

G70-C PERMIT REGISTRATION APPLICATION

CUNNINGHAM ENERGY, LLC COCHRAN PAD BOMONT, CLAY COUNTY, WEST VIRGINIA

SEPTEMBER 2016

www.commengineering.com Phone: (337) 237-4373 Fax: (337) 234-1805

G70-C General Permit Registration Application

Cunningham Energy, LLC Cochran Pad

- Attachment A Single Source Determination Form
- Attachment B Sitting Criteria Waiver
- Attachment C Current Business Certificate
- Attachment D Process Flow Diagram
- Attachment E Process Description
- Attachment F Plot Plan
- Attachment G Area Map
- Attachment H G70-C Section Applicability Form
- Attachment I Emission Units / Emission Reduction Devices (ERD) Table
- Attachment J Fugitive Emissions Summary Sheet
- Attachment L Storage Vessel Data Sheet
- Attachment N Internal Combustion Engine Data Sheet
- Attachment O Tanker Truck Loading Data Sheet
- Attachment Q Pneumatic Controllers Data Sheet
- Attachment R Air Pollution Control Device / Emission Reduction Device Sheets
- Attachment S Emissions Calculations
- Attachment T Facility Wide Controlled Emissions Summary Sheet
- Attachment U Class I Legal Advertisement

dep	

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PH	ERMIT RI	EGISTRATION A	PPLICATION			
PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE						
\` \` CONSTRUCTION \` \' \' CLASS I ADMINISTRATIVE UPDATE \' \' \'						
□MODIFICATION □RELOCATION			E UPDATE			
SE	CTION 1. GENE	RAL INFORMATION				
Name of Applicant (as registered with the	WV Secretary of S	tate's Office): Cunningham En	ergy, LLC			
Federal Employer ID No. (FEIN): 26-2169	186					
Applicant's Mailing Address: 3230 Penns	ylvania Ave.					
City: Charleston	State: WV		ZIP Code: 25302			
Facility Name: Cochran Pad	ggggggal					
Operating Site Physical Address: Shelton R If none available, list road, city or town an						
City: Bomont, WV	Zip Code: 25030		County: Clay			
Latitude & Longitude Coordinates (NAD83 Latitude: 38.427525 Longitude: -81.220647	, Decimal Degrees	to 5 digits):				
SIC Code: 1311		DAQ Facility ID No. (For exist	ing facilities)			
NAICS Code: 211111						
	ERTIFICATION	OF INFORMATION				
Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dai compliance certifications and all requi Representative. If a business wishes to cert off and the appropriate names and sign unsigned G70-C Registration Application utilized, the application will b	This G70-C General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-C Registration Application will be returned to the applicant. No substitution of forms is allowed.					
I hereby certify that Ryan Cunningham is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.						
I hereby certify that all information contained in this G70-C General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.						
Responsible Official Signature:	5		1			
	Name and Title: Ryan Cunningham, President Phone: 304-344-9291 Fax: 304-344-9290					
If applicable:						
Authorized Representative Signature: Name and Title: Email;	Date:	Phone:	Fax:			
If applicable:	Date.					
Environmental Contact Name and Title: Ethan McMahon, Environm	ental Engineer	Dhanay 227 027 4272	E 227 024 1005			
Email: ermcmahon@commengineering.com	ientai Engineer	Phone: 337-237-4373 Date: 9/6/2016	Fax: 337-234-1805			

OPERATING SIT	E INFORMATION				
Briefly describe the proposed new operation and/or any chang to one of six high pressure, three phase separators. Natural Ga Oil Storage Tanks. Produced water flows to the Water Storage	as is sent directly to sales. Condensate/crude oil flows to the				
Directions to the facility: From Bomont, WV: Travel east on 0 north on local roads for 76 yards. Arrive at location.	CR-1 for 2.0 miles. Turn east on CR-6 for 1.2 miles. Turn				
ATTACHMENTS AND SU	PPORTING DOCUMENTS				
I have enclosed the following required document	ts:				
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (i I wish to pay by credit card. Contact for payment (incl. national states). 					
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or O ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or					
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. <i>NSPS and NESHAP fees apply to new construction or if the source is being modified.</i>					
Responsible Official or Authorized Representative Signatu	re (if applicable)				
Single Source Determination Form (must be completed in	its entirety) – Attachment A				
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C				
🛛 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E				
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G				
🛛 G70-C Section Applicability Form – Attachment H	Emission Units/ERD Table – Attachment I				
🛛 Fugitive Emissions Summary Sheet – Attachment J					
□ Gas Well Affected Facility Data Sheet (if applicable) – Att	tachment K				
⊠ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,				
□ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M					
⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N					
🛛 Tanker Truck Loading Data Sheet (if applicable) – Attachment O					
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P					
Pneumatic Controllers Data Sheet – Attachment Q					
⊠ Air Pollution Control Device/Emission Reduction Device(s applicable) – Attachment R	s) Sheet(s) (include manufacturer performance data sheet(s) is				
🖾 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S					
\boxtimes Facility-wide Emission Summary Sheet(s) – Attachment T					
🛛 Class I Legal Advertisement – Attachment U					
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	ndf copy of application and attachments				

☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \Box No X

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

Attachment B

Not applicable

ATTACHMENT B - SITING CRITERIA WAIVER

If applicable, please complete this form and it must be notarized.

G70-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby
Print Name
acknowledge and agree that ______ will
General Permit Applicant's Name

construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Date
Signature	Date
	1 cf
Taken, subscribed and sworn before me this	-
, 20	
My commission expires:	
SEAL	
Notary Public	

Attachment C

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

I, Betty Ireland, Secretary of State of the State of West Virginia, hereby certify that

CUNNINGHAM ENERGY LLC

Control Number: 10526

has filed its "Articles of Organization" in my office according to the provisions of West Virginia Code §§31B-2-203 and 206. I hereby declare the organization to be registered as a limited liability company from its effective date of March 10, 2008 until the expiration of the term or termination of the company.

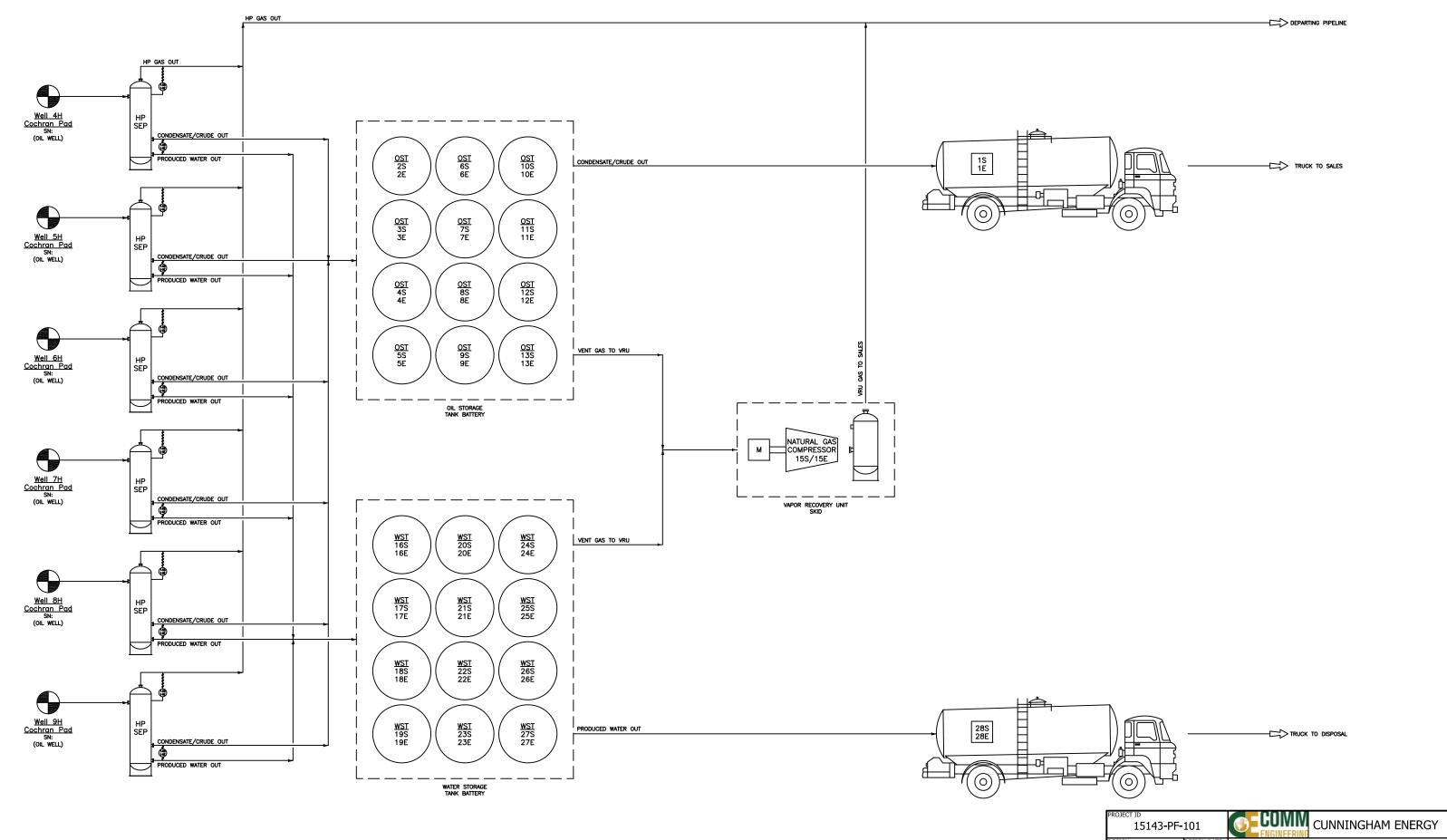
Therefore, I hereby issue this

CERTIFICATE OF A LIMITED LIABILITY COMPANY

Given under my hand and the Great Seal of the State of West Virginia on this day of March 10, 2008

Detty Treland

Secretary of State


Attachment D

ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

1511511	101		ENG	NEEF	RING		С.
DESIGN	DESIGN DATE						
JMS	9/1/2016	COC		D٨	D BOMONT	· \\\\	
DRAWN	DRAWN DATE	COC		PA		,	
JMS	9/2/2016		CECC		W DIAGRAN	Л	
CHECKED	CHECKED DATE	FRU	CL33	FLC	IN DIAGRAI	*	
ISSUED FOR APPROVAL	IFR DATE	SIZE			Job No	LAYOUT	REV
		D			151543	PF-101	11
APPD FOR CONSTRUCTION	AFC DATE	5			1010 10		-
						SHEET 1 OF 1	

Attachment E

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Cunningham Energy, LLC Cochran Pad

Process Description

The Cochran Pad is a crude oil and natural gas production facility in Clay County, West Virginia, which handles sweet natural gas (less than 24 ppm H_2S) and condensate/crude oil. The facility handles all stages of production. The facility annually processes approximately:

21,900 barrels of condensate/crude oil,47.45 million standard cubic feet natural gas, and13,140 barrels of produced water.

Separation

Production from six on site wells flows to one of six high pressure, three phase separators. Each separator contains two pneumatic controllers (Unit/Point ID: 14S / 14 E). Natural gas is sent directly to the sales pipeline. Condensate/crude oil flows to the Oil Storage Tanks (Unit/Point ID: 2S - 13S / 2E - 13E). Produced water flows to the Water Storage Tanks (Unit/Point ID: 16S - 27S / 16E - 27E).

Condensate/Crude Oil Storage and Load Out

Condensate/crude oil is stored in twelve (12) 210 barrel Oil Storage Tanks (Unit/Point ID: 2S - 13S / 2E - 13E). Flash, standing, and working losses are vented to Vapor Recovery System (Unit/Point ID: 1C / 1C) with a 95 % capture efficiency. The Vapor Recovery System is powered by the VRU Natural Gas Compressor Engine (Unit/Point ID: 15S / 15E). The vapors recovered by the Vapor Recovery System are sent directly to the sales pipeline. The stored condensate/crude oil is shipped via tank trucks to sales. Volatile Organic Compounds (VOCs) emissions resulting from the Tank Truck Oil/Condensate Loading Losses (Unit/Point ID: 1S / 1E) are vented to the atmosphere. The facility handles condensate/crude oil prior to lease custody transfer.

Produced Water Storage and Disposal

Produced water is stored in twelve (12) 210 barrel Water Storage Tanks (Unit/Point ID: 16S – 27S / 16E – 27E). Flash, standing, and working losses are vented to Vapor Recovery System (Unit/Point ID: 1C / 1C) with a 95 % capture efficiency. The Vapor Recovery System is powered by the VRU Natural Gas Compressor Engine (Unit/Point ID: 15S / 15E). The vapors recovered by the Vapor Recovery System are sent directly to the sales pipeline. The stored produced water is shipped via tank trucks for disposal. Volatile Organic Compounds (VOCs) emissions resulting from the Tank Truck Water Loading Losses (Unit/Point ID: 28S / 28E) are vented to the atmosphere.

Miscellaneous Sources

Fugitive natural gas and light liquid emissions (EPN: FE-01) occur from potential leaks from flanges, valves, and piping connections. Fugitive emissions are calculated using typical Cunningham Energy, LLC facility component counts and emission factors in EPA 4531, R-95-017.

