaluating<br>Suppliers                                   |                                         |                                       |                   |
|     | Halogens<br>(Yes/No)        |                                                         | No                                                        |                                         |                                       |                   |
|     | List and<br>Identify Metals |                                                         | NA                                                        |                                         |                                       |                   |
| 26. | Gas burner mode o           |                                                         | omatic hi-low                                             | 27. Gas burner mar                      | nufacturer: GE                        |                   |
|     | Manual X Automatic full m   |                                                         |                                                           | 28. Oil burner manu                     | ufacturer: NA                         |                   |
| 29. | lf fuel oil is used, h      | ow is it atomized?                                      |                                                           | sed Air 🔲 Rotary Cເ                     |                                       |                   |
| 30. | Fuel oil preheated:         | Yes [                                                   | No :                                                      | 31. If yes, indicate t                  | emperature:                           | °F                |
|     |                             | ated theoretical air<br>reet (ACF) per unir<br>NA °F, N | it of fuel:                                               | or combustion of th<br>, <b>NA</b> % ma | e fuel or mixture o<br>oisture        | f fuels described |
| 33. | Emission rate at ra         |                                                         | e Attachment J                                            | lb/hr                                   |                                       |                   |
| 34. | Percent excess air          | actually required for                                   | or combustion of                                          | the fuel described:                     | <b>NA</b> %                           |                   |
|     |                             |                                                         | Coal Chara                                                | cteristics                              |                                       |                   |
| 35. | Seams: NA                   |                                                         |                                                           |                                         |                                       |                   |
| 36. | Proximate analysis          |                                                         | Fixed Carbon:<br>Moisture:<br>Ash:                        |                                         | % of Sulfur:<br>% of Volatile Matter: |                   |

#### **Emissions Stream**

| Pollutant                                                              | Pounds per Hour<br>Ib/hr                                          | grain/ACF               | @ °F  | PSIA |
|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-------|------|
| СО                                                                     | 33.72                                                             | NA                      | NA    | NA   |
| Hydrocarbons                                                           | NA                                                                | NA                      | NA    | NA   |
| NO <sub>x</sub>                                                        | 113.4                                                             | NA                      | NA    | NA   |
| Pb                                                                     | 0.001                                                             | NA                      | NA    | NA   |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub>                                 | 7.56                                                              | NA                      | NA    | NA   |
| SO <sub>2</sub>                                                        | 0.55                                                              | NA                      | NA    | NA   |
| VOCs                                                                   | 5.28                                                              | NA                      | NA    | NA   |
| Total HAPs                                                             | 1.36                                                              | NA                      | NA    | NA   |
| CO <sub>2e</sub>                                                       | 254,315                                                           | NA                      | NA    | NA   |
| Sulfuric Acid Mist                                                     | 0.35                                                              | NA                      | NA    | NA   |
| Emissions represent                                                    | hourly steady state emiss                                         | ion rates only.         |       |      |
| 3. What quantities of poll                                             | utants will be emitted from the                                   | he boiler after control | ls?   |      |
| Pollutant                                                              | Pounds per Hour<br>Ib/hr                                          | grain/ACF               | @ °F  | PSIA |
| СО                                                                     | 9.24                                                              | NA                      | NA    | NA   |
| Hydrocarbons                                                           | NA                                                                | NA                      | NA    | NA   |
| NO <sub>x</sub>                                                        | 15.20                                                             | NA                      | NA    | NA   |
| Pb                                                                     | 0.001                                                             | NA                      | NA    | NA   |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub>                                 | 7.56                                                              | NA                      | NA    | NA   |
| SO <sub>2</sub>                                                        | 0.55                                                              | NA                      | NA    | NA   |
| VOCs                                                                   | 5.28                                                              | NA                      | NA    | NA   |
| Total HAPs                                                             | 1.36                                                              | NA                      | NA    | NA   |
|                                                                        | 254,315                                                           | NA                      | NA    | NA   |
| CO <sub>2e</sub>                                                       |                                                                   |                         | NA    | NA   |
| CO <sub>2e</sub><br>Sulfuric Acid Mist                                 | 0.35                                                              | NA                      | INA I |      |
| Sulfuric Acid Mist                                                     |                                                                   |                         |       |      |
| Sulfuric Acid Mist<br>Emissions represent                              | 0.35<br>hourly steady state emiss<br>al from the process and cont | ion rates only.         |       |      |
| Sulfuric Acid Mist<br>Emissions represent<br>9. How will waste materia | hourly steady state emiss                                         | ion rates only.         |       |      |

| 42. | <b>Proposed Monitoring, Recordkeeping, Reporting, and Testing</b><br>Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>MONITORING PLAN:</b> Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. <b>See Attachment O</b> |
|     |                                                                                                                                                                                                                                                                                                        |
|     | <b>TESTING PLAN:</b> Please describe any proposed emissions testing for this process equipment or air pollution control device. <b>See Attachment O</b>                                                                                                                                                |
|     |                                                                                                                                                                                                                                                                                                        |
|     | <b>RECORDKEEPING:</b> Please describe the proposed recordkeeping that will accompany the monitoring. <b>See Attachment O</b>                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                        |
|     | <b>REPORTING:</b> Please describe the proposed frequency of reporting of the recordkeeping.<br><b>See Attachment O</b>                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                        |
| 43. | Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.<br>NA                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                        |

#### Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form):

## Equipment Information: Combined Cycle Gas Turbine CCCT-2

| 1.  | Manufacturer: GE or equivalent                                                                                                     |       | Model No. <b>7FA.04</b><br>Serial No. <b>NA</b>                                                                                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.  | Number of units: 1                                                                                                                 | 4.    | Use – Electric Generation                                                                                                                             |
| 5.  | Rated Boiler Horsepower: NA hp                                                                                                     | 6.    | Boiler Serial No.: <b>NA</b>                                                                                                                          |
| 7.  | Date constructed: 2017                                                                                                             |       | Date of last modification and explain:<br>NA                                                                                                          |
| 9.  | Maximum design heat input per unit:                                                                                                | 10.   | Peak heat input per unit:                                                                                                                             |
|     | <b>2,087</b> ×10 <sup>6</sup> BTU/hr                                                                                               |       | <b>2,087</b> ×10 <sup>6</sup> BTU/hr                                                                                                                  |
|     | Steam produced at maximum design output:<br>NA LB/hr<br>NA psig                                                                    |       | Projected Operating Schedule:<br>Hours/Day <b>24</b><br>Days/Week <b>7</b><br>Weeks/Year <b>52</b>                                                    |
| 13. | Type of firing equipment to be used:<br>Pulverized coal<br>Spreader stoker<br>Oil burners<br>Natural Gas Burner<br>Others, specify | 14.   | Proposed type of burners and orientation:<br>Vertical<br>Front Wall<br>Opposed<br>Tangential<br>Others, specify <b>Dry Low NO<sub>x</sub> Burners</b> |
| 15. | Type of draft: 🛛 Forced 🗌 Induced                                                                                                  | 16.   | Percent of ash retained in furnace: NA %                                                                                                              |
| 17. | Will flyash be reinjected?   Yes  No                                                                                               | 18.   | Percent of carbon in flyash: NA %                                                                                                                     |
|     | Stack or                                                                                                                           | Vent  | Data                                                                                                                                                  |
| 19. | Inside diameter or dimensions: <b>18.5</b> ft.                                                                                     | 20. ( | Gas exit temperature: 163-188 °F                                                                                                                      |
| 21. | Height: 180.5 ft.                                                                                                                  | 22.   | Stack serves:                                                                                                                                         |
| 23. | Gas flow rate: <b>673,600-1,116,483</b> ft <sup>3</sup> /min                                                                       |       | <ul> <li>Other equipment also (submit type and rating of<br/>all other equipment exhausted through this</li> </ul>                                    |
| 24. | Estimated percent of moisture: NA %                                                                                                |       | stack or vent)                                                                                                                                        |

|     |                                                                                                                                                     |                                                        | Fuel Requ                                                 | irements                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| 25. | Туре                                                                                                                                                | Fuel Oil No.                                           | Natural Gas or<br>Natural Gas<br>With up to 25%<br>Ethane | Gas (oth                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coal, Type:        | Other:            |
|     | Quantity(atDesignOutput)                                                                                                                            | <b>NA</b><br>gph@60°F                                  | <b>2,026207</b><br>ft <sup>3</sup> /hr                    | <b>NA</b><br>ft <sup>3</sup> /hr      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA<br>TPH          |                   |
|     | Annually                                                                                                                                            | ×10 <sup>3</sup> gal                                   | <b>17,750</b><br>×10 <sup>6</sup> ft <sup>3</sup> /yr     | ×10 <sup>6</sup> ft <sup>3</sup> /    | ⁄yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tons               |                   |
|     | Sulfur                                                                                                                                              | Maximum:<br>wt. %<br>Average:<br>wt. %                 | <b>2.56</b><br>ppmw                                       | gr/100 f                              | ʻit <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum:<br>wt. %  |                   |
|     | Ash (%)                                                                                                                                             |                                                        | NA                                                        |                                       | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | laximum            |                   |
|     | BTU Content                                                                                                                                         | BTU/Gal.<br>Lbs/Gal.@60°F                              | <b>1,030</b><br>BTU/ft <sup>3</sup>                       | BTU/ft <sup>2</sup>                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTU/lb             |                   |
|     | Source                                                                                                                                              |                                                        | Evaluating<br>Suppliers                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
|     | Supplier                                                                                                                                            |                                                        | Evaluating<br>Suppliers                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
|     | Halogens<br>(Yes/No)                                                                                                                                |                                                        | No                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
|     | List and<br>Identify Metals                                                                                                                         |                                                        | NA                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
| 26. | Gas burner mode o                                                                                                                                   |                                                        |                                                           | 27. Gas burne                         | er manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acturer: <b>GE</b> |                   |
|     | ☐ Manual<br>X Automatic full m                                                                                                                      |                                                        | omatic hi-low                                             | 28. Oil burner                        | · manufac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | turer: NA          |                   |
| 29. | If fuel oil is used, h                                                                                                                              | ow is it atomized?                                     |                                                           | ure 🔄 Stea<br>sed Air 🗌 Rota<br>ecify |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ure                |                   |
|     | Fuel oil preheated:                                                                                                                                 |                                                        |                                                           | 31. If yes, indi                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | °F                |
|     |                                                                                                                                                     | ated theoretical air<br>feet (ACF) per uni<br>NA °F, N |                                                           |                                       | of the for which w |                    | f fuels described |
|     | Emission rate at ra                                                                                                                                 |                                                        | e Attachment J                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
| 34. | Percent excess air                                                                                                                                  | r actually required for                                | or combustion of                                          | the fuel descri                       | ibed: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A %                |                   |
|     |                                                                                                                                                     |                                                        | Coal Chara                                                | acteristics                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
| 35. | Seams: NA                                                                                                                                           |                                                        |                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |
| 36. | 6. Proximate analysis (dry basis):       % of Fixed Carbon:       % of Sulfur:         % of Moisture:       % of Volatile Matter:         % of Ash: |                                                        |                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |

## **Emissions Stream**

| Pollutant                                                                                                        | Pounds per Hour<br>Ib/hr                                                                                       | grain/ACF                                    | @ °F                                   | PSIA                             |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------|
| 0                                                                                                                | 33.72                                                                                                          | NA                                           | NA                                     | NA                               |
| Hydrocarbons                                                                                                     | NA                                                                                                             | NA                                           | NA                                     | NA                               |
| NO <sub>x</sub>                                                                                                  | 113.4                                                                                                          | NA                                           | NA                                     | NA                               |
| Pb                                                                                                               | 0.001                                                                                                          | NA<br>NA                                     | NA                                     | NA                               |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub>                                                                           | 7.56                                                                                                           |                                              | NA                                     | NA                               |
| SO <sub>2</sub>                                                                                                  | 0.55                                                                                                           | NA                                           | NA                                     | NA                               |
| VOCs                                                                                                             | 5.28                                                                                                           | NA                                           | NA                                     | NA                               |
| Total HAPs                                                                                                       | 1.356                                                                                                          | NA                                           | NA                                     | NA                               |
| CO <sub>2e</sub>                                                                                                 | 254,315                                                                                                        | NA                                           | NA                                     | NA                               |
| Sulfuric Acid Mist                                                                                               | 0.35                                                                                                           | NA                                           | NA                                     | NA                               |
| Emissions represent                                                                                              | hourly steady state emiss                                                                                      | sion rates only.                             |                                        |                                  |
| What quantities of poll                                                                                          | utants will be emitted from t                                                                                  | he boiler after control                      | ls?                                    |                                  |
|                                                                                                                  |                                                                                                                | 1                                            |                                        |                                  |
| Pollutant                                                                                                        | Pounds per Hour<br>Ib/hr                                                                                       | grain/ACF                                    | @ °F                                   | PSIA                             |
| <b>Pollutant</b>                                                                                                 |                                                                                                                | grain/ACF<br>NA                              | @ °F<br>NA                             | PSIA<br>NA                       |
|                                                                                                                  | lb/hr                                                                                                          | -                                            | _                                      |                                  |
| СО                                                                                                               | 9.24                                                                                                           | NA                                           | NA                                     | NA                               |
| CO<br>Hydrocarbons                                                                                               | lb/hr<br>9.24<br>NA                                                                                            | NA<br>NA                                     | NA                                     | NA<br>NA                         |
| CO<br>Hydrocarbons<br>NO <sub>x</sub>                                                                            | Ib/hr           9.24           NA           15.20                                                              | NA<br>NA<br>NA                               | NA<br>NA<br>NA                         | NA<br>NA<br>NA                   |
| CO<br>Hydrocarbons<br>NO <sub>x</sub><br>Pb                                                                      | Ib/hr           9.24           NA           15.20           0.001                                              | NA<br>NA<br>NA<br>NA                         | NA<br>NA<br>NA<br>NA                   | NA<br>NA<br>NA<br>NA             |
| CO<br>Hydrocarbons<br>NO <sub>x</sub><br>Pb<br>PM/PM <sub>10</sub> /PM <sub>2.5</sub>                            | Ib/hr           9.24           NA           15.20           0.001           7.56                               | NA<br>NA<br>NA<br>NA<br>NA                   | NA<br>NA<br>NA<br>NA<br>NA             | NA<br>NA<br>NA<br>NA<br>NA       |
| CO<br>Hydrocarbons<br>NO <sub>x</sub><br>Pb<br>PM/PM <sub>10</sub> /PM <sub>2.5</sub><br>SO <sub>2</sub>         | Ib/hr           9.24           NA           15.20           0.001           7.56           0.55                | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA       | NA<br>NA<br>NA<br>NA<br>NA<br>NA       | NA<br>NA<br>NA<br>NA<br>NA       |
| CO<br>Hydrocarbons<br>NO <sub>x</sub><br>Pb<br>PM/PM <sub>10</sub> /PM <sub>2.5</sub><br>SO <sub>2</sub><br>VOCs | Ib/hr           9.24           NA           15.20           0.001           7.56           0.55           5.28 | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | NA<br>NA<br>NA<br>NA<br>NA<br>NA |

|     | <b>Proposed Monitoring, Recordkeeping, Reporting, and Testing</b><br>Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>MONITORING PLAN:</b> Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. <b>See Attachment O</b> |
|     | <b>TESTING PLAN:</b> Please describe any proposed emissions testing for this process equipment or air pollution                                                                                                                                                                                        |
|     | control device.<br>See Attachment O                                                                                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                                        |
|     | <b>RECORDKEEPING:</b> Please describe the proposed recordkeeping that will accompany the monitoring. <b>See Attachment O</b>                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                        |
|     | <b>REPORTING:</b> Please describe the proposed frequency of reporting of the recordkeeping.<br><b>See Attachment O</b>                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                        |
| 43. | Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.                                                                                                                                                                                                |
|     |                                                                                                                                                                                                                                                                                                        |

#### Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form):

