JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT

Larry Well Pad Production Facility
Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-C GENERAL PERMIT

Jay-Bee Oil & Gas, Inc.

Larry Well Pad Production Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Single Source Determination Form
 - Attachment C Current Business Certificate
 - Attachment D Process Flow Diagram
 - Attachment E Process Description
 - Attachment F Plot Plan
 - Attachment G Area Map
 - Attachment H G70-C Section Applicability Form
 - Attachment I Emission Units/ERD Table
 - Attachment J Fugitive Emissions Summary Sheet
 - Attachment K Gas Well Affected Facility Data Sheet
 - Attachment L Storage Vessels Data Sheet(s)
 - Attachment M Natural Gas Fired Fuel Burning Units Data Sheet(s)
 - Attachment N Internal Combustion Engine Data Sheet(s)
 - Attachment O Tanker Truck Loading Data Sheet(s)
 - Attachment P Glycol Dehydration Unit Data Sheet(s)
 - Attachment R Air Pollution Control Device Sheet(s)
 - Attachment S Emission Calculations
 - Attachment T Facility-wide Emission Summary Sheet(s)
 - Attachment U Class I Legal Advertisement

SECTION I

Application Form

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

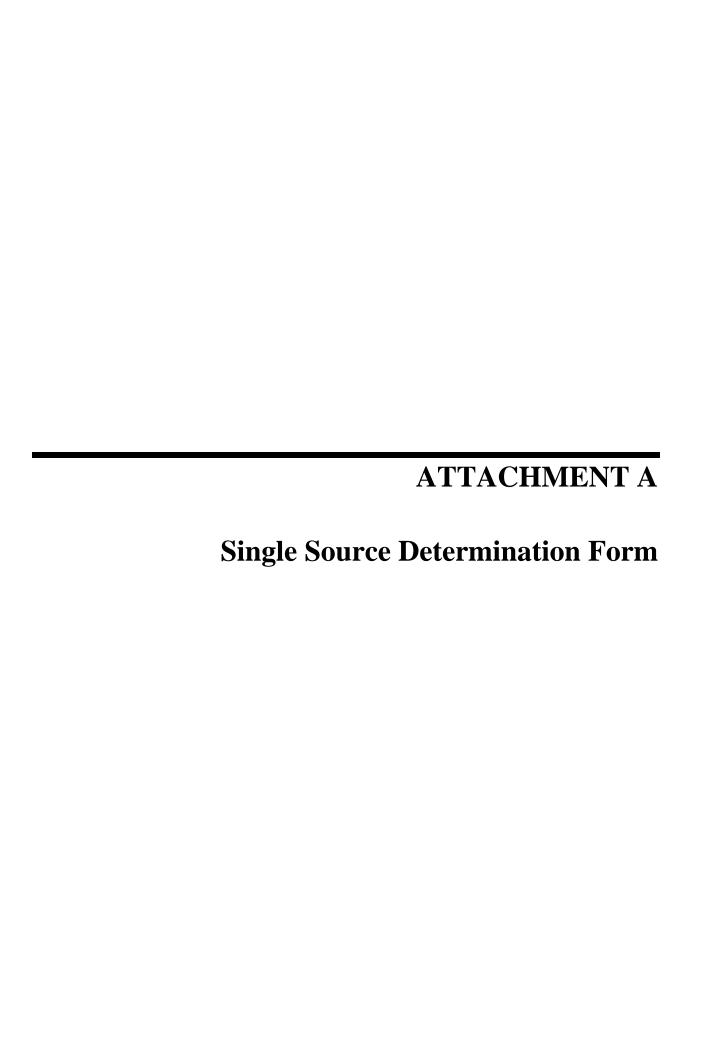
G70-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GAS P	RODUCTION FACILIT	IES LOCATED AT THE W	ELL SITE	
⊠CONSTRUCTION □MODIFICATION □RELOCATION		□CLASS I ADMINISTRATI □CLASS II ADMINISTRATI		
	SECTION 1. GENERA	L INFORMATION		
Name of Applicant (as registered with	the WV Secretary of State	e's Office): Jay-Bee Oil &	Gas, Inc.	
Federal Employer ID No. (FEIN): 55-0	073-8862			
Applicant's Mailing Address: 3570 Sh	ields Hill Rd			
City: Cairo	State: WV		ZIP Code: 26337	
Facility Name: Larry Well Pad Pro				
Operating Site Physical Address: Off K If none available, list road, city or town	londike Acres Rd n and zip of facility.			
City: Middlebourne	Zip Code: 26149		County: Tyler	
Latitude & Longitude Coordinates (NA Latitude: 39.47509 Longitude: -80.88063	D83, Decimal Degrees to	5 digits):		
SIC Code: 1311	I	DAQ Facility ID No. (For existing facilities)		
NAICS Code: 211111				
	CERTIFICATION OF	INFORMATION		
Directors, or Owner, depending on bus authority to bind the Corporation Proprietorship. Required records o compliance certifications and all r Representative. If a business wishes to off and the appropriate names and unsigned G70-C Registration Application, the application willized, the application will reserve the control of the cont	n, Partnership, Limited L f daily throughput, hours equired notifications mus certify an Authorized Re signatures entered. Any ation will be returned to	iability Company, Association of operation and maintenance the signed by a Responsible presentative, the official agreadministratively incomplete.	n, Joint Venture or Sole e, general correspondence, Official or an Authorized eement below shall be checked for improperly signed or e, if the G70-C forms are not	
I hereby certify that is an Autho (e.g., Corporation, Partnership, Limite obligate and legally bind the business. notify the Director of the Division of A I hereby certify that all information co documents appended hereto is, to the b have been made to provide the most co	d Liability Company, Ass If the business changes it Air Quality immediately. ntained in this G70-C Ge lest of my knowledge, tru	sociation Joint Venture or Solts Authorized Representative neral Permit Registration Apple, accurate and complete, and	, a Responsible Official shall plication and any supporting	
Responsible Official Signature: Name and Title: Office Manager Email: sdowell@jaybeeoil.com	Phone Date:	2004 e: 304-628-3119 Fax: 8-17-16		
If applicable: Authorized Representative Signature:_ Name and Title: Email:	Phone: Date:	Fax:		
If applicable: Environmental Contact Name and Title: Email:	Phone: Date:	Fax:		

owned and operated by others. Directions to the facility: From Middlebourne, proceed southwest on State Route 18 (Main Street) out of town. Turn right onto Bridgeway Rd. Turn left onto Wick Rd and follow for approximately 2.0 miles. Turn left onto Klondike Acres Rd and follow for approximately 1.5 miles to well pad entrance. ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). ☑ Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☐ I wish to pay by credit card. Contact for payment (incl. name and email address): ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ■\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO 1 ⊠\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ☑ Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed in its entirety) - Attachment A ☐ Siting Criteria Waiver (if applicable) – Attachment B □ Current Business Certificate – Attachment C ☑ Process Flow Diagram - Attachment D □ Process Description – Attachment E ☑ Plot Plan - Attachment F ☑ Area Map – Attachment G ☑ Emission Units/ERD Table – Attachment I ☑ G70-C Section Applicability Form – Attachment H ☑ Fugitive Emissions Summary Sheet - Attachment J ☐ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment ☑ Tanker Truck Loading Data Sheet (if applicable) – Attachment O ☑ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) - Attachment P ☐ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ☑ Facility-wide Emission Summary Sheet(s) – Attachment T ☑ Class I Legal Advertisement - Attachment U ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

OPERATING SITE INFORMATION


Natural gas production and separation of liquids. Then, the facility will dehydrate the gas and inject it into a gather line

Briefly describe the proposed new operation and/or any change(s) to the facility:

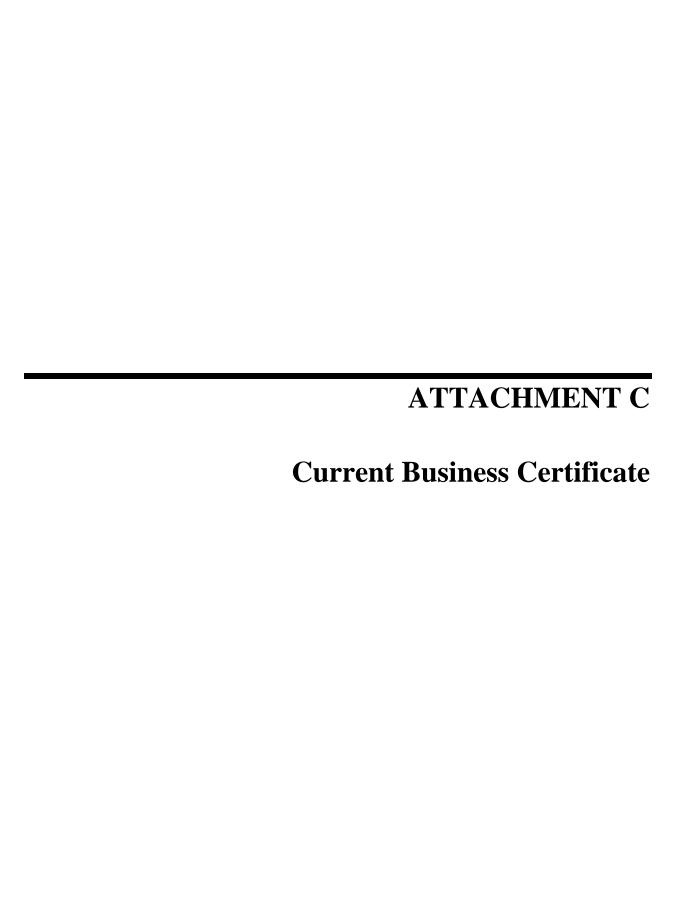
All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:


"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square
If Yes, please complete the questionnaire on the following page (Attachment A).
Please provide a source aggregation analysis for the proposed facility below:
The closest Jay-Bee facility to the Larry Well Pad Production Facility is its Moe Well Pad Production Facility. This facility is under the same SIC code and may, from time to time, have a sharing of staff. These two well pads are approximately 3,130 feet (0.59 miles) apart, and they are on the same (very large) parcel. There is no interconnection or interdependency between these two facilities. Gas from one well pad does not flow to the other. Accordingly, the operation of one well pad is not dependent upon the operation of the other. Thus, given the lack of dependency and the distance of separation, emissions from these two well pads should not be aggregated.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. Jay-Bee Oil & Gas owns 100%	Yes ⊠	No □
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □	No ⊠
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain. Jay-Bee Oil & Gas owns both.	Yes 🗆	No ⊠
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes ⊠	No □
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes ⊠	No □
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain. Jay-Bee Oil & Gas owns and operates both facilities.	Yes ⊠	No □
Does one (1) facility operation support the operation of the other facility?	Yes □	No ⊠
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain. No limitations on either facility if the other were to shutdown.	Yes □	No ⊠
Are there any financial arrangements between the two (2) entities? Jay-Bee Oil & Gas owns and operates both facilities.	Yes ⊠	No □
Are there any legal or lease agreements between the two (2) facilities? Jay-Bee Oil & Gas owns and operates both facilities.	Yes ⊠	No □
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain. Well pads operate independently.	Yes □	No ⊠
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes ⊠	No □
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes □	No ⊠
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No ⊠
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain. No, facilities operate independently. Jay-Bee Oil & Gas Office Manager is responsible for Air Quality Requirements for both facilities.	Yes □	No ⊠

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: JAY-BEE OIL & GAS INC RR 1 BOX 5 CAIRO, WV 26337-9701

BUSINESS REGISTRATION ACCOUNT NUMBER

1043-4498

This certificate is issued on

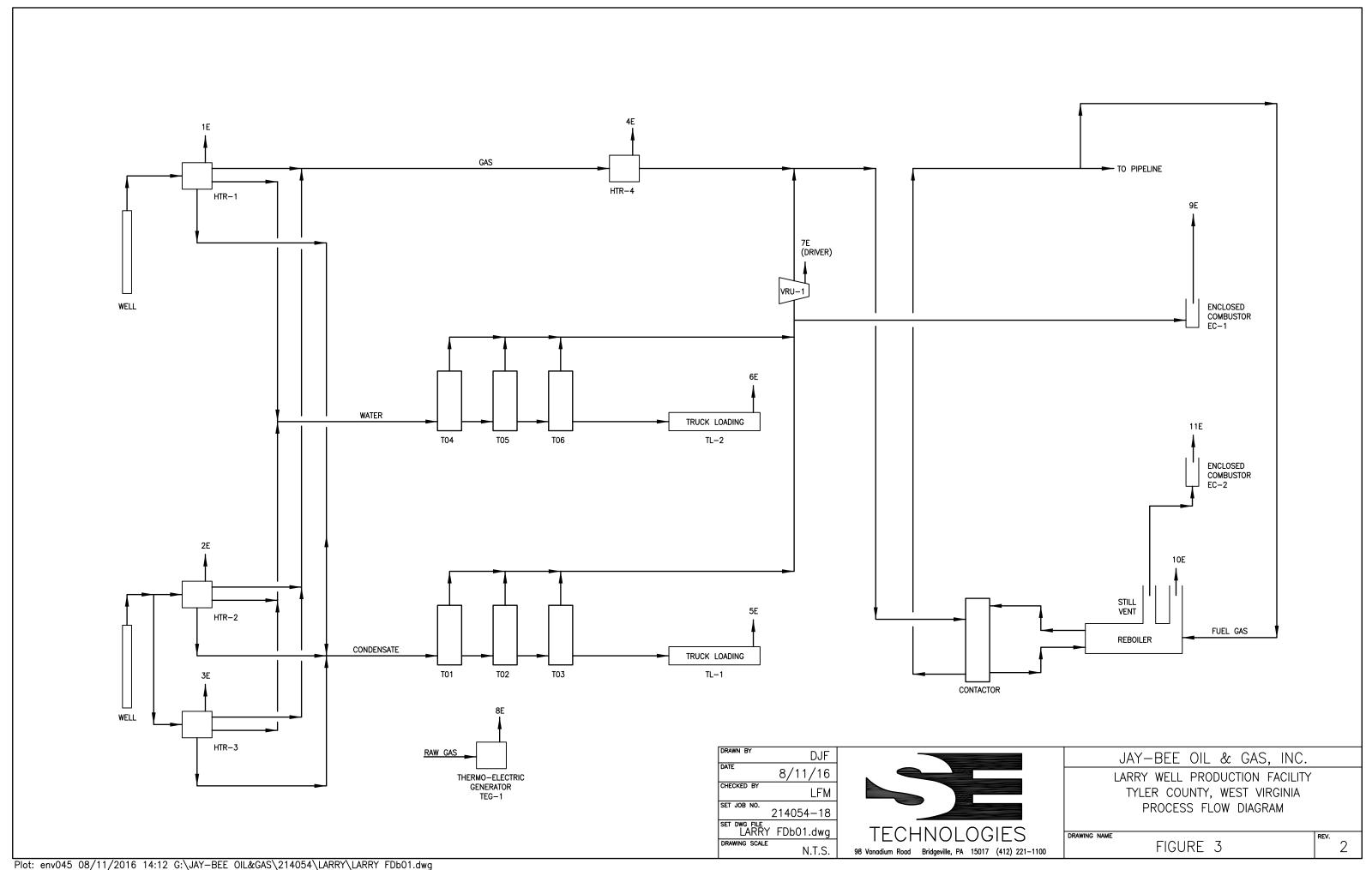
.06/1 19010 F

This pertificate is issued by the West Winginia State Tax Commissioner linecordation with W.Va. Code still 12

The person of pream ration identified on this continuers registers to conductationess in the state of the program of the local party.

This certificate is not transferrable and must be applianed at the (citation the many)

Change in name or change of location shall be considered a cassillar of the this liness and a new certificitie shall be required.