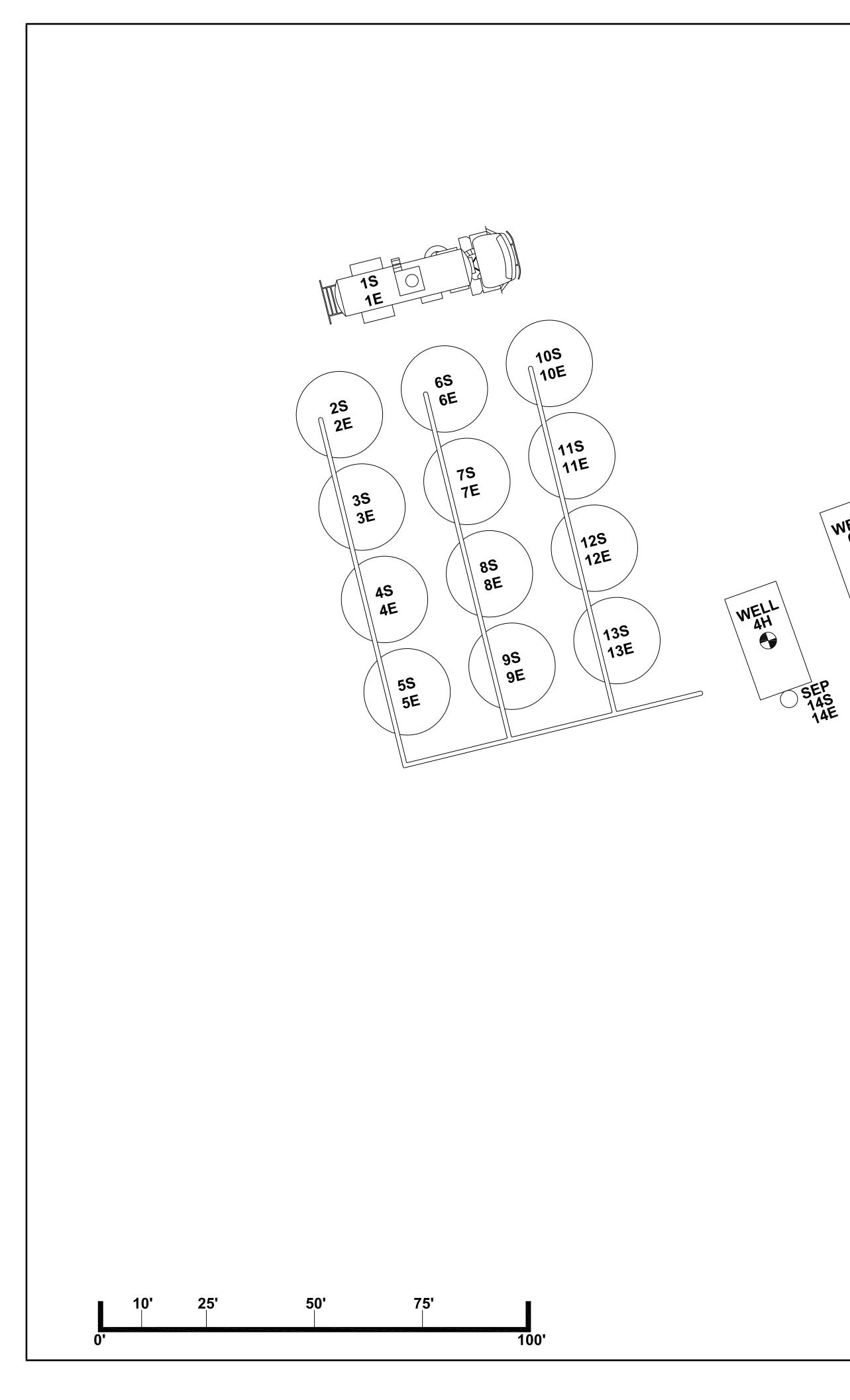
Site contains 6 electric pump engines (10 Horsepower).

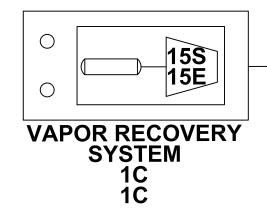
Site specific oil analysis was available and used for all respective calculations (included in attachment S). Site specific gas analysis was not available. A representative gas analysis from the EPA average emission factors was used for all applicable calculations (included in attachment S).

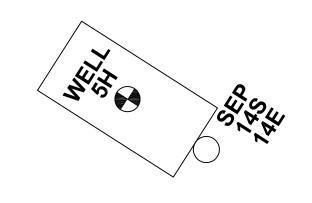
NSPS Subpart OOOOa does not apply to this site. Wells were completed before September 18, 2015 but after August 23, 2011.

Attachment F

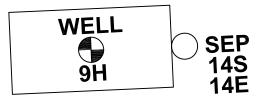
ATTACHMENT F – PLOT PLAN

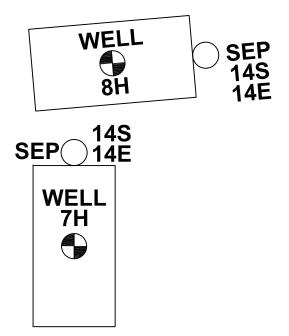

Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

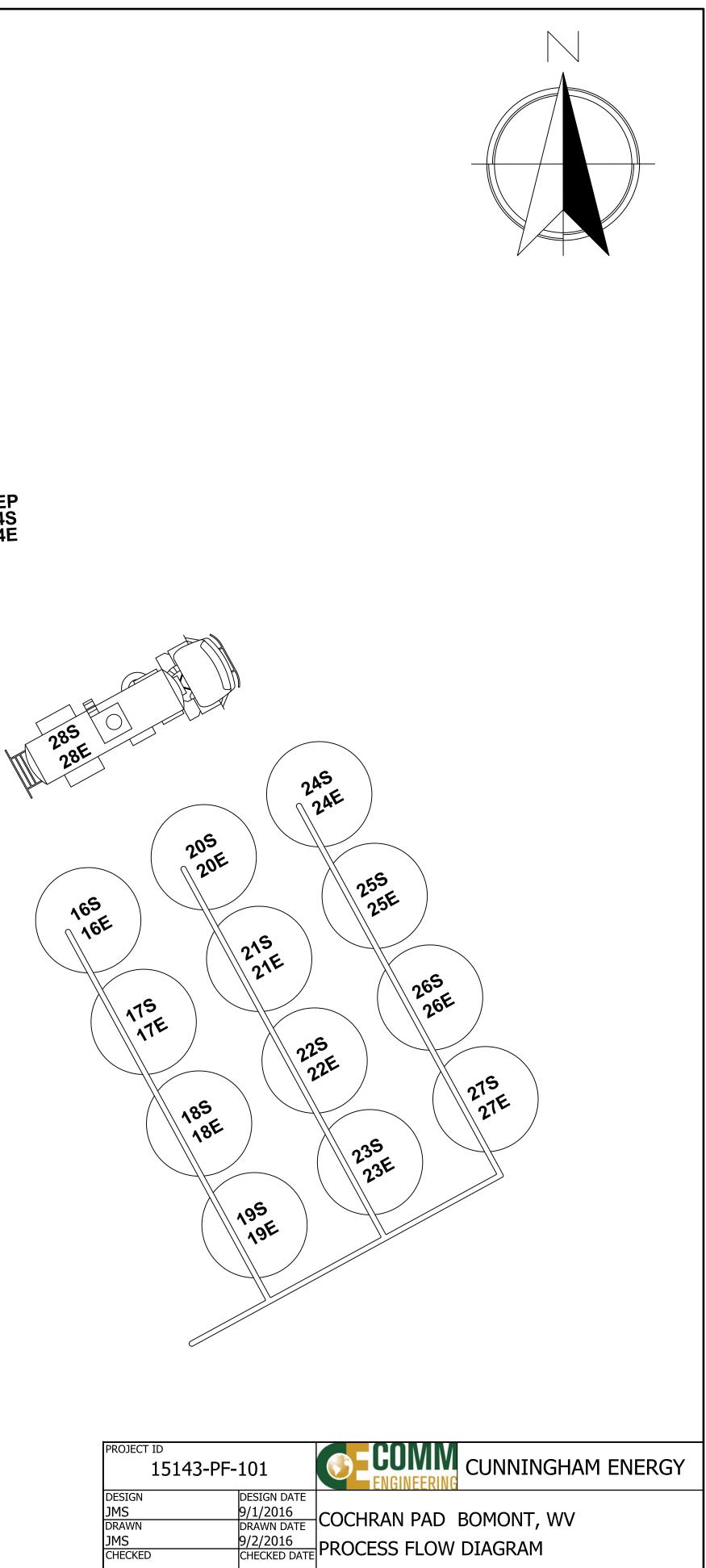

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.


Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers


This information is required for all sources regardless of whether it is a construction, modification, or administrative update.





WELL 6H

 CHECKED
 CHECKED DATE
 PROCESS FLOW DIAGRAM

 ISSUED FOR APPROVAL
 IFR DATE
 SIZE
 JOB NO
 LAYOUT
 REV

 APPD FOR CONSTRUCTION
 AFC DATE
 D
 151543
 PF-101
 1

 SHEET 1 OF 1

Attachment G

ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Cunningham Energy, LLC

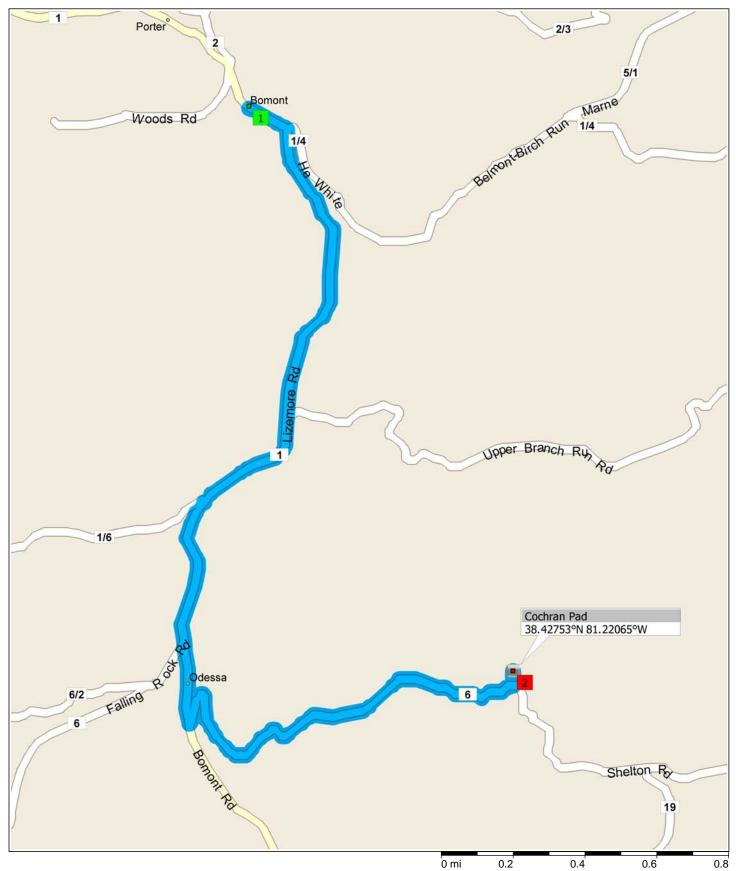
300' Boundary Map

Legend

(Cochran) 38.427525,-81.220647

(Cochran) 38.427525,-81.220647

Shelton Rd.



© 2016 Google

N

Cunningham Energy, LLC - Cochran Pad

3.3 miles; 7 minutes

Copyright © and (P) 1988–2012 Microsoft Corporation and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ Certain mapping and direction data © 2012 NAVTEQ. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2012 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc. © 2012 by Applied Geographic Solutions. All rights reserved. Portions © Copyright 2012 by Woodall Publications Corp. All rights reserved.

9:00 AM	0.0 mi	1 Depart Bomont on CR-1 [Lizemore Rd] (East) for 1.8 mi
---------	--------	---

- 9:03 AM 1.8 mi Keep STRAIGHT onto CR-1 [Bomont Rd] for 0.2 mi
- 9:03 AM 2.0 mi Turn LEFT (East) onto CR-6 [Shelton Rd] for 1.2 mi
- 9:07 AM 3.2 mi Bear LEFT (North) onto Local road(s) for 76 yds
- 9:07 AM 3.3 mi 2 Arrive Cochran Pad

Copyright © and (P) 1988–2012 Microsoft Corporation and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ Certain mapping and direction data © 2012 NAVTEQ. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2012 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc. © 2012 by Applied Geographic Solutions. All rights reserved. Portions © Copyright 2012 by Woodall Publications Corp. All rights reserved.

Attachment H

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	ENERAL PERMIT G70-C APPLICABLE SECTIONS
\Box Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
X Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
□Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
\Box Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
X Section 14.0	Tanker Truck Loading ³
□Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
1 S	1E	Tank Truck Oil/Condensate Loading Losses	2015	N/A	N/A	N/A	N/A	N/A
28	2E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
3S	3E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
4S	4E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
5S	5E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
6S	6E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
7S	7E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
8S	8E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
9S	9E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
10S	10E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
11 S	11E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
128	12E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
138	13E	Oil Storage Tank	2015	2015	210 bbls.	New	1C	N/A
14S	14E	Pneumatic Controllers	2015	2015	N/A	New	N/A	N/A
1C	1C	Vapor Recovery System	2016	2015	5 osig	New	N/A	N/A
15S	15E	VRU Natural Gas Compressor Engine	2016	2015	101 HP	New	N/A	N/A
16S	16E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
17S	17E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
18S	18E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
19S	19E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
205	20E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
21S	21E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
228	22E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
238	23E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
24S	24E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
258	25E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
26S	26E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A
27S	27E	Water Storage Tank	2015	2015	210 bbls.	New	1C	N/A

285	28E	Tank Truck Water Loading Losses	2015	N/A	N/A	N/A	N/A	N/A
¹ For Emi	¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation.							
² For Emi	ssion Points	use the following numbering system:1E, 2E, 3E,	or other app	ropriate				
designatio	designation. ³ When required by rule							
⁴ New, m	⁴ New, modification, removal, existing							
⁵ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.								
⁶ For ERI	Os use the fol	lowing numbering system: 1D, 2D, 3D, or other a	appropriate d	esignation.				