## Equipment Information: Auxiliary Boiler AB-1

|                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Manufacturer: <b>TBD</b>                                                                                                                                                                                                                                          | 2. Model No. NA                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                      | Serial No. NA                                                                                                                                                                                                                    |
| 3. Number of units: 1                                                                                                                                                                                                                                                | 4. Use – Steam Production                                                                                                                                                                                                        |
| 5. Rated Boiler Horsepower: NA hp                                                                                                                                                                                                                                    | 6. Boiler Serial No.: NA                                                                                                                                                                                                         |
| 7. Date constructed: <b>2017</b>                                                                                                                                                                                                                                     | <ol> <li>Date of last modification and explain:</li> <li>NA</li> </ol>                                                                                                                                                           |
| 9. Maximum design heat input per unit:                                                                                                                                                                                                                               | 10. Peak heat input per unit:                                                                                                                                                                                                    |
| <b>100</b> ×10 <sup>6</sup> BTU/hr                                                                                                                                                                                                                                   | <b>100</b> ×10 <sup>6</sup> BTU/hr                                                                                                                                                                                               |
| <ul> <li>11. Steam produced at maximum design output:</li> <li>NA LB/hr</li> <li>NA psig</li> <li>13. Type of firing equipment to be used: <ul> <li>Pulverized coal</li> <li>Spreader stoker</li> <li>Oil burners</li> <li>Natural Gas Burner</li> </ul> </li> </ul> | <ul> <li>12. Projected Operating Schedule:<br/>Hours/Day 24<br/>Days/Week 7<br/>Weeks/Year 52</li> <li>14. Proposed type of burners and orientation:<br/>Vertical<br/>Front Wall</li> <li>Opposed</li> <li>Tangential</li> </ul> |
| Others, specify                                                                                                                                                                                                                                                      | Others, specify                                                                                                                                                                                                                  |
| 15. Type of draft: 🛛 Forced 🗌 Induced                                                                                                                                                                                                                                | 16. Percent of ash retained in furnace: <b>NA</b> %                                                                                                                                                                              |
| 17. Will flyash be reinjected? 🗌 Yes 🛛 No                                                                                                                                                                                                                            | 18. Percent of carbon in flyash: NA %                                                                                                                                                                                            |
| Stack or                                                                                                                                                                                                                                                             | Vent Data                                                                                                                                                                                                                        |
| 19. Inside diameter or dimensions: <b>3.5</b> ft.                                                                                                                                                                                                                    | 20. Gas exit temperature: <b>300</b> °F                                                                                                                                                                                          |
| 21. Height: <b>42</b> ft.                                                                                                                                                                                                                                            | 22. Stack serves:                                                                                                                                                                                                                |
| 23. Gas flow rate: <b>100,000</b> ft <sup>3</sup> /min                                                                                                                                                                                                               | Other equipment also (submit type and rating of all other equipment exhausted through this                                                                                                                                       |
| 24. Estimated percent of moisture: NA %                                                                                                                                                                                                                              | stack or vent)                                                                                                                                                                                                                   |

|     |                                   |                                                          | Fuel Requi                                                |                                        |                                       |                   |
|-----|-----------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------------------------------|-------------------|
| 25. | Туре                              | Fuel Oil No.                                             | Natural Gas or<br>Natural Gas<br>With up to 25%<br>Ethane | Gas (other,                            | Coal, Type:                           | Other:            |
|     | Quantity<br>(at Design<br>Output) | NA<br>gph@60°F                                           | <b>97,087</b><br>ft <sup>3</sup> /hr                      | <b>NA</b><br>ft <sup>3</sup> /hr       | NA<br>TPH                             |                   |
|     | Annually                          | ×10 <sup>3</sup> gal                                     | <b>194.2</b><br>×10 <sup>6</sup> ft <sup>3</sup> /yr      | ×10 <sup>6</sup> ft <sup>3</sup> /yr   | tons                                  |                   |
|     | Sulfur                            | Maximum:<br>wt. %<br>Average:<br>wt. %                   | <b>2.0</b><br>gr/100 ft <sup>3</sup>                      | gr/100 ft <sup>3</sup>                 | Maximum:<br>wt. %                     |                   |
|     | Ash (%)                           |                                                          | NA                                                        |                                        | Maximum                               |                   |
|     | BTU Content                       | BTU/Gal.<br>Lbs/Gal.@60°F                                | <b>1,030</b><br>BTU/ft <sup>3</sup>                       | BTU/ft <sup>3</sup>                    | BTU/lb                                |                   |
|     | Source                            |                                                          | Evaluating<br>Suppliers                                   |                                        |                                       |                   |
|     | Supplier                          |                                                          | Evaluating<br>Suppliers                                   |                                        |                                       |                   |
|     | Halogens<br>(Yes/No)              |                                                          | No                                                        |                                        |                                       |                   |
|     | List and<br>Identify Metals       |                                                          | NA                                                        |                                        |                                       |                   |
| 26. | Gas burner mode o                 |                                                          | omatic hi-low                                             | 27. Gas burner mar                     | nufacturer: <b>TBD</b>                |                   |
|     | Manual X Automatic full m         |                                                          |                                                           | 28. Oil burner manu                    | ufacturer: NA                         |                   |
| 29. | If fuel oil is used, h            | ow is it atomized?                                       |                                                           | sed Air 🔲 Rotary Cເ                    |                                       |                   |
| 30. | Fuel oil preheated:               | Yes [                                                    | No :                                                      | 31. If yes, indicate t                 | emperature:                           | °F                |
|     |                                   | ated theoretical air<br>cfeet (ACF) per unir<br>NA °F, N | it of fuel:                                               | or combustion of th<br>, <b>NA</b> % m | e fuel or mixture o<br>oisture        | f fuels described |
| 33. | Emission rate at ra               |                                                          | e Attachment J                                            | lb/hr                                  |                                       |                   |
| 34. | Percent excess air                | actually required for                                    | or combustion of                                          | the fuel described:                    | <b>NA</b> %                           |                   |
|     |                                   |                                                          | Coal Chara                                                | cteristics                             |                                       |                   |
| 35. | Seams: NA                         |                                                          |                                                           |                                        |                                       |                   |
| 36. | Proximate analysis                |                                                          | Fixed Carbon:<br>Moisture:<br>Ash:                        |                                        | % of Sulfur:<br>% of Volatile Matter: |                   |

#### **Emissions Stream**

| 37. What quantities of pollutants will be emitted from the boiler before controls? |                                                                                      |                                                                                                                                         |                                                                           |  |  |  |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Pounds per Hour<br>Ib/hr                                                           | grain/ACF                                                                            | @ °F                                                                                                                                    | PSIA                                                                      |  |  |  |  |  |
| 4.00                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| NA                                                                                 | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 2.00                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| <0.001                                                                             | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 0.50                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 0.06                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 0.60                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 0.18                                                                               | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 11,701                                                                             | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
| 0.005                                                                              | NA                                                                                   | NA                                                                                                                                      | NA                                                                        |  |  |  |  |  |
|                                                                                    |                                                                                      |                                                                                                                                         |                                                                           |  |  |  |  |  |
|                                                                                    | Pounds per Hour<br>Ib/hr           4.00           NA           2.00           <0.001 | Pounds per Hour<br>lb/hr         grain/ACF           4.00         NA           NA         NA           2.00         NA           <0.001 | Pounds per Hour<br>lb/hrgrain/ACF@ °F4.00NANAA.00NANANANANA2.00NANA<0.001 |  |  |  |  |  |

38. What quantities of pollutants will be emitted from the boiler after controls?

| Pollutant                              | Pounds per Hour<br>Ib/hr | grain/ACF | @ °F | PSIA |
|----------------------------------------|--------------------------|-----------|------|------|
| СО                                     | 4.00                     | NA        | NA   | NA   |
| Hydrocarbons                           | NA                       | NA        | NA   | NA   |
| NO <sub>x</sub>                        | 2.00                     | NA        | NA   | NA   |
| Pb                                     | <0.001                   | NA        | NA   | NA   |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.50                     | NA        | NA   | NA   |
| SO <sub>2</sub>                        | 0.06                     | NA        | NA   | NA   |
| VOCs                                   | 0.60                     | NA        | NA   | NA   |
| Total HAPs                             | 0.18                     | NA        | NA   | NA   |
| CO <sub>2e</sub>                       | 11,701                   | NA        | NA   | NA   |
| Sulfuric Acid Mist                     | 0.005                    | NA        | NA   | NA   |
|                                        |                          |           |      |      |

39. How will waste material from the process and control equipment be disposed of? NA

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet?

| 42. | <b>Proposed Monitoring, Recordkeeping, Reporting, and Testing</b><br>Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>MONITORING PLAN:</b> Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. <b>See Attachment O</b> |
|     | <b>TESTING PLAN:</b> Please describe any proposed emissions testing for this process equipment or air pollution                                                                                                                                                                                        |
|     | control device.<br>See Attachment O                                                                                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                                        |
|     | RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.<br>See Attachment O                                                                                                                                                                                      |
|     | <b>REPORTING:</b> Please describe the proposed frequency of reporting of the recordkeeping.<br><b>See Attachment O</b>                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                        |
| 43. | Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.                                                                                                                                                                                                |

# Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Cooling Tower CT-1

| 1. | Name or type and model of proposed affected source:                                                                                                                                                                                                                              |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | Cooling Tower                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 2. | On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. |  |  |  |  |  |  |
| 3. | Name(s) and maximum amount of proposed process material(s) charged per hour:                                                                                                                                                                                                     |  |  |  |  |  |  |
|    | Cooling Water:                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|    | Circulating Water – 159,000 gpm<br>Make-up Water – 185,500 gph                                                                                                                                                                                                                   |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 4. | Name(s) and maximum amount of proposed material(s) produced per hour:                                                                                                                                                                                                            |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|    | Cooling Water:<br>Circulating Water – 159,000 gpm<br>Make-up Water – 185,500 gph                                                                                                                                                                                                 |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 5. | Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:                                                                                                                                                                               |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|    | ΝΑ                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

\* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

| 6. | Combustion Data (if applicable): NA                                                       |               |              |                   |                    |                |                    |  |  |  |
|----|-------------------------------------------------------------------------------------------|---------------|--------------|-------------------|--------------------|----------------|--------------------|--|--|--|
|    | (a) Type and amount in appropriate units of fuel(s) to be burned:                         |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    | (b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulf |               |              |                   |                    |                |                    |  |  |  |
|    | and ash:                                                                                  |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
| ┢  | (c)                                                                                       | Theoretical   | combustior   | air requirement   | (ACF/unit of fue   | el):           |                    |  |  |  |
|    |                                                                                           |               | @            |                   | °F and             |                | psia.              |  |  |  |
|    |                                                                                           |               | -            |                   |                    |                | F                  |  |  |  |
|    | (d)                                                                                       | Percent exc   | ess air:     |                   |                    |                |                    |  |  |  |
|    | (e)                                                                                       | Type and B    | TU/hr of bu  | rners and all oth | er firing equipm   | ent planned to | be used:           |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    | (f)                                                                                       |               |              | source of fuel, i | dentify supplier a | and seams and  | give sizing of the |  |  |  |
|    |                                                                                           | coal as it wi | ll be fired: |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    |                                                                                           |               |              |                   |                    |                |                    |  |  |  |
|    | (g) Proposed maximum design heat input: $\times 10^6$ BTU/hr.                             |               |              |                   |                    |                |                    |  |  |  |
| 7. | Pro                                                                                       | jected opera  | ating sched  | ule:              |                    |                |                    |  |  |  |
| Но | ours/                                                                                     | Day           | 24           | Days/Week         | 7                  | Weeks/Year     | 52                 |  |  |  |

| 8. | . Projected amount of pollutants that would be emitted from this affected source if no control devices were used: |        |        |    |            |
|----|-------------------------------------------------------------------------------------------------------------------|--------|--------|----|------------|
| @  | NA                                                                                                                | °F and | °F and |    | psia       |
| a. | NO <sub>X</sub>                                                                                                   | NA     | lb/hr  | NA | grains/ACF |
| b. | SO <sub>2</sub>                                                                                                   | NA     | lb/hr  | NA | grains/ACF |
| c. | со                                                                                                                | NA     | lb/hr  | NA | grains/ACF |
| d. | PM <sub>10</sub>                                                                                                  | 0.48   | lb/hr  | NA | grains/ACF |
| e. | Hydrocarbons                                                                                                      | NA     | lb/hr  | NA | grains/ACF |
| f. | VOCs                                                                                                              | NA     | lb/hr  | NA | grains/ACF |
| g. | Pb                                                                                                                | NA     | lb/hr  | NA | grains/ACF |
| h. | Specify other(s)                                                                                                  |        |        |    |            |
|    | РМ                                                                                                                | 0.72   | lb/hr  | NA | grains/ACF |
|    | PM <sub>2.5</sub>                                                                                                 | 0.002  | lb/hr  | NA | grains/ACF |
|    |                                                                                                                   |        | lb/hr  | NA | grains/ACF |
|    |                                                                                                                   |        | lb/hr  | NA | grains/ACF |

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
  - (2) Complete the Emission Points Data Sheet.

|                                                                                | and reporting in order to demonstrate compliance<br>Please propose testing in order to demonstrate               |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                |                                                                                                                  |
|                                                                                |                                                                                                                  |
| REPORTING<br>See Attachment O                                                  | TESTING<br>See Attachment O                                                                                      |
|                                                                                |                                                                                                                  |
|                                                                                |                                                                                                                  |
|                                                                                |                                                                                                                  |
|                                                                                | I<br>E PROCESS PARAMETERS AND RANGES THAT ARE<br>STRATE COMPLIANCE WITH THE OPERATION OF THIS<br>CONTROL DEVICE. |
| <b>RECORDKEEPING.</b> PLEASE DESCRIBE THE PROF<br>MONITORING.                  | POSED RECORDKEEPING THAT WILL ACCOMPANY THE                                                                      |
| <b>REPORTING.</b> PLEASE DESCRIBE THE PRORECORDKEEPING.                        | DPOSED FREQUENCY OF REPORTING OF THE                                                                             |
| <b>TESTING.</b> PLEASE DESCRIBE ANY PROPOSED EMI-<br>POLLUTION CONTROL DEVICE. | SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR                                                                    |
| 10. Describe all operating ranges and mainter maintain warranty                | nance procedures required by Manufacturer to                                                                     |
| NA                                                                             |                                                                                                                  |
|                                                                                |                                                                                                                  |
|                                                                                |                                                                                                                  |
|                                                                                |                                                                                                                  |

# Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Emergency Electric Generator EG-1

| 1. | Name or type and model of proposed affected source:                                                                                                                                                                                                                              |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | Emergency Electric Generator – 1,500 kW (~2,000 hp)                                                                                                                                                                                                                              |  |  |  |
| 2. | On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. |  |  |  |
| 3. | Name(s) and maximum amount of proposed process material(s) charged per hour:                                                                                                                                                                                                     |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
|    | ΝΑ                                                                                                                                                                                                                                                                               |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
| 4. | Name(s) and maximum amount of proposed material(s) produced per hour:                                                                                                                                                                                                            |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
|    | ΝΑ                                                                                                                                                                                                                                                                               |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
| 5. | Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:                                                                                                                                                                               |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
|    | ΝΑ                                                                                                                                                                                                                                                                               |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |
|    |                                                                                                                                                                                                                                                                                  |  |  |  |

\* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

| 6. | Combustion                                                        | Combustion Data (if applicable):                                                            |                   |                     |                 |                         |
|----|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------------|-----------------|-------------------------|
|    | (a) Type and amount in appropriate units of fuel(s) to be burned: |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | Ultra Low Sเ                                                      | Ultra Low Sulfur Diesel Fuel – As Required                                                  |                   |                     |                 |                         |
|    |                                                                   | (b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur |                   |                     |                 |                         |
|    | (b) Chemica<br>and ash:                                           |                                                                                             | posea tuei(s), ex | xcluding coal, incl | luding maximum  | i percent suitur        |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   | ·· · · · · ·                                                                                |                   |                     |                 |                         |
|    | 0.0015 % sui                                                      | lfur by weight                                                                              |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
| Γ  | (c) Theoreti                                                      | cal combustion a                                                                            | air requirement   | (ACF/unit of fuel)  | :               |                         |
|    | NA                                                                | @                                                                                           | NA                | °F and              | NA              | psia.                   |
|    |                                                                   | _                                                                                           |                   |                     |                 | 1                       |
|    | (d) Percent                                                       | excess air: NA                                                                              | 4                 |                     |                 |                         |
| ┢─ | (e) Type and                                                      | d BTU/hr of burn                                                                            | ers and all othe  | er firing equipmen  | t planned to be | used:                   |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | NA                                                                |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             | ource of fuel, id | lentify supplier an | d seams and giv | ve sizing of the        |
|    | coal as i                                                         | it will be fired:                                                                           |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | NA                                                                |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
| -  |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | (g) Propose                                                       | ed maximum desi                                                                             | ign heat input:   | NA                  | ×               | 10 <sup>6</sup> BTU/hr. |
| 7. | Projected or                                                      | perating schedule                                                                           | e:                |                     |                 |                         |
| Ho | ours/Day                                                          | <b>24</b> D                                                                                 | Days/Week         | 7 V                 | Veeks/Year      | 52                      |

| 8. | B. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: |        |       |         |            |
|----|--------------------------------------------------------------------------------------------------------------------|--------|-------|---------|------------|
| @  | NA                                                                                                                 | °F and |       | Ambient | psia       |
| a. | NO <sub>X</sub>                                                                                                    | 11.18  | lb/hr | NA      | grains/ACF |
| b. | SO <sub>2</sub>                                                                                                    | 0.02   | lb/hr | ΝΑ      | grains/ACF |
| c. | со                                                                                                                 | 11.53  | lb/hr | NA      | grains/ACF |
| d. | PM/PM <sub>10</sub> /PM <sub>2.5</sub>                                                                             | 0.40   | lb/hr | NA      | grains/ACF |
| e. | Hydrocarbons                                                                                                       | NA     | lb/hr | ΝΑ      | grains/ACF |
| f. | VOCs                                                                                                               | 1.24   | lb/hr | ΝΑ      | grains/ACF |
| g. | Pb                                                                                                                 | NA     | lb/hr | NA      | grains/ACF |
| h. | Specify other(s)                                                                                                   |        |       |         |            |
|    | CO <sub>2e</sub>                                                                                                   | 2,416  | lb/hr | NA      | grains/ACF |
|    | Total HAPs                                                                                                         | 0.03   | lb/hr | NA      | grains/ACF |
|    |                                                                                                                    |        | lb/hr | ΝΑ      | grains/ACF |
|    |                                                                                                                    |        | lb/hr | ΝΑ      | grains/ACF |

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
  - (2) Complete the Emission Points Data Sheet.

| 9. Proposed Monitoring, Recordkeeping, Repo                                             |                                                  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                         | and reporting in order to demonstrate compliance |
|                                                                                         | Please propose testing in order to demonstrate   |
| compliance with the proposed emissions lin                                              | nits.                                            |
| MONITORING                                                                              | RECORDKEEPING                                    |
| See Attachment O                                                                        | See Attachment O                                 |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
| 2220220                                                                                 | 7507040                                          |
| REPORTING                                                                               | TESTING                                          |
| See Attachment O                                                                        | See Attachment O                                 |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         | I E PROCESS PARAMETERS AND RANGES THAT ARE       |
|                                                                                         | ISTRATE COMPLIANCE WITH THE OPERATION OF THIS    |
| PROFOSED TO BE MONITORED IN ORDER TO DEMON<br>PROCESS EQUIPMENT OPERATION/AIR POLLUTION |                                                  |
|                                                                                         |                                                  |
|                                                                                         | POSED RECORDKEEPING THAT WILL ACCOMPANY THE      |
| MONITORING.                                                                             |                                                  |
| REPORTING. PLEASE DESCRIBE THE PRO                                                      | DPOSED FREQUENCY OF REPORTING OF THE             |
| RECORDKEEPING.                                                                          |                                                  |
|                                                                                         |                                                  |
| POLLUTION CONTROL DEVICE.                                                               | SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR    |
|                                                                                         | nance procedures required by Manufacturer to     |
|                                                                                         | nance procedures required by Manufacturer to     |
| maintain warranty                                                                       |                                                  |
| NA                                                                                      |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |

# Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): Firewater Pump FP-1

| 1. | Name or type and model of proposed affected source:                                                                                                                                                                                                                              |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Firewater Pump – 251 hp                                                                                                                                                                                                                                                          |  |  |  |  |
| 2. | On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. |  |  |  |  |
| 3. | Name(s) and maximum amount of proposed process material(s) charged per hour:                                                                                                                                                                                                     |  |  |  |  |
|    | Firewater – As Required                                                                                                                                                                                                                                                          |  |  |  |  |
| 4. | Name(s) and maximum amount of proposed material(s) produced per hour:                                                                                                                                                                                                            |  |  |  |  |
|    | Firewater – As Required                                                                                                                                                                                                                                                          |  |  |  |  |
| 5. | Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:                                                                                                                                                                               |  |  |  |  |
|    | NA                                                                                                                                                                                                                                                                               |  |  |  |  |

\* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

| 6. | Combustion                                                        | Combustion Data (if applicable):                                                            |                   |                     |                 |                         |
|----|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------------|-----------------|-------------------------|
|    | (a) Type and amount in appropriate units of fuel(s) to be burned: |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | Ultra Low Sเ                                                      | Ultra Low Sulfur Diesel Fuel – As Required                                                  |                   |                     |                 |                         |
|    |                                                                   | (b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur |                   |                     |                 |                         |
|    | (b) Chemica<br>and ash:                                           |                                                                                             | posea tuei(s), ex | xcluding coal, incl | luding maximum  | i percent suitur        |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   | ·· · · · · ·                                                                                |                   |                     |                 |                         |
|    | 0.0015 % sui                                                      | lfur by weight                                                                              |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
| Γ  | (c) Theoreti                                                      | cal combustion a                                                                            | air requirement   | (ACF/unit of fuel)  | :               |                         |
|    | NA                                                                | @                                                                                           | NA                | °F and              | NA              | psia.                   |
|    |                                                                   | _                                                                                           |                   |                     |                 | 1                       |
|    | (d) Percent                                                       | excess air: NA                                                                              | 4                 |                     |                 |                         |
| ┢─ | (e) Type and                                                      | d BTU/hr of burn                                                                            | ers and all othe  | er firing equipmen  | t planned to be | used:                   |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | NA                                                                |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             | ource of fuel, id | lentify supplier an | d seams and giv | ve sizing of the        |
|    | coal as i                                                         | it will be fired:                                                                           |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | NA                                                                |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
|    |                                                                   |                                                                                             |                   |                     |                 |                         |
| -  |                                                                   |                                                                                             |                   |                     |                 |                         |
|    | (g) Propose                                                       | ed maximum desi                                                                             | ign heat input:   | NA                  | ×               | 10 <sup>6</sup> BTU/hr. |
| 7. | Projected or                                                      | perating schedule                                                                           | e:                |                     |                 |                         |
| Ho | ours/Day                                                          | <b>24</b> D                                                                                 | Days/Week         | 7 V                 | Veeks/Year      | 52                      |

| 8. | B. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: |        |       |         |            |
|----|--------------------------------------------------------------------------------------------------------------------|--------|-------|---------|------------|
| @  | NA                                                                                                                 | °F and |       | Ambient | psia       |
| a. | NO <sub>X</sub>                                                                                                    | 1.49   | lb/hr | NA      | grains/ACF |
| b. | SO <sub>2</sub>                                                                                                    | 0.003  | lb/hr | NA      | grains/ACF |
| c. | со                                                                                                                 | 1.44   | lb/hr | ΝΑ      | grains/ACF |
| d. | PM/PM <sub>10</sub> /PM <sub>2.5</sub>                                                                             | 0.08   | lb/hr | NA      | grains/ACF |
| e. | Hydrocarbons                                                                                                       | NA     | lb/hr | ΝΑ      | grains/ACF |
| f. | VOCs                                                                                                               | 0.17   | lb/hr | ΝΑ      | grains/ACF |
| g. | Pb                                                                                                                 | NA     | lb/hr | NA      | grains/ACF |
| h. | Specify other(s)                                                                                                   |        |       |         |            |
|    | CO <sub>2e</sub>                                                                                                   | 309    | lb/hr | NA      | grains/ACF |
|    | Total HAPs                                                                                                         | 0.007  | lb/hr | NA      | grains/ACF |
|    |                                                                                                                    |        | lb/hr | ΝΑ      | grains/ACF |
|    |                                                                                                                    |        | lb/hr | NA      | grains/ACF |

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
  - (2) Complete the Emission Points Data Sheet.

| 9. Proposed Monitoring, Recordkeeping, Repo                                             |                                                  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                         | and reporting in order to demonstrate compliance |
|                                                                                         | Please propose testing in order to demonstrate   |
| compliance with the proposed emissions lin                                              | nits.                                            |
| MONITORING                                                                              | RECORDKEEPING                                    |
| See Attachment O                                                                        | See Attachment O                                 |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
| 2220220                                                                                 | 7507040                                          |
| REPORTING                                                                               | TESTING                                          |
| See Attachment O                                                                        | See Attachment O                                 |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         | I E PROCESS PARAMETERS AND RANGES THAT ARE       |
|                                                                                         | ISTRATE COMPLIANCE WITH THE OPERATION OF THIS    |
| PROFOSED TO BE MONITORED IN ORDER TO DEMON<br>PROCESS EQUIPMENT OPERATION/AIR POLLUTION |                                                  |
|                                                                                         |                                                  |
|                                                                                         | POSED RECORDKEEPING THAT WILL ACCOMPANY THE      |
| MONITORING.                                                                             |                                                  |
| REPORTING. PLEASE DESCRIBE THE PRO                                                      | DPOSED FREQUENCY OF REPORTING OF THE             |
| RECORDKEEPING.                                                                          |                                                  |
|                                                                                         |                                                  |
| POLLUTION CONTROL DEVICE.                                                               | SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR    |
|                                                                                         | nance procedures required by Manufacturer to     |
|                                                                                         | nance procedures required by Manufacturer to     |
| maintain warranty                                                                       |                                                  |
| NA                                                                                      |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |
|                                                                                         |                                                  |

# Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

#### I. GENERAL INFORMATION (required)

| 1.          | Bulk Storage Area Name                                                                                                                                                                            | 2.   | Tank Name                                                                                  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------|--|--|--|
|             | Diesel                                                                                                                                                                                            |      | Diesel Storage Tank ST-1                                                                   |  |  |  |
| 3.          | Tank Equipment Identification No. (as assigned on<br>Equipment List Form)<br>ST-1                                                                                                                 | 4.   | Emission Point Identification No. (as assigned on <i>Equipment List Form</i> ) <b>ST-1</b> |  |  |  |
| 5.          | Date of Commencement of Construction (for existing                                                                                                                                                | tank | s) <b>2017</b>                                                                             |  |  |  |
| 6.          | Type of change 🛛 New Construction 🗌 N                                                                                                                                                             | lew  | Stored Material Other Tank Modification                                                    |  |  |  |
| 7.          | Description of Tank Modification (if applicable)                                                                                                                                                  |      |                                                                                            |  |  |  |
|             | Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan                                                                                         | k?)  | 🗌 Yes 🛛 No                                                                                 |  |  |  |
| 7B.         | 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form mus completed for each mode).                                                                   |      |                                                                                            |  |  |  |
|             | NA                                                                                                                                                                                                |      |                                                                                            |  |  |  |
| 7C.         | 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):                                                               |      |                                                                                            |  |  |  |
|             | NA                                                                                                                                                                                                |      |                                                                                            |  |  |  |
|             | II. TANK INFORM                                                                                                                                                                                   | ΑΤΙ  | ON (required)                                                                              |  |  |  |
| 8.          | Design Capacity (specify barrels or gallons). Use height. 500                                                                                                                                     |      |                                                                                            |  |  |  |
| QΔ          | Tank Internal Diameter (ft)                                                                                                                                                                       | _    | Tank Internal Height (or Length) (ft)                                                      |  |  |  |
| 0/ 1.       | 3.5                                                                                                                                                                                               | 00.  | 7                                                                                          |  |  |  |
| 10 <i>F</i> |                                                                                                                                                                                                   | 10   | 3. Average Liquid Height (ft)                                                              |  |  |  |
|             | 7                                                                                                                                                                                                 |      | 3.5                                                                                        |  |  |  |
| 11/         | A. Maximum Vapor Space Height (ft)                                                                                                                                                                | 11E  | <ol> <li>Average Vapor Space Height (ft)</li> </ol>                                        |  |  |  |
|             |                                                                                                                                                                                                   |      | 3.5                                                                                        |  |  |  |
| 12.         | <ol> <li>Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design<br/>liquid levels and overflow valve heights.</li> <li>500 gallons</li> </ol> |      |                                                                                            |  |  |  |

| 13A. Maximum annual throughput (gal/yr)                                                                          | 13B. Maximum daily throughput (gal/day)            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| 1,000                                                                                                            | As Required                                        |  |  |  |  |
| 14. Number of Turnovers per year (annual net throughput                                                          |                                                    |  |  |  |  |
| 2                                                                                                                |                                                    |  |  |  |  |
| 15. Maximum tank fill rate (gal/min) 25                                                                          |                                                    |  |  |  |  |
| 16. Tank fill method Submerged                                                                                   | Splash Bottom Loading                              |  |  |  |  |
| 17. Complete 17A and 17B for Variable Vapor Space Ta                                                             | nk Systems 🛛 Does Not Apply                        |  |  |  |  |
| 17A. Volume Expansion Capacity of System (gal)                                                                   | 17B. Number of transfers into system per year      |  |  |  |  |
|                                                                                                                  | NA                                                 |  |  |  |  |
| 18. Type of tank (check all that apply):                                                                         | flat roof and roof down roof                       |  |  |  |  |
| other (describe)                                                                                                 | flat roofcone roofdome roof                        |  |  |  |  |
| External Floating Roof pontoon roof                                                                              | double deck roof                                   |  |  |  |  |
| Domed External (or Covered) Floating Roof                                                                        |                                                    |  |  |  |  |
| ☐ Internal Floating Roof vertical column su                                                                      | pport self-supporting                              |  |  |  |  |
| ☐ Variable Vapor Space lifter roof                                                                               | ··· <u> </u>                                       |  |  |  |  |
| Pressurized spherical cylindrica                                                                                 |                                                    |  |  |  |  |
| Underground                                                                                                      |                                                    |  |  |  |  |
| Other (describe)                                                                                                 |                                                    |  |  |  |  |
| III. TANK CONSTRUCTION & OPERATION INFORM                                                                        | ATION (optional if providing TANKS Summary Sheets) |  |  |  |  |
| 19. Tank Shell Construction:                                                                                     |                                                    |  |  |  |  |
| Riveted Gunite lined Epoxy-coate                                                                                 |                                                    |  |  |  |  |
|                                                                                                                  | r Light Gray 20C. Year Last Painted 2016           |  |  |  |  |
| 21. Shell Condition (if metal and unlined):                                                                      |                                                    |  |  |  |  |
| 🔄 🖸 No Rust 🔤 Light Rust 🔤 Dense R                                                                               | ust 🗌 Not applicable                               |  |  |  |  |
| 22A. Is the tank heated?                                                                                         |                                                    |  |  |  |  |
| 22B. If YES, provide the operating temperature (°F)                                                              | NA                                                 |  |  |  |  |
| 22C. If YES, please describe how heat is provided to                                                             | ank. NA                                            |  |  |  |  |
| 23. Operating Pressure Range (psig): <b>Ambient</b> to                                                           | Ambient                                            |  |  |  |  |
| 24. Complete the following section for Vertical Fixed Ro                                                         | of Tanks Does Not Apply                            |  |  |  |  |
| 24A. For dome roof, provide roof radius (ft) <b>NA</b>                                                           |                                                    |  |  |  |  |
| 24B. For cone roof, provide slope (ft/ft) <b>NA</b>                                                              |                                                    |  |  |  |  |
| 25. Complete the following section for Floating Roof Ta                                                          | nks 🛛 Does Not Apply                               |  |  |  |  |
| 25A. Year Internal Floaters Installed:                                                                           |                                                    |  |  |  |  |
| 25B.Primary Seal Type:Image: Metallic (Mechanical<br>(check one)(check one)Image: Vapor Mounted Resident Control | •                                                  |  |  |  |  |
| 25C. Is the Floating Roof equipped with a Secondary                                                              | Seal? YES NO                                       |  |  |  |  |
| 25D. If YES, how is the secondary seal mounted? (ch                                                              | eck one) Shoe Rim Other (describe):                |  |  |  |  |
| 25E. Is the Floating Roof equipped with a weather shi                                                            | eld? YES NO                                        |  |  |  |  |

| 25F. Describe deck fittings; indicate the number of each type of fitting:            |                           |                |                               |  |  |  |
|--------------------------------------------------------------------------------------|---------------------------|----------------|-------------------------------|--|--|--|
| ACCESS HATCH                                                                         |                           |                |                               |  |  |  |
| BOLT COVER, GASKETED:                                                                | UNBOLTED COVER, GASKETED: |                | UNBOLTED COVER, UNGASKETED:   |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | JGE FLOAT WELL |                               |  |  |  |
| BOLT COVER, GASKETED:                                                                | UNBOLTED COVI             | ER, GASKETED:  | UNBOLTED COVER, UNGASKETED:   |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | N WELL         |                               |  |  |  |
| BUILT-UP COLUMN - SLIDING                                                            | 1                         | JMN – SLIDING  | PIPE COLUMN – FLEXIBLE        |  |  |  |
| COVER, GASKETED:                                                                     | COVER, UNGASH             | KETED:         | FABRIC SLEEVE SEAL:           |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | R WELL         |                               |  |  |  |
| PIP COLUMN – SLIDING COVER, G                                                        |                           |                | SLIDING COVER, UNGASKETED:    |  |  |  |
| FIF COLONIN - SEIDING COVER, G                                                       | AGRETED.                  |                | SEIDING COVER, UNGASKETED.    |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      | GAUGE-HATCH               | SAMPLE PORT    |                               |  |  |  |
| SLIDING COVER, GASKETED:                                                             |                           | SLIDING COVER, | , UNGASKETED:                 |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | HANGER WELL    |                               |  |  |  |
| WEIGHTED MECHANICAL                                                                  |                           |                | SAMPLE WELL-SLIT FABRIC SEAL  |  |  |  |
| ACTUATION, GASKETED:                                                                 | ACTUATION, UN             |                | (10% OPEN AREA)               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | BREAKER        |                               |  |  |  |
| WEIGHTED MECHANICAL ACTUAT                                                           | ION, GASKETED:            | WEIGHTED MECHA | ANICAL ACTUATION, UNGASKETED: |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| RIM VENT                                                                             |                           |                |                               |  |  |  |
| WEIGHTED MECHANICAL ACTUATION GASKETED:   WEIGHTED MECHANICAL ACTUATION, UNGASKETED: |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| DECK DRAIN (3-INCH DIAMETER)                                                         |                           |                |                               |  |  |  |
| OPEN:                                                                                |                           | 90% CLOSED:    |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| STUB DRAIN                                                                           |                           |                |                               |  |  |  |
| 1-INCH DIAMETER:                                                                     | 3106                      | DRAIN          |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)                               |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |

| 26. Complete the following section for Internal Floati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng Roof Tanks 🛛 🛛 Does Not Apply                   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| 26A. Deck Type: Deck Type: Welded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
| 26B. For Bolted decks, provide deck construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 26C. Deck seam:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| Continuous sheet construction 5 feet wide<br>Continuous sheet construction 6 feet wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |  |  |  |  |
| Continuous sheet construction 7 feet wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |  |  |  |  |
| <ul> <li>Continuous sheet construction 5 x 7.5 feet with Continuous sheet construction 5 x 12 feet with Continuous sheet continuous</li></ul> |                                                    |  |  |  |  |
| ☐ Other (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 26D. Deck seam length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26E. Area of deck (ft <sup>2</sup> )               |  |  |  |  |
| For column supported tanks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26G. Diameter of each column:                      |  |  |  |  |
| 26F. Number of columns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | onal if providing TANKS Summary Sheets)            |  |  |  |  |
| 27. Provide the city and state on which the data in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |  |  |  |  |
| See TANKS Summary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |  |  |  |  |
| 28. Daily Average Ambient Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |  |  |  |
| 29. Annual Average Maximum Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |
| 30. Annual Average Minimum Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |
| 31. Average Wind Speed (miles/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
| 32. Annual Average Solar Insulation Factor (BTU/(ft2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ²·day))                                            |  |  |  |  |
| 33. Atmospheric Pressure (psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| V. LIQUID INFORMATION (optic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onal if providing TANKS Summary Sheets)            |  |  |  |  |
| 34. Average daily temperature range of bulk liquid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | See TANKS Summary Sheet                            |  |  |  |  |
| 34A. Minimum (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34B. Maximum (°F)                                  |  |  |  |  |
| 35. Average operating pressure range of tank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |  |  |  |  |
| 35A. Minimum (psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35B. Maximum (psig)                                |  |  |  |  |
| 36A. Minimum Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 37A. Average Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 204 Movimum Liquid Surface Temperature (%E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 38A. Maximum Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 39. Provide the following for each liquid or gas to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stored in tank. Add additional pages if necessary. |  |  |  |  |
| 39A. Material Name or Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diesel Fuel                                        |  |  |  |  |
| 39B. CAS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 39C. Liquid Density (lb/gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |  |  |  |  |
| 39D. Liquid Molecular Weight (lb/lb-mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |  |  |  |  |
| 39E. Vapor Molecular Weight (lb/lb-mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |  |  |  |  |

| Maximum Vapor Press<br>39F. True (psia)                                                                                                                                                                | sure                                                |                                   |                  |                                                 |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|------------------|-------------------------------------------------|--------------------------------|
| 39G. Reid (psia)                                                                                                                                                                                       |                                                     |                                   |                  |                                                 |                                |
| Months Storage per Ye                                                                                                                                                                                  | ear                                                 |                                   |                  |                                                 |                                |
| 39H. From                                                                                                                                                                                              |                                                     |                                   |                  |                                                 |                                |
| 39I. To                                                                                                                                                                                                |                                                     |                                   |                  |                                                 |                                |
|                                                                                                                                                                                                        | VI. EMISSIONS A                                     | ND CONTR                          |                  | EDATA (required)                                |                                |
| 40. Emission Control I                                                                                                                                                                                 | Devices (check as man                               | y as apply):                      | 🛛 Does No        | ot Apply                                        |                                |
| Carbon Adsorp                                                                                                                                                                                          | tion <sup>1</sup>                                   |                                   |                  |                                                 |                                |
| Condenser <sup>1</sup>                                                                                                                                                                                 |                                                     |                                   |                  |                                                 |                                |
| Conservation V                                                                                                                                                                                         | /ent (psig)                                         |                                   |                  |                                                 |                                |
| Vacuum S                                                                                                                                                                                               | Setting                                             |                                   | Pressure Se      | etting                                          |                                |
| Emergency Re                                                                                                                                                                                           | lief Valve (psig)                                   |                                   |                  |                                                 |                                |
| Inert Gas Blank                                                                                                                                                                                        | ket of                                              |                                   |                  |                                                 |                                |
| Insulation of Ta                                                                                                                                                                                       | ank with                                            |                                   |                  |                                                 |                                |
| Liquid Absorpti                                                                                                                                                                                        | on (scrubber) <sup>1</sup>                          |                                   |                  |                                                 |                                |
| Refrigeration of                                                                                                                                                                                       | ,                                                   |                                   |                  |                                                 |                                |
| Rupture Disc (p                                                                                                                                                                                        |                                                     |                                   |                  |                                                 |                                |
| Vent to Incinera                                                                                                                                                                                       |                                                     |                                   |                  |                                                 |                                |
| Other <sup>1</sup> (describ                                                                                                                                                                            | e):                                                 |                                   |                  |                                                 |                                |
|                                                                                                                                                                                                        | ,                                                   | rol Device S                      | Sheet.           |                                                 |                                |
| <ul> <li><sup>1</sup> Complete appropriate Air Pollution Control Device Sheet.</li> <li>41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).</li> </ul> |                                                     |                                   |                  |                                                 |                                |
| 41 Expected Emission                                                                                                                                                                                   | n Rate (submit Test Da                              | ta or Calcula                     | ations here      | or elsewhere in the a                           | oplication)                    |
| -                                                                                                                                                                                                      |                                                     | 1                                 | 1                |                                                 | oplication).                   |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | n Rate (submit Test Da<br>Breathing Loss<br>(lb/yr) | ta or Calcula<br>Workin<br>Amount | 1                | or elsewhere in the a<br>Annual Loss<br>(lb/yr) | Estimation Method <sup>1</sup> |
| Material Name &                                                                                                                                                                                        | Breathing Loss                                      | Workin                            | g Loss           | Annual Loss                                     |                                |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |
| Material Name &<br>CAS No.                                                                                                                                                                             | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | ng Loss<br>Units | Annual Loss<br>(lb/yr)                          | Estimation Method <sup>1</sup> |