TRAVELINGSTREET VENDORS: Musicarey a copy of this terrificate in every Vehicle effected by them. CONTRACTORS, DRILLING OPERATORS, TIMBEPLOGGING OPERATIONS: Musicare a copy of this certificate displayed at every job site within West Virginië?

ail.006 v.1 L1388190484

MINE AS MUL

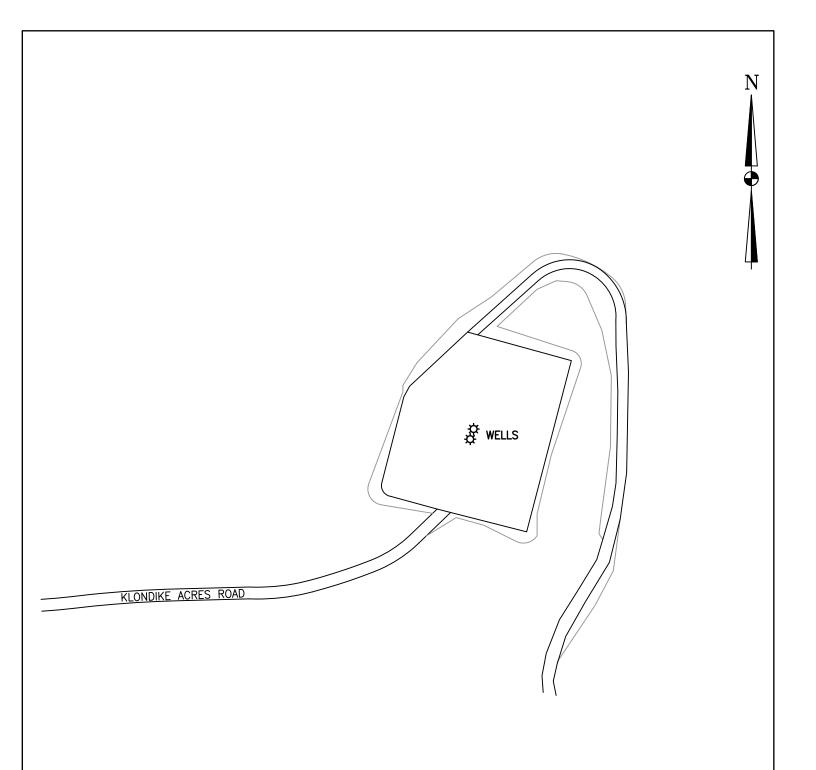
Process Flow Diagram

Process Description

Jay-Bee Oil & Gas, Incorporated Larry Well Pad Production Facility Attachment E Process Description

At this facility, Natural gas and Produced Fluids (condensate and water) will be received from three wells and passed through Gas Processing Units (one per Marcellus well and two per Utica well) to avoid ice formation during subsequent pressure drops. These materials will then pass through a three-way separator where gas, condensate and water are separated. All gas fired equipment will use natural gas produced at the site as fuel. The Facility will then dehydrate the gas and then injected into a gathering pipeline owned and operated by others.

Both Condensate and Produced Water will be accumulated in six (6) 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate will be transported to a regional processing facility and the Produced Water will be transported to a regional disposal facility. Flash, working and breathing losses from these tanks will be routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available, and will also be utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. A capture and control efficiency of 98% is being claimed for this overall combination of controls.


The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent will be comprised of water and various low molecular weight hydrocarbons. Still vent vapors will be routed to an enclosed combustor. A capture and control efficiency of 98% is being claimed for the combustor. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line. Any water condensing in the still vent column will be routed to the wastewater tanks.

Lastly, Jay-Bee is seeking approval for installation of a Thermo-electric generator to meet the minor electric demands for various monitoring and data tracking equipment.

In summary, upon approval of this application, emission sources at this facility will include the following:

- Three Gas Processing Units (GPUs), each with a 1.5 MMBTU/hr heater (Sources 1E, 2E and 3E).
- One Line Heater (Source 4E).
- Condensate Truck Loading (Source 5E)
- Produced Water Truck Loading (Source 6E)
- One Vapor Recovery Unit (VRU) with driver engine (Source 7E), controlling emissions from T01-T06.
- One Thermo-electric Generator (Source 8E)
- Backup Enclosed Combustor for VRU (Source 9E)
- Three Produced Water Tanks (T01-T03)
- Three Condensate Tanks (T04-T06)
- Dehydration Unit (Source 10E reboiler vent and 11E still vent)
- Enclosed Combustor for control of still vent (Source 11E)

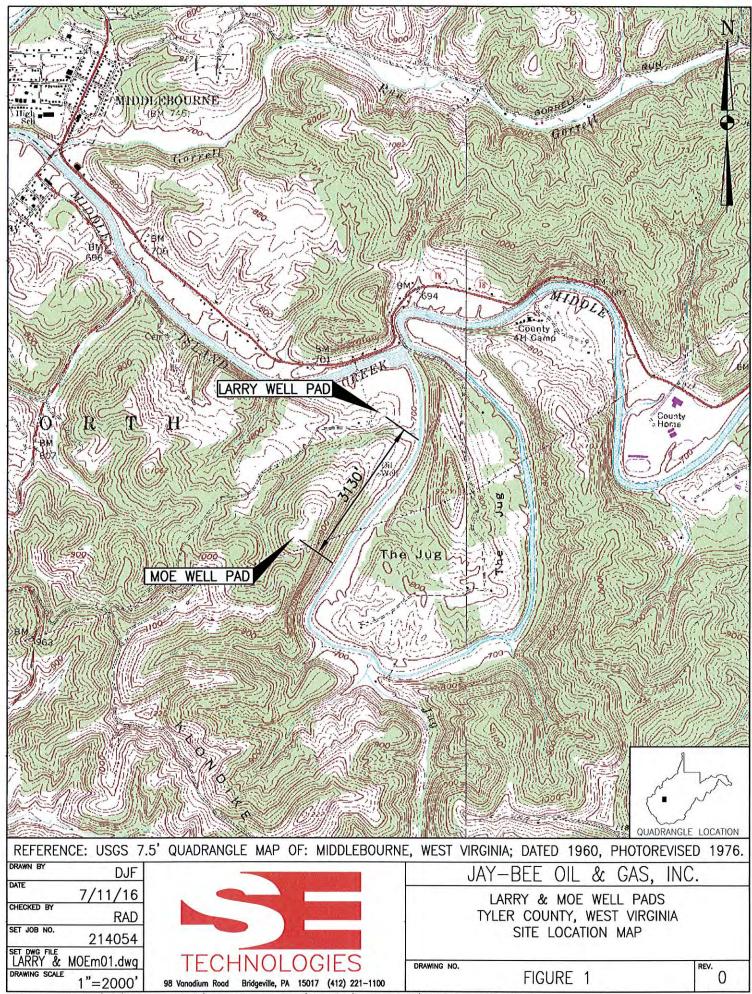
ATTACHMENT F Plot Plan

DRAWN BY	DJF
DATE	8/11/16
CHECKED BY	LFM
SET JOB NO.	214054-18
SET DWG FILE LAI	RRYa01.dwg
DRAWING SCALE	NITC

JAY-BEE OIL & GAS, INC.

LARRY WELL PRODUCTION FACILITY

TYLER COUNTY, WEST VIRGINIA


SITE LAYOUT PLAN

DRAWING NAME

FIGURE 2

REV.

ATTACHMENT G Area Map

ATTACHMENT H G-70C Section Applicability Form

ATTACHMENT H - G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

(GENERAL PERMIT G70-C APPLICABLE SECTIONS
⊠Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
⊠Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
⊠Section 14.0	Tanker Truck Loading ³
⊠Section 15.0	Glycol Dehydration Units ⁴

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

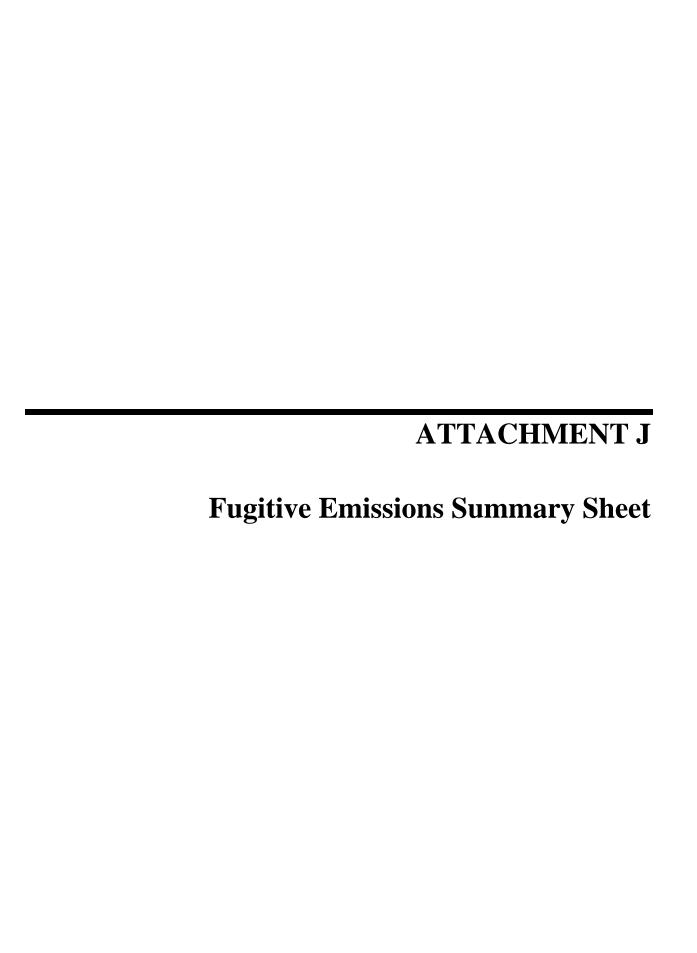
Emissions Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

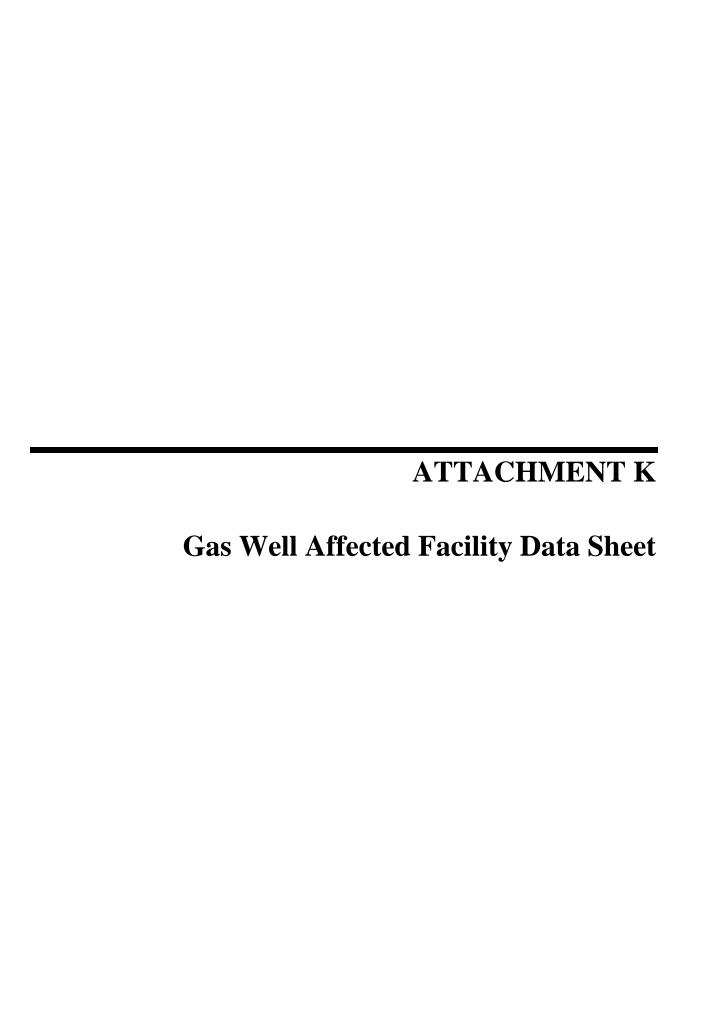
Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
HTR-1	1E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-2	2E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-3	3E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-4	4E	Line Heater	TBD		0.5 MMBTU/hr	NEW	None	None
TL-1	5E	Condensate Truck Loading	TBD		30,000 BBL/yr	NEW	None	None
TL-2	6E	Produced Water Truck Loading	TBD		63,600 BBL/yr	NEW	None	None
VRU-1	7E	VRU Driver	TBD	3/19/12	84 HP	NEW	1C	None
TEG-1	8E	Thermoelectric Generator	TBD		4.4 KW/hr	NEW	None	None
EC-1	9E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	N/A	None
T01	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T02	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
Т03	7E/9E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T04	7E/9E	Produce Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T05	7E/9E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T06	7E/9E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
RBV-1	10E	Dehydration Unit Re-boiler Vent	TBD		0.500 MMBTU/hr	NEW	None	None
RSV-1	11E	Dehydration Unit Still Vent	TBD		40 MMSCFD	NEW	EC-2	None
EC-2	11E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.


² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule


⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

			ATTACHMEN	NT J – FUGITIVE EMIS	SSIONS SUM	MARY SHI	EET	
			Sources of fugitive emissions	may include loading operation	ons, equipment le	aks, blowdow	n emissions, et	с.
	Source/Equip	ment:						
	Leak Detection Method Used	n	□ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	☐ Other (pleas	se describe)		☐ None required
Compone	ent Closed		Source of	Leak Factors	Stream type		Estimated Emi	issions (tpy)
Type	Vent System	Count		her (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.34
Valves	☐ Yes ⊠ No	44	EPA		□ Gas □ Liquid ⊠ Both	0.26	<0.01	2.65
Safety Rel Valves	ief ☐ Yes ⊠ No	3	EPA		□ Gas □ Liquid ⊠ Both	0.01	<0.01	0.45
Open Endo Lines	ed □ Yes ⊠ No	20	EPA		⊠ Gas □ Liquid □ Both	0.06	<0.01	4.60
Sampling Connectio	ns ☐ Yes ☒ No	17	TECQ		□ Gas □ Liquid 図 Both	1.16	0.01	25.60
Connectio (Not sample	I IXI No	180	EPA		□ Gas □ Liquid 図 Both	0.12	<0.01	1.36
Compresso	☐ Yes ⊠ No	1	API		☐ Gas☐ Liquid☐ Both	0.02	<0.01	1.26
Flanges	□ Yes ⊠ No	120	API		□ Gas □ Liquid 図 Both	0.09	<0.01	4.47
Other ¹	□ Yes ⊠ No	16	n/a		☐ Gas☐ Liquid☐ Both	0.04	<0.01	0.055
¹ Other eq	uipment types	may includ	e compressor seals, relief valves,	diaphragms, drains, meters, etc.			1	,
Please pro Blowdown		ation of the	e sources of fugitive emissions (e.	g. pigging operations, equipmen	t blowdowns, pneu	matic controlle	ers, etc.):	
Please ind No	icate if there ar	e any close	ed vent bypasses (include compon	ent):				
	l equipment use ch, VRU and I		osed vent system (e.g. VRU, ERD Combustors	, thief hatches, tanker truck load	ling, etc.)			

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-095-02315	December 2016	TBD	Flow to separator and into gathering line as soon as practical.
47-095-02334	December 2016	TBD	Flow to separator and into gathering line as soon as practical.

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L **Storage Vessels Data Sheet(s)**

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

supporting documents where applicable.
The following information is REQUIRED:
 □ Composition of the representative sample used for the simulation □ For each stream that contributes to flashing emissions: □ Temperature and pressure (inlet and outlet from separator(s)) □ Simulation-predicted composition □ Molecular weight □ Flow rate □ Resulting flash emission factor or flashing emissions from simulation □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

GENERAL INFORMATION (REQUIRED)

Additional information may be requested if necessary.