Attachment J

			ATTACHMEN	T J – FUGITIVE EMIS	SSIONS SUM	MARY SHE	EET	
		Sources	of fugitive emissions ma Use extra pages	y include loading operations for each associated sour	· · ·			ions, etc.
	Source/Equipm	nent: FE-0	1					
	Leak Detection Method Used	1	⊠ Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (plea	se describe)		□ None required
Compone	nt Closed		Source of	Leak Factors	Stream type		Estimated Emi	ssions (tpy)
Туре	Vent System	Count		ner (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes □ No	0			☐ Gas ☐ Liquid ☐ Both	N/A	N/A	N/A
Valves	⊠ Yes □ No	682	EPA 4531, R-95-017		□ Gas □ Liquid ⊠ Both	4.423	0.083	291.953
Safety Reli Valves	ief	0					N/A	N/A
Open Ende Lines	$d \qquad \square \ No$	68	EPA 4531, R-95-017	EPA 4531, R-95-017			0.004	14.814
Sampling Connectior	□ Yes □ No	0				N/A	N/A	N/A
Connectior (Not sampli		2046	EPA 4531, R-95-017		□ Gas □ Liquid ⊠ Both	0.961	0.011	59.155
Compresso	ors \square No	1	EPA 4531, R-95-017	EPA 4531, R-95-017		0.48	0.03	44.75
Flanges	⊠ Yes □ No	682	EPA 4531, R-95-017		□ Gas □ Liquid ⊠ Both	0.250	0.007	18.382
Other ¹	⊠ Yes □ No	34	EPA 4531, R-95-017	□ Gas □ Liquid ⊠ Both	0.603	0.008	39.581	

Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): 6 Gas and Oil Wellheads, 6 HP Separators, 1 Gas Sales Meter, 12 Oil Storage Tanks, 6 Oil Transfer Pumps – Electric, 1 Gas Compressor, 2 Number of Stages for Compressor, 1 Compressor Seal.

Please indicate if there are any closed vent by passes (include component): $N\!/\!A$

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) VRU

Attachment L

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name: Oil Storage Tanks	2. Tank Name: OST-01 - OST-12				
3. Emission Unit ID number: 2S-13S	4. Emission Point ID number: 2E-13E				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
2015	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
\boxtimes Yes \Box No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
210 barrels					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 13	10B. Average Liquid Height (ft.) 7.5				
11A. Maximum Vapor Space Height (ft.) 13	11B. Average Vapor Space Height (ft.) 7.5				
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume". 210 bbls				
13A. Maximum annual throughput (gal/yr) 76,650	13B. Maximum daily throughput (gal/day) 210				
14. Number of tank turnovers per year: 9	15. Maximum tank fill rate (gal/min): 0.1458				
16. Tank fill method \square Submerged \square Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Ye	s 🛛 No				
If yes, (A) What is the volume expansion capacity of the syste	m (gal)?				
(B) What are the number of transfers into the system pe	r year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat ro	of \Box cone roof \boxtimes dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box doub	le deck roof				
Domed External (or Covered) Floating Roof					
\Box Internal Floating Roof \Box vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphrag	n				
□ Pressurized □ spherical □ cylindrica	d .				
□ Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	oly:									
☑ Does Not Apply	ly 🗌 Rupture Disc (psig)									
□ Inert Gas Blanket of _	\Box Carbon Adsorption ¹									
□ Vent to Vapor Combu	stion Dev	ice ¹ (vapo	or combus	tors, flares	, thermal o	oxidizers,	enclosed c	ombustors	5)	
□ Conservation Vent (ps	Conservation Vent (psig)			\Box Condenser ¹						
Vacuum Setting	0.1	Pressure	Setting							
□ Emergency Relief Val	ve (psig)		-							
Vacuum Setting		Pressure	Setting							
\Box Thief Hatch Weighted \Box Yes \Box No										
¹ Complete appropriate Air Pollution Control Device Sheet										
20. Expected Emission R	ate (subm	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applicat	ion).		
Material Name	Flashing Loss		Breathing Loss		Working Loss		Total		Estimation Method ¹	
							Emissions Loss			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
HAPs	-	-	-	-	-	-	0.004	0.017	E & P Tanks	
VOC										
VOC	-	-	-	-	-	-	0.451	1.975	E & P Tanks	
	-	-	-	-	-	-	0.451	1.975	E & P Tanks	
	-	-	-	-	-	-	0.451	1.975	E & P Tanks	
	-	-	-	-	-	-	0.451	1.975	E & P Tanks	
	-	-	-	-	-	-	0.451	1.975	E & P Tanks	
		-	-	-	-	-	0.451	1.975	E & P Tanks	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\boxtimes Riveted \square Gunite lined \square Epox	v-coated rivets \Box O	ther (de	scribe)				
21A. Shell Color: Black	21B. Roof Color: Bla			21C Year	Last Painted: 2015		
22. Shell Condition (if metal and unlined):	21D. Roof Color. Dia	ex		210. 100	Last Fainted. 2015		
\boxtimes No Rust \square Light Rust \square Dense	e Rust 🛛 Not applic	able					
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperatu	ire:	22C. If yes	s, how is heat provided to tank?		
22. One mating Processon Process (agin): 0.2125							
23. Operating Pressure Range (psig): 0.3125	4						
Must be listed for tanks using VRUs with 24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome		: 1 1: (ft).	24D If	f		
\boxtimes Yes \square No	10		ide fadius (it):	N/A	s, for cone roof, provide slop (ft/ft):		
25. Complete item 25 for Floating Roof Tank	s \Box Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:	11.5						
25B. Primary Seal Type (<i>check one</i>): Me	tallic (mechanical) sho	e seal	□ Liquid mo	unted resili	ent seal		
	por mounted resilient s		□ Diquid mot				
25C. Is the Floating Roof equipped with a seco	ondary seal? Ves	□ No					
25D. If yes, how is the secondary seal mounted	$(check one) \square$ Sho	e 🗆	Rim 🗆 Oth	ner (describ	e):		
25E. Is the floating roof equipped with a weath		N			-).		
25F. Describe deck fittings:			0				
251. Describe deck fittings.							
26. Complete the following section for Interna	l Flooting Doof Tonka		Does not apply	7			
	-						
26A. Deck Type:	26A. Deck Type: Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:						
26C. Deck seam. Continuous sheet construction	on:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	le \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported		
			# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? Xes	□ No						
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖂 No						
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based	. Charle	ston WV				
30. Daily Avg. Ambient Temperature (°F): 54				mum Tempe	rature (°F): 65.5		
32. Annual Avg. Minimum Temperature (°F):			g. Wind Speed (-	initiae (1): 03:5		
34. Annual Avg. Solar Insulation Factor (BTU			mospheric Press	-	1 70		
LIQUID INFORMATION	10 aug): 112010	00111	inospitette Tress	are (point): I			
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 7	70		36B. Max	mum (°F): 90		
liquid (°F): 80				50D. Maximum (1). 50			
37. Avg. operating pressure range of tank	37A. Minimum (psig)	: 0.15625		37B. Maximum (psig): 0.3125			
(psig): 0.2343							
38A. Minimum liquid surface temperature (°F	: 70	38B. 0	Corresponding va	apor pressure	(psia):-14.54		
39A. Avg. liquid surface temperature (°F): 85		39B. (Corresponding va	apor pressure	(psia):-14.46		
40A. Maximum liquid surface temperature (°F): 100	40B. 0	Corresponding va	apor pressure	(psia):-14.38		
41. Provide the following for each liquid or ga	s to be stored in the tank.	Add add	itional pages if r	necessary.			
41A. Material name and composition: Crude Oil							
41B. CAS number:	8002-05-9						
41C. Liquid density (lb/gal): 6.19							
41D. Liquid molecular weight (lb/lb-mole): 130.9							
41E. Vapor molecular weight (lb/lb-mole):	39.97						
41F. Maximum true vapor pressure (psia):	5.7						
41G. Maximum Reid vapor pressure (psia):	6.63						
41H. Months Storage per year.	12						
From: To: 12							

42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as	174 psig and 72 F	
inputs into flashing emission calculations.		

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name: Water Storage Tanks	2. Tank Name: WST-01 - WST-12				
3. Emission Unit ID number: 16S-27S	4. Emission Point ID number: 16E-27E				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
2015	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011?	\Box Relocation				
\boxtimes Yes \square No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.							
210 barrels							
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15						
10A. Maximum Liquid Height (ft.) 13	10B. Average Liquid Height (ft.) 7.5						
11A. Maximum Vapor Space Height (ft.) 13	11B. Average Vapor Space Height (ft.) 7.5						
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 210 bbls						
13A. Maximum annual throughput (gal/yr) 45,990	13B. Maximum daily throughput (gal/day) 126						
14. Number of tank turnovers per year: 6	15. Maximum tank fill rate (gal/min): 0.0875						
16. Tank fill method \boxtimes Submerged \square Splash	Bottom Loading						
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No						
If yes, (A) What is the volume expansion capacity of the system	(gal)?						
(B) What are the number of transfers into the system per	year?						
18. Type of tank (check all that apply):							
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat root	f \Box cone roof \boxtimes dome roof \Box other (describe)						
\Box External Floating Roof \Box pontoon roof \Box double	deck roof						
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support	□ self-supporting						
\Box Variable Vapor Space \Box lifter roof \Box diaphragm							
□ Pressurized □ spherical □ cylindrical							
\Box Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:		
Does Not Apply		□ Rupture Disc (psig)
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹
□ Vent to Vapor Combustion Dev	ice1 (vapor combus	tors, flares, thermal oxidizers, enclosed combustors)
\Box Conservation Vent (psig)		\Box Condenser ¹
Vacuum Setting	Pressure Setting	
\Box Emergency Relief Valve (psig)		

Vacuum Setting Pressure Setting

 $\hfill\square$ Thief Hatch Weighted $\hfill\square$ Yes $\hfill\square$ No

¹ Complete appropriate Air Pollution Control Device Sheet

Material Name	Flashi	Flashing Loss Brea		ng Loss	Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
HAPs	-	-	-	-	-	-	0.000	0.000	E & P Tanks
VOC	-	-	-	-	-	-	0.002	0.011	E & P Tanks

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:	21. Tank Shell Construction:						
\boxtimes Riveted \square Gunite lined \square Epoxy	y-coated rivets \Box O	ther (describe)					
21A. Shell Color: Black	21B. Roof Color: Bla	ck	21C. Year	Last Painted: 2015			
22. Shell Condition (if metal and unlined):							
\boxtimes No Rust \square Light Rust \square Dense							
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat pro-							
23. Operating Pressure Range (psig): 0.3125							
Must be listed for tanks using VRUs with	•		-				
24. Is the tank a Vertical Fixed Roof Tank ?	•	roof provide radius (ft):	5	s, for cone roof, provide slop (ft/ft):			
\boxtimes Yes \Box No	10		N/A				
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal			
□ Vap	or mounted resilient s	eal \Box Other (des	scribe):				
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	□ No					
25D. If yes, how is the secondary seal mounted	? (check one) 🛛 Sho	e 🗆 Rim 🗆 Oth	ner (describ	e):			
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes	□ No					
25F. Describe deck fittings:							
26 Complete the following section for Interne	I Flooting Doof Tonka	Doog not apply	. 7				
26. Complete the following section for Interna	-	\boxtimes Does not apply		1 , ,			
26A. Deck Type: \Box Bolted \Box W	Velded	26B. For bolted decks,	, provide dec	k construction:			
26C. Deck seam. Continuous sheet constructio	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)			
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column suppo	orted	26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? \boxtimes Yes							
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🖾 No						
SITE INFORMATION							
29. Provide the city and state on which the data							
30. Daily Avg. Ambient Temperature (°F): 54.		31. Annual Avg. Maximum Temperature (°F): 65.5					
32. Annual Avg. Minimum Temperature (°F): 4		33. Avg. Wind Speed	· • ·				
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day): 1123.0	35. Atmospheric Press	ure (psia): 1-	4.70			
LIQUID INFORMATION							

36. Avg. daily temperature range of bulk liquid (°F): 80	36A. Minimum (°F): 7	0		36B. Maximu	m (°F): 90
37. Avg. operating pressure range of tank (psig): 0.2343	37A. Minimum (psig): 0.15625			37B. Maximum (psig): 0.3125	
38A. Minimum liquid surface temperature (°F)	: 70	38B. (Corresponding va	apor pressure (ps	ia):-14.54
39A. Avg. liquid surface temperature (°F): 85		39B. (Corresponding va	apor pressure (ps	ia):-14.46
40A. Maximum liquid surface temperature (°F)	: 100	40B. 0	Corresponding va	apor pressure (ps	ia):-14.38
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if 1	necessary.	
41A. Material name and composition:	Produced Wate	r			
41B. CAS number:	N/A				
41C. Liquid density (lb/gal):	8.3121				
41D. Liquid molecular weight (lb/lb-mole):	N/A				
41E. Vapor molecular weight (lb/lb-mole):	N/A				
41F. Maximum true vapor pressure (psia):	N/A				
41G. Maximum Reid vapor pressure (psia):	N/A				
41H. Months Storage per year. From: To:	12				
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	174 psig and 72	F			

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

- Enter storage tank Status using the following:
 - EXIST
 - Existing Equipment Installation of New Equipment NEW
 - REM Equipment Removed
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- 4. Enter the maximum design storage tank volume in gallons.

