JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT

Moe Well Pad Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-C GENERAL PERMIT

Jay-Bee Oil & Gas, Inc.

Moe Well Pad Production Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Single Source Determination Form
 - Attachment C Current Business Certificate
 - Attachment D Process Flow Diagram
 - Attachment E Process Description
 - Attachment F Plot Plan
 - Attachment G Area Map
 - Attachment H G70-C Section Applicability Form
 - Attachment I Emission Units/ERD Table
 - Attachment J Fugitive Emissions Summary Sheet
 - Attachment K Gas Well Affected Facility Data Sheet
 - Attachment L Storage Vessels Data Sheet(s)
 - Attachment M Natural Gas Fired Fuel Burning Units Data Sheet(s)
 - Attachment N Internal Combustion Engine Data Sheet(s)
 - Attachment O Tanker Truck Loading Data Sheet(s)
 - Attachment P Glycol Dehydration Unit Data Sheet(s)
 - Attachment R Air Pollution Control Device Sheet(s)
 - Attachment S Emission Calculations
 - Attachment T Facility-wide Emission Summary Sheet(s)
 - Attachment U Class I Legal Advertisement

SECTION I

Application Form

*	
dep	

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PREVENTION AND CONTROL OF RELOCATION NATURAL GAS P		REGARD TO THE	CONSTRUCTION, M PERATION OF	
⊠ CONSTRUCTION		CLASS I ADMIN	ISTRATIVE UPDATE	3
DMODIFICATION		DCLASS II ADMIN	ISTRATIVE UPDAT	E
DRELOCATION				
	SECTION 1. GENER	RAL INFORMATION		
Name of Applicant (as registered with	the WV Secretary of S	tate's Office): Jay-B	ee Oil & Gas, Inc.	
Federal Employer ID No. (FEIN): 55-	073-8862			
Applicant's Mailing Address: 3570 Sh	nields Hill Rd			
City: Cairo	State: WV		ZIP Code	: 26337
Facility Name: Moe Well Pad Produ	uction Facility			
Operating Site Physical Address: Off k If none available, list road, city or tow	Clondike Acres Rd			
City: Middlebourne	Zip Code: 26149		County:	Tyler
Latitude & Longitude Coordinates (NA Latitude: 39.46791 Longitude: -80.88719	AD83, Decimal Degrees	to 5 digits):		
SIC Code: 1311		DAO Fasility ID No	(Far aviating faciliti	>
NAICS Code: 211111		DAQ Facility ID No	o. (For existing faciliti	es)
A STATE OF A	CERTIFICATION	OF INFORMATION		-
Official is a President, Vice President Directors, or Owner, depending on bus authority to bind the Corporatio Proprietorship. Required records o compliance certifications and all r Representative. If a business wishes to off and the appropriate names and unsigned G70-C Registration Applics utilized, the application v	siness structure. A busi n, Partnership, Limited of daily throughput, hou required notifications n o certify an Authorized signatures entered. An ation will be returned will be returned to the	ness may certify an A Liability Company, A urs of operation and m nust be signed by a Re Representative, the of y administratively in to the applicant. Fu applicant. No subst	uthorized Representati Association, Joint Ven aintenance, general co sponsible Official or a fficial agreement below neomplete or imprope rthermore, if the G7/ itution of forms is all	ive who shall have ture or Sole prrespondence, an Authorized w shall be checked rly signed or 0-C forms are not lowed.
(e.g., Corporation, Partnership, Limite obligate and legally bind the business. notify the Director of the Division of A L hereby certify that all information co	If the business change Air Quality immediately	Association Joint Vent s its Authorized Repro y. General Permit Regist	ure or Sole Proprietor esentative, a Responsil ration Application and	ship) and may ble Official shall l any supporting
documents appended hereto is, to the b have been made to provide the most co	best of my knowledge, t	rue, accurate and com	plete, and that all reas	sonable efforts
Responsible Official Signature: Name and Title: Office Manager Email: sdowell@jaybeeoil.com		one: 304-628-3119 te: 8-17-16	Fax:	-
If applicable:				
Authorized Representative Signature:_	Phone:		Fax:	-
Name and Title: Email:	Date:			
If applicable:				
Environmental Contact				
Name and Title:	Phone: Date:		Fax:	
Email:	Date.			

OPERATING SIT	E INFORMATION
Briefly describe the proposed new operation and/or any chang Natural gas production and separation of liquids. Then, the f owned and operated by others.	
	ain Street) out of town. Turn right onto Bridgeway Rd. Turn urn left onto Klondike Acres Rd and follow for approximately
ATTACHMENTS AND SU	PPORTING DOCUMENTS
I have enclosed the following required documen	ts:
Check payable to WVDEP – Division of Air Quality with the	
 ☑ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (i □ I wish to pay by credit card. Contact for payment (incl. na ☑\$500 (Construction, Modification, and Relocation) ☑\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or O 	me and email address): □\$300 (Class II Administrative Update) 000 ¹
 S2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the set of t	HAP fee will be waived for new engines that satisfy JJJ.
Responsible Official or Authorized Representative Signatu	re (if applicable)
Single Source Determination Form (must be completed in	its entirety) – Attachment A
□ Siting Criteria Waiver (if applicable) – Attachment B	Current Business Certificate – Attachment C
Diagram – Attachment D	Process Description – Attachment E
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G
G70-C Section Applicability Form – Attachment H	Emission Units/ERD Table – Attachment I
🛛 Fugitive Emissions Summary Sheet – Attachment J	
Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	Heater Treaters, In-Line Heaters if applicable) – Attachment
⊠ Internal Combustion Engine Data Sheet(s) (include manufa N	cturer performance data sheet(s) if applicable) – Attachment
Tanker Truck Loading Data Sheet (if applicable) – Attachr	nent O
⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas an information on reboiler if applicable) – Attachment P	alysis, GRI- GLYCalc [™] input and output reports and
Pneumatic Controllers Data Sheet – Attachment Q	
⊠ Air Pollution Control Device/Emission Reduction Device(sapplicable) – Attachment R	s) Sheet(s) (include manufacturer performance data sheet(s) if
Emission Calculations (please be specific and include all c	alculation methodologies used) – Attachment S
⊠ Facility-wide Emission Summary Sheet(s) – Attachment T	
🛛 Class I Legal Advertisement – Attachment U	
One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

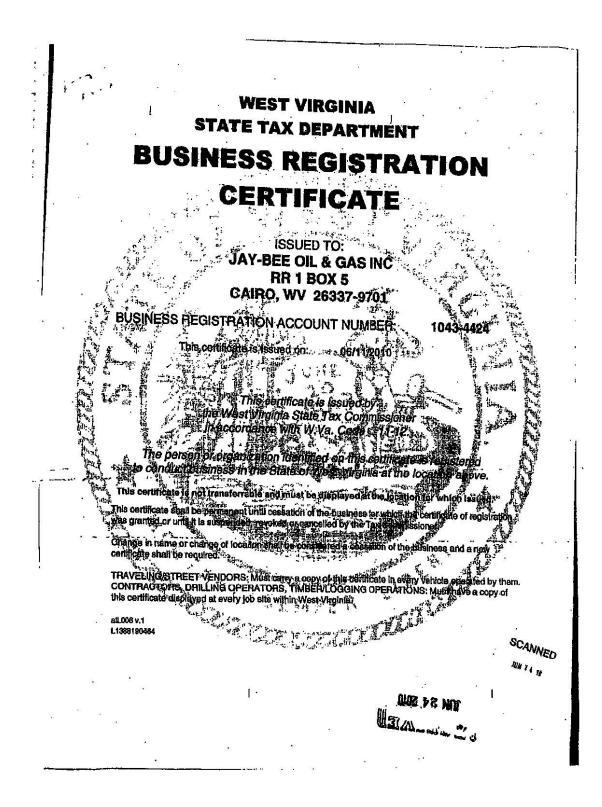
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

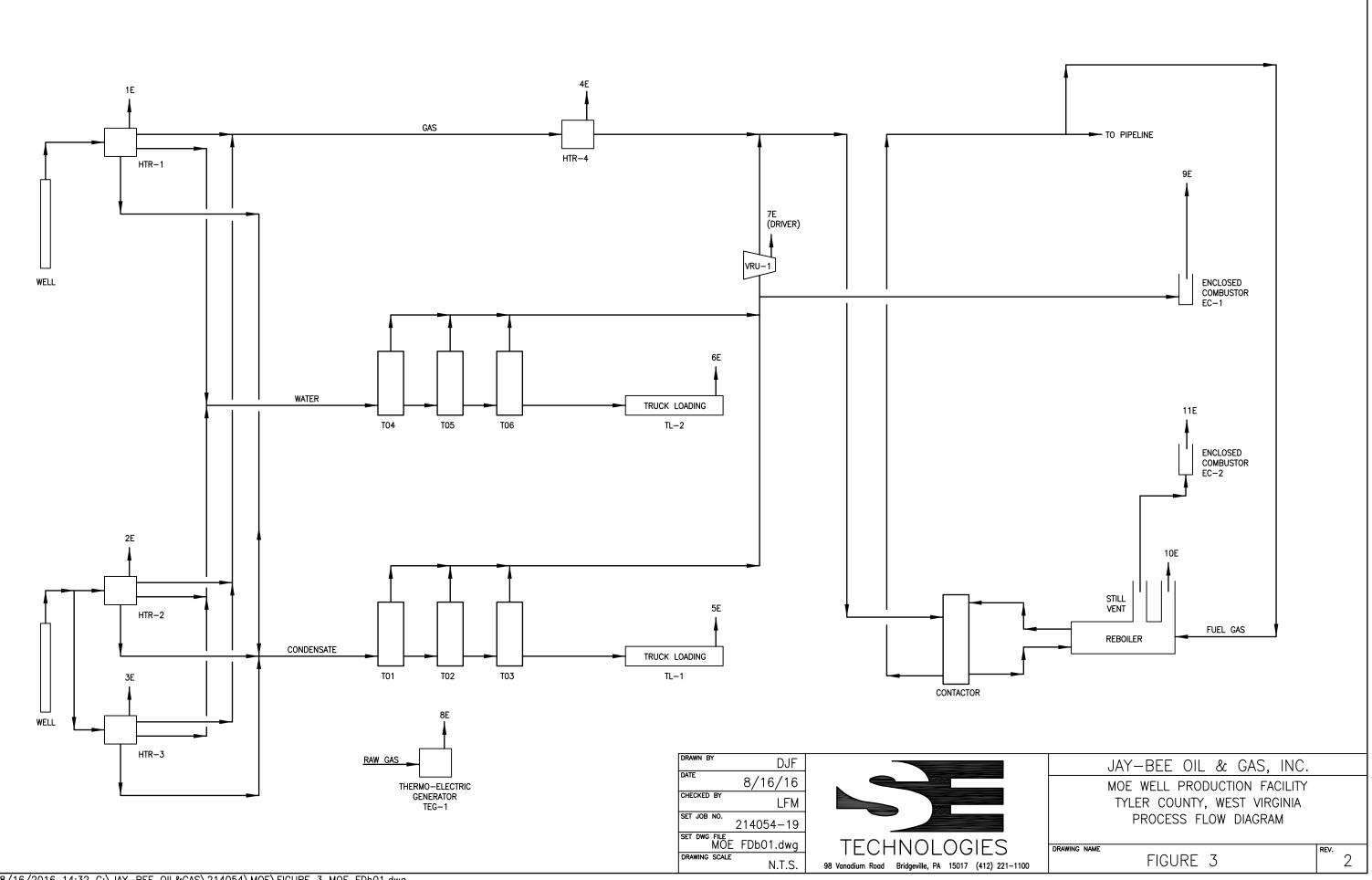
The closest Jay-Bee facility to the Moe Well Pad Production Facility is the Larry Well Pad Production Facility. This facility is under the same SIC code and may, from time to time, have a sharing of staff. These two well pads are approximately 3,130 feet (0.59 miles) apart, and they are on the same (very large) parcel. There is no interconnection or interdependency between these two facilities. Gas from one well pad does not flow to the other. Accordingly, the operation of one well pad is not dependent upon the operation of the other. Thus, given the lack of dependency and the distance of separation, emissions from these two well pads should not be aggregated.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM


Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

1 2		
Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are supp indicate the SIC code, permit number (if applicable), and the distance between facilities in question	ort facilitie	s. Please
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. Jay-Bee Oil & Gas owns 100%	Yes 🗵	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🛛
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain. Jay-Bee Oil & Gas owns both.	Yes 🗆	No 🛛
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🗵	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🗵	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain. Jay-Bee Oil & Gas owns and operates both facilities.	Yes 🗵	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🗵
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain. No limitations on either facility if the other were to shutdown.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities? Jay-Bee Oil & Gas owns and operates both facilities.	Yes 🗵	No 🗆
Are there any legal or lease agreements between the two (2) facilities? Jay-Bee Oil & Gas owns and operates both facilities.	Yes 🛛	No 🗆
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain. Well pads operate independently.	Yes 🗆	No 🗵
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🛛
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain. No, facilities operate independently. Jay-Bee Oil & Gas Office Manager is responsible for Air Quality Requirements for both facilities.	Yes 🗆	No 🛛

ATTACHMENT C


Current Business Certificate

Attached Current WV Business Certificate

ATTACHMENT D

Process Flow Diagram

Plot: env045 08/16/2016 14:32 G:\JAY-BEE OIL&GAS\214054\MOE\FIGURE 3 MOE FDb01.dwg

ATTACHMENT E

Process Description

Jay-Bee Oil & Gas, Incorporated Moe Well Pad Production Facility Attachment E Process Description

At this facility, Natural gas and Produced Fluids (condensate and water) will be received from three wells and passed through Gas Processing Units (one per Marcellus well and two per Utica well) to avoid ice formation during subsequent pressure drops. These materials will then pass through a three-way separator where gas, condensate and water are separated. All gas fired equipment will use natural gas produced at the site as fuel. The Facility will then dehydrate the gas and then injected into a gathering pipeline owned and operated by others.

Both Condensate and Produced Water will be accumulated in six (6) 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate will be transported to a regional processing facility and the Produced Water will be transported to a regional disposal facility. Flash, working and breathing losses from these tanks will be routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available, and will also be utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. A capture and control efficiency of 98% is being claimed for this overall combination of controls.

