

APPLICATION FOR CONSTRUCTION PERMIT

Marcellus Methanol Plant Marshall County, West Virginia

Prepared for:

Primus Green Energy Hillsborough, New Jersey

Prepared by:

Amec Foster Wheeler Environment & Infrastructure

511 Congress Street Portland, Maine 04101

271 Mill Road, 3rd Floor Chelmsford, Massachusetts 01824

October 2016

Project No. 7773160152

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	PRO	JECT DESCRIPTION	2
	2.1	Site Location	2
	2.2	Summary of Proposed Facility	2
		2.2.1 Steam Methane Reformer (SMR)	3
		2.2.2 Methanol Synthesis Reactor System	
		2.2.3 Methanol Distillation System.	
		2.2.4 Methanol Storage	
		2.2.5 Methanol Loadout	
		2.2.6 Cooling Tower	
		2.2.7 Startup Heater	
3.0	EMIS	SSIONS INVENTORY	5
	3.1	Point Sources	5
		3.1.1 Steam Methane Reformer (SMR)	5
		3.1.2 Startup Heater	6
		3.1.3 Methanol Synthesis Reactor and Distillation Systems	6
		3.1.4 Product Storage	6
		3.1.5 Product Loadout	7
		3.1.6 SSM Flare	7
		3.1.7 Cooling Tower	8
	3.2	Fugitive Sources	8
		3.2.1 Fugitive VOC Equipment Leaks	8
	3.3	Summary of Calculated Potential Emissions	9
4.0	REG	ULATORY ANALYSIS	.10
	4.1	Prevention of Significant Deterioration (40 CFR 52.21 and 45CSR14)	10
	4.2	Nonattainment New Source Review (40 CFR 51.165 and 45CSR19)	10
	4.3	Title V Operating Program (40 CFR 70 and 45CSR30)	
	4.4	Compliance Assurance Monitoring (40 CFR 64)	
	4.5	New Source Performance Standards (40 CFR 60 and 45CSR16)	
		4.5.1 40 CFR 60 Subpart A	
		4.5.2 40 CFR 60 Subpart Kb	11
		4.5.3 40 CFR 60 Subpart VVa	12
		4.5.4 40 CFR 60 Subpart NNN	
		4.5.5 40 CFR 60 Subpart RRR	13
		4.5.6 40 CFR 60 Subparts Db and Dc	
	4.6	National Emission Standards for Hazardous Air Pollutants and Maximum Achievable Cor Technology (40 CFR 61 and 40 CFR 63)	
		4.6.1 40 CFR 61 Subpart FF	
		4.6.2 40 CFR 63 Subparts F, G, and H	
	4.7	Chemical Accident Prevention Provisions (40 CFR 68)	
	4.8	West Virginia Code of State Regulations (45CSR)	
		4.8.1 45CSR2 Particulate Air Pollution from Combustion of Fuel	
		4.8.2 45CSR13 Permit Requirements	
		4.8.3 45CSR21 Volatile Organic Compounds (VOCs)	
		4.8.4 45CSR22 Air Quality Management Fees	
			-

	4.8.5 45CSR27 Control Emissions of Toxic Air Pollutants	. 19
4.9	Regulatory Analysis Summary	.19

APPENDICES

Appendix A WVDEP Application Forms and Attachments

1.0 INTRODUCTION

Primus Green Energy, Inc. (Primus) is proposing to construct Marcellus Methanol Plant (Marcellus Methanol), a 160 metric ton per day (tpd) methanol production facility to be located at Covestro's New Martinsville chemical production facility located in an unincorporated area of Marshall County, West Virginia. Primus is applying for a construction permit under the West Virginia Code of State Regulations (CSR) at 45CSR13. The project will be a minor source of air emissions with respect to the U.S. Environmental Protection Agency's (USEPA) Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NNSR) pre-construction permit programs and USEPA's Title V Operating Permit program.

Covestro's existing chemical facility, upon which the Marcellus Methanol facility will be located, operates under a Title V Operating Permit issued by the West Virginia Department of Environmental Protection (WVDEP). The existing facility is an integrated chemical plant with a primary purpose to produce isocyantes, polyesters, polyethers and acrylics with the majority of the production units associated with production of polyurethane products. Because the Marcellus Methanol facility will not be under the same ownership or operational control of the Covestro facility, it will require its own air permit for construction and operation.

The purpose of this air permit application is to provide the technical information required by the WVDEP air permitting program, and demonstrate that the proposed facility will be in compliance with regulations related to ambient air quality. As such, this application provides:

- A description of the proposed project configuration (Section 2);
- An inventory of maximum potential emissions resulting from the project (Section 3);
- An analysis of applicable regulatory requirements (Section 4);
- Completed air permit application forms (Appendix A);
- Detailed emissions calculations (Appendix B); and
- A detailed site plan (Appendix C).

2.0 PROJECT DESCRIPTION

Marcellus Methanol is proposing to construct its facility in Marshall County near the unincorporated community of Proctor. This state-of-the-art facility will have a nameplate production capacity of approximately 160 metric tons per day of methanol, using natural gas as feedstock.

This section provides a description of the project location (Section 2.1), and the proposed equipment to be installed for the project (Section 2.2).

2.1 Site Location

The proposed site is located within the boundaries of the larger, existing Covestro chemical production complex located adjacent to the Ohio River in the southwestern corner of Marshall County (see Figures 1 and 2), approximately 5 miles north of the city of New Martinsville and 1.3 miles north of the unincorporated community of Proctor. A CSXT rail corridor runs adjacent to the river, along the west side of the larger complex. State Highway 2 runs along the east side of the larger complex. Additional industrial complexes are located to the north on the West Virginia side of the river, and to the south on the Ohio side.

The proposed facility is located in the USEPA's Steubenville-Weirton-Wheeling Interstate Air Quality Control Region (AQCR). The Marshall County portion of the AQCR is designated as attainment or unclassifiable for all criteria pollutants with the exception of the Clay, Franklin, and Washington Tax Districts which are designated nonattainment for the 1-hour sulfur dioxide (SO₂) National Ambient Air Quality Standard (NAAQS). The project is located in the Franklin Tax District and is therefore located in the SO₂ nonattainment area. Marshall County is currently a maintenance area for the 1997 8-hour ozone standard and the 1997 annual PM_{2.5} standard.

The location proposed for development of the project is in the north central portion of the Covestro complex. The area proposed for development consists of two blocks within the Covestro property. Based on a site plan provided by Marcellus Methanol, the proposed facility is expected to occupy approximately 1 acre within one block with the storage tanks to be located in the other block. The internal road system within Covestro surrounds the block areas, effectively bisecting the proposed site (see Figure 2). The two blocks have a combined acreage of approximately 5 acres available for development, not including the bisecting common roadway and other common areas. Existing rail sidings are located adjacent to the south side of the proposed site blocks and the rail loadout facilities will be constructed in this area.

The base elevation of the proposed site is approximately 641 feet (NAVD 1988); the site is depicted on the USGS New Martinsville topographic map (see Figure 1). The Ohio River runs from northwest to southeast through the site area. Hills rise steeply on both sides of the river to an elevation of approximately 1300 feet. The closest identified public park is the Lewis Wetzel Park located more than one mile to the south of the larger complex in Wetzel County. The Ohio River Scenic Byway runs along the western shore of the Ohio River across from the site. No schools, hospitals, nursing homes, day care or preschool facilities are identified within the site vicinity.

2.2 Summary of Proposed Facility

Primus has developed a proprietary technology for converting various feedstocks, including natural gas and syngas, into liquid fuels and chemicals, including gasoline and methanol. The proposed project will utilize Primus' gas-to-methanol system to produce 160 metric tpd of International Methanol Producers & Consumers Association (IMPCA) specification methanol from pipeline natural gas supplies sourced from the Marcellus shale region. For permitting purposes,

the availability of the plant is assumed to be 8,760 hours per year, resulting in an assumed operating capacity of 58,400 metric tons per year.

The project will be comprised of the following equipment:

- One Steam Methane Reformer (SMR) system (natural gas-fired) equipped with selective catalytic reduction (SCR) for nitrogen oxides (NO_x) emissions control;
- One methanol synthesis reactor system and off-gas recovery system;
- One methanol distillation system and off-gas recovery system;
- One start-up heater;
- Three methanol storage tanks; and
- Truck and rail loading racks (one each) equipped with a flare for volatile organic compounds (VOC) emissions control.

Figure 3 provides a schematic process flow diagram of the facility. Air emissions will be produced by the proposed equipment. The facility will not be equipped with an emergency engine or a diesel fire pump. The basis for the calculation of emissions from the various processes is provided in Section 3. Detailed calculations of the emissions are provided in Appendix B. A site plan of the project is included in Appendix C.

2.2.1 Steam Methane Reformer (SMR)

The SMR produces syngas from pipeline natural gas and steam feedstocks, and requires heat which is supplied by the combustion of natural gas and process gases. The SMR consists of a reactor where synthesis gas (syngas) is produced by a reaction of natural gas and steam, and a boiler where fuel is combusted to supply heat for the reaction and for producing steam. The fuel used in the boiler includes pipeline natural gas and recovered hydrogen-rich process gases from the methanol reactor system and methanol distillation system.

Combustion emissions from the SMR boiler will be exhausted to a selective catalytic reduction (SCR) unit for NO_X emissions control. Good combustion practices and the use of low-sulfur gaseous fuels will minimize emissions of other combustion pollutants. The SMR reactor, which normally operates under high pressure, is not normally exhausted to atmosphere. On rare occasions, startup conditions and upset conditions will result in syngas releases with four such startup events per year and four such upset events per year conservatively assumed for the purposes of this permit application. The syngas present in the SMR reactor during startups and process upsets would be vented to a process header which is in turn vented to a flare for control of emissions.

2.2.2 Methanol Synthesis Reactor System

The methanol synthesis reactor system consists of a series of reactor vessels that convert the syngas to a crude methanol liquid stream comprised of approximately 80 to 85 percent methanol and water. The system includes off-gas recovery, most of which is recycled to the front end of the methanol reactor system. A smaller hydrogen-rich process gas stream (HP Vent) is directed to the SMR furnace where it serves as fuel. The methanol synthesis reactor system, which normally operates under high pressure, is not normally exhausted to atmosphere. For facility startups and for emergency purposes, the reactor system is tied to the process header which is in turn vented to a flare for control of emissions. Startup venting will be of a duration of less than 4 hours and is expected to occur no more than 4 times per year. An emergency situation would involve a fire that engulfs the methanol synthesis reactor system. For the purposes of this permit application, one such emergency event over the life of the facility was considered.

2.2.3 Methanol Distillation System

The methanol distillation system consists of a series of distillation columns that purify the crude methanol to IMPCA-specification methanol. A small stream of process gas (LP Vent), comprised mostly of methane, methanol, hydrogen, and carbon dioxide, is directed to the SMR furnace where it serves as fuel. The methanol distillation system is not normally exhausted to atmosphere. For emergency purposes, the distillation system is tied to the process header which is in turn vented to a flare for control of emissions. The process header would only be used in extremely rare circumstances, such as during a fire that engulfs the methanol distillation system. For the purposes of this permit application, one such event over the life of the facility was considered.

2.2.4 Methanol Storage

Methanol storage will be comprised of the following:

- one 30,000 barrel (bbl) (24-day storage) carbon steel, 80 foot diameter by 40 foot high methanol product storage tank equipped with internal floating roof;
- one 30,000 gallon shift tank (cylindrical horizontal double-walled aboveground) to store methanol product from distillation, prior to transfer into the methanol product storage tank, and
- one 30,000 gallon off-spec tank (cylindrical horizontal double-walled aboveground) to store methanol deemed as off-specification.

All aboveground storage tanks will comply with the applicable requirements contained in the 2015 amendments to the Aboveground Storage Tank and Public Water Supply Protection Acts of the state of West Virginia and associated issued guidance from the WVDEP.

2.2.5 Methanol Loadout

Methanol loadout will be comprised of the following:

- one 400 gallon per minute (gpm) loading rack for filling trucks in dedicated methanol service; and
- one 800 gallon per minute (gpm) loading rack for filling railcars in dedicated methanol service.

Vapors displaced from the trucks and railcars during loading will be directed to an enclosed flare for VOC emissions control. This flare differs from that used for startups and emergency purposes.

2.2.6 Cooling Tower

An induced draft evaporative cooling tower will provide cooling of process water for the project. The tower will be of rectangular mechanical-draft design with two cells. The water flow rate will be approximately 2,000 gallons per minute, with a drift loss of 0.005 percent. Total dissolved solids in the water are expected to be approximately 5,000 mg/l.

2.2.7 Startup Heater

The facility will include a 2.55 MMBtu/hr startup heater to provide heat to the methanol synthesis reactor system during startups. The startup heater will combust only natural gas. Although the unit will be used only during facility startup conditions, the unit is assumed to operate 8,760 hours per year for permitting purposes.

3.0 EMISSIONS INVENTORY

This section describes how emissions from the proposed Marcellus Methanol project were calculated based upon data supplied by Primus' contractors and vendors, emission factors obtained from USEPA's AP-42 *Compilation of Air Pollutant Emission Factors* (AP-42), and USEPA emissions models such as TANKS. Detailed emissions calculations are provided in Appendix B.

From a practical perspective relevant to the proposed project and its emissions, the list of regulated New Source Review (NSR) pollutants includes the six criteria pollutants for which NAAQS have been established and those pollutants that are subject to the New Source Performance Standards (NSPS) promulgated pursuant to Section 111 of the federal Clean Air Act (CAA).

The six criteria pollutants are: sulfur dioxide (SO₂), particulate matter (PM), carbon monoxide (CO), ozone (O₃), nitrogen dioxide (NO₂), and lead (Pb). Volatile organic compounds (VOCs) and nitrogen oxides (NO_X) are included by virtue of being established as ozone precursors. For regulatory purposes, PM is further classified by particle size. $PM_{2.5}$ includes all particles with an aerodynamic diameter of less than 2.5 microns. PM_{10} includes all particles with an aerodynamic diameter of less than 10 microns. Total suspended particulate (TSP) includes particles of all sizes.

The list of Hazardous Air Pollutants (HAPs) is defined in Section 112(b) of the Clean Air Act. From a practical perspective, the HAPs to be emitted from the proposed project are subsets of regulated NSR pollutants, particularly trace metals (PM) and trace organics (VOCs). Methanol in particular is itself classified as both a HAP and a VOC.

Annual emissions were calculated for comparison to permitting thresholds, and short-term emissions (durations of 24 hours or less) are also provided. Emissions of regulated NSR pollutants, GHGs, and HAPs were calculated.

Emissions from point sources and fugitive sources were quantified separately. Point sources are emission sources that are vented through a stack or vent. Fugitive sources are emission sources that have no specific emission point.

3.1 Point Sources

3.1.1 Steam Methane Reformer (SMR)

The SMR produces syngas from natural gas and steam feedstocks, and requires heat which is supplied by the combustion of natural gas and process gases. Combustion emissions from the SMR were calculated based on the maximum hourly heat input (114.8 MMBtu/hr) of the unit and vendor-supplied emissions data. Emissions of HAPs were calculated based on USEPA's AP-42 for natural gas-fired boilers. The SMR will be equipped with selective catalytic reduction (SCR) for NO_X emissions control.

The SMR will not otherwise emit to atmosphere during normal operations. On rare occasions, startup conditions and upset conditions will result in syngas releases to a flare dedicated for control of releases during such startup, shutdown, and malfunction events (SSM Flare). Emissions from startups and process upsets are described below in the discussion of the SSM Flare.

The calculated emissions for the SMR are included in Table 3-1. Detailed emissions calculations are presented in Appendix B.

	PM ₁₀	PM _{2.5}	SO_2	NOx	CO	VOC	HAP	CO ₂ e
Process	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SMR	1.97	1.97	1.18	66.90	19.68	3.94	1.96	125,300

Table 3-1. Calculated Potential Emissions, SMR

3.1.2 Startup Heater

A startup heater with a maximum heat input capacity of 2.55 MMBtu/hr will be used to provide heat to the methanol synthesis reactor system during plant startups. The startup heater will use natural gas and for air permitting purposes is conservatively assumed to operate at full capacity year-round. Combustion emissions were calculated based on the maximum heat input capacity of the heater and USEPA's AP-42 emission factors for natural gas-fired boilers.

The calculated emissions for the startup heater are included in Table 3-2. Detailed emissions calculations are presented in Appendix B.

	PM ₁₀	PM _{2.5}	SO ₂	NOx	СО	VOC	HAP	CO ₂ e
Process	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Heater	0.08	0.08	0.006	1.10	0.92	0.06	0.02	1,322

Table 3-2. Calculated Potential Emissions, Startup Heater

3.1.3 Methanol Synthesis Reactor and Distillation Systems

The methanol synthesis reactor and distillation systems do not have direct discharges to atmosphere during normal facility operations. Hydrogen-rich gases are recovered from these systems during normal operations and returned to the SMR for combustion. The calculated SMR combustion emissions includes consideration of these vent gases.

For the purposes of evaluating worst-case SSM emissions, a release of methanol from these systems to the SSM Flare was considered. Emissions from such a process upset are described below in the discussion of the SSM Flare.

3.1.4 Product Storage

VOC emissions from the methanol storage tank, shift tank, and off-spec tank were calculated using USEPA's TANKS 4.0.9d software (USEPA, 2001a). The methanol storage tank will be equipped with an internal floating roof and is assumed to handle the full production capacity of the facility. The methanol shift tank and off-spec tank will be of identical horizontal tank design and will share the full production capacity of the facility. Because of their identical designs, emissions for only one of the horizontal tanks at full production throughput are calculated. These emissions are representative of the combined emissions of both tanks.

The total VOC and HAP emissions are provided in Table 3-3. The calculated VOC and HAP emissions are comprised entirely of methanol. A summary of the TANKS inputs and outputs are provided in Appendix B, as are the detailed TANKS outputs.

	VOC	HAP	Methanol
Process	(tpy)	(tpy)	(tpy)
Product Storage Tank	0.12	0.12	0.12
Shift Tank / Off-Spec Tank	1.90	1.90	1.90

Table 3-3. Calculated Potential Emissions, Storage Tanks

3.1.5 Product Loadout

Product will be loaded onto tank trucks at a rate of 400 gallons per minute (gpm) and onto railcars at a rate of 800 gpm. Vapors displaced from the trucks and railcars will be exhausted directly to a flare dedicated for control of loadout emissions (Loadout Flare). Submerged fill techniques are assumed to be employed, and the trucks and railcars are assumed to be in dedicated methanol service. Displaced methanol vapor emissions were calculated using USEPA's AP-42, Section 5.2 (USEPA, 1995a). The captured VOC and HAP emissions will be destroyed in the Loadout Flare with a control efficiency of 98%.

The Loadout Flare will have a pilot that will combust natural gas. The pilot will have a capacity of 0.06 MMBtu/hr (1.0 scfm) and was assumed to operate 8,760 hours per year. Combustion emissions of criteria pollutants for pilot operation were calculated using USEPA's AP-42, Section 13.5 (USEPA, 1995b). PM emissions were calculated by conservatively assuming a lightly smoking flare.

The total VOC and HAP emissions are provided in Table 3-4. The calculated VOC and HAP emissions are comprised entirely of methanol. Detailed emissions calculations are presented in Appendix B. Emissions from pilot operation of the Loadout Flare are included in Table 3-4.

	PM ₁₀	PM _{2.5}	SO ₂	NOx	СО	VOC/HAP	CO ₂ e
Process	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Loadout Flare	0.03	0.03	0.007	0.81	4.39	0.17	1,642

Table 3-4. Calculated Potential Emissions, Loadout Flare

3.1.6 SSM Flare

The SSM Flare will be used to control gases released during facility startups and process area upsets. The flare will use natural gas for the pilot. Annual potential emissions assume full year-round operation of the pilot and a conservative estimate of releases from SSM events, for which three scenarios are considered for emission calculation purposes. During facility startups (Scenario 1), the system is initially filled with hot nitrogen to bring the equipment up to operating temperature. As the SMR commences syngas production, a mixed stream of nitrogen and syngas is sent to the SSM Flare for control of emissions until the nitrogen is purged from the system and the system switched to normal operating mode.

Two upset scenarios are considered. Scenario 2 involves an upset condition that releases all syngas from the SMR to the flare for a period as long as 48 hours to maintain SMR temperature while downstream equipment is repaired. Minimizing thermal cycling of the SMR is important during such upset conditions, hence the need to consider a period of 48 hours for Scenario 2. Scenario 3 involves an external fire that engulfs the reactor and distillation area causing contents of both systems to boil off.

The SSM Flare will have a pilot that will combust natural gas. The pilot will have a capacity of 0.092 MMBtu/hr (1.5 scfm) and was assumed to operate 8,760 hours per year. Combustion emissions of criteria pollutants for pilot operation were calculated using USEPA's AP-42, Section 13.5 (USEPA, 1995b). PM emissions were calculated by conservatively assuming a lightly smoking flare. The calculated emissions for the pilot are included in Table 3-5. Detailed emissions calculations are presented in Appendix B.

	PM ₁₀	PM _{2.5}	SO ₂	NOx	СО	VOC	CO ₂ e
Process	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SSM Flare	0.05	0.05	0.01	1.50	8.17	3.09	2,585

Table 3-5. Calculated Potential Emissions, SSM Flare

3.1.7 Cooling Tower

A mechanical draft cooling tower will provide cooling of process water for the project. The maximum design flow rate will be approximately 2,000 gallons per minute (GPM). Total dissolved solids in the cooling water are expected to be approximately 5,000 milligrams per liter (mg/l). The cooling tower will be designed with a drift rate of 0.005 percent or less to minimize PM_{10} emissions. The cooling tower will use a total of two cells.

Emissions were calculated using USEPA's AP-42, Section 13.4 (USEPA, 1995c). The total PM_{10} emissions from the cooling tower were calculated to be 1.10 tpy. The total $PM_{2.5}$ emissions were set equal to the PM_{10} emissions. Detailed emissions calculations are presented in Appendix B.

VOC emissions resulting from heat exchanger process fluid leaks into cooling water were calculated in accordance with the South Coast Air Quality Management District's (SCAQMD) "Guidelines for Calculating Emissions from Cooling Towers" (SCAQMD, 2006). Total VOC and HAP emissions from the cooling tower were calculated to be 0.37 tpy. Because Marcellus Methanol is proposing to perform weekly monitoring of VOCs in the cooling water, the emission factor that claims credit for VOC control was used. The calculated VOC and HAP emissions are comprised entirely of methanol. Detailed emissions calculations are presented in Appendix B. Equipment leaks will be minimized by implementation of a monitoring program that detects VOCs in cooling water.

3.2 Fugitive Sources

3.2.1 Fugitive VOC Equipment Leaks

Fugitive VOC emissions from equipment leaks were calculated in accordance with USEPA's "Protocol for Equipment Leak Emission Estimates" (USEPA, 1995d) using SOCMI emission factors. Component counts were estimated from preliminary engineering drawings of the proposed facility. Total fugitive VOC emissions from equipment leaks were calculated to be 2.55 tpy. Some of the fugitive VOC emissions occur at the SMR, and consequently not all of the VOC emissions are comprised of methanol (HAP). HAP emissions were calculated to be 2.42 tpy. Detailed emissions calculations are presented in Appendix B. Fugitive equipment leaks will be minimized by implementation of a monthly leak detection and repair (LDAR) monitoring program in accordance with New Source Performance Standard (NSPS) 40 CFR Part 60, Subpart VVa.

3.3 Summary of Calculated Potential Emissions

A summary of calculated potential emissions for Marcellus Methanol is provided in Table 3-6. A more detailed summary of pollutant emissions is provided in Appendix B along with detailed emission calculations.

	PM 10	PM _{2.5}	SO ₂	NOx	СО	VOC	HAP	CO ₂ e
Process	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
SMR	1.97	1.97	1.18	66.90	19.68	3.94	1.96	125,306
Heater	0.08	0.08	0.006	1.10	0.92	0.06	0.02	1,322
Storage Tanks						2.02	2.02	
Product Loadout	0.03	0.03	0.007	0.81	4.39	0.17	0.17	1,642
SSM Flare	0.05	0.05	0.01	1.50	8.17	3.09		2,585
Cooling Tower	1.10	1.10				0.37	0.37	
Subtotal,								
Point Sources	3.23	3.23	1.21	70.30	33.16	9.65	4.54	130,854
Equipment Leaks						2.55	2.42	
Subtotal,								
Fugitives						2.55	2.42	
Total	3.23	3.23	1.21	70.30	33.16	12.20	6.96	130,854

Table 3-6. Summary of Calculated Potential Emissions, Marcellus Methanol

4.0 REGULATORY ANALYSIS

The project will be subject to federal and state air quality requirements including federal emissions performance standards under 40 CFR Part 60 New Source Performance Standards (NSPS), VOC Reasonably Available Control Technology (RACT), and permitting requirements under the West Virginia Code of State Regulations (CSR). Based on the current facility design, the project will be a minor source under the PSD, NNSR, and Title V Operating Permit programs. Following is a discussion of regulatory requirements evaluated for this project.

4.1 Prevention of Significant Deterioration (40 CFR 52.21 and 45CSR14)

PSD permitting requirements apply to the criteria pollutants: SO₂, NO₂, PM, PM₁₀, PM_{2.5}, CO, VOC, and Pb as well as other NSR Regulated Pollutants such as sulfuric acid mist (SAM). The PSD permitting requirements do not apply to HAPs. The PSD regulations specify that any major new stationary source within an air quality attainment area must undergo PSD review and obtain applicable federal and state preconstruction air permits prior to the commencement of construction. The PSD regulations apply to:

- Any source type listed in any of 28 designated industrial source categories having potential emissions of 100 tpy or more of any pollutant regulated under the CAA;
- Any other source having potential emissions of 250 tpy or more of any pollutant regulated under the CAA;

The proposed facility will be located in Marshall County, which is designated as attainment or unclassifiable for all criteria pollutants with the exception of the Clay, Franklin, and Washington Tax Districts which are designated nonattainment for the 1-hour SO₂ NAAQS. The project is located in the Franklin Tax District and is therefore located in the SO₂ nonattainment area. Marshall County is currently a maintenance area for the 1997 8-hour ozone standard and the 1997 annual $PM_{2.5}$ standard. Sources with emissions of the attainment pollutants exceeding the PSD applicability thresholds noted above would be required to obtain a PSD permit prior to commencing construction.

The Marcellus Methanol facility is considered one of the 28 designated industrial source categories (chemical process plants) and is therefore subject to the 100 tpy applicability threshold. Based on the design criteria and calculated potential to emit, as summarized in Table 3-6, the project will not trigger PSD permitting requirements.

