

October 21, 2016

West Virginia – Dept. of Environmental Protection Division of Air Quality – Beverly McKeone 601 57th Street, SE Charleston, WV 25304

Reference: General Permit Registration Modification Goff West Compressor Station G35-A107A Plant ID # 033-00187 Clarksburg, Harrison County, West Virginia

Dear Beverly McKeone – NSR Manager,

MK Midstream Holdings, LLC is submitting a General Permit G-35C Registration Modification package for their Goff West Compressor Station facility, Plant ID # 033-00187, located in Clarksburg, Harrison County, West Virginia.

This facility is operating under a current G35-A107B registration issued November 17, 2015 issued to MK Midstream Holdings, LLC which includes equipment at three locations; Goff Compressor Station, Goff M&R and Cather Compression Station. The equipment and its location are noted below:

Engines:

- CE-1R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-2R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-3R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-4R Caterpillar G3516B LE Compressor Engine Goff Compressor Station
- CE-5R Caterpillar G3608TALE Compressor Engine Cather Compressor Station
- CE-6R Caterpillar G3606TALE Compressor Engine Cather Compressor Station

Dehydration Units

- RSV-1 Exterran Dehydration Unit 2012 31 mmscf/day-Goff M&R
- RBV-1 Exterran Reboiler 2012 1.0 mm BTU/Hr Goff M&R
- RSV-2 Exterran Dehydration Unit 2013 45 mmscf/day-Goff M&R
- RBV-1 Exterran Reboiler 2013 1.0 mm BTU/Hr Goff M&R

Tanks

- TK-1 Used Oil. Water, Condensate Storage Tank 2011 100 bbl Goff Compressor Station
- TK-2 TEG & Oil Catch Storage Tank 2011 210 gallons Goff M&R

MK Midstream is requesting to modify the registration to:

• Increase Dehydration Units RSV-1 and RSV-2's maximum flow rate from 31 mmscf/day and 45 mmscf/day, respectively to 67 mmscf/day, for both units each.

- Add three tanks
 - TK-3 100bbl tank located at Goff M&R to collect produced water from dehydration units TEG-1 and TEG-2
 - TK-4 and TK-5 two 50 bbl tanks located at Cather Compression Station used to collect produced water from Compressors CE-5 and CE-6

The permit modification application includes information for the dehydration units increased flow and Tanks TK-3, TK-4 and TK-5, as well as, tank load out information. The modification emissions are calculated to be:

- TK-3 11.74 #VOC/yr
- TK-4 10.11 #VOC/yr
- TK-5 10.11 #VOC/yr
- Tank load-out 76 #VOC/yr
- Dehydrator Units 7TPY VOC

Therefore the modification will potentially increase the facility's emission by 14 TPY VOC and 2 TPY HAP for a total facility emission rate of 35 TPY VOC and 10 TPY HAPS (combined).

In addition, it is important to note that pneumatic controllers have a bleed rate of less than 6 CF/hr, Dehydrator annual potential Benzene emissions are less than 1 TPY and tank emissions are less than 6 TPY without controllers.

Please feel free to contact me at (518) 877-7101 x 104 if WVDEP-DAQ has any questions regarding the information in this General Permit Registration Modification.

Sincerely, HRP Associates, Inc.

Thom SS

Thomas S. Seguljic, PE Vice President Enclosures

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

ZIP Code: 26330

County: Harrison

G35-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS COMPRESSOR AND/OR DEHYDRATION FACILITIES

□CONSTRUCTION ↓MODIFICATION □RELOCATION □CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

DAQ Facility ID No. (For existing facilities)

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the WV Secretary of State's Office):	
MK Midstream Holdings, LLC	

Federal Employer ID No. (FEIN): 47-1919654

Applicant's Mailing Address:	65 Professional Place Suite 200

City:	Bridgeport	State:	WV

Facility Name: GOFF WEST STATION

Operating Site Physical Address: Route 50E Davisson Run Road, Clarksburg, Harrison County, WV If none available, list road, city or town and zip of facility.

City:	Clarksburg	Zip Code: 20302
Latitude	& Longitude Coordinates (NAD83,	, Decimal Degrees to 5 digits):
Latitude	39.275550	

Longitude: -80.403099

1

NAICS Code: 211111

CERTIFICATION OF INFORMATION

033-00187

This G35-C General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or

unsigned G35-C Registration Application will be returned to the applicant. Furthermore, if the G35-C forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.

I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G35-C General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Offi	cial Signature:	Zh_		
Name and Title:		Phone: 724-940-1118	Fax:	
Email:	slucas@mkeystone.com	Date: October 21, 2016		
If applicable: Authorized Repr	esentative Signature:			
Name and Title:		Phone:	Fax:	
Email:		Date:		
If applicable:				
Environmental C				
Name and Title:	Thomas S. Seguljic, PE	Phone: 518-877-7101	Fax:	518-877-8561
Email:	tom.seguljic@hrpassociates.com	Date: October 21, 2016		

OPERATING SITI	E INFORMATION			
Briefly describe the proposed new operation and/or any change	e(s) to the facility:			
Modify Permit to increaseTEG-1 and TEG-2 flowrate to 67 mmscf/day and add Produced Water Tanks TK-3, TK-4 and TK-5. Directions to the facility: From I-79 South; (1.) At exit 119, take ramp right for US-50 West toward Clarksburg, Travel 7.0 miles (2.) Turn left onto WV-98/Old US 50 / Sun Valley Rd. travel 0.4 miles (3.)turn left to stay on WV-98 and travel 0.3 miles (4.) arrive at the GOFF Compressor Station on the right				
ATTACHMENTS AND SU				
I have enclosed the following required document Check payable to WVDEP – Division of Air Quality with the				
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (i I wish to pay by credit card. Contact for payment (incl. na 	ncl. name and email address):			
 ☑\$500 (Construction, Modification, and Relocation) □\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OG ☑\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H 				
 ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so 	IJJ.			
🗷 Responsible Official or Authorized Representative Signatu	re (if applicable)			
Single Source Determination Form (must be completed in	its entirety) – Attachment A			
□ Siting Criteria Waiver (if applicable) – Attachment B	🕱 Current Business Certificate – Attachment C			
Process Flow Diagram – Attachment D	Process Description – Attachment E			
🗵 Plot Plan – Attachment F	🛛 Area Map – Attachment G			
G35-C Section Applicability Form – Attachment H	□ Emission Units/ERD Table – Attachment I			
🕱 Fugitive Emissions Summary Sheet – Attachment J				
☑ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment K	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
□ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Attachment L	Heater Treaters, In-Line Heaters if applicable) –			
□ Internal Combustion Engine Data Sheet(s) (include manufa Attachment M	cturer performance data sheet(s) if applicable) -			
X Tanker Truck Loading Data Sheet (if applicable) – Attachn	nent N			
I Glycol Dehydration Unit Data Sheet(s) (include wet gas an information on reboiler if applicable) – Attachment O	alysis, GRI- GLYCalc TM input and output reports and			
🕅 Pneumatic Controllers Data Sheet – Attachment P				
□ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment Q				
Emission Calculations (please be specific and include all calculations)	alculation methodologies used) - Attachment R			
\blacksquare Facility-wide Emission Summary Sheet(s) – Attachment S				
🗷 Class I Legal Advertisement – Attachment T				
\blacksquare One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments			