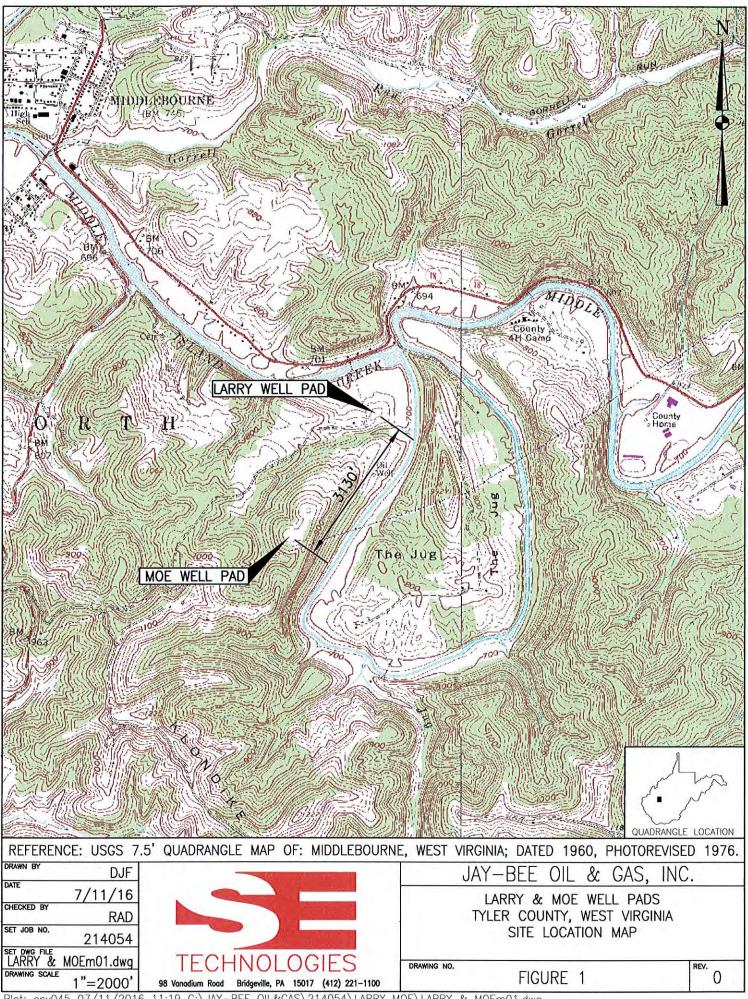
The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent will be comprised of water and various low molecular weight hydrocarbons. Still vent vapors will be routed to an enclosed combustor. A capture and control efficiency of 98% is being claimed for the combustor. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line. Any water condensing in the still vent column will be routed to the wastewater tanks.

Lastly, Jay-Bee is seeking approval for installation of a Thermo-electric generator to meet the minor electric demands for various monitoring and data tracking equipment.

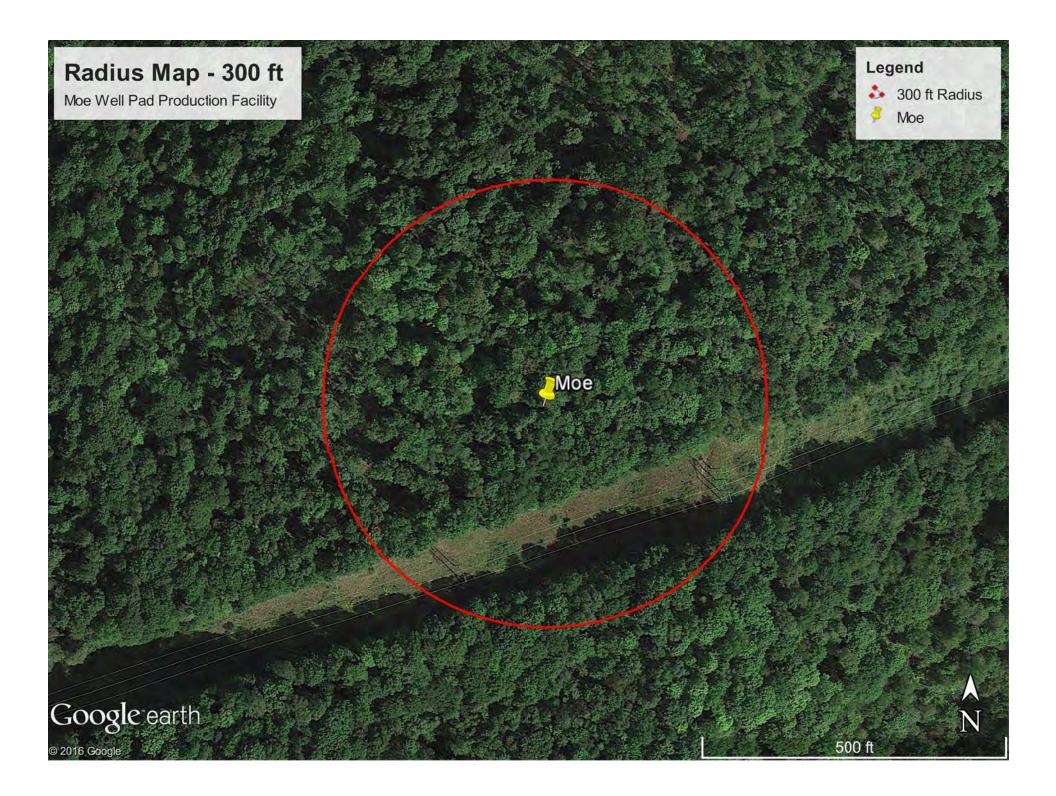
In summary, upon approval of this application, emission sources at this facility will include the following:

- Three Gas Processing Units (GPUs), each with a 1.5 MMBTU/hr heater (Sources 1E, 2E and 3E).
- One Line Heater (Source 4E).
- Condensate Truck Loading (Source 5E)
- Produced Water Truck Loading (Source 6E)
- One Vapor Recovery Unit (VRU) with driver engine (Source 7E), controlling emissions from T01-T06.
- One Thermo-electric Generator (Source 8E)
- Backup Enclosed Combustor for VRU (Source 9E)
- Three Produced Water Tanks (T01-T03)
- Three Condensate Tanks (T04-T06)
- Dehydration Unit (Source 10E reboiler vent and 11E still vent)
- Enclosed Combustor for control of still vent (Source 11E)

ATTACHMENT F


Plot Plan

	¢¢¢ WELLS			
DJF DATE 8/16/16		JAY-BEE OIL & GAS, INC. MOE WELL PRODUCTION FACILITY		
CHECKED BY LFM		TYLER COUNTY, WEST VIRGINIA SITE LAYOUT PLAN		
214054-19		SILE LATUUT PLAN		
set dwg file MOEa01.dwg	TECHNOLOGIES	DRAWING NAME	REV.	


Plot: env045 08/16/2016 15:00 G:\JAY-BEE 0IL&GAS\214054\MOE\MOEa01.dwg

ATTACHMENT G

Area Map

Plot: env045 07/11/2016 11:19 G:\JAY-BEE OIL&GAS\214054\LARRY MOE\LARRY & MOEm01.dwg

ATTACHMENT H

G-70C Section Applicability Form

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	SENERAL PERMIT G70-C APPLICABLE SECTIONS
⊠Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
Section 14.0	Tanker Truck Loading ³
Section 15.0	Glycol Dehydration Units ⁴

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emissions Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
HTR-1	1E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-2	2E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-3	3E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-4	4E	Line Heater	TBD		0.5 MMBTU/hr	NEW	None	None
TL-1	5E	Condensate Truck Loading	TBD		30,000 BBL/yr	NEW	None	None
TL-2	6E	Produced Water Truck Loading	TBD		63,600 BBL/yr	NEW	None	None
VRU-1	7E	VRU Driver	TBD	3/19/12	84 HP	NEW	1C	None
TEG-1	8E	Thermoelectric Generator	TBD		4.4 KW/hr	NEW	None	None
EC-1	9E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	N/A	None
T01	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T02	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T03	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T04	7E/9E	Produce Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T05	7E/9E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T06	7E/9E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
RBV-1	10E	Dehydration Unit Re-boiler Vent	TBD		0.500 MMBTU/hr	NEW	None	None
RSV-1	11E	Dehydration Unit Still Vent	TBD		40 MMSCFD	NEW	EC-2	None
EC-2	11E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SSIONS SUM	MARY SHE	EET	
			Sources of fugitive emissions	may include loading operation	ons, equipment le	aks, blowdow	n emissions, et	с.
S	ource/Equipm	ient:						
	eak Detection Iethod Used		⊠ Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (pleas	se describe)		□ None required
Component	Closed		Source of	Leak Factors	Stream type		Estimated Em	issions (tpy)
Туре	Vent System	Vent Count (EPA other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)		
Pumps	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.34
Valves	□ Yes ⊠ No	44	EPA		□ Gas □ Liquid ⊠ Both	0.26	<0.01	2.65
Safety Relief Valves	f 🗆 Yes 🖾 No	3	EPA		□ Gas □ Liquid ⊠ Both	0.01	<0.01	0.45
Open Ended Lines	□ Yes ⊠ No	20	EPA		⊠ Gas □ Liquid □ Both	0.06	<0.01	4.60
Sampling Connections	□ Yes ⊠ No	17	TECQ		□ Gas □ Liquid ⊠ Both	1.16	0.01	25.60
Connections (Not sampling) Yes No	180	EPA		□ Gas □ Liquid ⊠ Both	0.12	<0.01	1.36
Compressors	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	0.02	<0.01	1.26
Flanges	□ Yes ⊠ No	120	API		□ Gas □ Liquid ⊠ Both	0.09	<0.01	4.47
Other ¹	□ Yes ⊠ No	16	n/a		⊠ Gas □ Liquid □ Both	0.04	<0.01	0.055
¹ Other equip	oment types m	ay include	compressor seals, relief valves, o	diaphragms, drains, meters, etc.	·	·		
Please provid Blowdowns	de an explanat	ion of the s	sources of fugitive emissions (e.g	g. pigging operations, equipmen	t blowdowns, pneu	matic controller	rs, etc.):	
Please indica No	ate if there are	any closed	d vent bypasses (include compone	ent):				

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) **Thief Hatch, VRU and Enclosed Combustors**

ATTACHMENT K

Gas Well Affected Facility Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-095-02321	December 2016	TBD	Flow to separator and into gathering line as soon as practical.
47-095-02322	December 2016	TBD	Flow to separator and into gathering line as soon as practical.

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessels Data Sheet(s)

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - □ Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if
- simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name T01-T03			
Moe Tank Farm				
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 9E	7E/9E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
Pending Permit Approval	\boxtimes New construction \square New stored material \square Other			
Was the tank manufactured after August 23, 2011?	□ Relocation			
\boxtimes Yes \square No				
7A. Description of Tank Modification (<i>if applicable</i>)	•			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
🖾 Yes 🛛 No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 BBL					
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 196 BBL					
13A. Maximum annual throughput (gal/yr) 420,000	13B. Maximum daily throughput (gal/day) 7,000				
14. Number of tank turnovers per year 51	15. Maximum tank fill rate (gal/min) 50				
16. Tank fill method Submerged Splash Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes \Box No					

If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of transfers into the system per year?						
18. Type of tank (che	eck all that a	ipply):				
☑ Fixed Roof	□ vertical	🗆 horizonta	l 🛛 flat roof	\Box cone roof	\Box dome roof	\Box other (describe)
□ External Floating	Roof	D pontoon ro	of \Box double d	leck roof		
Domed External (or Covered)	Floating Roof				
□ Internal Floating	□ Internal Floating Roof □ vertical column support □ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as ap	ply:								
□ Does Not Apply				🗆 Ruptur	e Disc (ps	sig)			
□ Inert Gas Blanket of _				□ Carbo	n Adsorpt	ion ¹			
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors) as back-up to VRU									
Conservation Vent (ps	sig)								
0.4 oz. Vacuum Setting	14 oz	. Pressure	e Setting						
□ Emergency Relief Val	lve (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted	l⊠Yes □] No							
¹ Complete appropriate A	ir Pollutio	n Control	Device Sh	neet					
20. Expected Emission R	Rate (subm	it Test Da	ta or Calci	ulations he	ere or else	where in t	the applica	tion).	
Material Name	Material Name Flashing Loss Breathing Loss Working Loss Total Estimation Metho								
		g L088	Бгеанн	ng Loss	Workir	ng Loss	Total		Estimation Method ¹
		g 1.088	Бгеанн	ng Loss	Workin	ng Loss		ons Loss	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	Workir lb/hr	ng Loss		ons Loss tpy	Estimation Method ¹
VOC (uncontrolled)							Emissio		Estimation Method ¹ MB and EPA
VOC (uncontrolled) HAP (uncontrolled)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	
	lb/hr 90.09	tpy 394.59	lb/hr 0.11	tpy 0.48	lb/hr 0.38	tpy 1.66	Emissio lb/hr 90.6	tpy 396.7	MB and EPA
	lb/hr 90.09	tpy 394.59	lb/hr 0.11	tpy 0.48	lb/hr 0.38	tpy 1.66	Emissio lb/hr 90.6	tpy 396.7	MB and EPA

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:							
□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded							
21A. Shell Color: Blue	21B. Roof Color: Blue	21C. Year Last Painted: NEW					
22. Shell Condition (if metal and unlined):							
🖾 No Rust 🗆 Light Rust 🗆 Dense	Rust 🛛 Not applicable						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?					
23. Operating Pressure Range (psig): 2 oz – 14	ł oz						
Must be listed for tanks using VRUs with	th closed vent system.						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):					
\boxtimes Yes \Box No							
25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) shoe seal \Box Liquid mot	inted resilient seal					