` ` ` ` '				
1. Bulk Storage Area Name	2. Tank Name T01-T03			
Larry Tank Farm				
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 9E	7E/9E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
Pending Permit Approval				
Was the tank manufactured after August 23, 2011?	☐ Relocation			
⊠ Yes □ No				
7A. Description of Tank Modification (if applicable)				
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.			
□ Yes ⊠ No				
7C. Was USEPA Tanks simulation software utilized?				
⊠ Yes □ No				
If Yes, please provide the appropriate documentation and items &	3-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.
210 BBL	
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 196 BBL
13A. Maximum annual throughput (gal/yr) 420,000	13B. Maximum daily throughput (gal/day) 7,000
14. Number of tank turnovers per year 51	15. Maximum tank fill rate (gal/min) 50
16. Tank fill method □ Submerged □ Splash □	☑ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	□ No

18. Type of tank (check al ☐ Fixed Roof ☐ ve ☐ External Floating Roof ☐ Domed External (or Co ☐ Internal Floating Roof	ll that app			stem per y						
☑ Fixed Roof☐ ve☐ External Floating Roof☐ Domed External (or Co		oly):		1 7						
☐ Domed External (or Co	erticai	□ horizo	ntal 🗆 f	flat roof	□ cone r	oof 🗆 d	lome roof	□ other	r (describe)	
☐ Internal Floating Doof		-	roof 🗆	double de	eck roof					
	Г] vertical	column su	ipport [l self-sum	norting				
☐ Variable Vapor Space			of 🗆 diap		_F	,				
☐ Pressurized		spherica	-	indrical						
☐ Other (describe)	L	i spilerica	п 🗆 суп	murcar						
Other (describe)										
RESSURE/VACUUM C	ONTRO)L DAT.	A							
19. Check as many as app	ly:									
☐ Does Not Apply				☐ Ruptur	e Disc (ps	sig)				
☐ Inert Gas Blanket of				☐ Carbo	n Adsorpt	ion ¹				
✓ Vent to Vapor Combus		ice ¹ (vano			_		enclosed o	ombustors	s) as back-up to VR	
☑ Conservation Vent (psi		(, про		☐ Conde				300011	,	
0.4 oz. Vacuum Setting	-	. Pressur		_ = ===================================						
☐ Emergency Relief Valv		· Tressur	e betting							
Vacuum Setting	c (psig)	Pressure	Setting							
✓ Thief Hatch Weighted	∇ Vac Γ		betting							
¹ Complete appropriate Air			Device St	heet						
20. Expected Emission Ra					ere or else	where in t	he applica	tion)		
Material Name	Flashing			ing Loss	Workin		Total		Estimation Metho	
							Emissions Loss		-	
VOC (uncontrolled)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	MB and EPA	
	90.09	394.6	0.11	0.48	0.38	1.66	90.6	396.7		
HAP (uncontrolled)	2.94	12.88	<0.01	0.02	0.01	0.05	2.96	12.95	MB	
		<u> </u>								
		al Ralanca	SS = Simil							
							-	-		
nember to attach emissions calc	culations, i	including T	TANKS Sum	mary Sheet.			-	-		
	culations, i	including T	TANKS Sum	mary Sheet.			-	-		
nember to attach emissions calc	culations, a	including T	TANKS Sum	mary Sheet.	s and other	modeling s	summary sh	-		
TANK CONSTRUCTION A 21. Tank Shell Construction:	culations, a	RATION D	TANKS Sum	TION S ⊠ Other	s and other	modeling s	d	eets if appli		
TANK CONSTRUCTION A 21. Tank Shell Construction: ☐ Riveted ☐ Gunite li	AND OPE	RATION Epoxy-co	INFORMA	TION S ⊠ Other	s and other	modeling s	d	eets if appli	icable.	
21. Tank Shell Construction: ☐ Riveted ☐ Gunite li 21A. Shell Color: Blue	AND OPE	RATION Epoxy-co	INFORMA pated rivets 1B. Roof C	TION S ⊠ Other	er (describ	modeling s	d	eets if appli	icable.	
TANK CONSTRUCTION A 21. Tank Shell Construction: ☐ Riveted ☐ Gunite li 21A. Shell Color: Blue 22. Shell Condition (if metal a	AND OPE ined and unline	RATION 1 Epoxy-co 2 ed): Dense Rus	INFORMA pated rivets 1B. Roof C	TION S ⊠ Other Color: Blue ot applicab	er (describ	modeling s	d 21C. Y	eets if appli	icable.	
TANK CONSTRUCTION A 21. Tank Shell Construction: □ Riveted □ Gunite It 21A. Shell Color: Blue 22. Shell Condition (if metal at the shell condition) □ No Rust □ Light Ru 22A. Is the tank heated? □ No Construction of the shell condition (if metal at the shell condition) 23. Operating Pressure Range	AND OPE ined and unline ust I Yes N e (psig): 2	Epoxy-cc 2 2 2 2 2 2 2 2 2	INFORMA pated rivets IB. Roof C st	TION S ☑ Other Color: Blue ot applicab operating te	er (describ	modeling s	d 21C. Y	eets if appli	icable.	
TANK CONSTRUCTION A 21. Tank Shell Construction: □ Riveted □ Gunite It 21A. Shell Color: Blue 22. Shell Condition (if metal at the shell condition) □ No Rust □ Light Ru 22A. Is the tank heated? □ Y 23. Operating Pressure Range Must be listed for tanks the	AND OPE ined and unline ust yes N e (psig): 2 using VB	Epoxy-co Epoxy-co 2 ed): Dense Rus o	INFORMA pated rivets 1B. Roof C st	TION S ☑ Other Color: Blue ot applicab operating te	er (describe	modeling s	d 21C. Y	eets if appli	inted: NEW s heat provided to tank?	
TANK CONSTRUCTION A 21. Tank Shell Construction: □ Riveted □ Gunite li 21A. Shell Color: Blue 22. Shell Condition (if metal a □ No Rust □ Light Ru 23. Operating Pressure Range Must be listed for tanks a 24. Is the tank a Vertical Fixe	AND OPE ined and unline ust yes N e (psig): 2 using VB	Epoxy-co Epoxy-co 2 ed): Dense Rus o	INFORMA pated rivets IB. Roof C st	TION S ☑ Other Color: Blue ot applicab operating te	er (describe	modeling s	d 21C. Y	eets if appli	inted: NEW s heat provided to tank?	
TANK CONSTRUCTION A 21. Tank Shell Construction: □ Riveted □ Gunite li 21A. Shell Color: Blue 22. Shell Condition (if metal allow) □ No Rust □ Light Ru 22A. Is the tank heated? □ Y 23. Operating Pressure Range Must be listed for tanks of the tank a Vertical Fixed □ Yes □ No	and unline ust	Epoxy-co Epoxy-co 2 ed): Dense Rus o 2 OZ - 14 o RUs with Fank? 2	INFORMA pated rivets 1B. Roof C st	TION S ☑ Other Color: Blue of applicab operating te nt system. for dome re	er (describe	modeling s	d 21C. Y	eets if appli	icable.	
TANK CONSTRUCTION A 21. Tank Shell Construction: □ Riveted □ Gunite Ii 21A. Shell Color: Blue 22. Shell Condition (if metal a □ No Rust □ Light Ru 22A. Is the tank heated? □ Y 23. Operating Pressure Range Must be listed for tanks a 24. Is the tank a Vertical Fix	AND OPE ined and unline list list lives Ne (psig): 2 using VR ed Roof T	Epoxy-co Epoxy-co 2 ed): Dense Rus o 2 OZ - 14 o RUs with Fank? 2	INFORMA pated rivets 1B. Roof C st	TION S ☑ Other Color: Blue ot applicab operating te	er (describe	modeling s	d 21C. Y	eets if appli	inted: NEW s heat provided to tank?	

☐ Vapor mounted resilient seal ☐ Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? ☐ Yes ☐ No							
25D. If yes, how is the secondary seal mounted? (check one) □ Shoe □ Rim □ Other (describe):							
25E. Is the floating roof equipped with a weather shield? ☐ Yes ☐ No							
25F. Describe deck fittings:							
26. Complete the following section for Internal Floating Roof Tanks							
26A. Deck Type: ☐ Bolted ☐ W	elded	26B. For bolted decks, provide deck construction:					
26C. Deck seam. Continuous sheet constructio	n:						
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide		□ 5 x 1	2 ft. wide \Box	other (desc	ribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported		orted	26G. For column supported		
		tanks,	# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? ⊠ Yes □	□ No						
28. Closed Vent System with Enclosed Combus	stor? ⊠ Yes □ No B	ack-up	to VRU				
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based:						
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):					
32. Annual Avg. Minimum Temperature (°F):		33. Av	vg. Wind Speed	(mph):			
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):			mospheric Press	ure (psia):			
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	66		36B. Max	imum (°F):		
liquid (°F): 60							
37. Avg. operating pressure range of tank	37A. Minimum (psig):	<0.1 p	si	37B. Maximum (psig): 0.8 psi			
(psig): 0-0.5 pis	<u> </u>						
38A. Minimum liquid surface temperature (°F):	: 36		3. Corresponding vapor pressure (psia): 0.11				
39A. Avg. liquid surface temperature (°F): 65			9B. Corresponding vapor pressure (psia): 0.31				
40A. Maximum liquid surface temperature (°F)	n liquid surface temperature (°F): 100			40B. Corresponding vapor pressure (psia): 0.95			
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.							
41A. Material name and composition:	Condensate						
41B. CAS number:	68919-39-1						
41C. Liquid density (lb/gal):	5.49						
41D. Liquid molecular weight (lb/lb-mole):	81.3						
41E. Vapor molecular weight (lb/lb-mole):	39.56						
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):	5.28						
41H. Months Storage per year.	12						
From: Jan To: Dec							
42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							

GENERAL INFORMATION (REQUIRED)

Bulk Storage Area Name	2. Tank Name				
Larry Tank Farm	T04-T06				
3. Emission Unit ID number	4. Emission Point ID number				
N/A Vapors to combustors, emission point 9E	7E/9E				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
Pending Permit Approval	☑ New construction ☐ New stored material ☐ Other				
Was the tank manufactured after August 23, 2011?	☐ Relocation				
□ Yes □ No					
7A. Description of Tank Modification (if applicable)					
7B. Will more than one material be stored in this tank? <i>If so, a separate form must be completed for each material.</i>					
□ Yes ⊠ No					
7C. Was USEPA Tanks simulation software utilized?					
□ Yes ⊠ No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.							
210 BBL							
9A. Tank Internal Diameter (ft.) 10 9B. Tank Internal Height (ft.) 15							
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 8						
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7						
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 190 BBL							
13A. Maximum annual throughput (gal/yr) 924,000 (eac	h) 13B. Maximum daily throughput (gal/day) 5,000 (each)						
14. Number of tank turnovers per year 116 (max)	15. Maximum tank fill rate (gal/min) 50						
16. Tank fill method □ Submerged ☒ Splash	☐ Bottom Loading						
17. Is the tank system a variable vapor space system?	l Yes ⊠ No						
If yes, (A) What is the volume expansion capacity of the	system (gal)?						
(B) What are the number of transfers into the syste	em per year?						
18. Type of tank (check all that apply):							
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ fla	at roof \square cone roof \square dome roof \square other (describe)						
☐ External Floating Roof ☐ pontoon roof ☐ d	louble deck roof						
☐ Domed External (or Covered) Floating Roof							
☐ Internal Floating Roof ☐ vertical column support ☐ self-supporting							
☐ Variable Vapor Space ☐ lifter roof ☐ diaph	Vapor Space ☐ lifter roof ☐ diaphragm						
☐ Pressurized ☐ spherical ☐ cylin	drical						
☐ Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
☐ Does Not Apply	☐ Rupture Disc (psig)
☐ Inert Gas Blanket of	☐ Carbon Adsorption ¹
☑ Vent to Vapor Combustion Device¹ (vapor combus)	tors, flares, thermal oxidizers, enclosed combustors) as back-up to VRU
☐ Conservation Vent (psig)	☐ Condenser¹
0.4 oz Vacuum Setting 14 oz Pressure Setting	
☐ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
□ Thief Hatch Weighted Yes □ No	
¹ Complete appropriate Air Pollution Control Device S	Sheet

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	0.88	3.84					0.88	3.84	MB
HAPs	0.07	0.32					0.07	0.32	MB
				1					

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) Welded								
21A. Shell Color: Blue	21B. Roof Color: Blue 21C. Year Last Painted: 2016							
22. Shell Condition (if metal and unlined):								
⊠ No Rust □ Light Rust □ Dense □	⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable							
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?				
23. Operating Pressure Range (psig): 2 oz – 14	4 oz							
Must be listed for tanks using VRUs wi	th closed vent system	ı .						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):				
⊠ Yes □ No	n/a		n/a					
25. Complete item 25 for Floating Roof Tanks	Does not apply							
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Meta	allic (mechanical) sho	e seal 🔲 Liquid mou	ınted resilie	ent seal				
□ Vap	or mounted resilient se	eal	cribe):					
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes	□ No						
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) □ Shoe □ Rim □ Other (describe):								
25E. Is the floating roof equipped with a weather shield? ☐ Yes ☐ No								
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Roof Tanks								
26A. Deck Type:								
26C. Deck seam. Continuous sheet construction:								
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.5 ft. wide \square 5 x 12 ft. wide \square other (describe)								
26D. Deck seam length (ft.): 26E. Area	of deck (ft²): 26F. For column supported			26G. For column supported				
		tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? ⊠ Yes ⊠ No								
28. Closed Vent System with Enclosed Combustor? ☑ Yes ☑ No								
SITE INFORMATION Items 29 through 35 are N/A for Water Tank								
29. Provide the city and state on which the data in this section are based:								
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):						

32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):		35. Atmospheric Pressure (psia):				
LIQUID INFORMATION		•				
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	36		36B. Maximum (°F): 70		
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig): <0		sig	37B. Maximum (psig): 0.8 psig		
(psig): 0-0.5 psig						
38A. Minimum liquid surface temperature (°F).	. 36	29D	Commence discovery (axis) 0.11			
39A. Avg. liquid surface temperature (°F): 65	. 30	38B. Corresponding vapor pressure (psia): 0.11				
	. 70	39B. Corresponding vapor pressure (psia): .031 40B. Corresponding vapor pressure (psia): 0.95				
40A. Maximum liquid surface temperature (°F): 7041. Provide the following for each liquid or gas to be stored in the tank.						
	1		ntional pages ii i	necessary.	T	
41A. Material name and composition:	Produced Water					
41B. CAS number:	7732-15-8, 7747-4 7647-14-5	0-7,				
41C. Liquid density (lb/gal):	9-10 lb/gal					
41D. Liquid molecular weight (lb/lb-mole):	Varies					
41E. Vapor molecular weight (lb/lb-mole):	18					
41F. Maximum true vapor pressure (psia):	0.95					
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	Continuous					
From: To:	Continuous					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as	ed as n/a					
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
Т07	NEW	Tri-ethylene Glycol (TEG)	200

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Natural Gas Fired Fuel Burning Units Data Sheet(s)

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr)4	Fuel Heating Value (BTU/scf) ⁵
HTR-1	1E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-2	2E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-3	3E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-4	4E	Line Heater	TBD	NEW	0.5	1263
RBV-1	10E	Reboiler	TBD	NEW	0.500	1263

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

snati atso u	ise this form					I	
Emission Unit I	D#1	VR	U-1				
Engine Manufacturer/Model		Cummins G5.9					
Manufacturers Rated bhp/rpm		84 @ 1800					
Source Status ²		N	S				
Date Installed/ Modified/Remov	ved/Relocated ³	Upon Recei	pt of Permit				
Engine Manufac		After 3	/1/2013				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4S	RB				
APCD Type ⁷	APCD Type ⁷		NSCR				
Fuel Type ⁸		RG					
H_2S (gr/100 scf)	H ₂ S (gr/100 scf)		<1				
Operating bhp/r	Operating bhp/rpm		84 @ 1800				
BSFC (BTU/bhr	o-hr)	79	14				
Hourly Fuel Thr	oughput	526.4 ft ³ /gal/			³/hr .l/hr		/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	4.62 MMf		MMft³/yr gal/yr			Aft ³ /yr l/yr
.Fuel Usage or I Operation Meter		Yes ⊠	No □	Yes □	No □	Yes □	No □
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
AP	NO _x	0.19	0.81				
AP	СО	0.37	1.62				
AP	VOC	0.04	0.18				
AP	SO ₂	< 0.01	< 0.01				
AP	PM ₁₀	0.013	0.06				
AP	Formaldehyde	0.015	0.065				
AP	Total HAPs	0.022	0.10				
	10141 11711 3	0.022	0.10				

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# VRU-1) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 No □ **⊠** NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: N/A Model #: VXC-1408-04-HSG Manufacturer: Miratech Design Operating Temperature: 1000 °F Design gas volume: 430 + scfm Service life of catalyst: 2+ years, depending on site Provide manufacturer data? ⊠Yes conditions Volume of gas handled: 430 acfm at 1078 °F Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F Reducing agent used, if any: None Ammonia slip (ppm): N/A Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Part of the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check. Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? How often is catalyst recommended or required to be replaced (hours of operation)? Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced. How often is performance test required? Initial ☐ Annual Every 8,760 hours of operation ☐ Field Testing Required

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT: Per 40 CFR 60.4243(a)(iii), an owner or operator of a stationary SI internal combustion engine less than 100 HP, must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required for an owner or operator

ATTACHMENT O Tanker Truck Loading Data Sheet(s)

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	Emissio	Emission Point ID#: 5E & 6E		Year Installed/Modified: TBD				
Emission Unit Descripti	Emission Unit Description: Condensate Truck Loading							
			Loading A	Area Data				
Number of Pumps: 2 Number of Liquids Loaded: 2 Max number of trucks loading at one (1) time: 2						rucks loading at one		
Are tanker trucks pressure tested for leaks at this or any other location? ☐ Yes ☐ No ☒ Not Required If Yes, Please describe:								
Provide description of c	losed vent	system and any	y bypasses.	None				
Are any of the following truck loadout systems utilized? No □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return?								
	<u> </u>	ximum Operat					s a who	
Time	Jan	ı – Mar		- Jun	J	ul – Sept		Oct - Dec
Hours/day		24		4		24		24
Days/week		7	7	7		7		7
		Bulk Liquid	Data (use e	xtra pages a	s necess:	ary)		
Liquid Name		Condensa	ndensate Produced W		iced Wa	ter		
Max. Daily Throughput (1000 gal/day)		4.2			5.04			
Max. Annual Throughpu (1000 gal/yr)	ıt	856.8		1	,814.4			
Loading Method ¹		SUB			SP			
Max. Fill Rate (gal/min))	50			50			
Average Fill Time (min/loading)		120			120			
Max. Bulk Liquid Temperature (°F)		75			75			
True Vapor Pressure ² 3.6 psia n/a								
Cargo Vessel Condition ³ U U								
Control Equipment or None None								
Max. Collection Efficient(%)	ncy	n/a			n/a			
			1	9				