Attachment N

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

shall also ı	ise this form						
Emission Unit I	D#1	1:	5S				
Engine Manufac	cturer/Model	Ajax / D	PC - 105				
Manufacturers Rated bhp/rpm		101	/ 425				
Source Status ²		Ň	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20)15				
Engine Manufac /Reconstruction		N	/A				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ ☑ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		28	LB				
APCD Type ⁷		N/A					
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf)		0	.2				
Operating bhp/rpm		101 / 425					
BSFC (BTU/bhp-hr)		8800					
Hourly Fuel Th	roughput	388 ft ³ /hr 2902.44 gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	3.4 MMft ³ /yr 25425374.4 gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🗆 No 🗆		Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.982	4.30				
MD	СО	0.625	2.737				
MD	VOC	0.112	0.491				
AP-42	SO ₂	0.001	0.004				
AP-42	PM 10	0.000	0.000				
MD	Formaldehyde	0.067	0.293				
MD	Total HAPs	0.075	0.328				
AP-42	GHG (CO ₂ e)	320.382	1403.275				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following codes:							
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	B F	our Sti	roke Rich Burn			
7	Enter th	the Air Pollution Control Device (APCD) type designation(s) using the following codes:							
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		Ĺ	R IPC EC vxCat	Ignition Retard Screw-in Precombuss Low Emission Comb Oxidation Catalyst		'S	
8	Enter th	e Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas R	G	Raw N	Vatural	Gas /Production Gas	D	Diesel	
9	Enter t	the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.							
	MD GR	Manufacturer's Data GRI-HAPCalc TM		AP OT	AP Oth		se list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device(Emission Unit ID#, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗆 🛛 No 🗆

\Box NSCR	□ SCR □ Oxidation Catalyst
Provide details of process control used for proper n	mixing/control of reducing agent with gas stream:
Manufacturer:	Model #:
Design Operating Temperature: °F	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P):	inches of H ₂ O
Provide description of warning/atarm system that p	protects unit when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst require	ed to be monitored per 40CFR63 Subpart ZZZZ?

Attachment O

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#:			Emission Point ID#:			Year Installed/Modified:		
Emission Unit Description:								
			Loading	Area Data				
Number of Pumps:	Number of Pumps:Number of Liquids Loaded:Max number of trucks loading at one (1) time:							trucks loading at one
Are tanker trucks pressure tested for leaks at this or any other location? If Yes, Please describe:								
Provide description of c	losed vent syste	m and an	y bypasses.	N/A				
□ Closed System to tai □ Closed System to tai	 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 							
Pro	jected Maximu	n Operat	ting Schedul	e (for rack o	r transf	er point as a	a who	ole)
Time	Jan – Ma	ar	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day								
Days/week								
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Crude O	1		Produced V	Vater			
Max. Daily Throughput (1000 gal/day)	2.520			1.512				
Max. Annual Throughpu (1000 gal/yr)	^{1t} 920.4			552.2				
Loading Method ¹	BF			BF				
Max. Fill Rate (gal/min)) 133			133				
Average Fill Time (min/loading)66			66					
Max. Bulk Liquid Temperature (°F) 90				80				
True Vapor Pressure ² 0.32 psig		ig		N/A				
Cargo Vessel Condition	³ C			С				
Control Equipment or Method ⁴	N/A			N/A				
Max. Collection Efficient	ncy 0%			0%				

Max. Control (%)	Efficiency			
Max.VOC Emission	Loading (lb/hr)	23.1572	0.2316	
Rate	Annual (ton/yr)	1.3346	0.0080	
Max.HAP	Loading (lb/hr)	0.0255	0.0255	
Emission Rate	Annual (ton/yr)	0.0015	0.0009	
Estimation Method ⁵		AP-42	AP-42	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
2	At maxin	num bulk liquid temperature				

Ballasted Vessel С U 3 В Cleaned Uncleaned (dedicated service) Other (describe) 0

MB

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Carbon Adsorption Enclosed Combustion Device Dedicated Vapor Balance (closed system) CAVB

F Flare ECD

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 то

EPA

5

Material Balance ТМ Test Measurement based upon test data submittal 0 Other (describe)

Attachment Q

ATTACHMENT Q – PNEUMATIC CONTROLLERS
DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?

Yes	🖂 No
-----	------

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?

Yes	🛛 No
-----	------

Please list approximate number.

Attachment R

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID: 1C Make/Model:				
Primary Control Device ID: 1C	Make/Model: TE Services / Vapor Recovery System			
Control Efficiency (%): 95	APCD/ERD Data Sheet Completed: Yes No			
Secondary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			

VAPOR RECOVERY UNIT								
	General Information							
Emission U	Emission Unit ID#: 1C Installation Date: 8/25/2016							
	Device Information							
	Manufacturer: TE Services Model: Vapor Recovery System							
List the en	nission units whose emissions are controlled by this	s vapor recov	very unit (Emission Point ID#)					
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description					
28	Oil Storage Tank	16S	Water Storage Tank					
35	Oil Storage Tank	17S	Water Storage Tank					
4S	Oil Storage Tank	18S	Water Storage Tank					
55	Oil Storage Tank	19S	Water Storage Tank					
6S	Oil Storage Tank	20S	Water Storage Tank					
75	Oil Storage Tank	21S	Water Storage Tank					
85	Oil Storage Tank	228	Water Storage Tank					
9S	Oil Storage Tank	238	Water Storage Tank					
10S	Oil Storage Tank	24S	Water Storage Tank					
11S	Oil Storage Tank	258	Water Storage Tank					
128	Oil Storage Tank	26S	Water Storage Tank					
138	Oil Storage Tank	27S	Water Storage Tank					

If this vapor recovery unit controls emissions from more than six (6) emission units, please attach additional pages.

Additional information attached? \Box Yes \boxtimes No

Please attach copies of manufacturer's data sheets, drawings, and performance testing.

The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.

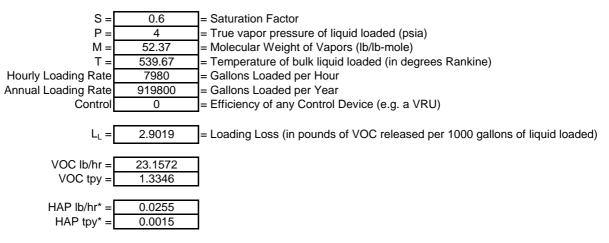
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

Attachment S

ATTACHMENT S – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.


Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Company Name:	Cunningham Energy, LLC
Facility Name:	Cochran Pad
Emission Unit ID:	1S
Emission Point ID:	1E
Control Devices:	None
Source Description:	Tank Truck Oil/Condensate Loading Losses

Using equation $L_L = 12.46^*$ SPM/T from AP-42, Chapter 5, Section 5.2-4

Note: Use default wt% for HAP = 0.11%

0 1 0		
Oil St	orage Tanks	
	ion Unit ID: 2S	- 13S Emision Point ID: 2E - 13E Control Device: 1C
1.111100		

	oject Setup Infor	

Project I		: T:\Customers\Cunningham Energy\Air\Cochran Pad\1. Application\OST Calcs.ep
	t Selection	: Oil Tank with Separator
	ion Method	: RVP Distillation
	Efficiency	: 0.0%
	parator Stream	: Low Pressure Oil
Entering	Air Composition	: No
		Consideration Transmis II.C.
Filed Nar		: Cunningham Energy, LLC
Well Name Well ID	3	: Cochran Pad
Date		: Oil Storage Tanks : 2016.08.31
Date		: 2010.00.31
*******	*****	******************
* Dat	ta Input	*
*******	* * * * * * * * * * * * * * * * * *	***************************************
-	r Pressure	: 174.00[psig]
-	r Temperature	: 72.00[F]
Ambient 1		: 14.70[psia]
	Temperature	: 60.00[F]
C10+ SG		: 0.7431
C10+ MW		: 130.90
Low P	reggure Oil	
No.	Component	mol %
1	H2S	0.0000
2	02	0.0000
3	CO2	0.0000
4	N2	0.0360
5	C1	3.5710
6	C2	7.2560
7	C2 C3	11.1570
8	i-C4	3.3760
9	n-C4	9.3480
10	i-C5	5.2890
11	n-C5	4.9970
12	C6	4.1790
13	C7	7.1590
14	C8	7.6010
15	C9	3.6390
16	C10+	27.1430
17	Benzene	0.3230
18	Toluene	0.5110
19	E-Benzene	0.2940
20	Xylenes	1.0610
21	n-C6	3.0600
22	224Trimethylp	0.0000
		: 5[bbl/day]
		: 365 [days/year]
API Grav:	-	: 49.84
	or Pressure	: 0.03[ps1a]
Reid Vapo		
Reid Vapo		
	*****	***********************
*****	**************************************	
******** * Cal	lculation Results	
******** * Cal	lculation Results	\$ *
********* * Cal ********	lculation Results	\$ *
********* * Cal ********	lculation Results	* * * * * * * * * * * * * * * * * * *

Tot VOC VOC	al HAPs al HC s, C2+ s, C3+	0.350 48.551 46.671 39.511	0.080 11.085 10.655 9.021	a Vaj	Flash, standing, and working losses are sent directly to a Vapor Recovery System. Per WVDEP Vapor Recovery Systems receive a control efficiency of 95%.			
Unc	ontrolled Recove Vapor	2.2800	[MSCFD]					
	HC Vapor	2.2800	[MSCFD]					
	GOR	456.00	[SCF/bbl]					
	Emission Composi	tion						
No	Component	Uncontrolled	Uncontroll	led				
		[ton/yr]	[lb/hr]					
1	H2S	0.000	0.000					
2	02	0.000	0.000					
3	CO2	0.000	0.000					
4	N2	0.033	0.008					
5	C1	1.880	0.429					
6	C2	7.160	1.635					
7	C3	16.071	3.669					
8	i-C4	5.501	1.256					
9	n-C4	11.862	2.708					
10	i-C5	2.761	0.630					
11 12	n-C5 C6	1.831	0.418					
13	C8 C7	0.523 0.314	0.119 0.072					
14	C8	0.110	0.025					
15	C9	0.019	0.004					
16	C10+	0.172	0.039					
17	Benzene	0.026	0.006					
18	Toluene	0.013	0.003					
	E-Benzene	0.003	0.001					
20	Xylenes	0.008	0.002					
21	=	0.298	0.068					
22	224Trimethylp	0.000	0.000					
	Total	48.585	11.092					
	Stream Data							
No.	Component	MW	LP Oil			Flash Gas		Total Emissions
			mol %	mol %	mol %	mol %	mol %	mol %
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2	44.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4 5	N2 Cl	28.01 16.04	0.0360	0.0003 0.1122	0.0000 0.0000	0.1769 17.2175	0.0018 0.6739	0.1075
6	C1 C2	30.07	3.5710 7.2560	1.4076	0.0002	30.3302	8.4571	10.6604 21.6607
7	C3	44.10	11.1570	6.0428	0.0766	31.3345	35.9272	33.1549
8	i-C4	58.12	3.3760	2.9119	0.7396	5.2070	13.7925	8.6099
9	n-C4	58.12	9.3480	9.0117	4.7044	10.6749	30.5842	18.5660
	i-C5	72.15	5.2890	6.0169	6.1995	2.4170	5.1031	3.4817
11		72.15	4.9970	5.8474	6.3515	1.6420	3.3226	2.3081
12	C6	86.16	4.1790	5.1355	5.9989	0.4054	0.8107	0.5660
13	C7	100.20	7.1590	8.9225	10.6167	0.2013	0.4368	0.2946
14	C8	114.23	7.6010	9.5129	11.3843	0.0578	0.1397	0.0902
15	C9	128.28	3.6390	4.5593	5.4648	0.0082	0.0236	0.0143
16	C10+	130.90	27.1430	34.0050	40.7552	0.0697	0.1947	0.1193
17		78.11	0.3230	0.3993	0.4702	0.0218	0.0445	0.0308
18	Toluene	92.13	0.5110	0.6384	0.7622	0.0083	0.0187	0.0124
	E-Benzene	106.17	0.2940	0.3682	0.4410	0.0014	0.0034	0.0022
20	-	106.17	1.0610	1.3289	1.5921	0.0041	0.0106	0.0067
	n-C6	86.18	3.0600	3.7793	4.4430	0.2221	0.4551	0.3144
22	224Trimethylp	114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	MW		96 33	09 24	107 40	20 02	50 27	44 20
	MW Stream Mole Rat	io	86.23 1.0000	98.24 0.7978	107.40 0.6650	38.83 0.2022	52.37 0.1328	44.20 0.3350
	Heating Value	[BTU/SCF]			5.0050	2230.98	2954.39	2517.71
	Gas Gravity	[Gas/Air]				1.34	1.81	1.53
	Bubble Pt. @ 10		188.66	33.99	7.02			

RVP @ 100F	[psia]	75.48	24.47	6.68
Spec. Gravity @ 100F		0.662	0.685	0.699

Company:Cunningham Energy, LLCFacility:Cochran PadEmission Unit ID:14SEmission Point ID:14EControl Devices:NoneSource Description:Pneumatic Controllers

Quantity of controllers: Gas Vent Rate: Annual Operation: Total Gas Vented: Emissions:
 12

 1.2
 SCFH*

 8760
 hr/yr

 14.40
 SCFH

 1.476
 lb/hr gas (total gas stream)

 12929.76
 lb/year gas

 6.465
 ton/year gas

Emission Speciation:

Component	Mole Percentage	Molecular Weight	Mole Fraction x Molec Weight	Weight Fraction	avg lbs/hr	tons/yr
Nitrogen	0.177%	28.013	0.050	0.0013	0.0019	0.0084
Carbon Dioxide	0.000%	44.010	0.000	0.0000	0.0000	0.0000
Methane	17.218%	16.043	2.762	0.0711	0.1049	0.4597
Ethane	30.330%	30.070	9.120	0.2347	0.3464	1.5173
Propane	31.335%	44.097	13.818	0.3556	0.5249	2.2990
iso-Butane	5.207%	58.123	3.027	0.0779	0.1150	0.5036
n-Butane	10.675%	58.123	6.205	0.1597	0.2357	1.0325
iso-Pentane	2.417%	72.150	1.744	0.0449	0.0663	0.2903
n-Pentane	1.642%	72.150	1.185	0.0305	0.0450	0.1972
Other Hexanes	0.405%	86.178	0.349	0.0090	0.0133	0.0582
*n-Hexane	0.222%	86.178	0.191	0.0049	0.0072	0.0317
*Benzene	0.022%	78.114	0.017	0.0004	0.0006	0.0026
*Toluene	0.008%	92.141	0.008	0.0002	0.0003	0.0013
*Ethylbenzene	0.001%	106.167	0.002	0.0000	0.0001	0.0003
*Xylenes	0.004%	106.167	0.004	0.0001	0.0002	0.0007
*Trimethylpentane	0.000%	114.231	0.000	0.0000	0.0000	0.0000
Heptanes	0.201%	100.272	0.202	0.0052	0.0077	0.0336
Octanes	0.058%	114.231	0.066	0.0017	0.0025	0.0110
Nonanes	0.008%	128.258	0.011	0.0003	0.0004	0.0017
Decanes+	0.070%	142.280	0.099	0.0026	0.0038	0.0165
	100.000%	Molecular Weight =	38.8582	1.0001		

-		
Total Non-Toxic VOCs	1.0146	4.4436
Total Toxic VOCs	0.0084	0.0366
Total VOCs (includes toxics)	1.0230	4.4802

Notes:

Component lbs/hr = (lbs HC/hr)(component weight fraction) Component tons/yr = (tons HC/yr)(component weight fraction)

Company Name:	Cunningham Energy, LLC
Facility:	Cochran Pad
Emission Unit ID:	15S
Emission Point ID:	15E
Control Device:	None
Source Description:	VRU Natural Gas Compressor Engine
Engine Type:	Lean-burn, 4-stroke

Emission Calculations:

Rated Engine Capacity:	101	hp
Btu Value of Fuel Gas:	2291.54	Btu/scf
Engine Heat Input:	8800	Btu/hp-hr
Hours Operated for Year:	8760	hrs
Calculated Heat Rate:	0.89	MMBtu/hr
Calculated Fuel Use:	388	cu. ft./hr;
	3.4	MMCF/yr
Percent Operation for Year:	100.00	%

	Pollutant	Factor Ib/MMBTU	g/hp-hr	Avg. Ibs/hr	Total tons/yr	Source of Factor
	NOx	1.103	4.40	0.982	4.300	Manufacturer Data
SIA	со	0.702	2.80	0.625	2.737	Manufacturer Data
CRITERIA	PM ₁₀	7.71E-05	0.0003	0.000	0.000	AP-42, Table 3.2-2, 7/00
CR	SO ₂ ¹	9.19E-04	0.004	0.001	0.004	AP-42, Table 3.2-2, 7/00 - Adjusted ¹
	VOC	0.125	0.500	0.112	0.491	Manufacturer Data
	N-Hexanes	1.11E-03	0.004	0.001	0.004	AP-42, Table 3.2-2, 7/00
POLLUTANTS	Formaldehyde	0.0752	0.300	0.067	0.293	Manufacturer Data
UTA	Acetaldehyde	8.36E-03	0.033	0.007	0.031	AP-42, Table 3.2-2, 7/00
OLL	Benzene	4.40E-04	0.002	0.000	0.000	AP-42, Table 3.2-2, 7/00
AIR P	Toluene	4.08E-04	0.002	0.000	0.000	AP-42, Table 3.2-2, 7/00
	Ethylbenzene	3.97E-05	0.0002	0.000	0.000	AP-42, Table 3.2-2, 7/00
TOXIC	Xylenes	1.84E-04	0.001	0.000	0.000	AP-42, Table 3.2-2, 7/00
	Total TAP			0.075	0.328	
	Methane	1.25E+00	4.990	1.113	4.875	AP-42, Table 3.2-2, 7/00
~	Ethane	1.05E-01	0.419	0.093	0.407	AP-42, Table 3.2-2, 7/00
OTHER	тос	1.47E+00	5.868	1.308	5.729	AP-42, Table 3.2-2, 7/00
Ö	Non-toxic VOC (Heptane+)			0.037	0.163	= VOC - Total TAPs
	CO _{2E}				1403.275	

Additional Notes:

1. The AP-42 factor for SO₂ is based on a fuel content of 2000 gr H₂S/10⁶ scf (3.2 ppm). This calculation adjusts the factor for 5 ppm H₂S.

Company Name: Cunningham Energy, LLC Facility: Cochran Pad Emission Unit ID: FE-01 Emission Point II None Control Device: None Source Descriptic Fugitive Emissions Based on: Typical Facility Component counts

omponen

Pump Seal

Connector

Open-ended Line

Flange

Other

Valve

emission facto

(kg/hr per

0.0025

0.00011

0.0075

emission factor

(lb/hr of TOC

per component

0.00551

0.02866

0.00046

0.00024

0.00309

0.01653

Light Oil

number

438

0

1314

438

44

22

66

22

number	component	emission factor (kg/hr per component)*	emission factor (lb/hr of TOC per component)	lb/hr	tpy	VOC content* (wt %)	Control Efficiency (%)	lb/hr	tpy	Methane content* (wt %)	C Eff
174	Valve	0.0045	0.00992	1.726229	7.560881	17.1	0	0.295	1.293	68.7	
0	Pump Seal	0.0024	0.00529	0	0	17.1	0	0.000	0.000	68.7	
522	Connector	0.0002	0.00044	0.230164	1.008117	17.1	0	0.039	0.172	68.7	
174	Flange	0.00039	0.00086	0.149606	0.655276	17.1	0	0.026	0.112	68.7	
17	Open-ended Line	0.002	0.00441	0.074958	0.328314	17.1	0	0.013	0.056	68.7	
9	Other	0.0088	0.01940	0.174607	0.764779	17.1	0	0.030	0.131	68.7	

lb/h

0

2.414074 10.57365

0 608347 2 664559

0.106219 0.46524

0.135805 0.594828

0.363765 1.593289

tpv

0

Control Efficiency			HAP content*	Cont Efficie
(%)	lb/hr	tpy	(wt %)	(%)
0	1.186	5.194	1.1	0
0	0.000	0.000	1.1	0
0	0.158	0.693	1.1	0
0	0.103	0.450	1.1	0
0	0.051	0.226	1.1	0
0	0.120	0.525	1.1	0

tov

6.471

0.000

1 631

0.285

0.364

HAP

content'

(wt %)

61

61

Control

Efficiency

(%)

HAP	Control		
ontent*	Efficiency		
wt %)	(%)	lb/hr	tpy
1.1	0	0.019	0.083
1.1	0	0.000	0.000
1.1	0	0.003	0.011
1.1	0	0.002	0.007
1.1	0	0.001	0.004
1.1	0	0.002	0.008

lb/hr

0.000

0.000

0.000

0.000

0.000 0.000

0.000

lb/hr

0.03

tpy

0.000

0.000

0.000

0.000

0.000

tpy

0.11

18.382	Flange
14.814	Open-ended Line
39.581	Other

tpy

lb/hr	tpy	lb/hr	tpy	component
0.000	0.000	1.010	4.423	Valve
0.000	0.000	0.000	0.000	Pump Seal
0.000	0.000	0.219	0.961	Connector
0.000	0.000	0.057	0.250	Flange
0.000	0.000	0.053	0.232	Open-ended Line
0.000	0.000	0.138	0.603	Other

Heavy Oil emission factor Methane Control Control VOC Control HAF (kg/hr per (lb/hr of TOC content Efficiency content* Efficiency content Efficiency per component (wt %) (%) lb/hr (wt %) (%) (wt %) (%) numbe mponer lh/h lh/h 0.0000185 0 Valve 0.0000084 0 0 0.000 0.000 0.000 0.000 0 Pump Seal** 0.00113 0 0 0.000 0.000 0.000 0.000 Connector 0.0000165 0.000 0.000 0.000 0.000 0 0 0 0 Flange 0.0000009 0 0 0.000 0.000 0.000 0.000 0 000 .000 0 Water/Oil HAP Control content Efficiency number (wt %) (%) 22 0

	Open-ended Line	0.00014	0.0003086	0	0		0.296	0		0.000	0.000	61.2	0	0.000	0.000
	Other**	-	0.0006830	0	0		0.296	0		0.000	0.000	61.2	0	0.000	0.000
	5					_									
		emission factor	emission factor				VOC	Control				Methane	Control		
		(kg/hr per	(lb/hr of TOC					Efficiency					Efficiency		
	component	component)	per component)	lb/hr	tpy		(wt %)	(%)	l	lb/hr	tpy	(wt %)	(%)	lb/hr	tpy
	Valve	0.000098	0.0002161	0.004753	0.020819		0.296	0		0.000	0.000	61.2	0	0.003	0.013
	Pump Seal	0.000024	0.0000529	0	0		0.296	0		0.000	0.000	61.2	0	0.000	0.000
	Connector	0.00011	0.0002425	0.016006	0.070105		0.296	0		0.000	0.000	61.2	0	0.010	0.043
	Flange	0.0000029	0.0000064	0.000141	0.000616		0.296	0		0.000	0.000	61.2	0	0.000	0.000
	Open-ended Line	0.00025	0.0005512	0.001102	0.004828		0.296	0		0.000	0.000	61.2	0	0.001	0.003
	Other	0.014	0.0308649	0.030865	0.135188		0.296	0	[0.000	0.000	61.2	0	0.019	0.083
			-										-		
				lb/hr	tpy				[lb/hr	tpy			lb/hr	tpy
Uncontrolled THC emissions:		6.0366	26.4405		,	VOC emissio	ons:	1.48	6.47	Methane e	missions:	3.87	16.96		

VOC

content

(wt %)

Control

Efficiency

(%)

lb/hr

0.000

0.031

0.040

0.108 0.472

0 180

0.715 3.130

tpv

0.000

0 789

0.138

0 176

Methane	Control		
content*	Efficiency		
(wt %)	(%)	lb/hr	tpy
61.2	0	0.003	0.013
61.2	0	0.000	0.000
61.2	0	0.010	0.043
61.2	0	0.000	0.000
61.2	0	0.001	0.003
61.2	0	0.019	0.083

Methane

content*

(wt %)

61.2

61.2

61.2

Control

Efficiency

(%)

lb/hr

1.477

0.000

0.372

0.083

0.223 0.975

0.065

lb/hr 0.000 0.000 0.000 0.000 0.000 0.000

HAP emissions

		Total Emission	s Per Com
ır	tpy	lb/hr	tpy
00	0.000	0.019	0.083
00	0.000	0.000	0.000
00	0.000	0.003	0.011
00	0.000	0.002	0.007
00	0.000	0.001	0.004
00	0.000	0.002	0.008

* Emission factors are for oil and gas production facilities (not refineries), and come from the EPA's "Protocol for Equipment Leak Emission Estimates"

November 1995, EPA 4531, R-95-017, Table 2-4.

number	component
634	Valve
0	Pump Seal
1902	Connector
634	Flange
63	Open-ended Line
32	Other

Total Component Count

Total Emissions Per Component (CO2e)

component 291.953 Valve 0.000 Pump Seal 59.155

Connector

Total Emissions Per Component (VOC)

	0.037	0.230	riange
	0.053	0.232	Open-end
	0.138	0.603	Other
_	Total Emission	s Per Componer	nt (Methan

lb/hr	tpy	component
2.666	11.678	Valve
0.000	0.000	Pump Seal
0.540	2.366	Connector
0.168	0.735	Flange
0.135	0.593	Open-ended Line
0.361	1.583	Other

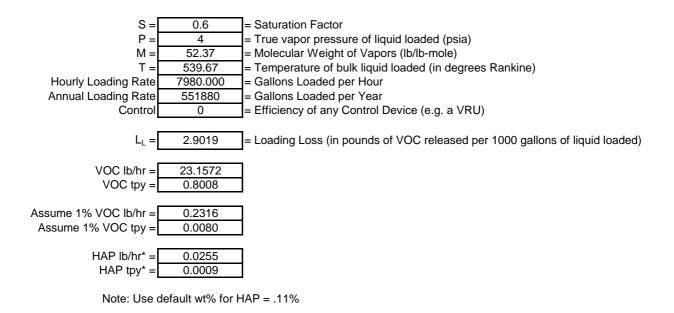
Total I	Emission	s Per	Com	ponen	it ((HAP)	

	lb/hr	tpy	component
	0.019	0.083	Valve
	0.000	0.000	Pump Seal
	0.003	0.011	Connector
ſ	0.002	0.007	Flange
ſ	0.001	0.004	Open-ended Line
	0.002	0.008	Other

Company Name: Cunningham Energy, LLC Facility: Cochran Pad Emission Unit ID: FE-01 Emission Point II None Control Device: None Source Descripti Fugitive Emissions (Compressor) Based on: Typical Facility Component counts

