dep	West Virginia Department of Environmental Protection			Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov
G70-C GE	NERAL PI	ERMIT REG	GISTRATION A	PPLICATION
	RELOCATION,	ADMINISTRATIVE	REGARD TO THE CONSTRU UPDATE AND OPERATION TIES LOCATED AT THE WE	OF
⊠CONSTRU □MODIFIC □RELOCAT	ATION		□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATIV	
	SI	ECTION 1. GENERA	L INFORMATION	
Name of Applicant (as	registered with the	WV Secretary of Sta	e's Office): Northeast Natu	ral Energy, LLC
Federal Employer ID 1	No. (FEIN): 27-0945	493		
Applicant's Mailing A	ddress: 48 Donley S	treet, Suite 601		
City: Morgantown		State: WV		ZIP Code: 26501
Facility Name: Kassa	Well Pad	.d		
Operating Site Physics If none available, list				
City: Fairview		Zip Code: 26570		County: Monongalia
Latitude & Longitude Latitude: 39.65851 Longitude: -80.19450		3, Decimal Degrees to	o 5 digits):	
SIC Code: 1311	·		DAQ Facility ID No. (For exist	ing facilities)
NAICS Code: 211111			DAQ Facility ID No. (For exist	ing facilities)
		CERTIFICATION OI	F INFORMATION	
Official is a Presiden Directors, or Owner, o authority to bin Proprietorship. Ro compliance certif	t, Vice President, Se lepending on busine: d the Corporation, P equired records of da ications and all requ	ecretary, Treasurer, G ss structure. A busine Partnership, Limited I hily throughput, hours tired notifications mu	e signed below by a Responsib eneral Partner, General Manages ass may certify an Authorized R Jability Company, Association of operation and maintenances	er, a member of the Board of epresentative who shall have , Joint Venture or Sole
off and the appro unsigned G70-C Regi	priate names and sig stration Applicatio	natures entered. Any n will be returned to	st be signed by a Responsible (epresentative, the official agree administratively incomplete to the applicant. Furthermore pplicant. No substitution of t	ement below shall be checked or improperly signed or , if the G70-C forms are not
off and the appro unsigned G70-C Reg utilized, f I hereby certify that (e.g., Corporation, Pa obligate and legally b	priate names and sig stration Applicatio he application will is an Authorize rtnership, Limited Li ind the business. If t	natures entered. Any n will be returned to be returned to the a ed Representative and iability Company, As he business changes	epresentative, the official agree administratively incomplete the applicant. Furthermore	ement below shall be checked or improperly signed or , if the G70-C forms are not orms is allowed. t the interest of the business Proprietorship) and may
off and the appro unsigned G70-C Reg utilized, f I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended 1	priate names and sig stration Application he application will is an Authorize rtnership, Limited Li ind the business. If t the Division of Air of ll information contain nereto is, to the best	natures entered. Any n will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Go of my knowledge, tru	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Applice, accurate and complete, and	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting
off and the appro unsigned G70-C Reg utilized, f I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended I have been made to pro	priate names and sig istration Application he application will is an Authorize rtnership, Limited Li ind the business. If t the Division of Air of ll information contain nereto is, to the best ovide the most comp	natures entered. Any n will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Go of my knowledge, tru	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Applice, accurate and complete, and	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting
off and the appro unsigned G70-C Reg utilized, (I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended I have been made to pro Responsible Official S Name and Title: Bret	priate names and sig stration Application he application will is an Authorize rtnership, Limited Li ind the business. If the the Division of Air of ll information contain hereto is, to the best by ide the most comp Signature: t Loflin -Vice Presi	natures entered. Any in will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Go of my knowledge, tru rehensive information	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Apple e, accurate and complete, and possible.	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting
off and the appro insigned G70-C Regi- utilized, of hereby certify that e.g., Corporation, Pa- obligate and legally b hotify the Director of hereby certify that a documents appended la have been made to pro- Responsible Official S Name and Title: Bretty Email: bloflin@nne-la	priate names and sig stration Application he application will is an Authorize rtnership, Limited Li ind the business. If the the Division of Air of ll information contain hereto is, to the best by ide the most comp Signature: t Loflin -Vice Presi	natures entered. Any in will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Go of my knowledge, tru rehensive information	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Appl ice, accurate and complete, and possible.	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting that all reasonable efforts
off and the appro unsigned G70-C Reg utilized, of I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended I have been made to pro Responsible Official S Name and Title: Brett Email: bloflin@nne-I If applicable: Authorized Represent Name and Title:	priate names and sig istration Application he application will is an Authorize rtnership, Limited Li ind the business. If t the Division of Air of ll information contai hereto is, to the best by ide the most comp Signature:	natures entered. Any in will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Ge of my knowledge, tru rehensive information dent regulatory Affa Phone:	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Apple e, accurate and complete, and possible.	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting that all reasonable efforts
off and the appro unsigned G70-C Reg utilized, (I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended I have been made to pro Responsible Official S Name and Title: Brett Email: bloflin@nne-I If applicable:	priate names and sig stration Application he application will is an Authorize runership, Limited Li ind the business. If the Division of Air of the Division of Air of the Division of Air of the Division of Air of the Division of Air of the Division of Air of the Division of	natures entered. Any in will be returned to be returned to the a ed Representative and iability Company, As he business changes Quality immediately. ined in this G70-C Ge of my knowledge, tru rehensive information the progulatory Affa	epresentative, the official agree administratively incomplete of the applicant. Furthermore pplicant. No substitution of the in that capacity shall represent sociation Joint Venture or Sole its Authorized Representative, eneral Permit Registration Apple te, accurate and complete, and possible.	ement below shall be checked or improperly signed or , if the G70-C forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall ication and any supporting that all reasonable efforts

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: New Natural Gas Well Pad Production Facility

Directions to the facility: From I-79, take exit 155. Merge onto CHAPLIN HILL RD/CR-19/24 N toward US-19/WV-7/STAR CITY. If traveling from the south, this will be a right. If from the north, this will be a left off the exit. After 0.8 miles, turn left at light onto US-19/WV-7. Continue on US-19/WV-7 for 1.7 miles. Turn left on WV-7 and continue on route for 13.9 miles. Turn left onto WV-218/DAYBROOK RUN RD and continue south 5.9 miles to Yank Hollow Road (SR 23/3). Turn left onto Yank Hollow Road and travel east approximately 1.25 miles to well pad entrance road on the left.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Thave chelosed the following required documents.					
Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).					
☑ Check attached to front of application.					
\Box I wish to pay by electronic transfer. Contact for payment ((incl. name and email address):				
\Box I wish to pay by credit card. Contact for payment (incl. na	ame and email address):				
 S500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) S1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy 					
requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the s					
⊠ Responsible Official or Authorized Representative Signatu	0				
Single Source Determination Form (must be completed in	n its entirety) – Attachment A				
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C				
☑ Process Flow Diagram – Attachment D ☑ Process Description – Attachment E					
🖾 Plot Plan – Attachment F	🖾 Area Map – Attachment G				
⊠ G70-C Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I					
🛛 Fugitive Emissions Summary Sheet – Attachment J					

🖾 Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

🛛 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

Tanker Truck Loading Data Sheet (if applicable) – Attachment O

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

□ Pneumatic Controllers Data Sheet – Attachment Q

 \Box Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S

⊠ Facility-wide Emission Summary Sheet(s) – Attachment T

🛛 Class I Legal Advertisement – Attachment U

⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes X No \Box

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

This Northeast Natural Energy facility will receive and manage raw natural gas and associated produced water from the wells. After separation of the produced water, the gas will be injected into gathering lines for transportation via pipeline owned a nd operated by others to a compressor station, owned and operated by others, where it will be

nd operated by others to a compressor station, owned and operated by others, where it will be compressed, dehydrated and injected into a transmission line for transportation to customers.

The Kassay Well Pad is located 1.71 miles from the nearest facility (Yost Well Pad) owned and operated by Northeast, including support facilities. These two well pads are owned and operated by the same organization, are under the same SIC code and share personnel. However the two facilities operate independent of each other. Operation of the Kassay Well Pad does not depend on operation of the Yost Well Pad and operation of Yost Well Pad does not depend on operation of the Kassay Well Pad. Most importantly, these two well pads are separated by 1.71 mile with multiple properties in between that are not under control of Northeast.

The Kassay Well Pad and the receiving compressor station (Hamilton CS) are under the same general SIC Code. They are not under common ownership and will not have a sharing of staff. Additionally, as the gas can also flow to other compressor stations further away, there is no dependency of the Kassay Well Pad on this compressor station. Additionally, operation of this compressor station is not dependent upon the Kassay Well Pad as it also receives gas from other well pads in addition to Kassay. Lastly, the distance between the planned Kassay Well Pad and the receiving compressor station (1.2 miles) does not rise to the definition of contiguous or adjacent. Thus, not all of the criteria for aggregation are met. Hence, emissions from the Kassay Well Pad should not be aggregated with those of Hamilton Compressor Station.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

······································	•••••F	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. The two well pads are owned and operated by Northeast Natural Energy	Yes 🗵	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🛛
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No 🛛
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives? NNE Well Tenders will work at both sites	Yes 🖂	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities? NNE Well Tenders will work at both sites	Yes 🛛	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain. All workers at both sites will be NNE employees with common payroll and benefits	Yes 🗵	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🖂
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No 🛛
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🖂
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🛛
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 3111	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🛛
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🛛
	1	

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

NORTHEAST NATURAL ENERGY LLC

Control Number: 99GX5

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of October 9, 2009, until a certificate of cancellation is filed with our office.

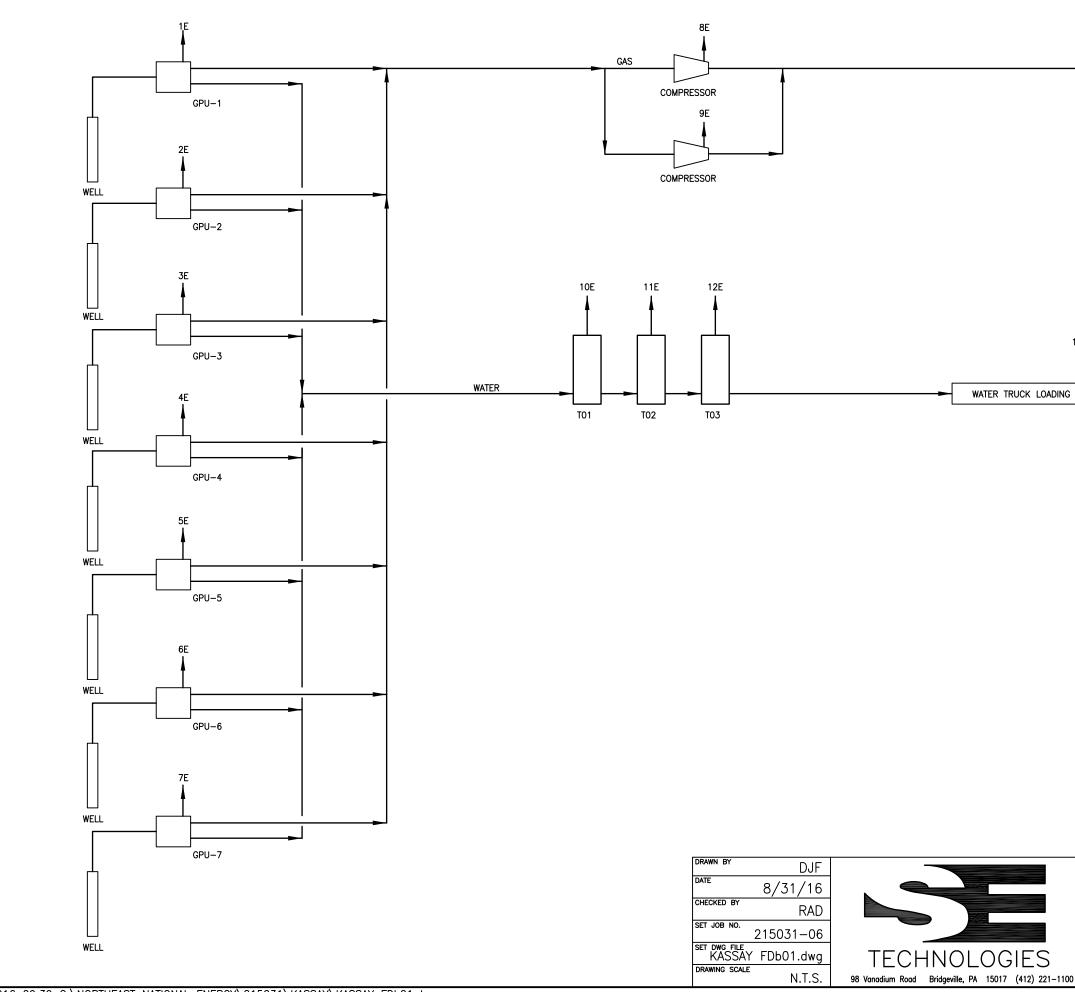
Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of October 9, 2009

atalil E. Yann


Secretary of State

ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

Plot: env045 08/31/2016 09:39 G:\NORTHEAST NATIONAL ENERGY\215031\KASSAY\KASSAY FDb01.dwg