□ Vapor mounted resilient seal □ Other (describe):						
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	🗆 No				
25D. If yes, how is the secondary seal mounted	? (check one)	e □	Rim 🗆 Othe	er (describe	e):	
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	🗆 No)			
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	7		
26A. Deck Type: Dolted Welded 26B. For bolted decks, provide deck construction:						
26C. Deck seam. Continuous sheet construction						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide						
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		For column suppo	orted	26G. For column supported	
		tanks,	# of columns:		tanks, diameter of column:	
	-					
27. Closed Vent System with VRU? Xes						
28. Closed Vent System with Enclosed Combu	stor? \boxtimes Yes \square No B	ack-up	to VRU			
SITE INFORMATION						
29. Provide the city and state on which the data	in this section are based	1				
30. Daily Avg. Ambient Temperature (°F):			31. Annual Avg. Maximum Temperature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/	'ft²-day):	35. At	35. Atmospheric Pressure (psia):			
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	6 36B.		36B. Max	3. Maximum (°F):	
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig):	. <0.1 psi		37B. Maximum (psig): 0.8 psi		
(psig): 0-0.5 pis						
38A. Minimum liquid surface temperature (°F)	: 36		38B. Corresponding vapor pressure (psia): 0.11			
39A. Avg. liquid surface temperature (°F): 65		39B. Corresponding vapor pressure (psia): 0.31				
40A. Maximum liquid surface temperature (°F)		40B. Corresponding vapor pressure (psia): 0.95				
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.	1	
41A. Material name and composition:	Condensate					
41B. CAS number:	68919-39-1					
41C. Liquid density (lb/gal):	5.49					
41D. Liquid molecular weight (lb/lb-mole):	81.3					
41E. Vapor molecular weight (lb/lb-mole):	39.56					
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):	5.28					
41H. Months Storage per year.	12					
From: Jan To: Dec	12					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
Moe Tank Farm	T04-T06				
3. Emission Unit ID number	4. Emission Point ID number				
N/A Vapors to combustors, emission point 9E	7E/9E				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
Pending Permit Approval	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
□ Yes □ No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No	\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barr	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 BBL						
9A. Tank Internal Diameter (ft.)	10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (i	ft.) 14	10B. Average Liquid Height (ft.) 8				
11A. Maximum Vapor Space He	eight (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify be	arrels or gallons). This is also l	known as "working volume". 190 BBL				
13A. Maximum annual throughp	out (gal/yr) 924,000 (each)	13B. Maximum daily throughput (gal/day) 5,000 (each)				
14. Number of tank turnovers pe	r year 116 (max)	15. Maximum tank fill rate (gal/min) 50				
16. Tank fill method □ Subme	erged 🛛 Splash 🛛	☐ Bottom Loading				
17. Is the tank system a variable	vapor space system?	🛛 No				
If yes, (A) What is the volume ex	pansion capacity of the system	(gal)?				
(B) What are the number of	of transfers into the system per y	/ear?				
18. Type of tank (check all that a	apply):					
\boxtimes Fixed Roof \boxtimes vertical	□ horizontal □ flat roof	\Box cone roof \Box dome roof \Box other (describe)				
□ External Floating Roof	\Box pontoon roof \Box double d	eck roof				
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof	□ Internal Floating Roof □ vertical column support □ self-supporting					
□ Variable Vapor Space	\Box lifter roof \Box diaphragm					
□ Pressurized	\Box spherical \Box cylindrical					
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
□ Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	□ Carbon Adsorption ¹
☑ Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors) as back-up to VRU
Conservation Vent (psig)	\Box Condenser ¹
0.4 oz Vacuum Setting 14 oz Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\boxtimes Thief Hatch Weighted \boxtimes Yes \square No	
¹ Complete appropriate Air Pollution Control Device S	Sheet

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	0.88	3.84					0.88	3.84	MB
HAPs	0.07	0.32					0.07	0.32	MB

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION				
21. Tank Shell Construction:					
\Box Riveted \Box Gunite lined \Box Epoxy	-coated rivets 🛛 Oth	ner (describe) Welded			
21A. Shell Color: Blue	21B. Roof Color: Blu	e	21C. Year	Last Painted: 2016	
22. Shell Condition (if metal and unlined):					
\boxtimes No Rust \square Light Rust \square Dense \square	Rust 🛛 🗆 Not applical	ble			
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?					
23. Operating Pressure Range (psig): 2 oz – 14					
Must be listed for tanks using VRUs with			T		
24. Is the tank a Vertical Fixed Roof Tank ?	•	roof provide radius (ft):	-	s, for cone roof, provide slop (ft/ft):	
⊠ Yes □ No	n/a		n/a		
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes			
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one):	allic (mechanical) show	e seal 🛛 🗆 Liquid mou	unted resilie	ent seal	
□ Vap	or mounted resilient se	eal 🗆 Other (des	cribe):		
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	□ No			
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	$e \square Rim \square Oth$	er (describe	e):	
25E. Is the floating roof equipped with a weather	er shield? 🛛 Yes	□ No			
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	☑ Does not apply	/		
26A. Deck Type: □ Bolted □ W	elded	26B. For bolted decks	, provide dec	k construction:	
26C. Deck seam. Continuous sheet constructio	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	\Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (desc	ribe)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported	
		tanks, # of columns:		tanks, diameter of column:	
27. Closed Vent System with VRU? X Yes	🛙 No				
28. Closed Vent System with Enclosed Combus	stor? 🛛 Yes 🖾 No				
SITE INFORMATION Items 29 throug	h 35 are N/A for Water	Tank			
29. Provide the city and state on which the data	in this section are based				
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):			

32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):			
34. Annual Avg. Solar Insulation Factor (BTU/	(ft ² -day):	35. Atmospheric Pressure (psia):			
LIQUID INFORMATION					
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	36		36B. Maximum (°F): 70	
liquid (°F): 60					
37. Avg. operating pressure range of tank	37A. Minimum (psig)	: <0.1 p	sig	37B. Maximur	n (psig): 0.8 psig
(psig): 0-0.5 psig					
38A. Minimum liquid surface temperature (°F)	: 36	38B. (Corresponding v	apor pressure (psi	a): 0.11
39A. Avg. liquid surface temperature (°F): 65		39B. (Corresponding v	apor pressure (psi	a): .031
40A. Maximum liquid surface temperature (°F)): 70	40B. (Corresponding v	apor pressure (psi	a): 0.95
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if	necessary.	
41A. Material name and composition:	Produced Wate	er			
41B. CAS number:	7732-15-8, 7747-4 7647-14-5	0-7,			
41C. Liquid density (lb/gal):	9-10 lb/gal				
41D. Liquid molecular weight (lb/lb-mole):	Varies				
41E. Vapor molecular weight (lb/lb-mole):	18				
41F. Maximum true vapor pressure (psia):	0.95				
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.	Continuous				
From: To:	Continuous				
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as	n/a				
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T07	NEW	Tri-ethylene Glycol (TEG)	200
		1	

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 1. 2.

- Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - Equipment Removed REM
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. Enter the maximum design storage tank volume in gallons. 3.
- 4.

ATTACHMENT M

Natural Gas Fired Fuel Burning Units Data Sheet(s)

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
HTR-1	1E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-2	2E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-3	3E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-4	4E	Line Heater	TBD	NEW	0.5	1263
RBV-1	10E	Reboiler	TBD	NEW	0.500	1263

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Internal Combustion Engine Data Sheet(s)

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

snall also i	ise inis jorm	•					
Emission Unit I	O#1 VR		U-1				
Engine Manufacturer/Model		Cummi	ns G5.9				
Manufacturers Rated bhp/rpm		84 @	1800				
Source Status ²		Ň	IS				
Date Installed/ Modified/Remov	ved/Relocated ³	Upon Recei	pt of Permit				
Engine Manufac /Reconstruction		After 3	/1/2013				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4SRB					
APCD Type ⁷		NSCR					
Fuel Type ⁸	uel Type ⁸		RG				
H ₂ S (gr/100 scf))	<	:1				
Operating bhp/r	pm	84 @	1800				
BSFC (BTU/bhg	o-hr)	79	14				
Hourly Fuel Th	oughput	526.4 ft ³ /gal		ft ³ /hr gal/hr		ft³/hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	4.62 MMft ³ /yr MMft ³ /yr gal/yr				MMft ³ /yr gal/yr	
.Fuel Usage or I Operation Meter		Yes 🛛	No 🗆	Yes 🗆 No 🗆		Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
AP	NO _x	0.19	0.81				
AP	СО	0.37	1.62				
AP	VOC	0.04	0.18				
AP	SO ₂	< 0.01	< 0.01				
AP	PM ₁₀	0.013	0.06				
AP	Formaldehyde	0.015	0.065				
AP	Total HAPs	0.022	0.10				
	1	1	0.022 0.10 89.7 393		1	1	1

 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn			
7	Enter th	he Air Pollution Control Device (APCD) type designa	tion(s) u	sing the fo	ollowing codes:			
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	ombustion Cha Combustion	mber	S
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas RC	G R	aw Natura	l Gas /Productio	on Gas	D	Diesel
9	Enter	he Potential Emissions Data Reference design	ation us	ing the f	ollowing code	s. Attach all	refei	rence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]	A O		-42 ner	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# VRU-1)

Air Pollution Control Device Manufacturer's Data Sheet included? No 🗆

Yes 🗵

⊠ NSCR	□ SCR	□ Oxidation Catalyst
Provide details of process control used for	r proper mixing/control of redu	cing agent with gas stream: N/A

Manufacturer: Miratech	Model #: VXC-1408-04-HSG
Design Operating Temperature: 1000 °F	Design gas volume: 430 + scfm
Service life of catalyst: 2+ years, depending on site conditions	Provide manufacturer data? ⊠Yes □ No
Volume of gas handled: 430 acfm at 1078 °F	Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F
Reducing agent used, if any: None	Ammonia slip (ppm): N/A

Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O

Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Part of the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check.

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ2? \Box Yes \boxtimes No

How often is catalyst recommended or required to be replaced (hours of operation)?

Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced.

How often is performance test required?

🗌 Initial

Annual

Every 8,760 hours of operation

Field Testing Required

X No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT: Per 40 CFR 60.4243(a)(iii), an owner or operator of a stationary SI internal combustion engine less than 100 HP, must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required for an owner or operator

ATTACHMENT O

Tanker Truck Loading Data Sheet(s)

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

						1		
Emission Unit ID#: TL-1	Emission Point ID#: 5E & 6E			Year Installed/Modified: TBD				
Emission Unit Description	on: Condensate	Truck Lo	oading					
			Loading A	Area Data				
Number of Pumps: 2		Numbe	er of Liquids	Loaded: 2		Max num (1) time:		ucks loading at one
Are tanker trucks pressur If Yes, Please describe:	re tested for leas	ks at this	or any other	location?	□ Yes	□ No	🛛 Not	Required
Provide description of cl	osed vent system	m and an	y bypasses.	None				
Are any of the following Closed System to tan Closed System to tan Closed System to tan Proj	ker truck passin ker truck passin	g a MAC g a NSPS ssing an	T level annu S level annua annual leak t	l leak test? est and has v			a whole	e)
Time	Jan – Ma	r	Apr	- Jun		Jul – Sept		Oct - Dec
Hours/day	24		2	4 2		24		24
Days/week	7			7	7			7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name		Condens	ate	Prod	uced Wa	nter		
Max. Daily Throughput (1000 gal/day)		4.2			5.04			
Max. Annual Throughput (1000 gal/yr)	t	856.8		:	1,814.4			
Loading Method ¹		SUB			SP			
Max. Fill Rate (gal/min)		50			50			
Average Fill Time 120 120		120						
Max. Bulk Liquid Temperature (°F)		75		75				
True Vapor Pressure ² 3.6 psia		a	n/a					
Cargo Vessel Condition ³		U			U			
Control Equipment or Method ⁴		None			None			
Max. Collection Efficien (%)	cy	n/a			n/a			

Max. Control Efficiency (%)		n/a	n/a	
Max.VOC Emission	Loading (lb/hr)	2.96	0.08	
Rate	Annual (ton/yr)	0.91	0.04	
Max.HAP Emission	Loading (lb/hr)	0.16	0.01	
Rate	Annual (ton/yr)	0.05	<0.01	
Estimation Method ⁵		EPA	EPA	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
2	At maxin	num bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as 1	many as apply (complete and	submit app	propriate	Air Pollut	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devi	ce	F	Flare	-		-
	TO	Thermal Oxidization or Incineration						
5	EPA	EPA Emission Factor in AF	P-42			MB	Material	l Balance
	TM	Test Measurement based upon test data submittal			O Other (describe)			

ATTACHMENT P

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

DATA SHEET								
Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc TM input and								
		ges if necessary						
Manufacturer: Exte			Model:					
	Rate: 40 mmscf/day		Reboiler Design He	at Input: 0.500 MM	BTU/hr			
Design Type: 🛛 TE		□ EG	Source Status ¹ : NS					
	ified/Removed ² : TBD)	Regenerator Still V	ent APCD/ERD ³ : TC)			
Control Device/ER			Fuel HV (BTU/scf):					
H ₂ S Content (gr/10	0 scf): <0.001%		Operation (hours/ye	ear): 8760				
Pump Rate (gpm): 7	7.5							
Water Content (wt	%) in: Wet Gas: Sat	urated Dr	ry Gas: 7.0 lb/MMscf					
Is the glycol dehyd	ration unit exempt fro	om 40CFR63 Section	764(d)? 🛛 Yes	□ No: If Yes, answ	ver the following:			
meters per day, as of The actual average	The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \boxtimes No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. \boxtimes Yes							
	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ster (UC)? 🗆 Yes	🛛 No			
Is a lean glycol pun	np optimization plan	being utilized? 🗆 Ye	s 🛛 No					
Recycling the glyco □ Yes ⊠ No	Recycling the glycol dehydration unit back to the flame zone of the reboiler.							
Recycling the glyco □ Yes ⊠ No	ol dehydration unit ba	ck to the flame zone	of the reboiler and mi	ixed with fuel.				
☐ Still vent emissi ☐ Still vent emissi ☐ Still vent emissi	ons to the atmosphere ons stopped with value	e. ve.	ne reboiler? Still vent	to enclosed combu	stor.			
Flash Tank	nent system that conti	nuously burns conder	nser or flash tank vap	ors				
		•	Technical Data					
	Pollutants Controlled	1	Manufaatunan'a	Guaranteed Contro	1 Efficiency (9/)			
	Pollutants Controlled							
Hydrocarbons			99+% (No	te: 98% used for ca	alculations)			
	1	Emissio	ons Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶ Maximum N Fmissions		Controlled Maximum Annual Emissions (tpy)			
		AP-42	NO _x	0.05	0.22			
		AP-42	СО	0.04	0.18			
RBV-1 / 11E	Reboiler Vent	AP-42	VOC	< 0.01	0.01			
KDV-1/IIE	Kebbilei Velit	AP-42	SO ₂	< 0.01	<0.01			
		AP-42	PM_{10}	< 0.01	0.02			
		AP-42	GHG (CO ₂ e)	60.4	264.5			

	1	1		1	
		GRI-GlyCalc TM	VOC	0.80	3.51
		GRI-GlyCalc [™]	Benzene	0.01	0.04
RSV-1 / 11E	Glycol	GRI-GlyCalc [™]	Toluene	0.03	0.15
KSV-1/IIE	Regenerator Still Vent	GRI-GlyCalc [™]	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc [™]	Xylenes	< 0.01	< 0.01
		GRI-GlyCalc [™]	n-Hexane	0.02	0.09
	Glycol Flash Tank	GRI-GlyCalc [™]	VOC		
		GRI-GlyCalc [™]	Benzene		
NONE		GRI-GlyCalc [™]	Toluene		
NONE		GRI-GlyCalc [™]	Ethylbenzene		
		GRI-GlyCalc [™]	Xylenes		
		GRI-GlyCalc [™]	n-Hexane		

1 Enter the Source Status using the following codes: NS Construction of New Source

ES Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: FL Flare

NA None CD Condenser

CC Condenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

AP-42 MD Manufacturer's Data AP

GR GRI-GLYCalc[™] OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?						
\Box Yes \boxtimes No						
Please list approximate number.						