Max. Control Efficiency (%)		n/a	n/a	
Max.VOC Emission	Loading (lb/hr)	2.96	0.09	
Rate	Annual (ton/yr)	0.91	0.04	
Max.HAP Emission	Loading (lb/hr)	0.16	0.01	
Rate	Annual (ton/yr)	0.05	<0.01	
Estimation Method ⁵		EPA	EPA	

1	BF	Bottom Fill	SP	Splash Fil	1		SUB	Submerged Fill
2	At maxii	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as	many as apply (complete and	submit app	ropriate A	Air Pollut	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor	Balance (closed system)
	ECD	Enclosed Combustion Devi	ce	F	Flare	_		•
	TO	Thermal Oxidization or Inc	ineration					
5	EPA	EPA Emission Factor in AF	P-42			MB	Materia	l Balance
	TM	Test Measurement based un	on test dat	a submitta	al	O	Other (d	escribe)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

assissate repor	ii. Ose eniia pa	ges ii necessarj	•					
Manufacturer: Exter	ran		Model:					
Max. Dry Gas Flow	Rate: 40 mmscf/day	,	Reboiler Design Heat Input: 0.500 MMBTU/hr					
Design Type: ⊠ TE	G □ DEG	□ EG	Source Status ¹ : NS					
Date Installed/Modi	fied/Removed ² : TBD	1	Regenerator Still V	ent APCD/ERD ³ : TO				
Control Device/ERI) ID# ³ : EC-2		Fuel HV (BTU/scf)	: 1263				
H ₂ S Content (gr/100	scf): <0.001%		Operation (hours/ye	ear): 8760				
Pump Rate (gpm): 7	.5							
Water Content (wt 9	6) in: Wet Gas: Satu	urated Dr	y Gas: 7.0 lb/MMscf					
Is the glycol dehydr	ation unit exempt fro	om 40CFR63 Section	764(d)? ⊠ Yes	□ No: If Yes, answe	r the following:			
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. □ Yes ☑ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. ☑ Yes □ No								
Is the glycol dehydr	ation unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ıster (UC)? 🗆 Yes	⊠ No			
Is a lean glycol pum	p optimization plan	being utilized? Yes	s 🗵 No					
□ Yes ⊠ No		ck to the flame zone		ixed with fuel.				
What happens when Still vent emission	ons to the atmosphere	e.	e reboiler? Still vent	to enclosed combust	tor.			
☐ Flash Tank	e following equipment ent system that conti	nt is present. nuously burns conder	nser or flash tank vap	ors				
		Control Device	Technical Data					
Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%)								
Hydrocarbons 99+% (Note: 98% used for calculations)								
		Emissio	ns Data					
Emission Unit	Description	Calculation	DTF6	Controlled Maximum	Controlled Maximum			

Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
	Reboiler Vent	AP-42	NOx	0.05	0.22
		AP-42	СО	0.04	0.18
RBV-1 / 11E		AP-42	VOC	< 0.01	0.01
RBV-1/11E		AP-42	SO_2	< 0.01	< 0.01
		AP-42 PM ₁₀		< 0.01	0.02
		AP-42	GHG (CO ₂ e)	60.4	264.5

		GRI-GlyCalc TM	VOC	0.80	3.51
		GRI-GlyCalc [™]	Benzene	0.01	0.04
RSV-1 / 11E	Glycol	GRI-GlyCalc [™]	Toluene	0.03	0.15
KSV-1/11E	Regenerator Still Vent	GRI-GlyCalc [™]	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc [™]	Xylenes	< 0.01	< 0.01
		GRI-GlyCalc [™]	n-Hexane	0.02	0.09
		GRI-GlyCalc [™]	VOC		
		GRI-GlyCalc [™]	Benzene		
NONE	Glycol Flash	GRI-GlyCalc TM	Toluene		
NONE	Tank	GRI-GlyCalc [™]	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1	Enton the	Course Status using the following and					
1	NS MS	e Source Status using the following cod Construction of New Source Modification of Existing Source	ES ES	Existing Source			
2	Enter the removal.	e date (or anticipated date) of the glyco	l dehydrai	tion unit's installation (const	ruction of	source), modi	fication or
3		e Air Pollution Control Device (APCD) device ID number:	/Emission	Reduction Device (ERD) ty	pe designa	tion using the	following codes
	NA	None	CD	Condenser	FL	Flare	
	CC	Condenser/Combustion Combination	TO	Thermal Oxidizer	O	Other	(please list)
4	and glyc designate	e appropriate Emission Unit ID Number ol regenerator still vent. The glycol del ed RBV-1 and RSV-1, respectively. If t tion Emission Unit Data Sheet shall be	nydration he compre	unit reboiler vent and glycol essor station incorporates mu	regenerat ltiple glyo	or still vent she col dehydratior	ould be n units, a Glycol
	and RSV	7-3, etc.					
5	Enter the	e Potential Emissions Data Reference d	esignation	using the following codes:			
	MD	Manufacturer's Data	AP	AP-42			
	GR	GRI-GLYCalc TM	OT	Other (please list)	١		
6	Enter the	e Reboiler Vent and Glycol Regenerator	r Still Ver	nt Potential to Emit (PTE) for	r the listed	l regulated pol	lutants in lbs

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q - PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011? ☐ Yes No No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? ☐ Yes No No Please list approximate number.

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.


Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: T01-T06 Make/Model: Condensate and Produced Water Tanks					
Primary Control Device ID: VRU-1 Make/Model: Arrow/WRC2					
Control Efficiency (%): 98 APCD/ERD Data Sheet Completed: ⊠ Yes □ No					
Secondary Control Device ID: EC-1	Make/Model: Hy-Bon CH 10.0				
Control Efficiency (%): 98 APCD/ERD Data Sheet Completed: ✓ Yes □ No					

VAPOR COMBUSTION							
(Including Enclosed Combustors)							
General Information							
Control De	vice ID#: EC-1			Installation New		BD – Upor odified	n Permit Relocated
Maximum Rated Total Flow Capacity scfh scfd							leat Content ΓU/scf
			Control Devic	e Informati	on		
⊠ Enclose	d Combustion Devi l Oxidizer	ce	Type of Vapor Co		ontrol?		Ground Flare
Manufactu Model: CH	rer: Hy-Bon 10.0			Hours of o	peration	per year? 8	3760
List the em	nission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID#)
Emission Unit ID#	Emission Source I	Description	1	Emission Unit ID#	Emissio	on Source I	Description
T01-T03	Condensate Tanks	3					
T04-T06	Produced Water T	`anks					
If this	vapor combustor c	ontrols en	issions from more the	an six (6) em	ission un	its, please	attach additional pages.
Assist Typ	e (Flares only)		Flare Height	Tip	Diamete	er	Was the design per §60.18?
Steam Pressure	□ Air ⊠ Non		feet				☐ Yes ☐ No Provide determination.
			Waste Gas 1	Information	ı		
Maxim	um Waste Gas Flow 19.79 (scfm)	Rate	Heat Value of W 2313 B				
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.
			Pilot Gas I	nformation			
Number	of Pilot Lights 1		low Rate to Pilot ame per Pilot 798 scfh		nput per 100 BTU		Will automatic re-ignition be used? ✓ Yes ☐ No
			escribe the method. T				to 25 times. After that, it
will go into manual mode which means someone will need to manually start. Gas flow is shut off if it fails to ignite. Is pilot flame equipped with a monitor to detect the presence of the flame? Yes □ No □ Ultraviolet □ Camera □ Other:							
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.							
			s □ No ata sheets, drawings,	flame demoi	nstration	per §60.18	or §63.11(b) and

	VAPOR RECOVERY UNIT *See Attachment N						
	General In	nformation					
Emission U	Emission Unit ID#: Installation Date: New Modified Relocated						
	Device In	formation					
Manufactu Model:	rer:						
List the en	nission units whose emissions are controlled by this	vapor reco	very unit (Emission Point ID#)				
Emission Unit ID#	Emission Source Description						
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please attach additional pages.				
	information attached? ☐ Yes ☐ No ch copies of manufacturer's data sheets, drawings,	and perform	nance testing.				
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.							
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.							
The registr	ant may claim a capture and control efficiency of 9	98% if the V	RU has a backup VRU.				

VAPOR COMBUSTION								
(Including Enclosed Combustors)								
General Information								
Control De	vice ID#: EC-2			Installation Date: TBD – Upon Permit ☑ New ☐ Modified ☐ Relocated				
Maximum Rated Total Flow Capacity scfh scfd							eat Content FU/scf	
Control Device Information								
Type of Vapor Combustion Control? Enclosed Combustion Device								
Manufactu Model: CH	rer: Hy-Bon 10.0			Hours of o	peration	per year? 8	760	
List the en	nission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID#)	
Emission Unit ID#	Emission Source Description			Emission Unit ID#	Emissio	on Source I	Description	
RBV-1	Dehydration Unit	Still Vent						
If this	vapor combustor c	controls em	nissions from more the	an six (6) em	ission un	its, please	attach additional pages.	
Assist Typ	e (Flares only)		Flare Height	Tip	Diamete	er	Was the design per §60.18?	
Steam Pressur	□ Air ⊠ Non		feet	feet			☐ Yes ☐ No Provide determination.	
		·	Waste Gas 1	Information				
Maxim	um Waste Gas Flow 64.3 (scfm)	Rate	Heat Value of W 660.7 E				•	
	Provide an	attachmei	nt with the characteri	stics of the v	vaste gas	stream to	be burned.	
			Pilot Gas I	nformation				
Number of Pilot Lights Fuel Flow Rate to Pilot Flame per Pilot 798 scfh			Heat Input per Pilot 985,100 BTU/hr Will automatic re-ignitio be used? ✓ Yes ☐ No					
If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will go into manual mode which means someone will need to manually start. Gas flow is shut off if it fails to ignite.								
Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.								
Additional information attached? ⊠ Yes □ No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per \$60.18 or \$63.11(b) and performance testing.								

Jay-Bee Oil & Gas, Inc. EMISSIONS SUMMARY

Larry Well Pad Production Facility Tyler County, WV

Emission Unit ID	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	Benzene lb/hr	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldehyde lb/hr	Total HAPs lb/hr
HTR-1	GPU #1	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-2	GPU #2	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-3	GPU #3	0.15	0.13	181.1	0.01	0.001	0.011				0.003		0.000	0.003
HTR-4	Line Heater	0.05	0.04	60.4	0.00	0.000	0.004				0.001		0.000	0.001
TL-1	Truck Loading - Condensate ²				2.96						0.16			0.16
TL-2	Truck Loading - Produced Water ²				0.08						0.01			0.01
VRU-1	VRU Compressor	0.19	0.37	89.7	0.04	0.000	0.013	0.001	0.000	0.000		0.000	0.015	0.022
TEG-1	Thermoelectric Generator	0.00	0.00	1.6	0.00	0.000	0.000				0.000		0.000	0.000
EC-1	Condensate Tanks + Water Tanks ¹	0.29	1.10	446.6	1.84	0.001	0.017				0.004		0.000	0.00
RBV-1	500 MBTU/hr Reboiler	0.05	0.04	60.4	0.003	0.000	0.004				0.001		0.000	0.001
EC-2	Dehydration Unit Combustor	0.27	1.03	417.4	0.81	0.001	0.037	0.010			0.02	0.034	0.000	0.06
	Truck Traffic Fugitive Dust						12.90							
	Fugitive Emissions			8.9	0.40									0.004
Total (Exludin	g Fugitive Emissions)	1.29	2.96	1619.51	5.76	0.00	0.11	0.01	0.00	0.00	0.20	0.03	0.02	0.27
Total		1.29	2.96	1628.37	6.16	0.00	13.01	0.01	0.00	0.00	0.20	0.03	0.02	0.27

Emission		NOx	co	CO2e	VOC	SO2	PM	Benzene	Ethylbenzene	Xylenes	n-Hexane	Toluene	Formaldehyde	Total HAPs
Unit ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
HTR-1	GPU #1	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-2	GPU #2	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-3	GPU #3	0.66	0.55	793	0.04	0.004	0.05				0.01		0.000	0.01
HTR-4	Line Heater	0.22	0.18	264	0.01	0.001	0.02				0.00		0.000	0.00
TL-1	Truck Loading - Condensate ²				0.91						0.05			0.05
TL-2	Truck Loading - Produced Water ²				0.04						0.00			0.00
VRU-1	VRU Compressor	0.81	1.62	393	0.18	0.002	0.06	0.005	0.000	0.001		0.002	0.065	0.10
TEG-1	Thermoelectric Generator	0.01	0.00	7	0.00	0.000	0.00				0.00		0.000	0.00
EC-1	Condensate Tanks + Water Tanks ¹	1.25	4.81	1956	0.43	0.00	0.07				0.01		0.001	0.02
RBV-1	500 MBTU/hr Reboiler	0.22	0.18	264.5	0.01	0.001	0.017				0.004		0.000	0.004
EC-2	Dehydration Unit Combustor	1.19	4.50	1828.1	3.54	0.003	0.161	0.04			0.09	0.15	0.002	0.28
	Truck Traffic Fugitive Dust						2.56							
	Fugitive Emissions			38.78	1.76									0.018
Total (Exluding	g Fugitive Emissions)	5.67	12.96	7093.46	5.22	0.02	0.47	0.05	0.00	0.00	0.20	0.15	0.07	0.50
Total		5.67	12.96	7132.24	6.98	0.02	3.04	0.05	0.00	0.00	0.20	0.15	0.07	0.52

 $^{^{1}} Condensate \ and \ water \ tank \ emissions \ are \ currently \ controlled \ by \ a \ VRU + Enclosed \ Combustor \ at \ 98\%. \quad This \ line \ represents \ the \ un-controlled \ 2\%.$

² Truck loading is un-controlled.

Jay-Bee Oil &Gas ,LLC

Larry Well Pad Production Facility Tyler County, WV

Controlled Emission Rates

Exhaust Stack Velocity

82.1

4,927.4

ft/sec

ft/min

Source VRU-1							
.							
Engine Data:							
Engine Manufacturer	Cummins						
Engine Model	G5.9						
Type (Rich-burn or Low Emission)	Rich Burn						
Aspiration (Natural or Turbocharged)	Natural						
Manufacturer Rating	84	hp					
Speed at Above Rating	1,800	rpm					
Configuration (In-line or V)	In-line	-F					
Number of Cylinders	6						
Engine Bore	4.020	inches					
Engine Stroke	4.720	inches					
Engine Displacement	359	cu. in.					
Engine BMEP	103	psi					
Fuel Consumption (HHV)	7,914	Btu/bhp-hr			_		
						AP-42	
						strokerich	
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr	lb/day I	b/MMBtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44		Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89		453.59 grams = 1 pou
VOC (NMNEHC)	0.220	0.04	0.18	18	0.98		2,000 pounds = 1 tor
CO2	449	83	364	37,716	1,996		
CO2e		90	393	,	-,		
Total Annual Hours of Operation	8,760				_		
SO2		0.0004	0.0017			0.0006	
PM2.5		0.00632	0.0277			0.0095	
PM (Condensable)		0.00659	0.0289			0.00991	
CH ₄		0.12623	0.5529			0.0022	Factor From 40 CFR 98, Table 0
N ₂ O		0.01148	0.0503			0.0002	Factor From 40 CFR 98, Table 0
acrolein		0.00175	0.0077			0.00263	· · · · · · · · · · · · · · · · · · ·
acetaldehyde		0.00175	0.0081			0.00279	
formaldehyde	0.080	0.00183	0.0649			0.00277	Per Mfg.
benzene	0.080					0.00159	
		0.00105	0.0046			0.00158	
toluene		0.00037	0.0016			0.000558	
ethylbenzene		1.6E-05	0.0001			0.0000248	
xylenes		0.00013	0.0006			0.000195	
methanol		0.00203	0.0089			0.00306	1
Total HAPs		0.02202	0.0964				ı
Exhaust Parameters: Exhaust Gas Temperature	1,078	deg. F					
Exhaust Gas Temperature Exhaust Gas Mass Flow Rate	1,070	lb/hr					
Exhaust Gas Mass Flow Rate	430	acfm					
EXHAUST GAS MASS Flow Rate	430	acim					
Exhaust Stack Height	96	inches					
	8.00	feet					
Exhaust Stack Inside Diameter	4 0.333	inches feet					
	0.555	1001					