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No \square

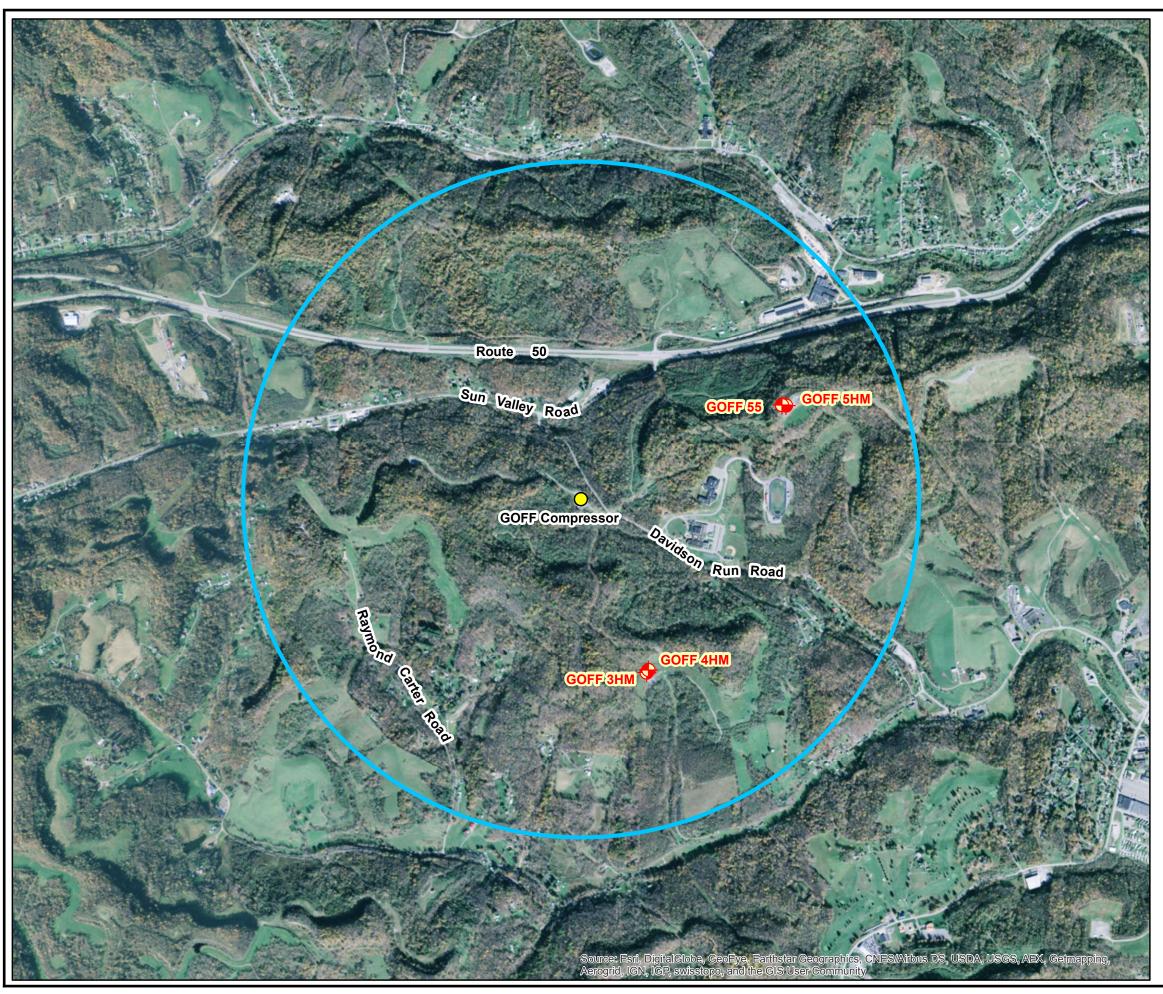
If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

As noted on the attached figure, 4 wellpads owned by Mountaineer Keystone are located within one (1) mile of the Goff West Station:

- Goff 55 located 2/3 mile to the northeast of Goff Compressor Station;
- Goff 5 HM located 2/3 mile to the northeast of Goff Compressor Station;
- Goff 3HM located 1/2 mile to the southeast of Goff Compressor Station; and
- Goff 4 HM located 1/2 mile to the southeast of Goff Compressor Station.
- To determine if aggregation of facilities is appropriate, the following three-prong test must be completed:
 - 1. The sources belong to a single major industrial grouping (same two-digit major SIC code);

The Compressor Stations and wellpads are both listed as SIC Code 1311 which includes:


Establishments primarily engaged in operating oil and gas field properties. Such activities may include exploration for crude petroleum and natural gas; drilling, competing, and equipping wells; operation of separators, emulsion breakers, desilting equipment, and field gathering lines for crude petroleum; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of oil through the mining and extraction of oil from oil shale and oil sands and the production of gas and hydrocarbon liquids through gasification, liquid faction, and pryolysis at the mine site.

2. The sources are under common control of the same person (or persons under common control);

The sources are under common control of the same person (or persons under common control) since Mountaineer Keystone is the majority owner of the Goff West Station and Mountaineer Keystone employees work and manage both the well pads and Goff Compressor station.

The sources are located on one or more "contiguous or adjacent" properties
 The EPA has established that any operations within 1/4 mile are considered contiguous or adjacent. The noted wellpads
 are located greater than 1/4 mile from the Goff West Station.

In summary, since the facilities are greater than 1/4 mile apart, the Single source determination does not apply.

Legend Well 1 Mile Radius	ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM 0 750 1,500					
	Revisions	No. Date				
	Designed By:	MEW	Drawn By:	DML	Reviewed By:	- N N N
	Issue Date:	10/20/2016	Project No:	MOU7000.AC	Sheet Size:	11X11
	Radius Map MK Midstream Holdings, LLC Goff West CS Harrison County, West Virginia					
		FI	GUF	re n 1	IO.	

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

mast se compreted in its entirety.		
Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are supp indicate the SIC code, permit number (if applicable), and the distance between facilities in question of	ort facilitie	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🖄	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🛛	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🛛	No 🗆
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🛛	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🛛	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🛛	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🖄	No 🗆
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🖄	No 🗆
Are there any financial arrangements between the two (2) entities?	Yes 🛛	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🛛
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes X	No 🗆
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes 🖄	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🛛	No 🗆
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🕱	No 🗆
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🖄

ATTACHMENT B - SITING CRITERIA WAIVER

If applicable, please complete this form and it must be notarized.

G35-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I _____ Print Name hereby acknowledge and agree that ______MK Midstream Holdings, LLC_______ will General Permit Applicant's Name construct an emission unit(s) at a natural gas compressor and/or dehydration facility that will be located within 300' of my dwelling and/or business. . I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location. Signed: Signature Date Signature Date Taken, subscribed and sworn before me this _____ day of _, 20____. My commission expires: SEAL____ Notary Public

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: MK MIDSTREAM HOLDINGS, LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

BUSINESS REGISTRATION ACCOUNT NUMBER: 2306-9776

This certificate is issued on: 02/19/2015

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

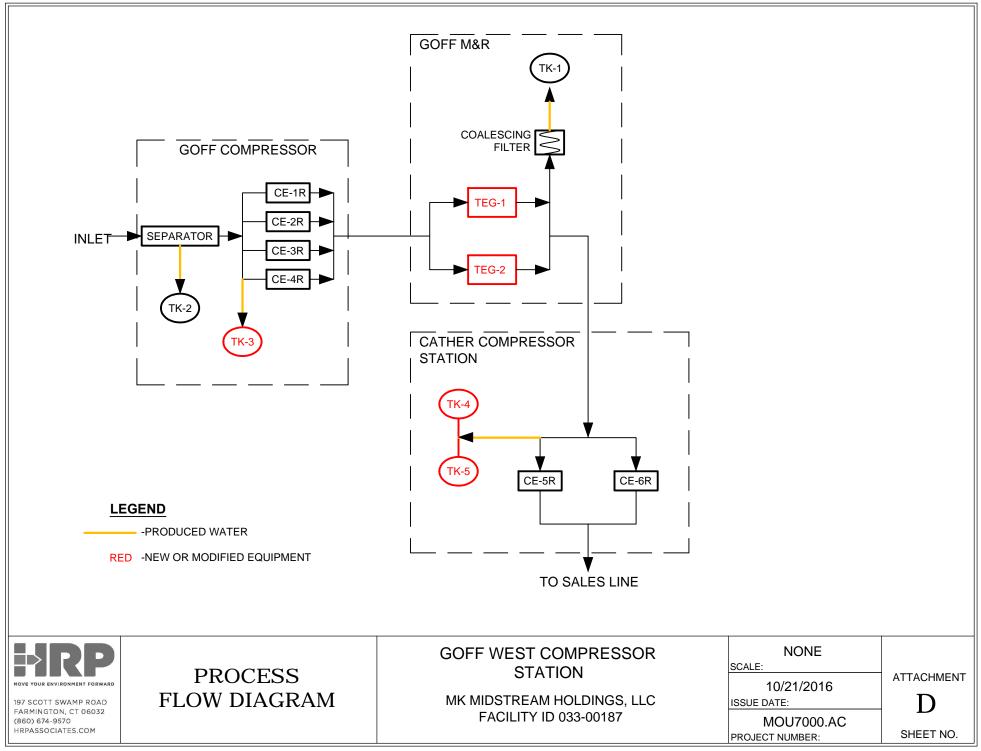
The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0264094016


ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

DRAWING NAME: S:\Data\M\MOUKE - MOUNTAINEER KEYSTONE\603I WALLACE RD EXT, WEXFORD, PA\MOU7000AC\Goff Compressor\ATTACHMENT D - PROCESS FLOW DIAGRAM.dwg LAYOUT: 8.5 x 11 L - SSM PLOT DATE: Oct 21, 2016 - 1:18pm OPERATOR: BOB

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

PROCESS DESCRIPTION (ATTACHMENT B&C)

Pipeline quality natural gas (methane) is supplied to Four (4) Caterpillar G3516ULB Internal combustion engine (1380 BHP) @ 1400 RPM/each) all with Model DC-65 Oxidation Catalytic Converters, One (1) Caterpillar G3608TALE (2370 BHP@1000 RPM) with EMIT oxidation catalyst, and One (1) Caterpillar G3606TALE (1775 BHP @1000 RPM), equipped with a DCL model DC-64 oxidation catalyst, all for emission reductions. The engines drive compressors to move the natural gas through a pipeline into Two(2) 45.0 MMCFD TEG (Tri-Ethylene Glycol) Dehydrator for drying the gas to below 7.0lbs/MMSCFD of Water Content and eventually sell the dried clean natural gas into a sales line that has a higher pressure (psig) than the wells can produce on their own at.

The engine burns the dried hot natural gas from the discharge of the dehydrator and products of combustion are exhausted through an exhaust line and into a Catalytic Converter and then to a Hospital Grade Muffler/Silencer through a tailpipe and into the atmosphere.

The Tri-Ethylene Glycol (TEG) Dehydrators uses a type of anti-freeze to remove water that is entrained in the gas stream. The re-boiler heats the glycol to a certain temperature and a pump pushes the glycol up through the tower that also has the natural gas flowing though it and absorption tray vessel (Tower) stripes out the water and it is dripped out of the gas stream and piped to a waste tank. The re-boiler has a stack on it and the only real pollutant that is measurable is VOC's (Volatile Organic Chemicals) or Non-Methane Hydrocarbons off of what is called the still column. NOx and CO is the product of combustion of natural gas through the burner and these are vented to the atmosphere through the fire-tube.

Most of the lube oils from the compressor are entrained in the gas stream, but what is caught in a coalescent filter is piped to a waste tank and hauled away by a company like Safety Clean, who disposes of it properly. The engine oil and filters that must be used to keep engine running and in good condition is also piped to either the same tank that has a containment dike around it for accidental spills, is also drained periodically by a safety company that disposes it properly.

There are fugitive emissions associated with piping connection, valves and controllers. These emissions occur due to potential seepage from connections, flanges and open ended lines.

This permit modification includes:

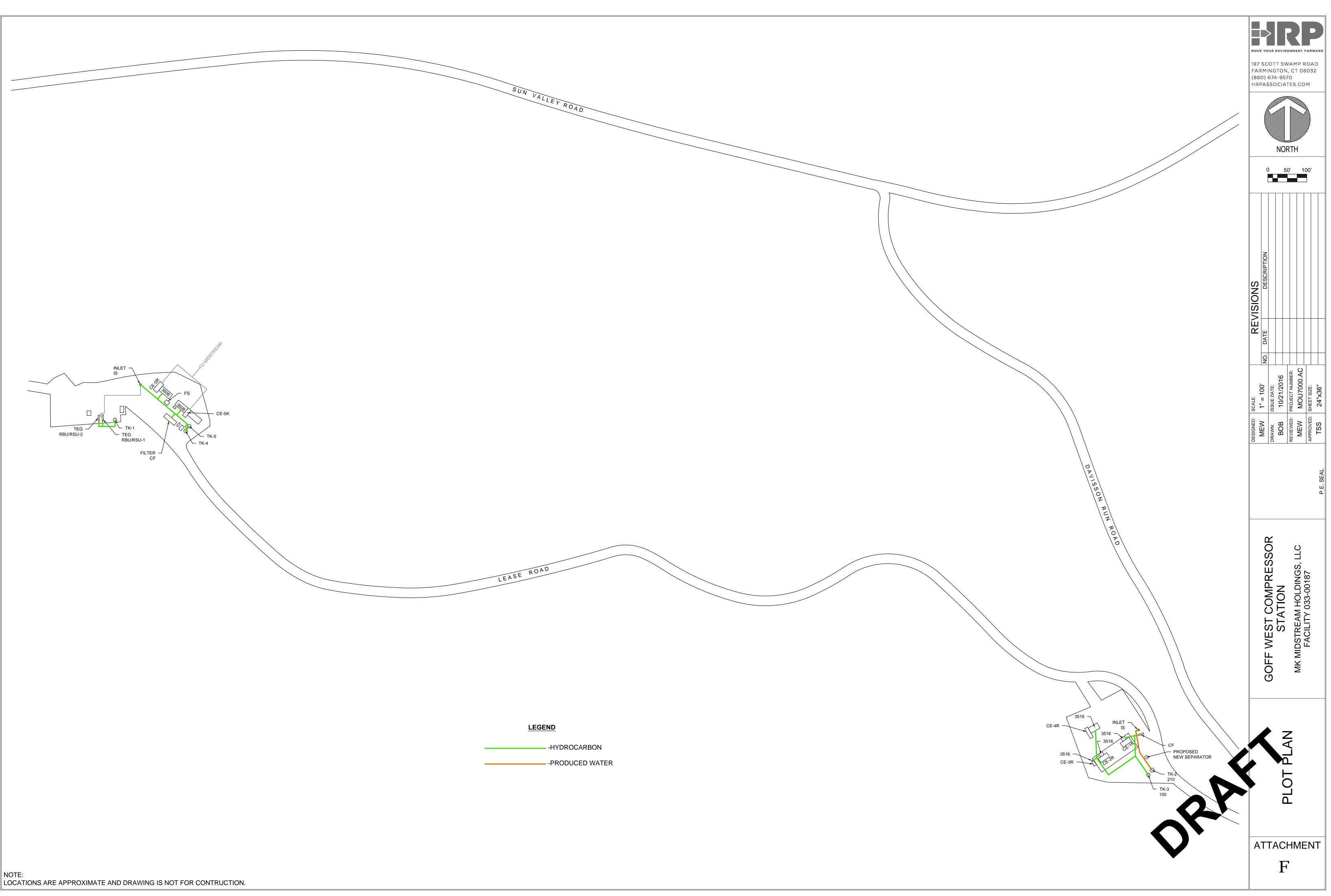
- Increasing Glycol Dehydration units RSV-1 and RSV-2 from 31 mmscf/day and 45 mmscf/day to 67mmscf/day for both units

- Addition of following Tanks:

1. TK 3-100 bbl Tank used to collect produced water from Compressor CE-1R, CE-2R, CE-3R and CE-4R located on Goff Compressor Station

2. TK-4 and TK-5 2 50 bbl tanks located on Cather Compressor Station to collect collect produced water from compressor CCE-5R and CE-6R