ATTACHMENT R

Air Pollution Control Device Sheet(s)

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: T01-T06 Make/Model: Condensate and Produced Water Tanks						
Primary Control Device ID: VRU-1 Make/Model: Arrow/WRC2						
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: 🛛 Yes 🛛 No					
Secondary Control Device ID: EC-1	Make/Model: Hy-Bon CH 10.0					
Control Efficiency (%): 98 APCD/ERD Data Sheet Completed: 🛛 Yes 🗆 No						

VAPOR COMBUSTION (Including Enclosed Combustors)								
		General Ir	formation					
Control Device ID#: EC-1			Installation Date: TBD – Upon Permit					
Maximum Rated Total Flow scfh	Capacity scfd					Heat Content TU/scf		
		Control Devic	e Informati	on				
Enclosed Combustion De	vice	Type of Vapor Co		ontrol?		Ground Flare		
Manufacturer: Hy-Bon Model: CH 10.0			Hours of o	peration	per year? 8	3760		
List the emission units whose	e emissions	are controlled by this	vapor conti	rol device	(Emission	n Point ID#)		
Emission Unit ID# Emission Sourc	Emission Source Description			Emissio	on Source	Description		
T01-T03 Condensate Tan	ks							
T04-T06 Produced Water	Tanks							
If this vapor combusto	· controls en	nissions from more the	an six (6) en	nission un	its, please	attach additional pages.		
Assist Type (Flares only)		Flare Height	Tip Diameter Was the des			Was the design per §60.18?		
□ Steam □ Air □ Pressure ⊠ Nor		feet	feet			☐ Yes ☐ No Provide determination.		
		Waste Gas 1	Information	ı				
Maximum Waste Gas Flo 19.79 (scfm)	ow Rate	Heat Value of W 2313 E	aste Gas Str TU/ft ³	ream	Exit Vel	locity of the Emissions Stream (ft/s)		
Provide	an attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.		
		Pilot Gas I	nformation					
Number of Pilot Lights 1		Flow Rate to Pilot ame per Pilot 798 scfh		nput per 100 BTU		Will automatic re-ignition be used? ⊠ Yes □ No		
If automatic re-ignition is u will go into manual mode w								
Is pilot flame equipped with a monitor to detect the presence of the flame? If Yes, what type? ☑ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (<i>If</i> unavailable, please indicate). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.								
Additional information attac Please attach copies of man performance testing.			flame demo	nstration	per §60.18	or §63.11(b) and		

	VAPOR RECOVERY UNIT *See Attachment N									
	General II	nformation								
Emission U	Jnit ID#:	Installation Date:								
	Device In	formation								
Manufactu Model:	rer:									
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Point ID#)						
Emission Unit ID#	Emission Source Description	Emission Unit ID# Emission Source Description								
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please attach additi	ional pages.						
	information attached? □ Yes □ No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.							
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.										
	The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.									

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

VAPOR COMBUSTION								
	(Ir	ncluding Enclo	sed Con	ibusto	rs)			
		General Ir	formation					
Control Device ID#: EC-2			Installation Date: TBD – Upon Permit					
Maximum Rated Total Flow scfh	Capacity cfd					Ieat Content TU/scf		
		Control Devic	e Informati	on				
Enclosed Combustion De	vice	Type of Vapor Co		ontrol?		Ground Flare		
Manufacturer: Hy-Bon Model: CH 10.0			Hours of o	peration	per year?	8760		
List the emission units whos	e emissions	are controlled by this	vapor conti	ol device	e (Emission	n Point ID#)		
Emission Unit ID# Emission Source	Descriptio	n	Emission Unit ID#	Emissio	on Source	Description		
RBV-1 Dehydration Un	t Still Vent							
If this vapor combustor	controls en	nissions from more the	an six (6) en	ission un	its, please	e attach additional pages.		
Assist Type (Flares only)		Flare Height	Tip Diameter Was the desig			Was the design per §60.18?		
□ Steam □ Air □ Pressure ⊠ Non		feet	feet			☐ Yes ☐ No Provide determination.		
		Waste Gas	Information	ı				
Maximum Waste Gas Flo 64.3 (scfm)	w Rate		Vaste Gas Stream Exit Ve BTU/ft ³			locity of the Emissions Stream (ft/s)		
Provide d	n attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.		
		Pilot Gas I	nformation					
Number of Pilot Lights 1		Flow Rate to Pilot lame per Pilot 798 scfh		nput per 100 BTU		Will automatic re-ignition be used?		
			 			Yes No		
If automatic re-ignition is us will go into manual mode w								
Is pilot flame equipped with					•	monitor to detect the		
1		□ No	presence o			Yes 🗆 No		
Describe all operating range unavailable, please indicate (dust, sand, etc.) and clean	. Combust	or burner, pilot, and						
	Additional information attached? 🛛 Yes 🔲 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and							

ATTACHMENT S

Emission Calculations

Jay-Bee Oil & Gas, Inc. EMISSIONS SUMMARY

Moe Well Pad Production Facility Tyler County, WV

Emission Unit ID	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	Benzene lb/hr	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldehyde lb/hr	Total HAPs lb/hr
HTR-1	GPU #1	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-2	GPU #2	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-3	GPU #3	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-4	Line Heater	0.05	0.04	60.4	0.00	0.000	0.004				0.001		0.000	0.001
TL-1	Truck Loading - Condensate ²				2.96						0.16			0.16
TL-2	Truck Loading - Produced Water ²				0.08						0.01			0.01
VRU-1	VRU Compressor	0.19	0.37	89.7	0.04	0.000	0.013	0.001	0.000	0.000		0.000	0.015	0.022
TEG-1	Thermoelectric Generator	0.00	0.00	1.6	0.00	0.000	0.000				0.000		0.000	0.000
EC-1	Condensate Tanks + Water Tanks ¹	0.29	1.10	446.6	1.84	0.001	0.017				0.004		0.000	0.00
RBV-1	500 MBTU/hr Reboiler	0.05	0.04	60.4	0.003	0.000	0.004				0.001		0.000	0.001
EC-2	Dehydration Unit Combustor	0.27	1.03	417.4	0.81	0.001	0.037	0.010			0.02	0.034	0.000	0.06
	Truck Traffic Fugitive Dust						30.10							
	Fugitive Emissions			8.9	0.40									0.004
Total (Exluding	g Fugitive Emissions)	1.29	2.96	1619.51	5.76	0.00	0.11	0.01	0.00	0.00	0.20	0.03	0.02	0.27
Total		1.29	2.96	1628.37	6.16	0.00	30.20	0.01	0.00	0.00	0.20	0.03	0.02	0.27

Emission		NOx	СО	CO2e	VOC	SO2			Ethylbenzene	•			Formaldehyde	
Unit ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
HTR-1	GPU #1	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-2	GPU #2	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-3	GPU #3	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-4	Line Heater	0.22	0.18	264	0.01	0.001	0.02				0.00		0.000	0.00
TL-1	Truck Loading - Condensate ²				0.91						0.05			0.05
TL-2	Truck Loading - Produced Water ²				0.04						0.00			0.00
VRU-1	VRU Compressor	0.81	1.62	393	0.18	0.002	0.06	0.005	0.000	0.001		0.002	0.065	0.10
TEG-1	Thermoelectric Generator	0.01	0.00	7	0.00	0.000	0.00				0.00		0.000	0.00
EC-1	Condensate Tanks + Water Tanks ¹	1.25	4.81	1956	0.43	0.00	0.07				0.01		0.001	0.02
RBV-1	500 MBTU/hr Reboiler	0.22	0.18	264.5	0.01	0.001	0.017				0.004		0.000	0.004
EC-2	Dehydration Unit Combustor	1.19	4.50	1828.1	3.54	0.003	0.161	0.04			0.09	0.15	0.002	0.28
	Truck Traffic Fugitive Dust						5.98							
	Fugitive Emissions			38.78	1.76									0.018
Fotal (Exludin	g Fugitive Emissions)	5.67	12.96	7093.46	5.22	0.02	0.47	0.05	0.00	0.00	0.20	0.15	0.07	0.50
Total		5.67	12.96	7132.24	6.98	0.02	6.46	0.05	0.00	0.00	0.20	0.15	0.07	0.52

¹ Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This line represents the un-controlled 2%.

² Truck loading is un-controlled.

Jay-Bee Oil &Gas ,LLC

Moe Well Pad Production Facility Tyler County, WV

Exhaust Stack Height

Exhaust Stack Velocity

Exhaust Stack Inside Diameter

Controlled Emission Rates							
Source VRU-1							
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins G5.9 Rich Burn Natural						
Manufacturer Rating Speed at Above Rating Configuration (In-line or V) Number of Cylinders Engine Bore Engine Stroke	84 1,800 In-line 6 4.020 4.720	hp rpm inches inches					
Engine Displacement Engine BMEP Fuel Consumption (HHV)	359 103 7,914	cu. in. psi Btu/bhp-hr				AP-42 strokerich	
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr		o/MMBtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44		Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89		453.59 grams = 1 pound
VOC (NMNEHC)	0.220	0.04	0.18	18	0.98		2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996		
CO2e		90	393				
Total Annual Hours of Operation	8,760						
SO2	0,700	0.0004	0.0017			0.0006	
PM2.5		0.00632	0.0277			0.0095	
PM (Condensable)		0.00659	0.0289			0.00991	
CH ₄		0.12623	0.5529				Factor From 40 CFR 98, Table C-2
N ₂ O		0.01148	0.0503				Factor From 40 CFR 98, Table C-2
acrolein		0.00175	0.0077			0.00263	
acetaldehyde		0.00185	0.0081			0.00279	
formaldehyde	0.080	0.0148	0.0649				Per Mfg.
benzene		0.00105	0.0046			0.00158	
toluene		0.00037	0.0016			0.000558	
ethylbenzene		1.6E-05	0.0001			0.0000248	
xylenes		0.00013	0.0006			0.000195	
methanol		0.00203	0.0089			0.00306	
Total HAPs		0.02202	0.0964				
Exhaust Parameters:							
Exhaust Farameters: Exhaust Gas Temperature	1,078	deg. F					
Exhaust Gas Mass Flow Rate	1,070	lb/hr					
Exhaust Gas Mass Flow Rate	430	acfm					
	100						

96 8.00

4 0.333

82.1

4,927.4

inches feet

inches feet

ft/sec

ft/min

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-1 Through HTR-3

*Emissions shown below are for each Gas Processing Unit

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,084.8 scfd 0.000 Mole % 8760

NOx	0.1501	lb/hr	0.657	tpy
СО	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	lb/hr	0.050	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

AP-42 Factors Used

NOx	100 lb/M	MCF
СО	84 lb/M	MCF
CO ₂	120,000 lb/M	MCF Global Warming Potential = 1
VOC	5.5 lb/M	MCF
PM	7.6 lb/M	MCF
SO_2	0.6 lb/M	MCF
CH ₄	2.3 lb/M	MCF Global Warming Potential = 25
N ₂ O	2.2 lb/M	MCF Global Warming Potential =298
нсон	0.075 lb/M	MCF
Benzene	0.0021 lb/M	MCF
n-Hexane	1.8 lb/M	MCF
Toluene	0.0034 lb/M	MCF

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-4 Line Heater

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 9,694.9 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60	lb/hr	264	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

AP-42 Factors Used

NOx CO		MMCF MMCF	
CO ₂	120,000 lb/	MMCF	Global Warming Potential = 1
VOC	5.5 lb/	MMCF	
PM	7.6 lb/	MMCF	
SO ₂	0.6 lb/	MMCF	
CH ₄	2.3 lb/	MMCF	Global Warming Potential = 25
N_2O	2.2 lb/	MMCF	Global Warming Potential =298
нсон	0.075 lb/	MMCF	
Benzene	0.0021 lb/	MMCF	
n-Hexane	1.8 lb/	MMCF	
Toluene	0.0034 lb/	MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source TEG-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 MBtu/hr
98.0 %
1263.0 Btu/scf
252.1 scfd
0.000 Mole %
8760

NOx	0.0013	lb/hr	0.006	tpy
СО	0.0011	lb/hr	0.005	tpy
CO2	1.6	lb/hr	6.8	tpy
CO2e	2	lb/hr	7	tpy
VOC	0.0001	lb/hr	0.000	tpy
SO2	0.0000	lb/hr	0.000	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0001	lb/hr	0.000	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0000	lb/hr	0.000	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0000	lb/hr	0.000	tpy

AP-42 Factors Used

NOx		lb/MMCF	
CO CO ₂		lb/MMCF	Global Warming Potential = 1
	-	lb/MMCF	
PM	7.6	lb/MMCF	
SO_2	0.6	lb/MMCF	
CH ₄	2.3	lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2	lb/MMCF	Global Warming Potential =298
нсон	0.075	lb/MMCF	
Benzene	0.0021	lb/MMCF	
n-Hexane	1.8	lb/MMCF	
Toluene	0.0034	lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

	Source EC-1				
I	Enclosed Combustor Pilot				
Burner Duty Rating	985.1	MBtu/hr			
Burner Efficiency	98.0	%			
Gas Heat Content (HHV)	1263.0	Btu/scf			
Total Gas Consumption	19100.9	scfd			
H2S Concentration	0.000	Mole %			
Hours of Operation	8760				

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 2313.1 Btu/scf 0.028 MMSCFD 2.746 MMBTU/hr

10.401 MMSCF/yr 24,058 MMBTU/yr

NOx	0.19	lb/hr	0.82	tpy
CO	1.02	lb/hr	4.45	tpy
CO2	321.02	lb/hr	1,406.07	tpy
CO2e	327.68	lb/hr	1,435.26	tpy
VOC	1.83	lb/hr	0.40	tpy
CH4	0.26	lb/hr	0.06	tpy
N2O	0.0006	lb/hr	0.0026	tpy
PM	0.0090	lb/hr	0.0395	tpy
СНОН	0.0001	lb/hr	0.0004	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0021	lb/hr	0.0094	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0022	lb/hr	0.0098	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF	
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF	
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF	
AP-42 Table 1.4-3	CHOH	0.075 lb/MMSCF	

Moe Well Pad Production Facility Tyler County, WV

Source RBV-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 MBtu/hr 98.0 % 1263.0 Btu/scf 9,695 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60.4	lb/hr	264.5	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

AP-42 Factors Used

NOx CO	100 lb/MMCF 84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCH	
PM	7.6 lb/MMCH	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCH	Global Warming Potential = 25
N_2O	2.2 lb/MMCH	Global Warming Potential = 298
нсон	0.075 lb/MMCH	
Benzene	0.0021 lb/MMCH	
n-Hexane	1.8 lb/MMCH	•
Toluene	0.0034 lb/MMCH	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Combustor Pilot				
Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation	98.0 1263.0 19100.9	Btu/scf scfd Mole %		

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 660.7 Btu/scf 0.09264 MMSCFD 2.55 MMBtu/hr