-
5
21-1100

DRAWING NAME

FIGURE 2

REV. 0

KASSAY WELL PAD MONONGALIA COUNTY, WEST VIRGINIA PROCESS FLOW DIAGRAM

NORTHEAST NATIONAL ENERGY, LLC

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Northeast Natural Energy, LLC Kassay Well Pad Attachment E Process Description

Natural gas and Produced Fluids (water) will be received from seven wells on this location at approximately 600 psi and pass through Gas Processing Units [Emission Units GPU-1 to GPU-7] to avoid ice and methane hydrate formation during subsequent pressure drops. These materials will then pass through a separator where gas and water are separated. There will be two gas-fired engines [Emission Units CE-1 and CE-2] used to drive compressors which will boost the pressure of the production gas to a pressure suitable for injection into the gathering line owned by others. No dehydration units are proposed for this facility. The compressed gas will be metered and routed to a gathering pipeline owned and operated by others.

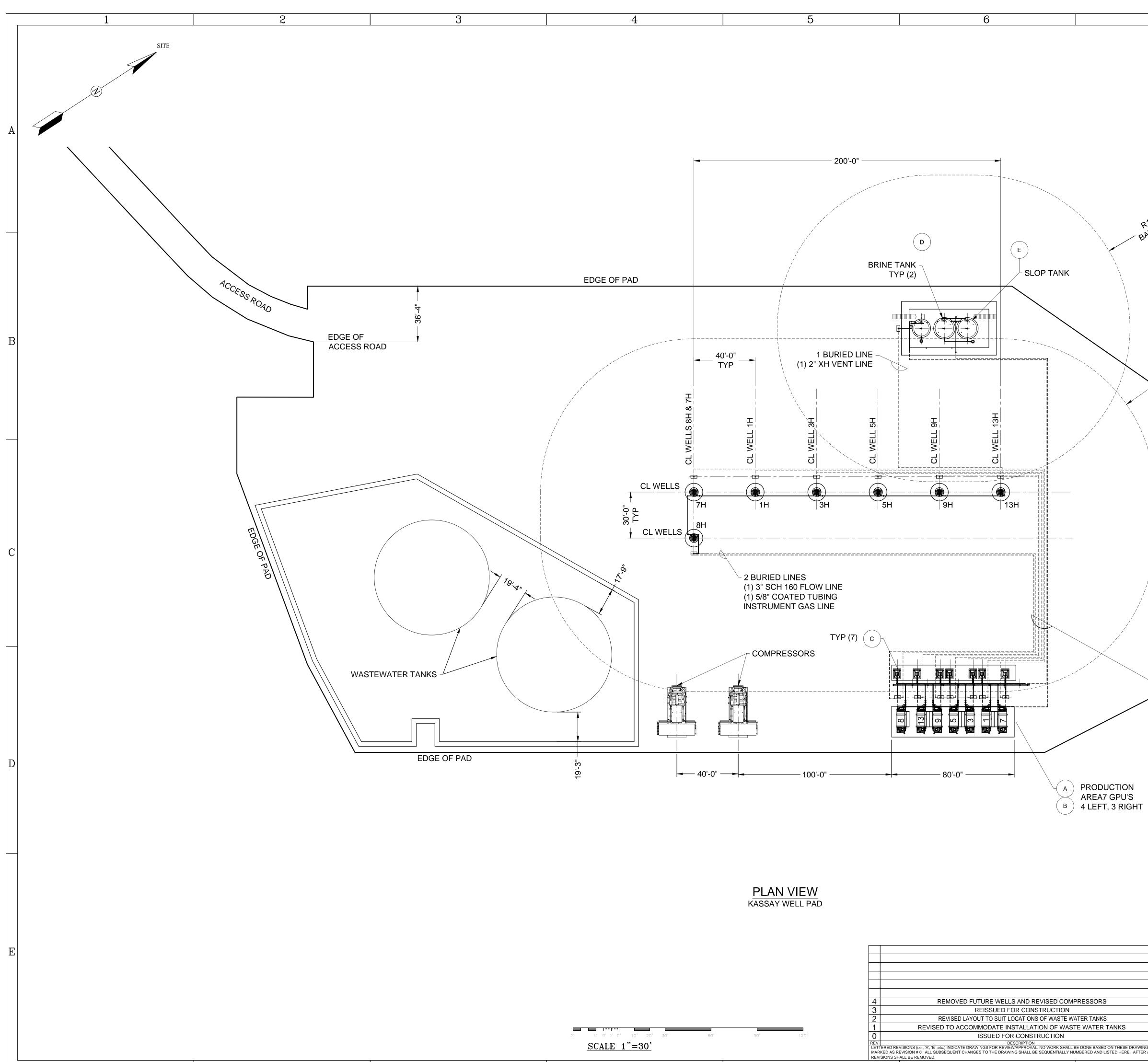
The Produced Water will be accumulated in two 400 BBL tanks and a single 210 BBL tank [Emission Units T01 - T03], pending truck loading [Emission Unit TL-1] and transportation to facilities owned and operated by others. Produced water will be re-used at subsequent wells or disposed of at a regional disposal facility. Flash, working and breathing losses from these tanks have been determined to be nominal, based on measurements at a nearby Northeast Energy Well Pad, and will be allowed to vent to atmosphere. *There is no condensate generated at this facility*.

A Process Flow Diagram depicting these features is provided in Attachment D.

All natural gas fired equipment (GPUs and the compressor engines) use natural gas produced at the site as fuel.

40 CFR 60, Subpart OOOOa requires that VOC emissions from each "storage vessel affected facility" installed after September 18, 2015 must be controlled by at least 95% within 60 days of installation when the uncontrolled VOC emissions exceed 6 tpy [40 CFR 60.5395a(a)(2)]. VOC emissions from the tanks described above will be well below the 6 tpy threshold to be defined as a "storage vessel affected facility". Thus, the tanks at this facility will not be regulated under 40 CFR 60, Subpart OOOOa.

ATTACHMENT F – PLOT PLAN


Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

2

3

REVISED TO ACCOMMODATE INSTALLATION OF WASTE WATER TANKS REV | DESCRIPTION LETTERED REVISIONS (i.e., 'A', 'B',etc.) INDICATE DRAWINGS FOR REVIEWAPPROVAL. NO WORK SHALL BE DONE BASED ON THESE DRAW MARKED AS REVISION # 0. ALL SUBSEQUENT CHANGES TO THE DRAWING SHALL BE SEQUENTIALLY NUMBERED AND LISTED HERE. AFTE REVISIONS SHALL BE REMOVED. 6 5

		8	9		
		BILL OF MAT	ERIAL		
MK NO	QTY	ITEM DESCRIP	TION	REF DRAWING	
А	4	GAS PROCESSING UNIT, PRIDE OF THE HILLS 1440H30096-GPUWD-NE-LH, LEFT HAND ASSI	GPU0075D-LH		
В	3	GAS PROCESSING UNIT, PRIDE OF THE HILLS MANUFACTURING INC., 1440H30096-GPUWD-NE-RH, RIGHT HAND ASSEMBLY			
С	7	SAND SEPARATOR SKID ASSEMBLY, PRIDE (INC., 5000V24120ST3HU-ASM1	ST0017C-ASM1		
D	2	400 BBL TANK API 12F, WATERFORD TANK &	T400-12		
E	1	210 BBL TANK API 12F, WATERFORD TANK &	FABRICATION, 10'Ø x 15'-0" HIGH	T210-22	