Gas																				Total Compor	ent Count
540		emission factor	emission factor			VOC	Control			Me	lethane C	Control			Г	HAP	Control		1	rotar oompor	on ooun
		(kg/hr per	(lb/hr of TOC			content*	Efficiency			co	ontent* Ef	fficiency				content*	Efficiency				
number	component	component)*	per component)	lb/hr	tpy	(wt %)	(%)	lb/hr	tpy	()	(wt %)	(%)	lb/hr	tpy		(wt %)	(%)	lb/hr	tpy	number	component
40	Valve	0.0045	0.00992	0.396834	1.738134	17.1	0	0.068	0.297		68.7	0	0.273	1.194		1.1	0	0.004	0.019	48	Valve
0	Pump Seal	0.0024	0.00529	0	0	17.1	0	0.000	0.000		68.7	0	0.000	0.000		1.1	0	0.000	0.000	0	Pump Seal
120	Connector	0.0002	0.00044	0.052911	0.231751	17.1	0	0.009	0.040		68.7	0	0.036	0.159		1.1	0	0.001	0.003	144	Connector
40	Flange	0.00039	0.00086	0.034392	0.150638	17.1	0	0.006	0.026		68.7	0	0.024	0.103		1.1	0	0.000	0.002	48	Flange
4	Open-ended Line	0.002	0.00441	0.017637	0.07725	17.1	0	0.003	0.013		68.7	0	0.012	0.053		1.1	0	0.000	0.001	5	Open-ended Line
2	Other	0.0088	0.01940	0.038802	0.169951	17.1	0	0.007	0.029		68.7	0	0.027	0.117	L	1.1	0	0.000	0.002	2	Other
_ight Oil	_																				
ight On		emission factor	emission factor	1		VOC	Control		1 1	Me	lethane C	Control			Г	HAP	Control	1	1		
		(kg/hr per	(lb/hr of TOC			content*	Efficiency					fficiency				content*	Efficiency				
number	component	component)	per component)	lb/hr	tpy	(wt %)	(%)	lb/hr	tpy	()	(wt %)	(%)	lb/hr	tpy		(wt %)	(%)	lb/hr	tpy		
8	Valve	0.0025	0.00551	0.044093	0.193126	29.6	0	0.013	0.057		61.2	0	0.027	0.118	_	61.2	0	0.000	0.000		
0	Pump Seal	0.013	0.02866	0	0	29.6	0	0.000	0.000		61.2	0	0.000	0.000		61.2	0	0.000	0.000		
24	Connector	0.00021	0.00046	0.011111	0.048668	29.6	0	0.003	0.014		61.2	0	0.007	0.030		61.2	0	0.000	0.000		
8	Flange	0.00011	0.00024	0.00194	0.008498	29.6	0	0.001	0.003		61.2	0	0.001	0.005		61.2	0	0.000	0.000		
1	Open-ended Line	0.0014	0.00309	0.003086	0.013519	29.6	0	0.001	0.004		61.2	0	0.002	0.008		61.2	0	0.000	0.000		
0	Other	0.0075	0.01653	0	0	29.6	0	0.000	0.000		61.2	0	0.000	0.000		61.2	0	0.000	0.000		
	-														-						
leavy Oil				1	· · · · · ·	1/00		-													
		emission factor (kg/hr per	emission factor (lb/hr of TOC			VOC content*	Control Efficiency					Control fficiency				HAP content*	Control Efficiency				
number	component	component)	per component)	lb/hr	tpy	(wt %)	(%)	lb/hr	tpy		(wt %)	(%)	lb/hr	tpy		(wt %)	(%)	lb/hr	tpy		
0	Valve	0.0000084	0.0000185	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	F	61.2	0	0.000	0.000		
0	Pump Seal**	-	0.00113	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	F	61.2	0	0.000	0.000		
0	Connector	0.0000075	0.0000165	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	F	61.2	0	0.000	0.000		
0	Flange	0.00000039	0.0000009	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	-	61.2	0	0.000	0.000		
0	Open-ended Line	0.00014	0.0003086	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	-	61.2	0	0.000	0.000		
Ő	Other**	-	0.0006830	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000		61.2	0	0.000	0.000		
Water/Oil												_			_			-			
		emission factor	emission factor			VOC	Control					Control				HAP	Control				
		(kg/hr per	(lb/hr of TOC	11- /1		content*	Efficiency	15.0				fficiency	11-11-2			content*	Efficiency	11- /1	4		
number	component	component)	per component)	lb/hr	tpy	(wt %)	(%)	lb/hr	tpy		(wt %)	(%)	lb/hr	tpy	ŀ	(wt %)	(%)	lb/hr	tpy		
0	Valve	0.000098	0.0002161	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	ŀ	61.2	0	0.000	0.000		
0	Pump Seal	0.000024	0.0000529	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	ŀ	61.2	0	0.000	0.000		
0	Connector	0.00011	0.0002425	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	ŀ	61.2	0	0.000	0.000		
0	Flange	0.000029	0.0000064	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	ŀ	61.2	0	0.000	0.000		
0	Open-ended Line	0.00025	0.0005512	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	-	61.2	0	0.000	0.000		
0	Other	0.014	0.0308649	0	0	0.296	0	0.000	0.000		61.2	0	0.000	0.000	L	61.2	0	0.000	0.000		
					ı				1 1			r		-							
				lb/hr	tpy			lb/hr	tpy				lb/hr	tpy				lb/hr	tpy		
		Uncontrolled	THC emissions:	0.6008	2.6315		VOC emissi	ons: 0.11	0.48	Me	ethane emi	issions:	0.41	1.79		HAP e	missions:	0.01	0.03		

* Emission factors are for oil and gas production facilities (not refineries), and come from the EPA's "Protocol for Equipment Leak Emission Estimates" November 1995, EPA 4531, R-95-017, Table 2-4.


Water S	Storage Tanks					
Emissic	on Unit ID: 16S -	27S	Emisior	n Point ID: 16	6E - 27E	Control Device: 1C
			*******	***********	*****	***************
	oject Setup Infor		*********			~ * * * * * * * * * * * * * * * * *
Project					Air\Cochran Pa	ad\1. Application\OST Calcs.ept
	t Selection		k with Sepa	rator		
	ion Method	: RVP Dis	tillation			
	Efficiency	: 0.0%				
	eparator Stream		ssure Oil			
Entering	Air Composition	: No				
Filed Na	me	: Cunning	ham Energy,	LLC		
Well Nam	e	: Cochran	Pad			
Well ID		: Oil Sto	rage Tanks			
Date		: 2016.08	.31			
	**************************************	******	********	***********	*********	***************
	-	******	*******	**********	*****	~ * * * * * * * * * * * * * * * * *
	or Pressure					
	or Temperature					
		: 14.70[p				
	Temperature	: 60.00[F]			
C10+ SG		: 0.7431				
C10+ MW		: 130.90				
Low F	ressure Oil					
No.	Component	mol	%			
1	H2S	0.0	000			
2	02	0.0	000			
3	CO2	0.0	000			
4	N2	0.0	360			
5	C1	3.5	710			
6	C2	7.2	560			
7	C3	11.1	570			
8	i-C4	3.3	760			
9	n-C4	9.3	480			
10	i-C5	5.2	890			
11	n-C5	4.9	970			
12	C6	4.1	790			
13	C7	7.1	590			
14	C8	7.6	010			
15	C9	3.6	390			
16	C10+	27.1	430			
17	Benzene	0.3	230			
18	Toluene	0.5	110			
19	E-Benzene	0.2	940			
20	Xylenes	1.0	610			
21	n-C6	3.0	600			
22	224Trimethylp	0.0	000			
Sales	0il					
	on Rate	: 3[bb1/d				
Days of	Annual Operation	: 365 [da	ys/year]			
API Grav	vity	: 49.84				
	or Pressure		ia]			
******	*****	******	*******	**********	****	****
	lculation Results					*
******	*****	******	*******	***********	****	* * * * * * * * * * * * * * * * *
Doutes	ion Summary					
Emiss Item	=		Uncontrolle			
	[ton/		[lb/hr]			

Tota VOCs	al HAPs al HC s, C2+ s, C3+	0.210 29.131 28.003 23.707	0.048 6.651 6.393 5.413	crude oil	/condensa ssions are	te propert	ies and wa	ulated using ater production the percent of the		
	ontrolled Recove: Vapor HC Vapor GOR Emission Composit	1.3700 1.3700 456.67	[MSCFD] [MSCFD] [SCF/bbl]	to a Vapo	or Recover	ry System.	Per WVD	sent directly EP Vapor ciency of 95%.		
No	Component	Uncontrolled	Uncontrol	Led						
		[ton/yr]	[lb/hr]							
1	H2S	0.000	0.000							
2	02	0.000	0.000							
3	C02	0.000	0.000							
4 5	N2	0.020	0.005							
6	C1 C2	1.128 4.296	0.258 0.981							
7	C3	9.643	2.202							
8	i-C4	3.301	0.754							
9	n-C4	7.117	1.625							
10	i-C5	1.657	0.378							
11	n-C5	1.098	0.251							
12	C6	0.314	0.072							
13	C7	0.188	0.043							
14	C8	0.066	0.015							
15	C9	0.012	0.003							
16 17	C10+	0.103	0.024							
18	Benzene Toluene	0.016 0.008	0.004 0.002							
19	E-Benzene	0.002	0.000							
20	Xylenes	0.005	0.001							
21	n-C6	0.179	0.041							
22	224Trimethylp	0.000	0.000							
	Total	29.153	6.656							
	Stream Data									
NO.	Component	MW	LP Oil mol %	Flash Oil mol %	mol %	Flash Gas mol %	www.s Gas mol %	Total Emissions mol %		
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
3	CO2	44.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
4	N2	28.01	0.0360	0.0003	0.000	0.1769	0.0018	0.1075		
5	C1	16.04	3.5710	0.1122	0.000	17.2175	0.6739	10.6604		
6	C2	30.07	7.2560	1.4076	0.0002	30.3302	8.4571	21.6607		
7	C3	44.10	11.1570	6.0428	0.0766	31.3345	35.9272	33.1549		
8	i-C4	58.12	3.3760	2.9119	0.7396	5.2070	13.7925	8.6099		
9 10	n-C4	58.12 72 15	9.3480	9.0117	4.7044	10.6749 2 4170	30.5842 5.1031	18.5660		
10 11	i-C5 n-C5	72.15 72.15	5.2890 4.9970	6.0169 5.8474	6.1995 6.3515	2.4170 1.6420	3.3226	3.4817 2.3081		
12	C6	86.16	4.1790	5.1355	5.9989	0.4054	0.8107	0.5660		
13	C7	100.20	7.1590	8.9225	10.6167	0.2013	0.4368	0.2946		
14	C8	114.23	7.6010	9.5129	11.3843	0.0578	0.1397	0.0902		
15	C9	128.28	3.6390	4.5593	5.4648	0.0082	0.0236	0.0143		
16	C10+	130.90	27.1430	34.0050	40.7552	0.0697	0.1947	0.1193		
17	Benzene	78.11	0.3230	0.3993	0.4702	0.0218	0.0445	0.0308		
		00 10	0.5110	0.6384	0.7622	0.0083	0.0187	0.0124		
18	Toluene	92.13					0 0004			
19	E-Benzene	106.17	0.2940	0.3682	0.4410	0.0014	0.0034	0.0022		
19 20	E-Benzene Xylenes	106.17 106.17	1.0610	1.3289	1.5921	0.0041	0.0106	0.0067		
19 20 21	E-Benzene Xylenes n-C6	106.17 106.17 86.18	1.0610 3.0600	1.3289 3.7793	1.5921 4.4430	0.0041 0.2221	0.0106 0.4551	0.0067 0.3144		
19 20	E-Benzene Xylenes	106.17 106.17	1.0610	1.3289	1.5921	0.0041	0.0106	0.0067		
19 20 21	E-Benzene Xylenes n-C6 224Trimethylp	106.17 106.17 86.18	1.0610 3.0600 0.0000	1.3289 3.7793 0.0000	1.5921 4.4430 0.0000	0.0041 0.2221 0.0000	0.0106 0.4551 0.0000	0.0067 0.3144 0.0000		
19 20 21	E-Benzene Xylenes n-C6	106.17 106.17 86.18 114.24	1.0610 3.0600	1.3289 3.7793	1.5921 4.4430	0.0041 0.2221	0.0106 0.4551	0.0067 0.3144		
19 20 21	E-Benzene Xylenes n-C6 224Trimethylp MW	106.17 106.17 86.18 114.24	1.0610 3.0600 0.0000 86.23	1.3289 3.7793 0.0000 98.24	1.5921 4.4430 0.0000 107.40	0.0041 0.2221 0.0000 38.83	0.0106 0.4551 0.0000 52.37	0.0067 0.3144 0.0000 44.20		
19 20 21	E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat: Heating Value Gas Gravity	106.17 106.17 86.18 114.24 io [BTU/SCF] [Gas/Air]	1.0610 3.0600 0.0000 86.23 1.0000	1.3289 3.7793 0.0000 98.24 0.7978	1.5921 4.4430 0.0000 107.40 0.6650	0.0041 0.2221 0.0000 38.83 0.2022	0.0106 0.4551 0.0000 52.37 0.1328	0.0067 0.3144 0.0000 44.20 0.3350		
19 20 21	E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat: Heating Value	106.17 106.17 86.18 114.24 io [BTU/SCF] [Gas/Air]	1.0610 3.0600 0.0000 86.23 1.0000	1.3289 3.7793 0.0000 98.24	1.5921 4.4430 0.0000 107.40	0.0041 0.2221 0.0000 38.83 0.2022 2230.98	0.0106 0.4551 0.0000 52.37 0.1328 2954.39	0.0067 0.3144 0.0000 44.20 0.3350 2517.71		

RVP @ 100F	[psia]	75.48	24.47	6.68
Spec. Gravity @ 100F		0.662	0.685	0.699

Company Name:	Cunningham Energy, LLC
Facility Name:	Cochran Pad
Emission Unit ID:	28S
Emission Point ID:	28E
Control Devices:	None
Source Description:	Tank Truck Water Loading Losses