ATTACHMENT F – PLOT PLAN

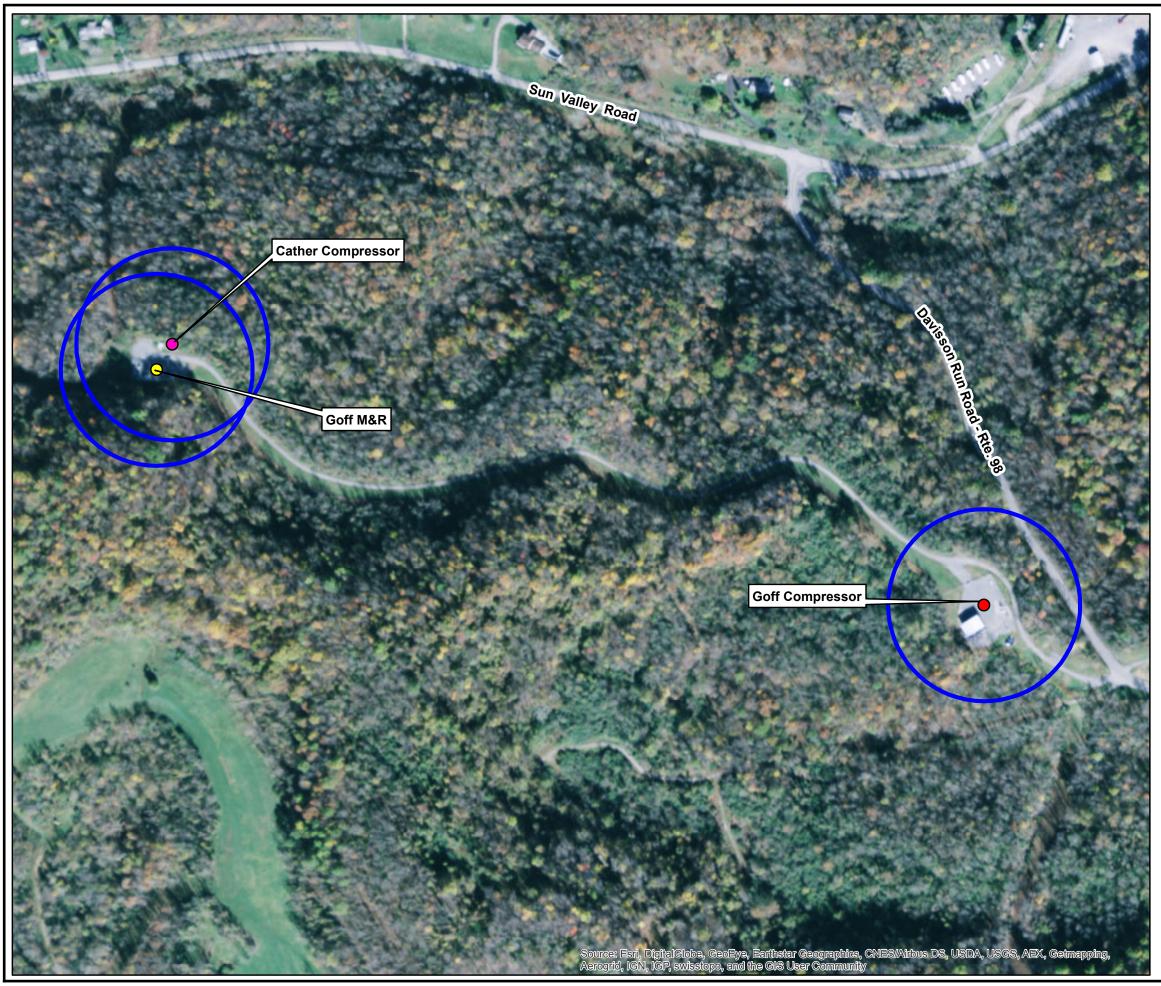

Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.



ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Legend

- Goff Compressor
- O Goff M-R
- Cather Compressor

300 foot Buffer

197 SCOTT SWAMP ROAD FARMINGTON, CT 06032 (860) 674-9570 HRPASSOCIATES.COM

North							
0 150 300							
Revisions	No. Date						
Designed By: Revisions	MEW	Drawn By:	BOB	Reviewed By:	S S S		
Issue Date:	10/21/2016	Project No:	MOU7000.AC	Sheet Size:	/ I.XI.I.		
Area Map GOFF West Compressor Station MK Midstream Holdings, LLC Facility ID 033-00187							
ATTACHMENT G							

ATTACHMENT H – G35-C SECTION APPLICABILITY FORM

General Permit G35-C Registration Section Applicability Form

General Permit G35-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-C APPLICABLE SECTIONS					
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
□Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators				
Section 13.0	Tanker Truck Loading ³				
Section 14.0	Glycol Dehydration Units ⁴				

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
¹ For Emission Units (or Sources) use the following numbering system: 18, 28, 38, or other appropriate designation								

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Sou				include loading operation for each associated sour				ions, etc.	
Dou	rce/Equipme	nt:							
	k Detection hod Used		dible, visual, and ory (AVO) inspections	Intrared (FLIR) cameras K ()ther (please describe)				🗵 None required	
Component	Closed		Source o	Stream type			Estimated Emissions (tpy)		
Туре	Vent System	Count		ther (specify)) W-1B	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)	
Pumps	□ Yes 🗴 No	2	13.3 scf/hr/component		⊠ Gas □ Liquid □ Both	1.00	0	107.13	
Valves	□ Yes ⊠ No	63	0.027 scf/hr/component		☑ Gas □ Liquid □ Both	0.0641	0	6.85	
Safety Relief Valves	□ Yes ⊠ No	3	0.040 scf/hr/component		I Gas □ Liquid □ Both	0.0045	0	0.4833	
Open Ended Lines	□ Yes ⊠ No	4	0.061 scf/hr/component		☐ Gas ☐ Liquid ☐ Both	0.0092	0	0.9827	
Sampling Connections	□ Yes 🗴 No	2	0.003 scf/hr/component		I Gas □ Liquid □ Both	0.0002	0	0.0242	
Connections (Not sampling)	□ Yes ⊠ No	253	0.003 scf/hr/component		☑ Gas □ Liquid □ Both	0.0229	0	2.45	
Compressors	□ Yes ⊠ No	6	7 scf/hr/component		I Gas ☐ Liquid ☐ Both	1.88	0	169.15	
Flanges	□ Yes ⊠ No	36	0.003 scf/hr/component		☐ Gas ☐ Liquid ☐ Both	0.0041	0	0.4350	
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both				

Please indicate if there are any closed vent bypasses (include component):

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

☑ Composition of the representative sample used for the simulation

- \bigtriangledown For each stream that contributes to flashing emissions:
 - ☑ Temperature and pressure (inlet and outlet from separator(s))
 - ☑ Simulation-predicted composition
 - Molecular weight
 - \mathbf{F} Flow rate
- ☑ Resulting flash emission factor or flashing emissions from simulation

☑ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name Cather Compressor Station	2. Tank Name
3. Emission Unit ID number TK-4 and TK-5	4. Emission Point ID number
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
	\blacksquare New construction \Box New stored material \Box Other
Was the tank manufactured after August 23, 2011?	□ Relocation
⊠ Yes □ No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.
🗆 Yes 🖄 No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes 🖄 No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the inte 50 bbl	rnal cross-sectional area multiplied by internal height.
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 6.8
11A. Maximum Vapor Space Height (ft.) 1.2	11B. Average Vapor Space Height (ft.)
12. Nominal Capacity (specify barrels or gallons). This is a	so known as "working volume". 50bbl
13A. Maximum annual throughput (gal/yr) 8,400	13B. Maximum daily throughput (gal/day) 23
14. Number of tank turnovers per year 1	15. Maximum tank fill rate (gal/min) 0.008
16. Tank fill method 🛛 Submerged 🗌 Splash	Bottom Loading
17. Is the tank system a variable vapor space system? \Box Y	es 🛛 No
If yes, (A) What is the volume expansion capacity of the syste	em (gal)?
(B) What are the number of transfers into the system p	er year?
18. Type of tank (check all that apply):	
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat r	oof \Box cone roof \Box dome roof \Box other (describe)
\Box External Floating Roof \Box pontoon roof \Box double do	ble deck roof
□ Domed External (or Covered) Floating Roof	
□ Internal Floating Roof □ vertical column support	t \Box self-supporting
□ Variable Vapor Space □ lifter roof □ diaphrag	;m
□ Pressurized □ spherical □ cylindric	cal
\Box Other (describe)	