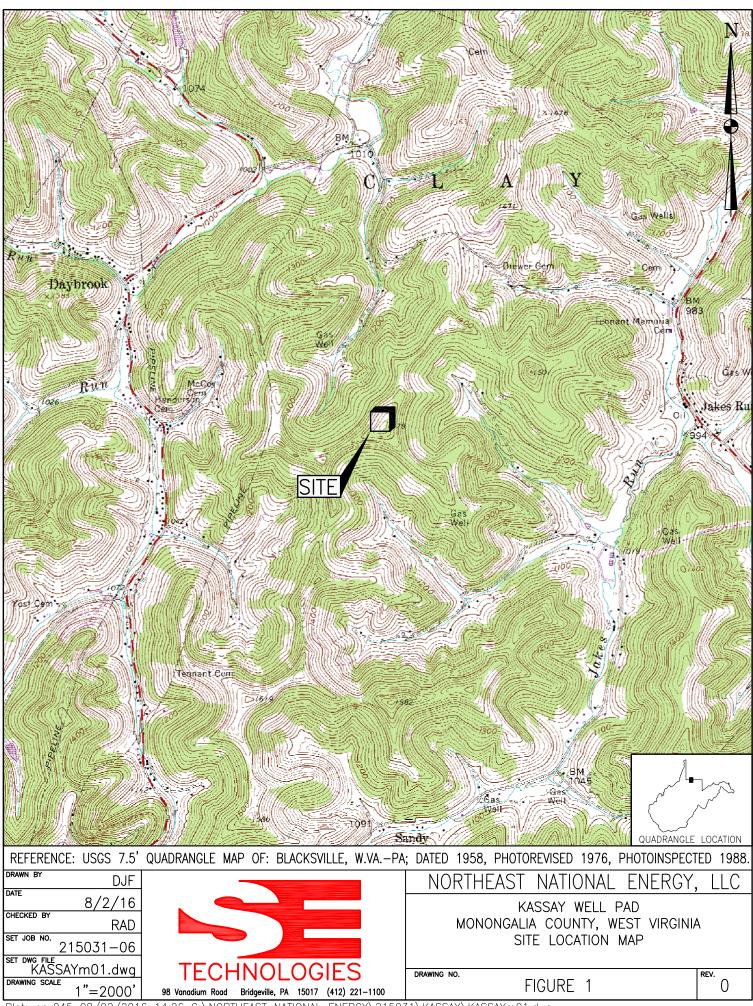
- 10 BURIED LINES

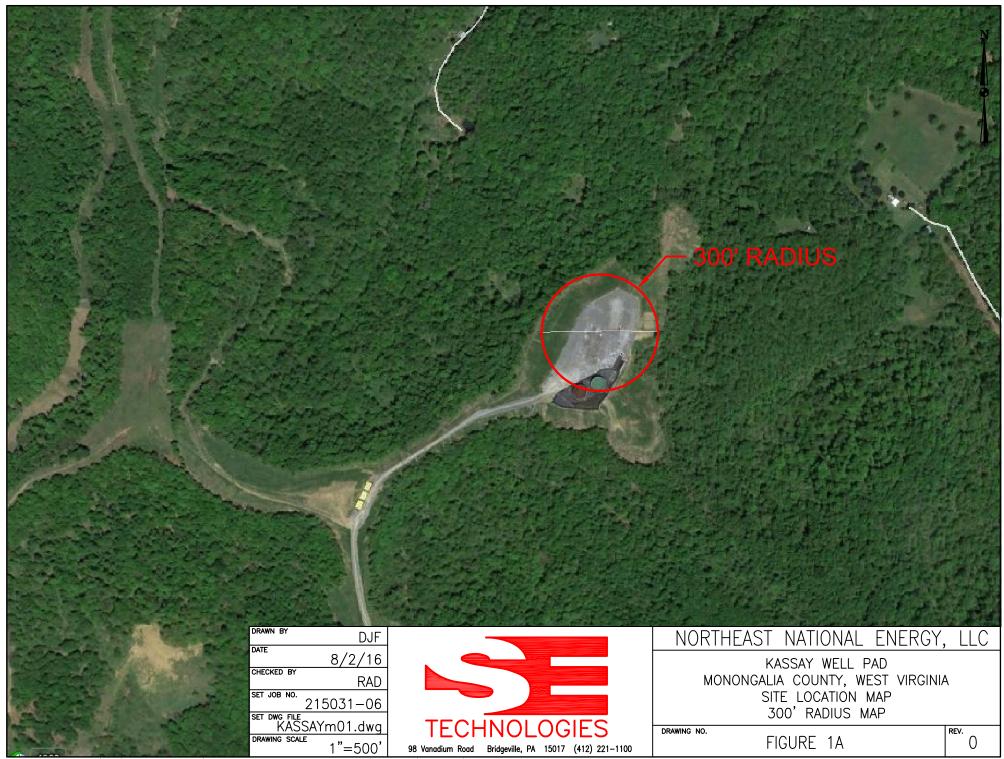
(7) 3" SCH 160 FLOW LINES (1) 5/8" COATED TUBING INSTRUMENT GAS LINE

- (1) 2" XH GPU DRAIN LINE
- (1) 2" XH SAND TRAP BLOW DOWN LINE

EDGE

7


				Revised & Re-I <i>Issued I</i>	VCO LLC ssued for Co By: Mark Hadle Il 28, 2016 @ 12	Y III			
			101 MAHOOD RO					I	Ŧ
	FOR:	NORTHEAST NATU	RAL ENERGY, LLC	PROJ: KASS	AY WELL PA	D			
7/28/2016 BS		E LAYOUT ERALL PLAN VIEW							
7/19/2016 BS					1				
3/4/2016 RUNQ	UIST TOW	'N: -		SCALE 1" = 30'-0"	DRAWN BY: RUNQUIST	CHECKED: SINKUC	ISSUE		
12/21/2015 MCC		TY: -		1 = 30 -0	3/4/2016	3/4/2016	CONSTR	UCTION	
AWINGS: AFTER APPROVAL DRAWINGS SF FTER APPROVAL REFERENCES TO LETTER	IALL	NNE-1500-P-100.dwg		PROJ# 1500		WG. NO. 1500-P-100		REV. 4	
7			8			9			


ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Plot: env045 08/03/2016 13:10 G:\NORTHEAST NATIONAL ENERGY\215031\KASSAY\KASSAYm01.dwg

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	ENERAL PERMIT G70-C APPLICABLE SECTIONS
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
□Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
X Section 14.0	Tanker Truck Loading ³
□Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I - EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
GPU-1	1E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-2	2E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-3	3E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-4	4E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-5	5E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-6	6E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
GPU-7	7E	Gas Processing Unit	Pending Permit		1.0 MMBTU/Hr	NEW		
CE-1	8E	CAT 3516B	Pending Permit	After Jan 1, 2012	1380 HP	NEW	1C	
CE-2	9E	CAT 3516B	Pending Permit	After Jan 1, 2012	1380 HP	NEW	2C	
T01	10E	Produced Water Tank	Pending Permit		400 BBL	NEW		
T02	11E	Produced Water Tank	Pending Permit		400 BBL	NEW		
Т03	12E	Produced Water Tank	Pending Permit		210 BBL	NEW		
TL-1	13E	Produced Water Truck Loading	Pending Permit			NEW		

⁺ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate

When required by rule

designation.

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

	Sc	ources of	fugitive emissions may	include loading operation	ns equipmen	t leaks blo	wdown emis	sions etc
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.							
	Source/Equipment: Equipment Leaks and Blowdown Emissions							
	Leak Detection Used		Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (plea	se describe)		□ None required
	Closed		Source of	Leak Factors	Stream type		Estimated Em	issions (tpy)
Component Ty	pe Vent System	Count	(EPA, oth	her (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	0	EPA		☐ Gas ☐ Liquid ☐ Both			
Valves	□ Yes ⊠ No	42	EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	5.35
Safety Relief Valves	□ Yes ⊠ No	21	EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	3.96
Open Ended Lin	□ Yes es □ No	7	EPA		Gas Liquid Both	<0.01	<0.01	0.01
Sampling Connections	□ Yes ⊠ No	14	TCEQ		Gas Liquid Both	0.01	<0.01	47.15
Connections (No sampling)	t \square Yes \boxtimes No	180	EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	2.55
Compressors	□ Yes ⊠ No	2	API		Gas Liquid Both	<0.01	<0.01	0.18
Flanges	□ Yes ⊠ No	210	API		⊠ Gas □ Liquid □ Both	<0.01	<0.01	18.44
Other ¹ (Blowdov	vns) 🗆 Yes No				Gas Liquid Both	0.01	<0.01	40.4
¹ Other equipme	nt types may ind	clude comp	pressor seals, relief valves, diap	hragms, drains, meters, etc.		I		
			es of fugitive emissions (e.g. pi blowdowns. No pigging owned	gging operations, equipment blo /operated by Northeast.	wdowns, pneuma	atic controllers,	etc.):	
			bypasses (include component)					

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)N/A

Northeast Natural Energy, LLC Kassay Well Pad Attachment J – Fugitive Emissions Data

Storage Tank and Haul Road Fugitive Emissions

Haul Road Fugitive Emissions for unpaved roads are calculated and presented in Attachment S. Potential PM emissions are estimated to be 12.66 tons per year and PM-10 to be 1.71 tons per year.

Produced Fluids generated by the on-site wells will be accumulated in a three tanks prior to off-site shipment. Emissions from these tanks were determined by using direct measurements from produced water tanks at a nearby Northeast well pad. Uncontrolled emissions from these tanks were determined to be 1.01 tons per year of VOCs and 0.20 tons per year of HAPs. There is no control on these emissions. *There is no condensate generated at this facility*.

Emissions from these sources are summarized in the preceding fugitive emissions form and the calculations are included in the emissions summary in Attachment S.

Equipment Fugitive Emissions

As noted in the process discussion, Northeast plans to install various equipment at its Kassay Well Pad. This equipment will contain a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. A potential emission rate of 0.02 tpy of VOCs and 77.6 tpy CO_2e has been estimated (see Attachment S).

Estimates of these emissions are included in the calculations (Attachment S) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Pigging Emission Estimates

There will be no pigging operations under Northeast Natural Energy ownership/operation in association with this planned facility.

Facility Blowdown Emission Estimates

There will be two gas compressors at this facility that will require blowdowns to allow for routine maintenance. The volume of natural gas released per blowdown event from each unit and associated inlet separator and piping is approximately 1570 cubic feet of gas at STP (see attached calculations). There will be a maximum of 24 blow downs per compressor per year. Thus, there is a potential for 75,360 cubic feet of gas emitted from blowdowns per year.

The density of this gas at STP is 0.046 pounds per cubic foot (see the Inlet Gas spreadsheet in the calculations). Thus, the mass of gas released per year is 3,466 pounds (75,360 cf x 0.046). As the percentage of VOCs in the gas (by weight) is 0.48 percent (see Inlet Gas spreadsheet in the calculations), the VOC (non-methane/non-ethane) emissions from blowdown operations are estimated at approximately 16.6 lbs (3,466 x 0.0048) or 0.01 tons per year. As the methane concentration in this gas is 93.2 % (by weight), methane emissions will be 3,230 pounds (3,466 x 0.932) per year. Using a GHG factor of 25, methane emissions from blowdowns in CO_{2e} will be 40.4 tons CO_{2e} (3,230 x 25[GHG factor]/2000).

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-061-01731	5/15/2017	3/9/2017	Gas flow to gathering line as soon as separator is functional
47-061-01704	5/15/2017	3/17/2017	Gas flow to gathering line as soon as separator is functional
47-061-01694	5/15/2017	3/25/2017	Gas flow to gathering line as soon as separator is functional
47-061-01732	5/15/2017	4/2/2017	Gas flow to gathering line as soon as separator is functional
47-061-01740	5/15/2017	4/10/2017	Gas flow to gathering line as soon as separator is functional
47-061-01695	5/15/2017	4/18/2017	Gas flow to gathering line as soon as separator is functional
47-061-01689	5/15/2017	4/26/2017	Gas flow to gathering line as soon as separator is functional

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- $\hfill\square$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name Kassay Tank Farm	2. Tank Name T01 and T02			
3. Emission Unit ID number T01 and T02	4. Emission Point ID number 10E and 11E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
N/A	\boxtimes New construction \square New stored material \square Other			
Was the tank manufactured after August 23, 2011?				
7A. Description of Tank Modification (if applicable) N/A	•			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.								
400 BBL								
9A. Tank Internal Diameter (ft.) 12.0	9B. Tank Internal Height (ft.) 20.0							
10A. Maximum Liquid Height (ft.) 19.5	10B. Average Liquid Height (ft.) 8.0							
11A. Maximum Vapor Space Height (ft.) 18.5	11B. Average Vapor Space Height (ft.) 12.0							
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 390 BBL							
13A. Maximum annual throughput (gal/yr) 5,104,900 each	13B. Maximum daily throughput (gal/day) 13,990 each							
14. Number of tank turnovers per year 312 each	15. Maximum tank fill rate (gal/min) 50							
16. Tank fill method Submerged Splash	⊠ Bottom Loading							
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No							
If yes, (A) What is the volume expansion capacity of the system	(gal)?							
(B) What are the number of transfers into the system per	year?							
18. Type of tank (check all that apply):								
\boxtimes Fixed Roof \square vertical \square horizontal \square flat roof	\Box cone roof \Box dome roof \Box other (describe)							
\Box External Floating Roof \Box pontoon roof \Box double	deck roof							
Domed External (or Covered) Floating Roof								
□ Internal Floating Roof □ vertical column support	□ self-supporting							
□ Variable Vapor Space □ lifter roof □ diaphragm								
\Box Pressurized \Box spherical \Box cylindrical								
\Box Other (describe)								