Using equation $L_L = 12.46^*$ SPM/T from AP-42, Chapter 5, Section 5.2-4

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Cunningham Energy 3230 Pennsylvania Ave Charleston, WV 25302

Sample: Cochran 5H

Well Head Hydrocarbon Liquid Sampled @ 145 psig & 72 °F

Date Sampled: 11/04/14

Job Number: 46154.002

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.036	0.007	0.008
Carbon Dioxide	0.000	0.000	0.000
Methane	3.571	1.084	0.438
Ethane	7.256	3.476	1.667
Propane	11.157	5.506	3.758
Isobutane	3.376	1.979	1.499
n-Butane	9.186	5.188	4.079
2,2 Dimethylpropane	0.162	0.111	0.089
Isopentane	5.289	3.465	2.915
n-Pentane	4.997	3.245	2.754
2,2 Dimethylbutane	0.227	0.170	0.150
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.426	0.312	0.280
2 Methylpentane	2.226	1.655	1.466
3 Methylpentane	1.299	0.950	0.855
n-Hexane	3.060	2.253	2.014
Heptanes Plus	<u>47.732</u>	<u>70.598</u>	<u>78.030</u>
Totals:	100.000	100.000	100.000

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

Specific Gravity	0.8213	(Water=1)
°API Gravity	40.78	@ 60°F
Molecular Weight	214.0	
Vapor Volume	12.18	CF/Gal
Weight	6.84	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7431	(Water=1)
°API Gravity	58.92	@ 60°F
Molecular Weight	130.9	
Vapor Volume	18.02	CF/Gal
Weight	6.19	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: XGdjv Cylinder ID: W-2144

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.000	0.000	0.000
Nitrogen	0.036	0.007	0.008
Methane	3.571	1.084	0.438
Ethane	7.256	3.476	1.667
Propane	11.157	5.506	3.758
Isobutane	3.376	1.979	1.499
n-Butane	9.348	5.299	4.168
Isopentane	5.289	3.465	2.915
n-Pentane	4.997	3.245	2.754
Other C-6's	4.179	3.088	2.751
Heptanes	7.159	5.538	5.253
Octanes	7.601	6.347	6.244
Nonanes	3.639	3.578	3.529
Decanes Plus	27.143	53.732	61.352
Benzene	0.323	0.162	0.193
Toluene	0.511	0.307	0.360
E-Benzene	0.294	0.203	0.238
Xylenes	1.061	0.731	0.861
n-Hexane	3.060	2.253	2.014
2,2,4 Trimethylpentane	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.7431	(Water=1)
°API Gravity	58.92	@ 60°F
Molecular Weight	130.9	
Vapor Volume	18.02	CF/Gal
Weight	6.19	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8485	(Water=1)
Molecular Weight	295.9	

Characteristics of Atmospheric Sample:

°API Gravity	49.84 @ 60°F
Reid Vapor Pressure (ASTM D-5191)	6.63 psi

QUALITY CONTROL CHECK							
	Sampling Conditions Test Samples						
Cylinder Number		W-2144* W-2517					
Pressure, PSIG	145	147 149					
Temperature, °F 72 70 70							

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.036	0.007	0.008
Carbon Dioxide	0.000	0.000	0.000
Methane	3.571	1.084	0.438
Ethane	7.256	3.476	1.667
Propane	11.157	5.506	3.758
Isobutane	3.376	1.979	1.499
n-Butane	9.186	5.188	4.079
2,2 Dimethylpropane	0.162	0.111	0.089
Isopentane	5.289	3.465	2.915
n-Pentane	4.997	3.245	2.754
2,2 Dimethylbutane	0.227	0.170	0.150
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.426	0.312	0.280
2 Methylpentane	2.226	1.655	1.466
3 Methylpentane n-Hexane	1.299 3.060	0.950 2.253	0.855 2.014
Methylcyclopentane	0.936	0.594	0.602
Benzene	0.323	0.162	0.193
Cyclohexane	0.869	0.530	0.193
2-Methylhexane	1.452	1.209	1.111
3-Methylhexane	1.077	0.886	0.824
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	0.724	0.584	0.549
n-Heptane	2.101	1.736	1.608
Methylcyclohexane	2.234	1.609	1.676
Toluene	0.511	0.307	0.360
Other C-8's	3.731	3.238	3.141
n-Octane	1.635	1.500	1.426
E-Benzene	0.294	0.203	0.238
M & P Xylenes	0.594	0.413	0.482
O-Xylene	0.467	0.318	0.379
Other C-9's	2.333	2.261	2.250
n-Nonane	1.306	1.316	1.279
Other C-10's	3.089	3.290	3.334
n-decane	1.004	1.104	1.091
Undecanes(11)	3.148	3.441	3.535
Dodecanes(12) Tridecanes(13)	2.337 2.127	2.758 2.693	2.874 2.844
Tetradecanes(14)	1.735	2.093	2.544
Pentadecanes(15)	1.442	2.094	2.269
Hexadecanes(16)	1.091	1.693	1.849
Heptadecanes(17)	0.940	1.542	1.701
Octadecanes(18)	0.810	1.400	1.553
Nonadecanes(19)	0.756	1.360	1.518
Eicosanes(20)	0.585	1.094	1.228
Heneicosanes(21)	0.465	0.916	1.035
Docosanes(22)	0.459	0.942	1.070
Tricosanes(23)	0.324	0.690	0.788
Tetracosanes(24)	0.349	0.769	0.883
Pentacosanes(25)	0.214	0.489	0.564
Hexacosanes(26)	0.205	0.486	0.562
Heptacosanes(27)	0.239	0.587	0.682
Octacosanes(28)	0.170	0.432	0.504
Nonacosanes(29)	0.177	0.465	0.544
Triacontanes(30)	0.124	0.337	0.395
Hentriacontanes Plus(31+) Total	<u>5.353</u>	<u>22.797</u> 100.000	<u>28.010</u> 100.000
IUIAI	100.000	100.000	100.000

Estimated Exhaust Emissions Based On PLQNG, 1500 FASL Elevation and an average Ambient Temperature of 65 Degrees F

For Emissions Permits, please contact Ajax for emissions data based on specific site conditions

Ajax	E	miss	ions (G	m / Bh	ph)							Exhau	st Stack			No.		
Engine						BSFC	RPM	BHP	BMEP	Dia.	Height	Temp	Flow	Flow	Velocity	Of	Bore	Stroke
Model	NOx	со	NMHC	VOC	H2CO					(in.)	(in.)	(Deg.F)	(acfm)	(lb/m)	(ft/m)	Cyl's		
EA-15	4.4	3.3	0.7	0.5	0.3	9900	900	14	49.6	4	31	500	140	5	1604	1	5	6.5
EA-22	4.4	3.3	0.7	0.5	0.3	9900	650	21	48.5	5	64	500	200	8	1467	1	6.5	8
EA-30	4.4	3.3	0.7	0.5	0.3	9900	650	29	53.1	5	80	500	250	10	1833	1	7.25	8
C-30	4.4	3.3	0.7	0.5	0.3	9400	525	29	49.2	5	101	450	260	11	1907	1	7.5	10
C-42	4.4	3.3	0.7	0.5	0.3	9900	525	40	53.6	6	137	565	380	14	1935	1	8.5	10
E-42	4.4	3.3	0.7	0.5	0.3	9900	525	40	53.6	6	137	565	380	14	1935	1	8.5	10
DP-60	4.4	1.7	0.6	0.5	0.3	9000	475	58	56.5	8	150	540	500	18	1432	1	9.5	12
DP-80	4.4	2.8	0.7	0.5	0.3	8900	400	77	57.1	10	164	470	610	24	1118	1	11.0	14
DP-81	6.6	1.1	0.5	0.5	0.3	8500	475	78	62.4	10	164	545	610	22	1118	1	10.5	12
DP-115	4.4	2.4	0.9	0.6	0.3	9000	360	110	55.0	12	190	440	880	36	1120	1	13.25	16
DP-125	5.0	2.7	0.8	0.6	0.3	8500	380	120	56.7	12	190	470	960	38	1222	1	13.25	16
DP-160	4.4	2.8	0.7	0.5	0.3	8900	400	154	57.1	10	164	470	1220	48	2237	2	11	14
DP-165	6.0	3.0	0.8	0.6	0.3	8500	380	158	58.4	13.25	260	450	1210	49	1264	1	15	16
DP-230	4.4	2.4	0.9	0.6	0.3	9000	360	221	55.0	12	190	440	1770	72	2254	2	13.25	16
DP-250	5.5	3.0	0.8	0.6	0.3	8500	380	240	56.7	12	190	460	1910	76	2432	2	13.25	16
DP-325	5.5	1.7	0.8	0.6	0.3	8400	380	312	57.5	13.25	260	450	2420	98	2527	2	15	16
DPC-60	4.4	1.7	0.6	0.5	0.3	9000	475	58	56.5	8	150	540	500	18	1432	1	9.5	12
DPC-80	4.4	2.8	0.7	0.5	0.3	8900	400	77	57.1	10	164	470	610	24	1118	1	11	14
DPC-81	6.6	1.1	0.5	0.5	0.3	8500	475	78	62.4	10	164	545	610	22	1118	1	10.5	12
DPC-105	4.4	2.8	0.6	0.5	0.3	8800	425	101	59.3	12	193	480	780	31	993	1	12	14
DPC-115	4.4	2.4	0.9	0.6	0.3	8700	360	110	55.0	12	190	440	870	36	1108	1	13.25	16
DPC-115 LE	2.0	2.2	0.7	0.5	0.3	8100	360	110	55.0	12	190	400	830	36	1057	1	13.25	16
DPC-120	5.5	1.7	0.6	0.5	0.3	9000	475	115	56.5	8	150	540	1000	37	2865	2	9.5	12
DPC-140	10.5	1.3	0.6	0.5	0.3	8200	400	134	60.3	12	190	490	1040	40	1324	1	13.25	16
DPC-140 LE	2.0	1.4	0.6	0.5	0.3	7800	400	134	60.3	12	190	450	1010	41	1286	1	13.25	16
DPC-160	4.4	2.7	0.7	0.5	0.3	8900	400	154	57.1	10	164	470	1220	48	2237	2	11	14
DPC-162	6.6	1.1	0.5	0.5	0.3	8500	475	156	62.4	10	164	545	1230	45	2255	2	10.5	12
DPC-180	6.3	1.4	0.9	0.6	0.3	8400	400	173	60.5	13.25	256	460	1290	52	1347	1	15	16
DPC-180 LE	2.0	1.1	0.6	0.5	0.3	7900	400	173	60.5	13.25	256	555	1450	53	1514	1	15	16
Site Altitude =	= 0 - 150	00 FA	SL	Date:	March 2	011		NOx = I	Nitrogen	Oxide			FASL =	Feet Ab	ove Sea l	evel		

Site Fuel Composition = Pipeline Quality Natural Gas (PLQNG) Ambient Temp For Defining Maximum Load = 100 Deg F Ambient Temp For Defining Exhaust Emissions = 65 Deg F

CO = Carbon Monoxide

H2CO = Formaldehyde

FASL = Feet Above Sea Level

- ACFM = Actual Cubic Feet Per Minute
- BMEP = Brake Mean Effective Pressure (Psi)

NMHC= Non-Methane Hydrocarbons reported as Propane

VOC = Non-Methane, Non-Ethane & Non-Formaldehyde reported as Propane

BSFC = Brake Specific Fuel Consumptior Gm / Bhph = Gram / Brake Horse Power-Hour

The above emissions and performance data is contingent on:

1.) Engine must be maintained in good working order.

- (Btu / Bhp-hr)
- 2.) Engine modifications or upgrades from the original factory configuration must meet Ajax specifications and installation guidelines.
- 3.) Engine operating parameters must be consistent with those specified in the Ajax manual.