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:								
Does Not Apply									
□ Inert Gas Blanket of		□ Carbo	n Adsorpt	tion ¹					
□ Vent to Vapor Combus	tion Dev	ice ¹ (vapo	r combust	ors, flares,	thermal of	oxidizers,	enclosed c	ombustors	3)
□ Conservation Vent (psi	g)			□ Conde	nser ¹				
Vacuum Setting									
Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes [□ No							
¹ Complete appropriate Air	Pollutio	n Control	Device Sh	neet					
20. Expected Emission Ra	te (subm	it Test Da	ta or Calcu	ulations he	re or else	where in t	he applicat	tion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workir	ng Loss	Total		Estimation Method ¹
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workir	ng Loss		ons Loss	Estimation Method ¹
Material Name	Flashi lb/hr	ng Loss tpy	Breathi lb/hr	ng Loss tpy	Workir lb/hr	ng Loss tpy		ns Loss tpy	Estimation Method ¹
Material Name Produced Liquid							Emissio		Estimation Method ¹ AP-42 Section 7.1
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION			-						
21. Tank Shell Construction:										
\boxtimes Riveted \square Gunite lined \square Epoxy	y-coated rivets \Box O	ther (describe)								
21A. Shell Color: Tan	21B. Roof Color:	Tan	21C. Year I	Last Painted: 2015						
22. Shell Condition (if metal and unlined):		-								
🖄 No Rust 🗆 Light Rust 🗆 Dense	Rust 🗆 Not applic	able								
22A. Is the tank heated? \Box Yes $\overline{\mathbf{X}}$ No	22B. If yes, operating t		22C. If yes,	how is heat provided to tank?						
23. Operating Pressure Range (psig):Must be listed for tanks using VRUs with	th closed vent system									
24. Is the tank a Vertical Fixed Roof Tank ?		• roof provide radius (ft):	24B If yes	for cone roof, provide slop (ft/ft):						
\square Yes \square No			212. 11 903,	for cone root, provide stop (ivit).						
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	X								
25A. Year Internal Floaters Installed:										
25R. Frear Internal Floaters Instance. 25B. Primary Seal Type (<i>check one</i>): □ Met	allia (machanical) sha	a aaal 🗆 Liquid m	ounted resilier	nt sool						
		-		it seal						
	or mounted resilient s		escribe):							
25C. Is the Floating Roof equipped with a second		□ No								
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e \Box Rim \Box O	ther (describe)):						
25E. Is the floating roof equipped with a weather	er shield? 🛛 Yes	🗆 No								
25F. Describe deck fittings:										
26. Complete the following section for Interna	26. Complete the following section for Internal Floating Roof Tanks 🕅 Does not apply									
26A. Deck Type: Bolted W	Velded	26B. For bolted deck	s, provide deck	construction:						
26C. Deck seam. Continuous sheet constructio	n:									
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	□ other (deso	cribe)						
	of deck (ft ²):	26F. For column sup		26G. For column supported						
		tanks, # of columns:		tanks, diameter of column:						
27. Closed Vent System with VRU? Yes	X No									
28. Closed Vent System with Enclosed Combus										
SITE INFORMATION										
29. Provide the city and state on which the data	in this section are based	Charlastan W/V								
30. Daily Avg. Ambient Temperature (°F): 54.		Charleston, WV 31. Annual Avg. Max	ximum Tempera	ature (°F): 65.5						
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	-							
34. Annual Avg. Solar Insulation Factor (BTU/	44 ft ² -dav): 1122	35. Avg. wind Speed (npn). 6.3 35. Atmospheric Pressure (psia): 14.617								
LIQUID INFORMATION	1123	FF		4.017						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Maxin	num (°F):						
liquid (°F): 11.5		52.2	63.7							
37. Avg. operating pressure range of tank	37A. Minimum (psig)		37B. Maxin	num (psig):						
^{(psig):} 0.7230	0.2777		1.00							
38A. Minimum liquid surface temperature (°F)		38B. Corresponding	vapor pressure ((psia): 0.2777						
	5.2. <u>2</u>	39B. Corresponding		<i>a</i> ,						
40A. Maximum liquid surface temperature (°F)	: 63.7	40B. Corresponding		· ·						
41. Provide the following for each liquid or gas				<u>-</u> · ·						
41A. Material name and composition:	Produce Liquid 100%		-							
41B. CAS number:	NA									
41C. Liquid density (lb/gal):	8.2									
41D. Liquid molecular weight (lb/lb-mole):	20.1									
41E. Vapor molecular weight (lb/lb-mole):	24.55									

41F. Maximum true vapor pressure (psia):	1.00	
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year. From: Jan. To: Dec.	12	
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following: EXIST Existing Equipment NEW Installation of New Equipment

- REM Equipment Removed
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

△ Composition of the representative sample used for the simulation

- ☑ For each stream that contributes to flashing emissions:
 - ☑ Temperature and pressure (inlet and outlet from separator(s))
 - ☑ Simulation-predicted composition
 - Molecular weight
 - \boxtimes Flow rate
- \bigtriangledown Resulting flash emission factor or flashing emissions from simulation

☑ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name
Goff West Compressor Station	
3. Emission Unit ID number	4. Emission Point ID number
ТК-3	
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
	\square New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011?	\Box Relocation
🛛 Yes 🗆 No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
□ Yes 🗶 No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes 🕅 No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the interna 100 bbl	l cross-sectional area multiplied by internal height.				
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 10				
10A. Maximum Liquid Height (ft.) 8.5	10B. Average Liquid Height (ft.) 8.5				
11A. Maximum Vapor Space Height (ft.) 1.5	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 100bbl				
13A. Maximum annual throughput (gal/yr) 21,000	13B. Maximum daily throughput (gal/day) 57.5				
14. Number of tank turnovers per year 7	15. Maximum tank fill rate (gal/min) 0.04				
16. Tank fill method 🖄 Submerged 🗌 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	X No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \square vertical \square horizontal \square flat root	\square cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double	deck roof				
□ Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
\Box Variable Vapor Space \Box lifter roof \Box diaphragm					
□ Pressurized □ spherical □ cylindrical					
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	bly:								
Does Not Apply				🗆 Ruptu	re Disc (p	sig)			
□ Inert Gas Blanket of _				□ Carbo	on Adsorpt	tion ¹			
□ Vent to Vapor Combu	stion Dev	ice1 (vapo	or combust	tors, flares	, thermal	oxidizers,	enclosed	combustor	rs)
□ Conservation Vent (ps	ig)			□ Conde	enser ¹				
Vacuum Setting		Pressure	e Setting						
Emergency Relief Val	ve (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes [□ No							
¹ Complete appropriate Ai	r Pollutio	n Control	Device Sl	neet					
20. Expected Emission R	ate (subm	it Test Da	ta or Calc	ulations h	ere or else	where in	he applica	ation).	
							Total		
Material Name	Flashi	ng Loss	Breath	ing Loss	Workin	ng Loss	Total		Estimation Method ¹
Material Name	Flashi	ng Loss	Breath	ing Loss	Workiı	ng Loss		ons Loss	Estimation Method ¹
Material Name	Flashi lb/hr	ng Loss tpy	Breath lb/hr	ing Loss tpy	Workin	ng Loss tpy		ons Loss tpy	Estimation Method ¹
Material Name Produced Liquid		-					Emissi		Estimation Method ¹ AP-4 Section 7.1
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissi lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissi lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissi lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissi lb/hr	tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissi lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION								
21. Tank Shell Construction:									
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets \Box O	ther (describe)							
21A. Shell Color: Tan	21B. Roof Color: Tar	1	21C. Year	Last Painted: 2015					
22. Shell Condition (if metal and unlined):	1								
🛛 No Rust 🛛 Light Rust 🗆 Dense	Rust 🛛 Not applic	able							
22A. Is the tank heated? \Box Yes \boxtimes No	22A. Is the tank heated? 🗆 Yes 🖄 No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?								
23. Operating Pressure Range (psig):	L								
_	Must be listed for tanks using VRUs with closed vent system.								
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If yes	, for cone roof, provide slop (ft/ft):					
□ Yes 🖾 No									
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	X							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	ounted resilie	nt seal					
□ Vap	or mounted resilient s	eal 🛛 Other (de	scribe):						
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes	□ No							
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗆 Rim 🗆 Ot	her (describe	2):					
25E. Is the floating roof equipped with a weath		□ No		-					
25F. Describe deck fittings:		<u> </u>							
251. Desense deer mangs.									
26. Complete the following section for Interna	l Floating Roof Tanks	🖄 Does not appl	у						
26A. Deck Type: Bolted W	/elded	26B. For bolted decks	, provide deck	construction:					
26C. Deck seam. Continuous sheet construction	n:								
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	☐ other (des	cribe)					
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported					
		tanks, # of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU? Yes									
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🖄 No								
SITE INFORMATION									
29. Provide the city and state on which the data			· T						
	54.75	31. Annual Avg. Max		ature (°F): 65.5					
32. Annual Avg. Minimum Temperature (°F):34. Annual Avg. Solar Insulation Factor (BTU/		33. Avg. Wind Speed35. Atmospheric Press	-	617					
LIQUID INFORMATION	n -uay). 1123	55. Aunospheric Fless	suie (psia). 14	.017					
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Maxii	mum (°F):					
liquid (°F): 11.5	52.2		SOD. Maan	63.7					
37. Avg. operating pressure range of tank	37A. Minimum (psig):		37B. Maxin	num (psig):					
(psig):									
0.7230	0.2777		1.0						
38A. Minimum liquid surface temperature (°F)	52.2	38B. Corresponding v		-					
39A. Avg. liquid surface temperature (°F):	56.3	39B. Corresponding v		-					
40A. Maximum liquid surface temperature (°F):63.740B. Corresponding vapor pressure (psia):1.00									
41. Provide the following for each liquid or gas			necessary.						
41A. Material name and composition:	Produce Liquid 100%	b line line line line line line line line							
41B. CAS number:	NA								
41C. Liquid density (lb/gal):41D. Liquid molecular weight (lb/lb-mole):	8.2								
41D. Elquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole):	20.1 24.55								
r									