4.2 Nonattainment New Source Review (40 CFR 51.165 and 45CSR19)

The NNSR program regulates major sources located in areas that are nonattainment for one or more criteria pollutants. As noted above, the proposed facility is located in the Franklin Tax District of Marshall County, which is designated nonattainment for the 1-hour SO₂ NAAQS.

The major source emissions threshold for SO_2 nonattainment areas is 100 tpy. Based on the design criteria and calculated potential to emit, as summarized in Table 3-6, the project will not trigger NNSR permitting requirements.

4.3 Title V Operating Program (40 CFR 70 and 45CSR30)

The Title V Operating Permit program requires major sources to apply for a Title V Operating Permit within 12 months of beginning operation. Under Title V, a major source is defined as those facilities that have the potential to emit greater than 100 tons per year of any criteria pollutant, 25 tons per year of HAPs collectively, and 10 tons per year of an individual HAP. For new sources

subject to the program, a Title V Operating Permit application is due within 12 months of commencing construction.

The proposed project will be a minor source for criteria pollutants and HAPs. Therefore, a Title V Operating Permit will not be required for the project.

4.4 Compliance Assurance Monitoring (40 CFR 64)

The Compliance Assurance Monitoring (CAM) Rule, 40 CFR 64, was written to provide "reasonable assurance" of continuous compliance with emissions limitations or standards in cases where the underlying requirement for an emissions unit does not require continuous emissions monitoring and for units that are part of major sources that have Title V operating permits. The CAM rule applies to a pollutant-specific emissions limit for a unit at a major source required to have a Title V permit if the unit satisfies all of the applicability criteria.

The project will not be subject to the Title V Operating Permit program. Therefore, CAM does not apply to the project.

4.5 New Source Performance Standards (40 CFR 60 and 45CSR16)

NSPS apply to specific source categories. These standards are codified in 40 CFR 60, Standards of Performance for New Stationary Sources. NSPS standards have been adopted by reference in 45CSR16 for standards in effect as of June 1, 2015. The following NSPS will apply to the proposed facility:

- Subpart A General Provisions;
- Subpart Kb Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced after July 23, 1984;
- Subpart VVa Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemical Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced after November 7, 2006;
- Subpart NNN Standards of Performance for Volatile Organic Compound (VOC) Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Operations; and
- Subpart RRR Standards of Performance for Volatile Organic Compound (VOC) Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes.

4.5.1 40 CFR 60 Subpart A

The general provisions contained in Subpart A apply to the emission sources that are subject to an NSPS standard [40 CFR §60.1(a)]. These general provisions include notification and recordkeeping requirements (described in 40 CFR §60.7), testing requirements (described in 40 CFR §60.8), monitoring requirements (described in 40 CFR §60.13), and flare requirements (40 CFR §60.18(b)). The facility will be subject to the requirements under Subpart A, including initial notifications in 40 CFR §60.7.

4.5.2 40 CFR 60 Subpart Kb

Subpart Kb applies to each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) [19,813 gallons] that is used to store volatile organic liquids (VOL) for which construction,

reconstruction, or modification is commenced after July 23, 1984 [40 CFR §60.110b(a)]. Applicability is a function of tank size and vapor pressure of the stored liquid. This subpart does not apply to the following [40 CFR §60.110b(b)]:

- Storage vessels with a capacity greater than or equal to 151 m³ [39,890 gallons] storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (kPa) [0.51 pounds per square inch absolute or psia]; and
- Storage vessels with a capacity greater than or equal to 75 m³ [19,813 gallons] but less than 151 m³ [39,890 gallons] storing a liquid with a maximum true vapor pressure less than 15.0 kPa [2.18 psia].

Subpart Kb will apply to the 1.26 million gallon methanol storage tank as its capacity is greater than 19,813 gallons and is used to store volatile organic liquids. In addition, the storage tank does not meet the exemption in 60.110b(b) because its capacity is greater than 39,890 gallons and methanol has a maximum true vapor pressure greater than 0.51 psia at the site. The facility will comply with Subpart Kb by installing an internal floating roof tank in accordance with 60.112b.

The 1.26 million gallon methanol storage tank will require inspections of the tank, the internal floating roof, and its seals [§60.113b(a)]. In addition, §60.115b(a) requires Marcellus Methanol to keep records and submit reports regarding the control equipment installed to meet the requirements of §60.112b and inspections conducted under §60.113b(a).

Subpart Kb will apply to the two 30,000 gallon storage tanks (shift tank and off-spec tank). Each tank has a capacity between 19,813 gallons and 39,890 gallons, storing a liquid with a maximum true vapor pressure of 2.23 psia at 74°F based on monthly average temperature data for Pittsburgh. However, because the shift tanks have a true maximum vapor pressure less than 4.0 psia (27.6 kPa), the shift tank and off-spec tank are not subject to the control requirements listed in 40 CFR 60.112b.

Based on the design parameters for the tanks, the tanks are expected to comply with Subpart Kb.

4.5.3 40 CFR 60 Subpart VVa

40 CFR 60 Subpart VVa applies to an affected facility in the synthetic organic chemicals manufacturing industry (SOCMI) [40 CFR §60.480a(a)] that commences construction or modification after November 7, 2006 [40 CFR §60.480a(b)]. Further, this subpart applies to equipment components (i.e., each pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, and flange or other connector) in VOC service, which means that the piece of equipment contains or contacts a process fluid that is at least 10 percent VOC by weight [40 CFR §60.481a]. Any affected facility that has a design capacity to produce less than 1,000 Mg/yr (1,102 ton/yr) is exempt from §60.482a [40 CFR §60.480a(d)(2)]. By definition, the list of chemicals produced by affected facilities, as intermediates or final products, by process units covered under this subpart includes: CAS No. 67-56-1, methanol [40 CFR §60.489].

Subpart VVa will apply to the proposed facility because the facility is a SOCMI facility as defined under 60.481a and produces a chemical (methanol) listed in 40 CFR 60.489. Subpart VVa has specific requirements for controlling such leaks from pumps, compressors, relief devices, flanges, valves, etc. One requirement is the development of a Leak Detection and Repair (LDAR) program to insure compliance with Subpart VVa and any other requirements to control equipment leaks.

The equipment components proposed for the facility in VOC service will be subject to the standards, including controls, monitoring, repair, recordkeeping, and reporting requirements of Subpart VVa because the facility will have the design capacity to produce more than 1,102 tons

per year of methanol. Emissions from these components are identified as Fugitive Equipment Leaks. Marcellus Methanol will be required to identify all components subject to Subpart VVa and develop a leak detection and repair (LDAR) program for the facility.

4.5.4 40 CFR 60 Subpart NNN

40 CFR 60 Subpart NNN applies to an affected SOCMI facility [40 CFR §60.660(a)] that commences construction, modification, or reconstruction after December 30, 1983 [40 CFR §60.660(b)]. The affected facility is any of the following [40 CFR §60.660(b)(1), (2), (3)]:

- Each distillation unit not discharging its vent stream into a recovery system;
- Each combination of a distillation unit and the recovery system into which its vent stream is discharged; or
- Each combination of two or more distillation units and the common recovery system into which their vent streams are discharged.

Any affected facility that has the design capacity to produce less than 1,000 megagrams (Mg) per year (1,102 tons per year) is exempt from all provisions of this subpart except for the recordkeeping and reporting requirements. Each affected facility operated with a vent stream flow rate of less than 0.008 standard cubic meters per minute (scm/min) [0.28 standard cubic feet per minute (scfm)] is exempt from all provisions of this subpart except for the test method, procedure, recordkeeping, and reporting requirements. By definition, the list of chemicals produced by process units as a product, by-product, or intermediate covered under this subpart includes methanol, CAS No. [40 CFR §60.667].

Subpart NNN applies to methanol distillation if a vent stream exiting the unit is exhausted to the atmosphere from the distillation unit itself or through other process equipment such as the SMR. A vent stream is defined as a gas stream directly vented to the atmosphere or indirectly vented to the atmosphere through other process equipment. By definition, a vent stream excludes relief valve discharges and equipment leaks. Units with a total resource effectiveness (TRE) index greater than 8 are not required to meet the monitoring requirements under 60.663.

If applicable, emissions standards require one of the following:

- Reduce TOC emissions by 98% (weight);
- TOC (less methane and ethane) less than 20 ppmvd @3% O₂;
- Use of a flare that meets the specifications of 60.18; or
- Maintain a TRE index of greater than 1 without VOC control devices.

Because the distillation area has a vent stream routed to the SMR, Subpart NNN applies to the project. Combustion of the vent stream in the SMR will reduce TOC emissions by 98 percent. Thus, the project will meet the emissions requirements of Subpart NNN.

4.5.5 40 CFR 60 Subpart RRR

Subpart RRR applies to an affected SOCMI facility [40 CFR §60.700(a)] that commences construction, modification, or reconstruction after June 29, 1990 [40 CFR §60.700(b)]. The affected facility is any of the following [40 CFR §60.700(b)(1), (2), (3)]:

• Each reactor process not discharging its vent stream into a recovery system;

- Each combination of a reactor process and the recovery system into which its vent stream is discharged; or
- Each combination of two or more reactor processes and the common recovery system into which their vent streams are discharged.

Any affected facility that has the design capacity to produce less than 1,000 Mg/yr (1,102 ton/yr) is exempt from all provisions of this subpart except for the recordkeeping and reporting requirements. Other exemptions include: (1) a facility operated with a vent stream flow rate less than 0.011 scm/min (0.39 scfm); and (2) a vent stream from an affected facility that is routed to a distillation unit subject to Subpart NNN and has no other releases to the air except for a pressure relief valve. Both of these exemptions have some monitoring, recordkeeping and reporting requirements under Subpart RRR.

By definition, the list of chemicals produced by process units as a product, by-product, or intermediate covered under this subpart includes methanol, CAS No. 67-56-1 [40 CFR §60.707].

The SMR and methanol reactors will begin construction after June 29, 1990, the facility will produce a listed chemical, and will include a recovery system for the vent stream. A vent stream is defined as a gas stream directly vented to the atmosphere from a reactor process or indirectly vented to the atmosphere through other process equipment such as the SMR. The reactor vent stream will be discharged to a distillation unit regulated under Subpart NNN. However, part of the reactor vent stream (off-gas recovery) is routed to the SMR and then emitted to atmosphere after combustion in the SMR. Therefore, the project is subject to Subpart RRR.

Subpart RRR emissions standards require one of the following:

- Reduce TOC emissions by 98% (weight);
- TOC (less methane and ethane) less than 20 ppmvd @3% O₂;
- Use of a flare that meets the specifications of 60.18; or
- Maintain a TRE index of greater than 1 without VOC control devices.

The project will comply with Subpart RRR by reducing TOC by 98 weight percent.

Non-Applicable NSPS Regulations

The following NSPS are evaluated for reference purposes, but do not apply to Marcellus Methanol:

4.5.6 40 CFR 60 Subparts Db and Dc

40 CFR 60 Subpart Db applies to steam generating units capable of combusting more than 100 MMBtu/hr heat input of fuels, which is constructed, modified, or reconstructed after June 19, 1984. 40 CFR 60 Subpart Dc applies to steam generating units capable of combusting more than 10 but less than 100 MMBtu/hr heat input of fuels, which is constructed, modified, or reconstructed after June 19, 1984. The provisions of 40 CFR 60 Subparts Db and Dc will not apply to the SMR because it meets the rule's definition of a process heater. These rules do not apply to the startup heater because it is not a steam generating unit.

4.6 National Emission Standards for Hazardous Air Pollutants and Maximum Achievable Control Technology (40 CFR 61 and 40 CFR 63)

National Emission Standards for Hazardous Air Pollutants (NESHAPs) apply to specific pollutants, as codified in 40 CFR 61, and to specific source categories, as codified in 40 CFR 63, NESHAPs for Source Categories. The regulations in 40 CFR 63 contain standards for maximum achievable control technology (MACT) that apply mainly to major sources of HAP emissions – defined as a stationary source that has the potential to emit 10 tpy of any single HAP or 25 tpy of any combination of HAPs. However, in a few instances, MACT standards have been promulgated for HAP area sources (e.g., engines and boilers). NESHAP standards have been adopted by reference in 45CSR34 for standards in effect as of June 1, 2015.

None of the NESHAPs regulations apply to the proposed facility. The following NESHAP standards are evaluated for reference purposes because they potentially apply to SOCMI facilities, but they will not apply to Marcellus Methanol:

- 40 CFR 61 Subpart FF National Emission Standard for Benzene Waste Operations;
- 40 CFR 63 Subpart F National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry;
- 40 CFR 63 Subpart G National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater; and
- 40 CFR 63 Subpart H National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks.

4.6.1 40 CFR 61 Subpart FF

The provisions of Subpart FF apply to owners and operators of chemical manufacturing plants, coke by-product recovery plants, and petroleum refineries, and includes owners and operators of hazardous waste treatment, storage, and disposal facilities that treat, store, or dispose of hazardous waste generated by any facility listed in this paragraph. The waste streams at hazardous waste treatment, storage, and disposal facilities subject to the provisions of this subpart are benzene-containing hazardous waste from any facility listed in paragraph (a) of this section. A hazardous waste treatment, storage, and disposal facility is a facility that must obtain a hazardous waste management permit under subtitle C of the Solid Waste Disposal Act.

This section applies to waste storage tanks, surface impoundments, drain systems, containers and treatment systems. If the benzene quantity handled is less than 10 Mg/year, then certain portions of Subpart FF do not apply. The Marcellus Methanol facility will not handle benzene waste and is therefore not subject to this subpart.

4.6.2 40 CFR 63 Subparts F, G, and H

40 CFR 63 Subpart F, National Emissions Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry; Subpart G, National Emissions Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater; and Subpart H, National Emissions Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry for Equipment Leaks apply to major HAP sources. The proposed project will be a minor HAP source. Therefore, these subparts will not apply to the project.

4.7 Chemical Accident Prevention Provisions (40 CFR 68)

The Chemical Accident Prevention provisions in 40 CFR 68 apply to facilities that have more than a threshold quantity of a regulated toxic or flammable substance in a process [40 CFR §68.10(a)]. The proposed facility will not conduct any activities involving more than a threshold quantity of a regulated substance, including any use, storage, manufacturing, handling, or on-site movement of such substances, or combination of these activities. This includes the syngas in the process (contains both hydrogen and methane, each with less than 10,000 pounds in the process at any one time) and the proposed aqueous ammonia storage tank associated with the SCR (ammonia content less than 20 percent by weight). However, the general duty provisions will apply to the proposed facility.

4.8 West Virginia Code of State Regulations (45CSR)

Emissions sources at the Marcellus Methanol facility will be required to comply with regulations established by the WVDEP under 45 CSR. Following is a discussion of regulations applicable to the project.

4.8.1 45CSR2 Particulate Air Pollution from Combustion of Fuel

Combustion emissions from the SMR and startup heater will be subject to §45-2-3 (visible emissions) and §45-2-4 (weight emissions standards). Opacity from the units will be limited to 10 percent based on a six-minute block average. An applicant may petition for a different opacity standard under §45-2-3 if the applicant can demonstrate that the 10 percent opacity cannot be achieved. §45-2-4 limits particulate emissions based on the "type" of combustion unit. The types of units include:

- Type 'a' means any fuel burning unit which has as its primary purpose the generation of steam or other vapor to produce electric power for sale.
- Type 'b' means any fuel burning unit not classified as a Type 'a' or Type 'c' unit such as industrial pulverized-fuel-fired furnaces, cyclone furnaces, gas-fired and liquid-fuel-fired units.
- Type 'c' means any hand-fired or stoker-fired fuel burning unit not classified as a Type 'a' unit.

The SMR and the startup heater are "Type b" fuel burning devices. Particulate emissions (pounds per hour [lb/hour]) for the SMR are limited to 0.09 times the heat input of 114.8 MMBtu/hour, or 10.3 lb/hour. For the startup heater, particulate emissions are limited to 0.09 times the heat input of 2.55 MMBtu/hour or 0.23 lb/hour.

4.8.2 45CSR13 Permit Requirements

Permit requirements for sources that are not subject to PSD or NNSR are contained in 45CSR13. Sources that have the potential to emit in excess of the following are required to obtain a construction permit under 45CSR13:

- 6 pounds per hour and 10 tons per year of any regulated air pollutant;
- 144 pounds per calendar day, of any regulated air pollutant; and
- 2 pounds per hour or 5 tons per year of hazardous air pollutants considered on an aggregated basis;

In addition, 45CSR13 requires a facility to obtain a permit if there are potential emissions of one or more pollutants listed in Table 45-13A in the amounts greater than those listed in Table 4-1.

Pollutant	Applicability Threshold (lb/year)
Acrylonitrile	500
Allyl Chloride	10,000
Arsenic Compounds (Inorganic)	200
Asbestos	14
Benzene	100
Beryllium	0.8
1,3 Butadiene	500
Carbon Tetrachloride	1,000
Chloroform	1,000
Ethylene Dichloride	1,000
Ethylene Oxide	500
Formaldehyde	1,000
Lead or lead compounds	1,200
Mercury	200
Methylene Chloride	5,000
Propylene Oxide	5,000
Trichloroethylene	10,000
Vinyl Chloride	1,000
Vinylidene Chloride	2,000

Table 4-1. 45CSR13 Toxic Air Pollutant Applicability Thresholds

The project will have VOC, NO_x , and CO emissions greater than 6 pounds per hour and 10 tons per year. As previously noted, the project will not trigger major source requirements under PSD or NNSR. Therefore, a state minor source permit will be required under 45CSR13. Note that the project will not emit any of the toxic air pollutants listed in Table 4-1.

45CSR13 also specifies public notice requirements for minor source permits. Three notice levels are specified as follows:

<u>Notice Level A</u>. This notice of application is required at the time the permit application is submitted to WVDEP. The notice requires the applicant (Marcellus Methanol) to place a legal advertisement in a newspaper of general circulation in the area where the source will be located. A permit will not be issued until at least thirty (30) days' notice has been provided to the public. The project will be subject to Notice Level A requirements.

<u>Notice Level B</u>. This legal notice requirement is in addition to the Notice Level A requirements for construction and modification applications for sources subject to 45CSR16 (PSD), 45CSR27 (Toxic Air Pollutants) and 45CSR34 (Hazardous Air Pollutants), and all other applications not subject to the provisions of subsections 8.3 or 8.5. Notification Level B requires WVDEP to publish a legal notice of the agency's intent to issue a permit in a newspaper of general circulation in the area where the source is or will be located. Construction, modification or operating permits will not be issued until at least thirty (30) days' notice has been provided to the public. The project is not subject to 45CSR16, 45CSR27 or 45CSR34. Therefore, the Notice Level B requirements do not apply.

<u>Notice Level C</u>. This legal notice requirement is in addition to the Notice Level A requirements for sources for which the agency intends to issue a permit to limit physical and operational capacity below major stationary source thresholds (including 45CSR14 [PSD], 45CSR19 [NNSR], 45CSR30 [Title V] and 45CSR34 [Hazardous Air Pollutants]). Under Notice Level C, WVDEP is required to publish a legal notice of the agency's intent to issue a permit in a newspaper of general circulation in the area where the source is or will be located. Construction, modification or operating permits will not be issued until at least thirty (30) days' notice has been provided to the public. The Notice Level C requirements will apply.

WVDEP has published draft revisions to CSR13 for public notice. One key change that will take effect in 2017 is streamlining public notice requirements such that the Notice Level A will no longer be required for construction permits. Construction permits will be subject to public notice requirements before permit issuance.

45CSR13 also provides timelines for issuing permits. §45-13-5 specifies that the permit review timeline is 90 days after the permit application is determined to be complete. The completeness determination is a 30-day period. In addition, the permit timeline includes allows for an additional 30 days for public comment for a total potential timeline of 150 days.

§45-13-5 also provides a listing of allowable activities that may be conducted prior to permit issuance. Commencement of these activities are at the owner's risk that the permit may not be issued in accordance with the application. Allowed activities include:

- land clearing;
- removal of stumps and roots;
- excavation, grading, and soil compaction for temporary and final grades;
- digging and constructing foundations;
- demolition of structures (must consider issues such as asbestos and contamination issues);
- upgrade of utility support facilities;
- construct or modify buildings or structures that are offices or warehouses;
- order equipment and procure supplies; and
- receive equipment for storage off or on-site.

Lastly, §45-13-16 allows for a source to submit an application to commence construction prior to permit issuance.

4.8.3 45CSR21 Volatile Organic Compounds (VOCs)

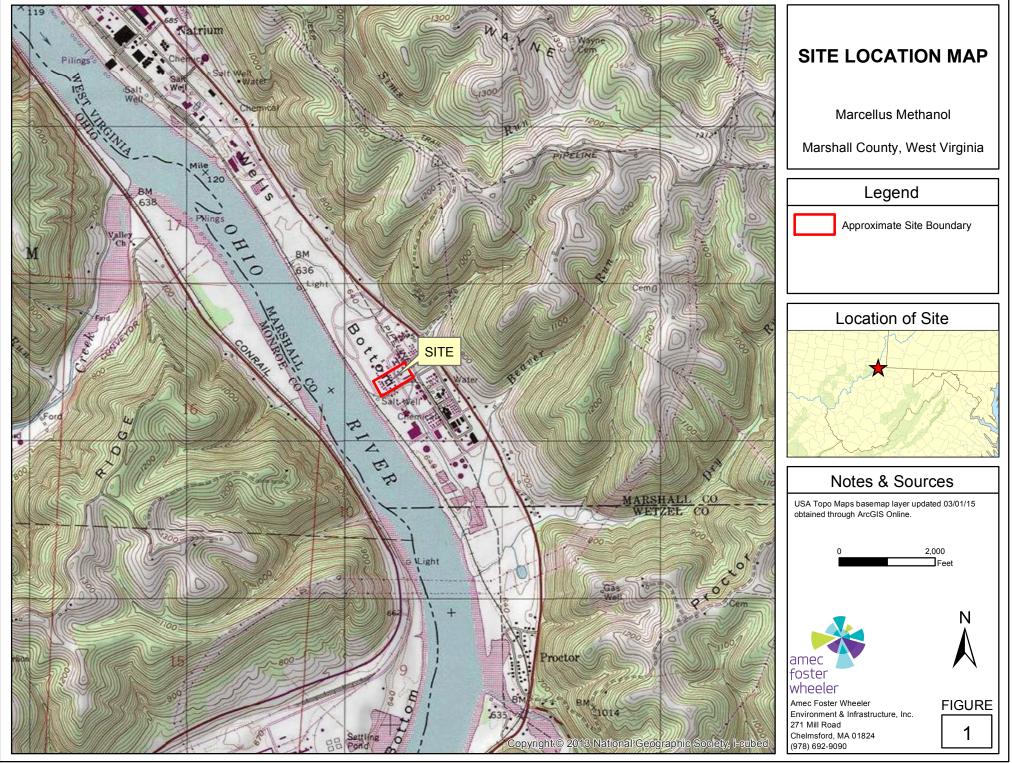
45CSR21 contains regulations relating to the control of VOCs for listed source categories for Putnam, Kanawha, Cabell, Wayne, and Wood Counties. Because the project is located in Marshall County, these regulations do not apply.