 $^1$  EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

# Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

#### I. GENERAL INFORMATION (required)

| 1. Bulk Storage Area Name                                                                                        | 2. Tank Name                                                                                            |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Diesel                                                                                                           | Diesel Storage Tank ST-2                                                                                |
| <ol> <li>Tank Equipment Identification No. (as assigned on<br/>Equipment List Form)<br/>ST-2</li> </ol>          | <ol> <li>Emission Point Identification No. (as assigned on<br/>Equipment List Form)<br/>ST-2</li> </ol> |
| 5. Date of Commencement of Construction (for existing                                                            | tanks) <b>2017</b>                                                                                      |
| 6. Type of change $\square$ New Construction $\square$ N                                                         | New Stored Material Other Tank Modification                                                             |
| <ol> <li>Description of Tank Modification (if applicable)</li> <li>NA</li> </ol>                                 |                                                                                                         |
| 7A. Does the tank have more than one mode of operation<br>(e.g. Is there more than one product stored in the tan |                                                                                                         |
| 7B. If YES, explain and identify which mode is covere<br>completed for each mode). NA                            | ed by this application (Note: A separate form must be                                                   |
|                                                                                                                  |                                                                                                         |
| 7C. Provide any limitations on source operation affecting variation, etc.):                                      | emissions, any work practice standards (e.g. production                                                 |
| NA                                                                                                               |                                                                                                         |
|                                                                                                                  |                                                                                                         |
| II. TANK INFORM                                                                                                  | ATION (required)                                                                                        |
| <ol> <li>Design Capacity (specify barrels or gallons). Use<br/>height.</li> </ol>                                | the internal cross-sectional area multiplied by internal gallons                                        |
| 9A. Tank Internal Diameter (ft)                                                                                  | 9B. Tank Internal Height (or Length) (ft)                                                               |
| 7                                                                                                                | 10.5                                                                                                    |
| 10A. Maximum Liquid Height (ft)                                                                                  | 10B. Average Liquid Height (ft)                                                                         |
| 10.5                                                                                                             | 5.25                                                                                                    |
| 11A. Maximum Vapor Space Height (ft)                                                                             | 11B. Average Vapor Space Height (ft)                                                                    |
| 10.25                                                                                                            | 5.25                                                                                                    |
| liquid levels and overflow valve heights.                                                                        | s also known as "working volume" and considers design<br>) gallons                                      |

| 13A. Maximum annual throughput (gal/yr)                                                 | 13B. Maximum daily throughput (gal/day)                 |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| 6,000                                                                                   | As Required                                             |  |  |  |
| 14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)     |                                                         |  |  |  |
| 2                                                                                       |                                                         |  |  |  |
| 15. Maximum tank fill rate (gal/min) <b>100</b>                                         |                                                         |  |  |  |
| 16. Tank fill method Submerged                                                          | Splash Bottom Loading                                   |  |  |  |
| 17. Complete 17A and 17B for Variable Vapor Space Ta                                    |                                                         |  |  |  |
| 17A. Volume Expansion Capacity of System (gal)<br>NA                                    | 17B. Number of transfers into system per year <b>NA</b> |  |  |  |
| 18. Type of tank (check all that apply):                                                |                                                         |  |  |  |
| $\boxtimes$ Fixed Roof $\underline{X}$ vertical horizontal other (describe)             | flat roof cone roof dome roof                           |  |  |  |
| External Floating Roofpontoon roof                                                      | double deck roof                                        |  |  |  |
| Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su     | poort colf supporting                                   |  |  |  |
| ☐ Variable Vapor Space lifter roof                                                      |                                                         |  |  |  |
| Pressurizedsphericalcylindrical                                                         |                                                         |  |  |  |
|                                                                                         |                                                         |  |  |  |
| Other (describe)                                                                        |                                                         |  |  |  |
| III. TANK CONSTRUCTION & OPERATION INFORM                                               | ATION (optional if providing TANKS Summary Sheets)      |  |  |  |
| 19. Tank Shell Construction:                                                            |                                                         |  |  |  |
| Riveted Gunite lined Epoxy-coated                                                       |                                                         |  |  |  |
|                                                                                         | r Light Gray 20C. Year Last Painted 2016                |  |  |  |
| 21. Shell Condition (if metal and unlined):<br>⊠ No Rust □ Light Rust □ Dense R         | ust 🗌 Not applicable                                    |  |  |  |
| 22A. Is the tank heated? YES NO                                                         |                                                         |  |  |  |
| 22B. If YES, provide the operating temperature (°F)                                     | NA                                                      |  |  |  |
| 22C. If YES, please describe how heat is provided to t                                  | ank. <b>NA</b>                                          |  |  |  |
| 23. Operating Pressure Range (psig): Ambient to                                         | Ambient                                                 |  |  |  |
| 24. Complete the following section for Vertical Fixed Roof Tanks                        |                                                         |  |  |  |
| 24A. For dome roof, provide roof radius (ft) <b>NA</b>                                  |                                                         |  |  |  |
| 24B. For cone roof, provide slope (ft/ft) <b>NA</b>                                     |                                                         |  |  |  |
| 25. Complete the following section for Floating Roof Tail                               | nks 🛛 Does Not Apply                                    |  |  |  |
| 25A. Year Internal Floaters Installed:                                                  |                                                         |  |  |  |
| 25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil |                                                         |  |  |  |
| 25C. Is the Floating Roof equipped with a Secondary S                                   | Seal? YES NO                                            |  |  |  |
| 25D. If YES, how is the secondary seal mounted? (che                                    | eck one) Shoe Rim Other (describe):                     |  |  |  |
| 25E. Is the Floating Roof equipped with a weather shie                                  | eld?  YES  NO                                           |  |  |  |

| 25F. Describe deck fittings; indicate the number of each type of fitting:            |                           |                |                               |  |  |  |
|--------------------------------------------------------------------------------------|---------------------------|----------------|-------------------------------|--|--|--|
| ACCESS HATCH                                                                         |                           |                |                               |  |  |  |
| BOLT COVER, GASKETED:                                                                | UNBOLTED COVER, GASKETED: |                | UNBOLTED COVER, UNGASKETED:   |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | JGE FLOAT WELL |                               |  |  |  |
| BOLT COVER, GASKETED:                                                                | UNBOLTED COVI             | ER, GASKETED:  | UNBOLTED COVER, UNGASKETED:   |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | N WELL         |                               |  |  |  |
| BUILT-UP COLUMN - SLIDING                                                            | 1                         | JMN – SLIDING  | PIPE COLUMN – FLEXIBLE        |  |  |  |
| COVER, GASKETED:                                                                     | COVER, UNGASH             | KETED:         | FABRIC SLEEVE SEAL:           |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | R WELL         |                               |  |  |  |
| PIP COLUMN – SLIDING COVER, G                                                        |                           |                | SLIDING COVER, UNGASKETED:    |  |  |  |
| FIF COLONIN - SEIDING COVER, G                                                       | AGRETED.                  |                | SEIDING COVER, UNGASKETED.    |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      | GAUGE-HATCH               | SAMPLE PORT    |                               |  |  |  |
| SLIDING COVER, GASKETED:                                                             |                           | SLIDING COVER, | , UNGASKETED:                 |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | HANGER WELL    |                               |  |  |  |
| WEIGHTED MECHANICAL                                                                  |                           |                | SAMPLE WELL-SLIT FABRIC SEAL  |  |  |  |
| ACTUATION, GASKETED:                                                                 | ACTUATION, UN             |                | (10% OPEN AREA)               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           | BREAKER        |                               |  |  |  |
| WEIGHTED MECHANICAL ACTUAT                                                           | ION, GASKETED:            | WEIGHTED MECHA | ANICAL ACTUATION, UNGASKETED: |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| RIM VENT                                                                             |                           |                |                               |  |  |  |
| WEIGHTED MECHANICAL ACTUATION GASKETED:   WEIGHTED MECHANICAL ACTUATION, UNGASKETED: |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| DECK DRAIN (3-INCH DIAMETER)                                                         |                           |                |                               |  |  |  |
| OPEN:                                                                                |                           | 90% CLOSED:    |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| STUB DRAIN                                                                           |                           |                |                               |  |  |  |
| 1-INCH DIAMETER:                                                                     | 3106                      | DRAIN          |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
| OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)                               |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |
|                                                                                      |                           |                |                               |  |  |  |

| 26. Complete the following section for Internal Floati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng Roof Tanks 🛛 🛛 Does Not Apply                   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| 26A. Deck Type: Deck Type: Welded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
| 26B. For Bolted decks, provide deck construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 26C. Deck seam:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| Continuous sheet construction 5 feet wide<br>Continuous sheet construction 6 feet wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |  |  |  |  |
| Continuous sheet construction 7 feet wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |  |  |  |  |
| <ul> <li>Continuous sheet construction 5 x 7.5 feet with Continuous sheet construction 5 x 12 feet with Continuous sheet continuous</li></ul> |                                                    |  |  |  |  |
| ☐ Other (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 26D. Deck seam length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26E. Area of deck (ft <sup>2</sup> )               |  |  |  |  |
| For column supported tanks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26G. Diameter of each column:                      |  |  |  |  |
| 26F. Number of columns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | onal if providing TANKS Summary Sheets)            |  |  |  |  |
| 27. Provide the city and state on which the data in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |  |  |  |  |
| See TANKS Summary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |  |  |  |  |
| 28. Daily Average Ambient Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |  |  |  |
| 29. Annual Average Maximum Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |
| 30. Annual Average Minimum Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |
| 31. Average Wind Speed (miles/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |
| 32. Annual Average Solar Insulation Factor (BTU/(ft2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ²·day))                                            |  |  |  |  |
| 33. Atmospheric Pressure (psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| V. LIQUID INFORMATION (optic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onal if providing TANKS Summary Sheets)            |  |  |  |  |
| 34. Average daily temperature range of bulk liquid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | See TANKS Summary Sheet                            |  |  |  |  |
| 34A. Minimum (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34B. Maximum (°F)                                  |  |  |  |  |
| 35. Average operating pressure range of tank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |  |  |  |  |
| 35A. Minimum (psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35B. Maximum (psig)                                |  |  |  |  |
| 36A. Minimum Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 37A. Average Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 204 Movimum Liquid Surface Temperature (%E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 38A. Maximum Liquid Surface Temperature (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38B. Corresponding Vapor Pressure (psia)           |  |  |  |  |
| 39. Provide the following for each liquid or gas to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stored in tank. Add additional pages if necessary. |  |  |  |  |
| 39A. Material Name or Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diesel Fuel                                        |  |  |  |  |
| 39B. CAS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |  |  |  |  |
| 39C. Liquid Density (lb/gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |  |  |  |  |
| 39D. Liquid Molecular Weight (lb/lb-mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |  |  |  |  |
| 39E. Vapor Molecular Weight (lb/lb-mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |  |  |  |  |

| 39F. True (psia)                                                                                                                                                                                       | sure                                                |                                   |                 |                                                  |                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------|--------------------------------------------------|--------------------------------|--|--|
| 39G. Reid (psia)                                                                                                                                                                                       |                                                     |                                   |                 |                                                  |                                |  |  |
| Months Storage per Ye                                                                                                                                                                                  | ear                                                 |                                   |                 |                                                  |                                |  |  |
| 39H. From                                                                                                                                                                                              |                                                     |                                   |                 |                                                  |                                |  |  |
| 39I. To                                                                                                                                                                                                |                                                     |                                   |                 |                                                  |                                |  |  |
|                                                                                                                                                                                                        | VI. EMISSIONS A                                     | ND CONTR                          |                 | DATA (required)                                  |                                |  |  |
| 40. Emission Control I                                                                                                                                                                                 | Devices (check as man                               | y as apply):                      | 🛛 Does No       | t Apply                                          |                                |  |  |
| Carbon Adsorp                                                                                                                                                                                          | otion <sup>1</sup>                                  |                                   |                 |                                                  |                                |  |  |
| Condenser <sup>1</sup>                                                                                                                                                                                 |                                                     |                                   |                 |                                                  |                                |  |  |
| Conservation V                                                                                                                                                                                         | Conservation Vent (psig)                            |                                   |                 |                                                  |                                |  |  |
| Vacuum S                                                                                                                                                                                               | Setting                                             |                                   | Pressure Se     | etting                                           |                                |  |  |
| Emergency Re                                                                                                                                                                                           | lief Valve (psig)                                   |                                   |                 |                                                  |                                |  |  |
| Inert Gas Blank                                                                                                                                                                                        | ket of                                              |                                   |                 |                                                  |                                |  |  |
| Insulation of Ta                                                                                                                                                                                       | ank with                                            |                                   |                 |                                                  |                                |  |  |
| Liquid Absorpti                                                                                                                                                                                        |                                                     |                                   |                 |                                                  |                                |  |  |
| Refrigeration of                                                                                                                                                                                       |                                                     |                                   |                 |                                                  |                                |  |  |
| Rupture Disc (p                                                                                                                                                                                        |                                                     |                                   |                 |                                                  |                                |  |  |
| Vent to Incinera                                                                                                                                                                                       |                                                     |                                   |                 |                                                  |                                |  |  |
| ☐ Other <sup>1</sup> (describ                                                                                                                                                                          | e):                                                 |                                   |                 |                                                  |                                |  |  |
|                                                                                                                                                                                                        |                                                     | rol Device S                      | Sheet.          |                                                  |                                |  |  |
| <ul> <li><sup>1</sup> Complete appropriate Air Pollution Control Device Sheet.</li> <li>41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).</li> </ul> |                                                     |                                   |                 |                                                  |                                |  |  |
|                                                                                                                                                                                                        | n Rate (submit Test Da                              | ta or Calcula                     | ations here (   | or elsewhere in the ar                           | onlication)                    |  |  |
| 41. Expected Emission                                                                                                                                                                                  |                                                     | 1                                 | 1               | -                                                | oplication).                   |  |  |
|                                                                                                                                                                                                        | n Rate (submit Test Da<br>Breathing Loss<br>(lb/yr) | ta or Calcula<br>Workin<br>Amount | 1               | or elsewhere in the ap<br>Annual Loss<br>(lb/yr) | pplication).                   |  |  |
| 41. Expected Emission Material Name &                                                                                                                                                                  | Breathing Loss                                      | Workin                            | g Loss          | Annual Loss                                      |                                |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |
| 41. Expected Emission<br>Material Name &<br>CAS No.                                                                                                                                                    | Breathing Loss<br>(Ib/yr)                           | Workin<br>Amount                  | g Loss<br>Units | Annual Loss<br>(lb/yr)                           | Estimation Method <sup>1</sup> |  |  |

 $^1$  EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

# **Attachment M**

# Attachment M Air Pollution Control Devices

The Combined-Cycle Combustion Turbines will be equipped with dry low-NO<sub>x</sub> combustors (DLNC). These combustion controls along with Selective Catalytic Reduction (SCR) systems will control emissions of nitrogen oxides (NO<sub>x</sub>). Oxidation catalysts will be used to control the turbines' carbon monoxide (CO) and volatile organic compounds (VOC) emissions. The Auxiliary Boiler will be equipped with ultra low-NO<sub>x</sub> burners (ULNB) and flue gas recirculation (FGR) to control NO<sub>x</sub> emissions.

The proposed emission control systems and association regulatory implications are further discussed in **Section 3.4 – Prevention of Significant Deterioration (PSD)** of this permit application package.

# **Attachment N**

# Attachment N Calculation Explanation

Potential emissions from the Project's emission sources were estimated using various calculation methodologies including vendor data, emission factors from USEPA's Compilation of Air Pollutant Emission Factors (AP-42) publication, material balances, New Source Performance Standards (NSPS) emission standards, and/or engineering calculations.

# Moundsville Power Facility Emissions Summary Tables

#### **Combustion Turbines**

| Pollutant          | Maximum Short<br>Term Emissions: 1<br>CT | Maximum Annual<br>Steady State<br>Emissions: 2 CTs | Startup and<br>Shutdown<br>Emissions: 2 CTs | Total Annual<br>Emissions: 2 CTs |
|--------------------|------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------|
|                    | (lb/ hr )                                | (tons/yr)                                          | (tons/yr)                                   | (tons/yr)                        |
| VOC                | 5.3                                      | 46.3                                               | 27.6                                        | 73.9                             |
| NO <sub>x</sub>    | 15.2                                     | 133.2                                              | 7.0                                         | 140.2                            |
| СО                 | 9.2                                      | 80.9                                               | 121.2                                       | 202.2                            |
| $SO_2$             | 0.5                                      | 4.8                                                | (1)                                         | 4.8                              |
| $PM_{10}/PM_{2.5}$ | 7.6                                      | 66.2                                               | 1.18                                        | 67.4                             |
| PM                 | 7.6                                      | 66.2                                               | 1.18                                        | 67.4                             |
| Pb                 | 0.001                                    | 0.01                                               | (1)                                         | 0.01                             |
| $H_2SO_4$          | 0.4                                      | 3.1                                                | (1)                                         | 3.1                              |

<sup>(1)</sup> Worst-case annual emissions are addressed by steady-state operation.