For additional information, please contact Application Engineering at (405) 670-4121 Cameron Compression Systems, 2101 SE 18th Street Oklahoma City, OK USA

Fuel Composition (PLQNG):							
Compound	Compound Formula						
Nitrogen	N2	0.72					
Carbon Dioxide	CO2	1.14					
Methane	CH4	92.84					
Ethane	C2H6	4.10					
Propane	C3H8	1.20					
	100.00						

Total Volume \imath – 100.00

Estimated Exhaust Emissions Based On PLQNG, 1500 FASL Elevation and an average Ambient Temperature of 65 Degrees F

For Emissions Permits, please contact Ajax for emissions data based on specific site conditions

Ajax			ons (G		-			-	r emiss	Exhaust Stack								
Engine			,		,	BSFC	RPM	внр	BMEP	Dia.	Height		Flow	Flow	Velocity	No. Of	Bore	Stroke
Model	NOx	со	NMHC	voc	H2CO	-				(in.)	(in.)	(Deg.F)	(acfm)	(lb/m)	,	Cyl's		
DPC-230	4.4	2.4	0.9	0.6	0.3	8700	360	221	55.0	12	190	440	1730	71	2203	2	13.25	16
DPC-230 LE	2.0	2.2	0.7	0.5	0.3	8100	360	221	55.0	12	190	400	1670	72	2126	2	13.25	16
DPC-280	11.4	1.3	0.6	0.5	0.3	8200	400	269	60.3	12	190	470	2030	80	2585	2	13.25	16
DPC-280 LE	2.0	1.4	0.6	0.5	0.3	7800	400	269	60.3	12	190	450	1990	81	2534	2	13.25	16
DPC-300	4.1	1.9	1.0	0.6	0.3	8700	360	288	56.0	13.25	260	435	2210	91	2308	2	15	16
DPC-300 LE	2.0	1.6	0.7	0.5	0.3	8200	360	288	56.0	13.25	260	435	2230	92	2329	2	15	16
DPC-360	6.3	1.4	0.9	0.6	0.3	8400	400	346	60.5	13.25	260	480	2630	103	2747	2	15	16
DPC-360 LE	2.0	1.1	0.6	0.5	0.3	7900	400	346	60.5	13.25	260	480	2690	105	2809	2	15	16
DPC-450 LE	2.7	1.2	0.6	0.5	0.3	7800	400	432	64.6	17.25	190	500	3220	124	1984	3	13.25	16
DPC-540	8.6	1.3	0.8	0.6	0.3	8300	400	540	63.0	17.25	303	465	3890	155	2397	3	15	16
DPC-540 LE	2.0	1.0	0.6	0.5	0.3	7800	400	540	63.0	17.25	303	465	3970	158	2446	3	15	16
DPC-600	13.0	1.2	0.7	0.5	0.3	8200	400	576	67.2	17.25	303	515	4110	155	2532	3	15	16
DPC-600 LE	6.5	0.9	0.6	0.5	0.3	7800	400	576	67.2	17.25	303	515	4190	158	2582	3	15	16
DPC-720	9.5	1.3	0.7	0.5	0.3	8300	400	720	63.0	17.25	241	465	5190	207	3198	4	15	16
DPC-720 LE	2.0	1.0	0.6	0.5	0.3	7800	400	720	63.0	17.25	241	465	5300	211	3266	4	15	16
DPC-800	13.0	1.2	0.7	0.5	0.3	8200	400	768	67.2	17.25	241	515	5480	207	3377	4	15	16
DPC-800 LE	6.5	1.0	0.6	0.5	0.3	7800	400	768	67.2	17.25	241	515	5590	211	3444	4	15	16
DPC-2201	10.0	1.3	0.6	0.5	0.3	8000	440	148	60.4	12	190	490	1160	45	1477	1	13.25	16
DPC-2201 LE	2.0	1.4	0.6	0.5	0.3	7800	440	148	60.4	12	190	490	1200	47	1528	1	13.25	16
DPC-2202	10.0	1.3	0.6	0.5	0.3	8000	440	296	60.4	12	190	470	2280	90	2903	2	13.25	16
DPC-2202 LE	2.0	1.4	0.6	0.5	0.3	7800	440	296	60.4	12	190	470	2350	93	2992	2	13.25	16
DPC-2801	5.5	1.4	0.8	0.5	0.3	8200	440	192	61.1	13.25	256	460	1450	58	1514	1	15	16
DPC-2801 LE	2.0	1.2	0.6	0.5	0.3	7800	440	192	61.1	13.25	256	460	1490	60	1556	1	15	16
DPC-2802	5.5	1.3	0.8	0.5	0.3	8200	440	422	67.2	13.25	260	465	2910	116	3039	2	15	16
DPC-2802 LE	2.0	1.2	0.6	0.5	0.3	7800	440	384	61.1	13.25	260	465	3000	119	3133	2	15	16
DPC-2802 LE*	2.0	1.2	0.6	0.5	0.3	7800	440	384	61.1	14.13	260	465	3000	119	2757	2	15	16
DPC-2803	12.0	1.2	0.8	0.5	0.3	8000	440	634	67.3	17.25	303	465	4380	174	2699	3	15	16
DPC-2803 LE	2.0	1.2	0.6	0.5	0.3	7800	440	600	63.7	17.25	241	515	4740	179	2921	3	15	16
DPC-2804	12.0	1.2	0.8	0.5	0.3	8000	440	845	67.2	17.25	241	465	5840	233	3598	4	15	16
DPC-2804 LE	2.0	1.2	0.6	0.5	0.3	7800	440	800	63.7	17.25	241	515	6320	239	3894	4	15	16
DPC-3401 LE	2.0	1.1	0.6	0.5	0.3	7800	440	232	61.0	13.25	256	460	1800	72	1880	1	16.5	16
DPC-3402 LE	2.0	1.1	0.6	0.5	0.3	7800	440	465	61.2	13.25	260	465	3630	145	3791	2	16.5	16
DPC-3403 LE	2.0	1.1	0.6	0.5	0.3	7800	440	726	63.7	17.25	241	515	5740	217	3537	3	16.5	16
DPC-3404 LE	2.0	1.1	0.6	0.5	0.3	7800	440	970	63.8	17.25	241	515	7650	289	4714	4	16.5	16

Date: March 2011, Site Altitude = 0 - 1500 FASL, Site Fuel Composition = Pipeline Quality Natural Gas (PLQNG)

Ambient Temp For Defining Maximum Load = 100 Deg F, Ambient Temp For Defining Exhaust Emissions = 65 Deg F

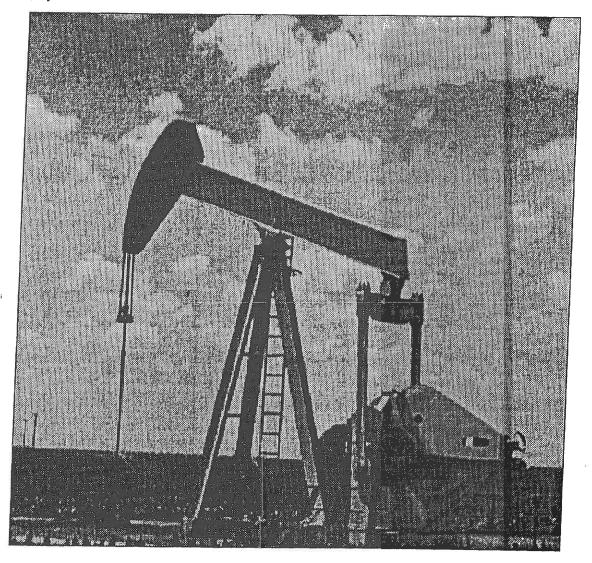
The above emissions and performance data is contingent on: 1.) Engine must be maintained in good working order. 2.) Engine modifications or upgrades from the original factory configuration must meet Ajax specifications and installation guidelines. 3.) Engine operating parameters must be consistent with those specified in the Ajax manual. NOx = Nitrogen Oxide, CO = Carbon Monoxide, NMHC = Non-Methane Hydrocarbons reported as Propane VOC = non-methane, non-ethane and non-Formaldehyde reported as propane, H2CO = Formaldehyde

FASL=Feet Above Sea Level, ACFM=Actual Cubic Feet Per Minute, BMEP=Brake Mean Effective Pressure, BSFC=Brake Specific Fuel Consumption (Btu/Bhp-Hr)

Pipe Line Quality Natural Gas (PLQNG): Nitrogen = 0.72%, Carbon Dioxide = 1.14%, Methane = 92.84%, Ethane = 4.1%, Propane = 1.2% * = DPC-2802LE Tilt Muffler Package

For additional info, please contact Applications Engineering at (405) 670-4121, Cameron Compression Systems, 2101 SE 18th Street, Oklahoma City, OK 73129

American Petroleum Institute



Reproduced By GLOBAL ENGINEERING DOCUMENTS With The Permission of API Under Royalty Agreement

Calculation Workbook For Oil and Gas Production Equipment Fugitive Emissions

Health and Environmental Sciences Department Publication Number 4638 July 1996

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS Sold to:COMM ENGINEERING, W0480046 Not for Resale,2008/2/8 19:10:22 GMT Example 3 shows how to speciate total fugitive hydrocarbon emissions calculated using EPA Average Emission Factors.

	Gas	Heavy Oil	Light Oil	Water/Oil
Methane	0.687	0.942	0.612	0.612
Non-methane	0.313	0.058	0.388	0.388
VOC	0.171	0.030	0.296	0.296
C6+ *	0.00693	0.00752	0.02300	0.02300
Benzene	0.00069	0.00935	0.00121	0.00121
Toluene	0.00038	0.00344	0.00105	0.00105
Ethyl-Benzene	0.00003	0.00051	0.00016	0.00016
Xylenes	0.00009	0.00372	0.00033	0.00033

Table 2. Speciation Fractions for Total Hydrocarbon (THC) Emissions Calculated Using EPA Average Emission Factors

* The C6+ fraction can be used to calculate an upper limit for n-hexane

EXAMPLE 1 -- Using EPA Average Emission Factors and Actual Component Counts to Calculate Total Hydrocarbon Emissions

Example 1 shows the calculation of total hydrocarbon emissions from a typical light crude oil production operation. Column A of the table shows the actual count of components grouped by component type and stream; Column B of the table shows EPA Average Emission Factors repeated from Table 1; Column C shows calculated total hydrocarbon emissions found by multiplying the respective sub-columns in Columns A and B. The calculated total hydrocarbon emissions are 34.6 lb/day from gas service components, 360 lb/day from light oil service components, and 1.3 lb/day from water/oil service components for a total of 396 lb/day.

						o or our	ulated va	1000					
	· · · · · · · · · · · · · · · · · · ·	(A)	Count		(B) THC	Emission	Factors	(C) Calculated THC Emissions					
					(lb)/comp-da	y)	(lb/day)					
	Gas	Lt Oil	Water/Oil	Total	Gas	Lt Oil	Water/Oil	Gas	Lt Oil	Water/Oil	Total		
Connectors	291	5,332	69	5,692	1.1E-02	1.1E-02	5.8E-03	3.20	58.7	0.40			
Flanges	107	1,756	28	1,891	2.1E-02	5.8E-03			10.2				
Open-Ends	10	176	3	189	1.1E-01	7.4E-02			13.0				
Others	6	98	1	105	4.7E-01	4.0E-01	7.4E-01		39.2	0.74			
Pump Seals	0	5	0	5	1.3E-01	6.9E-01			3.5		3.5		
Valves	105	1,811	24	1,940	2.4E-01	1.3E-01	5.2E-03	25.20	235.4		260.8		
ALL	519	9,178	125	9,822			,	34.6	360.0	1.30	396.0		

EXA	MPL	E	1.	Table	of	Calculate	d	Values
	/1A11 P	a bear		IGNIO	U 1	QUIDAIDIC	-	

Attachment T

I	АТТАСН	MENT	T – FA	CILIT	Y-WIDI	E CONT	FROLL	ED EM	ISSIO	NS SUI	MMAR	Y SHE	ЕТ	
List all sources o	f emissio	ns in th	is table	. Use ex	xtra page	es if nec	essary.							
	NC	x	СО		VOC		SO ₂		PM 10		PM 2.5		GHO	$G(CO_2e)$
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.0	0.0	0.0	0.0	23.157	1.335	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
3E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
4E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
5E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
6E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
7E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
8E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
9E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
10E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
11E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
12E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
13E	0.0	0.0	0.0	0.0	0.451	1.975	0.0	0.0	0.0	0.0	0.0	0.0	0.536	2.35
14E	0.0	0.0	0.0	0.0	1.023	4.4802	0.0	0.0	0.0	0.0	0.0	0.0	2.623	11.49
1C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15E	0.982	4.300	0.625	2.737	0.112	0.491	0.001	0.004	0.0	0.0	0.0	0.0	320.381	1403.27
16E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
17E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
18E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
19E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
20E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141

21E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
22E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
23E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
24E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
25E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
26E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
27E	0.0	0.0	0.0	0.0	0.003	0.011	0.0	0.0	0.0	0.0	0.0	0.0	0.003	0.0141
28E	0.0	0.0	0.0	0.0	0.2316	0.008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	0.982	4.300	0.625	2.737	29.9716	30.146	0.001	0.004	0.0	0.0	0.0	0.0	329.472	1443.129

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATT	ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources of e	missions	in this	table.	Use exti	a pages	s if nece	essary.							
Emission Point ID#	Formaldehyde		Benzene		Tolı	Toluene		Ethylbenzene		Xylenes		ane	Tot	al HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0255	0.0015
2E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
3E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
4E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
5E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
6E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
7E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
8E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
9E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
10E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
11E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
12E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
13E	0.0	0.0	0.0003	0.001	0.0001	0.0006	0.0000	0.0001	0.0001	0.0004	0.0034	0.0149	0.004	0.017
14E	0.0	0.0	0.0006	0.0026	0.0003	0.0013	0.0001	0.0003	0.0002	0.0007	0.0072	0.0317	0.0084	0.0366
1C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15E	0.067	0.293	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.004	0.075	0.328
16E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

21E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0255	0.0009
TOTAL	0.067	0.293	0.0042	0.0146	0.0015	0.0085	0.0001	0.0015	0.0014	0.0055	0.049	0.2145	0.1824	0.571

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U

ATTACHMENT U – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-C registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that <u>Cunningham Energy, LLC</u> has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C <u>(General Permit Registration)</u> for a natural gas production facility located on <u>Shelton Rd near Bomont</u> in <u>Clay</u> County, West Virginia. The latitude and longitude coordinates are: (38.427525,-81.220647)

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: Nitrogen Oxides = 4.30 TPY, Carbon Monoxide = 2.737 TPY, Particulate Matter-2.5 = 0.0 TPY, Particulate Matter-10 = 0.0 TPY, Volatile Organic Compounds = 30.14 TPY, Sulfur Dioxide = 0.004 TPY, Formaldehyde = .293 TPY, Benzene = 0.0146 TPY, Toluene = 0.0085 TPY, Ethylbenzene = 0.0015 TPY, Xylenes = 0.0055 TPY, Hexane = 0.2145 TPY, and Total Hazardous Air Pollutants = 0.571 TPY.

Startup of operation is planned to begin on or about <u>July (2015)</u>. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the **6th** day of **September**, **2016**.

By: <u>Cunningham Energy, LLC</u> (Ryan Cunningham <u>President</u> <u>3230 Pennsylvania Ave.</u> <u>Charleston, WV 25302</u>