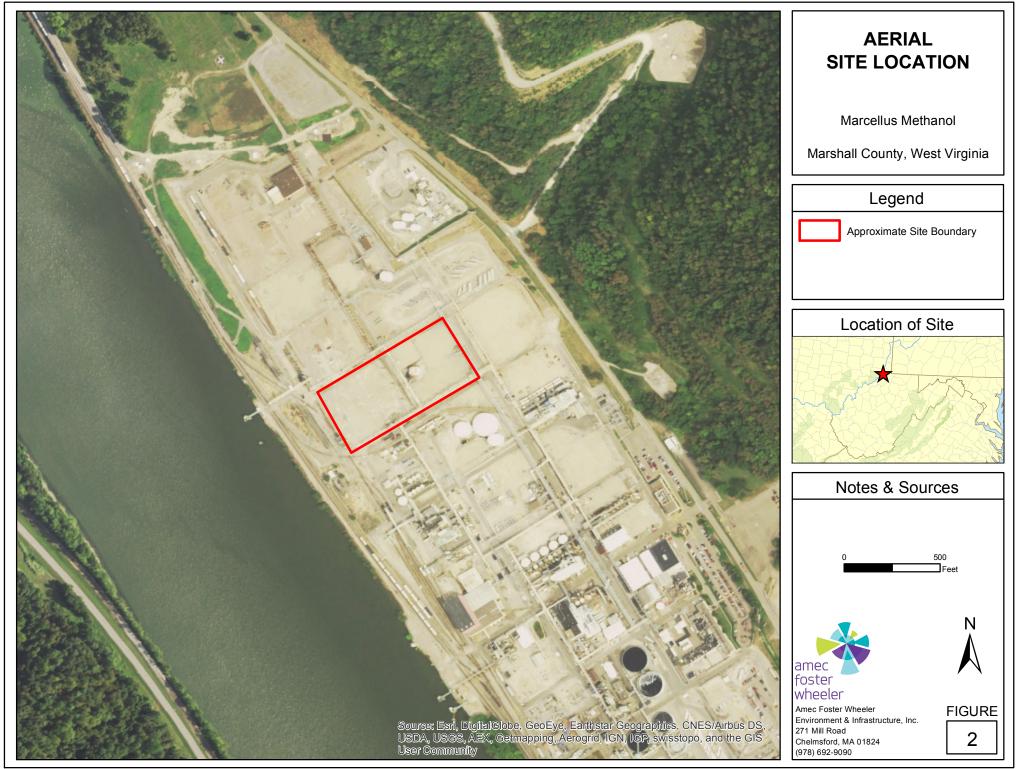
4.8.4 45CSR22 Air Quality Management Fees

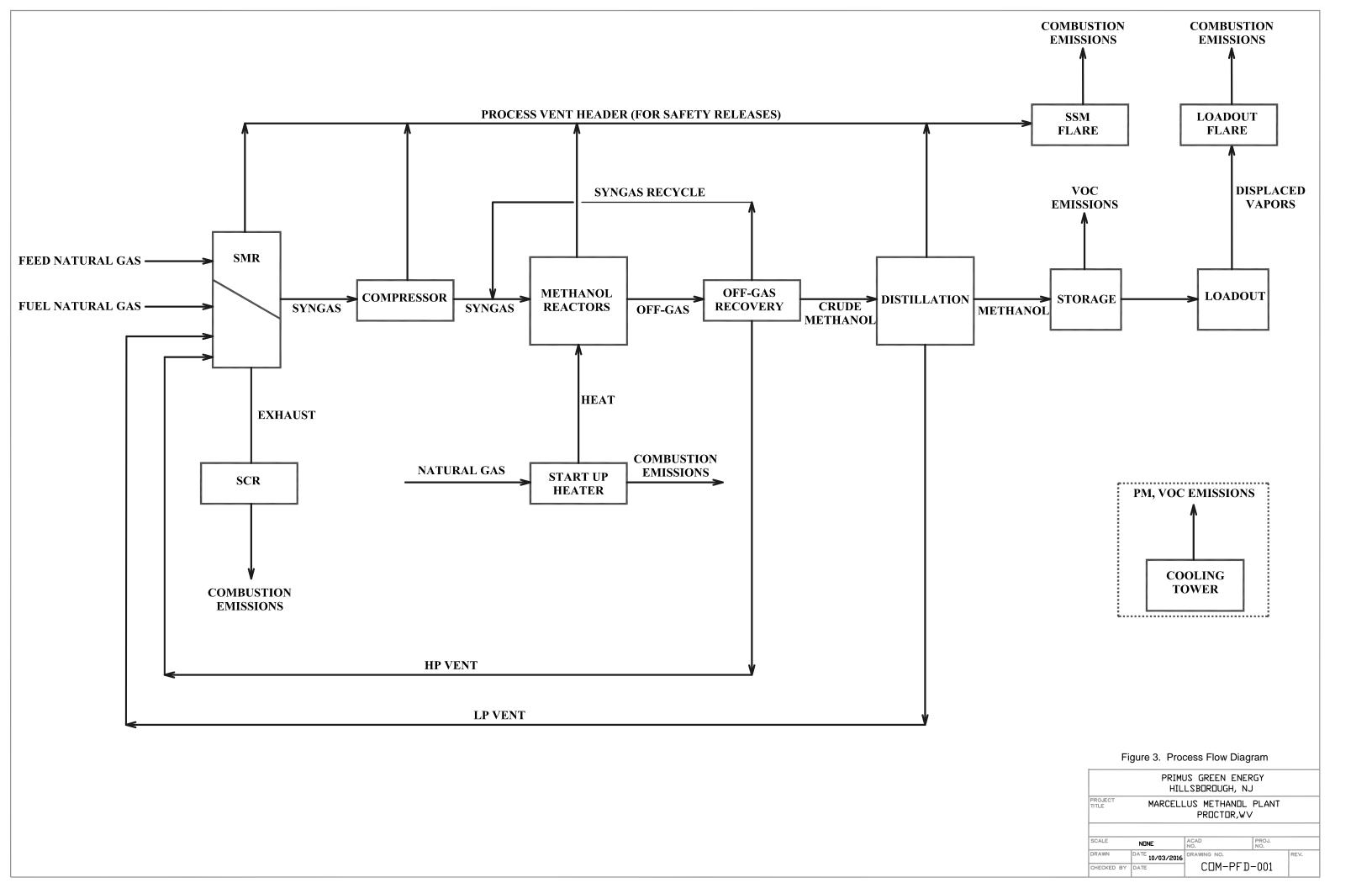
45CSR22 establishes fees for permits to construct and certificates to operate. §45-22-3.4a requires all applicants filing for a permit to construct, modify, or relocate submit a permit

application fee of \$1,000. §45-22-3.4b imposes additional fees for sources subject to PSD, NNSR, NSPS, NESHAPS, or Toxic Air Pollutants. The project is subject to four NSPS subparts. The additional fee for NSPS sources is \$1,000. Therefore, the total fee is \$2,000.

4.8.5 45CSR27 Control Emissions of Toxic Air Pollutants


§45-27-3 applies to toxic air pollutants at chemical processing units that emits one or more pollutants at quantities specified in Table A of §45-27. §45-27-4, §45-27-5, §45-27-6, and §45-27-7 also apply to fugitive, tank, wastewater, and loading/unloading of rail cars and tank trucks of applicable toxic air contaminant emissions, respectively. Chemicals and threshold quantities in Table A of §45-27 are provided in Table 4-1 of this section under the discussion of 45CSR13. The proposed facility will not emit any of the contaminants listed in Table A and therefore, the rule does not apply to the project. However, emissions from the sources in this regulation emitting other organic pollutants will meet the requirements of NSPS Subparts Kb, VVa, NNN, and RRR, thereby limiting emissions.


4.9 Regulatory Analysis Summary


In summary, the Marcellus Methanol facility will be subject to the following requirements:

- The facility will be required to obtain a Construction Permit under 45CSR13 and associated fees at 45CSR22;
- The storage tanks will be subject to the Federal NSPS at 40 CFR 60 Subpart Kb;
- Fugitive equipment leaks will be subject to the Federal NSPS at 40 CFR 60 Subpart VVa and the WVDEP emissions standards at 45CSR21;
- The methanol distillation system will be subject to the Federal NSPS at 40 CFR 60 Subpart NNN;
- The SMR and methanol synthesis reactor system will be subject to the Federal NSPS at 40 CFR 60 Subpart RRR;
- The facility will be subject to the Federal NSPS at 40 CFR 60 Subpart A;
- The SMR and startup heater are subject to the WVDEP PM emissions standards at 45CSR2;

FIGURES

APPENDIX A

WVDEP Application Forms

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN)	: PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):			
CONSTRUCTION □ MODIFICATION □ RELOCATION CLASS I ADMINISTRATIVE UPDATE □ TEMPORARY	ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION			
	IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
	ion Guidance" in order to determine your Title V Revision options to operate with the changes requested in this Permit Application.			
Section	I. General			
 Name of applicant (as registered with the WV Secretary of S Primus Green Energy, Inc. 	State's Office): 2. Federal Employer ID No. (FEIN): 22-3842180			
3. Name of facility (if different from above):	4. The applicant is the:			
Marcellus Methanol Plant	OWNER OPERATOR OBOTH			
5A. Applicant's mailing address: Primus Green Energy, Inc. 219 Homestead Road Hillsborough, NJ 08844	5B. Facility's present physical address: 17595 Energy Road Proctor, WV 26055			
change amendments or other Business Registration Certific	Organization/Limited Partnership (one page) including any name cate as Attachment A. brity of L.L.C./Registration (one page) including any name change			
7. If applicant is a subsidiary corporation, please provide the na	me of parent corporation:			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site?</i> YES NO If YES, please explain: Lease If NO, you are not eligible for a permit for this source. 				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Methanol production facility 10. North American Industry Classification System (NAICS) code for the facility: 32519 				
_	List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): N/A			
All of the required forms and additional information can be found	under the Permitting Section of DAQ's website, or requested by phone.			

12A.

 For Modifications, Administrative Updates or Te 	mporary permits at an existing facility.	please provide directions to the				
present location of the facility from the nearest state	e road;					
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 					
The proposed site is leased from Covestro, which is loca		5 miles north of New Martinsville				
and 19 miles south of Moundsville. A site location map i	s included as Attachment B.					
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:				
17595 Energy Road	Proctor	Marshall				
Proctor, WV 26055						
12.E. UTM Northing (KM): 4397.604	12F. UTM Easting (KM): 514.311	12G. UTM Zone: 17				
13. Briefly describe the proposed change(s) at the facilit	-					
Construct and operate a new 160 metric ton per day met	inanol production facility on property lea	sed from Covestro.				
14A. Provide the date of anticipated installation or chan		14B. Date of anticipated Start-Up				
 If this is an After-The-Fact permit application, prov change did happen: / / 	ide the date upon which the proposed	if a permit is granted: 02/15/2018				
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni						
15. Provide maximum projected Operating Schedule o Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:				
16. Is demolition or physical renovation at an existing fa	cility involved? XES DO					
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	ne subject due to proposed				
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the				
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application				
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this				
information as Attachment D.						
Section II. Additional att	achments and supporting d	ocuments.				
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and				
45CSR13).						
20. Include a Table of Contents as the first page of your application package.						
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 						
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).				
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control				
23. Provide a Process Description as Attachment G.						
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 						
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

24. Provide Material Safety Data Sheet	24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.					
- For chemical processes, provide a MS	DS for each compound emitted	to the air.				
25. Fill out the Emission Units Table ar	nd provide it as Attachment I.					
26. Fill out the Emission Points Data Second	ummary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.				
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide i	t as Attachment K.				
28. Check all applicable Emissions Unit	t Data Sheets listed below:					
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry				
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage				
Concrete Batch Plant	Incinerator	Facilities				
Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks				
General Emission Unit, specify: Coolir	ng Tower					
Fill out and provide the Emissions Unit I						
29. Check all applicable Air Pollution C						
Absorption Systems	Baghouse	⊠ Flare				
Adsorption Systems	Condenser	Mechanical Collector				
Afterburner	Electrostatic Precipit	ator Wet Collecting System				
Other Collectors, specify: Selective Ca	atalytic Reduction (SCR)					
Fill out and provide the Air Pollution Cor						
30. Provide all Supporting Emissions C Items 28 through 31.	Calculations as Attachment N,	or attach the calculations directly to the forms listed in				
	compliance with the proposed	n proposed monitoring, recordkeeping, reporting and emissions limits and operating parameters in this permit				
	ay not be able to accept all meas	ther or not the applicant chooses to propose such sures proposed by the applicant. If none of these plans ude them in the permit.				
32. Public Notice. At the time that the a	application is submitted, place a	Class I Legal Advertisement in a newspaper of general				
circulation in the area where the sour	rce is or will be located (See 450	CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>				
Advertisement for details). Please s	submit the Affidavit of Publicat	ion as Attachment P immediately upon receipt.				
33. Business Confidentiality Claims.	Does this application include co	fidential information (per 45CSR31)?				
🗌 YES	⊠ NO					
segment claimed confidential, includi Notice – Claims of Confidentiality'	ing the criteria under 45CSR§31 "guidance found in the Genera					
Se	ection III. Certification	of Information				
34. Authority/Delegation of Authority. Check applicable Authority Form be		ther than the responsible official signs the application.				
Authority of Corporation or Other Busi	Authority of Corporation or Other Business Entity					
Authority of Governmental Agency	C	Authority of Limited Partnership				
Submit completed and signed Authority	Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	use blue ink)	ATE: 10/4/16 (Please use blue ink)
35B. Printed name of signee: John Doyle		35C. Title: Chief Project Officer
35D. E-mail: jdoyle@primusge.com	36E. Phone: 908-281-6000 ext 146	36F. FAX: 908-431-5720
36A. Printed name of contact person (if different from above): N/A		36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
	permit application with the signature(s) to the DAQ, Permitting Section, at the s application. Please DO NOT fax permit applications.

Forward 1 copy of the application to the Title V Permitting Group and:
For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer of draft permit.

For Title V Significant Modifications processed in parallel with NSR Permit revision:

NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Attachment A

Business Certificate

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Primus Green Energy Inc.

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of October 04, 2016

talil E Yeman

Secretary of State

STATE OF NEW JERSEY DEPARTMENT OF THE TREASURY DIVISION OF REVENUE AND ENTERPRISE SERVICES SHORT FORM STANDING

PRIMUS GREEN ENERGY INC. 0400004778

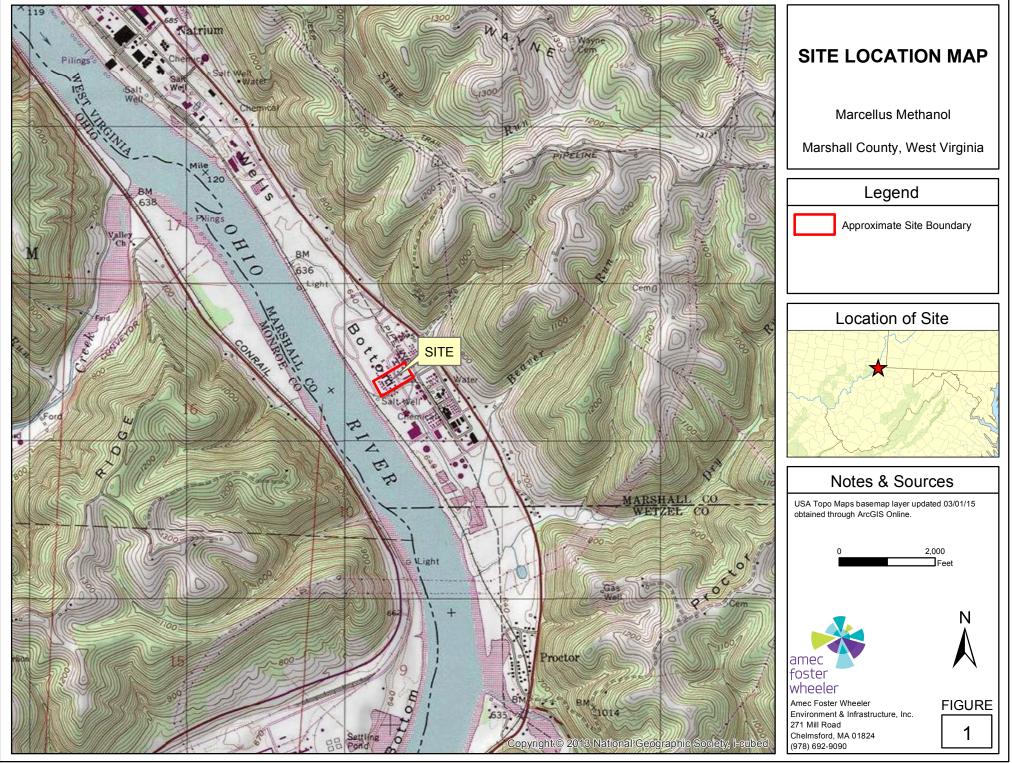
I, the Treasurer of the State of New Jersey, do hereby certify that the above-named New Jersey Domestic For-Profit Corporation was registered by this office on November 25, 2001.

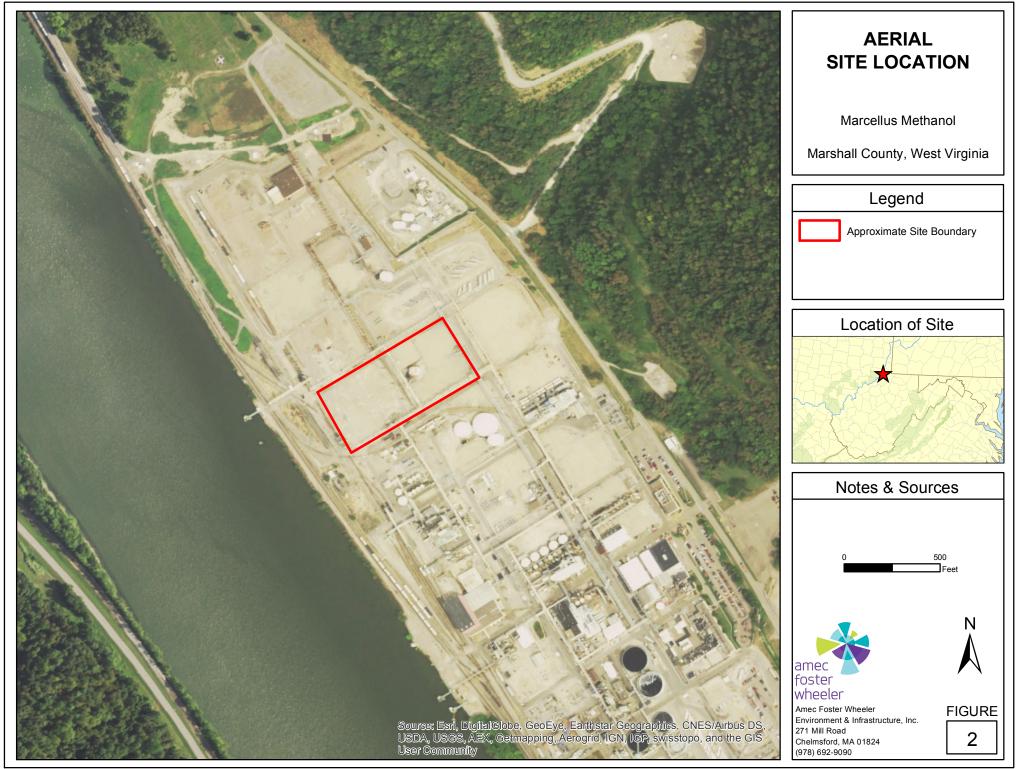
As of the date of this certificate, said business continues as an active business in good standing in the State of New Jersey, and its Annual Reports are current.

I further certify that the registered agent and office are:

VINCENT MARCHESE 219 HOMESTEAD ROAD HILLSBOROUGH, NJ 08844

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my Official Seal at Trenton, this 11th day of January, 2016


Ford M. Scudder Acting State Treasurer


Certificate Number : 6011046881 Verify this certificate online at

 $https://www1.state.nj.us/TYTR_StandingCert/JSP/Verify_CERT.jsp$

Attachment B

Maps

Attachment C

Installation and Start Up Schedule

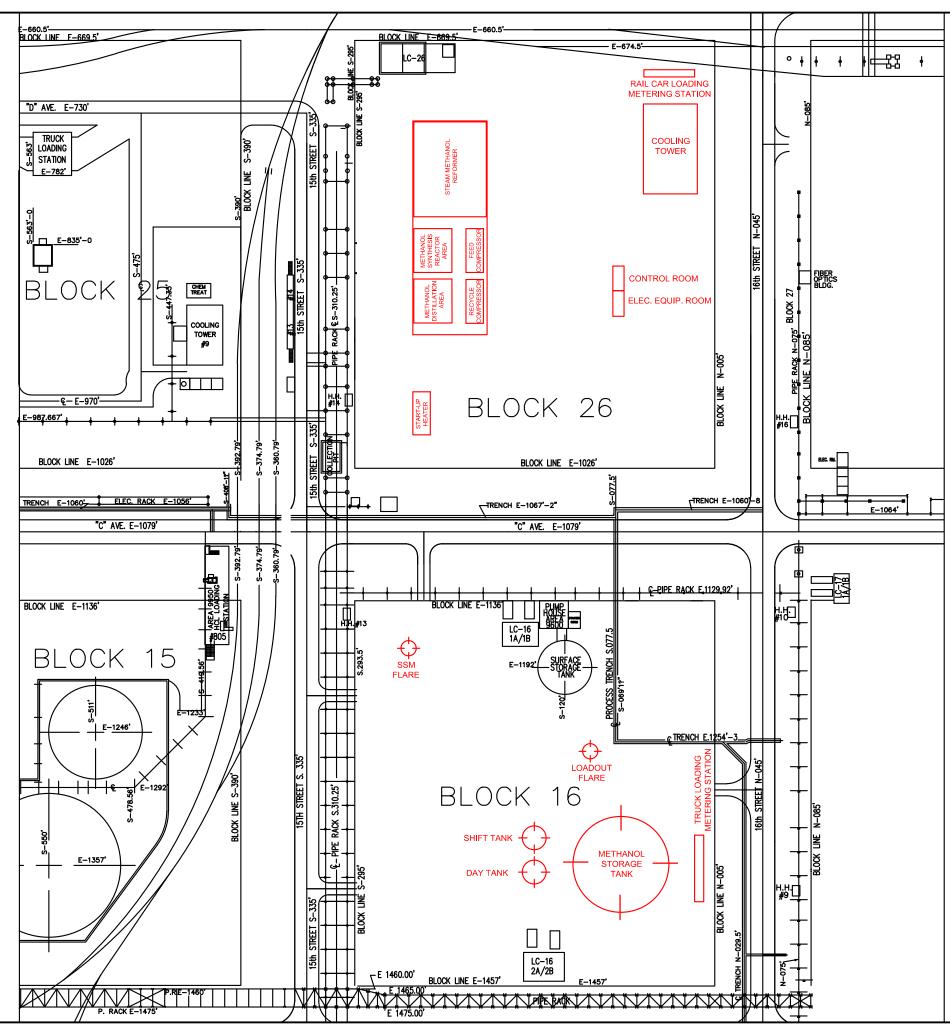
Attachment C. Installation and Start Up Schedule.

Primus Green Energy anticipates commencement of construction by January 15, 2017, pending receipt of a construction permit from WVDEP. Primus further anticipates start-up of the facility approximately February 15, 2018.

Attachment D

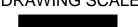
Regulatory Discussion

Attachment D. Regulatory Discussion.


Please refer to Section 4 of the Technical Support Documentation.

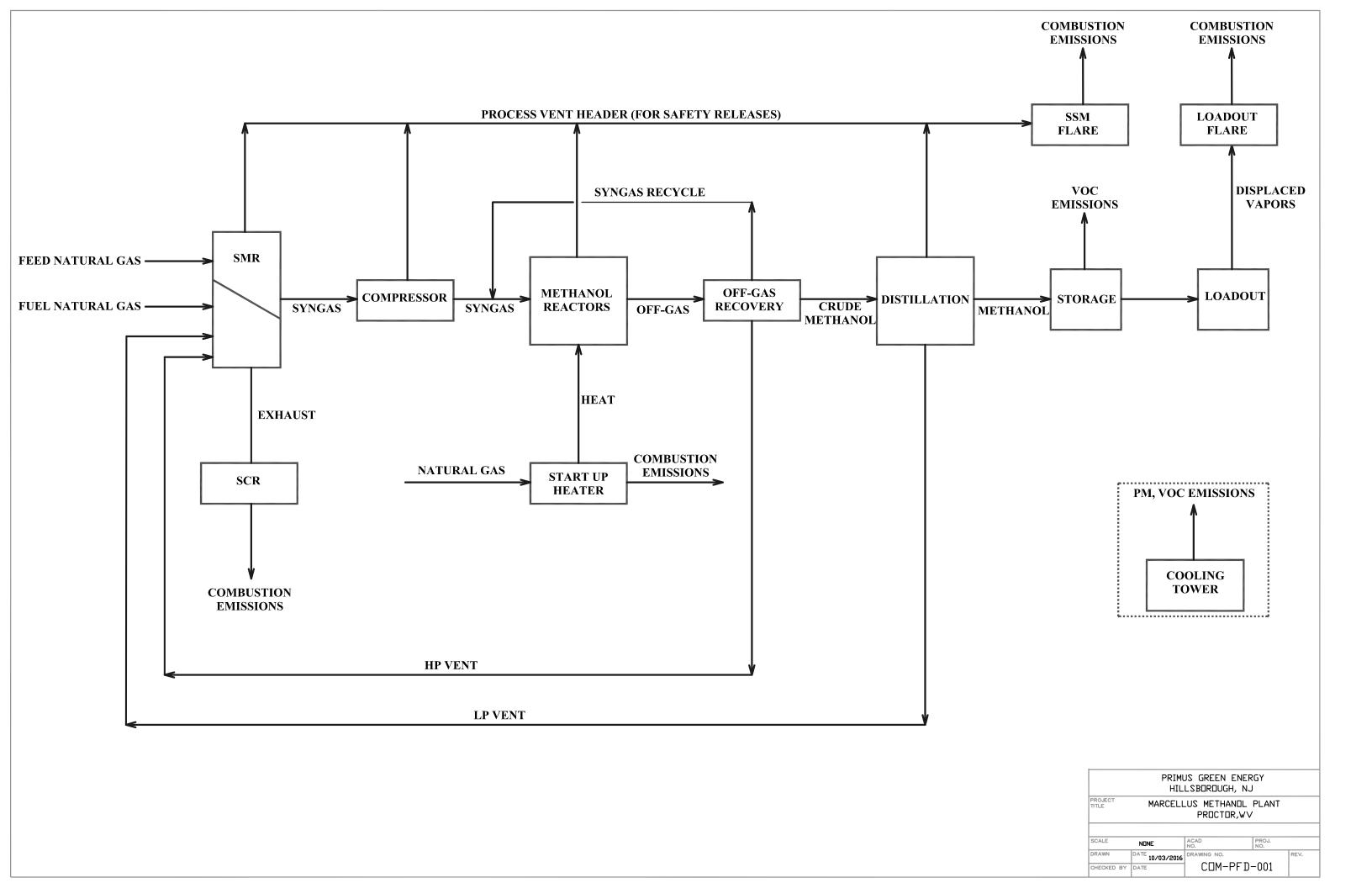
Attachment E

Plot Plan



Notes:

- New Primus Green Energy scope is displayed in "Red".
 UTM Coordinates: 514.311 km Easting, 4397.604 km Northing, Zone 17
 Elevation: 641 ft


1"= 80'

	PRIMUS GREEN ENERGY					
	HILLSBOROUGH, NJ					
	MARCELLUS METHANOL PLANT					
	PR	OCTOR, WV				
SHEET SIZE	SHEET SIZE 11" x 17"					
SCALE 1" = 80' ACAD PROJ. NO. NO.						
DRAWN	DATE 10/03/2016	DRAWING NO.		REV.		
CHECKED BY DATE COM-BLK-001						

Attachment F

Process Flow Diagram

Attachment G

Process Description

Attachment G. Process Description.

Please refer to Section 2 of the Technical Support Documentation.

Attachment H

Material Safety Data Sheets (MSDS)

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET

Version 6.3 Revision Date 09/23/2016 Print Date 10/02/2016

1. PRODUCT AND COMPANY IDENTIFICATION

1.1	Product identifiers Product name	:	Methanol	
	Product Number Brand Index-No.	:	322415 Sigma-Aldrich 603-001-00-X	
	CAS-No.	:	67-56-1	

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company	: Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA
Telephone Fax	: +1 800-325-5832 : +1 800-325-5052

1.4 **Emergency telephone number**

Emergency Phone # : (314) 776-6555

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 2), H225 Acute toxicity, Oral (Category 3), H301 Acute toxicity, Inhalation (Category 3), H331 Acute toxicity, Dermal (Category 3), H311 Specific target organ toxicity - single exposure (Category 1), H370

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word	Danger
Hazard statement(s) H225 H301 + H311 + H331 H370	Highly flammable liquid and vapour. Toxic if swallowed, in contact with skin or if inhaled Causes damage to organs.
Precautionary statement(s) P210 P233 P240 P241	Keep away from heat/sparks/open flames/hot surfaces. No smoking. Keep container tightly closed. Ground/bond container and receiving equipment. Use explosion-proof electrical/ ventilating/ lighting/ equipment.