PRESSURE/VACUUM CONTROL DATA

19. Check as many as a	pply:												
☑ Does Not Apply	☑ Does Not Apply						□ Rupture Disc (psig)						
□ Inert Gas Blanket of				□ Carbo	n Adsorpt	tion ¹							
□ Vent to Vapor Comb	□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)												
Conservation Vent (psig)			□ Conde	enser ¹								
Vacuum Setting		Pressure	Setting										
□ Emergency Relief V	alve (psig)												
Vacuum Setting		Pressure	Setting										
□ Thief Hatch Weighte	ed 🗆 Yes 🛛	⊠ No											
¹ Complete appropriate A	Air Pollutio	n Control	Device S	heet									
20. Expected Emission	Rate (subm	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applicat	tion).					
Material Name	Flashing Loss Bi		Breath	ing Loss	Working Loss		Total		Estimation Method ¹				
							Emissions Loss						
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy					
voc	0.91	0.40	N/A	N/A	N/A	N/A	0.91	0.40	ST				
GHG	122.7	537.6	N/A	N/A	N/A	N/A	122.7	537.6	ST				
HAPs	0.018	0.08	N/A	N/A	N/A	N/A	0.018	0.08	ST				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:						
□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded						
21A. Shell Color: Tan	21B. Roof Color: Tan	l	21C. Year	Last Painted: 2016 (NEW)		
22. Shell Condition (if metal and unlined):	L		•			
🛛 No Rust 🛛 Light Rust 🗆 Dense	Rust 🗌 Not application	able				
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?		
23. Operating Pressure Range (psig): Less that						
Must be listed for tanks using VRUs with						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	coof provide radius (f	•	s, for cone roof, provide slop (ft/ft):		
Yes No			0.06			
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal 🛛 Liquid	mounted resili	ent seal		
□ Vap	or mounted resilient s	eal 🗌 Other (describe):			
25C. Is the Floating Roof equipped with a second		□ No	. ,			
			041)-		
25D. If yes, how is the secondary seal mounted			Other (descrit	e):		
25E. Is the floating roof equipped with a weather	er shield?	□ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not a	oply			
26A. Deck Type: Bolted W	/elded	26B. For bolted de	cks, provide dec	k construction:		
26C. Deck seam. Continuous sheet constructio						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	\Box other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column st	apported	26G. For column supported		
		tanks, # of columns	:	tanks, diameter of column:		
27. Closed Vent System with VRU? Yes						
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🖾 No					
SITE INFORMATION						
29. Provide the city and state on which the data	in this section are based:					
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. M	-	erature (°F):		
32. Annual Avg. Minimum Temperature (°F):	o2 1	33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. Atmospheric P	ressure (psia):			
LIQUID INFORMATION 36. Avg. daily temperature range of bulk	264 Minimum (9E), 5	A	2(D M	:		
liquid (°F): 60-75	36A. Minimum (°F): 5	0	30B. Max	/aximum (°F): 85		
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0 nsig	37B Max	imum (psig): 0.3 psig		
(psig): 0-0.3 psig	5771. Willington (psig).	o para	57D. Max	7. Maximum (psig). 0.3 psig		
(1 · C/······ F · C						
38A. Minimum liquid surface temperature (°F):		38B. Corresponding vapor pressure (psia):				
39A. Avg. liquid surface temperature (°F):		39B. Correspondin	g vapor pressur	e (psia):		
40A. Maximum liquid surface temperature (°F)	:	40B. Correspondin	g vapor pressur	e (psia):		
41. Provide the following for each liquid or gas	to be stored in the tank.	Add additional pages	if necessary.			
41A. Material name and composition:	Produced Wate	r				
41B. CAS number:	N/A					
41C. Liquid density (lb/gal):	8.8					
41D. Liquid molecular weight (lb/lb-mole):	18.2					
41E. Vapor molecular weight (lb/lb-mole):	17.68					
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):41H. Months Storage per year.						
From: To:	Continuous					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as	670					
inputs into flashing emission calculations.						

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation

□ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name Kassay Tank Farm	2. Tank Name T03					
3. Emission Unit ID number T03	4. Emission Point ID number 10E and 11E					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
N/A	\boxtimes New construction \square New stored material \square Other					
Was the tank manufactured after August 23, 2011?	\Box Relocation					
□ Yes □ No						
7A. Description of Tank Modification (if applicable) N/A						
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\Box Yes \boxtimes No						
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.									
210 BBL									
9A. Tank Internal Diameter (ft.) 10.0	9B. Tank Internal Height (ft.) 15.0								
10A. Maximum Liquid Height (ft.) 14.5	10B. Average Liquid Height (ft.) 7.0								
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 8.0								
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 200 BBL								
13A. Maximum annual throughput (gal/yr) 2,667,400	13B. Maximum daily throughput (gal/day) 7310								
14. Number of tank turnovers per year 318	15. Maximum tank fill rate (gal/min) 50								
16. Tank fill method Submerged Splash	Bottom Loading								
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No								
If yes, (A) What is the volume expansion capacity of the system	(gal)?								
(B) What are the number of transfers into the system per y	year?								
18. Type of tank (check all that apply):									
\boxtimes Fixed Roof \square vertical \square horizontal \square flat roof	\Box cone roof \Box dome roof \Box other (describe)								
□ External Floating Roof □ pontoon roof □ double	deck roof								
Domed External (or Covered) Floating Roof									
□ Internal Floating Roof □ vertical column support	□ self-supporting								
□ Variable Vapor Space □ lifter roof □ diaphragm									
□ Pressurized □ spherical □ cylindrical									
\Box Other (describe)									

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:									
☑ Does Not Apply		□ Rupture Disc (psig)								
□ Inert Gas Blanket of				\Box Carbon Adsorption ¹						
□ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)										
□ Conservation Vent (psi	g)			□ Conde	nser ¹					
Vacuum Setting		Pressure	Setting							
□ Emergency Relief Valv	e (psig)									
Vacuum Setting		Pressure	Setting							
□ Thief Hatch Weighted	🗆 Yes 🛛	⊠ No								
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet						
20. Expected Emission Ra	te (submi	it Test Dat	ta or Calcu	ilations he	ere or elsev	where in th	he applicat	tion).		
Material Name	Flashi	ng Loss	Breathi	reathing Loss		g Loss	Total		Estimation Method ¹	
							Emissions Loss			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
VOC	0.048	0.21	N/A	N/A	N/A	N/A	0.048	0.21	ST	
GHG	64.5	282.3	N/A	N/A	N/A	N/A	64.5	282.3	ST	
HAPs	0.009	0.04	N/A	N/A	N/A	N/A	0.009	0.04	ST	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded							
21A. Shell Color: Tan	21B. Roof Color: Tan	ı		21C. Year	Last Painted: 2016 (NEW)		
22. Shell Condition (if metal and unlined):							
\square No Rust \square Light Rust \square Dense	Rust 🛛 Not application	able					
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperatu	ire:	22C. If yes	s, how is heat provided to tank?		
23. Operating Pressure Range (psig): Less that	n 0.3 psig						
Must be listed for tanks using VRUs with		l .					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome		ide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):		
\boxtimes Yes \Box No				0.06			
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	□ Liquid more	unted resilie	ent seal		
	or mounted resilient s		□ Other (des				
25C. Is the Floating Roof equipped with a second							
25D. If yes, how is the secondary seal mounted			Rim 🗆 Oth	or (describ	a).		
				iei (describ	e).		
25E. Is the floating roof equipped with a weather	er shield?	□ N	0				
25F. Describe deck fittings:		5-3	D				
26. Complete the following section for Interna	-		Does not apply				
26A. Deck Type: \Box Bolted \Box W	Velded	26B. H	For bolted decks,	provide decl	k construction:		
26C. Deck seam. Continuous sheet construction	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported 26G. For			26G. For column supported		
		tanks, a	# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? Yes							
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🗵 No						
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based:						
30. Daily Avg. Ambient Temperature (°F):			nual Avg. Maxi		rature (°F):		
32. Annual Avg. Minimum Temperature (°F):34. Annual Avg. Solar Insulation Factor (BTU/	ft^2 day);	33. Avg. Wind Speed (mph): 35. Atmospheric Pressure (psia):					
LIQUID INFORMATION	it -day):	55. Al	mospheric Press	ure (psia):			
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 5	50		36B. Maxi	mum (°F): 85		
liquid (°F): 60-75		Ū		30 D . Waxiniani (1). 05			
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0 psig		37B. Maximum (psig): 0.3 psig			
(psig): 0-0.3 psig							
38A. Minimum liquid surface temperature (°F):			Corresponding va				
39A. Avg. liquid surface temperature (°F):			Corresponding va Corresponding va	1 1	· ·		
40A. Maximum liquid surface temperature (°F)41. Provide the following for each liquid or gas					(psia):		
41A. Material name and composition:	Produced Wate		nionai pages ii i	leeessary.			
41B. CAS number:	N/A	•					
41C. Liquid density (lb/gal):	8.8						
41D. Liquid molecular weight (lb/lb-mole):	18.2						
41E. Vapor molecular weight (lb/lb-mole):	17.68						
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.	Continuous						
From: To: 42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as	670						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T04	NEW	Engine Lube Oil	500
T05	NEW	Compressor Oil	500
T06	NEW	Coolant Surge Tank	30
T07	NEW	Engine Lube Oil	500
T08	NEW	Compressor Oil	500
T09	NEW	Coolant Surge Tank	30

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 1. 2.

Enter storage tank Status using the following: EXIST Existing Equipment

NEW Installation of New Equipment

Equipment Removed REM

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. Enter the maximum design storage tank volume in gallons. 3.

4.

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
GPU-1	1E	Pride of the Hills	2017	NEW	1.0	1032
GPU-2	2E	Pride of the Hills	2017	NEW	1.0	1032
GPU-3	3E	Pride of the Hills	2017	NEW	1.0	1032
GPU-4	4E	Pride of the Hills	2017	NEW	1.0	1032
GPU-5	5E	Pride of the Hills	2017	NEW	1.0	1032
GPU-6	6E	Pride of the Hills	2017	NEW	1.0	1032
GPU-7	7E	Pride of the Hills	2017	NEW	1.0	1032

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	use this form					1		
Emission Unit I			E-1		E-2			
Engine Manufac	turer/Model	CAT	3516B	-	3516B			
Manufacturers H	Rated bhp/rpm	1380	/1400	1380	/1400			
Source Status ²		NE	EW	N	EW			
Date Installed/ Modified/Remo	ved/Relocated ³	Januar	y 2017	Januai	ry 2017			
Engine Manufac /Reconstruction		After 1	/1/2012	After 1	/1/2012			
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS □ JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		
Engine Type ⁶		4S	LB	48	LB			
APCD Type ⁷		A/F +	OxCat	A/F +	OxCat			
Fuel Type ⁸		R	G	RG				
H ₂ S (gr/100 scf)		<	:1	<	<1			
Operating bhp/r	pm	1380/1400		1380	/1400			
BSFC (BTU/bhj	o-hr)	82	55	8255				
Hourly Fuel Th	oughput	11,028 ft ³ /hr gal/hr			/hr l/hr	ft ³ /hr gal/hr		
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	96.61 MMft ³ /yr gal/yr		96.61 MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
MD	NO _x	1.52	6.66	1.52	6.66			
MD	СО	0.52	2.27	0.52	2.27			
MD	VOC	0.76	3.33	0.76	3.33			
AP-42	SO ₂	< 0.01	0.03	<0.01	0.03			
AP-42	PM 10	0.11	0.50	0.11	0.50			
MD	Formaldehyde	0.14	0.63	0.14	0.63			
AP-42	Total HAPs	0.30	1.33	0.30	1.33			
MD	GHG (CO ₂ e)	1748	7655	1748	7655			

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB	Two Stroke Lean Burn	4SRB	Four St	roke Rich Burn				
	4SLB	Four Stroke Lean Burn							
7	Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) u	sing the fo	ollowing codes:				
	A/F	Air/Fuel Ratio		IR	Ignition Retard				
	HEIS	High Energy Ignition System		SIPC	Screw-in Pre-c	ombustion Cha	ambe	rs	
	PSC	Pre-stratified Charge		LEC	Low Emission	Combustion			
	NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCat	Oxidation Cata	lyst			
	SCR	Lean Burn & Selective Catalytic Reduction							
8	Enter th	e Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas RO	G Ra	aw Natura	l Gas /Productio	n Gas	D	Diesel	
9	Enter t	he Potential Emissions Data Reference design	ation us	ing the f	following code	s. Attach all	refei	ence data u	sed.
	MD	Manufacturer's Data	A	P AF	P-42				
	GR	GRI-HAPCalc TM	O	T Ot	her	(please list)			
						· ·			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# C1 and C2, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

	R 🛛 🖾 Oxidation Catalyst
Provide details of process control used for proper mixing/c	ontrol of reducing agent with gas stream: N/A
Manufacturer: DCL	Model #: DC65-14
Design Operating Temperature: 992 °F	Design gas volume: 9200 scfm
Service life of catalyst: 8000 hours	Provide manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 9103 acfm at 994 °F	Operating temperature range for NSCR/Ox Cat: From 900 °F to 1200 °F
Reducing agent used, if any: N/A	Ammonia slip (ppm): N/A
Pressure drop against catalyst bed (delta P): 3.4 inches of	H ₂ O
There is no warning/alarm system. However, the engine will 1200 Deg. F. Is temperature and pressure drop of catalyst required to be \Box Yes \boxtimes No	
1200 Deg. F.	monitored per 40CFR63 Subpart ZZZ2?