#### Auxiliary Boiler

| Pollutant          | Maximum Short<br>Term Emissions | Maximum Annual<br>Emissions |
|--------------------|---------------------------------|-----------------------------|
|                    | (lb/ hr )                       | (tons/yr)                   |
| VOC                | 0.60                            | 0.60                        |
| NO <sub>x</sub>    | 2.00                            | 2.00                        |
| СО                 | 4.00                            | 4.00                        |
| SO <sub>2</sub>    | 0.06                            | 0.06                        |
| $PM_{10}/PM_{2.5}$ | 0.50                            | 0.50                        |
| PM                 | 0.50                            | 0.50                        |
| Pb                 | 4.85E-05                        | 4.85E-05                    |
| $H_2SO_4$          | 4.46E-03                        | 4.46E-03                    |

# Moundsville Power Facility Emissions Summary Tables Emergency Generator and Fire Water Pump

| Pollutant          | Emergency<br>Generator Maximu<br>Short Term<br>Emissions | Emergency<br>m Generator Maximum<br>Annual Emissions | Fire Water Pump<br>Maximum Short<br>Term Emissions | Fire Water Pump<br>Maximum Annual<br>Emissions |  |
|--------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|
|                    | (lb/hr)                                                  | (tons/yr)                                            | (1b/hr)                                            | (tons/yr)                                      |  |
| VOC                | 1.24                                                     | 0.31                                                 | 0.17                                               | 0.04                                           |  |
| NO <sub>x</sub>    | 11.18                                                    | 2.79                                                 | 1.49                                               | 0.37                                           |  |
| СО                 | 11.53                                                    | 2.88                                                 | 1.44                                               | 0.36                                           |  |
| SO <sub>2</sub>    | 2.31E-02                                                 | 5.78E-03                                             | 2.96E-03                                           | 7.40E-04                                       |  |
| $PM_{10}/PM_{2.5}$ | 0.40                                                     | 0.10                                                 | 0.08                                               | 0.02                                           |  |
| PM                 | 0.40                                                     | 0.10                                                 | 0.08                                               | 0.02                                           |  |
| Pb                 |                                                          |                                                      |                                                    |                                                |  |
| $H_2SO_4$          |                                                          |                                                      |                                                    |                                                |  |

# **Cooling Tower**

| Pollutant          | Cooling Tower<br>Maximum Short<br>Term Emissions | Cooling Tower<br>Maximum Annual<br>Emissions<br>(tons/yr) |  |
|--------------------|--------------------------------------------------|-----------------------------------------------------------|--|
|                    | (lb/hr)                                          |                                                           |  |
| PM                 | 0.72                                             | 3.15                                                      |  |
| $\mathrm{PM}_{10}$ | 0.48                                             | 2.12                                                      |  |
| PM <sub>2.5</sub>  | 0.0016                                           | 0.01                                                      |  |

### Facility Emissions Summary Tables

#### Facility-Wide Emissions Summary

|                            | Annual Emissions (tons/yr) |                 |       |                 |           |      |                   |         |           |                   |
|----------------------------|----------------------------|-----------------|-------|-----------------|-----------|------|-------------------|---------|-----------|-------------------|
| Unit                       | VOC                        | NO <sub>x</sub> | CO    | SO <sub>2</sub> | $PM_{10}$ | PM   | PM <sub>2.5</sub> | Pb      | $H_2SO_4$ | CO <sub>2</sub> e |
| CTs (2) - Steady State     | 46.3                       | 133.2           | 80.9  | 4.8             | 66.2      | 66.2 | 66.2              | 0.0     | 3.1       | 2,227,797         |
| CTs - Startups & Shutdowns | 27.6                       | 7.0             | 121.2 |                 | 1.2       | 1.2  | 1.2               | (1)     |           |                   |
| Auxiliary Boiler           | 0.60                       | 2.00            | 4.00  | 0.06            | 0.50      | 0.50 | 0.50              | 4.9E-05 | 0.004     | 12,081            |
| Emergency Generator        | 0.31                       | 2.79            | 2.88  | 0.01            | 0.10      | 0.10 | 0.10              |         |           | 604               |
| Fire Water Pump            | 0.04                       | 0.37            | 0.36  | 0.00            | 0.02      | 0.02 | 0.02              |         |           | 77                |
| Cooling Tower              |                            |                 |       |                 | 2.12      | 3.15 | 0.01              |         |           |                   |
| Circuit Breakers           |                            |                 |       |                 |           |      |                   |         |           | 58                |
| Total                      | 74.8                       | 145.3           | 209.4 | 4.8             | 70.1      | 71.2 | 68.0              | 0.01    | 3.1       | 2,240,618         |

#### Emission Calculations - GHGs

|                         | C       | 2O <sub>2</sub> | C       | H <sub>4</sub> | N       | 2 <sup>0</sup> | 9        | SF <sub>6</sub> | C         | O <sub>2</sub> e |
|-------------------------|---------|-----------------|---------|----------------|---------|----------------|----------|-----------------|-----------|------------------|
| Source                  | (lb/hr) | (tons/yr)       | (lb/hr) | (tons/yr)      | (1b/hr) | (tons/yr)      | (lb/hr)  | (tons/yr)       | (lb/hr)   | (tons/yr)        |
| Combustion Turbines (2) | 508,010 | 2,225,084       | 13.8    | 60.5           | 0.9     | 4.0            |          |                 | 508,629.4 | 2,227,797        |
| Auxiliary Boiler        | 12,058  | 12,058          | 3.3E-01 | 3.3E-01        | 5.0E-02 | 5.0E-02        |          |                 | 12,081.2  | 12,081           |
| Emergency Generator     | 2,408   | 602             | 9.8E-02 | 2.4E-02        | 2.0E-02 | 4.9E-03        |          |                 | 2,416.4   | 604              |
| Fire Water Pump         | 308     | 77              | 1.3E-02 | 3.1E-03        | 2.5E-03 | 6.3E-04        |          |                 | 309.2     | 77               |
| Circuit Breakers        |         |                 |         |                |         |                | 5.85E-04 | 2.56E-03        | 13.3      | 58               |
| Total CO <sub>2</sub> e | 522,785 | 2,237,821       | 14      | 61             | 1       | 4              | 5.85E-04 | 2.56E-03        | 523,450   | 2,240,618        |

**Facility Emissions Summary Tables** 

| Hazardous Air Pollutant (HAP) | One CT<br>(lb/hr) | One DB<br>(lb/hr) | Auxiliary Boiler<br>(lb/hr) | Emergency<br>Generator (lb/hr) | Fire Water Pump<br>(lb/hr) | Facility Total<br>(tons/yr) |
|-------------------------------|-------------------|-------------------|-----------------------------|--------------------------------|----------------------------|-----------------------------|
| 2-Methylnaphthalene           | NA                | 1.68E-06          | 2.33E-06                    | NA                             | NA                         | 1.70E-05                    |
| Acetaldehyde                  | 8.35E-02          | NA                | NA                          | 3.72E-04                       | 1.45E-03                   | 7.32E-01                    |
| Acrolein                      | 1.34E-02          | NA                | NA                          | 1.16E-04                       | NA                         | 1.17E-01                    |
| Arsenic                       | NA                | 1.40E-05          | 1.94E-05                    | NA                             | NA                         | 1.42E-04                    |
| Benzene                       | 2.50E-02          | 1.47E-04          | 2.04E-04                    | 1.15E-02                       | 1.76E-03                   | 2.24E-01                    |
| Cadmium                       | NA                | 7.70E-05          | NA                          | NA                             | NA                         | 6.74E-04                    |
| Chromium                      | NA                | 9.80E-05          | 1.36E-04                    | NA                             | NA                         | 9.94E-04                    |
| Cobalt                        | NA                | 5.88E-06          | 8.16E-06                    | NA                             | NA                         | 5.97E-05                    |
| Dichlorobenzene               | NA                | 8.40E-05          | 1.17E-04                    | NA                             | NA                         | 8.52E-04                    |
| Ethylbenzene                  | 6.68E-02          | NA                | NA                          | NA                             | NA                         | 5.85E-01                    |
| Fluoranthene                  | NA                | 2.10E-07          | 2.91E-07                    | NA                             | NA                         | 2.13E-06                    |
| Fluorene                      | NA                | 1.96E-07          | 2.72E-07                    | NA                             | NA                         | 1.99E-06                    |
| Formaldehyde                  | 6.26E-01          | 5.25E-03          | 7.28E-03                    | 1.17E-03                       | 2.23E-03                   | 5.54E+00                    |
| Hexane                        | NA                | 1.26E-01          | 1.75E-01                    | NA                             | NA                         | 1.28E+00                    |
| Manganese                     | NA                | 2.66E-05          | 3.69E-05                    | NA                             | NA                         | 2.70E-04                    |
| Mercury                       | NA                | 1.82E-05          | 2.52E-05                    | NA                             | NA                         | 1.85E-04                    |
| Naphthalene                   | 2.71E-03          | 4.27E-05          | 5.92E-05                    | 1.92E-03                       | 1.60E-04                   | 2.47E-02                    |
| Nickel                        | NA                | 1.47E-04          | 2.04E-04                    | NA                             | NA                         | 1.49E-03                    |
| Phenanathrene                 | NA                | 1.19E-06          | 1.65E-06                    | NA                             | NA                         | 1.21E-05                    |
| РОМ                           | 4.59E-03          | NA                | NA                          | 3.13E-03                       | 3.18E-04                   | 4.11E-02                    |
| Pyrene                        | NA                | 3.50E-07          | 4.85E-07                    | NA                             | NA                         | 3.55E-06                    |
| Toluene                       | 2.71E-01          | 2.38E-04          | 3.30E-04                    | 4.15E-03                       | 7.73E-04                   | 2.38E+00                    |
| Xylenes                       | 1.34E-01          | NA                | NA                          | 2.85E-03                       | 5.39E-04                   | 1.17E+00                    |

Maximum Emissions (Single HAP) Total HAPs

12.10

NA = No Emission Factor Available.

**Emission Calculations - Combustion Turbines** 

| Input Data                                              |                                   |        |
|---------------------------------------------------------|-----------------------------------|--------|
| No. of Combustion Turbines                              | 2                                 |        |
| Natural Gas Heating Value (Btu/lb - HHV)                | 23,524                            |        |
| Natural Gas Heating Value (Btu/lb - LHV)                | 21,210                            |        |
| LHV-HHV Conversion Factor (Natural Gas)                 | 1.11                              |        |
| Ethane Heating Value (Btu/lb - HHV)                     | 23,075                            |        |
| Ethane Heating Value (Btu/lb - LHV)                     | 20,918                            |        |
| LHV-HHV Conversion Factor (Ethane)                      | 1.10                              |        |
| Natural Gas Percentage of Fuel Blend                    | 75%                               |        |
| Ethane Percentage of Fuel Blend                         | 25%                               |        |
| CT Annual Capacity Factor (%)                           | 100%                              |        |
| CT Annual Operating Hours (hr/yr)                       | 8,760                             |        |
| Max. Heat Input (MMBtu/hr) per CT (HHV, all conditions) | 2,087                             |        |
| Max. Heat Input (MMBtu/yr) per CT (HHV, all conditions) | 1.828E+07                         |        |
| Pb Emission Factor (lb/MMscf)                           | 0.0005                            |        |
| Global Warming Potential - CO <sub>2</sub>              | 1                                 |        |
| Global Warming Potential - CH4                          | 25                                |        |
| Global Warming Potential - N <sub>2</sub> O             | 298                               |        |
| 40 CFR Part 98 Subpart C Emission Factors               | for GHG Pollutants <sup>(4)</sup> |        |
|                                                         | Natural Gas                       | Ethar  |
| Conversion Factor (kg to lb)                            | 2.2046                            | 2.204  |
| CO <sub>2</sub> Emission Factor (kg/MMBtu)              | 53.06                             | 59.6   |
| CO <sub>2</sub> Emission Factor (lb/MMBtu)              | 116.98                            | 131.4  |
| CH <sub>4</sub> Emission Factor (kg/MMBtu)              | 1.00E-03                          | 3.00E- |
| CH <sub>4</sub> Emission Factor (lb/MMBtu)              | 2.20E-03                          | 6.61E- |
| N <sub>2</sub> O Emission Factor (kg/MMBtu)             | 1.00E-04                          | 6.00E- |
|                                                         |                                   | 1.32E- |

| Pollutant                                         | 1       | CT                    | 2 0     | CTs       |
|---------------------------------------------------|---------|-----------------------|---------|-----------|
| Pollutant                                         | lb/hr   | ton/yr <sup>(1)</sup> | lb/hr   | ton/yr    |
| VOC                                               | 5.3     | 23.1                  | 10.6    | 46.3      |
| NO <sub>x</sub>                                   | 15.2    | 66.6                  | 30.4    | 133.2     |
| СО                                                | 9.2     | 40.5                  | 18.5    | 80.9      |
| SO <sub>2</sub>                                   | 0.5     | 2.4                   | 1.1     | 4.8       |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub>            | 7.6     | 33.1                  | 15.1    | 66.2      |
| Pb <sup>(2)</sup>                                 | 0.001   | 0.004                 | 0.002   | 0.01      |
| $H_2SO_4^{(3)}$                                   | 0.351   | 1.5                   | 0.7     | 3.1       |
| CO <sub>2</sub> <sup>(3)</sup>                    | 254,005 | 1,112,542             | 508,010 | 2,225,084 |
| CH4 <sup>(4)</sup>                                | 6.9     | 30.2                  | 13.8    | 60.5      |
| N <sub>2</sub> O <sup>(4)</sup>                   | 0.5     | 2.0                   | 0.9     | 4.0       |
| GHG (Mass Basis) <sup>(5)</sup>                   | 254,178 | 1,112,574             | 508,025 | 2,225,149 |
| GHG (CO <sub>2</sub> e Basis) <sup>(6), (7)</sup> | 254,315 | 1,113,898             | 508,629 | 2,227,797 |

<sup>(1)</sup> Tons/yr = (Maximum lb/hr) x (8,760 hr/yr) x (1 ton/2000 lb).

<sup>(2)</sup> Pb emission factor from USEPA's AP-42, Section 1.4.

<sup>(3)</sup> Based on the emissions and performance data provided by GE.

<sup>(4)</sup> Default emission factors obtained from 40 CFR Part 98, Subpart C: General Stationary Fuel Combustion Sources, Tables C-1 and C-2 for natural gas firing.

<sup>(5)</sup> The sum of potential annual GHG emissions on a mass basis (i.e., no GWP applied).

<sup>(0)</sup> For each GHG, emissions are normalized to a CO<sub>2</sub>e basis by multiplying the mass emissions of each individual GHG pollutant by its respective Global warming potentials (GWP). GWP of each pollutant established by 40 CFR Part 98, Subpart A: General Provisions, Table A-1.

 $^{(7)}$  The sum of potential annual GHG emissions on a CO<sub>2</sub>e basis.

Emission Calculations - Combustion Turbine Startups and Shutdowns

| Туре      | Pollutant                              | Emissions<br>(lb/event) <sup>(1)</sup> | Duration<br>(min/event) <sup>(1)</sup> | No. of Events per<br>Year <sup>(1)</sup> | Total Duration<br>(hr/yr) | Emissions<br>(lb/yr) | Emissions from<br>1 CT (tons/yr) | Emissions from<br>2 CTs (tons/yr) |
|-----------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|---------------------------|----------------------|----------------------------------|-----------------------------------|
|           | NOx                                    |                                        |                                        |                                          |                           |                      |                                  |                                   |
|           | Hot                                    | 19                                     | 25                                     | 208                                      | 86.7                      | 3,952                | 2.0                              | 4.0                               |
| Startups  | Warm                                   | 33                                     | 40                                     | 48                                       | 32.0                      | 1,584                | 0.8                              | 1.6                               |
|           | Cold                                   | 47                                     | 55                                     | 4                                        | 3.7                       | 188                  | 0.1                              | 0.2                               |
| Shutdowns |                                        | 5                                      | 14                                     | 260                                      | 60.7                      | 1,300                | 0.7                              | 1.3                               |
|           |                                        |                                        |                                        |                                          | Total                     | 7,024                | 3.5                              | 7.0                               |
|           | СО                                     |                                        |                                        |                                          |                           |                      |                                  |                                   |
|           | Hot                                    | 273                                    | 25                                     | 208                                      | 86.7                      | 56,784               | 28.4                             | 56.8                              |
| Startups  | Warm                                   | 280                                    | 40                                     | 48                                       | 32.0                      | 13,440               | 6.7                              | 13.4                              |
|           | Cold                                   | 1381                                   | 55                                     | 4                                        | 3.7                       | 5,524                | 2.8                              | 5.5                               |
| Shutdowns |                                        | 175                                    | 14                                     | 260                                      | 60.7                      | 45,500               | 22.8                             | 45.5                              |
|           |                                        |                                        |                                        |                                          | Total                     | 121,248              | 60.6                             | 121.2                             |
|           | VOC                                    |                                        |                                        |                                          |                           |                      |                                  |                                   |
|           | Hot                                    | 55                                     | 25                                     | 208                                      | 86.7                      | 11,440               | 5.7                              | 11.4                              |
| Startups  | Warm                                   | 56                                     | 40                                     | 48                                       | 32.0                      | 2,688                | 1.3                              | 2.7                               |
|           | Cold                                   | 380                                    | 55                                     | 4                                        | 3.7                       | 1,520                | 0.8                              | 1.5                               |
| Shutdowns |                                        | 46                                     | 14                                     | 260                                      | 60.7                      | 11,960               | 6.0                              | 12.0                              |
|           |                                        |                                        |                                        |                                          | Total                     | 27,608               | 13.8                             | 27.6                              |
|           | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |                                        |                                        |                                          |                           |                      |                                  |                                   |
|           | Hot                                    | 2.7                                    | 25                                     | 208                                      | 86.7                      | 562                  | 0.3                              | 0.6                               |
| Startups  | Warm                                   | 4.3                                    | 40                                     | 48                                       | 32.0                      | 206                  | 0.1                              | 0.2                               |
|           | Cold                                   | 6                                      | 55                                     | 4                                        | 3.7                       | 24                   | 0.01                             | 0.02                              |
| Shutdowns |                                        | 1.5                                    | 14                                     | 260                                      | 60.7                      | 390                  | 0.2                              | 0.4                               |
|           |                                        |                                        |                                        |                                          | Total                     | 1,182                | 0.6                              | 1.2                               |

<sup>(1)</sup> Startup and shutdown emission rates obtained from GE performance data.