811.526 MMSCF/yr 22,341 MMBtu/yr

NO	0.17	11 /1	0.74	
NOx	0.17	lb/hr	0.76	tpy
CO	0.94	lb/hr	4.13	tpy
CO2	298.11	lb/hr	1,305.74	tpy
CO2e	298.42	lb/hr	1,307.09	tpy
VOC	0.80	lb/hr	3.51	tpy
CH4	0.01	lb/hr	0.0246	tpy
N2O	0.001	lb/hr	0.0025	tpy
PM	0.029	lb/hr	0.128	tpy
Benzene	0.010	lb/hr	0.042	tpy
СНОН	0.000	lb/hr	0.001	tpy
n-Hexane	0.020	lb/hr	0.086	tpy
Toluene	0.034	lb/hr	0.147	tpy
Total HAPs	0.063	lb/hr	0.276	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Moe Well Pad Production Facility Tyler County, WV

		L-1	<u>.</u>				
Truck Loading - Condensate							
Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows: L_L =12.46*(SPM/T)							
Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature	S= P=	0.6 3.1 66.84	lb/1000 ga psia lb/lb-mol deg R	llons			
Maximum Daily Loading Hours of Loading	100 4,200 3	BBL/da gpd hr	ау				
Total VOC	8.9	lb/day	2.96	lb/hr]		
Total HAP		lb/day	0.16	lb/hr			
Maximum Annual Loading	20,400 856,800	BBL/yı gpy					
Total VOC	1813.7	lb/yr	0.91	tpy			
Total HAP	98.0	lb/yr	0.05	tpy			
Emissions Total VOC Total HAP		% %					

Moe Well Pad Production Facility Tyler County, WV

	TL-2							
Truck	Truck Loading - Produced Water							
Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows: L_L =12.46*(SPM/T)								
Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature	S= P=	0.6 0.3 30.68	lb/1000 ga psia lb/lb-mol deg R	allons				
Maximum Daily Loading	120	BBL/da	ay					
Hours of Loading	5,040 3	gpd hr						
Total VOC	0.2	lb/day	0.08	lb/hr				
Total HAP	0.0	lb/day	0.009	lb/hr				
Maximum Annual Loading	43,200 1,814,400	BBL/yı gpy	ſ					
Total VOC	87.3	lb/yr	0.04	tpy				
Total HAP	9.6	lb/yr	0.00	tpy				
Emissions Total VOC Total HAP		% %						

Moe Well Pad Production Facility Tyler County, WV

		Truck Loa Fugitive I								
Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Trin	Maximum Trips per Hour	Truck Capacity (BBL/Truck)	Maximum Trips per Year	Control	Control Efficiency (%)
1	Produced Water Transportation Trucks	18	27	10	1.75	1	80	540	None	
2	Condensate Transportation Trucks	18	27	10	1.75	1	80	255	None	
			54000	lbs						

		PM	PM-10
k =	Particle size multiplier	0.8	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	27
p =	Number of days per year with precipitation >0.01 in.	157	157

 $E (lb/vehicle mile traveled) = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365)$

Item 1 - Produ	uced Water	PM	PM-10
E	lb/vmt	7.378804125	1.220015589
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	12.913	2.135
Е	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = t$	3.486	0.576

Item 2 - Cond	ensate	PM	PM-10	
E	lb/vmt	7.378804125	1.220015589	
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	12.913	2.135	lb/hr
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = t$	1.646	0.272	tpy

Jay-Bee Oil & Gas - Moe						
Flash Emissio	Flash Emission Calculations - Condensate					
		Using Gas-Oil Ratio Meth	lod			
		Un-Controlled				
		Site specific data	1			
Gas-Oil-ratio	=	500 scf/bbl	Using GOW from comparable well pads.			
Throughput	=	20,400 bbl/yr				
Stock tank gas molecular weight	=	39.56 g/mole				
		a .				
		Conversions				
1 lb	=	453.6 g				
1 mole	=	22.4 L				
1 scf	=	28.32 L				
1 ton	=	2000 lb				

Equations						
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$						
E_{TOT} = Total stock tank flash emissions (TPY)						
R = Measured gas-oil ratio (scf/bbl)						
Q = Throughput (bbl/yr)						
MW = Stock tank gas molecular weight (g/mole)						
$E_{spec} = E_{TOT} \times X_{spec}$						
E_{spec} = Flash emission from constituent						

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	562.3396	
VOC	394.5881	
Nitrogen	1.41E-01	
Carbon Dioxide	8.83E-01	
Methane	5.58E+01	
Ethane	1.11E+02	
Propane	1.46E+02	
Isobutane	3.94E+01	
n-Butane	9.07E+01	
2,2 Dimethylpropane	1.11E+00	
Isopentane	3.10E+01	
n-Pentane	3.26E+01	
2,2 Dimethylbutane	1.18E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.70E+00	
2 Methylpentane	9.04E+00	
3 Methylpentane	5.40E+00	
n-Hexane	1.18E+01	HAP
Methylcyclopentane	8.60E-01	
Benzene	2.02E-01	HAP
Cyclohexane	1.22E+00	
2-Methylhexane	2.62E+00	
3-Methylhexane	2.58E+00	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	2.45E+00	
n-Heptane	3.79E+00	
Methylcyclohexane	2.36E+00	
Toluene	4.61E-01	HAP
Other C8's	3.85E+00	
n-Octane	1.28E+00	
Ethylbenzene	2.81E-02	HAP
M & P Xylenes	3.32E-01	HAP
O-Xylene	4.50E-02	HAP
Other C9's	1.60E+00	
n-Nonane	3.82E-01	1
Other C10's	6.02E-01	1
n-Decane	7.87E-02	1
Undecanes (11)	8.44E-02	1

E_{TOT} Sum of C3+

Jay-Bee O	il & Ga	s - Moe
-----------	---------	---------

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data						
Gas-Water-ratio	=	4.06 scf/bbl	Using GOW from comparable well pads.			
Throughput	=	43,200 bbl/yr				
Stock tank gas molecular weight	=	30.68 g/mole				

		Conversions
1 lb	=	453.6 g
1 mole	=	22.4 L
1 scf	=	28.32 L
1 ton	=	2000 lb

I	Equations	
28.32(I)	1(mole)	(a

$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$
E_{TOT} = Total stock tank flash emissions (TPY)
R = Measured gas-oil ratio (scf/bbl)
Q = Throughput (bbl/yr)
ε

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	7.4991	
VOC	3.8354	
Nitrogen	1.25E-01	
Carbon Dioxide	1.13E-01	
Methane	2.22E+00	
Ethane	1.21E+00	
Propane	8.62E-01	
Isobutane	2.15E-01	
n-Butane	6.07E-01	
2,2 Dimethylpropane	9.52E-03	
Isopentane	3.05E-01	
n-Pentane	4.24E-01	
2,2 Dimethylbutane	1.58E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	3.05E-02	
2 Methylpentane	1.70E-01	
3 Methylpentane	1.10E-01	
n-Hexane	2.96E-01	HAP
Methylcyclopentane	2.76E-02	
Benzene	5.40E-03	HAP
Cyclohexane	3.80E-02	
2-Methylhexane	8.26E-02	
3-Methylhexane	8.59E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	7.90E-02	
n-Heptane	1.44E-01	
Methylcyclohexane	7.63E-02	
Toluene	1.18E-02	HAP
Other C8's	1.31E-01	
n-Octane	4.11E-02	
Ethylbenzene	8.25E-04	HAP
M & P Xylenes	6.75E-03	HAP
O-Xylene	7.50E-04	HAP
Other C9's	3.97E-02	
n-Nonane	7.42E-03	
Other C10's	8.70E-03	
n-Decane	1.50E-03	
Undecanes (11)	1.42E-03	

E_{TOT} Sum of C3+

Moe Well Pad Production Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Carbon Dioxide from gas analysis: HAPs from gas analysis: Hexane

Gas Density:

59.35	weight percent weight percent weight percent
	weight percent lb/scf

Emission Source:	Count	Oil & Gas Production*	VOC %	VOC (lb/hr)	VOC (tpy)	CO2 (lb/hr)	CO2 (tpy)	CH4 (lb/hr)	CH4 (tpy)	CO2e (tpy)	Hexane (tpy)
Pump Seals:											
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											
Gas/Vapor:	26	0.02700 scf/hr	18.4	0.007	0.033	0.000	0.001	0.024	0.1058	2.646	0.001
Light Liquid:	18	0.05000 scf/hr	100.0	0.052	0.229						
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	3	0.04000 scf/hr	18.4	0.001	0.006	0.000	0.000	0.004	0.0181	0.452	0.000
Open-ended Lines, gas:	20	0.06100 scf/hr	18.4	0.013	0.057	0.000	0.001	0.042	0.1839	4.598	0.002
Sampling Connectors:											
Gas:	11	0.03300 lb/hr	18.4	0.067	0.293	0.001	0.005	0.215	0.9436	23.595	0.010
Light Liquid:	6	0.03300 lb/hr	100.0	0.198	0.867						
Connectors:											
Gas:	120	0.00300 scf/hr	18.4	0.004	0.017	0.000	0.000	0.012	0.0543	1.357	0.001
Light Liquid:	60	0.00700 scf/hr	100.0	0.024	0.107						
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:											
Gas:	80	0.00086 lb/hr	18.4	0.013	0.055	0.000	0.001	0.041	0.1788	4.472	0.002
Light Liquid:	40	0.00300 scf/hr	100.0	0.007	0.030						

Blowdowns:

			Projected	Gas	Gas	Composition			
	Pressure	Internal	Blowdown	Released	Released	Composition of Gas (% by	Released	Released	CO2e
	(psig)	Volume (scf)	Events (per	Per Year	Per Year		(lb/hr)	(tpy)	(tpy)
			year)	(scf)	(lbs)	volume)			
VOC	300	65	16	1040	124.8	0.70	0.0100	0.0438	
CH4	300	65	16	1040	44.0	0.10	0.0005	0.0022	0.0546
HAPs	300	65	16	1040	116.3	0.02	0.0003	0.0013	

	lb/hr	tpy
VOC	0.401	1.757
CH4	0.354	1.551
CO2	0.002	0.008
CO2e	8.854	38.779
HAPs	0.004	0.018

Notes:

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

0.058

Gas Density (STP) =

Ideal Gross (HHV)	1,257.7
Ideal Gross (sat'd)	1,236.6
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.135	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	100.000	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

	Gas Density (STP) =	0.111
Ideal Gross (HHV)	2,283.4	
Ideal Gross (sat'd)	2,244.3	
GPM	-	
Real Gross (HHV)	2,313.1	
Real Net (LHV)	2,124.9	

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	1.821	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.049	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	56.602	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	16.424	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	8.000	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.516	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	4.274	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.784	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	2.405	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	2.953	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	3.172	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

0.069

	Gas Density (STP) =
Ideal Gross (HHV)	1,424.0
Ideal Gross (sat'd)	1,399.9
GPM	-
Real Gross (HHV)	1,430.5

1,302.3

Real Net (LHV)

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.158	0.044	0.002	0.211	0.0	0.0	-		0.0016	
Carbon Dioxide, CO2	0.164	0.072	0.002	0.343	0.0	0.0	0.012		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		-	
Water	54.800	9.864	0.341	46.930	0.0	0.0	-		0.5483	
Oxygen, O2	-	-	-	-	0.0	0.0	-		-	
Methane, CH4	30.600	4.909	0.170	23.356	278.3	309.1	5.104		0.3054	
Ethane, C2H6	7.680	2.309	0.080	10.987	124.3	135.9	1.829		0.0762	2.043
Propane	3.300	1.455	0.050	6.923	76.4	83.0	1.022	6.923	0.0324	0.904
Iso-Butane	0.506	0.294	0.010	1.399	15.2	16.5	0.157	1.399	0.0049	0.165
Normal Butane	1.190	0.692	0.024	3.291	35.8	38.8	0.454	3.291	0.0115	0.373
Iso Pentane	0.278	0.201	0.007	0.954	10.3	11.1	0.113	0.954	0.0028	0.101
Normal Pentane	0.328	0.237	0.008	1.126	12.2	13.1	0.133	1.126	0.0033	0.118
Hexane	0.406	0.350	0.012	1.665	17.9	19.3	0.197	1.665	0.0040	0.166
Heptane	0.590	0.591	0.020	2.813	30.1	32.5	1.310	2.813	0.0059	0.271
	100.000	21.018	0.726		600.4	659.3	10.330	18.172	0.9979	4.141

	Gas Density (STP) =	0.058
Ideal Gross (HHV)	659.3	
Ideal Gross (sat'd)	648.7	
GPM	-	
Real Gross (HHV)	660.7	
Real Net (LHV)	601.7	

Jay-Bee Oil & Gas, Inc.

Specific Gravity of Air, @ 29.92 in. Hg and 60 -F,	28.9
One mole of gas occupies, @ 14.696 psia & 32 -F,	3
One mole of gas occupies, @ 14.696 psia & 60 -F,	37

28.9625 359.2 cu ft. per lb-mole 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	<u>0.00000</u> mole % H2S
		<u>0.0</u> ppmv H2S
<u>0</u> mole % H2S	=	<u>0</u> grains H2S/100 scf
		<u>0.0</u> ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Gal/Mole
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gai/Wole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

Unit Information Sheet

Date: May 27, 2014 Unit #: 6041 Customer: To Be Determined

To:

Lease Location: To Be Determined

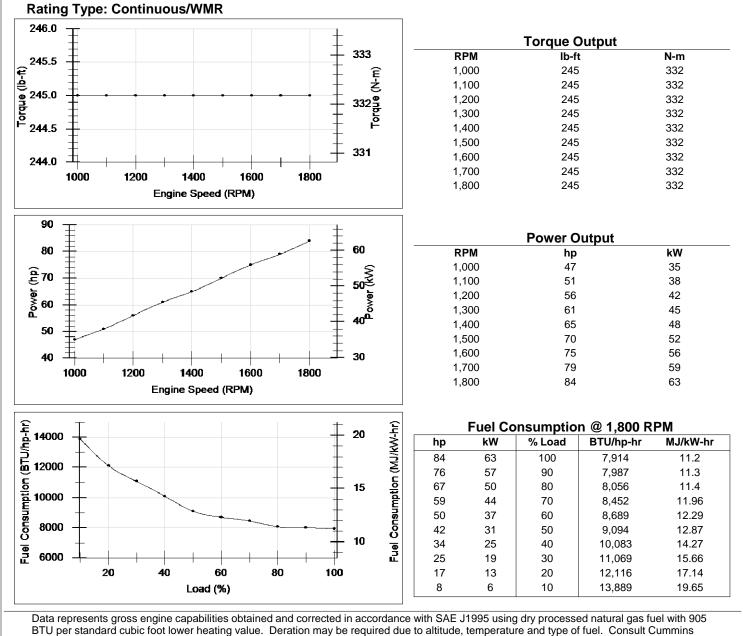
Please find the below information for the USA Compression unit number listed above:

Package Information				
Comproser Manufacturer	4//00//			
Compressor Manufacturer:	Arrow			
Compressor Model:	VRC2			
Compressor Serial Number:	12095			
Compressor Cylinders:	6.5" x 4.0" x 2.25"			
Driver Manufacturer:	Cummins			
Driver Model:	G5.9			
Rated HP & Speed	84 HP @ 1800 RPM			
Driver Type:	4-stroke Rich Burn			
Engine Serial Number:	73364060			
Engine Manufacturing Date:	3/19/2012			
Engine Catalyst Model:	VXC-1408-04-HSG			
Engine Catalyst Element:	VX-RE-08XC			
Engine AFR Model:	AFR-1RD-10-TK2			
Engine Stack Height:	9' 5"			
Engine Stack Diameter:	4"			
Оре	rating Information			
Suction Pressure:	N/A psig			
Discharge Pressure:	N/A psig			
Design Capacity:	N/A MSCFD			
Gas Specific Gravity:	N/A			

Emission Output informtion included in the attached catalyst specification sheet.