41F. Maximum true vapor pressure (psia):	1.00	
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: Jan. To: Dec.	12	
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

- Enter storage tank Status using the following: EXIST Existing Equipment NEW Installation of New Equipment

 - REM Equipment Removed
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

		• 		1		1	
Emission Unit I	D#1						
Engine Manufacturer/Model							
Manufacturers F	Rated bhp/rpm						
Source Status ²							
Date Installed/ Modified/Remov	ved/Relocated ³						
Engine Manufac /Reconstruction							
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶							
APCD Type ⁷							
Fuel Type ⁸							
H_2S (gr/100 scf))						
Operating bhp/r	pm						
BSFC (BTU/bhg	p-hr)						
Hourly Fuel Thr	oughput	ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft³/hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🗆	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
	NO _x						
	CO						
	VOC						
	SO ₂						
	PM ₁₀						
	Formaldehyde						
	Total HAPs						
	GHG (CO ₂ e)						

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	E
MS	Modification of Existing Source	RS	F

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

2SLB Two Stroke Lean Bur	n	4SRB	F 0.			
4SLB Four Stroke Lean Bur	n	isite	Four Sti	roke Rich Burn		
7 Enter the Air Pollution Control	Device (APCD) type designa	tion(s) us	ing the fo	llowing codes:		
A/F Air/Fuel Ratio HEIS High Energy Ignition PSC Prestratified Charge NSCR Rich Burn & Non-Sel SCR Lean Burn & Selectiv	ective Catalytic Reduction		IR SIPC LEC OxCat	Low Emission	mbustion Chambe Combustion	ers
8 Enter the Fuel Type using the t	following codes:					
PQ Pipeline Quality Natu	ral Gas RO	G Ra	w Natural	Gas /Productio	n Gas D	Diesel
9 Enter the Potential Emissio	ons Data Reference designation	ation usi	ng the fo	ollowing codes	s. Attach all ref	erence data used.
MD Manufacturer's I GR GRI-HAPCalc TM	Data	AP OT			(please list)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

0	ion Control Device se extra pages as necessary)
Air Pollution Control Device Ma Yes 🗆	nufacturer's Data Sheet included? No □
□ NSCR □ SCR	□ Oxidation Catalyst
Provide details of process control used for proper mixing/con	trol of reducing agent with gas stream:
Manufacturer:	Model #:
Design Operating Temperature: °F	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P): inches of	H ₂ O
Provide description of warning/alarm system that protects uni	t when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst required to be mo	onitored per 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required to be replaced	l (hours of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any not specified and the set of the set	naintenance required and the applicable sections in

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

Emission Unit ID#: LO-1 Emission Point ID#: Year Installed/Modified:								
Emission Unit Description: Produced Water Tank Truck Loading TK-1, TK-2, TK-3, TK-4, TK-5								
			Loading A	Area Data				
Number of Pumps: NA		Numbe	er of Liquids	Loaded:		Max number of (1) time: 1	trucks loading at one	
Are tanker trucks pressu If Yes, Please describe:	re tested for leal	ts at this	or any other	location?	□ Yes		Not Required	
Provide description of c	losed vent syster	n and an	y bypasses.	NA				
Are any of the following Closed System to tar Closed System to tar Closed System to tar	iker truck passin iker truck passin iker truck not pa	g a MAC g a NSPS ssing an	CT level annu S level annua annual leak	al leak test? test and has v	-			
Proj		•	ting Schedul	e (for rack o	r transf	er point as a wh	ole)	
Time	Jan – Ma	r	Apr	- Jun	Jul – Sept		Oct - Dec	
Hours/day	2		2		2		2	
Days/week	1		1			1	1	
	Bull	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Produc	tion Liqui	d					
Max. Daily Throughput (1000 gal/day)	21.4							
Max. Annual Throughpu (1000 gal/yr)	t 151.2							
Loading Method ¹	BF							
Max. Fill Rate (gal/min) 60								
Average Fill Time (min/loading)								
Max. Bulk Liquid Temperature (°F)	80							
True Vapor Pressure ²	10.2							
Cargo Vessel Condition ²	³ C							
Control Equipment or Method ⁴	NA							

Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC Emission	Loading (lb/hr)	0.009	
Rate	Annual (ton/yr)	0.038	
Max.HAP Emission	Loading (lb/hr)	0	
Rate	Annual (ton/yr)	0	
Estimation Method ⁵		EPA	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill	
---	----	-------------	----	-------------	-----	----------------	--

At maximum bulk liquid temperature B Ballasted Vessel 2 3 С Cleaned U Uncleaned (dedicated service)

MB

Material Balance

Other (describe) 0

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Dedicated Vapor Balance (closed system) CA VB

ECD F Flare

Carbon Adsorption Enclosed Combustion Device Thermal Oxidization or Incineration EPA Emission Factor in AP-42 ТО

5 EPA

ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

		Use extra page						
Manufacturer: Exterran Model: HANO-486836035								
Max. Dry Gas Flow		/day	Reboiler Design He	1	IBTU/hr			
Design Type: 🖄 TE	G DEG	EG	Source Status ¹ : N	ЛS				
Date Installed/Modi	fied/Removed ² : 12	2/16	Regenerator Still V	ent APCD/ERD ³ :	NA			
Control Device/ERI	D ID# ³ : NA		Fuel HV (BTU/scf)	: 1020				
H ₂ S Content (gr/100) scf): <0.25		Operation (hours/ye	ear): 8760				
Pump Rate (scfm):	46.5							
Water Content (wt	%) in: Wet Gas: 0.	17 Dry C	Gas: 0.014					
Is the glycol dehydi	ation unit exempt fro	om 40CFR63 Section	764(d)? 🛛 Yes	□ No: If Yes, answ	wer the following:			
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \blacksquare No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. \Box Yes \Box No								
	ation unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	uster (UC)?	🖄 No			
		being utilized? Ye						
		ck to the flame zone						
x Yes □ No								
Recycling the glyco Yes No	l dehydration unit ba	ck to the flame zone	of the reboiler and m	ixed with fuel.				
🛛 Still vent emissi	ons to the atmosphere ons stopped with value		ne reboiler?					
🔲 Flash Tank	e following equipme ent system that conti	-	nser or flash tank vap	ors				
		Control Device	Technical Data					
	Pollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)			
N	A							
		F : '						
		Emissio	ons Data	Controlled				
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)			
		AP-42	NO _x	0.0971	0.4252			
		AP-42	СО	0.0816	0.3572			
	Reboiler Vent	AP-42	VOC	0.0053	0.0254			
		AP-42	SO ₂	0.0006	0.0026			
		AP-42	PM ₁₀					
		AP-42	1 14110	0.0074	0.0323			

		GHG (CO ₂ e)	116.50	510.27
	GRI-GlyCalc [™]	VOC	1.607	7.03
	GRI-GlyCalc TM	Benzene	NA	
Glycol	GRI-GlyCalc TM	Toluene	NA	
Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	NA	
	GRI-GlyCalc TM	Xylenes	NA	
	GRI-GlyCalc TM	n-Hexane	0.26	1.17
	GRI-GlyCalc TM	VOC	NA	NA
	GRI-GlyCalc [™]	Benzene	NA	NA
Glycol Flash	GRI-GlyCalc TM	Toluene	NA	NA
Tank	GRI-GlyCalc [™]	Ethylbenzene	NA	NA
	GRI-GlyCalc TM	Xylenes	NA	NA
	GRI-GlyCalc TM	n-Hexane	NA	NA

1 Enter the Source Status using the following codes:

NS Construction of New Source ES **Existing Source**

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA None CD Condenser FL. Flare CC Condenser/Combustion Combination TO Thermal Oxidizer 0 Other (please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- AP-42 MD Manufacturer's Data AP
 - GR GRI-GLYCalc[™] OT Other
- (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?					
x Yes 🗌 No					
Please list approximate number.					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?					
Yes X No					
Please list approximate number.					