P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P260	Do not breathe dust/ fume/ gas/ mist/ vapours/ spray.
P264	Wash skin thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/ eye protection/ face protection.
P301 + P310 + P330	IF SWALLOWED: Immediately call a POISON CENTER/doctor. Rinse mouth.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
P304 + P340 + P311	IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER/doctor.
P307 + P311	IF exposed: Call a POISON CENTER or doctor/ physician.
P362	Take off contaminated clothing and wash before reuse.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant foam to extinguish.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.
P403 + P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms	: Methyl alcohol
Formula	: CH ₄ O
Molecular weight	: 32.04 g/mol
CAS-No.	: 67-56-1
EC-No.	: 200-659-6
Index-No.	: 603-001-00-X
Registration number	: 01-2119433307-44-XXXX

Hazardous components

Component	Classification	Concentration
Methanol		
	Flam. Liq. 2; Acute Tox. 3; STOT SE 1; H225, H301 + H311 + H331, H370	<= 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

In case of eye contact

Flush eyes with water as a precaution.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture No data available
- **5.3** Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Wear respiratory protection. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas. For personal protection see section 8.

For personal protection see section

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. Use explosion-proof equipment.Keep away from sources of ignition - No smoking.Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control parameters	Basis
Methanol	67-56-1	TWA	200.000000 ppm	USA. ACGIH Threshold Limit Values (TLV)
	Remarks	Headache		

1 1	1			
	Nausea			
	Dizziness			
	Eye damage			
	Substances	for which there is	a Biological Exposure Index or Indices	
	(see BEI® section)			
		Danger of cutaneous absorption		
	STEL	250.000000	USA. ACGIH Threshold Limit Values	
	SILL	ppm	(TLV)	
	Headache			
	Nausea			
	Dizziness			
	Eye damage	Substances for which there is a Biological Exposure Index or Indices (see BEI® section)		
		utaneous absorpti		
	TWA	200.000000	USA. NIOSH Recommended	
		ppm	Exposure Limits	
		260.000000		
		mg/m3		
	Potential for	dermal absorption	n	
	ST	250.000000	USA. NIOSH Recommended	
	- ·	ppm	Exposure Limits	
		325.000000		
		mg/m3		
	Detential for		-	
		dermal absorption		
	TWA	200.000000	USA. Occupational Exposure Limits	
		ppm	(OSHA) - Table Z-1 Limits for Air	
		260.000000	Contaminants	
		mg/m3		
	The value in	mg/m3 is approxi	mate.	
	TWA	200 ppm	USA. ACGIH Threshold Limit Values	
			(TLV)	
	Headache		()	
	Nausea			
	Dizziness			
	Eye damage		o Dielegiaal Evroeure Index er Indiaea	
			a Biological Exposure Index or Indices	
	(see BEI® s			
	-	utaneous absorpti		
	STEL	250 ppm	USA. ACGIH Threshold Limit Values (TLV)	
	Headache			
	Nausea			
	Dizziness			
	Dizziness Eye damage			
	Dizziness Eye damage Substances	for which there is	a Biological Exposure Index or Indices	
	Dizziness Eye damage Substances (see BEI® s	for which there is ection)		
	Dizziness Eye damage Substances (see BEI® s Danger of ce	for which there is ection)	oņ	
	Dizziness Eye damage Substances (see BEI® s	for which there is ection) utaneous absorption 200 ppm		
	Dizziness Eye damage Substances (see BEI® s Danger of ce	for which there is ection)	oņ	
	Dizziness Eye damage Substances (see BEI® s Danger of cu TWA	for which there is ection) utaneous absorption 200 ppm 260 mg/m3	on USA. NIOSH Recommended Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption	on USA. NIOSH Recommended Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of cu TWA	for which there is ection) utaneous absorption 200 ppm 260 mg/m3	on USA. NIOSH Recommended Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for ST	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption 250 ppm	on USA. NIOSH Recommended Exposure Limits 1 USA. NIOSH Recommended Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for ST Potential for	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption 325 mg/m3 dermal absorption	on USA. NIOSH Recommended Exposure Limits N USA. NIOSH Recommended Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for ST	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption 325 mg/m3 dermal absorption 200 ppm	USA. NIOSH Recommended Exposure Limits USA. NIOSH Recommended Exposure Limits USA. Occupational Exposure Limits	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for ST Potential for	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption 325 mg/m3 dermal absorption	ON USA. NIOSH Recommended Exposure Limits N USA. NIOSH Recommended Exposure Limits N USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air	
	Dizziness Eye damage Substances (see BEI® s Danger of co TWA Potential for ST Potential for TWA	for which there is ection) utaneous absorption 200 ppm 260 mg/m3 dermal absorption 325 mg/m3 dermal absorption 200 ppm	DN USA. NIOSH Recommended Exposure Limits USA. NIOSH Recommended Exposure Limits N USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants	

STEL	250 ppm 325 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000
Skin nota	tion	
TWA	200 ppm 260 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000
Skin nota	tion	·
С	1,000 ppm	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
Skin		
PEL	200 ppm 260 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
Skin		
STEL	250 ppm 325 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
Skin	•	•••

Biological occupational exposure limits

Component	CAS-No.	Parameters	Value	Biological specimen	Basis
Methanol	67-56-1	Methanol	15.0000 mg/l	Urine	ACGIH - Biological Exposure Indices (BEI)
	Remarks	End of shift (A	s soon as p	ossible after expo	osure ceases)
		Methanol	15 mg/l	Urine	ACGIH - Biological Exposure Indices (BEI)
		End of shift (As soon as possible after exposure ceases)			

Derived No Effect Level (DNEL)

Application Area	Exposure	Health effect	Value
	routes		
Workers	Skin contact	Long-term systemic effects	40mg/kg BW/d
Consumers	Skin contact	Long-term systemic effects	8mg/kg BW/d
Consumers	Ingestion	Long-term systemic effects	8mg/kg BW/d
Workers	Skin contact	Acute systemic effects	40mg/kg BW/d
Consumers	Skin contact	Acute systemic effects	8mg/kg BW/d
Consumers	Ingestion	Acute systemic effects	8mg/kg BW/d
Workers	Inhalation	Acute systemic effects	260 mg/m3
Workers	Inhalation	Acute local effects	260 mg/m3
Workers	Inhalation	Long-term systemic effects	260 mg/m3
Workers	Inhalation	Long-term local effects	260 mg/m3
Consumers	Inhalation	Acute systemic effects	50 mg/m3
Consumers	Inhalation	Acute local effects	50 mg/m3
Consumers	Inhalation	Long-term systemic effects	50 mg/m3
Consumers	Inhalation	Long-term local effects	50 mg/m3

Predicted No Effect Concentration (PNEC)

Compartment	Value
Soil	23.5 mg/kg
Marine water	15.4 mg/l
Fresh water	154 mg/l
Fresh water sediment	570.4 mg/kg
Onsite sewage treatment plant	100 mg/kg

8.2 Exposure controls

Appropriate engineering controls

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: butyl-rubber Minimum layer thickness: 0.3 mm Break through time: 480 min Material tested:Butoject® (KCL 897 / Aldrich Z677647, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: 31 min Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

	a)	Appearance	Form: liquid Colour: colourless
	b)	Odour	pungent
	c)	Odour Threshold	No data available
	d)	рН	No data available
	e)	Melting point/freezing point	Melting point/range: -98 °C (-144 °F)
	f)	Initial boiling point and boiling range	64.7 °C (148.5 °F)
_	g)	Flash point	9.7 °C (49.5 °F) - closed cup

h)	Evaporation rate	No data available
i)	Flammability (solid, gas)	No data available
j)	Upper/lower flammability or explosive limits	Upper explosion limit: 36 %(V) Lower explosion limit: 6 %(V)
k)	Vapour pressure	130.3 hPa (97.7 mmHg) at 20.0 °C (68.0 °F) 546.6 hPa (410.0 mmHg) at 50.0 °C (122.0 °F) 169.27 hPa (126.96 mmHg) at 25.0 °C (77.0 °F)
I)	Vapour density	1.11
m)	Relative density	0.791 g/mL at 25 °C (77 °F)
n)	Water solubility	completely miscible
o)	Partition coefficient: n- octanol/water	log Pow: -0.77
p)	Auto-ignition temperature	455.0 °C (851.0 °F) at 1,013 hPa (760 mmHg)
q)	Decomposition temperature	No data available
r)	Viscosity	No data available
s)	Explosive properties	Not explosive
t)	Oxidizing properties	The substance or mixture is not classified as oxidizing.
Oth	ner safety information	
	Minimum ignition energy	0.14 mJ
	Conductivity	< 1 µS/cm

Conductivity Relative vapour density

10. STABILITY AND REACTIVITY

10.1 Reactivity

9.2

No data available

10.2 Chemical stability Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions Vapours may form explosive mixture with air.

10.4 Conditions to avoid Heat, flames and sparks.

- **10.5** Incompatible materials Acid chlorides, Acid anhydrides, Oxidizing agents, Alkali metals, Reducing agents, Acids
- Hazardous decomposition products
 Hazardous decomposition products formed under fire conditions. Carbon oxides
 Other decomposition products No data available
 In the event of fire: see section 5

1.11

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LDLO Oral - Human - 143 mg/kg Remarks: Lungs, Thorax, or Respiration:Dyspnea. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhoea. LD50 Oral - Rat - 1,187 - 2,769 mg/kg

LC50 Inhalation - Rat - 4 h - 128.2 mg/l

LC50 Inhalation - Rat - 6 h - 87.6 mg/l

LD50 Dermal - Rabbit - 17,100 mg/kg

No data available

Skin corrosion/irritation Skin - Rabbit Result: No skin irritation

Serious eye damage/eye irritation Eyes - Rabbit Result: No eye irritation

Respiratory or skin sensitisation Maximisation Test - Guinea pig Does not cause skin sensitisation. (OECD Test Guideline 406)

Germ cell mutagenicity

Ames test S. typhimurium Result: negative

in vitro assay fibroblast Result: negative Mutation in mammalian somatic cells.

Mutagenicity (in vivo mammalian bone-marrow cytogenetic test, chromosomal analysis) Mouse - male and female Result: negative

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

Damage to fetus not classifiable

Fertility classification not possible from current data.

Specific target organ toxicity - single exposure

Causes damage to organs.

Specific target organ toxicity - repeated exposure

The substance or mixture is not classified as specific target organ toxicant, repeated exposure.

Aspiration hazard

No aspiration toxicity classification

Additional Information

RTECS: PC1400000

Effects due to ingestion may include:, Headache, Dizziness, Drowsiness, metabolic acidosis, Coma, Seizures., Methyl alcohol may be fatal or cause blindness if swallowed.

Stomach - Irregularities - Based on Human Evidence Stomach - Irregularities - Based on Human Evidence

12. ECOLOGICAL INFORMATION

12.1	Toxicity	
	Toxicity to fish	mortality LC50 - Lepomis macrochirus (Bluegill) - 15,400.0 mg/l - 96 h
		NOEC - Oryzias latipes - 7,900 mg/l - 200 h
	Toxicity to daphnia and other aquatic invertebrates	EC50 - Daphnia magna (Water flea) - > 10,000.00 mg/l - 48 h
	Toxicity to algae	Growth inhibition EC50 - Scenedesmus capricornutum (fresh water algae) - 22,000.0 mg/l - 96 h
12.2	Persistence and degrad Biodegradability	aerobic - Exposure time 5 d
		Result: 72 % - rapidly biodegradable
	Biochemical Oxygen Demand (BOD)	600 - 1,120 mg/g
	Chemical Oxygen Demand (COD)	1,420 mg/g
	Theoretical oxygen demand	1,500 mg/g
12.3	Bioaccumulative poten	
	Bioaccumulation	Cyprinus carpio (Carp) - 72 d at 20 °C - 5 mg/l
		Bioconcentration factor (BCF): 1.0
12.4	Mobility in soil Will not adsorb on soil.	
12.5	Results of PBT and vP PBT/vPvB assessment n	/B assessment ot available as chemical safety assessment not required/not conducted
12.6	Other adverse effects	
	Additional ecological information	Avoid release to the environment.
	Stability in water	at 19 °C83 - 91 % - 72 h
		Remarks: Hydrolyses on contact with water.Hydrolyses readily.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1230 Class: 3 Proper shipping name: Methanol Reportable Quantity (RQ): 5000 lbs Packing group: II

Poison Inhalation Hazard: No Sigma-Aldrich - 322415

IMDG UN number: 1230 Proper shipping nam	Class: 3 (6.1) e: METHANOL	Packing group: II	EMS-No: F-E, S-D
IATA UN number: 1230 Proper shipping nam	Class: 3 (6.1) e: Methanol	Packing group: II	

15. REGULATORY INFORMATION

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

The following components are subject to reporting	levels established by SARA Title III	, Section 313:
	CAS-No.	Revision Date

Methanol	67-56-1	2007-07-01
SARA 311/312 Hazards Fire Hazard, Acute Health Hazard, Chronic Health Hazard		
Massachusetts Right To Know Components		
Methanol	CAS-No. 67-56-1	Revision Date 2007-07-01
Pennsylvania Right To Know Components		
Methanol	CAS-No. 67-56-1	Revision Date 2007-07-01
New Jersey Right To Know Components		
Methanol	CAS-No. 67-56-1	Revision Date 2007-07-01
California Prop. 65 Components		
WARNING: This product contains a chemical known to the	CAS-No.	Revision Date
State of California to cause birth defects or other reproductive harm. Methanol	67-56-1	2012-03-16

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox.	Acute toxicity
Flam. Liq.	Flammable liquids
H225	Highly flammable liquid and vapour.
H301	Toxic if swallowed.
H301 + H311 +	Toxic if swallowed, in contact with skin or if inhaled
H331	
H311	Toxic in contact with skin.
H331	Toxic if inhaled.
H370	Causes damage to organs.

HMIS Rating

Health hazard:	2
Chronic Health Hazard:	*
Flammability:	3
Physical Hazard	0

NFPA Rating

J J	
Health hazard:	2
Fire Hazard:	3
Sigma-Aldrich - 322415	

Further information

Copyright 2016 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 6.3

Revision Date: 09/23/2016

Print Date: 10/02/2016

Attachment I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EU01	EP01	Steam Methane Reformer Process Heater	Upon Receipt of Permit	114.8 MMbtu/hr	New	SCR01
EU02	EP02	Startup Heater	Startup Heater Upon Receipt of Permit 2.55 MMBtu/hr New		New	None
EU03	EP01	Methanol Synthesis Reactors	Upon Receipt of Permit	211.6 ton/d crude methanol	New	SMR01
EU04	EP01	Methanol Distillation	Upon Receipt of Permit	176.4 ton/d methanol	New	SMR01
EU05	EP03	Product Storage Tank (Internal Floating Roof)	Upon Receipt of Permit	1,260,000 gallons	New	None
EU06	EP04	Shift Tank (Horizontal)	Upon Receipt 30,000			
EU07	EP05	Off-Spec Tank (Horizontal)	Upon Receipt of Permit	30,000 gallons	New	None
EU08	EP06	Product Loading Rack (Trucks)	Upon Receipt of Permit	400 gal/min	New	FLARE01
EU09	EP06	Product Loading Rack (Railcars)	Upon Receipt of Permit	800 gal/min	New	FLARE01
EU10	EP07	Cooling Tower	Upon Receipt of Permit	2,000 gal/min	New	None
EU11	EP08	Process Vent Header (Various SSM Releases)	Upon Receipt of Permit	225 MMBtu/hr	New	FLARE02
		Fugitive VOC Emissions Equipment Component Leaks	Upon Receipt of Permit	N/A	New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page ____1 ___ of ____1___

Attachment J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Т	Table 1:	Emissions D	ata									
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Vented Control Device Through This (Must match Point (Must match Emission Units Emission Units)		Vent Time for Emission Unit (chemical processes only)		n Unit Pollutants - <i>bical</i> Chemical		Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)			
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)					
								NOx	53.91	236.11	15.27	66.90	Gas	EE				
EP01								СО	4.49	19.68	4.49	19.68	Gas	EE				
		EU01	SMR					VOC	0.90	3.94	0.90	3.94	Gas	EE				
	Upward Vertical Stack	o ynaiooi	Synthesis	00004				PM/PM ₁₀ /PM _{2.5}	0.45	1.97	0.45	1.97	Solid	EE				
			Reactors	SCR01	SCR	С	8,760	SO ₂	0.27	1.18	0.27	1.18	Gas	EE				
		EU04	Distillation					HAP	0.45	1.96	0.45	1.96	Gas	EE				
								n-hexane	0.43	1.87	0.43	1.87	Gas	EE				
								CO ₂ e	28,609	125,306	28,609	125,306	Gas	EE				
											NOx	0.25	1.10	0.25	1.10	Gas	EE	
								СО	0.21	0.92	0.21	0.92	Gas	EE				
								VOC	0.01	0.06	0.01	0.06	Gas	EE				
EP02	Upward	EU02	Startup		None	С	0.760	PM/PM ₁₀ /PM _{2.5}	0.02	0.08	0.02	0.08	Solid	EE				
21 02	Vertical Stack	E002	Heater		None	C	8,760	SO ₂	0.001	0.006	0.001	0.006	Gas	EE				
								HAP	0.005	0.02	0.005	0.02	Gas	EE				
								n-hexane	0.005	0.02	0.005	0.02	Gas	EE				
								CO ₂ e	302	1,322	302	1,322	Gas	EE				
	Internal							VOC	0.04	0.12	0.04	0.12	Gas	EE				
EP03	Floating Roof	EU05	Product Storage Tank		None	С	8,760	HAP	0.04	0.12	0.04	0.12	Gas	EE				
	Tank		T GINK					methanol	0.04	0.12	0.04	0.12	Gas	EE				

Attachment J EMISSION POINTS DATA SUMMARY SHEET (continued)

Table 1: Emissions Data (continued)															
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
								VOC	0.61	1.90	0.61	1.90	Gas	EE	
EP04, EP05 Total	Horizontal Tanks	EU06 EU07			None	с	8,760	HAP	0.61	1.90	.90 0.61 1.90	Gas	EE		
								methanol	0.61	1.90	0.61	1.90	Gas	EE	
						C (pilot); displaced vapor vent time a function of truck or	t f e, 8,760	NOx	0.18	0.81	0.18	0.81	Gas	EE	
								CO	0.98	4.39	0.98	4.39	Gas	EE	
								VOC	62.76	8.47	1.26	0.17	Gas	EE	
FD00		FURS			_			PM/PM ₁₀ /PM _{2.5}	0.006	0.03	0.006	0.03	Solid	EE	
EP06	Flare	EU08 EU09		FLARE01	Flare	railcar size, pumping		SO ₂	0.002	0.007	0.002	0.007	Gas	EE	
						rate, and maximum		HAP	62.76	8.47	1.26	0.17	Gas	EE	
						plant production		methanol	62.76	8.47	1.26	0.17	Gas	EE	
						capacity		CO ₂ e	368	1,642	368	1,642	Gas	EE	
			EU10 Cooling Tower					PM/PM ₁₀ /PM _{2.5}	0.25	1.10	0.25	1.10	Solid	EE	
5007	Cooling	FUIA					0.700	VOC	0.08	0.37	0.08	0.37	Gas	EE	
EP07	Tower	EU10			None	С	8,760	HAP	0.08	0.37	0.08	0.37	Gas	EE	
						<u> </u>		methanol	0.08	0.37	0.08	0.37	Gas	EE	

Attachment J EMISSION POINTS DATA SUMMARY SHEET (continued)

Emission Point ID No. (Must match Emission Units Table & Plot Plan) Emission Units Table & Plot Plan) Emission Units Table & Plot Plan)			ented ugh This Point st match sion Units	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)Vent Time for Emission Unit (chemical processes only)			ions Data (continued) All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)		
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
			EU11 EU11 Fulta EU11 Fulta Ful			C (pilot); vent time		NOx	15.32	1.50	15.32	1.50	Gas	EE	
								со	8,616	68.93	83.37	8.17	Gas	EE	
						a function of		VOC 9,634 3.09 31.54 3.09	Gas	EE					
EP08	Flare	EU11		FLARE02	Flare	frequency and	8,760	PM/PM ₁₀ /PM _{2.5}	0.55	0.05	0.55	0.05	Solid	EE	
						duration of SSM		SO ₂	0.13	0.01	0.13	0.01	Gas	EE	
							events		CO ₂ e	26,384	2,585	26,384	2,585	Gas	EE

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

Table 2: Release Parameter Data										
Emission	Inner Diameter		Exit Gas		Emission Poir	nt Elevation (ft)	UTM Coordinates (km)			
Point ID No. (Must match Emission Units Table)	(ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting		
EP01	3.94	572	50,329	68.90	641	135	4397.604	514.311		
EP02	0.5	1,050	1,481	126	641	TBD	4397.604	514.311		
EP03	80	Ambient	Varies	Varies	641	TBD	4397.604	514.311		
EP04	TBD	Ambient	Varies	Varies	641	TBD	4397.604	514.311		
EP05	TBD	Ambient	Varies	Varies	641	TBD	4397.604	514.311		
EP06	TBD	TBD	106.9	TBD	641	TBD	4397.604	514.311		
EP07	7.0 (each) 94.4		117,200 (each) 234,400 (total)	50.8	641	TBD	4397.604	514.311		
EP08	TBD	TBD	TBD	TBD	641	TBD	4397.604	514.311		

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

Attachment K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS							
1.)	Will there be haul road activities?							
	□ Yes							
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.							
2.)	Will there be Storage Piles?							
	□ Yes							
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.							
3.)	Will there be Liquid Loading/Unloading Operations?							
	Yes No							
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.							
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?							
	□ Yes							
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.							
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?							
	Yes No							
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.							
6.)	Will there be General Clean-up VOC Operations?							
	□ Yes							
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.							
7.)	Will there be any other activities that generate fugitive emissions?							
	☐ Yes							
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.							
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."							

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum Po Controlled Em	Est. Method	
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations	See Attachment J					
Wastewater Treatment Evaporation & Operations						
Equipment Leaks (various proportions of syngas and methanol)	VOC HAP methanol	Does not apply	7.02 6.83 6.83	Does not apply	2.55 2.42 2.42	EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L

Emissions Unit Data Sheets

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): SCR01

	Equipment Information										
1.	Manufacturer: TBD	2. Model No. TBD									
		Serial No. TBD									
3.	Number of units: 1	4. Use Steam Methane Reformer Process Heater (EU01)									
5.	Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.: TBD									
7.	Date constructed: Upon Receipt of Permit	8. Date of last modification and explain: N/A									
9.	Maximum design heat input per unit:	10. Peak heat input per unit:									
	114.8 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr									
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:									
	N/A LB/hr	Hours/Day 24 Days/Week 7									
	psig	Weeks/Year 52									
13.	Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Process Gases (see Figure 3)	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify 									
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: N/A %									
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: N/A %									
	Stack or	Vent Data									
19.	Inside diameter or dimensions: 3.94 ft.	20. Gas exit temperature: 572 °F									
21.	Height: 135 ft.	22. Stack serves: ☑ This equipment only									
23.	Gas flow rate: 50,329 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this									
24.	Estimated percent of moisture: %	stack or vent)									

	Fuel Requirements										
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:					
	Quantity(atOutput)	gph@60°F	8,000 ft ³ /hr	206,300 ft ³ /hr	ТРН						
	Annually	×10 ³ gal	70.1 ×10 ⁶ ft ³ /hr	1,807 ×10 ⁶ ft ³ /hr	tons						
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %						
	Ash (%)			T	Maximum						
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,020 BTU/ft ³	BTU/ft ³	BTU/lb						
	Source			-							
	Supplier										
	Halogens (Yes/No)										
	List and Identify Metals										
26.	Gas burner mode o		comatic hi-low	27. Gas burner mar	nufacture: TBD						
	Automatic full n			28. Oil burner manu	ufacture:						
29.	If fuel oil is used, h	ow is it atomized?	 Oil Pressu Compresse Other, spe 	ed Air 🔲 Rotary Cu							
30.	Fuel oil preheated:	Yes [□No ;	31. If yes, indicate t	emperature:	°F					
		ated theoretical air c feet (ACF) per unit		or combustion of th	e fuel or mixture o	of fuels described					
	18,986 acfm @	95 °F, 1		, % m	oisture						
33.	Emission rate at ra	ated capacity: 85,	,100 flue gas lb/hr								
34.	34. Percent excess air actually required for combustion of the fuel described: %										
<u> </u>			Coal Chara	cteristics							
35.	Seams:										
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:					

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
00	4.49			
Hydrocarbons	0.90			
NOx	53.91			
Þb	0.0001			
> M ₁₀	0.45			
SO ₂	0.27			
/OCs	0.90			
Other (specify) HAP	0.45			
CO2e	28,609			
What quantities of pollu	tants will be emitted from t	the boiler after contr	ols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA

i ondiani	lb/hr	granizaor	e i	
СО	4.49			
Hydrocarbons	0.90			
NO _x	15.27			
Pb	0.0001			
PM ₁₀	0.45			
SO ₂	0.27			
VOCs	0.90			
Other (specify) HAP	0.45			
CO2e	28,609			

39. How will waste material from the process and control equipment be disposed of? $N\!/\!A$

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. Yes

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet? Yes

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): None

	Equipment	Information
1.	Manufacturer: TBD	2. Model No. TBD
		Serial No. TBD
3.	Number of units: 1	4. Use Startup Heater (EU02)
┝		
5.	Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.: TBD
7.	Date constructed: Upon Receipt of Permit	8. Date of last modification and explain: N/A
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	2.55 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11.	. Steam produced at maximum design output:	12. Projected Operating Schedule:
	N/A LB/hr	Hours/Day 24
		Days/Week 7
	psig	Weeks/Year 52
13.	 Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Othera, eposity 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential
┝	Others, specify	Others, specify
15.	. Type of draft: Forced Induced	16. Percent of ash retained in furnace: N/A %
17.	. Will flyash be reinjected? 🗌 Yes 🛛 No	18. Percent of carbon in flyash: N/A %
·	Stack or '	Vent Data
19.	. Inside diameter or dimensions: 0.5 ft.	20. Gas exit temperature: 1,050 °F
21.	. Height: TBD ft.	22. Stack serves:
22	. Gas flow rate: 1,481 ft ³ /min	 This equipment only Other equipment also (submit type and rating of
23.	. Gas flow rate: 1,481 ft ³ /min	all other equipment exhausted through this
24.	. Estimated percent of moisture: %	stack or vent)

			Fuel Requi	irements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity(atOutput)	gph@60°F	2,500 ft ³ /hr	ft ³ /hr	ТРН	
	Annually	×10 ³ gal	21.9 ×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,020 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source					
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o		comatic hi-low	27. Gas burner mar	nufacture: TBD	
	Automatic full n			28. Oil burner manu	ufacture:	
29.	If fuel oil is used, h	ow is it atomized?	Oil Pressur Compresse	ed Air 🗍 Rotary Cu		
30.	Fuel oil preheated:	: 🗌 Yes	No :	31. If yes, indicate t	emperature:	°F
		lated theoretical air c feet (ACF) per unit		or combustion of th	e fuel or mixture c	of fuels described
	@	°F,	PSIA,	, % m	oisture	
33.	Emission rate at ra	ated capacity:	lb/hr			
34.	Percent excess air	r actually required for			%	
25	Caamai		Coal Chara	cteristics		
30.	Seams:					
36.	Proximate analysis	(),	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
co	0.21			
Hydrocarbons	0.01			
NOx	0.25			
Pb	0.000001			
⊃M ₁₀	0.02			
SO ₂	0.001			
/OCs	0.01			
Other (specify) HAP	0.005			
CO2e	302			
What quantities of pollu	tants will be emitted from t	he boiler after contr	ols?	
Pollutant	Pounds per Hour	grain/ACF	@ °F	PSIA

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	all same as above			
Hydrocarbons				
NO _x				
Pb				
PM ₁₀				
SO ₂				
VOCs				
Other (specify)				

39. How will waste material from the process and control equipment be disposed of? N/A

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit. N/A

Page 3 of 4

41. Have you included the air pollution rates on the Emissions Points Data Summary Sheet? Yes

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.					
	 Emergency Vent Summary Sheet Leak Sources Data Sheet Toxicology Data Sheet Reactor Data Sheet 					
1.		l equipment ID number (as shown in <i>E</i> lethanol Synthesis Reactors (EU03), and M				
2.	Standard Industrial Classification NAICS 32519	Codes (SICs) for process(es)				
3.	B. List raw materials and attach MSDSs Natural Gas					
4.	List Products and Maximum Prod	uction and 🖂 attach MSDSs				
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)			
me	thanol (CAS 67-56-1)	14,700	64,375			
5.		ummary Sheet for all emergency relief				
6.	5. Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. The facility will be subject to the 40 CFR 60 Subpart VVa requirements. See information provided in the included technical documentation.					
7.		o application Accident Procedures to be	e followed in the event of an accidental			
	 Clearly describe below or attach to application Accident Procedures to be followed in the event of an accidental spill or release. The facility is designed for accidental releases to be vented to the SSM Flare. See information provided in the included technical documentation. 					