Date of Manufacture	TBD	Engine Serial Number		TBD	Date Modified/	Reconstructed	Not Ar
Driver Rated HP		Rated Speed in RPM		1400		-	
-	1380				Combustion Ty	· _	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio		8:1	Combustion Se	-	Ultra Lean Bu
Total Displacement (in ³)	4211	Fuel Delivery Method		Carburetor	Combustion Air Treatment		T.C./Aftercoole
Raw Engine Emissions (Customer Sup	plied Fuel Gas with H2S <	: 10 PPM)					
Fuel Consumption	7443 LHV BTU/bhp-hr	or	8250 HHV	/ BTU/bhp-hr			
Altitude	1200 ft						
Maximum Air Inlet Temp	90 F						
			g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)			0.5		1.52	6.66	
Carbon Monoxide (CO)			2.43		7.39	32.38	
Volatile Organic Compounds (VOC or	NMNEHC excluding CH2O)		0.48		1.46	6.40	
Formaldehyde (CH2O)			0.43		1.31	5.73	
Particulate Matter (PM) Filterable+Condense	ble			9.99E-03	1.14E-01	4.98E-01	
Sulfur Dioxide (SO2)				5.88E-04	6.69E-03	2.93E-02	
			g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
					4 4 9 9	E 7 1 7	
Carbon Dioxide (CO2)			473		1439	5717	
Methane (CH4)	ecifications (GERP) Custon	ner Supplied fuel gas, 120	4.05	F Max Air Inlet Temperatur	12.32	48.95	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp	n 100% Load Operation. I Ioad. AP-42, Fifth Edition, Volu	t is recommended to add	4.05 00 ft elevation, and 90 I a safety margin to C0	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based o variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab	n 100% Load Operation. I Ioad. AP-42, Fifth Edition, Volu	t is recommended to add	4.05 00 ft elevation, and 90 I a safety margin to C0	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions	n 100% Load Operation. I Ioad. AP-42, Fifth Edition, Volu e 3.2-2).	t is recommended to add	4.05 00 ft elevation, and 90 I a safety margin to C0	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model</i> <i>Element Type:</i>	n 100% Load Operation. I Ioad. AP-42, Fifth Edition, Volu e 3.2-2).	t is recommended to add me I, Chapter 3: Stational	4.05 00 ft elevation, and 90 I a safety margin to C0	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model</i> . <i>Element Type:</i> <i>Number of Elements in Housing:</i>	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2	t is recommended to add me I, Chapter 3: Stational 264L2-16 ion	4.05 00 ft elevation, and 90 1 a safety margin to Co ry Internal Combution	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model</i> . <i>Element Type:</i> <i>Number of Elements in Housing:</i>	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2	t is recommended to add me I, Chapter 3: Stational	4.05 00 ft elevation, and 90 1 a safety margin to Co ry Internal Combution	D, VOC, and Formaldehyde	12.32 re. to account for		
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i>	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2	t is recommended to add me I, Chapter 3: Stational 264L2-16 ion	4.05 00 ft elevation, and 90 I a safety margin to Co ry Internal Combution ck <u>% Reduction</u>	D, VOC, and Formaldehyde	12.32 re. to account for ral lb/hr	48.95 	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2	t is recommended to add me I, Chapter 3: Stational 264L2-16 ion	4.05 00 ft elevation, and 90 1 a safety margin to Co ry Internal Combution ck <u>% Reduction</u> 0	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>Ib/hr</u> 1.52	48.95 6.66	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to CO ry Internal Combution ck <u>% Reduction</u> 0 93	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52	48.95 <u>TPY</u> 6.66 2.27	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to Co ry Internal Combution ck <u>% Reduction</u> 0 93 48	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52 0.76	48.95 <u>TPY</u> 6.66 2.27 3.33	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to CO ry Internal Combution ck <u>% Reduction</u> 0 93 48 89	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52 0.76 0.14	48.95 <u>TPY</u> 6.66 2.27 3.33 0.63	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to CO ry Internal Combution 0 93 48 89 0	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52 0.76 0.14 1.14E-01	48.95 TPY 6.66 2.27 3.33 0.63 4.98E-01	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to CO ry Internal Combution ck <u>% Reduction</u> 0 93 48 89	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52 0.76 0.14	48.95 <u>TPY</u> 6.66 2.27 3.33 0.63	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM) Sulfur Dioxide (SO2)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 I a safety margin to Co ry Internal Combution 0 93 48 89 0 0 0 0 <u>% Reduction</u>	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>lb/hr</u> 1.52 0.52 0.76 0.14 1.14E-01 6.69E-03 <u>lb/hr</u>	48.95 TPY 6.66 2.27 3.33 0.63 4.98E-01 2.93E-02 Metric Tonne/yr	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Sp Note that g/bhp-hr values are based of variations in fuel gas composition and ² Emission Factor obtained from EPA's Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions <i>Catalytic Converter Make amd Model.</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or Formaldehyde (CH2O) Particulate Matter (PM)	n 100% Load Operation. I load. AP-42, Fifth Edition, Volu e 3.2-2). DCL DC Oxidati 2 Caterpo	t is recommended to add me I, Chapter 3: Stational 664L2-16 fon illar ADEM3, NOx Feedba	4.05 00 ft elevation, and 90 d a safety margin to CO ry Internal Combution 0 93 48 89 0 0 0	D, VOC, and Formaldehyde	12.32 re. to account for ral <u>Ib/hr</u> 1.52 0.52 0.76 0.14 1.14E-01 6.69E-03	48.95 <u>TPY</u> 6.66 2.27 3.33 0.63 4.98E-01 2.93E-02	

Rice Energy RFQ Roger Perry 3-18-16 $_$ Engine Pedigree G3516BLE

1610 Woodstead Ct, Suite 245, The Woodlands, Texas 77380 USA Tel: 877-965-8989 Fax: 281-605-5858 info@dcl-inc.com www.dcl-inc.com

GLOBAL LEADER IN EMISSION CONTROL SOLUTIONS

То:	Chris Magee	Phone:	
Company:	USA Compression	Email	
Date:		No. Pages:	1

Dear Chris,

We hereby guarantee that our Model DC64A specified below with two (2) elements installed as described below, and sized for the following engine:

Engine Data						
Engine Model	Caterpillar					
	G3516B					
Power	1380HP					
Fuel	PQNG					
Exhaust Flow Rate	9103 acfm					
Exhaust Temperature	992 °F					

Catalyst Data	
Catalyst Model	DC64A
Туре	Oxidation- A
# of Elements	2
Cell Density	300 cpsi
Approx Dimensions	See attached
	drawing
Approx Pressure Drop	3.4" w.c

will perform as follows:

Exhaust Component	Engine Output (g/bhp-hr)	Converter Output (% Reduction or g/bhp-hr)
СО	2.43	93%
VOC	0.48	0.25
Formaldehyde (HCHO)	0.43	0.05

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best Regards,

On behalf of DCL America Inc.

Lisa Barber 416-788-8021 Ibarber@dcl-inc.com

G3516B

ENGINE SPEED

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm):	1400
COMPRESSION RATIO:	8
AFTERCOOLER TYPE:	SCAC
AFTERCOOLER - STAGE 2 INLET (°F):	130
AFTERCOOLER - STAGE 1 INLET (°F):	201
JACKET WATER OUTLET (°F):	210
ASPIRATION:	TA
COOLING SYSTEM:	JW+OC+1AC, 2AC
CONTROL SYSTEM:	ADEM3
EXHAUST MANIFOLD:	DRY
COMBUSTION:	LOW EMISSION
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.5
SET POINT TIMING:	30

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS: FUEL: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft):

MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Rice Roger Perry 3-18-16 7.0-40.0 80.7 965 1200 90 1380 bhp@1400rpm

			MAXIMUM RATING	-	TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	90	90	90	90
	(2)		7443	7443	7971	8562
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7443 8250		8836	8562 9490
FUEL CONSUMPTION (HHV) AIR FLOW (@inlet air temp. 14.7 psia) (WET)	(2)	Btu/bhp-hr		8250		
· ····· = • · · (@····•• • ·····	(3)(4)	ft3/min	3202	3202	2512	1756
	(3)(4)	lb/hr	13861	13861	10873	7601
FUEL FLOW (60°F, 14.7 psia)		scfm	177	177	142	102
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	992	992	986	1006
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	9100	9100	7117	5050
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	14343	14343	11260	7879
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	g/bhp-hr	2.43	2.43	2.60	2.55
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.76	4.76	5.10	5.17
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.71	0.71	0.76	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.43	0.43	0.42	0.42
CO2	(8)(9)	g/bhp-hr	473	473	504	548
EXHAUST OXYGEN	(8)(11)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION			•			
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	23599	23599	21679	20030
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO LOBE OIL (OC) HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	11582	11582	9646	3430
HEAT REJ. TO A/C - STAGE 1 (TAC) HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5519	5519	5204	3430
HEAT REJ. TO AIG - STAGE 2 (2AG)	(12)(13)	Blu/IIIII	5519	5519	5204	3397
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	43489			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5795			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						
CONDITIONS AND DEFINITIONS						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	·1	Emissi	Emission Point ID#: 12E			Year Installed/Modified: NEW			
Emission Unit Descript	Emission Unit Description: Produced Water Truck Loading								
Loading Area Data									
Number of Pumps: 1 on truckNumber of Liquids Loaded: 1Max number of trucks loading at on (1) time: 1									
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:									
Provide description of c	losed ven	nt system and an	y bypasses.	N/A					
Are any of the followin Closed System to ta Closed System to ta Closed System to ta	nker truck nker truck	k passing a MAC k passing a NSP	CT level annu S level annua	al leak test?	apor retu	urn?			
Pro	jected Ma	aximum Opera	ting Schedul	e (for rack o	r transf	er point as a wh	ole)		
Time	Ja	an – Mar	Apr	- Jun	J	ul – Sept	Oct - Dec		
Hours/day		24	2	4		24	24		
Days/week		7	,	7		7	7		
		Bulk Liquid	l Data (use e	xtra pages a	s necessa	ary)			
Liquid Name	P	roduced Water							
Max. Daily Throughput (1000 gal/day)	35	5.3							
Max. Annual Throughpt (1000 gal/yr)	ut 12	2,877.2							
Loading Method ¹	S	ub							
Max. Fill Rate (gal/min) 50	0 gpm							
Average Fill Time (min/loading)	12	20							
Max. Bulk Liquid Temperature (°F)	8	0							
True Vapor Pressure ²	0.	.3 psia							
Cargo Vessel Condition	³ U	J							
Control Equipment or Method ⁴	N	Jone							
Max. Collection Efficie (%)	ncy N	J/A							

Max. Control Efficiency (%)		N/A	
Max.VOC Emission Rate Loading (lb/hr) Annual (ton/yr)		<0.01	
		0.01	
Max.HAP Emission Rate	Loading (lb/hr)	<0.01	
	Annual (ton/yr)	<0.01	
Estimation Method ⁵		ЕРА	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill	
2	At may	kimum bulk liquid temperature					
•	n	N 11 . 1 X X 1	a	C1 1	••	** * * * * * *	

3 В Ballasted Vessel С Cleaned U Uncleaned (dedicated service) 0 Other (describe)

MB

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Dedicated Vapor Balance (closed system) CAVB

Carbon Adsorption Enclosed Combustion Device ECD F Flare

то Thermal Oxidization or Incineration

EPA EPA Emission Factor in AP-42

5

Material Balance ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET								
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?								
\Box Yes \boxtimes No								
Please list approximate number.								
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?								
\Box Yes \boxtimes No								
Please list approximate number.								