<sup>(2)</sup> Startup and shutdown emission rates were not calculated for SO<sub>2</sub>, Pb, H<sub>2</sub>SO<sub>4</sub>, or GHGs. Worst-case emissions for those pollutants were assumed to be steady-state operation.

Emission Calculations - Auxiliary Boiler

| Parameter                                                           | Value                           |          |
|---------------------------------------------------------------------|---------------------------------|----------|
| Natural Gas Heating Value (Btu/scf)                                 | 1,030                           |          |
| Maximum Heat Input (MMBtu/hr):                                      | 100                             |          |
| Maximum Heat Input (Btu/hr)                                         | 100,000,000                     |          |
| Maximum Annual Fuel Use (scf/hr)                                    | 97,087                          |          |
| Maximum Annual Fuel Use (MMscf/hr)                                  | 0.0971                          |          |
| Maximum Annual Fuel Use (MMscf/yr)                                  | 194                             |          |
| Maximum Annual Operation (hr/yr)                                    | 2,000                           |          |
| Natural Gas Percentage of Fuel Blend                                | 75%                             |          |
| Ethane Percentage of Fuel Blend                                     | 25%                             |          |
| Conversion Factor SO <sub>2</sub> to SO <sub>3</sub>                | 5%                              |          |
| Conversion Factor SO <sub>3</sub> to H <sub>2</sub> SO <sub>4</sub> | 100%                            |          |
| Molecular weight of SO2                                             | 64                              |          |
| Molecular weight of SO3                                             | 80                              |          |
| Molecular weight of H2SO4                                           | 98                              |          |
| Global Warming Potential - CO2                                      | 1                               |          |
| Global Warming Potential - CH4                                      | 25                              |          |
| Global Warming Potential - N2O                                      | 298                             |          |
| 40 CFR Part 98 Subpart C Emission Factors for                       | r GHG Pollutants <sup>(5)</sup> |          |
|                                                                     | Natural Gas                     | Ethane   |
| Conversion Factor (kg to lb)                                        | 2.2046                          | 2.2046   |
| CO <sub>2</sub> Emission Factor (kg/MMBtu)                          | 53.06                           | 59.60    |
| CO <sub>2</sub> Emission Factor (lb/MMBtu)                          | 116.98                          | 131.40   |
| CH <sub>4</sub> Emission Factor (kg/MMBtu)                          | 1.00E-03                        | 3.00E-03 |
| CH <sub>4</sub> Emission Factor (lb/MMBtu)                          | 2.20E-03                        | 6.61E-03 |
| N <sub>2</sub> O Emission Factor (kg/MMBtu)                         | 1.00E-04                        | 6.00E-04 |
| N <sub>2</sub> O Emission Factor (lb/MMBtu)                         | 2.20E-04                        | 1.32E-03 |

| Pollutant                                              | Emission Factor<br>(lb/MMBtu) <sup>(2, 5)</sup> | Emissions<br>(lb/hr) | Emissions (tons/yr) |
|--------------------------------------------------------|-------------------------------------------------|----------------------|---------------------|
| VOC                                                    | 0.006                                           | 0.60                 | 0.60                |
| NOx                                                    | 0.02                                            | 2.00                 | 2.00                |
| СО                                                     | 0.04                                            | 4.00                 | 4.00                |
| SO <sub>2</sub> <sup>(3)</sup>                         | 0.0006                                          | 0.06                 | 0.06                |
| PM <sup>(1)</sup> /PM <sub>10</sub> /PM <sub>2.5</sub> | 0.005                                           | 0.50                 | 0.50                |
| Pb                                                     | 4.85E-07                                        | 4.85E-05             | 4.85E-05            |
| $H_{2}SO_{4}^{(4)}$                                    | 4.46E-05                                        | 4.46E-03             | 4.46E-03            |
| CO <sub>2</sub> <sup>(5)</sup>                         | 120.58                                          | 12,058               | 12,058              |
| CH4 <sup>(5)</sup>                                     | 0.00                                            | 0.33                 | 0.33                |
| N <sub>2</sub> O <sup>(5)</sup>                        | 0.00                                            | 0.05                 | 0.050               |
| GHG (Mass Basis) <sup>(6)</sup>                        |                                                 | 12,059               | 12,059              |
| GHG (CO <sub>2</sub> e Basis) $(7,8)$                  |                                                 | 12,081               | 12,081              |

 $^{\left( 1\right) }$  PM emission factor includes filterable and condensable fractions.

<sup>(2)</sup> Emission factors obtained from potential vendor.

<sup>(3)</sup> Emission rate obtained from US EPA AP-42 Section 1.4, Table 1.4-2.

<sup>(4)</sup> Exhaust emissions are based on 95% fuel sulfur conversion to SO<sub>2</sub> and 5% fuel sulfur conversion to SO<sub>3</sub>. Sulfuric acid mist (H<sub>2</sub>SO<sub>4</sub>) emission calculations conservatively assume that all SO<sub>3</sub> combines with water to form sulfur mist. SO<sub>3</sub> = SO<sub>2</sub> emissions (lb/hr) \* 5% \* MW SO<sub>3</sub>/MW SO<sub>2</sub>

 $H_2SO_4 = SO_3$  emissions (lb/hr) \* 100% \* MW  $H_2SO_4/MW SO_3$ 

<sup>(5)</sup> Default emission factors obtained from 40 CFR Part 98, Subpart C: General Stationary Fuel Combustion Sources, Tables C-1 and C-2 for natural gas firing and ethane combustion. Per Table C-2, the default CH<sub>4</sub> and N<sub>2</sub>O factors for ethane combustion are those for "Petroleum".

<sup>(6)</sup> The sum of potential annual GHG emissions on a mass basis (i.e., no GWP applied).

 $^{(7)}$  For each GHG, emissions are normalized to a CO<sub>2</sub>e basis by multiplying the mass emissions of each individual GHG pollutant by its respective Global warming potentials (GWP). GWP of each pollutant established by 40 CFR Part 98, Subpart A: General Provisions, Table A-1.

 $^{(8)}$  The sum of potential annual GHG emissions on a  $\rm CO_2e$  basis.

#### Hazardous Air Pollutants

| Pollutant           | Emission Factor<br>(lb/MMscf) <sup>(1)</sup> | Emissions (lb/hr) | Emissions (tons/yr) |
|---------------------|----------------------------------------------|-------------------|---------------------|
| 2-Methylnaphthalene | 2.4E-05                                      | 2.33E-06          | 2.33E-06            |
| Arsenic             | 2.0E-04                                      | 1.94E-05          | 1.94E-05            |
| Benzene             | 2.1E-03                                      | 2.04E-04          | 2.04E-04            |
| Cadmium             | 1.1E-03                                      | 1.07E-04          | 1.07E-04            |
| Chromium            | 1.4E-03                                      | 1.36E-04          | 1.36E-04            |
| Cobalt              | 8.4E-05                                      | 8.16E-06          | 8.16E-06            |
| Dichlorobenzene     | 1.2E-03                                      | 1.17E-04          | 1.17E-04            |
| Fluoranthene        | 3.0E-06                                      | 2.91E-07          | 2.91E-07            |
| Fluorene            | 2.8E-06                                      | 2.72E-07          | 2.72E-07            |
| Formaldehyde        | 7.5E-02                                      | 7.28E-03          | 7.28E-03            |
| Hexane              | 1.8E+00                                      | 1.75E-01          | 1.75E-01            |
| Manganese           | 3.8E-04                                      | 3.69E-05          | 3.69E-05            |
| Mercury             | 2.6E-04                                      | 2.52E-05          | 2.52E-05            |
| Naphthalene         | 6.1E-04                                      | 5.92E-05          | 5.92E-05            |
| Nickel              | 2.1E-03                                      | 2.04E-04          | 2.04E-04            |
| Phenanathrene       | 1.7E-05                                      | 1.65E-06          | 1.65E-06            |
| Pyrene              | 5.0E-06                                      | 4.85E-07          | 4.85E-07            |
| Toluene             | 3.4E-03                                      | 3.30E-04          | 3.30E-04            |

<sup>(1)</sup> Emission factors obtained from AP-42, Ch. 1.4, Tables 1.4-3 and 1.4-4. Emission factors were not included for pollutants at or below the method detection limits, designated as "less than (<)" in AP-42 emission factor tables.

#### Moundsville Power Emission Calculations - Emergency Generator

| Parameter                            | Value    |
|--------------------------------------|----------|
| Heating Value of ULSD (Btu/gal):     | 135,000  |
| ULSD Sulfur Content (wt. %):         | 0.0015   |
| Rated Output (kW):                   | 1,500    |
| Rated Output (hp):                   | 2,012    |
| Fuel Consumption (gal/hr):           | 109.4    |
| Heat Input (MMBtu/hr):               | 14.8     |
| Maximum Annual Operation (hr/yr)     | 500      |
| NOx + NMHC Emission Factor (g/hp-hr) | 2.8      |
| Concentration of NOx                 | 90%      |
| Concentration of NMHC                | 10%      |
| Molecular weight of S                | 32       |
| Molecular weight of SO2              | 64       |
| Fuel Oil Density (lb/gal)            | 7.05     |
| kg-lb Conversion Factor              | 2.20     |
| CO2 Emission Factor (kg/MMBtu)       | 73.96    |
| CO2 Emission Factor (lb/MMBtu)       | 163.05   |
| CH4 Emission Factor (kg/MMBtu)       | 3.00E-03 |
| CH4 Emission Factor (lb/MMBtu)       | 6.61E-03 |
| N2O Emission Factor (kg/MMBtu)       | 6.00E-04 |
| N2O Emission Factor (lb/MMBtu)       | 1.32E-03 |
| Global Warming Potential - CO2       | 1        |
| Global Warming Potential - CH4       | 25       |
| Global Warming Potential - N2O       | 298      |

#### Criteria Pollutants

| Pollutant                              | Emission Factor<br>(g/hp-hr) <sup>(1)</sup> | Emission Factor<br>(lb/MMBtu) | Emissions (lb/hr) | Emissions (tons/yr) |
|----------------------------------------|---------------------------------------------|-------------------------------|-------------------|---------------------|
| VOC                                    | 0.28                                        |                               | 1.24              | 0.31                |
| NOx                                    | 2.52                                        |                               | 11.18             | 2.79                |
| СО                                     | 2.6                                         |                               | 11.53             | 2.88                |
| SO <sub>2</sub>                        |                                             |                               | 0.02              | 0.006               |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.09                                        |                               | 0.40              | 0.10                |
| CO <sub>2</sub>                        |                                             | 163                           | 2,408             | 602                 |
| CH <sub>4</sub>                        |                                             | 6.61E-03                      | 9.77E-02          | 0.02                |
| N <sub>2</sub> O                       |                                             | 1.32E-03                      | 1.95E-02          | 0.00                |
| GHG (Mass Basis)                       |                                             |                               | 2,408             | 602                 |
| GHG (CO <sub>2</sub> e Basis)          |                                             |                               | 2,416             | 604                 |

<sup>(1)</sup> Emission factor for CO from 40 CFR Part 60, Subpart IIII: Standards Of Performance For Stationary Compression Ignition Internal Combustion Engines. NO<sub>x</sub> + NMHC factor of 2.8 g/hp-hr is provided by vendor. NO<sub>x</sub> and VOC emissions are conservatively estimated to be 90% and 10% of this factor, respectively. PM emission factor of 0.09 g/hp-hr is provided by vendor. SO<sub>2</sub> lb/hr emission rate calculated as a mass balance and based on fuel consumption and fuel oil sulfur content.

(2) Default emission factors obtained from 40 CFR Part 98, Subpart C: General Stationary Fuel Combustion Sources, Tables C-1 and C-2 for distillate fuel oil No. 2 firing.

(3) Global warming potentials (GWP) of each pollutant established by 40 CFR Part 98, Subpart A: General Provisions, Table A-1.

(4) For each GHG, emissions are normalized to a CO2e basis by multiplying the mass emissions of each individual GHG pollutant by its respective GWP.

<sup>(5)</sup> The sum of potential annual GHG emissions on a mass basis (i.e., no GWP applied).

<sup>(6)</sup> The sum of potential annual GHG emissions on a CO<sub>2</sub>e basis.

#### Hazardous Air Pollutants

| Pollutant    | Emission Factor<br>(lb/MMBtu) <sup>(1), (2)</sup> | Emissions (lb/hr) | Emissions (tons/yr) |
|--------------|---------------------------------------------------|-------------------|---------------------|
| Acetaldehyde | 2.52E-05                                          | 3.72E-04          | 9.30E-05            |
| Acrolein     | 7.88E-06                                          | 1.16E-04          | 2.91E-05            |
| Benzene      | 7.76E-04                                          | 1.15E-02          | 2.87E-03            |
| Formaldehyde | 7.89E-05                                          | 1.17E-03          | 2.91E-04            |
| Naphthalene  | 1.30E-04                                          | 1.92E-03          | 4.80E-04            |
| POM          | 2.12E-04                                          | 3.13E-03          | 7.83E-04            |
| Toluene      | 2.81E-04                                          | 4.15E-03          | 1.04E-03            |
| Xylenes      | 1.93E-04                                          | 2.85E-03          | 7.13E-04            |

<sup>(1)</sup> Emission factors provided AP-42, Tables 3.4-3 and 3.4-4 Emission factors were not included for pollutants at or below the method detection limits, designated as "less than (<)" in AP-42 emission factor tables.

<sup>(2)</sup> Polycyclic Organic Matter (listed as "Total PAH" in AP-42)

#### Moundsville Power Emission Calculations - Fire Water Pump

| Parameter                            | Value    |
|--------------------------------------|----------|
| Heating Value of ULSD (Btu/gal):     | 135,000  |
| ULSD Sulfur Content (wt. %):         | 0.0015   |
| Rated Output (hp):                   | 251      |
| Fuel Consumption (gal/hr):           | 14.0     |
| Heat Input (MMBtu/hr):               | 1.89     |
| Maximum Annual Operation (hr/yr):    | 500      |
| NOx + NMHC Emission Factor (g/hp-hr) | 3.0      |
| Concentration of NOx                 | 90%      |
| Concentration of NMHC                | 10%      |
| Molecular weight of S                | 32       |
| Molecular weight of SO2              | 64       |
| Fuel Oil Density (lb/gal)            | 7.05     |
| kg-lb Conversion Factor              | 2.20     |
| CO2 Emission Factor (kg/MMBtu)       | 73.96    |
| CO2 Emission Factor (lb/MMBtu)       | 163.05   |
| CH4 Emission Factor (kg/MMBtu)       | 3.00E-03 |
| CH4 Emission Factor (lb/MMBtu)       | 6.61E-03 |
| N2O Emission Factor (kg/MMBtu)       | 6.00E-04 |
| N2O Emission Factor (lb/MMBtu)       | 1.32E-03 |
| Global Warming Potential - CO2       | 1        |
| Global Warming Potential - CH4       | 25       |
| Global Warming Potential - N2O       | 298      |

#### **Criteria Pollutants**

| Pollutant                              | Emission Factor<br>(g/hp-hr) <sup>(1)</sup> | Emission Factor<br>(lb/MMBtu) | Emissions<br>(lb/hr) | Emissions (tons/yr) |
|----------------------------------------|---------------------------------------------|-------------------------------|----------------------|---------------------|
| VOC                                    | 0.30                                        |                               | 0.17                 | 0.04                |
| NO <sub>x</sub>                        | 2.70                                        |                               | 1.49                 | 0.37                |
| СО                                     | 2.6                                         |                               | 1.44                 | 0.36                |
| SO <sub>2</sub>                        |                                             |                               | 0.003                | 7.4E-04             |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.15                                        |                               | 0.08                 | 0.021               |
| CO <sub>2</sub>                        |                                             | 163                           | 308                  | 77                  |
| CH <sub>4</sub>                        |                                             | 6.61E-03                      | 1.25E-02             | 3.13E-03            |
| N <sub>2</sub> O                       |                                             | 1.32E-03                      | 2.50E-03             | 6.25E-04            |
| GHG (Mass Basis)                       |                                             |                               | 308                  | 77                  |
| GHG (CO <sub>2</sub> e Basis)          |                                             | -                             | 309                  | 77                  |

<sup>(1)</sup> Emission factors from 40 CFR Part 60, Subpart IIII: Standards Of Performance For Stationary Compression Ignition Internal Combustion Engines.  $NO_x + NMHC$  factor is 3.0 g/hp-hr.  $NO_x$  and VOC emissions are conservatively estimated to be 90% and 10% of this factor, respectively.  $SO_2$  lb/hr emission rate calculated as a mass balance and based on fuel consumption and fuel oil sulfur content.

<sup>(2)</sup> Default emission factors obtained from 40 CFR Part 98, Subpart C: General Stationary Fuel Combustion Sources, Tables C-1 and C-2 for distillate fuel oil No. 2 firing.

<sup>(3)</sup> Global warming potentials (GWP) of each pollutant established by 40 CFR Part 98, Subpart A: General Provisions, Table A-1.

(4) For each GHG, emissions are normalized to a CO<sub>2</sub>e basis by multiplying the mass emissions of each individual GHG pollutant by its respective GWP.

<sup>(5)</sup> The sum of potential annual GHG emissions on a mass basis (i.e., no GWP applied).

 $^{\rm (6)}$  The sum of potential annual GHG emissions on a CO2e basis.

#### Hazardous Air Pollutants

| Pollutant    | Emission Factor<br>(lb/MMBtu) <sup>(1), (2)</sup> | Emissions (lb/hr) | Emissions (tons/yr) |
|--------------|---------------------------------------------------|-------------------|---------------------|
| Acetaldehyde | 7.67E-04                                          | 1.45E-03          | 3.62E-04            |
| Benzene      | 9.33E-04                                          | 1.76E-03          | 4.41E-04            |
| Formaldehyde | 1.18E-03                                          | 2.23E-03          | 5.58E-04            |
| Naphthalene  | 8.48E-05                                          | 1.60E-04          | 4.01E-05            |
| POM          | 1.68E-04                                          | 3.18E-04          | 7.94E-05            |
| Toluene      | 4.09E-04                                          | 7.73E-04          | 1.93E-04            |
| Xylenes      | 2.85E-04                                          | 5.39E-04          | 1.35E-04            |

<sup>(1)</sup> Emission factors obtained from AP-42, Ch. 3.3, Table 3.3-2. Emission factors were not included for pollutants at or below the method detection limits, designated as "less than (<)" in AP-42 emission factor tables.