8A.	Complete the Toxicology Data Sheet or attach to application a toxicology report (an up-to-date material safety
	data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each
	compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a
	duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or
	mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where
	these are unknown, and provide references.

8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).

9. **Waste Products** - Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.)

9A. Types and amounts of wastes to be disposed: Small amounts to be sent to Covestro's WWTP

9B. Method of disposal and location of waste disposal facilities: N/A Carrier: Phone:

9C. Check here if approved USEPA/State Hazardous Waste Landfill will be used 🔲 N/A

10. Maximum and Projected Typical Operating Schedule for process or project as a whole (circle appropriate units).

		cle units:	(hrs/day) (hr/batch)	(days), (batches/day), (batches/week)	(days/yr), (weeks/year)	
		Maximum	24 hours per day	7 days per week	52 weeks per year	
	10B. Typical 24 hours per day		24 hours per day	7 days per week	52 weeks per year	

11. Complete a *Reactor Data Sheet* for each reactor in this chemical process.

12. Complete a Distillation Column Data Sheet for each distillation column in this chemical process.

13. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

	MONITORING	RECORDKEEPING			
	REPORTING	TESTING			
	MONITORING Please list and describe the process	narameters and ranges that are proposed to be monitored in			
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitor order to demonstrate compliance with the operation of this process equipment operation or air pollution control de RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring.					

REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.

TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.

14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- 2. Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - b. 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all <u>batch</u> processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

EMERGENCY VENT SUMMARY SHEET

List below all emergency relief devices, rupture disks, safety relief valves, and similar openings that will vent only under abnormal conditions.

Emission Point ID ¹	Equipment to Relief Vent (type, ID if available) ²	Relief Vents (type) & Set Pressure (psig)	Name of Chemical(s) or Pollutants Controlled	Worst Case Emission per Release Event (lbs)
EP08		See Attachment N of su	ipporting documentatior	1
	l		l	

All routine vents (non-emergency) should be listed on the Emission Points Data Summary Sheet.

¹ Indicate the emission point, if any, to which source equipment normally vents. Do <u>not</u> assign emission point ID numbers to each emergency relief vent or device.
 ² List all emergency relief devices next to the piece of equipment from which they control releases.

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴	
Pumps⁵	light liquid VOC ^{6,7}	See Attachment N of supporting documentation.				
	heavy liquid VOC ⁸					
	Non-VOC ⁹					
Valves ¹⁰	Gas VOC					
	Light Liquid VOC					
	Heavy Liquid VOC					
	Non-VOC					
Safety Relief Valves ¹¹	Gas VOC					
	Non VOC					
Open-ended Lines ¹²	VOC					
	Non-VOC					
Sampling Connections ¹³	VOC					
	Non-VOC					
Compressors	VOC					
	Non-VOC					
Flanges	VOC					
-	Non-VOC					
Other	VOC					
	Non-VOC					

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

TOXICOLOGY DATA SHEET¹

Descriptor Name/CAS	OSHA Limits ²		Acute ³ TC _{LO} - Animal	Chronic⁴	Irritation ⁵	References
Number	TWA	CL	LC _{LO} - Animal LC₅₀ - Animal	Ginolic	intation	References
Methanol (CAS 67-56-1)	200 ppm	N/A		See MSDS	S in Attachment H	1

¹ Indicate by "ND" where no data exists, in company's knowledge.
² Time Weighted Average, Ceiling Limit, or other, with units.
³ If inhalation data is not available, provide other data as available.

⁴ Relying on animal or human studies, indicate if any data suggests: C = carcinogenicity, M = mutagenicity, T = teratogenecity, O = oncogenicity. ⁵ Indicate if there are dermal or eye irritation effects and whether they are considered to be low, moderate, or severe.

REACTOR DATA SHEET

Provide the following information for <u>each</u> piece of equipment that is a potential or actual source of emissions as shown on the *Equipment List Form* and other parts of application.

1.	 Name and type of equipment (e.g. CSTR, plug flow, batch, etc.) Steam Methane Reformer 							
2.	2. Type of operation 🗌 Batch 🛛 Continuous 🗌 Semi-batch							
3.	Projected Actual	Equipment C	Dperating Schedule (complete app	propriate li	nes):		
	24 hrs/day		7 days/week			52 w	/eeks/yea	r
	hrs/batch			es/day, weeks le one)	6		day,we (Circle	
4.	Feed Data	Flow In =	ç	al/hr, or gal/b	atch			
Ν	laterial Name & CAS No.	Phase ^a	Specific Gravity	Vapor Pressure ^b	CI Normal	harge Ra Max	te Units	Fill Time (min/batch, run) ^c
	natural gas steam	G			8,417 11,312		lb/hr lb/hr	

b. At feed conditions

c. Total time that equipment is filling per batch or run (start-up), for tank or vessel-type equipment.

5. Provide all **chemical reactions** that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic.

natural gas to syngas, endothermic reaction

6. Maximum Temperatu		ximum Pressure x. Set Pressure for v	venting				
c	°C			mmHg			mmHg
F				psig			psig
8. Output Data Flow	I	gal/hr or gal/batch					
Material Name and CAS	Phase	Specific	Vapor	Hou	-	ch Outpu	
No.	1 11000	Gravity	Pressure	Normal	Maxi	mum	Units
syngas	G			in engineering design			lb/hr
9. Complete the followir		ion data far	aguinman		dor ovbo		
 Complete the following levels <u>before</u> entering 						iusi sysie	ern, giving ernissions
Check here if not	applicab	le					
Emission Point ID (exhau	-	1				I	
Material Name and CAS	No.	Ma	iximum Pot	ential Emission Rate	e (lb/hr)		Method **
syngas		SS	SM conditio	ns only (see Attachr	ment N)		EE
** MB - material balance: EE - Engineering Estimate: TM - Test Measurement (submit test data): O - other (Explain)							

10.	D. Provide the following information pertaining to each condenser that may be attached to this reactor. Attach additional pages as necessary if more than one condenser is used for this reactor. Complete the Condenser Air Pollution Control Device Sheet if necessary.						
	🛛 Che	eck here if not applicable					
	10A.	Cooling material					
	10B.	10B. Minimum and Maximum flowrate of cooling material (gal/hr)					
	10C.	Inlet temperature of cooling	material (°F)				
	10D.	Outlet temperature of cooling	g material (°F)				
	10E.	Pressure drop of gas to be c	ondensed from inlet to outlet (p	sig)			
	10F.	Inlet temperature of gas stre	am (°F)				
	10G.	Outlet temperature of gas st	ream (°F)				
	10H.	Number of passes					
	101.	Cooling surface area					
11.	Provide	e the following pertaining to a	ixiliary equipment that burns fue	el (heaters, dryers, etc.):			
	 Check here if not applicable 11A. Type of fuel and maximum fuel burn rate, per hour: See other attachments for SMR Process Heater (EU01) 						
	11B.	Provide maximum percent su	ılfur (S), ash content of fuel, and	the energy content using appropriate units:			
		%S	% Ash	BTU/lb, std. ft ³ /day, gal			
				(circle one)			
	11C.	Theoretical combustion air re PSIA:	equirement in SCFD per unit of fu	iel (circle appropriate unit) @ 70°F and 14.7			
		SCFD/It	o, SCFD, gal (circle one)				
	11D.	Percent excess air:	%				
	11E.	Type, amount, and BTU ratir	ng of burners and all other firing	equipment that are planned to be used:			
	11F.	Total maximum design heat	input: ×1	0 ⁶ BTU/hr.			

12. Proposed Monitoring, Recordkeeping, Rep	porting, and Testing
	nd reporting in order to demonstrate compliance with the proposed
operating parameters. Please propose testing	g in order to demonstrate compliance with the proposed emissions
limits.	
MONITORING	RECORDKEEPING

MONITORING	RECORDREEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.

13. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

REACTOR DATA SHEET

Provide the following information for each piece of equipment that is a potential or actual source of emissions as shown on the Equipment List Form and other parts of application.

Identification Number (as shown on <i>Equipment List Form</i>): EU03								
1.		of equipment Synthesis Rea	(e.g. CSTR, plug flov actors	w, batch, etc.)			
2.	Type of operatio	n 🗌 Ba	atch	Continuous	S		Semi-batch	1
3.	-	Equipment C	Derating Schedule (complete app	propriate li	,		
	24 hrs/day		7 days/week			52 w	/eeks/year	
	hrs/batch			es/day, weeks e one)	6		day,we (Circle	
4.	Feed Data	Flow In =	g	al/hr, or gal/b	patch			1
N	laterial Name & CAS No.	Phase ^a	Specific Gravity	Vapor Pressure ^b	C Normal	harge Ra Max	te Units	Fill Time (min/batch, run) ^c
(ii	syngas ncludes recycle)	G			in engineer- ing design			
a. b.	S = Solid, L = Lie At feed condition		or vapor					

c. Total time that equipment is filling per batch or run (start-up), for tank or vessel-type equipment.

5. Provide all chemical reactions that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic.

syngas to crude methanol, exothermic reaction

6. Maximum Temperature				7A. Maximum Pressure 7B. Max. Set Pressure for venting			
c	°C			mmHg	Ū		mmHg
	=			psig			psig
8. Output Data Flow Out =				gal/hr or gal/batch			
Material Name and CAS	Phase	Specific	Vapor	Hou		ch Outpu	
No.	1 11000	Gravity	Pressure	Normal	Maxi	mum	Units
crude methanol	L			in engineering design			
				design			
 Complete the following levels <u>before</u> entering 					ader exha	aust syste	em, giving emissions
Check here if not			belore co	na or equipment).			
Emission Point ID (exhau			stem):				
Material Name and CAS	No.	Ma	ximum Pol	tential Emission Rate	e (lb/hr)		Method **
			Maanditia	na anly (and Attach	mont NI)		EE
syngas		33		ns only (see Attachr	nent N)		CC
** MB - material balance: EE - Engineering Estimate: TM - Test Measurement (submit test data): O - other (Explain)							

	D. Provide the following information pertaining to each condenser that may be attached to this reactor. Attach additional pages as necessary if more than one condenser is used for this reactor. Complete the Condenser Air Pollution Control Device Sheet if necessary.						
	🛛 Che	eck here if not applicable					
	10A.	Cooling material					
	10B.	Minimum and Maximum flowr	ate of cooling material (gal/hr)				
	10C.	10C. Inlet temperature of cooling material (°F)					
	10D.	Outlet temperature of cooling	material (°F)				
	10E.	Pressure drop of gas to be co	ondensed from inlet to outlet (p	osig)			
	10F.	Inlet temperature of gas strea	ım (°F)				
	10G.	Outlet temperature of gas stre	eam (°F)				
	10H.	Number of passes					
	10I.	Cooling surface area					
11.	Provide	e the following pertaining to au	xiliary equipment that burns fu	el (heaters, dryers, etc.):			
		eck here if not applicable					
	11A.	Type of fuel and maximum fu	el burn rate, per hour:				
		See other attachments	for Startup Heater (EU02)				
	11B.	Provide maximum percent sul	fur (S), ash content of fuel, and	the energy content using appropriate units:			
		%S	% Ash	BTU/lb, std. ft ³ /day, gal			
				(circle one)			
	11C.	Theoretical combustion air rec PSIA:	quirement in SCFD per unit of fu	uel (circle appropriate unit) @ 70°F and 14.7			
		SCFD/lb	, SCFD, gal (circle one)				
	11D.	Percent excess air:	%				
	11E.	Type, amount, and BTU ratin	g of burners and all other firing	g equipment that are planned to be used:			
	11F.	Total maximum design heat i	nput: ×1	0 ⁶ BTU/hr.			

12. Proposed Monitoring, Recordkeeping, Rep	porting, and Testing
	nd reporting in order to demonstrate compliance with the proposed
operating parameters. Please propose testing	g in order to demonstrate compliance with the proposed emissions
limits.	
MONITORING	RECORDKEEPING

MONITORING	RECORDREEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.

13. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

DISTILLATION COLUMN DATA SHEET

Ide	ntification Number (as assigned on Equipme	nt List Form): EU04	
1.	Name and type of equipment Methanol Dis	tillation	
#.	Projected actual equipment operating sched	lule (complete appropriate lines):	
	24 hrs/day	7 days/week	52 weeks/year
	hrs/batch	batches/day, batches/week (circle one)	days/yr, weeks/yr (circle one)
2.	Number of stages (plates), excluding conde	nser in engineering design	
3.	Number of feed plates and stage location	in engineering design	
4.	Specify details of any reheating, recycling, c in engineering design	or stage conditioning along with the sta	ge locations
5.	Specify reflux ratio, R (where R is defined as R=L/D, where L = liquid down column, D = c in engineering design		roduct, given symbolically as
6.	Specify the fraction of feed which is vaporized continuously as vapor). less than 1 percent	d, f (where f is the molal fraction of the fe	eed that leaves the feed plate
	Type of condenser used: For each condenser provide process operations compositions. in engineering design	partial multiple ng details including all inlet and outlet te	other emperatures, pressures, and
8.	 Feed Characteristics A. Molar composition 73.7% methanol, 25 B. Individual vapor pressure of each comported composition. C. Total feed stage pressure atmospheric D. Total feed stage temperature 175°F E. Total mass flow rate of each stream into the stream in	onent	
9.	Overhead Product A. Molar composition of components 60.1 B. Vapor pressure of components C. Total mass flow rate of all streams leave		
10.	Bottom ProductA. Molar composition of all componentsB. Total mass flow rate of all steams leaving	the system as bottom products Trace	amounts to Covestro WWTP

 General Information All in engineering design A. Distillation column diameter 	
 A. Distillation column diameter B. Distillation column height 	
C. Type of plates	
D. Plate spacing	
E. Murphree plate efficiency	
F. Any other information necessary of describe the	
12. Proposed Monitoring, Recordkeeping, Reporting,	
	ting in order to demonstrate compliance with the proposed
operating parameters. Please propose testing in orde limits.	er to demonstrate compliance with the proposed emissions
IIMITS. MONITORING	RECORDKEEPING
MONITORING	RECORDREEFING
REPORTING	TESTING
MONITORING. PLEASE LIST AND DESCRIBE THE PROCES	SS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE
MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WIT	H THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR
AIR POLLUTION CONTROL DEVICE.	
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	CORDKEEPING THAT WILL ACCOMPANY THE MONITORING.
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCE	Y OF REPORTING OF THE RECORDKEEPING.
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS CONTROL DEVICE.	TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION
13. Describe all operating ranges and maintenance proce	edures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this distillation column.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Product Storage	Product Storage
3. Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) EU05	 Emission Point Identification No. (as assigned on Equipment List Form) EP03
5. Date of Commencement of Construction (for existing	tanks) N/A
6. Type of change 🛛 New Construction 🗌 N	New Stored Material
 Description of Tank Modification (if applicable) N/A 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	
completed for each mode).	ed by this application (Note: A separate form must be
N/A	
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
None	
II. TANK INFORM	ATION (required)
	the internal cross-sectional area multiplied by internal
height.	
	000 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
80	40
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
N/A	N/A
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
N/A	N/A
liquid levels and overflow valve heights.	is also known as "working volume" and considers design
1,050,	000 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
19,423,840	53,216		
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)			
	15		
15. Maximum tank fill rate (gal/min)40			
16. Tank fill method Submerged	Splash Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
other (describe)	flat roofcone roofdome roof		
Domed External (or Covered) Floating Roof Internal Floating Roof vertical column sum	upport X self-supporting		
Variable Vapor Space lifter roof	diaphragm		
Pressurized spherical cylindrica	I		
Other (describe)			
	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:	d rivets Other (describe) See TANKS sheets		
20A. Shell Color 20B. Roof Colo			
21. Shell Condition (if metal and unlined):			
☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to tank.			
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Roof Tanks			
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks Does Not Apply			
25A. Year Internal Floaters Installed:			
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resident			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shi	eld?		

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	AUTOMATIC GAL	JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		· · · · · · · · · · · · · · · · · · ·	
		N WELL	
COVER, GASKETED:	COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, CAORETED.			TADICIO DELEVE DEAL.
		R WELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
		: /SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	
		1 1 1 1	
	ROOF LEG OR	HANGER WELL	
	-		SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED:	(10% OPEN AREA)
	VACUUM	BREAKER	
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
		1 1 1	
		VENT	
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:		ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	INCH DIAMETER)	
OPEN:		90% CLOSED:	
STUB DRAIN			
1-INCH DIAMETER:			
	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply		
26A. Deck Type: Deck Type: Welded			
26B. For Bolted decks, provide deck construction:			
26C. Deck seam:			
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide			
Continuous sheet construction 7 feet wide			
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide			
Other (describe)			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:		
	al if providing TANKS Summary Sheets)		
27. Provide the city and state on which the data in this			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))			
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION (optiona	al if providing TANKS Summary Sheets)		
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to be st	ored in tank. Add additional pages if necessary.		
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Pres	sure				
39F. True (psia)					
39G. Reid (psia)					
Months Storage per Y	ear				
39H. From					
39I. To					
	VI. EMISSIONS A				
	Devices (check as many	/ as apply):	🛛 Does No	t Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S	Vacuum Setting Pressure Setting				
Emergency Re	elief Valve (psig)				
Inert Gas Blan	ket of				
Insulation of Ta	ank with				
Liquid Absorpti	ion (scrubber) ¹				
Refrigeration o	· ,				
Rupture Disc (
Vent to Inciner	•				
Other ¹ (describ					
		rol Device S	heet		
¹ Complete appropriate Air Pollution Control Device Sheet.					
111 Expected Emissio	n Rate (cubmit Lect Dat	or Colouis	ations hara	or alcowhara in the ar	plication)
-	i			or elsewhere in the ap	pplication).
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	pplication).
Material Name & CAS No.	i			-	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Product Storage	Shift Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) EU06 	 Emission Point Identification No. (as assigned on Equipment List Form) EP04
5. Date of Commencement of Construction (for existing	tanks) N/A
6. Type of change 🛛 New Construction 🗌 I	New Stored Material
 Description of Tank Modification (if applicable) N/A 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tar	
 If YES, explain and identify which mode is covere completed for each mode). 	ed by this application (Note: A separate form must be
N/A	
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
None	
	ATION (required)
	the internal cross-sectional area multiplied by internal
-	00 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
10.5	46.5
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
N/A	N/A
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
N/A	N/A
liquid levels and overflow valve heights.	is also known as "working volume" and considers design
25.0	00 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
19,423,840 (shared with off-spec tank)	53,216 (shared with off-spec tank)		
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)			
649 (shared with off-spec tank)			
15. Maximum tank fill rate (gal/min) 40 (shared with of	f-spec tank)		
16. Tank fill method Submerged	Splash Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof			
 Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground 	diaphragm		
Other (describe) Horizontal			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:			
Riveted Gunite lined Epoxy-coated			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted		
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to tank.			
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Roof Tanks			
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks Does Not Apply			
25A. Year Internal Floaters Installed:			
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	·		
25C. Is the Floating Roof equipped with a Secondary Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shie	eld?		

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	AUTOMATIC GAL	JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		· · · · · · · · · · · · · · · · · · ·	
		N WELL	
COVER, GASKETED:	COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, CAORETED.			TADICIO DELEVE DEAL.
		R WELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
		: /SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	
		1 1 1 1	
	ROOF LEG OR	HANGER WELL	
	-		SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED:	(10% OPEN AREA)
	VACUUM	BREAKER	
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
		1 1 1	
		VENT	
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:		ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	INCH DIAMETER)	
OPEN:		90% CLOSED:	
STUB DRAIN			
1-INCH DIAMETER:			
	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply		
26A. Deck Type: Deck Type: Welded			
26B. For Bolted decks, provide deck construction:			
26C. Deck seam:			
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide			
Continuous sheet construction 7 feet wide			
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide			
Other (describe)			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:		
	al if providing TANKS Summary Sheets)		
27. Provide the city and state on which the data in this			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))			
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION (optiona	al if providing TANKS Summary Sheets)		
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to be st	ored in tank. Add additional pages if necessary.		
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Pres	sure				
39F. True (psia)					
39G. Reid (psia)					
Months Storage per Y	ear				
39H. From					
39I. To					
r	VI. EMISSIONS A			· · /	
40. Emission Control	Devices (check as many	y as apply):	🛛 Does No	t Apply	
Carbon Adsor	otion ¹				
Condenser ¹					
Conservation V	/ent (psig)				
Vacuum S	Vacuum Setting Pressure Setting				
Emergency Re	elief Valve (psig)				
Inert Gas Blan					
Insulation of Ta	ank with				
Liquid Absorpt	ion (scrubber) ¹				
Refrigeration c					
Rupture Disc (
Vent to Inciner	•				
Other ¹ (describ					
	<i>bcj</i> .				
	priate Air Pollution Cont	¹ Complete appropriate Air Pollution Control Device Sheet.			
¹ Complete appro				or alcowhara in the a	pplication)
¹ Complete appro 41. Expected Emissic	n Rate (submit Test Da	ta or Calcula	ations here		pplication).
¹ Complete appro 41. Expected Emissic Material Name &	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss	pplication).
¹ Complete appro 41. Expected Emissic Material Name & CAS No.	n Rate (submit Test Da	ta or Calcula	ations here		
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No.	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss	
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Product Storage	Off-Spec Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) EU07 	 Emission Point Identification No. (as assigned on Equipment List Form) EP05
5. Date of Commencement of Construction (for existing	tanks) N/A
6. Type of change 🛛 New Construction 🗌 N	New Stored Material
 Description of Tank Modification (if applicable) N/A 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
 7B. If YES, explain and identify which mode is covere completed for each mode). 	ed by this application (Note: A separate form must be
N/A	
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
None	
	ATION (required)
	the internal cross-sectional area multiplied by internal
	00 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
10.5	46.5
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
N/A	N/A
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
N/A	N/A
liquid levels and overflow valve heights.	is also known as "working volume" and considers design
25.00	00 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
19,423,840 (shared with shift tank)	53,216 (shared with shift tank)			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
649 (shared with shift tank)				
15. Maximum tank fill rate (gal/min)40 (shared with off-spec tank)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tank Systems				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalflat roofcone roofdome roofother (describe) External Floating Roofpontoon roofdouble deck roof 				
Domed External (or Covered) Floating Roof Internal Floating Roof vertical column support X self-supporting Variable Vapor Space lifter roof diaphragm Pressurized spherical cylindrical				
Other (describe) Horizontal				
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets) 19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated rivets Other (describe) See TANKS sheets				
20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
No Rust Light Rust Dense Rust Not applicable				
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks Does Not Apply				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks Does Not Apply				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resil	— ·			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather ship	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting:					
ACCESS HATCH					
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	AUTOMATIC GAL	JGE FLOAT WELL			
BOLT COVER, GASKETED:					
		· · · · · · · · · · · · · · · · · · ·			
Column Well Built-up Column – Sliding Built-up Column – Sliding Pipe Column – Flexible					
COVER, GASKETED:	COVER, UNGASK		FABRIC SLEEVE SEAL:		
COVER, CAORETED.			TABILIO GEEEVE GEAE.		
		R WELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:		
GAUGE-HATCH/SAMPLE PORT					
SLIDING COVER, GASKETED:		SLIDING COVER,			
		1 1 1 1			
	ROOF LEG OR	HANGER WELL			
	-		SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED:	(10% OPEN AREA)		
	VACUUM	BREAKER	·		
WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT					
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
DECK DRAIN (3-INCH DIAMETER)					
OPEN:		90% CLOSED:			
STUB DRAIN					
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply						
26A. Deck Type: Deck Type: Welded							
26B. For Bolted decks, provide deck construction:							
26C. Deck seam:							
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide							
Continuous sheet construction 7 feet wide							
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide							
Other (describe)							
26D. Deck seam length (ft)	26E. Area of deck (ft ²)						
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:						
	al if providing TANKS Summary Sheets)						
27. Provide the city and state on which the data in this							
28. Daily Average Ambient Temperature (°F)							
29. Annual Average Maximum Temperature (°F)							
30. Annual Average Minimum Temperature (°F)							
31. Average Wind Speed (miles/hr)							
32. Annual Average Solar Insulation Factor (BTU/(ft2.d	ay))						
33. Atmospheric Pressure (psia)							
V. LIQUID INFORMATION (optiona	al if providing TANKS Summary Sheets)						
34. Average daily temperature range of bulk liquid:							
34A. Minimum (°F)	34B. Maximum (°F)						
35. Average operating pressure range of tank:							
35A. Minimum (psig)	35B. Maximum (psig)						
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)						
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)						
38A. Maximum Liquid Surface Temperature (°F)	38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)						
39. Provide the following for each liquid or gas to be st	ored in tank. Add additional pages if necessary.						
39A. Material Name or Composition							
39B. CAS Number							
39C. Liquid Density (lb/gal)							
39D. Liquid Molecular Weight (lb/lb-mole)							
39E. Vapor Molecular Weight (lb/lb-mole)							