ATTACHMENT S – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

EMISSIONS SUMMARY

Kassay Well Pad Northeast Natural Energy Monongalia County

		NOx	СО	CO2e	VOC	SO2	PM		acetaldehyde	n-Hexane	benzene	toluene	xylenes	formaldehyde	
Source	Description	lb/hr	lb/Hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr							
CE-1	Compressor Engine #1	1.52	0.52	1748	0.760	0.01	0.11	0.059	0.095	0.0012	0.0005	0.0004	0.0002	0.144	0.303
CE-2	Compressor Engine #2	1.52	0.52	1748	0.760	0.01	0.11	0.059	0.095	0.0012	0.0005	0.0004	0.0002	0.144	0.303
GPU-1- GPU-7	Seven GPUs	0.70	0.59	846	0.04	0.00	0.05			0.013	0.002	0.000		0.001	0.013
	Haul Road Fugitive Dust						8.26								
T01-T04	Produced Water Tanks ²			310	0.23					0.024	0.002	0.007	0.011		0.045
TL-1	Produced Water Truck Loading			6	0.00										
	Equipment Fugitive Emissions			18	0.00										
	Blowdowns ¹			N/A	N/A										
Total		3.74	1.62	4,674	1.80	0.02	8.54	0.117	0.190	0.039	0.005	0.008	0.011	0.288	0.664

		NOx	CO	CO2e	VOC	SO2	PM	acrolein	acetaldehyde	n-Hexane	benzene	toluene	xylenes	formaldehyde	Total HAPs
Source		tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	TPY	tpy	tpy	tpy	tpy	tpy
CE-1	Compressor Engine #1	6.66	2.27	7,655	3.33	0.03	0.50	0.256	0.417	0.005	0.002	0.002	0.001	0.630	1.327
CE-2	Compressor Engine #2	6.66	2.27	7,655	3.33	0.03	0.50	0.256	0.417	0.005	0.002	0.002	0.001	0.630	1.327
GPU-1- GPU-7	Seven GPUs	3.07	2.58	3,703	0.17	0.02	0.23			0.055	0.000	0.000		0.002	0.058
	Haul Road Fugitive Dust						12.66								
T01-T04	Produced Water Tanks ²			1358	1.01					0.107	0.008	0.030	0.050		0.200
TL-1	Produced Water Truck Loading			10	0.01										
	Equipment Fugitive Emissions			78	0.02										
	Blowdowns ¹			40	0.01										
Total		16.39	7.11	20,500	7.87	0.08	13.89	0.513	0.834	0.173	0.012	0.034	0.052	1.263	2.911

¹See Attachment J for Blowdown Calculations

² Water tank emissions are uncontrolled.

Proposed Emission Rates

Source Cl	E-1					
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516 B Low Emiss Natural	sions				
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption (HHV)	130 1,380 1,400 V-16 16 6.700 7.500 1,032 4,231 8,255	deg. F hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr				
						AP-42 4strokelean
Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO VOC (NMNEHC) CO2e CO2	g/bhp-hr 0.50 0.17 0.24 473	lb/hr 1.52 0.52 0.76 1748 1439	tons/year 6.66 2.27 3.33 7655.19 6303.02	g/hr 690 235 331 652,740	lb/day 36.51 12.41 18.24 34537.12	453.59 grams = 1 pound 2,000 pounds = 1 ton
Total Annual Hours of Operation SO2 PM (Condensable+ Filterable) CH _{4 as CO2e}	8,760 4.05	0.0067 0.1138 308.04	0.0293 0.4985 1349.2			0.000588 0.00999 Mfg. Spec Used
N ₂ O as CO _{2e} acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane total HAPs	0.047	0.679 0.0586 0.0952 0.1439 0.0002 0.0005 0.0004 4E-05 0.0002 0.0027 0.0012 0.3029	2.9738 0.2565 0.4171 0.6303 0.0010 0.0021 0.0019 0.0002 0.0009 0.0118 0.0052 1.3269			0.0002 Factor From 40 CFR 98, Table C-2 0.00514 0.00836 Mfg. Spec Used 0.00044 0.000408 3.97E-05 0.000184 0.0025 0.00111 0.018394
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm				
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	:			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667	inches feet				
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm (stack diameter)^2

Proposed Emission Rates

Source	CE-2					
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516 B Low Emiss Natural	sions				
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption (HHV)	130 1,380 1,400 V-16 16 6.700 7.500 1,032 4,231 8,255	deg. F hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr				
Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO	g/bhp-hr 0.50 0.17	lb/hr 1.52 0.52	tons/year 6.66 2.27	g/hr 690 235	36.51 12.41	453.59 grams = 1 pound
VOC (NMNEHC) CO2e CO2	0.24 473	0.76 1748 1439	3.33 7655.19 6303.02	331 652,740	18.24 34537.12	
Total Annual Hours of Operation SO2 PM (Condensable+ Filterable) $CH_{4 \ as CO2e}$ N ₂ O as CO_{2e} acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane	8,760 4.05 0.047	0.0067 0.1138 308.04 0.679 0.0586 0.0952 0.1439 0.0002 0.0005 0.0004 4E-05 0.0002 0.0027 0.0012	0.0293 0.4985 1349.2 2.9738 0.2565 0.4171 0.6303 0.0010 0.0021 0.0019 0.0002 0.0009 0.0118 0.0052			0.000588 Mfg. Spec Used 0.0002 Factor From 40 CFR 98, Table C-2 0.00514 Mfg. Spec Used 0.000212 Mfg. Spec Used 0.000242 Mfg. Spec Used 0.00044 Mfg. Spec Used 0.00044 0.000408 3.97E-05 0.000184 0.0025 0.00111
total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	0.3029 deg. F acfm	1.3269			0.018394
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	:			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667 70.4	inches feet ft/sec			Л	v acfm
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm (stack diameter)^2

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

7000.0 Mbtu/hr 98.0 % 1032.2 Btu/scf 166085.2 scfd 0.000 Mole % 8760

Sources GPU-1 to GPU-7

Seven Units at 1.0 Mbtu/Hr Each

NOx	0.7003	lbs/hr	3.067	TPY
СО	0.5882	lbs/hr	2.576	TPY
CO2	840.3	lbs/hr	3680.7	TPY
CO2e	846	lbs/hr	3,703	tpy
VOC	0.0385	lbs/hr	0.169	TPY
SO2	0.0042	lbs/hr	0.018	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0532	lbs/hr	0.233	TPY
СНОН	0.0005	lbs/hr	0.002	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0126	lbs/hr	0.055	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0132	lbs/hr	0.058	TPY

AP-42 Factors Used

100 Lbs/MMCF	
84 Lbs/MMCF	
120,000 Lbs/MMCF	Global Warming Potential = 1
5.5 Lbs/MMCF	
7.6 Lbs/MMCF	
0.6 Lbs/MMCF	
2.3 Lbs/MMCF	Global Warming Potential = 25
2.2 Lbs/MMCF	Global Warming Potential =310
0.075 Lbs/MMCF	
0.0021 Lbs/MMCF	
1.8 Lbs/MMCF	
0.0034 Lbs/MMCF	
	84 Lbs/MMCF 120,000 Lbs/MMCF 5.5 Lbs/MMCF 7.6 Lbs/MMCF 0.6 Lbs/MMCF 2.3 Lbs/MMCF 2.2 Lbs/MMCF 0.075 Lbs/MMCF 0.0021 Lbs/MMCF 1.8 Lbs/MMCF

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis:	0.48	weight percent
Methane from gas analysis:	93.21	weight percent
Carbon Dioxide from gas analysis:	0.70	weight percent
Gas Density	0.0462	lb/scf

Emission Source:	Number	Oil & Gas Production	n* VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:										
Gas/Vapor:	42	0.02700 scf/hr	0.5	0.000	0.001	0.000	0.002	0.049	0.2139	5.348
Light Liquid:	-	0.05000 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.000
Low Bleed Pneumatic	-	1.39000 scf/hr	0.5	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Relief Valves:	21	0.04000 scf/hr	0.5	0.000	0.001	0.000	0.001	0.036	0.1584	3.962
Open-ended Lines, gas:	7	0.06100 sfc/hr	0.5	0.000	0.000	0.000	0.001	0.000	0.0006	0.016
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										
Gas:	-	0.00529 lb/hr	0.5	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.000
Compressor Seals, Gas:	2	0.01940 lb/hr	0.5	0.000	0.001	0.000	0.001	0.002	0.0073	0.184
Connectors:										
Gas:	180	0.00300 scf/hr	0.5	0.000	0.001	0.000	0.001	0.023	0.1018	2.547
Light Liquid:	0	0.00700 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Sampling Connectors:										
Gas:	14	0.03300 lb/hr	0.5	0.002	0.010	0.000	0.000	0.431	1.8861	47.152
Light Liquid:	-	0.03300 lb/hr	100.0	0.000	0.000					0.000
Flanges:										
Gas:	210	0.00086 lb/hr	0.5	0.001	0.004	0.001	0.006	0.168	0.7373	18.438
Light Liquid:	0	0.00300 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					0.000

Tug	itive Calculatio	11.5.
	lb/hr	t/y
VOC	0.004	0.017
CH4	0.709	3.105
CO2	0.002	0.011
CO2e	17.724	77.63

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. . Sampling Connectors are from TCEQ. Remaining are API (lb/hr)

GAS ANALYSIS INFORMATION

Kassay Well Pad Northeast Natural Energy Monongalia County

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.2163	0.061	0.002	0.365			-		0.0022	
Carbon Dioxide, CO2	0.2653	0.117	0.004	0.703			-		0.0026	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Helium, He		-	-	-			-		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	96.4458	15.473	0.534	93.205	877.1	974.1	9.191		0.9625	
Ethane, C2H6	2.8984	0.872	0.030	5.250	46.9	51.3	0.483		0.0287	0.771
Propane	0.1582	0.070	0.002	0.420	3.7	4.0	0.038	0.420	0.0016	0.043
Iso-Butane	0.0041	0.002	0.000	0.014	0.1	0.1	0.001	0.014	0.0000	0.001
Normal Butane	0.0119	0.007	0.000	0.042	0.4	0.4	0.004	0.042	0.0001	0.004
Iso Pentane		-	-	-			-	-	-	-
Normal Pentane		-	-	-			-	-	-	-
Hexane		-	-	-			-	-	-	-
Heptane		-	-	-			-	-	-	-
	100.000	16.601	0.573		928.1	1,029.9	9.717	0.476	0.9978	0.819