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-1 Through HTR-3

*Emissions shown below are for each Gas Processing Unit

Burner Duty Rating1500.0 Mbtu/hrBurner Efficiency98.0 %Gas Heat Content (HHV)1263.0 Btu/scfTotal Gas Consumption29,084.8 scfdH2S Concentration0.000 Mole %Hours of Operation8760

NOx	0.1501	lb/hr	0.657	tpy
CO	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	lb/hr	0.050	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

NOx	100 lb/N	MMCF
CO	84 lb/N	MMCF
CO_2	120,000 lb/N	MMCF Global Warming Potential = 1
VOC	5.5 lb/N	MMCF
PM	7.6 lb/N	MMCF
SO_2	0.6 lb/N	MMCF
CH ₄	2.3 lb/N	MMCF Global Warming Potential = 25
N_2O	2.2 lb/N	MMCF Global Warming Potential =298
нсон	0.075 lb/N	MMCF
Benzene	0.0021 lb/N	MMCF
n-Hexane	1.8 lb/N	MMCF
Toluene	0.0034 lb/N	MMCF

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-4 Line Heater

Burner Duty Rating500.0 Mbtu/hrBurner Efficiency98.0 %Gas Heat Content (HHV)1263.0 Btu/scfTotal Gas Consumption9,694.9 scfdH2S Concentration0.000 Mole %Hours of Operation8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60	lb/hr	264	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

100 lb/MM	CF
84 lb/MM	CF
120,000 lb/MM	CF Global Warming Potential = 1
5.5 lb/MM	CF
7.6 lb/MM	CF
0.6 lb/MM	CF
2.3 lb/MM	CF Global Warming Potential = 25
2.2 lb/MM	CF Global Warming Potential =298
0.075 lb/MM	CF
0.0021 lb/MM	CF
1.8 lb/MM	CF
0.0034 lb/MM	CF
	84 lb/MM 120,000 lb/MM 5.5 lb/MM 7.6 lb/MM 0.6 lb/MM 2.3 lb/MM 2.2 lb/MM 0.075 lb/MM 0.0021 lb/MM 1.8 lb/MM

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source TEG-1

Burner Duty Rating13.0 MBtu/hrBurner Efficiency98.0 %Gas Heat Content (HHV)1263.0 Btu/scfTotal Gas Consumption252.1 scfdH2S Concentration0.000 Mole %Hours of Operation8760

NOx	0.0013	lb/hr	0.006	tpy
CO	0.0011	lb/hr	0.005	tpy
CO2	1.6	lb/hr	6.8	tpy
CO2e	2	lb/hr	7	tpy
VOC	0.0001	lb/hr	0.000	tpy
SO2	0.0000	lb/hr	0.000	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0001	lb/hr	0.000	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0000	lb/hr	0.000	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0000	lb/hr	0.000	tpy

NOx CO	100 lb/MMCF 84 lb/MMCF	
CO_2	120,000 lb/MMCF Global W	arming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH_4	2.3 lb/MMCF Global W	farming Potential = 25
N_2O	2.2 lb/MMCF Global W	arming Potential =298
НСОН	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1 Enclosed Combustor Pilot

Burner Duty Rating 985.1 MBtu/hr Burner Efficiency 98.0 % Gas Heat Content (HHV) 1263.0 Btu/scf **Total Gas Consumption** 19100.9 scfd H2S Concentration $0.000\,$ Mole %Hours of Operation 8760

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MM	CF
CO	84 lb/MM	CF
CO_2	120,000 lb/MM	CF Global Warming Potential = 1
VOC	5.5 lb/MM	CF
PM	7.6 lb/MM	CF
SO_2	0.6 lb/MM	CF
CH_4	2.3 lb/MM	CF Global Warming Potential = 25
N_2O	2.2 lb/MM	CF Global Warming Potential =298
нсон	0.075 lb/MM	CF
Benzene	0.0021 lb/MM	CF
n-Hexane	1.8 lb/MM	CF
Toluene	0.0034 lb/MM	CF

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency 98.0 % Gas Heat Content (HHV) 2313.1 Btu/scf Max Flow to T-E 0.028 MMSCFD 10.401 MMSCF/yr Max BTUs to Flare 2.746 MMBTU/hr 24,058 MMBTU/yr

NOx	0.19	lb/hr	0.82	tpy
CO	1.02	lb/hr	4.45	tpy
CO2	321.02	lb/hr	1,406.07	tpy
CO2e	327.68	lb/hr	1,435.26	tpy
VOC	1.83	lb/hr	0.40	tpy
CH4	0.26	lb/hr	0.06	tpy
N2O	0.0006	lb/hr	0.0026	tpy
PM	0.0090	lb/hr	0.0395	tpy
СНОН	0.0001	lb/hr	0.0004	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0021	lb/hr	0.0094	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0022	lb/hr	0.0098	tpy

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Notes:

Condensate and Produced Water Tank Emissions

Factors Used

AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	CO	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF	
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF	
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Larry Well Pad Production Facility Tyler County, WV

Source RBV-1

Burner Duty Rating500.0 MBtu/hrBurner Efficiency98.0 %Gas Heat Content (HHV)1263.0 Btu/scfTotal Gas Consumption9,695 scfdH2S Concentration0.000 Mole %Hours of Operation8760

NOx	0.0500	lb/hr	0.219	tpy
CO	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60.4	lb/hr	264.5	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

NOx	100	lb/MMCF	
CO	84	lb/MMCF	
CO_2	120,000	lb/MMCF	Global Warming Potential = 1
VOC	5.5	lb/MMCF	
PM	7.6	lb/MMCF	
SO_2	0.6	lb/MMCF	
CH ₄	2.3	lb/MMCF	Global Warming Potential = 25
N_2O	2.2	lb/MMCF	Global Warming Potential = 298
НСОН	0.075	lb/MMCF	
Benzene	0.0021	lb/MMCF	
n-Hexane	1.8	lb/MMCF	
Toluene	0.0034	lb/MMCF	

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Combustor Pilot

Burner Duty Rating 985.1 MBtu/hr
Burner Efficiency 98.0 %
Gas Heat Content (HHV) 1263.0 Btu/scf
Total Gas Consumption 19100.9 scfd
H2S Concentration 0.000 Mole %
Hours of Operation 8760

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
CO	84 lb/MMCF	
CO_2	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH_4	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
НСОН	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Larry Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 660.7 Btu/scf 0.09264 MMSCFD 2.55 MMBtu/hr

811.526 MMSCF/yr 22,341 MMBtu/yr

NOx	0.17	lb/hr	0.76	tpy
CO	0.94	lb/hr	4.13	tpy
CO2	298.11	lb/hr	1,305.74	tpy
CO2e	298.42	lb/hr	1,307.09	tpy
VOC	0.80	lb/hr	3.51	tpy
CH4	0.01	lb/hr	0.0246	tpy
N2O	0.001	lb/hr	0.0025	tpy
PM	0.029	lb/hr	0.128	tpy
Benzene	0.010	lb/hr	0.042	tpy
СНОН	0.000	lb/hr	0.001	tpy
n-Hexane	0.020	lb/hr	0.086	tpy
Toluene	0.034	lb/hr	0.147	tpy
Total HAPs	0.063	lb/hr	0.276	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	CO	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Larry Well Pad Production Facility Tyler County, WV

TL-1 Truck Loading - Condensate

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

 $L_L = 12.46*(SPM/T)$

Where,

Maximum Daily Loading 100 BBL/day

4,200 gpd

Hours of Loading 3 hr

Total VOC	8.9 lb/day	2.96 lb/hr
Total HAP	0.5 lb/day	0.16 lb/hr

Maximum Annual Loading 20,400 BBL/yr

856,800 gpy

Total VOC	1813.7 lb/yr	0.91 tpy
Total HAP	98.0 lb/yr	0.05 tpy

Emissions

Total VOC 71.059 % Total HAP 3.841 %

Larry Well Pad Production Facility Tyler County, WV

TL-2 Truck Loading - Produced Water

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

 $L_L = 12.46*(SPM/T)$

Where,

 $L_L = 0.132 \ lb/1000 \ gallons$

Maximum Daily Loading 120 BBL/day

5,040 gpd

Hours of Loading 3 hr

Total VOC	0.2 lb/day	0.08 lb/hr
Total HAP	0.0 lb/day	0.009 lb/hr

Maximum Annual Loading 43,200 BBL/yr

1,814,400 gpy

Total VOC	87.3 lb/yr	0.04 tpy
Total HAP	9.6 lb/yr	0.00 tpy

Emissions

Total VOC 36.376 % Total HAP 4.009 %

Larry Well Pad Production Facility Tyler County, WV

Truck Loading Fugitive Dust

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Trin	Maximum Trips per Hour	Truck Capacity (BBL/Truck)	Maximum Trips per Year	Control	Control Efficiency (%)
1	Produced Water Transportation Trucks	18	27	10	0.75	1	80	540	None	
2	Condensate Transportation Trucks	18	27	10	0.75	1	80	255	None	
			54000	lbs						

PM PM-10 Particle size multiplier 0.8 0.36 Silt content of road surface material (%) 10 3 Mean vehicle speed (mph) 10 10 W = 27 27 Mean vehicle weight (tons) Mean number of wheels per vehicle 18 27 w = Number of days per year with precipitation >0.01 in. 157 157

 $E \text{ (lb/ vehicle mile traveled)} = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365)$

Item 1 - Produ	iced Water	PM	PM-10	
E	lb/vmt	7.378804125	1.220015589	
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	5.534	0.915	lb/hr
E	$[1b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ 1b] = t$	1.494	0.247	tpy

Item 2 - Cond	ensate	PM	PM-10	
Е	lb/vmt	7.378804125	1.220015589	
Е	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	5.534	0.915	lb/hr
Е	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = t$	0.706	0.117	tpy

Jay-Bee Oil & Gas - Larry

Flash Emission Calculations - Condensate

Using Gas-Oil Ratio Method

Un-Controlled

Site specific data

Gas-Oil-ratio = 500 scf/bbl Using GOW from comparable well pads.

Throughput = 20,400 bbl/yr Stock tank gas molecular weight = 39.56 g/mole

Conversions

Equations

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)}) \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{\mathit{spec}} = E_{\mathit{TOT}} \times X_{\mathit{spec}}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	562.3396	
VOC	394.5881	
Nitrogen	1.41E-01	
Carbon Dioxide	8.83E-01	
Methane	5.58E+01	
Ethane	1.11E+02	
Propane	1.46E+02	
Isobutane	3.94E+01	
n-Butane	9.07E+01	
2,2 Dimethylpropane	1.11E+00	
Isopentane	3.10E+01	
n-Pentane	3.26E+01	
2,2 Dimethylbutane	1.18E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.70E+00	
2 Methylpentane	9.04E+00	
3 Methylpentane	5.40E+00	
n-Hexane	1.18E+01	HAP
Methylcyclopentane	8.60E-01	
Benzene	2.02E-01	HAP
Cyclohexane	1.22E+00	
2-Methylhexane	2.62E+00	
3-Methylhexane	2.58E+00	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	2.45E+00	
n-Heptane	3.79E+00	
Methylcyclohexane	2.36E+00	
Toluene	4.61E-01	HAP
Other C8's	3.85E+00	
n-Octane	1.28E+00	
Ethylbenzene	2.81E-02	HAP
M & P Xylenes	3.32E-01	HAP
O-Xylene	4.50E-02	HAP
Other C9's	1.60E+00	
n-Nonane	3.82E-01	
Other C10's	6.02E-01	
n-Decane	7.87E-02	
Undecanes (11)	8.44E-02	

 $\begin{aligned} &E_{TOT}\\ &\text{Sum of C3+} \end{aligned}$

Jay-Bee Oil & Gas - Larry

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data

Gas-Water-ratio = 4.06 scf/bbl Using GOW from comparable well pads.

Throughput = 43,200 bbl/yrStock tank gas molecular weight = 30.68 g/mole

Conversions

Equations

$$E_{TOT} = Q\frac{(bbl)}{(yr)} \times R\frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW\frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)}) \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	7.4991	
VOC	3.8354	
Nitrogen	1.25E-01	
Carbon Dioxide	1.13E-01	
Methane	2.22E+00	
Ethane	1.21E+00	
Propane	8.62E-01	
Isobutane	2.15E-01	
n-Butane	6.07E-01	
2,2 Dimethylpropane	9.52E-03	
Isopentane	3.05E-01	
n-Pentane	4.24E-01	
2,2 Dimethylbutane	1.58E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	3.05E-02	
2 Methylpentane	1.70E-01	
3 Methylpentane	1.10E-01	
n-Hexane	2.96E-01	HAP
Methylcyclopentane	2.76E-02	
Benzene	5.40E-03	HAP
Cyclohexane	3.80E-02	
2-Methylhexane	8.26E-02	
3-Methylhexane	8.59E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	7.90E-02	
n-Heptane	1.44E-01	
Methylcyclohexane	7.63E-02	
Toluene	1.18E-02	HAP
Other C8's	1.31E-01	
n-Octane	4.11E-02	
Ethylbenzene	8.25E-04	HAP
M & P Xylenes	6.75E-03	HAP
O-Xylene	7.50E-04	HAP
Other C9's	3.97E-02	
n-Nonane	7.42E-03	
Other C10's	8.70E-03	
n-Decane	1.50E-03	
Undecanes (11)	1.42E-03	

 $\begin{aligned} &E_{TOT}\\ &Sum \ of \ C3+ \end{aligned}$

Larry Well Pad Production Facility Tyler County, WV

Fugitive VOC Emissions

18.40 weight percent 59.35 weight percent 0.32 weight percent Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Carbon Dioxide from gas analysis: HAPs from gas analysis:

0.62 weight percent 0.0580 lb/scf Hexane

Gas Density:

Emission Source:	Count	Oil & Gas Production*	VOC %	VOC (lb/hr)	VOC (tpy)	CO2 (lb/hr)	CO2 (tpy)	CH4 (lb/hr)	CH4 (tpy)	CO2e (tpy)	Hexane (tpy)
Pump Seals:				, ,			(17)		(17)	(127	137
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											
Gas/Vapor:	26	0.02700 scf/hr	18.4	0.007	0.033	0.000	0.001	0.024	0.1058	2.646	0.001
Light Liquid:	18	0.05000 scf/hr	100.0	0.052	0.229						
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	3	0.04000 scf/hr	18.4	0.001	0.006	0.000	0.000	0.004	0.0181	0.452	0.000
Open-ended Lines, gas:	20	0.06100 scf/hr	18.4	0.013	0.057	0.000	0.001	0.042	0.1839	4.598	0.002
Sampling Connectors:											
Gas:	11	0.03300 lb/hr	18.4	0.067	0.293	0.001	0.005	0.215	0.9436	23.595	0.010
Light Liquid:	6	0.03300 lb/hr	100.0	0.198	0.867						
Connectors:											
Gas:	120	0.00300 scf/hr	18.4	0.004	0.017	0.000	0.000	0.012	0.0543	1.357	0.001
Light Liquid:	60	0.00700 scf/hr	100.0	0.024	0.107						
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:											
Gas:	80	0.00086 lb/hr	18.4	0.013	0.055	0.000	0.001	0.041	0.1788	4.472	0.002
Light Liquid:	40	0.00300 scf/hr	100.0	0.007	0.030						

Blowdowns:

DIO II GIO II III II									
			Projected	Gas	Gas	Composition			
	Pressure	Internal	Blowdown	Released	Released	of Gas (% by	Released	Released	CO2e
	(psig)	Volume (scf)	Events (per	Per Year	Per Year	volume)	(lb/hr)	(tpy)	(tpy)
			year)	(scf)	(lbs)	voiume)			
VOC	300	65	16	1040	124.8	0.70	0.0100	0.0438	
CH4	300	65	16	1040	44.0	0.10	0.0005	0.0022	0.0546
HAPs	300	65	16	1040	116.3	0.02	0.0003	0.0013	

Fug	gitive Calculati	ions:
. [lb/hr	tpy
VOC	0.401	1.757
CH4	0.354	1.551
CO2	0.002	0.008
CO2e	8.854	38.779
HAPs	0.004	0.018

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

Larry Well Pad Production Facility Tyler County, WV

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,257.7

 Ideal Gross (sat'd)
 1,236.6

 GPM

 Real Gross (HHV)
 1,263.0

 Real Net (LHV)
 1,145.6

Larry Well Pad Production Facility Tyler County, WV

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			ı		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			1		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-					-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.135	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	100.000	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

Gas Density (STP) = 0.111

 Ideal Gross (HHV)
 2,283.4

 Ideal Gross (sat'd)
 2,244.3

 GPM

 Real Gross (HHV)
 2,313.1

 Real Net (LHV)
 2,124.9

Larry Well Pad Production Facility Tyler County, WV

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	1.821	0.161	0.006	0.652			ı		0.0057	
Carbon Dioxide, CO2	1.049	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	56.602	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	16.424	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	8.000	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.516	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	4.274	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.784	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	2.405	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	2.953	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	3.172	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