Maximum Vapor Pres	sure									
39F. True (psia)										
39G. Reid (psia)										
Months Storage per Y	ear									
39H. From										
39I. To										
r	VI. EMISSIONS A			· · /						
40. Emission Control Devices (check as many as apply): 🛛 Does Not Apply										
Carbon Adsorption ¹										
Condenser ¹										
Conservation V	/ent (psig)									
Vacuum S	Setting		Pressure Se	etting						
Emergency Re	elief Valve (psig)									
Inert Gas Blan										
Insulation of Ta	ank with									
Liquid Absorpt	ion (scrubber)1									
Refrigeration c										
Rupture Disc (
Vent to Inciner	•									
Other ¹ (describe):										
	priate Air Pollution Cont	¹ Complete appropriate Air Pollution Control Device Sheet.								
¹ Complete appro				or alcowhara in the a	pplication)					
¹ Complete appro 41. Expected Emissic	n Rate (submit Test Da	ta or Calcula	ations here		pplication).					
¹ Complete appro 41. Expected Emissic Material Name &	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss	pplication).					
¹ Complete appro 41. Expected Emissic Material Name & CAS No.	n Rate (submit Test Da	ta or Calcula	ations here							
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No.	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss						
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					
¹ Complete appro 41. Expected Emissic Material Name & CAS No. methanol	n Rate (submit Test Da Breathing Loss	ta or Calcula Workin	ations here g Loss	Annual Loss (lb/yr)	Estimation Method ¹					

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EU08							
1. Loading Area	Name: Product L	oading	Rack (Tru	cks)			
2. Type of cargo as apply):	2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):						
■ Drums	■ Drums ■ Marine Vessels ■ Rail Tank Cars ⊠ Tank Trucks						
3. Loading Rack	3. Loading Rack or Transfer Point Data:						
Number of pu	mps		1				
Number of liq	uids loaded		1				
vessels, tank	nber of marine trucks, tank cars, loading at one tim	e	1				
	ng of marine vess		ur at this lo	ading area?			
■ Yes	∎No			pes not apply			
5. Describe clea transfer point:	aning location, con	npound	ls and proc	edure for cargo v	essels using this		
All vessels are in	n dedicated metha	nol sei	vice.				
 6. Are cargo vessels pressure tested for leaks at this or any other location? 							
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Ар	r June	July - Sept.	Oct Dec.		
hours/day	24	24		24	24		

page ___ of ___ WVDEP-OAQ Revision 03-

days/week	7	7	7	7
weeks/quarter	13	13	13	13

8. Bulk Liqui	d Data <i>(add pages as i</i>	necessar	y):	1		1	
Pump ID No.	T-01						
Liquid Name		Methanol					
Max. daily thre	oughput (1000 gal/day)	576					
Max. annual t	hroughput (1000 gal/yr)	19,424					
Loading Meth	od ¹	SUB					
Max. Fill Rate	(gal/min)	400					
Average Fill T	ime (min/loading)	18					
Max. Bulk Liq	uid Temperature (°F)	72					
True Vapor P	ressure ²	2.23 psi					
Cargo Vessel	Condition ³	U					
Control Equip	ment or Method ⁴	Flare					
Minimum cont	rol efficiency (%)	98					
Maximum Emission	Loading (lb/hr) Simultaneous with Railcars	1.26					
Rate	Annual (lb/yr) Shared with Railcars	339					
Estimation Me	ethod ⁵	EPA					
¹ BF = Bottom	n Fill SP = Splash Fill	SUB	= Subme	erged Fill			
² At maximum	bulk liquid temperature						
3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)							
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) 							

page __ of __ WVDEP-OAQ Revision 03-

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING					
REPORTING	TESTING					
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE						
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF						

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

page __ of __ WVDEP-OAQ Revision 03-

2007

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EU09							
1. Loading Area	Name: Product L	oading	Rack (Rai	lcars)			
2. Type of cargo as apply):	vessels accommo	odated a	at this rack	c or transfer point	(check as many		
■ Drums ■ Marine Vessels ⊠ Rail Tank Cars ■ Tank Trucks							
3. Loading Rack	3. Loading Rack or Transfer Point Data:						
Number of pu	mps		1				
Number of liqu	uids loaded		1				
vessels, tank	nber of marine trucks, tank cars, loading at one tim		1				
 4. Does ballastin Yes 	ng of marine vess ∎No	els occu		bading area? Des not apply			
transfer point:			·	edure for cargo ve	essels using this		
All vessels are in	n dedicated metha	inol serv	ICe.				
 6. Are cargo vessels pressure tested for leaks at this or any other location? If Yes If YES, describe: At other locations. Responsibility of contractor. 							
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Apr.	- June	July - Sept.	Oct Dec.		
hours/day	24	24		24	24		

page ___ of ___ WVDEP-OAQ Revision 03-

days/week	7	7	7	7
weeks/quarter	13	13	13	13

8. Bulk Liqui	id Data <i>(add pages as i</i>	necessar	y):	_	-1	1	
Pump ID No.	R-01						
Liquid Name		Methanol					
Max. daily thre	oughput (1000 gal/day)	1,152					
Max. annual t	hroughput (1000 gal/yr)	19,424					
Loading Meth	od ¹	SUB					
Max. Fill Rate	(gal/min)	800					
Average Fill T	ime (min/loading)	38					
Max. Bulk Liq	uid Temperature (°F)	72					
True Vapor P	ressure ²	2.23 psi					
Cargo Vessel	Condition ³	U					
Control Equip	ment or Method ⁴	Flare					
Minimum cont	rol efficiency (%)	98					
Maximum Emission	Loading (lb/hr) Simultaneous with Trucks	1.26					
Rate	Annual (lb/yr) Shared with Trucks	339					
Estimation Me	ethod ⁵	EPA					
¹ BF = Bottom	n Fill SP = Splash Fill	SUB	= Subme	erged Fill			
² At maximum bulk liquid temperature							
3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)							
⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system)							

page __ of __ WVDEP-OAQ Revision 03-

2007

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING					
REPORTING	TESTING					
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE						
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF						

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

page __ of __ WVDEP-OAQ Revision 03-

2007

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): EU10

1. Name or type and model of proposed affected source:
Cooling Tower
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
2,000 gallons per minute of cooling water
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Cooling tower drift (PM) and VOC due to potential equipment leaks per SCAQMD guidance

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Co	ombustion Da	ata (if applic	able):			
(a)) Type and a	mount in ap	propriate units of fu	uel(s) to be bu	rned:	
N/A						
(b)) Chemical a	nalvsis of pr	oposed fuel(s), exc	luding coal in	cluding maxim	um percent sulfur
	and ash:			adding oodi, in		
N/A						
(0)	Theoretical	o o molo u o ti o m			I).	
(C)			air requirement (A		1):	
	N/A	@		°F and		psia.
(d)) Percent exc	cess air: N	J/A			
(e)) Type and B	TU/hr of bu	rners and all other	firing equipme	ent planned to l	be used:
N/A						
14/14						
(f)	If coal is pro	posed as a ill be fired:	source of fuel, ider	ntify supplier a	ind seams and	give sizing of the
N/A						
(g)) Proposed n	naximum de	sign heat input:	N/	ΆA	× 10 ⁶ BTU/hr.
7. Pr	ojected opera	ating sched	ıle:			
Hours	/Day	24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 					
@	°F and psia					
a.	NO _X		lb/hr	grains/ACF		
b.	SO ₂		lb/hr	grains/ACF		
c.	со		lb/hr	grains/ACF		
d.	PM ₁₀	0.25	lb/hr	grains/ACF		
e.	Hydrocarbons		lb/hr	grains/ACF		
f.	VOCs	0.08	lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)	1				
	НАР	0.08	lb/hr	grains/ACF		
	methanol	0.08	lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 					
MONITORING	RECORDKEEPING				
DEDODTINO	TEOTINO				
REPORTING	TESTING				
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE				
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.					

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Attachment M

Air Pollution Control Device Sheets

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): SCR01

Equipment Information

1.	Manufacturer: TBD Model No. TBD	2. Control Device Nar Type: Selective Ca				
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	On a separate sheet(s) supply all data and calculate	ions used in selecting or d	esigning this collection device.			
5.	Provide a scale diagram of the control device show	ing internal construction.				
6.	Submit a schematic and diagram with dimensions a	and flow rates.				
7.	Guaranteed minimum collection efficiency for each	pollutant collected:				
8.	Attached efficiency curve and/or other efficiency in	formation.				
9.	Design inlet volume: 29,350 SCFM	10. Capacity:				
11.	Indicate the liquid flow rate and describe equipmen	t provided to measure pres	ssure drop and flow rate, if any.			
Apı	Approximately 15 gal/hr (53 lb/hr) of 19% aqueous ammonia.					
12.	Attach any additional data including auxiliary equipment.	uipment and operation de	tails to thoroughly evaluate the			
13.	13. Description of method of handling the collected material(s) for reuse of disposal. N/A					
<u> </u>	Gas Stream	Characteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ⊠ No ☐ Yes ⊠ No ☐ Yes ⊠ No				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):	ambient	ambient			
	Heat Content (BTU/scf):	N/A	N/A			
	Oxygen Content (%):	2	2			
	Moisture Content (%):	24	24			
	Relative Humidity (%):	N/A	N/A			

16. Type of pollutant(s)		SOx	☐ Odor ⊠ Other (NO	x)			
17. Inlet gas velocity:	ר	TBD ft/sec	18. Pollutant	specific gravity:			
	19. Gas flow into the collector: 50,329 ACFM @ 572°F and 14.7 PSIA				20. Gas stream temperature:Inlet:572Outlet:572		
21. Gas flow rate: Design Maximum: Average Expected:	Design Maximum: 50,329 ACFM			22. Particulate Grain Loading in grains/scf: Inlet: N/A Outlet: N/A			
23. Emission rate of eac	h pollutant (speci	ify) into and out	of collector:				
Pollutant	IN Pol	lutant	Emission	OUT Po	OUT Pollutant		
	lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %	
A NO _X	53.91		100	15.27		72	
B NH ₃	0.0		N/A	0.32	5 ppmdv	N/A	
С							
D							
E							
24. Dimensions of stack	: Heig	ht 1351	ft.	Diameter	3.94	ft.	
25. Supply a curve show rating of collector.	25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.						
		Particulate I	Distribution				
26. Complete the table:	Particle Size Distribution at Inlet Fraction Efficiency of Collector						

	to Collector	· · · · · · · · · · · · · · · · · · ·
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2		
2-4		
4 – 6		
6 – 8		
8 - 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 – 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):						
28. Describe the collect	8. Describe the collection material disposal system:					
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet? Yes				
Please propose n proposed operatin	30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:		RECORDKEEPING:				
REPORTING:		TESTING:				
MONITORING: RECORDKEEPING: REPORTING: TESTING:	monitored in order to demonstrate compliance with the operation of this proce equipment or air control device. RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING: Please describe any proposed emissions testing for this process equipment on pollution control device.					
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.						
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.						
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.						

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): FLARE01

	Equipment Information				
1.	Manufacturer: TBD Model No. TBD	 Method: Elevated flare Ground flare Other Describe Enclosed Flare 			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted Non-assisted			
5.	Maximum capacity of flare:	6. Dimensions of stack:			
	161 scf/min	Diameter 4 ft.			
	9,625 scf/hr	Height 20 ft.			
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 %	 8. Fuel used in burners: ☑ Natural Gas □ Fuel Oil, Number 			
	Minimum guaranteed: 98 %	Other, Specify:			
9.	Number of burners: 1	11. Describe method of controlling flame: Air assist to provide smokeless combustion.			
	Rating: 2.65 million BTU/hr				
10.	Will preheat be used? See Yes No				
12.	Flare height: 20 ft	14. Natural gas flow rate to flare pilot flame per pilot light: 1.0 scf/min			
13.	Flare tip inside diameter: TBD ft	60.0 scf/hr			
15.	Number of pilot lights: 1	16. Will automatic re-ignition be used?			
	Total 0.06 million BTU/hr	🖂 Yes 🛛 🗌 No			
17.	7. If automatic re-ignition will be used, describe the method: Pressure detection system opens valve, vapor mixture flows through detonation arrestor to burner, vapor mixture ignited by pilot.				
18.	Is pilot flame equipped with a monitor? ☑ Yes If yes, what type? ☐ Thermocouple ☐ Infra ☑ Ultra Violet ☐ Cam ☐ Other, Describe: ☐ Cam	☐ No -Red lera with monitoring control room			
19.	Hours of unit operation per year: 8,760 as function of maximum annual production and ves	ssumed for pilot, hours of displaced vapors are a ssel (truck or railcar) loading rates.			

	Steam Injection						
20.	Will steam injection be used	d? 🗌 Yes	🛛 No	21.	Steam pressure		PSIG
					Minimum Expected:		
					Design Maximum:		
22.	Total Steam flow rate:		LB/hr	23. Temperature: °F			°F
24.	Velocity		ft/sec	25.	Number of jet streams		
26.	Diameter of steam jets:		in	27.	Design basis for steam in	jected: 3 steam/LB hvdroc	arban
28.	How will steam flow be con	trolled if steam i	injection is	s use		5 Steam/LB rivoroc	2000
			-				
	Ch	aracteristics of	the Wast	to G	as Stream to be Burned		
29.		Quan			Quantity		
	Name	Grains of Ha			(LB/hr, ft ³ /hr, etc)	Source of Mat	terial
	displaced vapors	Non	ne		9,625 scf/hr, max	trucks, railc	ars
30.	Estimate total combustible	to flare:	1.3 scf/	/hr	LB/hr	or ACF/hr	
	(Maximum mass flow rate c	of waste gas)	9,625 s	cf/h	r scfm		
31.	 Estimated total flow rate to flare including materials to 			o be	burned, carrier gases, aux	iliary fuel, etc.:	
	10,825 scf/hr (includes assist air) LB/hr or ACF/hr				-	-	
32.	Give composition of carrier						
	air with methanol y	apors					
22	Townseture of emission of			24	Identify and describe all a	uvilian, fuele te he	humod
33.	Temperature of emission st ambieu			34.	Identify and describe all a natural gas: 1,020	•	U/scf
	Heating value of emission s			BTU/sc			
	275	BTU/ft ³					U/scf
	Mean molecular weight of e	mission stream	:				U/scf
	MW = 30 lb/lb-mole						0/301
	Temperature of flare gas:	TBD °F			Flare gas flow rate: 180	scf/min	
	Flare gas heat content: 27				Flare gas exit velocity: 7		
	Maximum rate during emer					120 scf/min	
	Maximum rate during emerg					30,000 BTU/mir	
41.	Describe any air pollution reheating, gas humidification		niet and t	Julie	t gas conditioning process	es (e.g., gas cool	ing, gas
	None						
42.	Describe the collection mat	erial disposal sy	/stem:				
	N/A						
<u> </u>							
43.	3. Have you included <i>Flare Control Device</i> in the Emissions Points Data Summary Sheet? Yes						

	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the				
MONITORING:		RECORDKEEPING:			
REPORTING:		TESTING:			
MONITORING: Please list and describe the process parameters and ranges that are proposed monitored in order to demonstrate compliance with the operation of this prequipment or air control device. RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment of the					
TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air			
45. Manufacturer's Gua TBD	aranteed Capture Efficiency for eac	ch air pollutant.			
46. Manufacturer's Guaranteed Control Efficiency for each air pollutant.98% (preliminary)					
47. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.			

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): FLARE02

	Equipment	Information		
1.	Manufacturer: TBD	2. Method: Elevated flare Ground flare		
	Model No. TBD	Other Describe		
		<u> </u>		
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state h	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.		
4.	Method of system used: TBD (vendor selection)	Pressure-assisted Non-assisted		
5.	Maximum capacity of flare:	6. Dimensions of stack:		
	13,241 scf/min	Diameter 1.5 ft.		
	794,477 scf/hr	Height 65 ft.		
7.	Estimated combustion efficiency: (Waste gas destruction efficiency)	 Fuel used in burners: 		
	Estimated: 99.7 %	☐ Fuel Oil, Number		
	Minimum guaranteed: TBD %	Other, Specify:		
9.	Number of burners: 2	 Describe method of controlling flame: TBD (vendor selection) 		
	Rating: 225 million BTU/hr	IBD (vendor selection)		
10.	Will preheat be used? Yes No			
12.	Flare height: 65 ft	14. Natural gas flow rate to flare pilot flame per pilot light: 1.5 scf/min		
13.	Flare tip inside diameter: TBD ft	90.0 scf/hr		
15.	Number of pilot lights: 2	16. Will automatic re-ignition be used?		
	Total 0.09 million BTU/hr	🗌 Yes 🛛 No		
17.	If automatic re-ignition will be used, describe the methe	hod:		
10				
18.	Is pilot flame equipped with a monitor? Xes If yes, what type? X Thermocouple Infra-	□ No -Red		
		era with monitoring control room		
	 ☐ Other, Describe:	U U		
10		1.6 with the second of full expension are otherwise		
19. Hours of unit operation per year: 8,760 assumed for pilot, hours of full operation are ot limited to plant startups and malfunction events. See Appendix B for additional information.				

		Steam I	njeo	ction		
20.	Will steam injection be used	1? 🗌 Yes 🗌 No	21. Steam pressure PS			
TBD (vendor selection)				Minimum Expected:		
			ļ	Design Maximum:		
22.	Total Steam flow rate:	LB/hr	23	. Temperature:	°F	
24.	Velocity	ft/sec	25	. Number of jet streams		
26.	Diameter of steam jets:	in	27	. Design basis for steam ir	-	
28.	How will steam flow be cont	rolled if steam injection is	s us		B steam/LB hvdrocarbon	
	Cha	aracteristics of the Wast	te G	as Stream to be Burned		
29.	Name	Quantity Grains of H ₂ S/100 ft ³		Quantity (LB/hr, ft ³ /hr, etc)	Source of Material	
	plant startups	none		527.3 lb/hr	syngas	
	plant equipment trips	none		19,729 lb/hr	syngas	
	external fire	none		9,624 lb/hr	methanol	
30.	Estimate total combustible t	to flare: 527.3 t/	o 19	9,729 lb/hr LB/hr	or ACF/hr	
	(Maximum mass flow rate o			scfm		
31.	31. Estimated total flow rate to flare including materials to			burned, carrier gases, au	xiliary fuel, etc.:	
	527.3 to 19,729 lb/hr LB/hr or ACF/hr					
32.	32. Give composition of carrier gases:					
	syngas or methanol vapors, depending on SSM scenario					
33.	33. Temperature of emission stream: 34. Identify and describe all auxiliary fuels to be burned					
		500 °F		natural gas: 1,020	BTU/scf	
	Heating value of emission s	tream: to 11,400 BTU/lb			BTU/scf	
	Mean molecular weight of e				BTU/scf	
	•	b-mole			BTU/scf	
35.	Temperature of flare gas:	TBD °F	36	. Flare gas flow rate: 724	scf/min	
37.	Flare gas heat content: 7,7	700 to 11,400 BTU/lb	38	. Flare gas exit velocity: '	TBD scf/min	
39.	Maximum rate during emerg	gency for one major piece	e of	equipment or process unit	: 724 scf/min	
	Maximum rate during emerg					
41.	41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): None					
	42. Describe the collection material disposal system: N/A					
43.	43. Have you included <i>Flare Control Device</i> in the Emissions Points Data Summary Sheet? Yes					

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING:			
MONTONING.					
REPORTING:		TESTING:			
MONITORING:		process parameters and ranges that are proposed to be trate compliance with the operation of this process			
RECORDKEEPING: REPORTING:	 monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device. 				
TESTING:	pollution control device.	emissions testing for this process equipment on air			
45. Manufacturer's Gua TBD	aranteed Capture Efficiency for eac	ch air pollutant.			
	aranteed Control Efficiency for eac	h air pollutant.			
99.7% (preliminary)					
47. Describe all operati	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.			

Attachment N

Supporting Emissions Calculations

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA SUMMARY OF EMISSIONS

Pollutant	РМ	PM10	PM2.5	SO2	NOx	CO	VOC	CO2e	HAP	Ammonia	Arsenic	Benzene	Beryllium
CAS No.				7446-09-5		630-08-0				7664-41-7	7440-38-2	71-43-2	7440-41-7
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
POINT EMISSION SOURCES													
STEAM METHANE REFORMER (SMR)	1.97	1.97	1.97	1.18	66.90	19.68	3.94	125,306	1.96	1.39	0.00021	0.0022	0.000012
STARTUP HEATER	0.083	0.083	0.083	0.0063	1.10	0.92	0.060	1,322	0.021		0.0000022	0.000023	0.00000131
STORAGE TANKS							2.02		2.02				
PRODUCT LOADOUT (WITH FLARE)	0.029	0.029	0.029	0.0070	0.81	4.39	0.17	1,642	0.17				
SSM FLARE	0.054	0.054	0.054	0.0130	1.50	8.17	3.09	2,585					
COOLING TOWER	1.10	1.10	1.10				0.37		0.37				
FUGITIVE EMISSION SOURCES													
FUGITIVE EQUIPMENT LEAKS							2.55		2.42				
Point Source Total	3.23	3.23	3.23	1.21	70.30	33.16	9.65	130,854	4.54	1.39	0.00021	0.0022	0.000013
Fugitive Source Total							2.55		2.42				
Facility Total	3.23	3.23	3.23	1.21	70.30	33.16	12.20	130,854	6.96	1.39	0.00021	0.0022	0.000013
Major Source Threshold	100	100	100	100	100	100	100		25		10	10	10

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA SUMMARY OF EMISSIONS

Pollutant	Cadmium	Chromium	Cobalt	Dichlorobenzene	Formaldehyde	n-Hexane	Lead	Manganese	Mercury	Methanol	Naphthalene
CAS No.	7440-43-9	7440-47-3	7440-48-4	106-46-7	50-00-0	110-54-3	7439-92-1	7439-96-5	7439-97-6	67-56-1	91-20-3
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
POINT EMISSION SOURCES											
STEAM METHANE REFORMER (SMR)	0.0011	0.0015	0.000087	0.0012	0.078	1.87	0.00052	0.00039	0.00027		0.00063
STARTUP HEATER	0.0000120	0.0000153	0.0000092	0.0000131	0.00082	0.020	0.0000055	0.0000042	0.000028		0.0000067
STORAGE TANKS										2.02	
PRODUCT LOADOUT (WITH FLARE)										0.17	
SSM FLARE											
COOLING TOWER										0.37	
FUGITIVE EMISSION SOURCES											
FUGITIVE EQUIPMENT LEAKS										2.42	
Point Source Total	0.0012	0.0015	0.000088	0.0013	0.079	1.9	0.00052	0.00040	0.00027	2.56	0.00064
Fugitive Source Total										2.42	
Facility Total	0.0012	0.0015	0.000088	0.0013	0.079	1.9	0.00052	0.00040	0.00027	4.98	0.00064
Major Source Threshold	10	10	10	10	10	10	5	10	10	10	10

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA SUMMARY OF EMISSIONS

Pollutant	Nickel	Total POM	Selenium	Toluene
CAS No.	7440-02-0		7782-49-2	108-88-3
	(tpy)	(tpy)	(tpy)	(tpy)
POINT EMISSION SOURCES				
STEAM METHANE REFORMER (SMR)	0.0022	0.000092	0.000025	0.0035
STARTUP HEATER	0.000023	0.0000097	0.0000026	0.000037
STORAGE TANKS				
PRODUCT LOADOUT (WITH FLARE)				
SSM FLARE				
COOLING TOWER				
FUGITIVE EMISSION SOURCES				
FUGITIVE EQUIPMENT LEAKS				
Point Source Total	0.0022	0.000093	0.000025	0.0036
Fugitive Source Total				
Facility Total	0.0022	0.000093	0.000025	0.0036
Major Source Threshold	10	10	10	10

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA STEAM METHANE REFORMER (COMBUSTION EMISSIONS)

SOURCE DESCRIPTION

The SMR combusts both process gas and pipeline natural gas. The process gases are high in hydrogen content. Due to the heat content of these fuels, thermal NOx formation is greater than for natural gas combustion. A selective catalytic reduction (SCR) system will be used to control NOx emissions.