MIRATECH Emissions Control Equipment Specification Summary

			Proposal Number:	TJ-14-0081 Rev(1)
Engine Data				
Number of Engines:	1			
Application:	Gas Co	ompression		
Engine Manufacturer:	Cummi	ins		
Model Number:	G 5.9			
Power Output:	84 bhp			
Lubrication Oil:	0.6 wt?	% sulfated ash or less		
Type of Fuel:	Natura	l Gas		
Exhaust Flow Rate:	430 ac	fm (cfm)		
Exhaust Temperature:	1,078°	F		
System Details				
Housing Model Number:	VXC-1	408-04-HSG		
Element Model Number:	VX-RE	-08XC		
Number of Catalyst Layers:	1			
Number of Spare Catalyst Lay	ers: 1			
System Pressure Loss:	3.0 inc	hes of WC (Fresh)		
Sound Attenuation:	28-32 (dBA insertion loss		
Exhaust Temperature Limits:	750 – 2	1250°F (catalyst inlet); 1350°	F (catalyst outlet)	
NSCR Housing & Cataly	st Details			
Model Number:	VXC-1	408-04-XC1		
Material:	Carbor	n Steel		
Approximate Diameter:	14 inch	nes		
Inlet Pipe Size & Connection:	4 inch	FF Flange, 150# ANSI standa	ard bolt pattern	
Outlet Pipe Size & Connection	: 4 inch	FF Flange, 150# ANSI standa	ard bolt pattern	
Overall Length:	53 inch	nes		
Weight Without Catalyst:	152 lbs	3		
Weight Including Catalyst:	162 lbs	3		
Instrumentation Ports:	1 inlet/	1 outlet (1/2" NPT)		
Emission Requirements				
			Warranted	
	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOv	11 41	Q1%	1.00	1.00 a/bbp_br


Exhaust Gases	(g/ brip-rir)	Reduction (%)	(g/ php-hr)	
NOx	11.41	91%	1.00	1.00 g/bhp-hr
СО	14.64	86%	2.00	2.00 g/bhp-hr
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr
CH2O	0.08	0%	1.00	1.00 g/bhp-hr
Oxygen	0.5%			

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

.unminins	Engine Performance Data Cummins Inc				84 BHP (63 kW) @ 1800 RPM 245 lb-ft (332 N-m) @ 1800 RPM			
Cu.		us, Indiana 47202-3005 /www.cummins.com	FR 9961				Revision 12-May-2011	
Compression Ratio: 10.5:1 Fuel System: Field Gas, Dry Processed Nat		Nat Gas	Displacement: Aspiration:	359 in3 (Naturally	5.9 L) Aspirated			

Emission Certification: Non-certified

All data is based on the engine operating with fuel system, water pump, and 7 in H2O (1.74 kPa) inlet air restriction with 3.5 in (89 mm) inner diameter, and with 1 in Hg (3 kPa) exhaust restriction with 3 in (76 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.

Customer Engineering for operation above this altitude.

STATUS FOR CURVES AND DATA: Limited-(measured data) TOLERANCE: Within +/- 5 % CHIEF ENGINEER: Alfred S Weber

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

68 N-m

Intake Air System Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally				
Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)	15	delta deg F	8.3	delta deg C
Cooling System				
Maximum coolant temperature for engine protection controls	215	deg F	102	deg C
Maximum coolant operating temperature at engine outlet (max. top tank temp):	212	deg F	100	deg C
Exhaust System				
Maximum exhaust back pressure:	2	in-Hg	7	kPa
Recommended exhaust piping size (inner diameter):	3	in	76	mm
Lubrication System				
Nominal operating oil pressure				
@ minimum low idle	10	psi	69	kPa
@ maximum rated speed	50	psi	345	kPa
Minimum engine oil pressure for engine protection devices				
@ minimum low idle	10	psi	69	kPa
Fuel System				
Maximum fuel inlet pressure:	1	psi	5	kPa
Performance Data				
Engine low idle speed:	900	RPM		
Maximum low idle speed:	1,800	RPM		
Minimum low idle speed:	800	RPM		
Engine high idle speed	1,800	RPM		
Governor break speed:				

Maximum torque available at closed throttle low idle speed:

		100% Load			75% I	Load			50% l	oad	
Engine Speed	1,800 RPM			1,800	RPM			1,800	RPM		
Output Power	84 hp	63	kW	63	hp	47	kW	42	hp	31	kW
Torque	245 lb-ft	332	N-m	184	lb-ft	249	N-m	123	lb-ft	167	N-m
Intake Manifold Pressure	-1 in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
Inlet Air Flow	121 ft3/mir	n 57 l	L/s	101	ft3/min	48	L/s	82	ft3/min	39	L/s
Exhaust Gas Flow	430 ft3/mir	n 203 l	L/s	360	ft3/min	170	L/s	292	ft3/min	138	L/s
Exhaust Gas Temperature	1,078 deg F	581 (deg C	999	deg F	537	deg C	902	deg F	483	deg C
Heat Rejection to Coolant	3,824 BTU/r	nin 67 l	kW	3,244	BTU/min	57	kW	2,596	BTU/min	46	kW
Heat Rejection to Ambient	1,194 BTU/r	nin 21 l	kW	784	BTU/min	14	kW	613	BTU/min	11	kW
Heat Rejection to Exhaust	2,523 BTU/r	nin 44 l	kW	1,916	BTU/min	34	kW	1,371	BTU/min	24	kW
Fuel Consumption	7,914 BTU/h		MJ/kW-hr	- /	BTU/hp-hr	12	MJ/kW-hr		BTU/hp-hr	13	MJ/kW-hr
Air Fuel Ratio (dry)	16.52 vol/vo				vol/vol				vol/vol		.
Ignition timing (BTDC)	26 deg	26 (deg		deg	26	deg		deg	26	deg
Total Hydrocarbons VOC ppm w/o Catalyst	1.48 g/hp-h	r		1.3	g/hp-hr			1.62	g/hp-hr		
VOC ppm with Catalyst											
NOx	11.41 g/hp-h	r 15.3 (g/kW-hr	13.7	g/hp-hr	18.37	g/kW-hr	12.85	g/hp-hr	17.23	g/kW-hr
NOx ppm w/o Catalyst			0		0		0		0 1		Ŭ
NOx ppm with Catalyst											
CO	14.64 g/hp-h	r 19.63 g	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
CO ppm w/o Catalyst											
CO ppm with Catalyst CO2	449 g/hp-h	r 602 /	g/kW-hr	180	g/hp-hr	656	g/kW-hr	540	g/hp-hr	724	g/kW-hr
02	0.45 %	002 9	9/1.11	1.66		050	9/11/	3.67		724	9/1.1/

50 lb-ft

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Cranking System (Cold Starting Capability)

Unaided Cold Start:

Minimum cranking speed Cold starting aids available Maximum parasitic load at 10 deg F @

Noise Emissions

Тор	89.9 dBa
Right Side	90.1 dBa
Left Side	89.8 dBa
Front	90.5 dBa
Exhaust noise emissions	103.1 dBa
ed Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Spe	ed

Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Sp (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)

Aftercooler Heat Rejection - Heat Load on Aftercooler

250 RPM

Block Heater, Oil Pan Heater

BTU/min (kW)

			Ambient Temp	deg F (deg C)		
	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
0 (0)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
1000 (305)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
2000 (610)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
3000 (914)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
4000 (1219)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
5000 (1524)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
6000 (1829)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
10000 (3048)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)

Altitude ft (m)

End of Report

Bold entries revised after 1-Mar-2010

Gas/Site Analysis & Engine Selection/Derate Cummins Stationary Natural Gas Engines	9	Industrial G5.9 Available FR Number(s) From Selection: FR9936, FR9961	NG 84 HP (63 kW) @1800 RPM & 10.5:1 Compression Ratio Catalyst Fuel Rating Industrial Continuous
Engine (as entered by user)	1.1.12		
Application: Fuel Type: Engine: Fuel Rating: Compression Ratio: RPM: HP (Natural Gas): HP (Propane):	Industria NG G5.9 Catalyst 10.5:1 1800 84 HP (6 NA HP (53 kW)	
Site (as entered by user)			
Ambient Air Temperature: Relative Humidity: Altitude: Cooling Fan Load: Generator Efficiency: Vapor Pressure (Calculated from Site Conditions Entered): Dew Point (Calculated from Site Conditions Entered): Dry Barometer (Calculated from Site Conditions Entered):	90° F 30% 1200 ft 8 HP 93% 0.427 inl 54.4° F 28.22 inl	- -	
Derate (Natural Gas)	+	<u>.</u>	
Advertised NG Rating: Engine Derate Due to Site Altitude and Temperature: Engine Derate Due to Gas Composition: Derate Due to Low BTU Fuel: Derate Due to Methane Number: Total Power Available (%) After All Applicable Derates: Total Site Derate due to Altitude, Temperature, and Gas Composition: Total Available Horsepower from Selected Engine Running on Specified Fuel Composition at Specified Site (includes 8 HP reduction for for cooling fan Ioad):	84 HP (6 2% 0% 98% of r 2 HP (1 74 HP (5	ated kW) ar	The sample percentage for "Name Sample" is 99.991%. Results re based on the input sample ormalized to 100%.
Derate (Propane)			
Advertised Propane Rating: Engine Derate Due to Site Altitude and Temperature: Total Power Available (%) After All Applicable Derates: Total Site Derate due to Altitude and Temperature: Total Available Horsepower from Selected Engine Running on Propane at Specified Site (includes 8 HP reduction for for cooling fan load):	NA HP (NA% NA% of NA HP (NA HP (rated NA kW)	
Intake Manifold Requirements for Turbocharged Engines	· · · · ·		
Maximum Allowed Intake Manifold Temperature for Selected Engine is na °F w based on FR9936	vith a Maximum	Aftercooler Water Inlet (CAC	C air inlet) of na °F
Factory Set Points	Factory	Supplied	Recommended
Engine Speed Target: Spark Plug Gap: Excess Oxygen Target-PV: Propane Engine Timing Target: Propane Gas over air Press at Carb Low: Propane Gas Press at Sec Reg Target: Excess Oxygen Target-NG:	d Target: 1800 rpm Gap: 0.020 in ien Target-PV: na %O2 jine Timing Target: na °BTDC sover air Press at Carb Low: na inH2O s Press at Sec Reg Target: na inH2O		NOTICE: A Change to Ignition Timing Is Recommended Due to Methane Number of
Natural Gas Engine Timing Target:			ecommended Timing: 25 °
Natural Gas over air Press at Carb Target: Natural Gas Press at Sec Reg Target:	5 inH2O 15 inH20	В	TDC

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:		0.26	0.91
n-Hexane:		0.15	0.62
n-Heptane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonane:		0	0
n-Decane:		0	0.02
Hydrogen:		0	0
Hydrogen Sulfide (H ₂ S):		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Carbon Monoxide:		0	0
Nitrogen:		0.39	0.53
Oxygen:		0	0
	centage: 99.991%)	Normalized Percentage: 100%	
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/scf	42.5 MJ/scm
Standard Conditions (60F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Higher Heating Value (HHV): Standard Conditions (60F/14.696psia)	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:	• •	56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
Webbe Index :	LHV/√ SG	1345 Btu/scf	50.11 MJ/scm
Wobbe Index :	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1.253
Ideal Gas Density:		0.0549 lbm/ft3	0.8788 kg/m3 std
H/C Ratio:		3.492	3.492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-°R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
uel Flow Data			1
BTU/HP-HR:		7914	
Maximum Fuel Flow (SCFH):		583	
Maximum Fuel Flow Calculation is Bas	ed on 100% Continuous	Rating of 84 HP at 1800 RPM and	10.5:1 Compression Ratio from FR9936
Bas Regulator Details			
The Industrial G5.9 uses a Maxitrol Requ	latar		Notes:

FR Differences for Selected Engine			
Description of FR Differences for Selected Engine			
	FR9936	FR9961	
Exhaust Manifold	FR9936 Dry	FR9961 Wet	
Exhaust Manifold Exhaust Stack Temp High			

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

		5
\mathbf{Z}	min	-
0	m	
1	-	
	-	н.

Can Analysia Taal

Gas Analysis Tool References & Stan			Date:	4/10/2014
				Tool Revision Date: 3/27/2014
Performance Parameters:		Reference Standard or Docum	ent	
		Standard Units		Metric Units
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.6		ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	96psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6		ASTM D 3588-91 @ 0C/101.3kPa
Higher Heating Value (HHV):	by volume	ASTM D 3588-91 @ 60F/14.6	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	96psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6	96psia	ASTM D 3588-91 @ 0C/101.3kPa
Methane Number:		Cummins Methane Number		Cummins Methane Number
Specific Gravity (SG) (Ideal Rel. D				-
Wobbe Index :	LHV/√ SG	Ideal gas @ 60F/14.696psia		Ideal gas @ 15.5C/101.3kPa
	HV/√ SG	ldeal gas @ 60F/14.696psia		Ideal gas @ 15.5C/101.3kPa
Molecular Weight:		 @ 60F/14.696psia		- @ 15 50/101 2kDa
Specific Heat (Cp): Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia		@ 15.5C/101.3kPa @ 15.5C/101.3kPa
Ideal Gas Density:		ASTM D 3588-91 @ 60F/14.6	06neia	ASTM D 3588-91 @ 15.5C/101.3kPa
H/C Ratio:		-	0000010	-
Gas Constant (R _{GAS}):		@ 60F/14.696psia		@ 15.5C/101.3kPa
Stoich Air Fuel Ratio (Dry):		@ 001714.090psia		10.00/101.0ki u
		_		-
Conversion Factors		Standard Units		Metric Units
		otandara omto		
Notes				

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential

Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical

Adjustment:

up to 11 Volts
12 -18 Volts
24 - 30 Volts
48 - 60 Volts

Reverse current protection included.