ATTACHMENT Q – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.			
Emission Unit ID: Make/Model:			
Primary Control Device ID:	Make/Model:		
Control Efficiency (%): APCD/ERD Data Sheet Completed: 🗆 Yes 🔅 No			
Secondary Control Device ID:	Make/Model:		
Control Efficiency (%): APCD/ERD Data Sheet Completed: 🗆 Yes 🔅 No			

	VAPOR COMBUSTION						
(Including Enclosed Combustors)							
	General Information						
Control Device ID#: Installation Date: New Modified				Relocated			
	Maximum Rated Total Flow Capacity scfh scfd						leat Content IU/scf
			Control Devic	e Informati	on		
Enclose	ed Combustion Dev l Oxidizer	ice	Type of Vapor Co		ontrol?		Ground Flare
Manufactur Model:	rer:			Hours of o	peration	per year?	
List the em	ission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID#)
Emission Unit ID#Emission Source DescriptionEmission Unit ID#Emission Source Description				Description			
If this	If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages.						
Assist Type	Assist Type (Flares only) Flare Height Tip Diameter Was the design per §60.18					Was the design per §60.18?	
Steam Air feet Pressure Non			feet			☐ Yes ☐ No Provide determination.	
			Waste Gas 1	Information	L		
Maximum	Waste Gas Flow Ra (scfm)	te	Heat Value of W	⁷ aste Gas Str BTU/ft ³	ream	Exit Vel	ocity of the Emissions Stream (ft/s)
	Provide an	attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.
			Pilot Gas I	nformation			
Number	Number of Pilot Lights Fuel Flow Rate to Pilot Flame per Pilot Heat Input per Pilot BTU/hr Will automatic re-ignition be used? scfh U Yes No					be used?	
If automati	c re-ignition is use	d, please d	describe the method.				
-	me equipped with a f the flame? \Box	monitor t Yes	o detect the	If Yes, wh		□ Thermoo □ Camera	
	ll operating ranges e, please indicate).	and maint	enance procedures req	uired by the	manufac	turer to ma	intain the warranty. (If
Please atta	Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.						

CONDENSER				
General Information				
Control Device ID#: Installation Date: New Modified Relocated				
Manufacturer:	Model:	Control Device Name:		
Control Efficiency (%):				
Manufacturer's required temperature range for control efficiency. °F				
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:				
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.				
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.				
Is condenser routed to a secondary APCD or ERD? □ Yes □ No				

ADSORPTION SYSTEM				
General Information				
Control Device ID#:	Installation Date:			
Manufacturer:	Model: Control Device Name:			
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:			
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²			
Adsorbent type and physical properties:	Overall Control Efficiency (%):			
Working Capacity of Adsorbent (%):				
Operating	Parameters			
Inlet volume: scfm @ °F				
Adsorption time per adsorption bed (life expectancy):Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):				
Temperature range of carbon bed adsorber. °F - °F				
Control Device	Technical Data			
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)			
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:			
Has the control device been tested by the manufacturer and co	ertified?			
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.			
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.				

	VAPOR RECOVERY UNIT						
	General Information						
Emission	Emission Unit ID#: Installation Date:						
	Device In	formation					
Manufactu Model:	rer:						
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID#)			
Emission Unit ID#	Emission Source Description	Emission Unit ID# Emission Source Description					
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please o	attach additional pages.			
Please atta	Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.						
	The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.						
	The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.						
The regist	rant may claim a capture and control efficiency of 9	98% if the V	RU has a backup VRU				

ATTACHMENT R – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken as representative; the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Tank Emission Calculations

Tank Calculations - 100 bbl (TK-3)

Tank Type:

Methodology:

Produced Liquid

U.S. EPA, *Compilation of Air Pollutant Emission Factors* (AP-42), Supplement F, Section 7.1, Organic Liquid Storage Tanks.

Activity:

Material Storage

Emission Summary:

Emissions are "per tank"

Pollutant	Emission Rates	
VOC	lbs/yr	tons/yr
VOC	11.74	0.0059

Pressure and Molecular Weight Calculation:

	Weight (Ibs)		
Gasoline 15 RVP		6,115	
Water		172,997	Density is based on 60 F
	MW (Ib/mol)		
Gasoline 15 RVP		60	
Water		18.02	
	Moles(Ibmol)		
Gasoline 15 RVP		102	
Water		9,600	
Total		9,702	
	Mole Fraction (liquid)		
Gasoline 15 RVP		0.0105	
Water		0.9895	
	Vapor Pressure (psia)		
Gasoline 15 RVP		7.8526	
Water		0.4525	Antoine Constants (A=16.3872, B=3885.70, C=230.170)
	Partial Pressure (psia)		
Gasoline 15 RVP		0.0825	
Water		0.4477	
Total		0.5302	
	Mole Fraction (Vapor)		
Gasoline 15 RVP		0.1556	
Water		0.8444	
Molecular Weight		24.55	

Recordkeeping Data:

Compounds in Tank	Gasoline 15 RVP		
Component Concentration, Volume Percent:	5.00	95.00	
*Tank Liquid Height (HI), ft.	8.50		
*Tank Shell Height (Hs), ft.	10.00		
Tank Shell Radius (Rs), ft.	4.00		
*Tank Diameter (D), ft.	8.00		
*Molecular Vapor Weight (Mv), Ib/Ib-mole	24.55		
Daily Maximum Ambient Temperature (Tax), °R	525.17		
Daily Minimum Ambient Temperature (Tan), °R	503.67		
Ideal Gas Constant (R), psia-cu. ft./Ib-mole-°R	10.73		
Tank Paint Solar Absorption (α), dimensionless	0.43	Tan, good	
Daily Total Solar Insolation Factor (I), Btu/sq. ftday	1,123.00	Charleston, \	
*Breather Vent Pressure Setting (Pbp), psig	0.03	(if unknown,	,
*Breather Vent Vacuum Setting (Pbv), psig	-0.03	(if unknown,	, enter -0.03)
Tank Roof Outage (Hro), ft.	0.0833		
Vapor Space Outage (Hvo), cu. ft.	1.58		
Vapor Space Volume (Vv), cu. ft.	79.55		
Daily Ambient Temperature Range (Δ Ta), °R	21.50		
Daily Average Ambient Temperature (Taa), °R	514.42		
Liquid Bulk Temperature (Tb), °R	516		
Daily Maximum Liquid Surface Temperature (TIx), °R	526.37		
Daily Minimum Liquid Surface Temperature (TIn), °R	511.87		
Vapor Pressure at Daily Max. Liquid Surface Temp. (Pvx), psia	1.00		
Vapor Pressure at Daily Min. Liquid Surface Temp. (Pvn), psia	0.2777		
Daily Vapor Pressure Range (ΔPv), psia	0.7230		
Daily Ave. Liquid Surface Temp. (Tla), °R	519.12		
Vapor Pressure at Ave. Liquid Surface Temp. (Pva), psia	0.5302		
Vapor Density (Wv), Ibs/cu. ft.	0.0023		
Vented Vapor Saturation Factor (Ks)	0.9574		
Breather Vent Pressure Setting Range (Δ Pb), psig	0.0600		
Daily Vapor Temperature Range (∆Tv), °R	29.00		
Vapor Space Expansion Factor (Ke)	0.1027		
Standing Storage Loss (Ls), Ibs/year	6.67		
Standing Storage Loss (Ls), tons/year	0.0033		

*Maximum Throughput, gal/year	21,840	
*Actual Throughput (Qg), gal/year	21,840	
Actual Barrels/year, bbl/year	520	
Maximum Barrels/year, bbl/year	520	
Turnover Factor (Kn)	1.00	For N >36 Kn=(180+N)/6N, for N <=36 Kn=1
Working Loss Product Factor (Kp)	0.75	(1 for organics, 0.75 for crude oils)
*Tank Fill Rate, gal/hour	4,800	
Tank maximum liquid volume (VIx) ft3	427	
Number of turnovers (N)	6.83	
Actual Working Loss (Lw), Ibs/year	5.08	
Actual Working Loss (Lw), tons/year	0.0025	
TOTAL VOC LOSS:		
Actual (before control) Ibs/year	11.74	
Actual (before control) tons/year	0.0059	
Emission method source: AP-42, Section 7.1, Storage of Organic	•	
Gasoline Vapor Pressure and Molecular Weight: AP-42, Table 7.1		
Daily Max. and Min. Ambient Temperatures: AP-42, Table 7.1-7		
Daily Total Insolation Factor: AP-42, Table 7.1-6		

Tank Paint Solar Absorption: AP-42, Table 7.1-7

*Required Information

Tank Calculations - 50 bbl (TK-4)

Tank Type:

Methodology:

Produced Liquid

U.S. EPA, *Compilation of Air Pollutant Emission Factors* (AP-42), Supplement F, Section 7.1, Organic Liquid Storage Tanks.