0.046

Gas Density (STP) =

Ideal Gross (HHV) Ideal Gross (sat'd)	1,029.9 1,012.8
GPM	-
Real Gross (HHV)	1,032.2
Real Net (LHV)	930.2

GAS ANALYSIS INFORMATION

Kassay Well Pad Northeast Natural Energy Monongalia County

Flash Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.6160	0.173	0.006	0.977			-		0.0062	
Carbon Dioxide, CO2	3.6910	1.624	0.056	9.199			-		0.0368	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Helium, He		-	-	-			-		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	93.2080	14.953	0.516	84.682	847.6	941.4	8.883		0.9302	
Ethane, C2H6	2.1550	0.648	0.022	3.670	34.9	38.1	0.359		0.0214	0.573
Propane	0.0840	0.037	0.001	0.210	1.9	2.1	0.020	0.210	0.0008	0.023
Iso-Butane	0.0080	0.005	0.000	0.026	0.2	0.3	0.002	0.026	0.0001	0.003
Normal Butane	0.0140	0.008	0.000	0.046	0.4	0.5	0.004	0.046	0.0001	0.004
Iso Pentane	0.0010	0.001	0.000	0.004	0.0	0.0	0.000	0.004	0.0000	0.000
Normal Pentane	0.0080	0.006	0.000	0.033	0.3	0.3	0.003	0.033	0.0001	0.003
Hexane	0.0840	0.072	0.002	0.410	3.7	4.0	0.038	0.410	0.0008	0.034
Heptane	0.1310	0.131	0.005	0.743	6.7	7.2	0.069	0.743	0.0013	0.060
	100.000	17.658	0.610		895.8	993.9	9.379	1.472	0.9978	0.701

Gas Density (STP) = 0.049

ldeal Gross (HHV) Ideal Gross (sat'd)	993.9 977.4
GPM	-
Real Gross (HHV)	996.1
Real Net (LHV)	897.8

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	<u>0.00000</u> mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468

Gas Analytical

C6+ Gas Analysis Report

Client:
Site:
Field No:
Meter:
Source Laboratory
Lab File No:
Sample Type:
Reviewed By:

Yost 3H Clarksburg (Bridgeport), WV X_CH1-3439.CHR

Northeast Natural Energy

Component	Mol %	Gal/MSCF		
Methane	96.4458			
Ethane	2.8984	0.77		
Propane	0.1582	0.04		
I-Butane	0.0041	0.00		
N-Butane	0.0119	0.00		
I-Pentane	<mdl< td=""><td>0.00</td></mdl<>	0.00		
N-Pentane	<mdl< td=""><td>0.00</td></mdl<>	0.00		
Nitrogen	0.2163			
Oxygen	<mdl< td=""><td></td></mdl<>			
Carbon Dioxide	0.2653			
Hexanes+	<mdl< td=""><td>0.00</td></mdl<>	0.00		
TOTAL	100.0000	0.82		

Spot

Date Sampled:
Analysis Date:
Collected By:
Date Effective:
Sample Pressure (PSI):
Sample Temp (°F):
Field H2O (Ib/MMSCFD):
Field H2S (PPM):

 Report Date:
 May 20, 2015
 8:24a

 May 15, 2015
 May 19, 2015
 4:15p

 G. Cutright GAS
 May 1, 2015
 12:00a

 947.0
 No Test
 No Test

No Test

 Analytical Results at Base Conditions (Real)

 BTU/SCF (Dry):
 1,034.1157 BTU/ft³

 BTU/SCF (Saturated):
 1,016.9952 BTU/ft³

 PSIA:
 14.730 PSI

 Temperature (°F):
 60.00 °F

 Z Factor (Dry):
 0.99789

 Z Factor (Saturated):
 0.99754

Analytical Results at Contract Conditions (Real)							
BTU/SCF (Dry):	1,034.1157 BTU/ft3						
BTU/SCF (Saturated):	1,016.9952 BTU/ft3						
PSIA:	14.730 PSI						
Temperature (°F):	60.00 °F						
Z Factor (Dry):	0.99789						
Z Factor (Saturated):	0.99754						

Calculated Specific Gravities

Ideal Gravity:0.5732Real Gravity:0.5741Molecular Wt:16.6002lb/lbmol

Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

Source	Date	Notes	

GAS Analytical Powered by ProStream - www.gasana.com - 304.623.0020

<MDL = Less than Method Detection Limits, NG = Not Given, NT = Not Tested

Attachment I FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_				i	,	PM		,	PM-10	0
k =	Particle size multiplier			0.80			0.36			
s =	Silt content of road surface ma	aterial (%)				10			3	
p =	Number of days per year with	precipitati	on >0.01	in.		157			157	
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)			Trips	Maximum Trips per Year Control Device ID Number		Control Efficiency (%)
1	Produced Water Tanker Truck	18	27	10	1.12	1	30	66	None	0
2										
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncon	trolled	Conti	rolled Uncontrolled		trolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	8.26	12.66	8.26	12.66	1.12	1.71	1.12	1.71
2								
3								
4								
5								
6								
7								
8								
TOTALS	8.26	12.66	8.26	12.66	1.12	1.71	1.12	1.71

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor (dimensionless)						
n =	n = Number of traffic lanes						
s =	Surface material silt content (%)						
L =	L = Surface dust loading (lb/mile)						
Item Numbe	r Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

None

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

1

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncon	trolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

G3516TALE JGT-4, 2 Stage

(Note: assumed ideal gas behavior and used OD for volume calc)

Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³
1st Stage Cylinder	6.38	4.50	2.00	0.00	129
1st Stage Cylinder	6.38	4.50	2.00	0.00	129
2nd Stage Cylinder	6.38	4.50	2.00	0.00	129
2nd Stage Cylinder	6.38	4.50	2.00	0.00	129

Scrubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³
1st Stage Scrubber	24.00	68.00	30762
1st Stage Suction Drum	16.00	114.50	23022
1st Stage Discharge Drum	16.00	114.50	23022
2nd Stage Scrubber	24.00	68.00	30762
2nd Stage Suction Drum	16.00	114.50	23022
2nd Stage Discharge Drum	16.00	114.50	23022

			-	Total Cooler Tube
Cooler Section	No. of Tubes	OD, in	Length, in	Volume, in ³
1st Stage Cooler Section	86	0.75	216	8207
2nd Stage Cooler Section	146	0.75	216	13932

				Total Piping
	Piping	OD, in	Length, in	Volume, in ³
1st Stg Piping		6.00	150.00	4241
2nd Stg Piping		6.00	150.00	4241

Equipment	Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles
1st Stage Total	89512	718	160	1.17
2nd Stage Total	95238	715	390	2.91
			4.08	
Estimated				
Total Volume of Blowdown Gas @ STP =		1570 [†]	ft ³	Does not include fuel scrubber

Northeast Natural Energy, LLC Kassay Well Pad Produced Water Tank Emissions

Utilizing direct measurements of tank vent emissions from Produced Water Tanks at an area well pad owned and operated by Northeast (attached), gas emissions were determined to be 3.80 scf per barrel of water. Thus, with an anticipated maximum water production rate at the Kassay Well Pad being 840 BBL/day, an emission rate of 3192 SCFD is anticipated. The natural gas constituents were forced into solution in the Produced Water by the high pressures in the gas production zone. As they are not soluble in water, they are quickly volatilized as the pressure on the water is released as it progresses from the well to the atmospheric pressure tank (flash gas). Working and breathing emissions from Produced Water are nominal, again as the gas constituents are not water soluble and flash out upon release of pressure.

The composition of the flash gas is assumed to be very similar to that of the nearby pad where flash gas testing was performed. As noted on the attached analysis, the specific gravity of the flash gas was measured to be 0.612. Thus, as shown in the following calculation spreadsheet, annual flash emissions at the maximum production rate of 306,600 BBL/yr is 64.23 tpy of total vapors and 1.01 tpy of VOCs (0.23 lb/hr). Potential HAP emissions are 0.20 tpy (0.045 lb/hr).

Methane comprises approximately 84.6% of the gas by weight. Thus, methane emissions are projected to be 54.3 tpy. Using a GHG factor of 25, potential CO_{2e} emissions will be 1357.5 tpy or 309.9 lb/Hr CO_{2e}

There are three tanks that will receive and accumulate produced water prior to shipment off-site. Assuming this water and associated emissions are distributed proportionately between these tanks, potential emissions are as follows:

				VOC		HAP		Co2e	
Tank	Capacity	BBL/Day	BBL/Yr	Lb/Hr	TPY	Lb/Hr	TPY	Lb/Hr	TPY
T01	400 BB1	333	121,545	0.091	0.40	0.018	0.08	122.7	537.6
T02	400 BBL	333	121,545	0.091	0.40	0.018	0.08	122.7	537.6
T03	210 BBL	174	63,510	0.048	0.21	0.009	0.04	64.5	282.3
Total	1010 BBL	840	306,600	0.23	1.01	0.045	0.20	309.9	1357.5

Northeast Natural Energy - Kassay

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data						
Gas-Water-ratio	=	3.8 scf/bbl Using GOW from comparable well pad				
Throughput	=	306,600 bbl/yr (840 BBL/Day)				
Stock tank gas molecular weight	=	39.56 g/mole				

	Conversions	
1 lb =	453.6 g	
1 mole =	22.4 L	
1 scf =	28.32 L	
1 ton =	2000 lb	

Equations

$E_{TOT} =$	$= O \frac{(bbl)}{x}$	$R\frac{(scf)}{x}$	28.32(<i>L</i>)	$\times \frac{1(mole)}{\times N}$	$W \xrightarrow{(g)} \times$	1(<i>lb</i>)	$\times \underline{1(ton)}$
	\mathcal{L} (yr)	(bbl)	1(scf)	22.4(L)	(mole)	453.6(<i>g</i>) ²	2000(lb)

 E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	64.2324	
VOC	1.0059	
Nitrogen	6.30E-01	
Carbon Dioxide	5.90E+00	
Methane	5.43E+01	
Ethane	2.35E+00	
Propane	1.35E-01	
Isobutane	1.67E-02	
n-Butane	2.95E-02	
2,2 Dimethylpropane	0.00E+00	
Isopentane	2.57E-03	
n-Pentane	2.12E-02	
2,2 Dimethylbutane	0.00E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	6.42E-03	
2 Methylpentane	2.51E-02	
3 Methylpentane	3.47E-02	
n-Hexane	1.07E-01	HAP
Methylcyclopentane	3.08E-02	
Benzene	8.35E-03	HAP
Cyclohexane	4.88E-02	
2-Methylhexane	1.09E-02	
3-Methylhexane	1.09E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	2.18E-02	
n-Heptane	2.18E-02	
Methylcyclohexane	2.51E-02	
Toluene	3.02E-02	HAP
Other C8's	6.81E-02	
n-Octane	4.56E-02	
Ethylbenzene	3.85E-03	HAP
M & P Xylenes	4.24E-02	HAP
O-Xylene	7.71E-03	HAP
Other C9's	9.63E-02	
n-Nonane	4.18E-02	1
Other C10's	7.71E-02	1
n-Decane	1.54E-02	1
Undecanes (11)	2.12E-02	1

E_{TOT}

Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Northeast Natural Energy LLC 707 Virginia St. East, Suite 1200 Charleston, West Virginia 25301 Date Sampled: 04/16/14

Date Analyzed: 04/30/14

Job Number: J42910

Sample: Statler No. 6H

FLASH LIBERATION OF SEPARATOR WATER								
	Separator	Stock Tank						
Pressure, psig	670	0						
Temperature, °F	73	70						
Gas Water Ratio (1)		3.80						
Gas Specific Gravity (2)		0.612						
Separator Volume Factor (3)	1.000	1.000						

(1) - Scf of water saturated vapor per barrel of stock tank water

(2) - Air = 1,000

(3) - Separator volume / Stock tank volume

Analyst: T.G.