Gas Density (STP) = 0.069

 Ideal Gross (HHV)
 1,424.0

 Ideal Gross (sat'd)
 1,399.9

 GPM

 Real Gross (HHV)
 1,430.5

 Real Net (LHV)
 1,302.3

Larry Well Pad Production Facility Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.158	0.044	0.002	0.211	0.0	0.0	i		0.0016	
Carbon Dioxide, CO2	0.164	0.072	0.002	0.343	0.0	0.0	0.012		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		-	
Water	54.800	9.864	0.341	46.930	0.0	0.0	-		0.5483	
Oxygen, O2	-	-	-	-	0.0	0.0	-		-	
Methane, CH4	30.600	4.909	0.170	23.356	278.3	309.1	5.104		0.3054	
Ethane, C2H6	7.680	2.309	0.080	10.987	124.3	135.9	1.829		0.0762	2.043
Propane	3.300	1.455	0.050	6.923	76.4	83.0	1.022	6.923	0.0324	0.904
Iso-Butane	0.506	0.294	0.010	1.399	15.2	16.5	0.157	1.399	0.0049	0.165
Normal Butane	1.190	0.692	0.024	3.291	35.8	38.8	0.454	3.291	0.0115	0.373
Iso Pentane	0.278	0.201	0.007	0.954	10.3	11.1	0.113	0.954	0.0028	0.101
Normal Pentane	0.328	0.237	0.008	1.126	12.2	13.1	0.133	1.126	0.0033	0.118
Hexane	0.406	0.350	0.012	1.665	17.9	19.3	0.197	1.665	0.0040	0.166
Heptane	0.590	0.591	0.020	2.813	30.1	32.5	1.310	2.813	0.0059	0.271
	100.000	21.018	0.726		600.4	659.3	10.330	18.172	0.9979	4.141

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 659.3

 Ideal Gross (sat'd)
 648.7

 GPM

 Real Gross (HHV)
 660.7

 Real Net (LHV)
 601.7

28.9625

Specific Gravity of Air, @ 29.92 in. Hg and 60 -F, One mole of gas occupies, @ 14.696 psia & 32 -F, 359.2 cu ft. per lb-mole One mole of gas occupies, @ 14.696 psia & 60 -F, 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

 $\underline{0}$ grains H2S/100 scf = $\underline{0.00000}$ mole % H2S 0.0 ppmv H2S <u>0</u> grains H2S/100 scf <u>0</u> mole % H2S 0.00 ppmv H2S 0.000 grains H2S/100 scf 0 ppmv H2S 0.00000 mole % H2S

Ideal Gas at 14.696 psia and $60^{\circ}F$

•		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Gal/Mole
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gai/Wiole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468
	·				·					·	· · · · · · · · · · · · · · · · · · ·

Unit Information Sheet

Date: May 27, 2014

Unit #: 6041

Customer: To Be Determined

To: Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Pac	kage Information
Compressor Manufacturer:	Arrow
Compressor Model:	VRC2
Compressor Serial Number:	12095
Compressor Cylinders:	6.5" x 4.0" x 2.25"
Driver Manufacturer:	Cummins
Driver Model:	G5.9
Rated HP & Speed	84 HP @ 1800 RPM
Driver Type:	4-stroke Rich Burn
Engine Serial Number:	73364060
Engine Manufacturing Date:	3/19/2012
Engine Catalyst Model:	VXC-1408-04-HSG
Engine Catalyst Element:	VX-RE-08XC
Engine AFR Model:	AFR-1RD-10-TK2
Engine Stack Height:	9' 5"
Engine Stack Diameter:	4"
Ope	rating Information
Suction Pressure:	N/A psig
Discharge Pressure:	N/A psig
Design Capacity:	N/A MSCFD
Gas Specific Gravity:	N/A

Emission Output informtion included in the attached catalyst specification sheet.

MIRATECH Emissions Control Equipment Specification Summary

Proposal Number: TJ-14-0081 Rev(1)

Engine Data

Number of Engines:

Application: Gas Compression

Engine Manufacturer: Cummins
Model Number: G 5.9
Power Output: 84 bhp

Lubrication Oil: 0.6 wt% sulfated ash or less

Type of Fuel:

Exhaust Flow Rate:

Exhaust Temperature:

Natural Gas

430 acfm (cfm)

1,078°F

System Details

Housing Model Number: VXC-1408-04-HSG Element Model Number: VX-RE-08XC

Number of Catalyst Layers: 1
Number of Spare Catalyst Layers: 1

System Pressure Loss: 3.0 inches of WC (Fresh)
Sound Attenuation: 28-32 dBA insertion loss

Exhaust Temperature Limits: 750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number: VXC-1408-04-XC1
Material: Carbon Steel
Approximate Diameter: 14 inches

Inlet Pipe Size & Connection: 4 inch FF Flange, 150# ANSI standard bolt pattern
Outlet Pipe Size & Connection: 4 inch FF Flange, 150# ANSI standard bolt pattern

Overall Length: 53 inches
Weight Without Catalyst: 152 lbs
Weight Including Catalyst: 162 lbs

Instrumentation Ports: 1 inlet/1 outlet (1/2" NPT)

Emission Requirements

Ellisololi Reguli ell	Emission requirements						
			Warranted				
	Engine Outputs		Converter Outputs	Requested			
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets			
NOx	11.41	91%	1.00	1.00 g/bhp-hr			
CO	14.64	86%	2.00	2.00 g/bhp-hr			
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr			
CH ₂ O	0.08	0%	1.00	1.00 g/bhp-hr			
Oxygen	0.5%						

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

MIRATECH Catalyzer (TM) 1/13/2014

Engine Performance Data Cummins Inc

Columbus, Indiana 47202-3005 http://www.cummins.com Industrial

G5.9

FR 9961

84 BHP (63 kW) @ 1800 RPM 245 lb-ft (332 N-m) @ 1800 RPM

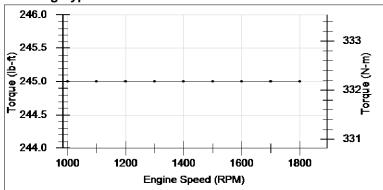
Configuration **D491010CX02**

CPL Code 8655 Revision 12-May-2011

Compression Ratio: 10.5:1

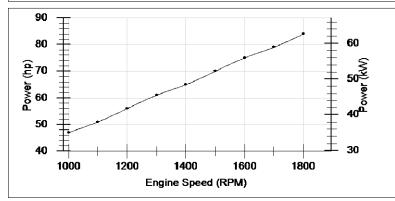
Emission Certification:

Fuel System: Field

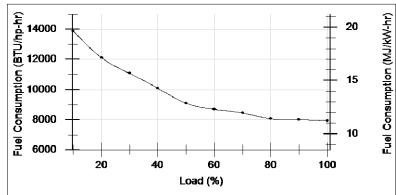

Field Gas, Dry Processed Nat Gas

Non-certified

Displacement: 359 in3 (5.9 L)
Aspiration: Naturally Aspirated


All data is based on the engine operating with fuel system, water pump, and 7 in H2O (1.74 kPa) inlet air restriction with 3.5 in (89 mm) inner diameter, and with 1 in Hg (3 kPa) exhaust restriction with 3 in (76 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.

Rating Type: Continuous/WMR



	Torque Output		
RPM	lb-ft	N-m	_
1,000	245	332	
1,100	245	332	
1,200	245	332	
1,300	245	332	
1,400	245	332	
1,500	245	332	
1,600	245	332	
1,700	245	332	
1,800	245	332	

oralio Olitolit

Power Output							
RPM	hp	kW					
1,000	47	35					
1,100	51	38					
1,200	56	42					
1,300	61	45					
1,400	65	48					
1,500	70	52					
1,600	75	56					
1,700	79	59					
1,800	84	63					

	Fuel Consumption @ 1,800 RPM								
hp	kW	% Load	BTU/hp-hr	MJ/kW-hr					
84	63	100	7,914	11.2					
76	57	90	7,987	11.3					
67	50	80	8,056	11.4					
59	44	70	8,452	11.96					
50	37	60	8,689	12.29					
42	31	50	9,094	12.87					
34	25	40	10,083	14.27					
25	19	30	11,069	15.66					
17	13	20	12,116	17.14					
8	6	10	13,889	19.65					

Data represents gross engine capabilities obtained and corrected in accordance with SAE J1995 using dry processed natural gas fuel with 905 BTU per standard cubic foot lower heating value. Deration may be required due to altitude, temperature and type of fuel. Consult Cummins Customer Engineering for operation above this altitude.

STATUS FOR CURVES AND DATA: Limited-(measured data)

TOLERANCE: Within +/- 5 %

CHIEF ENGINEER:
Alfred S Weber

Bold entries revised after 1-Mar-2010

Intake Ai	ir System
-----------	-----------

Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)

15 delta deg F 8.3 delta deg C

Cooling System

Maximum coolant temperature for engine protection controls 215 deg F 102 deg C Maximum coolant operating temperature at engine outlet (max. top tank temp): 212 deg F 100 deg C

Exhaust System

Maximum exhaust back pressure: 2 in-Hg 7 kPa
Recommended exhaust piping size (inner diameter): 3 in 76 mm

Lubrication System

Nominal operating oil pressure

@ minimum low idle10 psi69 kPa@ maximum rated speed50 psi345 kPa

Minimum engine oil pressure for engine protection devices

@ minimum low idle 10 psi 69 kPa

Fuel System

Maximum fuel inlet pressure: 1 psi 5 kPa

Performance Data

Engine low idle speed: 900 RPM Maximum low idle speed: 1,800 RPM Minimum low idle speed: 800 RPM Engine high idle speed 1,800 RPM

Governor break speed:

Maximum torque available at closed throttle low idle speed: 50 lb-ft 68 N-m

Engine Speed Output Power Torque
Index Manifold Pressure Inlet Air Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst VOC ppm with Catalyst NOx NOx ppm w/o Catalyst
CO CO ppm w/o Catalyst CO ppm with Catalyst CO2 O2

	100%	Load			75% l	Load			50% L	.oad	
1,800	RPM			1,800	RPM			1,800	RPM		
84	hp	63	kW	63	hp	47	kW	42	hp	31	kW
245	lb-ft	332	N-m	184	lb-ft	249	N-m	123	lb-ft	167	N-m
-1	in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
121	ft3/min	57	L/s	101	ft3/min	48	L/s	82	ft3/min	39	L/s
430	ft3/min	203	L/s	360	ft3/min	170	L/s	292	ft3/min	138	L/s
1,078	deg F	581	deg C	999	deg F	537	deg C	902	deg F	483	deg C
3,824	BTU/min	67	kW	3,244	BTU/min	57	kW	2,596	BTU/min	46	kW
1,194	BTU/min	21	kW	784	BTU/min	14	kW	613	BTU/min	11	kW
2,523	BTU/min	44	kW	1,916	BTU/min	34	kW	1,371	BTU/min	24	kW
	BTU/hp-hr vol/vol	11	MJ/kW-hr		BTU/hp-hr vol/vol	12	MJ/kW-hr		BTU/hp-hr vol/vol	13	MJ/kW-h
	deg g/hp-hr	26	deg		deg g/hp-hr	26	deg		deg g/hp-hr	26	deg
11.41	g/hp-hr	15.3	g/kW-hr	13.7	g/hp-hr	18.37	g/kW-hr	12.85	g/hp-hr	17.23	g/kW-hr
14.64	g/hp-hr	19.63	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
449 0.45	g/hp-hr %	602	g/kW-hr	489 1.66	g/hp-hr %	656	g/kW-hr	540 3.67	g/hp-hr %	724	g/kW-hr

Cranking System (Cold Starting Capability)

Unaided Cold Start:

Minimum cranking speed 250 RPM

Cold starting aids available Block Heater, Oil Pan Heater

Maximum parasitic load at 10 deg F @

Noise Emissions

 Top
 89.9 dBa

 Right Side
 90.1 dBa

 Left Side
 89.8 dBa

 Front
 90.5 dBa

 Exhaust noise emissions
 103.1 dBa

Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)

Aftercooler Heat Rejection - Heat Load on Aftercooler

BTU/min (kW)

Ambient Temp deg F (deg C)

	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
0 (0)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
1000 (305)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
2000 (610)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
3000 (914)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
4000 (1219)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
5000 (1524)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
6000 (1829)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
8000 (2438)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
9000 (2743)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
10000 (3048)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)

Altitude ft (m)

End of Report

Bold entries revised after 1-Mar-2010

Engine (as entered by user)

Gas/Site Analysis & Engine Selection/Derate

Cummins Stationary Natural Gas Engines

Date: 4/10/2014

Industrial

G5.9

Available FR Number(s) From Selection: FR9936, FR9961 NG 84 HP (63 kW) @1800 RPM & 10.5:1 Compression Ratio

> Catalyst Fuel Rating Industrial Continuous

Application: Fuel Type: Engine: Fuel Rating: Compression Ratio: RPM: HP (Natural Gas): HP (Propane):	Industrial NG G5.9 Catalyst 10.5:1 1800 84 HP (63 kW) NA HP (NA kW)	
Site (as entered by user)	00% 5	
Ambient Air Temperature: Relative Humidity: Altitude: Cooling Fan Load: Generator Efficiency: Vapor Pressure (Calculated from Site Conditions Entered): Dew Point (Calculated from Site Conditions Entered): Dry Barometer (Calculated from Site Conditions Entered):	90° F 30% 1200 ft 8 HP 93% 0.427 inHg 54.4° F 28.22 inHg	
Derate (Natural Gas)		
Advertised NG Rating: Engine Derate Due to Site Altitude and Temperature: Engine Derate Due to Gas Composition: Derate Due to Low BTU Fuel: Derate Due to Methane Number: Total Power Available (%) After All Applicable Derates: Total Site Derate due to Altitude, Temperature, and Gas Composition: Total Available Horsepower from Selected Engine Running on Specified Fuel Composition at Specified Site (includes 8 HP reduction for for cooling fan load): Derate (Propane)	84 HP (63 kW) 2% 0% 0% 98% of rated 2 HP (1 kW) 74 HP (55 kW)	The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Advertised Propane Rating:	NA HP (NA kW)	
Engine Derate Due to Site Altitude and Temperature: Total Power Available (%) After All Applicable Derates:	NA% NA% of rated	
Total Site Derate due to Altitude and Temperature:	NA HP (NA kW)	
Total Available Horsepower from Selected Engine Running on Propane at Specified Site (includes 8 HP reduction for for cooling fan load):	NA HP (NA kW)	
Intake Manifold Requirements for Turbocharged Engines		
Maximum Allowed Intake Manifold Temperature for Selected Engine is na °F wi based on FR9936	ith a Maximum Aftercooler Water Inlet (CAC air inlet) of na °F
Factory Set Points	Factory Supplied	Recommended
Engine Speed Target:	1800 rpm	NOTICE: A Change to
Spark Plug Gap:	0.020 in	Ignition Timing Is Recommended Due to
Excess Oxygen Target-PV:	na %O2	Methane Number of
Propane Engine Timing Target:	na °BTDC	Fuel
Propane Gas over air Press at Carb Low:	na inH2O	
Propane Gas Press at Sec Reg Target: Excess Oxygen Target-NG:	na inH2O 0.45% O ₂	
Natural Gas Engine Timing Target:	Factory: 26 °BTDC	Recommended Timing: 25 ° BTDC

FR9936 Created/Revised On: 4/30/2013. Data Files Updated On: 12/12/2013

Natural Gas over air Press at Carb Target:

Natural Gas Press at Sec Reg Target:

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

5 inH2O 15 inH2O

			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:		0.26	0.91
n-Hexane:		0.15	0.62
n-Heptane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonane:		0	0
n-Decane:		0	0.02
Hydrogen:		0	0
Hydrogen Sulfide (H ₂ S):		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Carbon Monoxide:		0	0.02
Nitrogen:		0.39	0.53
Oxygen:		0.00	0.00
,,,	centage: 99.991%)	Normalized Percentage:	· ·
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/scf	42.5 MJ/scm
Lower Heating Value (LHV): Standard Conditions (60F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Standard Conditions (60F/14.696psia)	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:	,	56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
• • • • • • • • • • • • • • • • • • • •	LHV/√ SG	1345 Btu/scf	50.11 MJ/scm
Wobbe Index :	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1.253
Ideal Gas Density:		0.0549 lbm/ft3	0.8788 kg/m3 std
H/C Ratio:		3.492	3.492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-°R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
uel Flow Data			1
BTU/HP-HR:		7914	
Maximum Fuel Flow (SCFH):		583	
Maximum Fuel Flow Calculation is Ba	sed on 100% Continuous	Rating of 84 HP at 1800 RPM and	10.5:1 Compression Ratio from FR9936
as Regulator Details			

Description of FR Differences for Selected Engine				
	FR9936	FR9961		
Exhaust Manifold	Dry	Wet	ĺ	
Exhaust Stack Temp High	1300	1220	1	

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

Gas Analysis Tool References & Standards

Date: 4/10/2014

Tool Revision Date: 3/27/2014

Performance Parameters:		Reference Standard or Document	
		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.696psia	ASTM D 3588-91 @ 0C/101.3kPa
Higher Heating Value (HHV): by vo		ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions by mass		ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.696psia	ASTM D 3588-91 @ 0C/101.3kPa
Methane Number:		Cummins Methane Number	Cummins Methane Number
Specific Gravity (SG) (Ideal Rel.		-	_
Wobbe Index :	LHV/√ SG	Ideal gas @ 60F/14.696psia	Ideal gas @ 15.5C/101.3kPa
	HV/√ SG	Ideal gas @ 60F/14.696psia	ldeal gas @ 15.5C/101.3kPa
Molecular Weight:		_	_
Specific Heat (Cp):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Ideal Gas Density:		ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
H/C Ratio:		-	-
Gas Constant (R _{GAS}):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Stoich Air Fuel Ratio (Dry):		-	_
Conversion Factors		Otan david Haife	Madeia Unita
		Standard Units	Metric Units
Natas			
Notes			

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

Page 5 of 5

Standard Features

- Automatic Spark Ignition (SI)
- · Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- · Volt & Amp Meter

Optional Features

- · Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- · Corrosive Environmental Fuel System
- · Flame Arrestor

Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

Power where you need it.

Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical

Adjustment: 6.7V up to 11 Volts

12 V 12 -18 Volts 24 V 24 - 30 Volts 48 V 48 - 60 Volts

Reverse current protection included.

Output: Terminal block which accepts up to 8 AWG wire. Opening for

3/4" conduit in the base of the cabinet.

Fuel

Natural Gas: 8.8 m³/day (311 ft³/day) of Std.

1000 BTU/SCF (37.7 MJ/SM3) gas

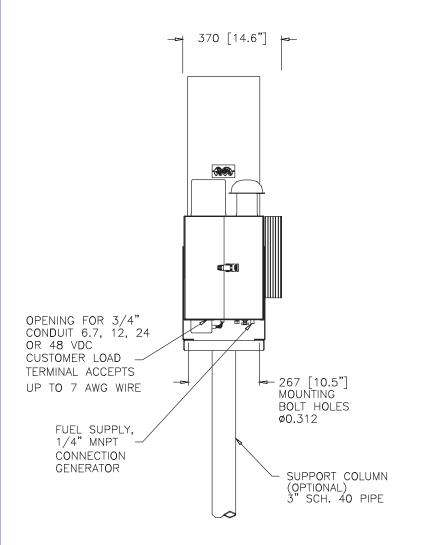
Propane: 11.4 l/day (3.0 US gal/day)

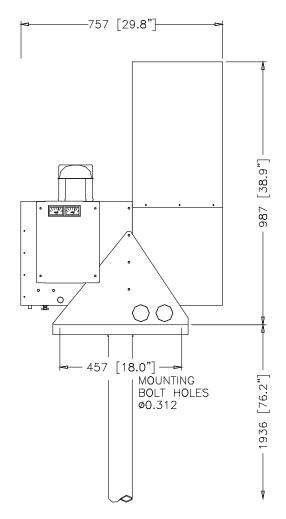
Max. Supply Pressure: 1724 kPa (250 psi)
Min. Supply Pressure: 103 kPa (15 psi)
Fuel Connection: 1/4" MNPT

Environmental

Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

Materials of Construction


Cabinet: 304 SS


Cooling Type: Natural Convection

Thermopile: Hermetically Sealed Lead Tin-Telluride (PbSnTe)

Burner: Meeker Type/Inconel 600
Fuel System: Brass, Aluminum & SS

Typical Installation

NOTES:

- 1. GENERATOR WEIGHT: 60 kg [132 lb].
 2. DIMENSIONS IN mm [INCHES].

Power where you need it.

Corporate Office

#9, 3700 - 78 Avenue SE Calgary, Alberta T2C 2L8 **CANADA**

Phone: (403) 236-5556 (403) 236-5575 Fax:

US Sales

P.O. Box 38624 Houston, TX 77238 Phone: (281) 445-1515 (281) 445-6060

Toll Free: 1800848-4113

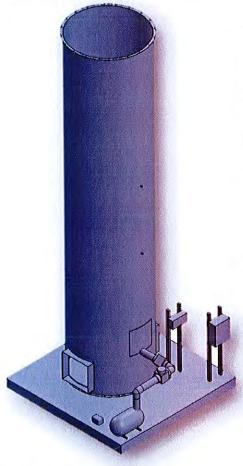
Model 5120 Thermoelectric Generator

Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines — making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes — making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant
 List of EPA Approved Combustion Control Devices
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- · User Friendly Automated System
- Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
- Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

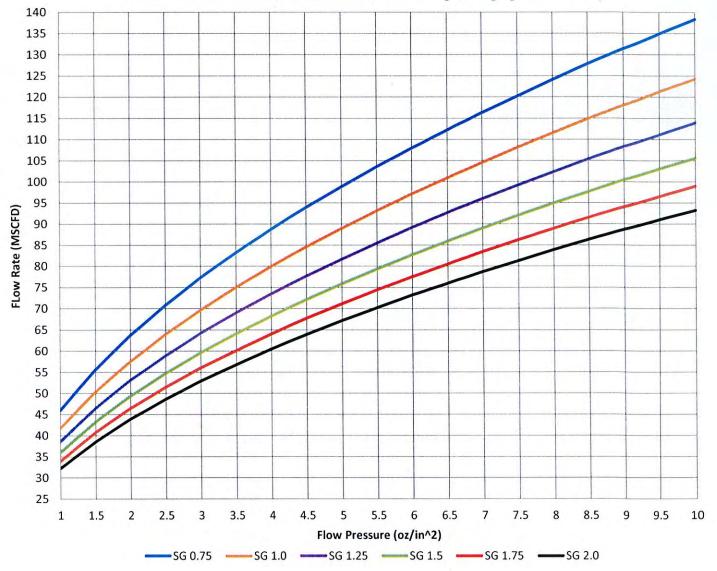
GENERAL PROPERTIES	CH2.5	CH10.0		
BURNER SIZE (MMBTU/hr)	2.5	10.0		
OUTER DIAMETER (inches)	34	54		
HEIGHT (feet)	16	20		
INLET PRESSURE (oz/in²)	≥ 0.5			
DESTRUCTION EFFICIENCY	ESTRUCTION EFFICIENCY ≥ 99.99%			
SMOKELESS CAPACITY	100%			
TURN DOWN	SCALABLE			



2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the **CH10.0** enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

>	EPA 40 CFR	60, Quad O	Compliant
---	------------	------------	-----------


- > Completely Enclosed Combustion
- > 99.99% Destruction Efficiency
- > Fully Automated System
- Output Operational Data via Thumb Drive
- Capable of SCADA Integration

TYPE	Enclosed Tank Battery Flare
AMBIENT	Enclosed Talik Battery Plate
TEMPERATURE	-20 °F to +100 °F
	Propane or Site Gas
PILOT FUEL	@5psi of natural gas = 13.3 SCFM
REQUIREMENTS	@5psi of propane = 12.5 SCFM
	Websi of propane 12.5 berim
BURNER SIZE	10.0 million BTU/hr
INLET PRESSURE	Minimum 0.5 oz/in ² (~1.0 inches
REQUIRMENTS	w.c.)
TURN DOWN RATIO	5:1
DESTRUCTION	
EFFICIENCY	99.99% DRE
MECHANICAL PROPERTIES	The state of the s
DESIGN WIND SPEED	100 MPH
AMBIENT	100 11111
TEMPERATURE	-20 °F to +120 °F
ELECTRICAL AREA	General Area Classification (Non
CLASSIFICATION	Hazardous)
ELEVATION	up to 3,000ft ASL
PROCESS PROPERTIES	up to 3,000tt ASL
I ROCESS I ROI ERTIES	
SMOKELESS CAPACITY	100%
OPERATING	800 °F to 2000 °F (1500 °F
TEMPERATURE	Nominal)
UTILITIES	
PILOT GAS	Process Gas
ELECTRICITY	1 Phase, 60 Hz, 120V/10A
SOLAR PANEL OPTION	
AVAILABLE	YES

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Certificate of Analysis Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Fleid: Jay Bee Oil & Gas Station Name: RPT 8-1H Sample Point: Submeter Cylinder No: 0258

Analyzed:

04/01/2014 13:29:16 by GR14

Sampled By: Sample Of:

DW-GAS

Spot Gas

Sample Date: 03/25/2014 12:00 Sample Conditions: 290 psig Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.394	0.530		GPM TOTAL C2+	6.223
Carbon Dloxide	0.151	0.319			
Methane	77.080	59,336			
Ethene	14.832	21.401	3.980		
Propane	4.967	10.510	1.373		
Iso-Bulane	0.616	1.718	0,202		
n-Butane	1.210	3.375	0.383		
Iso-Pentane	0.266	0.921	0.097		
n-Pentane	0.262	0.907	0.095		
I-Hexanas	0.093	0.376	0.037		
n-Hexane	0.058	0.239	0.023		
Benzene	0.001	0.004	NIL		
Cyclohexane	0.006	0.023	0.002		
i-Heptanes	0.031	0.150	0.014		
n-Heptane	0.011	0.056	0.005		
Toluene	0.002	0.008	0.001		
i-Octanes	0.015	0.080	0.007		: HAP
n-Octane	0.002	0.012	0.001		. /1/4/
Ethylbenzene	NIL	NIL	NIL		
Xylenes	NIL	NIL	NIL		
I-Nonanes	NIL	NIL	NIL		
n-Nonane	NIL	NIL	NIL		
Decane Plus	0.003	0.035	0.003		
	100.000	100.000	6.223		
	Physical Properties		Total	C10+	
Calculated Molecular Weight GPA 2172-09 Calculation:		20.84	162.34		
Calculated Gross B	BTU per ft ² @	14.73 ps	a & 60°F		
Real Gas Dry BTU			1265.2	8778.9	
Water Sat. Gas Bas	e BTU		1243.1	8626.1	
Relative Density Re-	el Gas		0.7218	5,6078	
Compressibility Fact	or		0.9964		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evengeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Field: Jay Bee Olt & Gas Station Name: RPT 8-1H

Sample Point: Submeter Cylinder No: 0258

Analyzed: 04/01/2014 13:29:16 by GR14 Sampled By:

DW-GAS

Sample Of: Sample Date:

Spot Gas 03/25/2014 12:00

Sample Conditions: 290 pstg Method: GPA 2286

Analytical Data

			Anaiyi	ICAI DATA		
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.394	0.630		GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0,319		GPM TOTAL C3+	2.243	
Methane	77,080	59.336		GPM TOTAL IC5+	0.285	
Ethane	14,832	21.401	3.980			
Propene	4.967	10,510	1.373			
ieo-butane	0.616	1.718	0.202			
n-Bulane	1.210	3.375	Q.3B3			
leo-pentane	0.266	0.921	0.097			
n-Pentane	0.262	0,907	0.095			
Hexanes Plus	0.222	0.963	0.093			
	100.000	100.000	6.223			
Physical Properties	B		Total	C8+		
Relative Density Re-	al Gas	į	0.7218	3.1591		
Calculated Molecule	r Welght		20.84	91,50		
Compressibility Faci		,	0,9984			
GPA 2172-09 Calcu	ılat l on;					
Calculated Gross E		14,73 pala	. 8. 60° F			
Real Gas Dry BTU			1285.2	5014.1		
Water Sat. Gas Bas	e BTU	•	1243.1	4926.8		

Comments: H2O Mol%: 1.740; Wt%: 1.508

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Sait Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Fleid: Jay Bee Oil & Gas Station Name: RPT 8-1H Sample Point: Submeter Cylinder No: 0258

Analyzed:

04/01/2014 13:29:16 by GR14

Sampled By:

DW-GAS

Sample Of: Gas Sample Of: Gas Sample Date: 03/25/2014 Sample Conditions: 290 pelg *45*bnd: GPA 2286

03/25/2014 12:00

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psla			_
Nitrogen	0,394	0.530		GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0,319		GPM TOTAL C3+	2,243	
Methane	77,080	69.336		GPM TOTAL IC5+	0.285	
Ethane	14.832	21,401	3,980			
Propane	4.987	10.510	1.373			
lao-Butane	0,616	1.718	0,202			
n-Butane	1.210	3.376	0.383			
Iso-Pentane	0.266	0.921	0.097			
n-Pentane	0.262	0.907	0.095			
Hexanes	0.151	0.615	0.060			
Heptanes Pius	0.071	0.368	0.033			
	100.000	100,000	6.223			
Physical Properties	 3		Total	C7+		
Relative Density Re	el Gee		0.7218	3.6570		
Calculated Molecula	r Weight		20.84	103.02		
Compressibility Fact	tof Tol		0.9964			
GPA 2172-09 Calcu	riztion:					
Calculated Gross i	BTU per ft' @	14.73 psis	& 60°F			
Real Gas Dry BTU			1265,2	5577.8		
Water Sat, Gas Bas	e BTU		1243,1	5480.7		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above enalyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERATION OF HYDROCARBON LIQUID				
Separator HC Liquid Stock Tank				
Pressure, psig	340	0		
Temperature, °F	65	70		
Gas Oil Ratio (1)		500		
Gas Specific Gravity (2)	404	1.387		
Separator Volume Factor (3)	1.2987	1.000		

STOCK TANK FLUID PROPERTIES			
Shrinkage Recovery Factor (4)	0.7700		
Oil API Gravity at 60 °F	70.79		
Reid Vapor Pressure, psi (5)	5.28		

	Quality Control Check		
	Sampling Conditions	Test Sa	amples
Cylinder No.		W-2408*	W-2423
Pressure, psig	340	299	297
Temperature, °F	65	66	66

^{(1) -} Scf of flashed vapor per barrel of stock tank oil

Analyst:

M. G.

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd.

Alice, Texas

David Dannhaus 361-661-7015

^{(2) -} Air = 1.000

^{(3) -} Separator volume / Stock tank volume

^{(4) -} Fraction of first stage separator liquid

^{(5) -} Absolute pressure at 100 deg F

^{*} Sample used for flash study

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6,993
Propane	23.253	6.457
Isobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.376	0.988
Heptanes Plus	1.701	0,761
Totals	100.000	22.579

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	. ,
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	` ,
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	Of the	< 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6,993	19.719
Propane	23,253	6.457	25.920
Isobutane	4.773	1,574	7.013
n-Butane	10.980	3,489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1,116	5.521
n-Pentane	3.175	1,160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.736	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.189	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	<u>0.002</u>	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)	
Compressibility (Z)	0.9850		
Molecular Weight	39.56		
Gross Heating Value			
Dry Basis	2321	BTU/CF	
Saturated Basis	2282	BTU/CF	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor

From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)	
Compressibility (Z)	0.9539		
Molecular Weight	66.64		
Gross Heating Value			
Dry Basis	3921	BTU/CF	
Saturated Basis	3853	BTU/CF	

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	0.000	0.000	0.000
Totals	100.000	34.799	100.000

Specific Gravity	2.412	(Air≃1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC

Building D, Second Floor 98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number:

Sample: →Well B1 2H

FLASH LIBERATION OF SEPARATOR WATER						
	Separator	Stock Tank				
Pressure, psig	540	0				
Temperature, °F	78	70				
Gas Water Ratio (1)	====	4.06				
Gas Specific Gravity (2)	FFTDU	1.069				

(1) - Scf of water saturated vapor per barrel of stock tank water

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

Analyst: T.G.

Piston No.: WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd.

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dioxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

•	1		
Specific Gravity	1.069	(Air=1)	
Compressibility (Z)	0.9914		
Molecular Weight	30.68		
Gross Heating Value			
Dry Basis	1741	BTU/CF	
Saturated Basis	1712	BTU/CF	

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez

Analyst: MR
Processor: OA
Cylinder ID: WF# 10S

Certified: EESCO, Ltd.