OPERATING PARAMETERS

Combustion Unit			
Operating Schedule	8,760	hrs/yr	
Fuels		Natural Gas,	Process Gases
Capacity	114.8	MMBtu/hr	composite fuel flow
Fuel HHV	484	Btu/scf	composite fuel
Capacity	236,998	scf/hr	composite fuel flow
Sulfur Content	0.0020	gr/scf	AP42, Table 1.4-2 (natural gas fraction only)
Exhaust Flow	50,329	acfm	40,752 Nm3/hr
Stack Height	135	ft	
Exit Temperature	572	°F	
Exit Diameter	3.94	ft	
Exit Velocity	68.90	ft/s	

EMISSION CALCULATIONS

Criteria Pollutant and GHG Emission Factors for Natural Gas

				Emission Factor
Pollutant		mg/Nm ³	<u>lb/MMBtu</u>	Source
PM10		5	0.00391	Vendor (lb/MMBtu calculated)
PM2.5		5	0.00391	Vendor (lb/MMBtu calculated)
SO2		3	0.00235	Vendor (lb/MMBtu calculated)
NOx	pre-SCR	600	0.470	Vendor (lb/MMBtu calculated)
NOx	post-SCR	170	0.133	Vendor (lb/MMBtu calculated)
CO		50	0.0391	Vendor (lb/MMBtu calculated)
VOC		10	0.00783	Vendor (lb/MMBtu calculated)
Pb			0.00000103	AP42, Table 1.4-2
CO2	GWP 1		247.7	AP42, Table 1.4-2
CH4	GWP 25		0.00475	AP42, Table 1.4-2
N2O	GWP 298		0.00454	AP42, Table 1.4-2
NH3	5 ppm	3.5	0.00277	Vendor (lb/MMBtu calculated)

Typical Emissions

Typical = Boiler Capacity (114.8 MMBtu/hr) x Emission Factor (Ib/MMBtu)

PM10 = 114.8 MMBtu/hr * 0.00391 lbs/MMBtu 0.45 lbs PM/hr PM2.5 = 114.8 MMBtu/hr * 0.00391 lbs/MMBtu 0.45 lbs PM/hr SO2 = 114.8 MMBtu/hr * 0.00235 lbs/MMBtu 0.27 lbs SO2/hr NOx (pre-SCR) = 114.8 MMBtu/hr * 0.470 lbs/MMBtu 53.91 lbs NOx/hr (pre-SCR) NOx (controlled) = 114.8 MMBtu/hr * 0.133 lbs/MMBtu

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA <u>STEAM METHANE REFORMER (COMBUSTION EMISSIONS)</u>

TEAM METHANE REFORMER (CC	MBUSTION EMISSIONS)	
	15.27 lbs NOx/hr	
CO =	114.8 MMBtu/hr * 0.0391 lbs/MMBtu 4.49 lbs CO/hr	
VOC =	114.8 MMBtu/hr * 0.00783 lbs/MMBtu 0.90 lbs VOC/hr	
Pb =	114.8 MMBtu/hr * 0.00000103 lbs/MMBtu 0.00012 lbs Pb/hr	
CO2 =	114.8 MMBtu/hr * 247.7 lbs/MMBtu 28,440 lb CO2/hr	
CH4 =	114.8 MMBtu/hr * 0.00475 lbs/MMBtu 0.55 lb CH4/hr	
N2O =	114.8 MMBtu/hr * 0.00454 lbs/MMBtu 0.52 lb N2O/hr	
CO2e (total) =	(28,440 lb CO2/hr * 1 lb CO2e/lb CO2) + (0 + (0.52140 lb N2O/hr * 298 lb CO2e/lb N2 28,609 lb CO2e/hr	
NH3 =	114.8 MMBtu/hr * 0.00277 lbs/MMBtu 0.32 lb NH3/hr	
Annual Emissions		
Annual =	Average (lbs/hr) * 8,760 hrs/yr / 2,000 lbs/t	on
PM10 =	(0.45 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 1.97 TPY Total PM10	ו)
PM2.5 =	(0.45 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 1.97 TPY Filterable PM2.5	ר)
SO2 =	(0.27 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 1.18 TPY SO2	n)
NOx (pre-SCR) =	(53.91 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/to 236.11 TPY NOx	on)
NOx (controlled) =	(15.27 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/to 66.90 TPY NOx	on) 71.7% reduction efficiency
CO =	(4.49 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 19.68 TPY CO	n)
VOC =	(0.90 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 3.94 TPY VOC	n)
Pb =	(0.00012 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs 0.00052 TPY Pb	s/ton)
CO2e =	(28,609 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ 125,306 TPY CO2e	(ton)
NH3 =	(0.32 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/tor 1.39 TPY NH3	ח)

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA STEAM METHANE REFORMER (COMBUSTION EMISSIONS)

EMISSIONS SUMMARY

Pollutant	Typical (Ibs/hr)	Annual (TPY)
PM10	0.45	1.97
PM2.5	0.45	1.97
SO2	0.27	1.18
NOx (controlled)	15.27	66.90
CO	4.49	19.68
VOC	0.90	3.94
Pb	0.00012	0.00052
CO2e (total)	28,609	125,306
total HAP	0.45	1.96
NH3	0.32	1.39

TOTAL SPECIATED POLLUTANT EMISSIONS SUMMARY¹

	<u>lb/MMscf</u>	lb/MMBtu	<u>lb/hr</u>	tpy
HAP	1.89E+00	3.90E-03	4.47E-01	1.96E+00
Organic HAP Speciation				
n-hexane	1.80E+00	3.72E-03	4.27E-01	1.87E+00
formaldehyde	7.50E-02	1.55E-04	1.78E-02	7.79E-02
toluene	3.40E-03	7.02E-06	8.06E-04	3.53E-03
benzene	2.10E-03	4.34E-06	4.98E-04	2.18E-03
dichlorobenzene	1.20E-03	2.48E-06	2.84E-04	1.25E-03
naphthalene	6.10E-04	1.26E-06	1.45E-04	6.33E-04
POM Speciation				
total POM	8.82E-05	1.82E-07	2.09E-05	9.16E-05
2-methylnaphthalene	2.40E-05	4.95E-08	5.69E-06	2.49E-05
phenanthrene	1.70E-05	3.51E-08	4.03E-06	1.76E-05
7,12-dimethylbenz(a)anthracene	1.60E-05	3.30E-08	3.79E-06	1.66E-05
pyrene	5.00E-06	1.03E-08	1.18E-06	5.19E-06
benzo(b,k)fluoranthene	3.60E-06	7.43E-09	8.53E-07	3.74E-06
fluoranthene	3.00E-06	6.19E-09	7.11E-07	3.11E-06
fluorene	2.80E-06	5.78E-09	6.64E-07	2.91E-06
anthracene	2.40E-06	4.95E-09	5.69E-07	2.49E-06
acenaphthene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
acenaphthylene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
benz(a)anthracene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
chrysene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
indeno(1,2,3-cd)pyrene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
3-methylchloranthene	1.80E-06	3.72E-09	4.27E-07	1.87E-06
benzo(a)pyrene	1.20E-06	2.48E-09	2.84E-07	1.25E-06
benzo(g,h,i)perylene	1.20E-06	2.48E-09	2.84E-07	1.25E-06
dibenzo(a,h)anthracene	1.20E-06	2.48E-09	2.84E-07	1.25E-06
Inorganic HAP Speciation				
nickel	2.10E-03	4.34E-06	4.98E-04	2.18E-03
chromium	1.40E-03	2.89E-06	3.32E-04	1.45E-03
cadmium	1.10E-03	2.27E-06	2.61E-04	1.14E-03
manganese	3.80E-04	7.85E-07	9.01E-05	3.94E-04
mercury	2.60E-04	5.37E-07	6.16E-05	2.70E-04
arsenic	2.00E-04	4.13E-07	4.74E-05	2.08E-04
cobalt	8.40E-05	1.73E-07	1.99E-05	8.72E-05
selenium	2.40E-05	4.95E-08	5.69E-06	2.49E-05
beryllium	1.20E-05	2.48E-08	2.84E-06	1.25E-05

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA STEAM METHANE REFORMER (COMBUSTION EMISSIONS) <u>REFERENCES/NOTES</u>

1 Emission factors based on EPA AP-42, Section 1.4 "Natural Gas Combustion", July 1998.

SOURCE DESCRIPTION

The startup heater is a small unit fired with natural gas and will be used to provide heat to the methanol synthesis reactor system during plant startups. The heater is conservatively assumed to operate at full capacity year-round.

OPERATING PARAMETERS

Heater		
Operating Schedule	8,760 hrs/yr	
Fuels	Natural Ga	IS
Capacity	2.55 MMBtu/hr	
Natural Gas HHV	1,020 Btu/scf	AP42, Table 1.4-2
Capacity	2,500 scf/hr	
Sulfur Content	0.0020 gr/scf	AP42, Table 1.4-2
F-Factor	10,610 scf/MMBtu	from 40 CFR 60 Method 19
Exhaust Flow	1,481 acfm	
Exit Temperature	1,050 °F	
Exit Diameter	0.5 ft	
Exit Velocity	126 ft/s	

EMISSION CALCULATIONS

Criteria Pollutant and GHG Emission Factors for Natural Gas

			Emission Factor
Pollutant		<u>lb/MMBtu</u>	Source
PM10		0.00745	AP42, Table 1.4-2
PM2.5		0.00745	AP42, Table 1.4-2
SO2		0.000560	AP42, Table 1.4-2
NOx		0.0980	AP42, Table 1.4-1
CO		0.0824	AP42, Table 1.4-1
VOC		0.00539	AP42, Table 1.4-2
Pb		0.000000490	AP42, Table 1.4-2
CO2	GWP 1	117.6	AP42, Table 1.4-2
CH4	GWP 25	0.00225	AP42, Table 1.4-2
N2O	GWP 298	0.00216	AP42, Table 1.4-2

Typical Emissions

Typical = Boiler Capacity (2.6 MMBtu/hr) x Emission Factor (Ib/MMBtu)

PM10 = 2.6 *MMBtu/hr* * 0.00745 *lbs/MMBtu* 0.0190 lbs PM/hr

PM2.5 = 2.6 *MMBtu/hr* * 0.00745 *lbs/MMBtu* 0.0190 lbs PM/hr

- SO2 = 2.6 *MMBtu/hr* * 0.000560 *lbs/MMBtu* 0.001427 lbs SO2/hr
- NOx = 2.6 *MMBtu/hr* * 0.0980 *lbs/MMBtu* 0.250 *lbs* NOx/hr
- CO = 2.6 *MMBtu/hr* * 0.0824 *lbs/MMBtu* 0.210 lbs CO/hr
- VOC = 2.6 MMBtu/hr * 0.00539 lbs/MMBtu

0.01375 lbs VOC/hr	
Pb = 2.6 <i>MMBtu/hr</i> * 0.000000490 <i>lbs/MMBtu</i> 0.000001250 lbs Pb/hr	
CO2 = 2.55 MMBtu/hr * 117.6 lbs/MMBtu 300 lb CO2/hr	
CH4 = 2.55 MMBtu/hr * 0.00225 lbs/MMBtu 0.00575 lb CH4/hr	
N2O = 2.55 MMBtu/hr * 0.00216 lbs/MMBtu 0.00550 lb N2O/hr	
CO2e (total) = (300 lb CO2/hr * 1 lb CO2e/lb CO2) + (0.00575 lb CH4/hr * 25 lb CO2e/lb CH4) + (0.00550 lb N2O/hr * 298 lb CO2e/lb N2O) 302 lb CO2e/hr	
Annual Emissions	
Annual = Average (lbs/hr) * 8,760 hrs/yr / 2,000 lbs/ton	
PM10 = (0.0190 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.0832 TPY Total PM10	
PM2.5 = (0.0190 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.0832 TPY Filterable PM2.5	
SO2 = (0.001427 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.00625 TPY SO2	
NOx = (0.250 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 1.095 TPY NOx	
CO = (0.210 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.920 TPY CO	
VOC = (0.01375 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.0602 TPY VOC	
Pb = (0.000001250 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 0.00000548 TPY Pb	
CO2e = (302 lbs/hr) * (8,760 hrs/yr) / (2,000 lbs/ton) 1,322 TPY CO2e	

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA STARTUP HEATER

EMISSIONS SUMMARY

Pollutant	Typical (Ibs/hr)	Annual (TPY)
PM10	0.0190	0.0832
PM2.5	0.0190	0.0832
SO2	0.001427	0.00625
NOx	0.250	1.095
CO	0.210	0.920
VOC	0.01375	0.0602
Pb	0.000001250	0.00000548
CO2e (total)	302	1,322
total HAP	0.00472	0.0207

TOTAL SPECIATED POLLUTANT EMISSIONS SUMMARY¹

HAP1.89E+001.85E-034.72E-032.07E-02Organic HAP Speciationn-hexane1.80E+001.76E-034.50E-031.97E-02formaldehyde7.50E-027.35E-051.88E-048.21E-04toluene3.40E-033.33E-068.50E-063.72E-05benzene2.10E-032.06E-065.25E-062.30E-05dichlorobenzene1.20E-031.18E-063.00E-061.31E-05naphthalene6.10E-045.98E-071.53E-066.68E-06POM Speciationtotal POM8.82E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-062.94E-097.50E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.94E-08fluoranthene3.00E-062.75E-097.00E-093.92E-08fluoranthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08hordeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76
n-hexane 1.80E+00 1.76E-03 4.50E-03 1.97E-02 formaldehyde 7.50E-02 7.35E-05 1.88E-04 8.21E-04 toluene 3.40E-03 3.33E-06 8.50E-06 3.72E-05 benzene 2.10E-03 2.06E-06 5.25E-06 2.30E-05 dichlorobenzene 1.20E-03 1.18E-06 3.00E-06 1.31E-05 naphthalene 6.10E-04 5.98E-07 1.53E-06 6.68E-06 POM Speciation total POM 8.82E-05 8.65E-08 2.21E-07 9.66E-07 2-methylnaphthalene 2.40E-05 2.35E-08 6.00E-08 2.63E-07 phenanthrene 1.70E-05 1.67E-08 4.25E-08 1.86E-07 7,12-dimethylbenz(a)anthracene 1.60E-05 1.57E-08 4.00E-08 1.75E-07 pyrene 5.00E-06 4.90E-09 1.25E-08 5.48E-08 benzo(b,k)fluoranthene 3.60E-06 3.53E-09 9.00E-09 3.94E-08 fluoranthene 3.00E-06 2.75E-09 7.00E-09 3.07E-08 a
formaldehyde7.50E-027.35E-051.88E-048.21E-04toluene3.40E-033.33E-068.50E-063.72E-05benzene2.10E-032.06E-065.25E-062.30E-05dichlorobenzene1.20E-031.18E-063.00E-061.31E-05naphthalene6.10E-045.98E-071.53E-066.68E-06POM Speciationtotal POM8.82E-058.65E-082.21E-079.66E-072-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluorene2.80E-062.75E-097.00E-093.92E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08a-methylchloranthene1.80E-061.76E-094.50E-091.97E-08a-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091
toluene3.40E-033.33E-068.50E-063.72E-05benzene2.10E-032.06E-065.25E-062.30E-05dichlorobenzene1.20E-031.18E-063.00E-061.31E-05naphthalene6.10E-045.98E-071.53E-066.68E-06POM Speciationtotal POM8.82E-058.65E-082.21E-079.66E-072-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08j-methylchloranthene1.80E-061.76E-094.50E-091.97E-08j-methylchloranthene1.80E-061.76E-094.50E-091.97E-08j-methylchloranthene1.80E-061.76E-094.50E-091.9
benzene 2.10E-03 2.06E-06 5.25E-06 2.30E-05 dichlorobenzene 1.20E-03 1.18E-06 3.00E-06 1.31E-05 naphthalene 6.10E-04 5.98E-07 1.53E-06 6.68E-06 POM Speciation total POM 8.82E-05 8.65E-08 2.21E-07 9.66E-07 2-methylnaphthalene 2.40E-05 2.35E-08 6.00E-08 2.63E-07 phenanthrene 1.70E-05 1.67E-08 4.25E-08 1.86E-07 7,12-dimethylbenz(a)anthracene 1.60E-05 1.57E-08 4.00E-08 1.75E-07 pyrene 5.00E-06 4.90E-09 1.25E-08 5.48E-08 benzo(b,k)fluoranthene 3.60E-06 3.53E-09 9.00E-09 3.94E-08 fluoranthene 3.00E-06 2.75E-09 7.00E-09 3.29E-08 fluoranthene 1.80E-06 1.76E-09 4.50E-09 1.97E-08 acenaphthene 1.80E-06 1.76E-09 4.50E-09 1.97E-08 acenaphthylene
dichlorobenzene1.20E-031.18E-063.00E-061.31E-05naphthalene6.10E-045.98E-071.53E-066.68E-06POM Speciationtotal POM8.82E-058.65E-082.21E-079.66E-072-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene2.80E-062.75E-097.00E-093.07E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08s-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-09
naphthalene 6.10E-04 5.98E-07 1.53E-06 6.68E-06 POM Speciation total POM 8.82E-05 8.65E-08 2.21E-07 9.66E-07 2-methylnaphthalene 2.40E-05 2.35E-08 6.00E-08 2.63E-07 phenanthrene 1.70E-05 1.67E-08 4.25E-08 1.86E-07 7,12-dimethylbenz(a)anthracene 1.60E-05 1.57E-08 4.00E-08 1.75E-07 pyrene 5.00E-06 4.90E-09 1.25E-08 5.48E-08 benzo(b,k)fluoranthene 3.60E-06 3.53E-09 9.00E-09 3.94E-08 fluoranthene 3.00E-06 2.94E-09 7.50E-09 3.07E-08 fluorene 2.80E-06 2.75E-09 7.00E-09 3.07E-08 acenaphthene 1.80E-06 1.76E-09 4.50E-09 1.97E-08 acenaphthene 1.80E-06 1.76E-09 4.50E-09 1.97E-08 benz(a)anthracene 1.80E-06 1.76E-09 4.50E-09 1.97E-08 chrysene 1.80E-06 1.76E-09 4.50E-09 1.97E-08
POM Speciationtotal POM8.82E-058.65E-082.21E-079.66E-072-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-09
total POM8.82E-058.65E-082.21E-079.66E-072-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benz(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene<
2-methylnaphthalene2.40E-052.35E-086.00E-082.63E-07phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
phenanthrene1.70E-051.67E-084.25E-081.86E-077,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08acenaphtylone1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08acenaphtylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.76E-094.50E-091.31E-08
7,12-dimethylbenz(a)anthracene1.60E-051.57E-084.00E-081.75E-07pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benz(a)pyrene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
pyrene5.00E-064.90E-091.25E-085.48E-08benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benz(a)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
benzo(b,k)fluoranthene3.60E-063.53E-099.00E-093.94E-08fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benz(a)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
fluoranthene3.00E-062.94E-097.50E-093.29E-08fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
fluorene2.80E-062.75E-097.00E-093.07E-08anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
anthracene2.40E-062.35E-096.00E-092.63E-08acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
acenaphthene1.80E-061.76E-094.50E-091.97E-08acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
acenaphthylene1.80E-061.76E-094.50E-091.97E-08benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
benz(a)anthracene1.80E-061.76E-094.50E-091.97E-08chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
chrysene1.80E-061.76E-094.50E-091.97E-08indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
indeno(1,2,3-cd)pyrene1.80E-061.76E-094.50E-091.97E-083-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
3-methylchloranthene1.80E-061.76E-094.50E-091.97E-08benzo(a)pyrene1.20E-061.18E-093.00E-091.31E-08
benzo(a)pyrene 1.20E-06 1.18E-09 3.00E-09 1.31E-08
benzo(g,h,i)perylene 1.20E-06 1.18E-09 3.00E-09 1.31E-08
dibenzo(a,h)anthracene 1.20E-06 1.18E-09 3.00E-09 1.31E-08
Inorganic HAP Speciation
nickel 2.10E-03 2.06E-06 5.25E-06 2.30E-05
chromium 1.40E-03 1.37E-06 3.50E-06 1.53E-05
cadmium 1.10E-03 1.08E-06 2.75E-06 1.20E-05
manganese 3.80E-04 3.73E-07 9.50E-07 4.16E-06
mercury 2.60E-04 2.55E-07 6.50E-07 2.85E-06
arsenic 2.00E-04 1.96E-07 5.00E-07 2.19E-06
cobalt 8.40E-05 8.24E-08 2.10E-07 9.20E-07
selenium 2.40E-05 2.35E-08 6.00E-08 2.63E-07
beryllium 1.20E-05 1.18E-08 3.00E-08 1.31E-07

REFERENCES/NOTES

1 Emission factors based on EPA AP-42, Section 1.4 "Natural Gas Combustion", July 1998.

SOURCE DESCRIPTION

The facility includes 1 shift tank, 1 off-spec tank, and 1 methanol product storage tank. The shift and off-spec tanks will be vented to atmosphere. The product storage tank will be designed with an internal floating roof. The product storage tank is assumed to handle the full production capacity of the facility. The shift tank and off-spec tank will share the full production capacity of the facility. Because of their identical designs, emissions for only one of the tanks at full production throughput are calculated. These emissions are representative of the combined emissions of both tanks. Emissions are calculated using EPA's TANKS 4.09d software.

OPERATING PARAMETERS

Tank ID. No.	Shift Tank	Off-Spec Tank	Product Storage Tank
Tank Contents	Methanol	Methanol	Methanol
Tank Type	Horizontal	Horizontal	Internal Floating Roof
Tank Diameter (ft)	10.5	10.5	80
Tank Length/Height (ft)	46.5	46.5	40
Tank Capacity (gal)	30,000	30,000	1,260,000
Throughput (gal/yr)	19,423,840	19,423,840	19,423,840
Turnovers per Year	647	647	15
Max Liquid Height (ft)	#N/A	#N/A	#N/A
Avg Liquid Height (ft)	#N/A	#N/A	#N/A
Heated Tank	No	No	No
Underground Tank	No	No	No
Self-Supporting Roof	#N/A	#N/A	Yes
Columns	#N/A	#N/A	#N/A
Effective Column Diameter	#N/A	#N/A	#N/A
Internal Shell Condition	#N/A	#N/A	Light Rust
External Shell Color	White	White	White
External Shell Shade	White	White	White
External Shell Condition	Good	Good	Good
Roof Color	White	White	White
Roof Shade	White	White	White
Roof Paint Condition	Good	Good	Good
Fixed Roof Type	#N/A	#N/A	#N/A
Roof Height (ft)	#N/A	#N/A	#N/A
Roof Slope (ft/ft)	#N/A	#N/A	#N/A
Breather Vent Vacuum (psig)	#N/A	#N/A	#N/A
Breather Vent Pressure (psig)	#N/A	#N/A	#N/A
Primary Seal	#N/A	#N/A	Liquid Mounted
Secondary Seal	#N/A	#N/A	Rim Mounted
Deck Type	#N/A	#N/A	Welded
Deck Fittings	#N/A	#N/A	Typical
Vent Height above grade (ft)	47.5	47.5	41

MARCELLUS METHANOL

MARSHALL COUNTY, WEST VIRGINIA

STORAGE TANKS

Vent Diameter (ft)	0.25	0.25	0.25
Exit Velocity (ft/s)	10	10	10
Nearest Major City	Pittsburgh, PA	Pittsburgh, PA	Pittsburgh, PA
Daily Avg Temp (F)	50.31	50.31	50.31
Annual Avg Max Temp (F)	59.88	59.88	59.88
Annual Avg Min Temp (F)	40.73	40.73	40.73
Avg Wind Speed (mph)	9.08	9.08	9.08
Annual Avg Insolation (Btu/ft2-day)	1,203	1,203	1,203
Atmospheric Pressure (psia)	14.109	14.109	14.109
Liquid Molecular Weight	32.04	32.04	32.04
Vapor Molecular Weight	32.04	32.04	32.04
Liquid Density @ 60F (lb/gal)	6.63	6.63	6.63
Avg Bulk Temp (F)	50.33	50.33	50.33
Avg Annual Surface Temp (F)	51.94	51.94	51.94
Avg Annual Vapor Pressure (psia)	1.113	1.113	1.113
Avg July Surface Temp (F)	74.28	74.28	74.28
Avg July Vapor Pressure (psia)	2.229	2.229	2.229

VOC EMISSION CALCULATIONS¹

Tank ID. No.	Shift Tank	Off-Spec Tank	Product Storage Tank
EIQ No.			
Standing Loss (lbs/yr)	282.9	included in shift tank	
Working Loss (lbs/yr)	3522	included in shift tank	
Rim Seal Loss (lbs/yr)			15.80
Withdrawal Losses (lbs/yr)			54.37
Deck Fitting Losses (lbs/yr)			169.7
Deck Seam Losses (lbs/yr)			0.00
Total Losses (tons/yr)	1.90	included in shift tank	0.12

METHANOL EMISSION CALCULATIONS¹

Tank ID. No.	Shift Tank	Off-Spec Tank	Product Storage Tank
Standing Loss (lbs/yr)	282.9	included in shift tank	
Working Loss (lbs/yr)	3522	included in shift tank	
Rim Seal Loss (lbs/yr)			15.80
Withdrawal Losses (lbs/yr)			54.37
Deck Fitting Losses (lbs/yr)			169.72
Deck Seam Losses (lbs/yr)			0.00
Total Losses (tons/yr)	1.90	included in shift tank	0.12

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA

STORAGE TANKS

Emissions Summary

Pollutant	Average (lbs./hr)	Maximum ² (Ibs./hr)	Annual (TPY)
VOC	0.462	0.645	2.02
HAP	0.462	0.645	2.02
Methanol	0.462	0.645	2.02

REFERENCES/NOTES

1 Emissions were calculated using EPA TANKS 4.09d Program.

2 Maximum emissions are based on emissions during the month of July.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification:	Marcellus Methanol Product Storage Tank IFT
City:	Marshall County
State:	West Virginia
Company:	Marcellus Methanol
Type of Tank:	Internal Floating Roof Tank
Description:	Product Storage Tank for Marcellus Methanol

Liquid-mounted Rim-mounted

Typical Welded

Tank Dimensions

Diameter (ft):		80.00
Volume (gallons):		1,260,000.00
Turnovers:		15.46
Self Supp. Roof? (y/n):	Y	
No. of Columns:		0.00
Eff. Col. Diam. (ft):		0.00

Paint Characteristics

Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good

Rim-Seal System Primary Seal:

Primary Seal:	
Secondary Seal	

Deck Characteristics

Deck Fitting Category:	
Deck Type:	

Deck Fitting/Status

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed
Automatic Gauge Float Well/Unbolted Cover, Ungasketed
Roof Leg or Hanger Well/Adjustable
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Marcellus Methanol Product Storage Tank IFT - Internal Floating Roof Tank Marshall County, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	51.94	47.06	56.81	50.33	1.1133	N/A	N/A	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Marcellus Methanol Product Storage Tank IFT - Internal Floating Roof Tank Marshall County, West Virginia

239.8878

Annual Emission Calcaulations	
Rim Seal Losses (lb):	15.8000
Seal Factor A (lb-mole/ft-yr):	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liguid	0.0205
Surface Temperature (psia):	1.1133
Tank Diameter (ft):	80.0000
Vapor Molecular Weight (lb/lb-mole):	32.0400
Product Factor:	1.0000
Withdrawal Losses (lb):	54.3691
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	19,479,370.000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.6300
Tank Diameter (ft):	80.0000
Deck Fitting Losses (lb):	169.7187
Value of Vapor Pressure Function:	0.0205
Vapor Molecular Weight (lb/lb-mole):	32.0400
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	257.8000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	80.0000
Vapor Molecular Weight (lb/lb-mole):	32.0400
	52.0400

Total Losses (lb):

			Roof Fitting Loss Factors		
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	23.7000
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	9.2167
Roof Leg or Hanger Well/Adjustable	24	7.90	0.00	0.00	124.8203
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	7.9000
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	4.0817

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Marcellus Methanol Product Storage Tank IFT - Internal Floating Roof Tank Marshall County, West Virginia

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Methyl alcohol	15.80	54.37	169.72	0.00	239.89			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Marcellus Methanol Shift Tank Horizonta Marshall County West Virginia Marcellus Methanol Horizontal Tank Marcellus Methanol Shift Tank			
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	46.50 10.50 30,000.00 649.31 19,479,347.00 N N			
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good			
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03			

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Marcellus Methanol Shift Tank Horizontal - Horizontal Tank Marshall County, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	51.94	47.06	56.81	50.33	1.1133	0.9475	1.3035	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Marcellus Methanol Shift Tank Horizontal - Horizontal Tank Marshall County, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	282.8675
Vapor Space Volume (cu ft):	2,564.6126
Vapor Density (lb/cu ft):	0.0065
Vapor Space Expansion Factor:	0.0609
Vented Vapor Saturation Factor:	0.7635
venied vapor batalation racior.	0.7000
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	2,564.6126
Tank Diameter (ft):	10.5000
Effective Diameter (ft):	24.9394
Vapor Space Outage (ft):	5.2500
Tank Shell Length (ft):	46.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0065
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.1133
Daily Avg. Liquid Surface Temp. (deg. R):	511.6051
Daily Average Ambient Temp. (deg. F):	50.3083
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	509.9983
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,202.9556
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0609
Daily Vapor Temperature Range (deg. R):	19.5141
Daily Vapor Pressure Range (psia):	0.3559
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.1133
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.9475
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	1.3035
Daily Avg. Liquid Surface Temp. (deg R):	511.6051
Daily Min. Liquid Surface Temp. (deg R):	506.7266
Daily Max. Liquid Surface Temp. (deg R):	516.4836
Daily Ambient Temp. Range (deg. R):	19.1500
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.7635
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.1133
Vapor Space Outage (ft):	5.2500
Working Losses (lb):	3,521.7601
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	52.0400
Surface Temperature (psia):	1.1133
Annual Net Throughput (gal/yr.):	19,479,347.0000
Annual Turnovers:	649.3116
Turnover Factor:	0.2129
TUTTOVET FACIUL.	0.2129

TANKS 4.0 Report

Tank Diameter (ft):	10.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	3,804.6276

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Marcellus Methanol Shift Tank Horizontal - Horizontal Tank Marshall County, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Methyl alcohol	3,521.76	282.87	3,804.63				

TANKS 4.0.9d Emissions Report - Detail Format Total Emissions Summaries - All Tanks in Report

Emissions Report for: Annual

Tank Identification				Losses (lbs)
Marcellus Methanol Product Storage Tank IFT	Marcellus Methanol	Internal Floating Roof Tank	Marshall County, West Virginia	239.89
Marcellus Methanol Shift Tank Horizontal	Marcellus Methanol	Horizontal Tank	Marshall County, West Virginia	3,804.63
Total Emissions for all Tanks:				4,044.52

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA PRODUCT LOADOUT WITH DEDICATED FLARE

SOURCE DESCRIPTION

Product will be loaded to trucks and railcars. A single loading station for each will be constructed. Hourly emissions are based on the maximum loading rates of 400 gpm and 800 gpm for trucks and railcars, respectively, and assume a truck and a railcar can be loaded simultanepously. Annual emissions are based on the maximum potential annual throughput of the facility. Emissions will be controlled with a dedicated flare, which operates only when product is loading; otherwise, the flare pilot operates at all times. The flare has a rated capacity of 2.65 MMBtu/hr and provides 98% control efficiency for VOC emissions during product loading (methanol) into trucks and railcars, which will be in dedicated methanol service.