Piston No.: WF-305*

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Northeast Natural Energy LLC 707 Virginia St. East, Suite 1200 Charleston, West Virginia 25301

Sample: Statler No. 6H

Gas Liberated from Separator Water From 670 psig & 73 °F to 0 psig & 70 °F

Date Sampled: 04/16/14

Job Number: 42910.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.619	
Carbon Dioxide	3.691	
Methane	93.208	
Ethane	2.155	0.581
Propane	0.084	0.023
Isobutane	0.008	0.003
n-Butane	0.014	0.004
2-2 Dimethylpropane	0.000	0.000
Isopentane	0.001	0.000
n-Pentane	0.008	0.003
Hexanes	0.055	0.023
Heptanes Plus	<u>0.157</u>	<u>0.072</u>
Totals	100.000	0.709

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.811	(Air=1)
Molecular Weight	110.14	
Gross Heating Value	5776	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	• 0.612	(Air=1)	
Compressibility (Z)	0.9977		
Molecular Weight	- 17.68		
Gross Heating Value			
Dry Basis	- 1007	BTU/CF	
Saturated Basis	- 990	BTU/CF	

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: WF# 13 S

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT MOL % GPM WT % Hydrogen Sulfide* < 0.001 < 0.001 Nitrogen 0.619 0.981 Carbon Dioxide 3.691 9.190 Methane 93.208 84.597 Ethane 2.155 0.581 3.666 Propane 0.084 0.023 0.210 Isobutane 0.008 0.003 0.026 n-Butane 0.014 0.004 0.046 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.004 n-Pentane 0.000 0.000 0.000 2,2 Dimethylbutane 0.000 0.000 0.000 Quopentane 0.000 0.000 0.000 2,2 Dimethylbutane 0.000 0.000 0.000 2,3 Dimethylbutane 0.002 0.001 0.010 2,3 Dimethylbutane 0.008 0.003 0.039 3 Methylpentane 0.011 0.005 0.054 <
Nitrogen 0.619 0.981 Carbon Dioxide 3.691 9.190 Methane 93.208 84.597 Ethane 2.155 0.581 3.666 Propane 0.084 0.023 0.210 Isobutane 0.008 0.003 0.026 n-Butane 0.014 0.004 0.046 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.004 n-Pentane 0.008 0.003 0.033 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.000 12,2 Dimethylbutane 0.000 0.000 0.000 2,2 Dimethylbutane 0.000 0.000 0.000 2,3 Dimethylbutane 0.002 0.001 0.010 2 Methylpentane 0.011 0.005 0.054 n-Hexane 0.034 0.014 0.166
Carbon Dioxide 3.691 9.190 Methane 93.208 84.597 Ethane 2.155 0.581 3.666 Propane 0.084 0.023 0.210 Isobutane 0.008 0.003 0.026 n-Butane 0.014 0.004 0.046 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.004 n-Pentane 0.008 0.003 0.033 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.000 1sopentane 0.008 0.003 0.033 2,2 Dimethylbutane 0.000 0.000 0.000 Cyclopentane 0.002 0.001 0.010 2,3 Dimethylbutane 0.002 0.001 0.010 2 Methylpentane 0.011 0.005 0.054 n-Hexane 0.034 0.014 0.166
Methane 93.208 84.597 Ethane 2.155 0.581 3.666 Propane 0.084 0.023 0.210 Isobutane 0.008 0.003 0.026 n-Butane 0.014 0.004 0.046 2,2 Dimethylpropane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.004 n-Pentane 0.008 0.003 0.033 2,2 Dimethylbutane 0.000 0.000 0.000 Isopentane 0.001 0.000 0.000 2,2 Dimethylbutane 0.000 0.000 0.000 2,2 Dimethylbutane 0.000 0.000 0.000 2,3 Dimethylbutane 0.002 0.001 0.010 2,3 Dimethylpentane 0.008 0.003 0.039 3 Methylpentane 0.011 0.005 0.054 n-Hexane 0.034 0.014 0.166
Ethane2.1550.5813.666Propane0.0840.0230.210Isobutane0.0080.0030.026n-Butane0.0140.0040.0462,2 Dimethylpropane0.0000.0000.000Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
Propane0.0840.0230.210Isobutane0.0080.0030.026n-Butane0.0140.0040.0462,2 Dimethylpropane0.0000.0000.000Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
Isobutane0.0080.0030.026n-Butane0.0140.0040.0462,2 Dimethylpropane0.0000.0000.000Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
n-Butane0.0140.0040.0462,2 Dimethylpropane0.0000.0000.000Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
2,2 Dimethylpropane0.0000.0000.000Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
Isopentane0.0010.0000.004n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
n-Pentane0.0080.0030.0332,2 Dimethylbutane0.0000.0000.000Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
Cyclopentane0.0000.0000.0002,3 Dimethylbutane0.0020.0010.0102 Methylpentane0.0080.0030.0393 Methylpentane0.0110.0050.054n-Hexane0.0340.0140.166
2 Methylpentane 0.008 0.003 0.039 3 Methylpentane 0.011 0.005 0.054 n-Hexane 0.034 0.014 0.166
3 Methylpentane 0.011 0.005 0.054 n-Hexane 0.034 0.014 0.166
n-Hexane 0.034 0.014 0.166
Methylcyclopentane 0.010 0.003 0.048
Benzene 0.003 0.001 0.013
Cyclohexane 0.016 0.005 0.076
2-Methylhexane 0.003 0.001 0.017
3-Methylhexane 0.003 0.001 0.017
2,2,4 Trimethylpentane 0.000 0.000 0.000
Other C7's 0.006 0.003 0.034
n-Heptane 0.006 0.003 0.034
Methylcyciohexane 0.007 0.003 0.039
Toluene 0.009 0.003 0.047
Other C8's 0.017 0.008 0.106
n-Octane 0.011 0.006 0.071
Ethyibenzene 0.001 0.000 0.006
M & P Xylenes 0.011 0.004 0.066
O-Xylene 0.002 0.001 0.012
Other C9's 0.021 0.011 0.150
n-Nonane 0.009 0.005 0.065
Other C10's 0.015 0.009 0.120
n-Decane 0.003 0.002 0.024
Undecanes (11) 0.004 0.002 0.033
Totals 100.000 0.709 100.000

Computed Real Characteristics Of Total Sa	ample:	
Specific Gravity	0.612	(Air=1)
Compressibility (Z)	0.9977	
Molecular Weight	17.68	
Gross Heating Value		
Dry Basis	1007	BTU/CF
Saturated Basis	990	BTU/CF

Produced Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$L_L = 12.46[SPM/T]$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded
S= saturation factor (0.6)
P=true vapor pressure of liquid loaded: 0.3 psia (water at 60 Deg. F)
M= Molecular weight of vapor in lb/lb-mole 17.68 (flash gas of comparable water sample)
T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 0.3 \text{ x } 17.68]/[460+60]$ $L_L = 0.076 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 1.55% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 840 BBL (35,280 gallons) a day, uncontrolled VOC emissions are estimated at 0.04 lb of VOC per day [35.28 x 0.076 x .0155]. With all daily loading taking place within 10 hours, the average hourly un-controlled emission rate is therefore estimated at <0.01 lb/hr VOCs. Emissions from truck loading are un-controlled.

Methane is approximately 84.6 % of emissions. Thus, potential daily methane emissions are estimated at 2.27 lb of Methane per day [$35.28 \times 0.076 \times 0.846$]. Thus, with all daily loading taking place within 10 hours each day, potential hourly emissions are estimated at 0.23 lb/hour [5.75 lb/hr CO2e]

Maximum annual throughput is 12,877,200 gallons (306,600 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 15.2 pounds per year [12,877 x 0.076 x 0.0155] or 0.01 tons per year. Annual potential emissions of methane is 827.9 pounds per year [12,877 x 0.076 x 0.846] or 10.35 tpy of CO2e.

Α	TTACH	MENT	T – FA	CILITY	-WID	E CON	TROL	LED EN	AISSIC	ONS SU	MMAI	RY SHE	ET	
List all sources o	f emissio	ns in th	is table	. Use ex	xtra pa	ges if n	ecessar	у.						
Emission Point ID#	NC) _x	со		VOC		SO ₂		PM 10		PM 2.5		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	< 0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
2E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	< 0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
3E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	< 0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
4E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	< 0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
5E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	< 0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
6E	0.10	0.438	0.084	0.368	< 0.01	0.024	< 0.01	<0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
7E	0.10	0.438	0.084	0.368	< 0.01	0.024	<0.01	<0.01	< 0.01	0.033	< 0.01	< 0.033	121	529
8E	1.52	6.66	0.52	2.27	0.76	3.33	< 0.01	0.03	0.11	0.50	0.11	0.50	1748	7655
9E	1.52	6.66	0.52	2.27	0.76	3.33	< 0.01	0.03	0.11	0.50	0.11	0.50	1748	7655
10E					0.091	0.40								
11E					0.091	0.40								
12E					0.048	0.21								
13E					< 0.01	0.01							5.75	10.35
TOTAL	3.74	16.39	1.62	7.11	1.80	7.84	0.02	0.08	0.28	1.23	0.28	1.23	4,656	20,381

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	ACHME	NT T –	FACIL	ITY-W	IDE H	AP CC	ONTRO	LLED]	EMISS	IONS S	SUMM	ARY SI	HEET		
List all sources of	emissions	s in this	table.	Use extr	ra page	s if ne	cessary.								
	Formalo	lehyde	Ben	Benzene Tol		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
1E	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
2E	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
3E	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
4E	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
5E	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
6E	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
7E	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
8E	0.14	0.63	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.30	1.33	
9E	0.14	0.63	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.30	1.33	
10E	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.010	< 0.01	0.015	< 0.01	0.016	0.01	0.05	0.017	0.078	
11E	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.010	< 0.01	0.015	< 0.01	0.016	0.01	0.05	0.017	0.078	
12E	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	0.01	< 0.01	0.02	0.01	0.042	
13E	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
TOTAL	0.288	1.263	< 0.01	< 0.01	0.01	0.03	0.01	0.04	0.01	0.05	0.04	0.17	0.66	2.91	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-C registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Northeast Natural Energy, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C General Permit Registration for its Kassay Well Pad located along Yank Hollow Road, near Fairview in Monongalia County, West Virginia. The latitude and longitude coordinates are: 39.65851 latitude and -80.194503 longitude.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

16.39 tons per year of Nitrogen Oxides
7.11 tons per year of Carbon Monoxide
7.87 tons per year of Volatile Organic Carbons
0.08 tons per year of Sulfur Oxides
0.51 tons per year of Acrolein
0.83 tons per year of Acetaldehyde
0.01 tons per year of Benzene
1.26 tons per year of Formaldehyde
0.17 tons per year of n-Hexane
1.23 tons per year of Particulate Matter
20,479 tons per year of Greenhouse Gases

Startup of operation is planned to begin on or about the first day of March, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month), (Year).

By: Northeast Natural Energy, LLC Brett Loflin Vice President Regulatory Affairs 48 Donley Street Suite 601 Morgantown, WV 26501