David Dannhaus 361-661-7015

Alice, Texas

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene .	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

•		
Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:
City:
State:
Company:
Type of Tank:
Larry Condensate
Huntington
West Virginia
Jay-Bee Oil & Gas, Inc.
Vertical Fixed Roof Tank

Description: 210 BBL Condensate Tanks - Emissions from a Single Tank

Tank Dimensions

 Shell Height (ft):
 15.00

 Diameter (ft):
 10.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 10.00

 Volume (gallons):
 8,225.29

 Turnovers:
 51.06

 Net Throughput(gal/yr):
 419,983.21

 Is Tank Heated (y/n):
 N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

 Height (ft)
 0.25

 Slope (ft/ft) (Cone Roof)
 0.05

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Larry Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Larry Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	451.6638
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1508
Vented Vapor Saturation Factor:	0.5512
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft): Average Liquid Height (ft):	15.0000 10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	5.0000
Vapor Density	0.0373
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	05.0000
Surface Temperature (psia):	3.0220
Daily Avg. Liquid Surface Temp. (deg. R):	521.0866
Daily Average Ambient Temp. (deg. F):	54.8458
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.7558
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation Factor (Btu/sqft day):	1,246.2101
Factor (Blu/sqit day).	1,240.2101
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1508
Daily Vapor Temperature Range (deg. R):	33.2847
Daily Vapor Pressure Range (psia):	1.0425
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	3.0220
Vapor Pressure at Daily Minimum Liquid	0.0220
Surface Temperature (psia):	2.5373
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	3.5797
Daily Avg. Liquid Surface Temp. (deg R):	521.0866
Daily Min. Liquid Surface Temp. (deg R):	512.7654
Daily Max. Liquid Surface Temp. (deg R):	529.4077
Daily Ambient Temp. Range (deg. R):	20.0583
Vented Vapor Saturation Factor	0.5542
Vented Vapor Saturation Factor:	0.5512
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	3.0220
Vapor Space Outage (ft):	5.0833
Working Losses (lb):	1.572.6233
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Annual Net Throughput (gal/yr.):	419,983.2053
Annual Turnovers:	51.0600
Turnover Factor:	0.7542
Maximum Liquid Volume (gal):	8,225.2880
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Lagrage (lb):	2,024.2871
Total Losses (lb):	2,024.28/1

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Larry Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 6)	1,572.62	451.66	2,024.29					

Total Emissions for all Tanks: $2,024.29 \times 3 \text{ tanks} = 6,072.87 \text{ lb/yr} = 3.04 \text{ tpy}$

TANKS 4.0 Report

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Larry Well Pad

File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Larry\No Cond 8-04-16.ddf Date: August 04, 2016

DESCRIPTION:

Description: 40 MMSCFD

Still Vent to Combustor

No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. F Pressure: 500.00 psig

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1510
Nitrogen	0.3940
Methane	77.0800
Ethane	14.8320
Propane	4.9670
Isobutane	0.6160
n-Butane	1.2100
Isopentane	0.2660
n-Pentane	0.2620
n-Hexane	0.0580
Cyclohexane	0.0060
Other Hexanes	0.0930
Heptanes	0.0420
Benzene	0.0010
Toluene	0.0020
C8+ Heavies	0.0200

DRY GAS:

Flow Rate: 40.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG
Water Content: 1.5 wt% H2O
Flow Rate: 7.5 gpm

PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device
Destruction Efficiency: 98.0 %
Excess Oxygen: 5.0 %
Ambient Air Temperature: 60.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Larry Well Pad
File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Larry\No Cond 8-04-16.ddf
Date: August 04, 2016

DESCRIPTION:

Description: 40 MMSCFD

Still Vent to Combustor

No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.9985	23.963	4.3732
Ethane	0.4697	11.272	2.0571
Propane	0.2965	7.116	1.2987
Isobutane	0.0599	1.437	0.2623
n-Butane	0.1412	3,389	0.6186
Isopentane	0.0407	0.978	0.1784
n-Pentane	0.0482	1,156	0.2109
n-Hexane	0.0197	0.474	0.0865
Cyclohexane	0.0076	0.181	0.0331
Other Hexanes	0.0251	0.603	0.1100
Heptanes	0.0304	0.730	0.1332
Benzene	0.0097	0.233	0.0426
Toluene	0.0336	0.807	0.1472
C8+ Heavies	0.0895	2.148	0.3919
Total Emissions	2.2703	54.487	9.9438
Total Hydrocarbon Emissions	2,2703	54,487	9,9438
Total VOC Emissions	0.8022	19.252	3.5134
Total HAP Emissions	0.0631	1.514	0.2763
Total BTEX Emissions	0.0433	1.040	0.1898

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	49.9229	1198.150	218.6624
Ethane	23.4833	563.598	102.8567
Propane	14.8254	355.809	64.9351
Isobutane	2.9941	71.858	13.1141
n-Butane	7.0614	169.473	30.9288
Isopentane	2.0370	48.887	8.9219
n-Pentane	2.4077	57.786	10.5459
n-Hexane	0.9870	23.687	4.3229
Cyclohexane	0.3780	9.073	1.6558
Other Hexanes	1.2554	30.131	5.4988
Heptanes	1.5206	36.493	6.6600
Benzene	0.4862	11.668	2.1293
Toluene	1.6806	40.334	7.3610
C8+ Heavies	4.4743	107.382	19.5973

				Page: 2
Total	Emissions	113.5137	2724.330	497.1902
Total Hydrocarbon Total VOC Total HAP Total BTEX	Emissions Emissions	113.5137 40.1076 3.1537 2.1667	2724.330 962.581 75.689 52.002	497.1902 175.6711 13.8132 9.4903

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F
Excess Oxygen: 5.00 %
Combustion Efficiency: 98.00 %

Supplemental Fuel Requirement: 5.51e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2,00%	98.00%
Ethane	2.00%	98,00%
Propane	2.00%	98.00%
Isobutane	2,00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2,00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
•	2.00%	98.00%
Benzene		98.00%
Toluene	2,00%	
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

> Calculated Absorber Stages: 1,25

3.53 lbs. H2O/MMSCF Calculated Dry Gas Dew Point:

> 85,0 deg. F Temperature: 500.0 psig Pressure:

Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1475 lb/hr

Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio: 4.49 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5 . 5 4%	94.46%
Carbon Dioxide	99 . 8 3%	0,17%
Nitrogen	99 . 99%	0.01%
Methane	99 . 99%	0.01%

		Page:	3
Ethane	99.96%	0.04%	
Propane	99.93%	0.07%	
Isobutane	99.89%	0.11%	
n-Butane	99.85%	0.15%	
Isopentane	99.84%	0,16%	
n-Pentane	99.79%	0.21%	
n-Hexane	99.63%	0.37%	
Cyclohexane	98.38%	1.62%	
Other Hexanes	99.72%	0.28%	
Heptanes	99.26%	0.74%	
Benzene	85.91%	14.09%	
Toluene	79.32%	20.68%	
C8+ Heavies	97.09%	2.91%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	38.66%	61.34%
Carbon Dioxide	0.00%	
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.77%	99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	88.25%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F
Pressure: 514.70 psia
Flow Rate: 1.67e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.34e-001 1.51e-001 3.93e-001 7.70e+001 1.48e+001	2.92e+002 4.85e+002 5.43e+004

Propane 4.96e+000 9.62e+003
Isobutane 6.15e-001 1.57e+003
n-Butane 1.21e+000 3.09e+003
Isopentane 2.66e-001 8.43e+002
n-Pentane 2.62e-001 8.31e+002

n-Hexane 5.79e-002 2.20e+002
Cyclohexane 5.99e-003 2.22e+001
Other Hexanes 9.29e-003 3.52e+002
Heptanes 4.19e-002 1.85e+002
Benzene 9.99e-004 3.43e+000

Toluene 2.00e-003 8.10e+000
C8+ Heavies 2.00e-002 1.50e+002

Total Components 100.00 9.17e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 1.67e+006 scfh

Conc. Component Loading (vol%) (lb/hr) Water 7.44e-003 5.89e+000 Carbon Dioxide 1.51e-001 2.91e+002 Nitrogen 3.94e-001 4.85e+002 Methane 7.71e+001 5.43e+004 Ethane 1.48e+001 1.96e+004 Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.42e+002 n-Pentane 2.61e-001 8.29e+002 n-Hexane 5.78e-002 2.19e+002 Cyclohexane 5.90e-003 2.18e+001 Other Hexanes 9.28e-002 3.51e+002 Heptanes 4.17e-002 1.84e+002 Benzene 8,59e-004 2.95e+000 Toluene 1.59e-003 6.42e+000 C8+ Heavies 1.94e-002 1.45e+002 Total Components 100.00 9.16e+004

LEAN GLYCOL STREAM

Temperature: 85.00 deg. F Flow Rate: 7.50e+000 gpm

Component Conc. Loading (wt%) (1b/hr)

TEG 9.85e+001 4.16e+003
Water 1.50e+000 6.33e+001
Carbon Dioxide 1.18e-012 4.97e-011
Nitrogen 1.35e-013 5.71e-012
Methane 4.78e-018 2.02e-016

Ethane 8.54e-008 3.61e-006
Propane 6.79e-009 2.87e-007
Isobutane 1.22e-009 5.17e-008
n-Butane 2.68e-009 1.13e-007

Isopentane 1.61e-004 6.81e-003

n-Pentane 2.07e-004 8.73e-003 n-Hexane 9.63e-005 4.07e-003 Cyclohexane 2.82e-004 1.19e-002 Other Hexanes 2.32e-004 9.81e-003

Heptanes 1.63e-004 6.89e-003

Benzene 6.03e-004 2.54e-002 Toluene 3.40e-003 1.44e-001

C8+ Heavies 1.41e-002 5.96e-001

Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 7.95e+000 gpm

NOTE: Stream has more than one phase.

Component Conc. Loading (wt%) (lb/hr) TEG 9.37e+001 4.16e+003 Water 3.69e+000 1.64e+002 Carbon Dioxide 1.65e-002 7.33e-001 Nitrogen 1.01e-002 4.49e-001 Methane 1.13e+000 4.99e+001 Ethane 5.29e-001 2.35e+001 Propane 3.34e-001 1.48e+001 Isobutane 6.75e-002 2.99e+000 n-Butane 1.59e-001 7.06e+000 Isopentane 4.61e-002 2.04e+000 n-Pentane 5.45e-002 2.42e+000n-Hexane 2.23e-002 9.91e-001 Cyclohexane 8.79e-003 3.90e-001 Other Hexanes 2.85e-002 1.27e+000 Heptanes 3.44e-002 1.53e+000 Benzene 1.15e-002 5.12e-001 Toluene 4.11e-002 1.82e+000 C8+ Heavies 1.14e-001 5.07e+000

REGENERATOR OVERHEADS STREAM

Temperature: 212 00 deg F

Total Components 100.00 4.44e+003

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 3.86e+003 scfh

Component

Conc. Loading
(vol%) (lb/hr)

Water 5.48e+001 1.00e+002

Carbon Dioxide 1.64e-001 7.33e-001

Nitrogen 1.58e-001 4.49e-001

Methane 3.06e+001 4.99e+001

Ethane 7.68e+000 2.35e+001

Propane 3.30e+000 1.48e+001

Isobutane 5.06e-001 2.99e+000

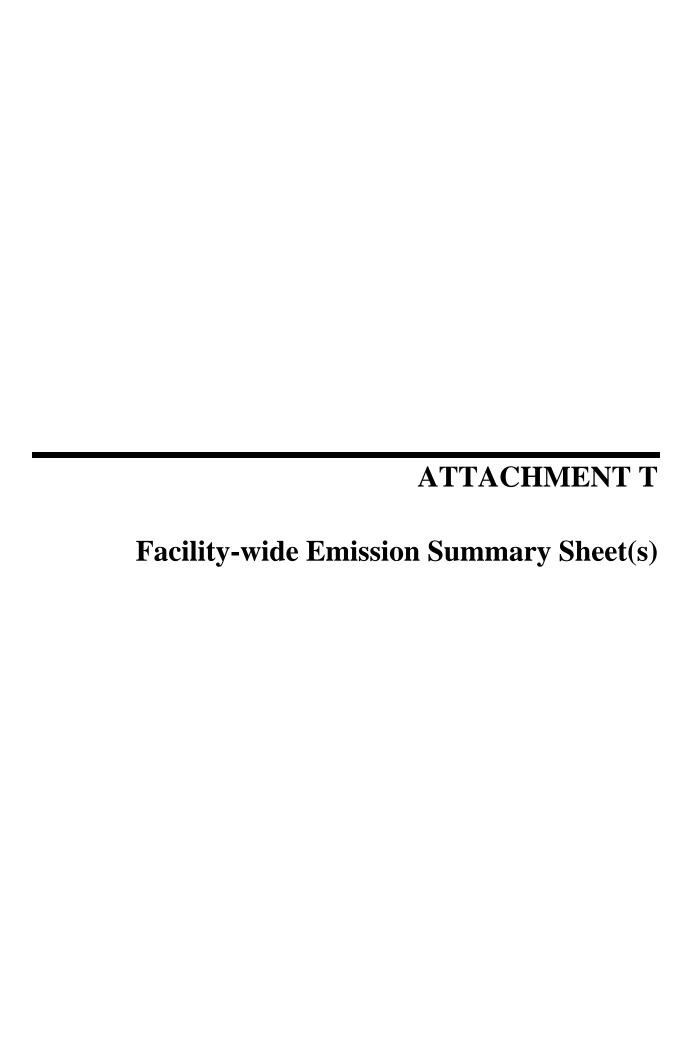
n-Butane 1.19e+000 7.06e+000

Isopentane 2.78e-001 2.04e+000

n-Pentane 3.28e-001 2.41e+000

n-Hexane 1.13e-001 9.87e-001 Cyclohexane 4.42e-002 3.78e-001 Other Hexanes 1.43e-001 1.26e+000 Heptanes 1.49e-001 1.52e+000 Benzene 6.12e-002 4.86e-001

Toluene 1.79e-001 1.68e+000 C8+ Heavies 2.58e-001 4.47e+000



Total Components 100.00 2.15e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 3.46e+001 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	6.82e+001 1.71e+001 7.37e+000 1.13e+000 2.66e+000	4.70e-001 2.97e-001 5.99e-002
	7.32e-001 2.51e-001 9.85e-002	4.82e-002 1.97e-002 7.56e-003
Benzene	3.33e-001 1.36e-001 4.00e-001 5.76e-001	9.72e-003 3.36e-002
Total Components	100.00	2.27e+000

ATTACHMENT T - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	NO) _x	СО		V	ОС	S	O_2	Pl	M_{10}	PM	12.5	GHO	(CO ₂ e)
Emission Form 1D#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793
2E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793
3E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181.1	793
4E	0.05	0.22	0.04	0.18	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	60.4	264
5E					2.96	0.91								
6E					0.08	0.04								
7E	0.19	0.81	0.37	1.62	0.04	0.18	< 0.01	< 0.01	0.01	0.06	0.01	0.06	89.7	393
8E	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.6	7
9E	0.29	1.25	1.10	4.81	1.84	0.43	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	446.7	1956
10E	0.05	0.22	0.04	0.18	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	60.4	264.5
11E	0.27	1.19	1.03	4.5	0.81	3.54	< 0.01	< 0.01	0.04	0.16	0.04	0.16	417.4	1828.1
TOTAL	1.29	5.67	2.96	12.96	5.76	5.22	< 0.01	< 0.01	0.11	0.47	0.11	0.47	1619.5	7093.5

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Formald	lehyde	Ben	zene	Tolu	Toluene Ethylbenzene		Xylenes		Hexane		Total HAPs		
Emission Point 1D#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E											< 0.01	0.01	< 0.01	0.01
2E											< 0.01	0.01	< 0.01	0.01
3E											< 0.01	0.01	< 0.01	0.01
4E											< 0.01	< 0.01	< 0.01	< 0.01
5E											0.16	0.05	0.16	0.05
6E											0.01	< 0.01	0.01	< 0.01
7E	0.015	0.065	< 0.01	< 0.01									0.02	0.10
8E														
9E	< 0.01	< 0.01									< 0.01	0.01	<0.01	0.02
10E	< 0.01	< 0.01									< 0.01	< 0.01	< 0.01	< 0.01
11E	< 0.01	< 0.01	0.01	0.04	0.03	0.15					0.02	0.09	0.06	0.28
TOTAL	0.02	0.07	0.01	0.05	0.03	0.15	< 0.01	< 0.01	< 0.01	< 0.01	0.20	0.20	0.27	0.50

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U **Class I Legal Advertisement**

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C General Permit Registration for its Larry Well Pad Production Facility located off Klondike Acres Rd near Middlebourne in Tyler County, West Virginia. The latitude and longitude coordinates are: 39.47509, -80.88063.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

5.67 tons of Nitrogen Oxides per year

12.96 tons of Carbon Monoxide per year

3.04 tons of Particulate Matter per year

6.98 tons of Volatile Organic Compounds per year

0.02 tons of Sulfur Dioxide per year

0.07 tons of Formaldehyde per year

0.05 tons of Benzene per year

0.15 tons of Toluene per year

0.20 tons of Hexane per year

0.52 tons of Total Hazardous Air Pollutants per year

7,132 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 31st day of October, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell
Office Manager
Jay-Bee Oil & Gas, Inc.
3570 Shields Ave.
Cairo, WV 26337