OPERATING PARAMETERS

One section of Cale a duals (Dilat)	0.700	h	
Operating Schedule (Pilot)	8,760	nrs/yr	
Operating Schedule (Flare)	809	hrs/yr	maximum, based on truck loading entirely
Operating Schedule (Flare)	405	hrs/yr	minimum, based on railcar loading entirely
Loading Design Thruput (trucks)	24	kgal/hr	assume 400 gpm truck filling rate
Loading Design Thruput (railcars)	48	kgal/hr	assume 800 gpm truck filling rate
Maximum Total Thruput (combined)	72	kgal/hr	assume a truck and a railcar can be loaded simultaneously
Annual Thruput	58,400	MT/yr	160 MT/day
Product Density	332.6	gallons/MT	
Annual Thruput	19,424	kgal/yr	
Methanol Heat Content	9,838	Btu/lb	
Natural Gas HHV	1,020	Btu/scf	AP42, Table 1.4-2
Heat Rate (Pilot)	0.0612	MMBtu/hr	60 scf/hr natural gas
Heat Rate (Flare)	2.65	MMBtu/hr	vendor-specfied
Maximum Potential Annual Heat Rate	23,214	MMBtu/yr	assumes 8760 hours per year
Control Device		Flare	
Control Efficiency	98	%	

EMISSION CALCULATIONS

VOC Loading Emissions¹

L (lbs/kgal) = (12.46 x S x P x M)/T

S = Saturation Factor (AP-42 Table 5.2-1)

P = True Vapor Pressure of Liquid Loaded, psia

L = Loading Loss, Ib VOC/kgal of liquid loaded

- M = Molecular Weight of Vapors, lb/lb-mole
- T = Temperature of Bulk Liquid Loaded, °R

The values for P and T were obtained from EPA's TANKS 4.09d emissions calculation software, which calculates the annual average bulk product temperature based on the annual average temperatures for the city of Pittsburgh, Pennsylvania. The saturation factor is based on submerged loading, dedicated vapor balance service for methanol.

Saturation Factor(s)	1
Annual Thruput	19,424 kgal/yr
Vapor Molecular Weight (MW)	32.04 lb/lb-mole
Product Temperature (T)	509.92 °R
True Vapor Pressure (P)	1.11 psia

VOC Emission Factor

L = (12.46 * 1.00 * 1.11 psia * 32.04 lb/lb-mole) / 509.9 R

0.87 lb VOC/kgal

Uncontrolled Emissions

VOC = 0.87 lb VOC/kgal * 72 kgal /hr

62.76 lb/hr VOC

0.62 MMBtu/hr VOC

maximum potential methanol vapors displaced over an hour maximum potential heat rate of methanol vapors displaced over an hour

VOC = 0.87 lb VOC/kgal * 19,424 kgal/yr 8.47 tpy VOC

<u>Controlled VOC Emissions</u> Maximum 1-hour = 62.76 lbs/hr * (1-98/100) DRE 1.26 lb/hr VOC

0.47 lb/MMBtu, calculated VOC emission factor

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA PRODUCT LOADOUT WITH DEDICATED FLARE

Annual = 0.87 lbs/kgal * 19,424 kgal/yr * (1-98/100)/ 2,000 lbs/ton 0.17 tpy VOC

Combustion Emissions²

Emission Factor	<u>GWP</u>	lb/MMBtu	<u>μg/l</u>	
SOx		0.00059		
NOx		0.068		
CO		0.37		
THC		0.14		
PM		0.0024	40	lightly smoking
CO2 (nat. gas)	1	117		40 CFR 98, Tables A-1 & C-1
CH4 (nat. gas)	25	0.0022		40 CFR 98, Tables A-1 & C-2
N2O (nat. gas)	298	0.00022		40 CFR 98, Tables A-1 & C-2
CO2 (methanol)	1	139		EPA Emission Factors for GHG Inventories
CH4 (methanol)	25	0.0022		assume same as natural gas
N2O (methanol)	298	0.00022		assume same as natural gas

Emissions During Flare Operation, Combustion of Methanol Vapors

Avg = Heat Input (2.65 MMBtu/hr) * Emission Factor (Ibs/MMBtu)

SOx = 2.65 *MMBtu/hr* * 0.00059 *lb/MMBtu* 0.00156 *lb/hr* SOx

- NOx = 2.65 *MMBtu/hr* * 0.068 *lb/MMBtu* 0.180 lb/hr NOx
- CO = 2.65 *MMBtu/hr* * 0.370 *lb/MMBtu* 0.98 lb/hr CO
- PM = 2.65 MMBtu/hr * 0.0024 lb/MMBtu 0.0065 lb/hr PM
- CO2 = 2.65 *MMBtu/hr* * 139 *lb/MMBtu* 367 lb/hr CO2
- CH4 = 2.65 MMBtu/hr * 0.0022 lb/MMBtu 0.0058 lb/hr CH4
- N2O = 2.65 MMBtu/hr * 0.00022 lb/MMBtu 0.00058 lb/hr CH4
- CO2e (total) = (367 lb CO2/hr x 1 lb CO2e/lb CO2) + (0.01 lb CH4/hr x 25 lb CO2e/lb CH4) + (0.001 lb N2O/hr x 298 lb CO2e/lb N2O) 368 lb CO2e/hr

Annual Emissions - Pilot and Flare Operation Combined

Annual =	[Pilot Input (0.061 MMBtu/hr) * EF (Ibs/MMBtu) + Flare Heat Input (23,214 MMBtu/yr) * Emission Factor (Ibs/MMBtu)] / 2,000 lbs/ton	
SO2 =	[[0.061 MMBtu/hr * 0.00059 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.00059 lb/MMBtu]} / 2,000 lbs/ton 0.00699 TPY SOx	
NOx =	[[0.061 MMBtu/hr * 0.068 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.068 lb/MMBtu]]/ 2,000 lbs/ton 0.808 TPY NOx	
C0 =	[[0.061 MMBtu/hr * 0.37 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.37 lb/MMBtu]} / 2,000 lbs/ton 4.39 TPY CO	
PM=	[[0.061 MMBtu/hr * 0.0024 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.0024 lb/MMBtu]} / 2,000 lbs/ton 0.0291 TPY PM	
CO2 =	[[0.061 MMBtu/hr * 117 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 139 lb/MMBtu]} / 2,000 lbs/ton 1,640 TPY CO2	

CH4 = {[0.061 MMBtu/hr * 0.0022 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.0022 lb/MMBtu]} / 2,000 lbs/ton 0.0262 TPY CH4

N2O = {[0.061 MMBtu/hr * 0.00022 lb/MMBtu * 8,760 hr/yr] + [23,214 MMBtu/yr * 0.00022 lb/MMBtu]} / 2,000 lbs/ton 0.00262 TPY N2O

CO2e (total) = (1,640 ton CO2/yr x 1 ton CO2e/ton CO2) + (0.0262 ton CH4/yr x 25 ton CO2e/ton CH4)

+ (0.00262 ton N2O/yr x 298 ton CO2e/ton N2O) 1,642 TPY CO2e

CO2e (non-biogenic) = CO2e (total)

1,642 TPY CO2e

Emissions Summary (Controlled)

Pollutant	Maximum (lb/hr)	Annual (tpy)
PM	0.0065	0.0291
SO2	0.00156	0.00699
NOx	0.180	0.808
СО	0.98	4.39
VOC	1.26	0.17
CO2e	368	1,642
methanol	1.26	0.17
HAP	1.26	0.17

REFERENCES/NOTES

1 Based on EPA AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids, January 1995.

2 Based on EPA AP-42, Section 13.5, Industrial Flares, January 1995. GHG emissions based on 40 CFR 98.

SOURCE DESCRIPTION

A flare is used for combusting gases from process startups and upsets. The flare will use natural gas for the pilot. Annual potential emissions assume full year-round operation of the pilot and a conservative estimate of releases from process startups and upsets.

During startups (Scenario 1), the HP Vent (see block diagram) gases are vented to the flare rather than to the SMR. The startup venting duration is expected to be approximately 3 hours. For the purposes of these calculations, a 4-hour duration is assumed.

Two upset scenarios are considered. Scenario 2 involves an upset condition that releases all syngas from the SMR to the flare for a period as long as 48 hours to maintain SMR temperature while downstream equipment is repaired. Scenario 3 involves an external fire that engulfs the reactor and distillation area causing contents of both systems to boil off.

OPERATING PARAMETERS

Operating Schedule (Pilot)		8,760 hrs/yr	
Natural Gas Heat Rate (Pilot)		0.0918 MMBtu/hr	90 scf/hr natural gas
Annual Natural Gas Heat Rate (Pilot)		804 MMBtu/yr	
Natural Gas HHV		1,020 Btu/scf	AP42, Table 1.4-2
	Scenario 1 (startup-syngas)	Scenario 2 (syngas from SMR)	Scenario 3 (methanol from reactors, etc.)
Emergency Release Rate	527.3 lb/hr	19,729 lb/hr	12,845 lb/hr
Release Heat Content	11,416 Btu/lb	11,416 Btu/lb	7,722 Btu/lb
SSM Release Rate	6.0 MMBtu/hr	225.2 MMBtu/hr	99.2 MMBtu/hr
Duration	4 hours	48 hours	0.75 hours
Frequency per year	4 per year	4 per year	0.033 per year (1 in 30 years)
Event Release Estimate	24 MMBtu/event	10,811 MMBtu/event	74.4 MMBtu/event
Annual Release Estimate	96 MMBtu/yr	43,243 MMBtu/yr	2.48 MMBtu/yr
Average Release Estimate	0.011 MMBtu/hr	4.94 MMBtu/hr	0.000283 MMBtu/hr

EMISSION CALCULATIONS

Combustion Emissions¹

Emission Factor		lb/MMBtu	<u>μg/l</u>	
SO2 (nat. gas)		0.00059		
NOx		0.068		
CO		0.37		
THC		0.14		
PM		0.0024	40	lightly smoking
	GWP			
CO2	1	117		40 CFR 98 Table C-1
CH4	25	0.0022		40 CFR 98 Table C-2
N2O	298	0.00022		40 CFR 98 Table C-2

Emissions During Worst-Case Release Flare Operation (worst-case flare plus pilot)

Avg = Maximum Heat Input (225.2 MMBtu/hr + 0.0918 MMBtu/hr) * Emission Factor (lbs/MMBtu)

SO2 =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.00059 lb/MMBtu 0.13 lb/hr SO2	
NOx =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.068 lb/MMBtu 15.3 lb/hr NOx	
C0 =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.37 lb/MMBtu 83.4 lb/hr CO	
PM =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.0024 lb/MMBtu 0.552 lb/hr PM	
THC =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.14 lb/MMBtu 31.5 lb/hr THC	
CO2 =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 117 lb/MMBtu 26,357 lb/hr CO2	
CH4 =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.0022 lb/MMBtu	

CH4 = (225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.0022 lb/MMBtu 0.497 lb/hr CH4

N20 =	(225.2 MMBtu/hr + 0.0918 MMBtu/hr) * 0.00022 lb/MMBtu 0.0497 lb/hr CH4
CO2e (total) =	(26,357 lb CO2/hr * 1 lb CO2e/lb CO2) + (0.50 lb CH4/hr * 25 lb CO2e/lb CH4)
	+ (0.050 lb N2O/hr * 298 lb CO2e/lb N2O) 26,384 lb CO2e/hr

Annual Maximum Potential Emissions Estimates (all events plus pilot)

Annual Emissions = Annual Heat Input (96.3 MMBtu/yr + 43,243 MMBtu/yr + 2.5 MMBtu/yr + 804 MMBtu/yr) * Emission Factor (lbs/MMBtu)

SO2 = (44,146 MMBtu/yr) * (0.00059 lb/MMBtu) / (2,000lb/ton) 0.0130 TPY SO2

- NOx = (44,146 MMBtu/yr) * (0.068 lb/MMBtu) / (2,000lb/ton) 1.50 TPY NO2
- CO = (44,146 MMBtu/yr) * (0.37 lb/MMBtu) / (2,000lb/ton) 8.17 TPY CO
- PM = (44,146 MMBtu/yr) * (0.0024 lb/MMBtu) / (2,000lb/ton) 0.054 TPY PM
- THC = (44,146 MMBtu/yr) * (0.14 lb/MMBtu) / (2,000lb/ton) 3.09 TPY THC
- CO2 = (44,146 MMBtu/yr) * (117 lb/MMBtu) / (2,000lb/ton) 2,582 TPY CO2
- CH4 = (44,146 MMBtu/yr) * (0.0022 lb/MMBtu) / (2,000lb/ton) 0.049 TPY CH4
- N2O = (44,146 MMBtu/yr) * (0.00022 lb/MMBtu) / (2,000lb/ton) 0.0049 TPY N2O
- CO2e (total) = (2,582 tpy CO2 * 1 lb CO2e/lb CO2) + (0.049 tpy CH4 * 25 lb CO2e/lb CH4) + (0.0049 tpy N2O * 298 lb CO2e/lb N2O) 2,585 TPY CO2e

Emissions Summary

Pollutant	Maximum	Annual
	(Ibs./hr)	(tpy)
PM	0.55	0.054
SO2	0.13	0.0130
NOx	15.32	1.50
CO	83.37	8.17
VOC	31.54	3.09
CO2e	26,384	2,585

REFERENCES/NOTES

1 Based on EPA AP-42, Section 13.5, Industrial Flares, January 1995.

SOURCE DESCRIPTION

Cooling for equipment within the facility will be provided by an induced draft cooling tower.

OPERATING PARAMETERS

Operating Schedule	8,760	hrs/yr
Cells	2	
Water Flow (total)	1,001,520	lb/hr cooling water
Water Density	8.346	lb/gal
Water Flow (total)	2,000	gallons/minute (GPM) cooling water
Drift Losses	0.005	%
TDS ¹	5,000	mg/L
Air Flow (total)	1,007,417	lb/hr air flow
Air Exit Temperature	94.4	°F
Air Density	0.07163	lb/ft3
Air Flow (total)	234,400	acfm
Air Flow (each cell)	117,200	acfm
Exit Diameter (each cell)	7.0	ft
Exit Velocity (each cell)	50.8	ft/s

EMISSION CALCULATIONS¹

PM Emissions

Drift Loss (gal/hr) = 2,000 GPM * 60 mins/hr * 0.005 %drift 6.00 gals/hr Drift Loss

Average Emissions

Average = 6.0 gal/hr loss * 5,000 mg/L * 3.7854 L/gal / 453,600 mg/lb 0.25 lb PM10/hr

Annual Emissions

Total = 0.25 lbs/hr * 8,760 hrs/yr / 2,000 lbs/ton 1.10 TPY PM10

VOC Emissions

SCAQMD Guidance (2006)

Average Emissions

Average = 2,000 GPM * 0.00144 MGD/GPM * 0.7 lb VOC/MGD / 24 hr/day 0.08 lb VOC/hr

Annual Emissions

Total = 0.08 lbs/hr * 8,760 hrs/yr / 2,000 lbs/ton 0.37 TPY VOC

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA COOLING TOWER

Emissions Summary

Pollutant	Average (Ibs/hr)	Annual (TPY)	
PM10	0.250	1.10	
PM2.5	0.250	1.10	assume equal to PM10
VOC	0.08	0.37	
HAP ²	0.08	0.37	

REFERENCES/NOTES

- 1 Based on facility supplied information.
- 2 HAP emissions are conservatively assumed to equal VOC (100% methanol).

SOURCE DESCRIPTION

Equipment components in VOC service are subject to 40 CFR Part 60 Subpart VVa; therefore components are monitored monthly. Control effectiveness is allowed for components subject to a monthly LDAR program.

OPERATING PARAMETERS

Operating Schedule 8,760 hrs/yr

EMISSION CALCULATIONS¹

Average (Lbs/hr) = Component Count x Emission Factor (lb/hr/source) * (1 - Control Effectiveness/100)

Annual (TPY) = Average (lbs VOC/hr) * 8,760 hrs/yr / 2,000 lbs/ton

Component Type	Service '	Weighted Average	Subpart VVa Control	VOC Emissions				
Component Type	Service	Count	(kg/hr/source) ¹	VOC Content ²	Effectiveness ³	Avg (lbs/hr)	Max (lbs/hr)	Tons/Yr
Valves	Gas/Vapor	222	0.00597	24%	87%	0.09	0.11	0.40
Valves	Light Liquid	70	0.00403	75%	84%	0.07	0.09	0.33
Valves	Heavy Liquid		0.00023		0%	0.00	0.00	0.00
Sealless Valves	Light Liquid		4.90E-07		84%	0.00	0.00	0.00
Sealless Valves	Heavy Liquid		4.90E-07		0%	0.00	0.00	0.00
Flanges/Connectors	Gas/Vapor	802	0.00183	9%	0%	0.30	0.36	1.32
Flanges/Connectors	Light Liquid	107	0.000235	77%	0%	0.04	0.05	0.19
Flanges/Connectors	Heavy Liquid		0.0000328		0%	0.00	0.00	0.00
Sampling Connections	Gas/Vapor	6	0.015	35%	0%	0.07	0.08	0.30
Sampling Connections	Light Liquid		0.015		0%	0.00	0.00	0.00
Sampling Connections	Heavy Liquid		0.015		0%	0.00	0.00	0.00
Pump Seals	Light Liquid		0.0199		69%	0.00	0.00	0.00
Pump Seals	Heavy Liquid		0.00862		0%	0.00	0.00	0.00
Pump Seals, Dual Mech.	Light Liquid	5	7.50E-06	100%	69%	0.00	0.00	0.00
Pump Seals, Dual Mech.	Heavy Liquid		7.50E-06		0%	0.00	0.00	0.00
Agitator Seals	Light Liquid		0.0199		69%	0.00	0.00	0.00
Agitator Seals	Heavy Liquid		0.00862		0%	0.00	0.00	0.00
Compressor Seals, Single	Gas/Vapor	1	0.228	2%	87%	0.00	0.00	0.01
Compressor Seals, Double	Gas/Vapor		7.50E-06		0%	0.00	0.00	0.00
Pressure Relief Valves	Gas/Vapor		0.104		0%	0.00	0.00	0.00
Open-Ended Lines	All	20	0.0017	2%	0%	0.00	0.00	0.01
					TOTAL	0.58	0.70	2.55

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA FUGITIVE VOC EQUIPMENT LEAKS

Component Type	Service	Component	Emission Factors	Weighted Average	Subpart VVa Control	HAP Emissions		
Component Type	Service	Count	(kg/hr/source) ¹	HAP Content ²	Effectiveness ³	Avg (lbs/hr)	Max (lbs/hr)	Tons/Yr
Valves	Gas/Vapor	222	0.00597	24%	87%	0.09	0.11	0.40
Valves	Light Liquid	70	0.00403	75%	84%	0.07	0.09	0.33
Valves	Heavy Liquid		0.00023		0%	0.00	0.00	0.00
Sealless Valves	Light Liquid		4.90E-07		84%	0.00	0.00	0.00
Sealless Valves	Heavy Liquid		4.90E-07		0%	0.00	0.00	0.00
Flanges/Connectors	Gas/Vapor	802	0.00183	9%	0%	0.28	0.33	1.21
Flanges/Connectors	Light Liquid	107	0.000235	77%	0%	0.04	0.05	0.19
Flanges/Connectors	Heavy Liquid		0.0000328		0%	0.00	0.00	0.00
Sampling Connections	Gas/Vapor	6	0.015	34%	0%	0.07	0.08	0.30
Sampling Connections	Light Liquid		0.015		0%	0.00	0.00	0.00
Sampling Connections	Heavy Liquid		0.015		0%	0.00	0.00	0.00
Pump Seals	Light Liquid		0.0199		69%	0.00	0.00	0.00
Pump Seals	Heavy Liquid		0.00862		0%	0.00	0.00	0.00
Pump Seals, Dual Mech.	Light Liquid	5	7.50E-06	100%	69%	0.00	0.00	0.00
Pump Seals, Dual Mech.	Heavy Liquid		7.50E-06		0%	0.00	0.00	0.00
Agitator Seals	Light Liquid		0.0199		69%	0.00	0.00	0.00
Agitator Seals	Heavy Liquid		0.00862		0%	0.00	0.00	0.00
Compressor Seals, Single	Gas/Vapor	1	0.228	1%	87%	0.00	0.00	0.00
Compressor Seals, Double	Gas/Vapor		7.50E-06		0%	0.00	0.00	0.00
Pressure Relief Valves	Gas/Vapor		0.104		0%	0.00	0.00	0.00
Open-Ended Lines	All	20	0.0017	1%	0%	0.00	0.00	0.00
					TOTAL	0.55	0.66	2.42

MARCELLUS METHANOL MARSHALL COUNTY, WEST VIRGINIA FUGITIVE VOC EQUIPMENT LEAKS

Emissions Summary

Pollutant	Average (Ibs/hr)	Maximum (Ibs/hr)	Annual (TPY)
VOC	0.58	0.70	2.55
HAP	0.55	0.66	2.42
methanol	0.55	0.66	2.42

REFERENCES/NOTES:

1 Table 2-1, SOCMI Average Emission Factors; or Table 2-11, Default-Zero Values: SOCMI Process Units; or Table 5-1, Summary of Equipment Modifications; Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November 1995. Also, TCEQ guidelines provide refinement of the factor for flanges in liquid service (TCEQ Addendum to RG-360A, October 2008, Table 3).

2 Based on facility heat and mass balance, VOC content of components assumed to be as follows: 2% for SMR components, 30% for reactor components, 100% for distillation components. HAP (methanol) content of components assumed to be as follows: 1% for SMR components, 30% for reactor components, 100% for distillation components.

3 Table 5-2, Control Effectiveness for an LDAR Program at a SOCMI Process Unit, Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November 1995.

Attachment P

Public Notice

Harrington, Jeff

From:	Emily Tenenbaum <etenenbaum@primusge.com></etenenbaum@primusge.com>
Sent:	Wednesday, October 05, 2016 12:06 PM
То:	mdsvecho@gmail.com
Cc:	John Doyle; Harrington, Jeff
Subject:	Publication of Class I Legal Ad for Primus Green Energy Inc.
Attachments:	Primus Legal Notice for Moundsville Echo Oct_5_2016.doc

Dear Moundsville Daily Echo Representative,

Please publish the attached information as a Class I legal advertisement (one time only) in the Monday, October 10, 2016 issue of the *Moundsville Daily Echo*. Please let me know that this has been received and will be published as requested.

Please send the invoice for payment and affidavit of publication to: Mr. John Doyle Primus Green Energy, Inc. 219 Homestead Rd. Hillsborough, NJ 08844

Thank you,

Emily Tenenbaum, PhD Business Development Manager Primus Green Energy, Inc. 219 Homestead Rd | Hillsborough, NJ 08844 office: 908-281-6000 ext 145 etenenbaum@primusge.com | www.primusge.com

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Primus Green Energy Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for a new methanol production facility located on 17595 Energy Road, near Proctor, in Marshall County, West Virginia. The latitude and longitude coordinates are: 39.7282° North, -80.8330° West

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

70.30 tons of nitrogen oxides per year;

33.16 tons of carbon monoxide per year;

12.20 tons of volatile organic compounds per year;

3.23 tons of particulate matter per year;

1.21 tons of sulfur dioxide per year;

6.96 tons of total hazardous air pollutants per year;

130,854 tons of carbon dioxide equivalents per year.

Startup of operation is planned to begin on or about the 15th day of February, 2018. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 10th day of October, 2016.

By: Primus Green Energy, Inc. Mr. John Doyle Chief Project Officer 219 Homestead Rd. Hillsborough, NJ 08844