(2) Polycyclic Organic Matter (listed as "Total PAH" in AP-42)

**Emission Calculations - Cooling Tower** 

| -                                                           |           |
|-------------------------------------------------------------|-----------|
| Parameter                                                   |           |
| Number of Units                                             | 1         |
| Number of Cells per Tower                                   | 10        |
| Design Circulating Water Flow Rate (gpm)                    | 159,000   |
| Cooling Tower Drift Rate (% of circulating water flow rate) | 0.0005    |
| Total Dissolved Solids in Make-up Water (mg/L)              | 300       |
| Cycles of Concentration                                     | 6         |
| Maximum TDS in Circulating Water (mg/L)                     | 1,800     |
| PI                                                          | 3.1415927 |
| Specific Gravity of Water                                   | 1         |
| Specific Gravity of TDS                                     | 2.2       |
| PM <sub>10</sub> Fraction                                   | 67.3%     |
| PM <sub>2.5</sub> Fraction                                  | 0.22%     |
| Conversion Factor (min/hr)                                  | 60        |
| Grams/lb                                                    | 453.59    |
| Water Density (L/gal)                                       | 3.8       |
| Maximum Annual Operations (hr/yr)                           | 8,760     |
| Conversion Factor (lb/ton)                                  | 2,000     |

| Pollutant                          | PM   | $PM_{10}$ | PM <sub>2.5</sub> |
|------------------------------------|------|-----------|-------------------|
| Maximum Hourly Emissions (lb/hr)   | 0.72 | 0.48      | 1.56E-03          |
| Maximum Annual Emissions (tons/yr) | 3.2  | 2.1       | 6.81E-03          |

#### Reisman/Frisbie Particle Sizing

|                            |                    |                   | Particle Mass |                | Solid Particle | EPRI %  |             |
|----------------------------|--------------------|-------------------|---------------|----------------|----------------|---------|-------------|
|                            | Droplet Volume     |                   | (Solids)      | Solid Particle | Diameter       | Mass    | EPRI % Mass |
| EPRI Droplet Diameter (um) | (µm <sup>3</sup> ) | Droplet Mass (µg) | (µg)          | Volume (µm3)   | (µm)           | Smaller | Smaller     |
| 10                         | 524                | 5.24E-04          | 9.42E-07      | 0.43           | 0.935          | 0.000   |             |
| 20                         | 4189               | 4.19E-03          | 7.54E-06      | 3.43           | 1.871          | 0.196   | 0.22        |
| 30                         | 14137              | 1.41E-02          | 2.54E-05      | 11.57          | 2.806          | 0.226   |             |
| 40                         | 33510              | 3.35E-02          | 6.03E-05      | 27.42          | 3.741          | 0.514   |             |
| 50                         | 65450              | 6.54E-02          | 1.18E-04      | 53.55          | 4.676          | 1.816   |             |
| 60                         | 113097             | 1.13E-01          | 2.04E-04      | 92.53          | 5.612          | 5.702   |             |
| 70                         | 179594             | 1.80E-01          | 3.23E-04      | 146.94         | 6.547          | 21.348  |             |
| 90                         | 381704             | 3.82E-01          | 6.87E-04      | 312.30         | 8.418          | 49.812  | 67.3        |
| 110                        | 696910             | 6.97E-01          | 1.25E-03      | 570.20         | 10.288         | 70.509  |             |
| 130                        | 1150347            | 1.15E+00          | 2.07E-03      | 941.19         | 12.159         | 82.023  |             |
| 150                        | 1767146            | 1.77E+00          | 3.18E-03      | 1445.85        | 14.029         | 88.012  |             |
| 180                        | 3053628            | 3.05E+00          | 5.50E-03      | 2498.42        | 16.835         | 91.032  |             |
| 210                        | 4849048            | 4.85E+00          | 8.73E-03      | 3967.40        | 19.641         | 92.468  |             |
| 240                        | 7238229            | 7.24E+00          | 1.30E-02      | 5922.19        | 22.447         | 94.091  |             |
| 270                        | 10305995           | 1.03E+01          | 1.86E-02      | 8432.18        | 25.253         | 94.689  |             |
| 300                        | 14137167           | 1.41E+01          | 2.54E-02      | 11566.77       | 28.059         | 96.288  |             |
| 350                        | 22449298           | 2.24E+01          | 4.04E-02      | 18367.61       | 32.735         | 97.011  |             |
| 400                        | 33510322           | 3.35E+01          | 6.03E-02      | 27417.54       | 37.412         | 98.340  |             |
| 450                        | 47712938           | 4.77E+01          | 8.59E-02      | 39037.86       | 42.088         | 99.071  |             |
| 500                        | 65449847           | 6.54E+01          | 1.18E-01      | 53549.87       | 46.765         | 99.071  |             |
| 600                        | 113097336          | 1.13E+02          | 2.04E-01      | 92534.18       | 56.118         | 100.000 |             |

#### Emission Calculations - HAPs

| <b>D</b>                 | <b>TT</b> 1. | CT <sup>(1)</sup> | 55    |                  | Emergency |                 |
|--------------------------|--------------|-------------------|-------|------------------|-----------|-----------------|
| Parameters               | Units        | CI                | DB    | Auxiliary Boiler | Generator | Fire Water Pump |
| Maximum Heat Input       | MMBtu/hr     | 2,087             | 72    | 100              | 14.8      | 1.89            |
| Maximum Annual Operation | hr/yr        | 8,760             | 8,760 | 2,000            | 500       | 500             |

<sup>(1)</sup> Expected heat input at an ambient temperature of 10 °F.

| НАР                 | CT Emission<br>Factor <sup>(1)</sup><br>(lb/MMBtu) | DB Emission<br>Factor <sup>(2)</sup><br>(lb/MMscf) | One CT<br>(lb/hr) | One DB<br>(lb/hr) | Two CT<br>(lb/hr) | Two DB<br>(lb/hr) | One CT<br>(tons/yr) | Two CT<br>(tons/yr) | One DB<br>(tons/yr) | Two DB<br>(tons/yr) | One CT + One DB<br>(tons/yr) | Two CT + Two<br>DB<br>(tons/yr) |
|---------------------|----------------------------------------------------|----------------------------------------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------|---------------------|---------------------|------------------------------|---------------------------------|
| 2-Methylnaphthalene | NA                                                 | 2.4E-05                                            | NA                | 1.68E-06          | NA                | 3.36E-06          | NA                  | NA                  | 7.36E-06            | 1.47E-05            | 7.36E-06                     | 1.47E-05                        |
| Acetaldehyde        | 4.0E-05                                            | NA                                                 | 0.0835            | NA                | 1.67E-01          | NA                | 3.66E-01            | 0.731               | NA                  | NA                  | 3.66E-01                     | 7.31E-01                        |
| Acrolein            | 6.4E-06                                            | NA                                                 | 0.0134            | NA                | 2.67E-02          | NA                | 5.85E-02            | 0.117               | NA                  | NA                  | 5.85E-02                     | 1.17E-01                        |
| Arsenic             | NA                                                 | 2.0E-04                                            | NA                | 1.40E-05          | NA                | 2.80E-05          | NA                  | NA                  | 6.13E-05            | 1.23E-04            | 6.13E-05                     | 1.23E-04                        |
| Benzene             | 1.2E-05                                            | 2.1E-03                                            | 0.0250            | 1.47E-04          | 5.01E-02          | 2.94E-04          | 1.10E-01            | 0.219               | 6.44E-04            | 1.29E-03            | 1.10E-01                     | 2.21E-01                        |
| Cadmium             | NA                                                 | 1.1E-03                                            | NA                | 7.70E-05          | NA                | 1.54E-04          | NA                  | NA                  | 3.37E-04            | 6.74E-04            | 3.37E-04                     | 6.74E-04                        |
| Chromium            | NA                                                 | 1.4E-03                                            | NA                | 9.80E-05          | NA                | 1.96E-04          | NA                  | NA                  | 4.29E-04            | 8.58E-04            | 4.29E-04                     | 8.58E-04                        |
| Cobalt              | NA                                                 | 8.4E-05                                            | NA                | 5.88E-06          | NA                | 1.18E-05          | NA                  | NA                  | 2.58E-05            | 5.15E-05            | 2.58E-05                     | 5.15E-05                        |
| Dichlorobenzene     | NA                                                 | 1.2E-03                                            | NA                | 8.40E-05          | NA                | 1.68E-04          | NA                  | NA                  | 3.68E-04            | 7.36E-04            | 3.68E-04                     | 7.36E-04                        |
| Ethylbenzene        | 3.2E-05                                            | NA                                                 | 0.0668            | NA                | 1.34E-01          | NA                | 2.93E-01            | 0.585               | NA                  | NA                  | 2.93E-01                     | 5.85E-01                        |
| Fluoranthene        | NA                                                 | 3.0E-06                                            | NA                | 2.10E-07          | NA                | 4.20E-07          | NA                  | NA                  | 9.20E-07            | 1.84E-06            | 9.20E-07                     | 1.84E-06                        |
| Fluorene            | NA                                                 | 2.8E-06                                            | NA                | 1.96E-07          | NA                | 3.92E-07          | NA                  | NA                  | 8.58E-07            | 1.72E-06            | 8.58E-07                     | 1.72E-06                        |
| Formaldehyde        | 3.0E-04                                            | 7.5E-02                                            | 0.6261            | 5.25E-03          | 1.25E+00          | 1.05E-02          | 2.74E+00            | 5.485               | 2.30E-02            | 4.60E-02            | 2.77E+00                     | 5.53E+00                        |
| Hexane              | NA                                                 | 1.8E+00                                            | NA                | 1.26E-01          | NA                | 2.52E-01          | NA                  | NA                  | 5.52E-01            | 1.10E+00            | 5.52E-01                     | 1.10E+00                        |
| Manganese           | NA                                                 | 3.8E-04                                            | NA                | 2.66E-05          | NA                | 5.32E-05          | NA                  | NA                  | 1.16E-04            | 2.33E-04            | 1.16E-04                     | 2.33E-04                        |
| Mercury             | NA                                                 | 2.6E-04                                            | NA                | 1.82E-05          | NA                | 3.64E-05          | NA                  | NA                  | 7.97E-05            | 1.59E-04            | 7.97E-05                     | 1.59E-04                        |
| Naphthalene         | 1.3E-06                                            | 6.1E-04                                            | 0.0027            | 4.27E-05          | 5.43E-03          | 8.54E-05          | 1.19E-02            | 0.024               | 1.87E-04            | 3.74E-04            | 1.21E-02                     | 2.41E-02                        |
| Nickel              | NA                                                 | 2.1E-03                                            | NA                | 1.47E-04          | NA                | 2.94E-04          | NA                  | NA                  | 6.44E-04            | 1.29E-03            | 6.44E-04                     | 1.29E-03                        |
| Phenanathrene       | NA                                                 | 1.7E-05                                            | NA                | 1.19E-06          | NA                | 2.38E-06          | NA                  | NA                  | 5.21E-06            | 1.04E-05            | 5.21E-06                     | 1.04E-05                        |
| POM                 | 2.2E-06                                            | NA                                                 | 0.0046            | NA                | 9.18E-03          | NA                | 2.01E-02            | 0.040               | NA                  | NA                  | 2.01E-02                     | 4.02E-02                        |
| Pyrene              | NA                                                 | 5.0E-06                                            | NA                | 3.50E-07          | NA                | 7.00E-07          | NA                  | NA                  | 1.53E-06            | 3.07E-06            | 1.53E-06                     | 3.07E-06                        |
| Toluene             | 1.3E-04                                            | 3.4E-03                                            | 0.2713            | 2.38E-04          | 5.43E-01          | 4.76E-04          | 1.19E+00            | 2.377               | 1.04E-03            | 2.08E-03            | 1.19E+00                     | 2.38E+00                        |
| Xylenes             | 6.4E-05                                            | NA                                                 | 0.1336            | NA                | 2.67E-01          | NA                | 5.85E-01            | 1.170               | NA                  | NA                  | 5.85E-01                     | 1.17E+00                        |

NA = No Emission Factor Available.

<sup>(1)</sup> AP-42 Chapter 3.1, Table 3.1-3.

<sup>(2)</sup> AP-42 Chapter 1.4, Tables 1.4-3 and 1.4-4.

| Hazardous Air Pollutant (HAP)  | One CT<br>(lb/hr) | One DB<br>(lb/hr) | Auxiliary Boiler<br>(lb/hr) | Emergency<br>Generator (lb/hr) | Fire Water Pump<br>(lb/hr) | Two CT +<br>Two DB<br>(tons/yr) | Auxiliary Boiler<br>(tons/yr) | Emergency<br>Generator<br>(tons/yr) | Fire Water Pump<br>(tons/yr) | Facility Total<br>(tons/yr) |
|--------------------------------|-------------------|-------------------|-----------------------------|--------------------------------|----------------------------|---------------------------------|-------------------------------|-------------------------------------|------------------------------|-----------------------------|
| 2-Methylnaphthalene            | NA                | 1.68E-06          | 2.33E-06                    | NA                             | NA                         | 1.47E-05                        | 2.33E-06                      | NA                                  | NA                           | 1.70E-05                    |
| Acetaldehyde                   | 8.35E-02          | NA                | NA                          | 3.72E-04                       | 1.45E-03                   | 7.31E-01                        | NA                            | 9.30E-05                            | 3.62E-04                     | 7.32E-01                    |
| Acrolein                       | 1.34E-02          | NA                | NA                          | 1.16E-04                       | NA                         | 1.17E-01                        | NA                            | 2.91E-05                            | NA                           | 1.17E-01                    |
| Arsenic                        | NA                | 1.40E-05          | 1.94E-05                    | NA                             | NA                         | 1.23E-04                        | 1.94E-05                      | NA                                  | NA                           | 1.42E-04                    |
| Benzene                        | 2.50E-02          | 1.47E-04          | 2.04E-04                    | 1.15E-02                       | 1.76E-03                   | 2.21E-01                        | 2.04E-04                      | 2.87E-03                            | 4.41E-04                     | 2.24E-01                    |
| Cadmium                        | NA                | 7.70E-05          | NA                          | NA                             | NA                         | 6.74E-04                        | NA                            | NA                                  | NA                           | 6.74E-04                    |
| Chromium                       | NA                | 9.80E-05          | 1.36E-04                    | NA                             | NA                         | 8.58E-04                        | 1.36E-04                      | NA                                  | NA                           | 9.94E-04                    |
| Cobalt                         | NA                | 5.88E-06          | 8.16E-06                    | NA                             | NA                         | 5.15E-05                        | 8.16E-06                      | NA                                  | NA                           | 5.97E-05                    |
| Dichlorobenzene                | NA                | 8.40E-05          | 1.17E-04                    | NA                             | NA                         | 7.36E-04                        | 1.17E-04                      | NA                                  | NA                           | 8.52E-04                    |
| Ethylbenzene                   | 6.68E-02          | NA                | NA                          | NA                             | NA                         | 5.85E-01                        | NA                            | NA                                  | NA                           | 5.85E-01                    |
| Fluoranthene                   | NA                | 2.10E-07          | 2.91E-07                    | NA                             | NA                         | 1.84E-06                        | 2.91E-07                      | NA                                  | NA                           | 2.13E-06                    |
| Fluorene                       | NA                | 1.96E-07          | 2.72E-07                    | NA                             | NA                         | 1.72E-06                        | 2.72E-07                      | NA                                  | NA                           | 1.99E-06                    |
| Formaldehyde                   | 6.26E-01          | 5.25E-03          | 7.28E-03                    | 1.17E-03                       | 2.23E-03                   | 5.53E+00                        | 7.28E-03                      | 2.91E-04                            | 5.58E-04                     | 5.54E+00                    |
| Hexane                         | NA                | 1.26E-01          | 1.75E-01                    | NA                             | NA                         | 1.10E+00                        | 1.75E-01                      | NA                                  | NA                           | 1.28E+00                    |
| Manganese                      | NA                | 2.66E-05          | 3.69E-05                    | NA                             | NA                         | 2.33E-04                        | 3.69E-05                      | NA                                  | NA                           | 2.70E-04                    |
| Mercury                        | NA                | 1.82E-05          | 2.52E-05                    | NA                             | NA                         | 1.59E-04                        | 2.52E-05                      | NA                                  | NA                           | 1.85E-04                    |
| Naphthalene                    | 2.71E-03          | 4.27E-05          | 5.92E-05                    | 1.92E-03                       | 1.60E-04                   | 2.41E-02                        | 5.92E-05                      | 4.80E-04                            | 4.01E-05                     | 2.47E-02                    |
| Nickel                         | NA                | 1.47E-04          | 2.04E-04                    | NA                             | NA                         | 1.29E-03                        | 2.04E-04                      | NA                                  | NA                           | 1.49E-03                    |
| Phenanathrene                  | NA                | 1.19E-06          | 1.65E-06                    | NA                             | NA                         | 1.04E-05                        | 1.65E-06                      | NA                                  | NA                           | 1.21E-05                    |
| POM                            | 4.59E-03          | NA                | NA                          | 3.13E-03                       | 3.18E-04                   | 4.02E-02                        | NA                            | 7.83E-04                            | 7.94E-05                     | 4.11E-02                    |
| Pyrene                         | NA                | 3.50E-07          | 4.85E-07                    | NA                             | NA                         | 3.07E-06                        | 4.85E-07                      | NA                                  | NA                           | 3.55E-06                    |
| Toluene                        | 2.71E-01          | 2.38E-04          | 3.30E-04                    | 4.15E-03                       | 7.73E-04                   | 2.38E+00                        | 3.30E-04                      | 1.04E-03                            | 1.93E-04                     | 2.38E+00                    |
| Xylenes                        | 1.34E-01          | NA                | NA                          | 2.85E-03                       | 5.39E-04                   | 1.17E+00                        | NA                            | 7.13E-04                            | 1.35E-04                     | 1.17E+00                    |
| Maximum Emissions (Single HAP) |                   |                   |                             |                                |                            |                                 |                               |                                     |                              | 5.54                        |
| Total HAPs                     |                   |                   |                             |                                |                            |                                 |                               |                                     |                              | 12.1                        |

NA = No Emission Factor Available.