Standard Features

- Automatic Spark Ignition (SI)
- Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- Volt & Amp Meter

Optional Features

- Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- Corrosive Environmental Fuel System
- Flame Arrestor

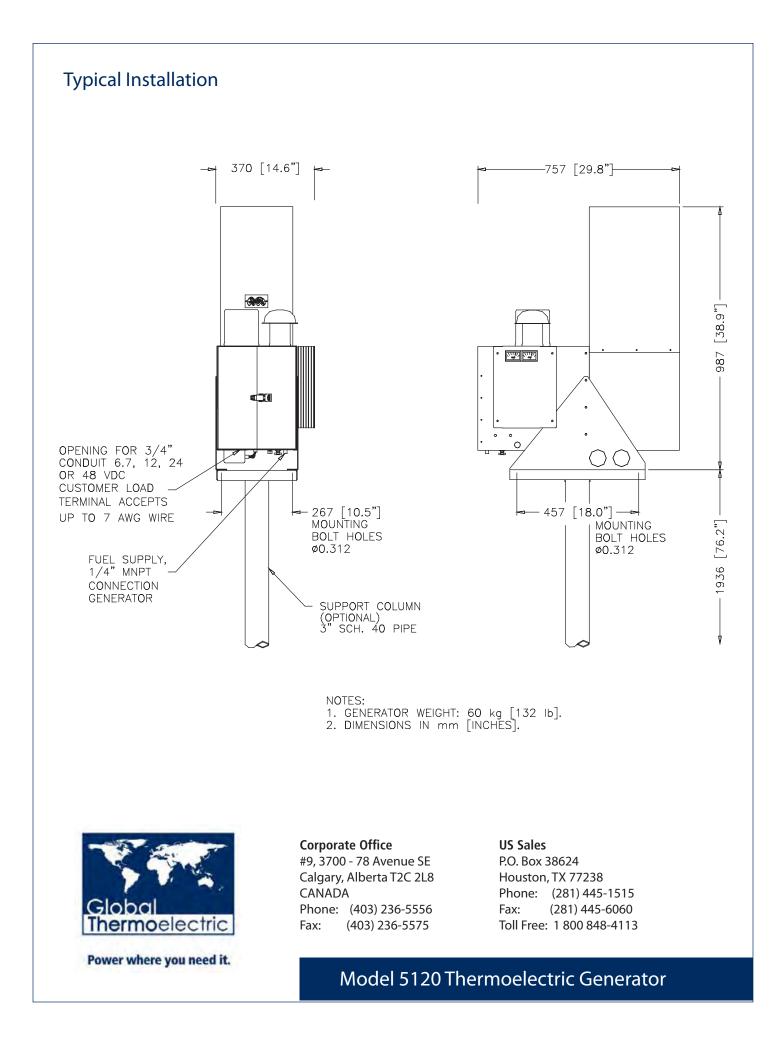
Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

Power where you need it.

Output: Terminal block which accepts up to 8 AWG wire. Opening for 3/4 " conduit in the base of the cabinet.

Fuel

Natural Gas:


Propane: Max. Supply Pressure: Min. Supply Pressure: Fuel Connection: 8.8 m³/day (311 ft³/day) of Std. 1000 BTU/SCF (37.7 MJ/SM³) gas 11.4 l/day (3.0 US gal/day) 1724 kPa (250 psi) 103 kPa (15 psi) 1/4" MNPT

Environmental

Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

Materials of Construction

Cabinet:	304 SS
Cooling Type:	Natural Convection
Thermopile:	Hermetically Sealed Lead Tin-Telluride (PbSnTe)
Burner:	Meeker Type/Inconel 600
Fuel System:	Brass, Aluminum & SS

Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines – making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes – making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant <u>List of EPA Approved Combustion Control Devices</u>
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- User Friendly Automated System
- Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
 Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

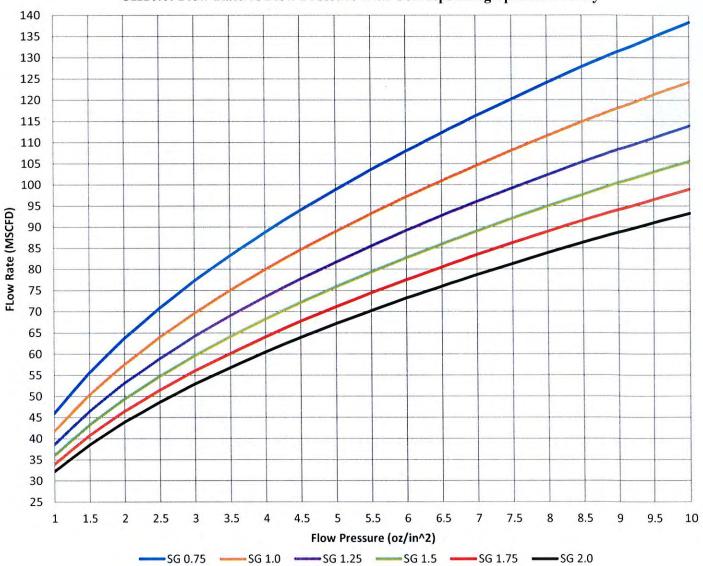
GENERAL PROPERTIES	CH2.5	CH10.0
BURNER SIZE (MMBTU/hr)	2.5	10.0
OUTER DIAMETER (inches)	34	54
HEIGHT (feet)	16	20
INLET PRESSURE (oz/in²)	≥ (0.5
DESTRUCTION EFFICIENCY	≥ 99.99%	
SMOKELESS CAPACITY 100%		
TURN DOWN	SCAL	ABLE

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the means of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the CH10.0 enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

	GENERAL PROPERTIES	
	ТҮРЕ	Enclosed Tank Battery Flare
	AMBIENT TEMPERATURE	-20 °F to +100 °F
	PILOT FUEL REQUIREMENTS	Propane or Site Gas @5psi of natural gas = 13.3 SCFM @5psi of propane = 12.5 SCFM
	BURNER SIZE	10.0 million BTU/hr
	INLET PRESSURE REQUIRMENTS	Minimum 0.5 oz/in ² (~1.0 inche: w.c.)
	TURN DOWN RATIO	5:1
	DESTRUCTION EFFICIENCY	99.99% DRE
	MECHANICAL PROPERTIES	
	DESIGN WIND SPEED	100 MPH
14 15	AMBIENT TEMPERATURE	-20 °F to +120 °F
	ELECTRICAL AREA CLASSIFICATION	General Area Classification (Nor Hazardous)
	ELEVATION	up to 3,000ft ASL
	PROCESS PROPERTIES	Party and a second s
20	SMOKELESS CAPACITY	100%
	OPERATING TEMPERATURE	800 °F to 2000 °F (1500 °F Nominal)
0, Quad O Compliant	UTILITIES	
nclosed Combustion	PILOT GAS	Process Gas
uction Efficiency	ELECTRICITY	1 Phase, 60 Hz, 120V/10A
ted System ational Data via Thumb Drive	SOLAR PANEL OPTION AVAILABLE	YES


- EPA 40 CFR 60
- **Completely En**
- 99.99% Destru >
- **Fully Automate** P
- Output Operational Data via Thumb Drive P
- **Capable of SCADA Integration** P

Revision #3: 09/04/2015 1 2

2404 Commerce Dr. Midland, TX 79703 432-697-2292 <u>hy-bon.com</u>

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015

			Certificate of Analysis Number: 2030-14030288-003A		Carencro Laboratory 4790 NE Evangeline Thruwa Carencro, LA 70520	
Alan Ball Gas Analytical S PO Box 1028 Bridgeport, WV					Apr. 02, 2014	
Station Name: RPT & Sample Point: Subme Cylinder No: 0258		6 by GR14		Sampled By: Sample Of: Sample Date: Sample Conditions Method:	DW-GAS Gas Spot 03/25/2014 12:00 ::290 psig GPA 2286	
			Analyti	cal Data		
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.394	0.530		GPM TOTAL C2+	6.223	
Carbon Dloxide	0.151	0.319				
Methane	77.080	59.336				
Ethene	14.832	21.401	3.980			
Propane	4.967	10.510	1.373			
Iso-Bulane	0.616	1.718	0.202			
n-Butane	1.210	3.375	0.383			
Iso-Pentane	0.266	0.921	0.097			
n-Pentane	0.262	0.907	0.095			
I-Hexanas	0.093	0.376	0.037			
n-Hexane	0.058	0.239	0.023			
Benzene	0.001	0.004	NIL			
Cyclohexane	0.006	0.023	0.002			
I-Heptanes	0,031	0.150	0.014	:		
n-Heptane	0.011	0.056	0.005			
Toluene	0.002	0.008	0.001			
i-Octanes	0.015	0.080	0.007		: HAP	
n-Octane	0.002	0.012	0.001		· //A/	
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	NIL	NIL			
I-Nonanes	NIL	NIL	NIL			
n-Nonane	NIL	NIL	NIL			
Decane Plus	0.003	0.035	0.003			
	100.000	100.000	6.223			
Physical Properties Calculated Molecular			Total 20.84	C10+ 162.34		
GPA 2172-09 Calcul				No. and		
Calculated Gross B	TU per ft? @	14.73 ps				
Real Gas Dry BTU	1999 - C. M.		1265.2	8778.9		
Water Set. Gas Base			1243.1	8626.1		
Relative Density Ree	d Gas or		0.7218	5,6078		

Par L. Dero

Quality Assurance:

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Jay Bee Oli & Gas Station Name:RPT 8-1H Sample Point: Submater Cylinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

Certificate of Analysis

Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Apr. 02, 2014

Sempled By:DW-GASSample Of:GasSpotSample Date:03/25/2014 12:00Sample Conditions: 290 psigMethod:GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.394	0.630		GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0.319		GPM TOTAL C3+	2.243	
Methane	77,080	59.336		GPM TOTAL IC5+	0.285	
Ethane	14.832	21.401	3.980			
Propene	4.967	10,510	1.373			
ieo-butane	0.616	1.718	0.202			
n-Bulane	1.210	3.375	0.383			
lec-pentene	0.266	0.921	0.097			
n-Pentane	0.262	0,907	0.095			
Hexanes Plus	0.222	0.963	0.093			
	100.000	100.000	6.223			
Physical Properties	·		Total	C8+		
Relative Density Rep	al Gas		0.7218	3.1591		
Calculated Molecula	r Welght		20.84	91.50		
Compressibility Fact	or		0.9984			
GPA 2172-09 Calcu	ilation:					
Calculated Gross B	STU per ft ^a @	2 14.73 psł	a 80°F			
Reei Gas Dry BTU		•	1285.2	5014.1		
Weler Sat. Gas Base	BTU	•	1243.1	4926.8		
Comments: H2O	//ol%:1.740	; Wt% : 1.5	06			

Jam S. Jerro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Alan Sali Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Jay Bee Oit & Gas Station Neme:RPT 8-1H Sample Point: Submeter Cyfinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

Certificate of Analysis Number: 2030-14030288-003A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Apr. 02, 2014

Sampled By: DW-GAS Sample Of: Gas Spot Sample Date: 03/25/2014 12:00 Sample Conditions: 280 paig Method: GPA 2286

Components	Mol. %	Wt. %	GPM at			
			14.73 psia	<u></u>		
Nitrogen	0,394	0,530		GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0,319		GPM TOTAL C3+	2.243	
Methane	77.080	69.336		GPM TOTAL IC5+	0.285	
Ethane	14.83 <u>2</u>	21.401	3,980			
Propane	4.967	10.510	1.373			
Iso-Butane	0.616	1.718	0.202			
n-Butane	1.210	3.375	0.383			
Iso-Pentane	0.266	0.921	0.097			
n-Pentane	0.262	0.907	0.095			
Hexanes	0,151	0.615	0,060			
Heptanes Plus	0.071	0.368	0.033			
	100.000	100,000	6.223			
Physical Properties		-i	Total	C7+		
Relative Density Res	d Gas		0.7218	3.6570		
Calculated Molecula	r Welght		20.84	103.02		
Compressibility Factor 0.9964						
GPA 2172-09 Calcu	iation:					
Calculated Gross E	TU per ft' @	2 14.73 psi	a & 60°F			
Real Gas Dry BTU			1265.2	5577.8		
Water Sat. Gas Base	a BTU		1243,1	5480.7		

Ferro Jani S.

Hydrocarbon Laboratory Manager

Quality Assurance:

The above enalyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

ŝ

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERA	TION OF HYDROCARBON LIQUID)		
Separator HC Liquid Stock Tank				
Pressure, psig	340	0		
Temperature, °F	65	70		
Gas Oil Ratio (1)		500		
Gas Specific Gravity (2)		1.387		
Separator Volume Factor (3)	1.2987	1.000		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

Quality Control Check				
	Test Samples			
Cylinder No.		W-2408*	W-2423	
Pressure, psig	340	299	297	
Temperature, °F	65	66	66	

(1) - Scf of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst: M. G.

* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

ŝ

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23.253	6.457
lsobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.376	0.988
Heptanes Plus	<u>1.701</u>	<u>0.761</u>
Totals	100.000	22.579

Computed Real	Characteristics	Of Heptanes P	lus:
Specific Growit			

Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

1.387	(Air=1)
0.9850	ç,
39.56	
2321	BTU/CF
2282	BTU/CF
	0.9850 39.56 2321

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: (GPA 2377) Results: (GPA 2377)

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

ŝ

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	0.11	< 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6.993	19,719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1,116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.736	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.189	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	• •
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

ì

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Computed Real	Characteristics	Of Heptanes Plus:
----------------------	-----------------	-------------------

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air≓1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Moi %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

ł

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number:

FLASH LIBERATION OF SEPARATOR WATER Separator Stock Tank				
Temperature, °F	78	70		
Gas Water Ratio (1)		4.06		
Gas Specific Gravity (2)		1.069		

(1) - Scf of water saturated vapor per barrel of stock tank water
(2) - Air = 1.000
(3) - Separator volume / Stock tank volume
Analyst: T.G.