### Moundsville Power Emission Calculations - GHGs (SF<sub>6</sub>) from Circuit Breakers

| Pollutant       | Emission Source             | Count<br>(Breakers) | Mass of SF <sub>6</sub> per<br>Breaker<br>(lb/Breaker/year) | Annual SF <sub>6</sub> Leak Rate<br>(% by weight) | SF <sub>6</sub> Mass<br>Emissions<br>(tons/yr) | Global Warming<br>Potential | CO <sub>2</sub> e<br>(tons/yr) |
|-----------------|-----------------------------|---------------------|-------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------------------|--------------------------------|
| SF <sub>6</sub> | Generator Breakers          | 2                   | 25                                                          | 0.50%                                             | 1.25E-04                                       | 22,800                      | 2.85                           |
| $SF_6$          | Switchyard Circuit Breakers | 3                   | 325                                                         | 0.50%                                             | 2.44E-03                                       | 22,800                      | 55.58                          |
|                 | Total                       | 5                   | 350                                                         |                                                   | 0.0026                                         |                             | 58.43                          |

<sup>(1)</sup>The annual mass emissions of SF<sub>6</sub> from electrical breakers are calculated using the number of breakers, mass of SF<sub>6</sub> per breaker, and annual leak rate as follows:

 $SF_6$  for Breakers (tons/yr) = Number of Breakers x Mass of  $SF_6$  per Breaker (lb) x Annual  $SF_6$  Leak Rate (%) x 1 ton/2000 lb

 $^{(2)}$  The Global Warming Potential factor for SF<sub>6</sub> was obtained from 40 CFR Part 98, Subpart A, Table A-1.

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

| Identification<br>User Identification:<br>City:<br>State:<br>Company:<br>Type of Tank:<br>Description:                                                                                             | Diesel Storage Tank ST-1<br>Moundsville<br>West Virginia<br>Moundsville Power, LLC<br>Vertical Fixed Roof Tank |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Tank Dimensions<br>Shell Height (ft):<br>Diameter (ft):<br>Liquid Height (ft) :<br>Avg. Liquid Height (ft):<br>Volume (gallons):<br>Turnovers:<br>Net Throughput(gal/yr):<br>Is Tank Heated (y/n): | 7.00<br>3.50<br>7.00<br>3.50<br>500.00<br>2.00<br>1,000.00<br>N                                                |  |  |  |  |  |
| Paint Characteristics<br>Shell Color/Shade:<br>Shell Condition<br>Roof Color/Shade:<br>Roof Condition:                                                                                             | Gray/Light<br>Good<br>Gray/Light<br>Good                                                                       |  |  |  |  |  |
| Roof Characteristics<br>Type:<br>Height (ft)<br>Radius (ft) (Dome Roof)                                                                                                                            | Dome 0.00<br>0.00                                                                                              |  |  |  |  |  |
| Breather Vent Settings<br>Vacuum Settings (psig):<br>Pressure Settings (psig)                                                                                                                      | -0.03<br>0.03                                                                                                  |  |  |  |  |  |

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

# TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Diesel Storage Tank ST-1 - Vertical Fixed Roof Tank Moundsville, West Virginia

|                           |       | Tem   | ily Liquid S<br>perature (d | eg F) | Liquid<br>Bulk<br>Temp |        | r Pressure |        | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.   | Basis for Vapor Pressure            |
|---------------------------|-------|-------|-----------------------------|-------|------------------------|--------|------------|--------|---------------|----------------|---------------|--------|-------------------------------------|
| Mixture/Component         | Month | Avg.  | Min.                        | Max.  | (deg F)                | Avg.   | Min.       | Max.   | Weight.       | Fract.         | Fract.        | Weight | Calculations                        |
| Distillate fuel oil no. 2 | All   | 56.69 | 48.70                       | 64.69 | 52.55                  | 0.0058 | 0.0043     | 0.0077 | 130.0000      |                |               | 188.00 | Option 1: VP50 = .0045 VP60 = .0065 |

# TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Diesel Storage Tank ST-1 - Vertical Fixed Roof Tank Moundsville, West Virginia

| Annual Emission Calcaulations                                                      |                      |
|------------------------------------------------------------------------------------|----------------------|
| Standing Losses (Ib):                                                              | 0.1041               |
| Vapor Space Volume (cu ft):                                                        | 35.9837              |
| Vapor Density (lb/cu ft):                                                          | 0.0001               |
| Vapor Space Expansion Factor:                                                      | 0.0579               |
| Vented Vapor Saturation Factor:                                                    | 0.9988               |
| Tank Vapor Space Volume:                                                           |                      |
| Vapor Space Volume (cu ft):                                                        | 35.9837              |
| Tank Diameter (ft):                                                                | 3.5000               |
| Vapor Space Outage (ft):                                                           | 3.7401               |
| Tank Shell Height (ft):                                                            | 7.0000               |
| Average Liquid Height (ft):<br>Roof Outage (ft):                                   | 3.5000<br>0.2401     |
|                                                                                    |                      |
| Roof Outage (Dome Roof)<br>Roof Outage (ft):                                       | 0.2401               |
| Dome Radius (ft):                                                                  | 3.5000               |
| Shell Radius (ft):                                                                 | 1.7500               |
| /apor Density                                                                      |                      |
| Vapor Density (lb/cu ft):                                                          | 0.0001               |
| Vapor Molecular Weight (Ib/Ib-mole):                                               | 130.0000             |
| Vapor Pressure at Daily Average Liquid                                             |                      |
| Surface Temperature (psia):<br>Daily Avg. Liquid Surface Temp. (deg. R):           | 0.0058<br>516.3645   |
| Daily Avg. Liquid Surface Temp. (deg. R):<br>Daily Average Ambient Temp. (deg. F): | 516.3645             |
| Ideal Gas Constant R                                                               | 50.5005              |
| (psia cuft / (lb-mol-deg R)):                                                      | 10.731               |
| Liquid Bulk Temperature (deg. R):                                                  | 512.2183             |
| Tank Paint Solar Absorptance (Shell):                                              | 0.5400               |
| Tank Paint Solar Absorptance (Roof):                                               | 0.5400               |
| Daily Total Solar Insulation<br>Factor (Btu/sqft day):                             | 1,202.9556           |
|                                                                                    | 1,202.3030           |
| /apor Space Expansion Factor<br>Vapor Space Expansion Factor:                      | 0.0579               |
| Daily Vapor Temperature Range (deg. R):                                            | 31.9767              |
| Daily Vapor Pressure Range (psia):                                                 | 0.0034               |
| Breather Vent Press. Setting Range(psia):                                          | 0.0600               |
| Vapor Pressure at Daily Average Liquid                                             |                      |
| Surface Temperature (psia):                                                        | 0.0058               |
| Vapor Pressure at Daily Minimum Liquid                                             |                      |
| Surface Temperature (psia):                                                        | 0.0043               |
| Vapor Pressure at Daily Maximum Liquid                                             | 0.0077               |
| Surface Temperature (psia):<br>Daily Avg. Liquid Surface Temp. (deg R):            | 516.3645             |
| Daily Min. Liquid Surface Temp. (deg R):                                           | 508.3704             |
| Daily Max. Liquid Surface Temp. (deg R):                                           | 524.3587             |
| Daily Ambient Temp. Range (deg. R):                                                | 19.1500              |
| /ented Vapor Saturation Factor                                                     |                      |
| Vented Vapor Saturation Factor:                                                    | 0.9988               |
| Vapor Pressure at Daily Average Liquid:                                            |                      |
| Surface Temperature (psia):                                                        | 0.0058               |
| Vapor Space Outage (ft):                                                           | 3.7401               |
| Vorking Losses (lb):                                                               | 0.0181               |
| Vapor Molecular Weight (lb/lb-mole):                                               | 130.0000             |
| Vapor Pressure at Daily Average Liquid                                             |                      |
| Surface Temperature (psia):                                                        | 0.0058               |
| Annual Net Throughput (gal/yr.):                                                   | 1,000.0000<br>2.0000 |
| Annual Turnovers:                                                                  |                      |
| Turnover Factor:<br>Maximum Liquid Volume (gal):                                   | 1.0000<br>500.0000   |
| Maximum Liquid Volume (gal):<br>Maximum Liquid Height (ft):                        | 7.0000               |
| Tank Diameter (ft):                                                                | 3.5000               |
| Working Loss Product Factor:                                                       | 1.0000               |
|                                                                                    |                      |
| otal Losses (lb):                                                                  | 0.1221               |
|                                                                                    |                      |

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

### **Emissions Report for: Annual**

Diesel Storage Tank ST-1 - Vertical Fixed Roof Tank Moundsville, West Virginia

|                           | Losses(lbs)  |                |                 |  |  |  |  |  |
|---------------------------|--------------|----------------|-----------------|--|--|--|--|--|
| Components                | Working Loss | Breathing Loss | Total Emissions |  |  |  |  |  |
| Distillate fuel oil no. 2 | 0.02         | 0.10           | 0.12            |  |  |  |  |  |

## TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

| Identification<br>User Identification:<br>City:<br>State:<br>Company:<br>Type of Tank:<br>Description:                                                                                             | Diesel Storage Tank ST-2<br>Moundsville<br>West Virginia<br>Moundsville Power, LLC<br>Vertical Fixed Roof Tank |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Tank Dimensions<br>Shell Height (ft):<br>Diameter (ft):<br>Liquid Height (ft) :<br>Avg. Liquid Height (ft):<br>Volume (gallons):<br>Turnovers:<br>Net Throughput(gal/yr):<br>Is Tank Heated (y/n): | 10.50<br>7.00<br>10.50<br>5.25<br>3.000.00<br>2.00<br>6,000.00<br>N                                            |  |  |  |  |  |
| Paint Characteristics<br>Shell Color/Shade:<br>Shell Condition<br>Roof Color/Shade:<br>Roof Condition:                                                                                             | Gray/Light<br>Good<br>Gray/Light<br>Good                                                                       |  |  |  |  |  |
| Roof Characteristics<br>Type:<br>Height (ft)<br>Radius (ft) (Dome Roof)                                                                                                                            | Dome 0.00<br>0.00                                                                                              |  |  |  |  |  |
| Breather Vent Settings<br>Vacuum Settings (psig):<br>Pressure Settings (psig)                                                                                                                      | -0.03<br>0.03                                                                                                  |  |  |  |  |  |

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

# TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Diesel Storage Tank ST-2 - Vertical Fixed Roof Tank Moundsville, West Virginia

|                           |       | Da<br>Tem | ily Liquid S<br>perature (d |       | Liquid<br>Bulk<br>Temp | Vapo   | r Pressure |        | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.   | Basis for Vapor Pressure            |
|---------------------------|-------|-----------|-----------------------------|-------|------------------------|--------|------------|--------|---------------|----------------|---------------|--------|-------------------------------------|
| Mixture/Component         | Month | Avg.      | Min.                        | Max.  | (deg F)                | Avg.   | Min.       | Max.   | Weight.       | Fract.         | Fract.        | Weight | Calculations                        |
| Distillate fuel oil no. 2 | All   | 56.69     | 48.70                       | 64.69 | 52.55                  | 0.0058 | 0.0043     | 0.0077 | 130.0000      |                |               | 188.00 | Option 1: VP50 = .0045 VP60 = .0065 |

# TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Diesel Storage Tank ST-2 - Vertical Fixed Roof Tank Moundsville, West Virginia

| Annual Emission Calcaulations                                                      |                   |
|------------------------------------------------------------------------------------|-------------------|
| Standing Losses (Ib):                                                              | 0.6374            |
| Vapor Space Volume (cu ft):                                                        | 220.5214          |
| Vapor Density (lb/cu ft):                                                          | 0.0001            |
| Vapor Space Expansion Factor:                                                      | 0.0579            |
| Vented Vapor Saturation Factor:                                                    | 0.9982            |
| Fank Vapor Space Volume:                                                           |                   |
| Vapor Space Volume (cu ft):                                                        | 220.5214          |
| Tank Diameter (ft):                                                                | 7.0000            |
| Vapor Space Outage (ft):<br>Tank Shell Height (ft):                                | 5.7301<br>10.5000 |
| Average Liquid Height (ft):                                                        | 5.2500            |
| Roof Outage (ft):                                                                  | 0.4801            |
| Roof Outage (Dome Roof)                                                            |                   |
| Roof Outage (ft):                                                                  | 0.4801            |
| Dome Radius (ft):                                                                  | 7.0000            |
| Shell Radius (ft):                                                                 | 3.5000            |
| /apor Density                                                                      |                   |
| Vapor Density (lb/cu ft):                                                          | 0.0001            |
| Vapor Molecular Weight (lb/lb-mole):                                               | 130.0000          |
| Vapor Pressure at Daily Average Liquid                                             | 0.0058            |
| Surface Temperature (psia):<br>Daily Avg. Liquid Surface Temp. (deg. R):           | 516.3645          |
| Daily Avg. Equild Surface remp. (deg. K).<br>Daily Average Ambient Temp. (deg. F): | 50.3083           |
| Ideal Gas Constant R                                                               |                   |
| (psia cuft / (lb-mol-deg R)):                                                      | 10.731            |
| Liquid Bulk Temperature (deg. R):                                                  | 512.2183          |
| Tank Paint Solar Absorptance (Shell):                                              | 0.5400            |
| Tank Paint Solar Absorptance (Roof):                                               | 0.5400            |
| Daily Total Solar Insulation<br>Factor (Btu/sqft day):                             | 1,202.9556        |
| /apor Space Expansion Factor                                                       |                   |
| Vapor Space Expansion Factor:                                                      | 0.0579            |
| Daily Vapor Temperature Range (deg. R):                                            | 31.9767           |
| Daily Vapor Pressure Range (psia):                                                 | 0.0034            |
| Breather Vent Press. Setting Range(psia):                                          | 0.0600            |
| Vapor Pressure at Daily Average Liquid                                             |                   |
| Surface Temperature (psia):                                                        | 0.0058            |
| Vapor Pressure at Daily Minimum Liquid<br>Surface Temperature (psia):              | 0.0043            |
| Vapor Pressure at Daily Maximum Liquid                                             | 0.0043            |
| Surface Temperature (psia):                                                        | 0.0077            |
| Daily Avg. Liquid Surface Temp. (deg R):                                           | 516.3645          |
| Daily Min. Liquid Surface Temp. (deg R):                                           | 508.3704          |
| Daily Max. Liquid Surface Temp. (deg R):                                           | 524.3587          |
| Daily Ambient Temp. Range (deg. R):                                                | 19.1500           |
| /ented Vapor Saturation Factor                                                     |                   |
| Vented Vapor Saturation Factor:                                                    | 0.9982            |
| Vapor Pressure at Daily Average Liquid:<br>Surface Temperature (psia):             | 0.0058            |
| Vapor Space Outage (ft):                                                           | 5.7301            |
|                                                                                    | 0.1084            |
| Vorking Losses (Ib):<br>Vapor Molecular Weight (Ib/Ib-mole):                       | 130.0000          |
| Vapor Pressure at Daily Average Liquid                                             | 100.0000          |
| Surface Temperature (psia):                                                        | 0.0058            |
| Annual Net Throughput (gal/yr.):                                                   | 6,000.0000        |
| Annual Turnovers:                                                                  | 2.0000            |
| Turnover Factor:                                                                   | 1.0000            |
| Maximum Liquid Volume (gal):                                                       | 3,000.0000        |
| Maximum Liquid Height (ft):                                                        | 10.5000           |
| Tank Diameter (ft):<br>Working Loss Product Factor:                                | 7.0000            |
| WORKING LOSS PTOULCE FACIOL.                                                       | 1.0000            |
| otal Losses (lb):                                                                  | 0.7458            |
| otal Losses (lb):                                                                  | 0./458            |
|                                                                                    |                   |

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

### **Emissions Report for: Annual**

Diesel Storage Tank ST-2 - Vertical Fixed Roof Tank Moundsville, West Virginia

|                           | Losses(lbs)  |                |                 |  |  |  |  |  |
|---------------------------|--------------|----------------|-----------------|--|--|--|--|--|
| Components                | Working Loss | Breathing Loss | Total Emissions |  |  |  |  |  |
| Distillate fuel oil no. 2 | 0.11         | 0.64           | 0.75            |  |  |  |  |  |

# **Attachment O**

# Attachment O

# Monitoring, Recordkeeping, Reporting and Testing Plans

Moundsville Power suggests the following:

- Limit the annual gas consumption for the combined-cycle combustion turbines and auxiliary boiler as presented in this permit application.
- Record the amount of natural gas consumed in the combined-cycle combustion turbines and auxiliary boiler on a daily, monthly, and 12-month rolling total.
- Operate and maintain SCR and Oxidation Catalyst for the combined-cycle combustion turbines for NOx and CO control.
- Limit the sulfur content of the natural gas as required by regulation.
- Install, operate, calibrate, and maintain continuous emission monitoring systems (CEMS) on the combined-cycle combustion turbines as required and in accordance with applicability regulations.
- Conduct performance testing for each pollutant in accordance with the methods, standards, and deadlines mandated by regulation.
- Combust only ultra low sulfur diesel (ULSD) fuel in the emergency electrical generator and firewater pump engines.
- Record the annual hours of operation for the emergency electrical generator and firewater pump engines.
- Maintain required records for at least five (5) years.

# **Attachment P**

# Attachment P AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Moundsville Power, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a PSD permit application, for an electric power generation facility located on State Route 2, south of Moundsville, in Marshall County, West Virginia. The latitude and longitude coordinates are: 39.9047 and -80.7973. The applicant estimates the potential to discharge the following Regulated Air Pollutants will 145 tons per year nitrogen oxides, 209 tons per year carbon monoxide, 2,240,618 tons per year carbon dioxide equivalent emissions, 75 tons per year volatile organic compounds, 71 tons per year particulate matter, 4.8 tons per year sulfur dioxide, 0.01 tons per year lead, and 12.1 tons per year hazardous air pollutants. Startup of operation began the 1st day of July, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57<sup>th</sup> Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (day) day of December, 2013.

By: Moundsville Power, LLC Jon M. Williams Managing Member 1214 3<sup>rd</sup> Street Box 1138 Moundsville, West Virginia 26041

# **Attachment Q**

# Attachment Q Business Confidential Claims

This permit application does not contain business confidential information; therefore, this application is considered non-confidential.

# **Attachment R**

# Attachment R Authority Forms

Since this application is signed by the "Responsible Official", this section is not applicable.

# **Attachment S**

# Attachment S Title V Permit Revision Information

Since the site does not currently possess a Title V Permit, Attachment S is not being provided with this permit application.