Piston No. : WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: **FESCO**, Ltd. Alice, Texas de t E.S

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dioxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)	
Compressibility (Z)	0.9914	. ,	
Molecular Weight	30.68		
Gross Heating Value			
Dry Basis	1741	BTU/CF	
Saturated Basis	1712	BTU/CF	
Annear Culture and a failed and a second			

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: Results: CPA 2377)

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez Analyst: MR Processor: OA Cylinder ID: WF# 10S

Certified: EESCO, Ltd. Alice, Texas and

David Dannhaus 361-661-7015

•

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methyihexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification				
User Identification:	Moe Condensate			
City:	Huntington			
State:	West Virginia			
Company:	Jay-Bee Oil & Gas, Inc.			
Type of Tank:	Vertical Fixed Roof Tank			
Description:	210 BBL Condensate Tanks - Emissions from a Single Tank			
Tank Dimensions				
Shell Height (ft):	15.00			
Diameter (ft):	10.00			
Liquid Height (ft) :	14.00			
Avg. Liquid Height (ft):	10.00			
Volume (gallons):	8,225.29			
Turnovers:	51.06			
Net Throughput(gal/yr):	419,983.21			
Is Tank Heated (y/n):	Ν			
Paint Characteristics				
Shell Color/Shade:	Gray/Light			
Shell Condition	Good			
Roof Color/Shade:	Gray/Light			
Roof Condition:	Good			
Roof Characteristics	6			
Type:	Cone			
Height (ft)	0.25			
Slope (ft/ft) (Cone Roof)	0.05			
Breather Vent Settings				
Vacuum Settings (psig):	-0.03			
Pressure Settings (psig)	0.03			

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Moe Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Moe Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	451.6638
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1508
Vented Vapor Saturation Factor:	0.5512
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	5.0000
Vapor Density	0.0070
Vapor Density (lb/cu ft):	0.0373
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	69.0000
Surface Temperature (psia):	3.0220
Daily Avg. Liquid Surface Temp. (deg. R):	521.0866
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	54.8458
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.7558
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,246.2101
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1508
Daily Vapor Temperature Range (deg. R):	33.2847
Daily Vapor Pressure Range (psia):	1.0425
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	3.0220
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	3.0220
Surface Temperature (psia):	2.5373
Vapor Pressure at Daily Maximum Liquid	0 5707
Surface Temperature (psia):	3.5797
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	521.0866 512.7654
Daily Max. Liquid Surface Temp. (deg R):	529.4077
Daily Ambient Temp. Range (deg. R):	20.0583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5512
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.0220
Vapor Space Outage (ft):	5.0833

Working Losses (Ib):	1,572.6233
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Annual Net Throughput (gal/yr.):	419,983.2053
Annual Turnovers:	51.0600
Turnover Factor:	0.7542
Maximum Liquid Volume (gal):	8,225.2880
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	2,024.2871

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Moe Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 6)	1,572.62	451.66	2,024.29						

Total Emissions for all Tanks: $2,024.29 \times 3 \text{ tanks} = 6,072.87 \text{ lb/yr} = 3.04 \text{ tpy}$ TANKS 4.0 Report

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Moe Well Pad File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Moe\Moe No Cond 8-17-16.ddf Date: August 17, 2016

DESCRIPTION:

Description: 40 MMSCFD Still Vent to Combustor No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. F Pressure: 500.00 psig Wet Gas Water Content: Saturated

Component Conc. (vol %) Carbon Dioxide 0.1510 Nitrogen 0.3940 Methane 77.0800 Ethane 14.8320 Propane 4.9670 Isobutane 0.6160 n-Butane 1.2100 Isopentane 0.2660

> n-Pentane 0.2620 n-Hexane 0.0580

Cyclohexane 0.0060 Other Hexanes 0.0930 Heptanes 0.0420 Benzene 0.0010 Toluene 0.0020

C8+ Heavies 0.0200

DRY GAS:

Flow Rate: 40.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Moe Well Pad File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Moe\Moe No Cond 8-17-16.ddf Date: August 17, 2016

DESCRIPTION:

Description: 40 MMSCFD Still Vent to Combustor No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr	
Methane	0.9985	23.963	4.3732	
Ethane	0.4697	11.272	2.0571	
Propane	0.2965	7.116	1.2987	
Isobutane	0.0599	1.437	0.2623	
n-Butane	0.1412	3.389	0.6186	
Isopentane	0.0407	0.978	0.1784	
n-Pentane			0.2109	
n-Hexane	0.0197	0.474	0.0865	
Cyclohexane	0.0076	0.181	0.033	1
Other Hexanes	s 0.025	1 0.60	3 0.110	00
Llentence	0.0004	0 700	0 4000	
Heptanes				
Benzene	0.0097			
Toluene	0.0336		0.1472	_
C8+ Heavies	0.0895	5 2.148	0.3919	9
Total Emissions	2.2703	3 54.48	7 9.943	38
Total Hydrocarbon Emi		2.2703	54.487	9.9438
Total VOC Emission				5134
Total HAP Emissic				763
Total BTEX Emissi	ons 0.0)433 1.	.040 0.1	1898

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
	49.9229 23.4833		218.6624 102.8567

Propane Isobutane n-Butane	14.8254 2.9941 7.0614		13.1141	
Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	2.4077 0.9870 0.3780	57.786 23.687 9.073	10.5459 4.3229 1.6558	
Heptanes Benzene Toluene C8+ Heavies	0.4862 1.6806	11.668 40.334	2.1293 7.3610	
Total Emissions Total Hydrocarbon Emis Total VOC Emissio Total HAP Emissio Total BTEX Emissio	sions 11 ns 40.1 ns 3.15	3.5137 2 075 962. 537 75.6	724.330 497.19 581 175.6711 89 13.8132	901

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 5.51e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 3.53 lbs. H2O/MMSCF

Temperature: 85.0 deg. F Pressure: 500.0 psig Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1475 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.49 gal/lb H2O

Remaining Absorbed Component in Dry Gas in Glycol Water 5 54% 94 46%

Water	5.54%	94.46%
Carbon Dioxide	99.83%	6 0.17%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.93%	0.07%
Isobutane	99.89%	0.11%
n-Butane	99.85%	0.15%
Isopentane	99.84%	0.16%
n-Pentane	99.79%	0.21%
n-Hexane	99.63%	0.37%
Cyclohexane	98.38%	1.62%
Other Hexanes	99.72%	6 0.28%
Heptanes	99.26%	0.74%
Benzene	85.91%	14.09%
Toluene	79.32%	20.68%
C8+ Heavies	97.09%	2.91%

REGENERATOR

No Stripping Gas used in regenerator.

Remaining Distilled Component in Glycol Overhead

Water 38.66% 61.34% Carbon Dioxide 0.00% 100.00%

	Pa	age: 4
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.77%	6 99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	88.25%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 1.67e+006 scfh

Component Conc. Loading (vol%) (lb/hr)

> Water 1.34e-001 1.06e+002 Carbon Dioxide 1.51e-001 2.92e+002 Nitrogen 3.93e-001 4.85e+002 Methane 7.70e+001 5.43e+004 Ethane 1.48e+001 1.96e+004

Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.43e+002 n-Pentane 2.62e-001 8.31e+002

n-Hexane 5.79e-002 2.20e+002 Cyclohexane 5.99e-003 2.22e+001 Other Hexanes 9.29e-002 3.52e+002 Heptanes 4.19e-002 1.85e+002 Benzene 9.99e-004 3.43e+000

Toluene 2.00e-003 8.10e+000 C8+ Heavies 2.00e-002 1.50e+002 Page: 5 Total Components 100.00 9.17e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 1.67e+006 scfh

> Component Conc. Loading (vol%) (lb/hr)

----- -----

Water 7.44e-003 5.89e+000 Carbon Dioxide 1.51e-001 2.91e+002 Nitrogen 3.94e-001 4.85e+002 Methane 7.71e+001 5.43e+004 Ethane 1.48e+001 1.96e+004

Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.42e+002 n-Pentane 2.61e-001 8.29e+002

n-Hexane 5.78e-002 2.19e+002 Cyclohexane 5.90e-003 2.18e+001 Other Hexanes 9.28e-002 3.51e+002 Heptanes 4.17e-002 1.84e+002 Benzene 8.59e-004 2.95e+000

Toluene 1.59e-003 6.42e+000 C8+ Heavies 1.94e-002 1.45e+002

Total Components 100.00 9.16e+004

LEAN GLYCOL STREAM

Temperature: 85.00 deg. F

Flow Rate: 7.50e+000 gpm

Component Conc. Loading (wt%) (lb/hr)

TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.18e-012 4.97e-011 Nitrogen 1.35e-013 5.71e-012 Methane 4.78e-018 2.02e-016

Ethane 8.54e-008 3.61e-006 Propane 6.79e-009 2.87e-007 Isobutane 1.22e-009 5.17e-008 n-Butane 2.68e-009 1.13e-007 Isopentane 1.61e-004 6.81e-003

n-Pentane 2.07e-004 8.73e-003 n-Hexane 9.63e-005 4.07e-003 Cyclohexane 2.82e-004 1.19e-002 Other Hexanes 2.32e-004 9.81e-003 Heptanes 1.63e-004 6.89e-003

Benzene 6.03e-004 2.54e-002 Toluene 3.40e-003 1.44e-001 C8+ Heavies 1.41e-002 5.96e-001

----- ------

Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 7.95e+000 gpm NOTE: Stream has more than one phase.

Component Conc. Loading (wt%) (lb/hr)

> TEG 9.37e+001 4.16e+003 Water 3.69e+000 1.64e+002 Carbon Dioxide 1.65e-002 7.33e-001 Nitrogen 1.01e-002 4.49e-001 Methane 1.13e+000 4.99e+001

Ethane 5.29e-001 2.35e+001 Propane 3.34e-001 1.48e+001 Isobutane 6.75e-002 2.99e+000 n-Butane 1.59e-001 7.06e+000 Isopentane 4.61e-002 2.04e+000

n-Pentane 5.45e-002 2.42e+000 n-Hexane 2.23e-002 9.91e-001 Cyclohexane 8.79e-003 3.90e-001 Other Hexanes 2.85e-002 1.27e+000 Heptanes 3.44e-002 1.53e+000

Benzene 1.15e-002 5.12e-001 Toluene 4.11e-002 1.82e+000 C8+ Heavies 1.14e-001 5.07e+000

Total Components 100.00 4.44e+003

REGENERATOR OVERHEADS STREAM

Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:3.86e+003 scfh

Component Conc. Loading (vol%) (lb/hr)

·····

Water 5.48e+001 1.00e+002 Carbon Dioxide 1.64e-001 7.33e-001 Nitrogen 1.58e-001 4.49e-001 Methane 3.06e+001 4.99e+001 Ethane 7.68e+000 2.35e+001

Propane 3.30e+000 1.48e+001 Isobutane 5.06e-001 2.99e+000 n-Butane 1.19e+000 7.06e+000 Isopentane 2.78e-001 2.04e+000 n-Pentane 3.28e-001 2.41e+000

n-Hexane 1.13e-001 9.87e-001 Cyclohexane 4.42e-002 3.78e-001 Other Hexanes 1.43e-001 1.26e+000 Heptanes 1.49e-001 1.52e+000 Benzene 6.12e-002 4.86e-001

Toluene 1.79e-001 1.68e+000 C8+ Heavies 2.58e-001 4.47e+000

----- ------

Total Components 100.00 2.15e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 3.46e+001 scfh

> Component Conc. Loading (vol%) (lb/hr)

> > Methane 6.82e+001 9.98e-001 Ethane 1.71e+001 4.70e-001 Propane 7.37e+000 2.97e-001 Isobutane 1.13e+000 5.99e-002 n-Butane 2.66e+000 1.41e-001

Isopentane 6.19e-001 4.07e-002 n-Pentane 7.32e-001 4.82e-002 n-Hexane 2.51e-001 1.97e-002 Cyclohexane 9.85e-002 7.56e-003 Other Hexanes 3.19e-001 2.51e-002

Heptanes 3.33e-001 3.04e-002 Benzene 1.36e-001 9.72e-003 Toluene 4.00e-001 3.36e-002 C8+ Heavies 5.76e-001 8.95e-002

Total Components 100.00 2.27e+000

----- -----

ATTACHMENT T

Facility-wide Emission Summary Sheet(s)

A	ГТАСНМ	1ENT '	Γ – FAG	CILITY	-WID	E CON	TROLI	LED EN	4ISSIO	NS SU	MMAR	XY SHE	ET		
List all sources of	f emissio	ns in th	is table	. Use ex	xtra pa	ges if n	ecessar	у.							
Emission Point ID#	NC) _x	C	20	v	OC	S	O ₂	P	M ₁₀	PN	A _{2.5}	GHC	GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
1E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793	
2E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793	
3E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793	
4E	0.05	0.22	0.04	0.18	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	60.4	264	
5E					2.96	0.91									
6E					0.08	0.04									
7E	0.19	0.81	0.37	1.62	0.04	0.18	< 0.01	< 0.01	0.01	0.06	0.01	0.06	89.7	393	
8E	< 0.01	0.01	<0.01	0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	1.6	7	
9E	0.29	1.25	1.10	4.81	1.84	0.43	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	446.7	1956	
10E	0.05	0.22	0.04	0.18	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	60.4	264.5	
11E	0.27	1.19	1.03	4.5	0.81	3.54	< 0.01	< 0.01	0.04	0.16	0.04	0.16	417.4	1828.1	
TOTAL	1.29	5.67	2.96	12.96	5.76	5.22	< 0.01	< 0.01	0.11	0.47	0.11	0.47	1619.5	7093.5	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATT	ACHMEN	•T T –	FACIL	ITY-W	IDE H	AP CO	ONTRO	LLED	EMISS	SIONS S	SUMM	ARY S	HEET	
List all sources of	emissions	s in this	table.	Use ext	ra page	es if ne	cessary							
	Formaldehyde Benzene		izene	Tol	Toluene Ethylbenzene			Xylenes		Hexane		Total HAPs		
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E											< 0.01	0.01	< 0.01	0.01
2E											< 0.01	0.01	< 0.01	0.01
3E											< 0.01	0.01	< 0.01	0.01
4E											< 0.01	< 0.01	< 0.01	< 0.01
5E											0.16	0.05	0.16	0.05
6E											0.01	< 0.01	0.01	< 0.01
7E	0.015	0.065	< 0.01	< 0.01									0.02	0.10
8E														
9E	< 0.01	< 0.01									< 0.01	0.01	< 0.01	0.02
10E	< 0.01	< 0.01									< 0.01	< 0.01	< 0.01	< 0.01
11E	< 0.01	< 0.01	0.01	0.04	0.03	0.15					0.02	0.09	0.06	0.28
TOTAL	0.02	0.07	0.01	0.05	0.03	0.15	< 0.01	< 0.01	< 0.01	< 0.01	0.20	0.20	0.27	0.50

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C General Permit Registration for its Moe Well Pad Production Facility located off Klondike Acres Rd near Middlebourne in Tyler County, West Virginia. The latitude and longitude coordinates are: 39.46791, -80.88719.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

5.67 tons of Nitrogen Oxides per year
12.96 tons of Carbon Monoxide per year
6.46 tons of Particulate Matter per year
6.98 tons of Volatile Organic Compounds per year
0.02 tons of Sulfur Dioxide per year
0.07 tons of Formaldehyde per year
0.05 tons of Benzene per year
0.15 tons of Toluene per year
0.20 tons of Hexane per year
0.52 tons of Total Hazardous Air Pollutants per year
7,132 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 31st day of October, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Ave. Cairo, WV 26337