Activity:

Material Storage

Emission Summary:

Emissions are "per tank"

Pollutant	Emission Rates	
VOC	lbs/yr	tons/yr
VOC	10.11	0.0051

Pressure and Molecular Weight Calculation:

	Weight (Ibs)		
Gasoline 15 RVP	0 ()	1,764	
Water		49,903	Density is based on 60 F
	MW (Ib/mol)		-
Gasoline 15 RVP		60	
Water		18.02	
	Moles (Ibmol)		
Gasoline 15 RVP		29	
Water		2,769	
Total		2,799	
	Mole Fraction (liquid)		
Gasoline 15 RVP		0.0105	
Water		0.9895	
	Vapor Pressure (psia)		
Gasoline 15 RVP		7.8526	
Water		0.4525	Antoine Constants (A=16.3872, B=3885.70, C=230.170)
	Partial Pressure (psia)		
Gasoline 15 RVP		0.0825	
Water		0.4477	
Total		0.5302	
	Mole Fraction (Vapor)		
Gasoline 15 RVP		0.1556	
Water		0.8444	
Molecular Weight		24.55	

Recordkeeping Data:

Compounds in Tank	Gasoline 15 RVP		
Component Concentration, Volume Percent:	5.00	95.00	
*Tank Liquid Height (HI), ft.	6.80		
*Tank Shell Height (Hs), ft.	8.00		
Tank Shell Radius (Rs), ft.	5.00		
*Tank Diameter (D), ft.	10.00		
*Molecular Vapor Weight (Mv), Ib/Ib-mole	24.55		
Daily Maximum Ambient Temperature (Tax), °R	525.17		
Daily Minimum Ambient Temperature (Tan), °R	503.67		
Ideal Gas Constant (R), psia-cu. ft./Ib-mole-°R	10.73		
Tank Paint Solar Absorption (α), dimensionless	0.43	Tan, good	
Daily Total Solar Insolation Factor (I), Btu/sq. ftday	1,123.00	Charleston, \	
*Breather Vent Pressure Setting (Pbp), psig	0.03	(if unknown,	enter 0.03)
*Breather Vent Vacuum Setting (Pbv), psig	-0.03	(if unknown,	enter -0.03
Tank Roof Outage (Hro), ft.	0.1042		
Vapor Space Outage (Hvo), cu. ft.	1.30		
Vapor Space Volume (Vv), cu. ft.	102.38		
Daily Ambient Temperature Range (Δ Ta), °R	21.50		
Daily Average Ambient Temperature (Taa), °R	514.42		
Liquid Bulk Temperature (Tb), °R	516		
Daily Maximum Liquid Surface Temperature (TIx), °R	526.37		
Daily Minimum Liquid Surface Temperature (TIn), °R	511.87		
Vapor Pressure at Daily Max. Liquid Surface Temp. (Pvx), psia	1.00		
Vapor Pressure at Daily Min. Liquid Surface Temp. (Pvn), psia	0.2777		
Daily Vapor Pressure Range (ΔPv), psia	0.7230		
Daily Ave. Liquid Surface Temp. (Tla), °R	519.12		
Vapor Pressure at Ave. Liquid Surface Temp. (Pva), psia	0.5302		
Vapor Density (Wv), Ibs/cu. ft.	0.0023		
Vented Vapor Saturation Factor (Ks)	0.9646		
Breather Vent Pressure Setting Range (Δ Pb), psig	0.0600		
Daily Vapor Temperature Range (Δ Tv), °R	29.00		
Vapor Space Expansion Factor (Ke)	0.1027		
Standing Storage Loss (Ls), Ibs/year	8.65		
Standing Storage Loss (Ls), tons/year	0.0043		

*Maximum Throughput, gal/year	6,300	
*Actual Throughput (Qg), gal/year	6,300	
Actual Barrels/year, bbl/year	150	
Maximum Barrels/year, bbl/year	150	
Turnover Factor (Kn)	1.00	For N >36 Kn=(180+N)/6N, for N <=36 Kn=1
Working Loss Product Factor (Kp)	0.75	(1 for organics, 0.75 for crude oils)
*Tank Fill Rate, gal/hour	4,800	
Tank maximum liquid volume (VIx) ft3	534	
Number of turnovers (N)	1.58	
Actual Working Loss (Lw), Ibs/year	1.46	
Actual Working Loss (Lw), tons/year	0.0007	
TOTAL VOC LOSS:		
Actual (before control) Ibs/year	10.11	
Actual (before control) tons/year	0.0051	
Emission method source: AP-42, Section 7.1, Storage of Organic	Liquids	
Gasoline Vapor Pressure and Molecular Weight: AP-42, Table 7.1	1-2	
Daily Max. and Min. Ambient Temperatures: AP-42, Table 7.1-7		
Daily Total Insolation Factor: AP-42, Table 7.1-6		

Tank Paint Solar Absorption: AP-42, Table 7.1-7

*Required Information

Tank Calculations - 50 bbl (TK-5)

Tank Type:

Methodology:

Produced Liquid

U.S. EPA, *Compilation of Air Pollutant Emission Factors* (AP-42), Supplement F, Section 7.1, Organic Liquid Storage Tanks.

Activity:

Material Storage

Emission Summary:

Emissions are "per tank"

Pollutant	Emission F	Rates
VOC	lbs/yr	tons/yr
VOC	10.11	0.0051

Pressure and Molecular Weight Calculation:

	Weight (Ibs)		
Gasoline 15 RVP		1,764	
Water		49,903	Density is based on 60 F
	MW (Ib/mol)		
Gasoline 15 RVP		60	
Water		18.02	
	Moles(Ibmol)		
Gasoline 15 RVP		29	
Water		2,769	
Total		2,799	
	Mole Fraction (liquid)		
Gasoline 15 RVP		0.0105	
Water		0.9895	
	Vapor Pressure (psia)		
Gasoline 15 RVP		7.8526	
Water		0.4525	Antoine Constants (A=16.3872, B=3885.70, C=230.170)
	Partial Pressure (psia)		
Gasoline 15 RVP		0.0825	
Water		0.4477	
Total		0.5302	
	Mole Fraction (Vapor)		
Gasoline 15 RVP		0.1556	
Water		0.8444	
Molecular Weight		24.55	

Recordkeeping Data:

Compounds in Tank	Gasoline 15 RVP		
Component Concentration, Volume Percent:	5.00	95.00	
*Tank Liquid Height (HI), ft.	6.80		
*Tank Shell Height (Hs), ft.	8.00		
Tank Shell Radius (Rs), ft.	5.00		
*Tank Diameter (D), ft.	10.00		
*Molecular Vapor Weight (Mv), Ib/Ib-mole	24.55		
Daily Maximum Ambient Temperature (Tax), °R	525.17		
Daily Minimum Ambient Temperature (Tan), °R	503.67		
Ideal Gas Constant (R), psia-cu. ft./Ib-mole-°R	10.73		
Tank Paint Solar Absorption (α), dimensionless	0.43	Tan, good	
Daily Total Solar Insolation Factor (I), Btu/sq. ftday	1,123.00	Charleston, \	
*Breather Vent Pressure Setting (Pbp), psig	0.03	(if unknown,	enter 0.03)
*Breather Vent Vacuum Setting (Pbv), psig	-0.03	(if unknown,	enter -0.03
Tank Roof Outage (Hro), ft.	0.1042		
Vapor Space Outage (Hvo), cu. ft.	1.30		
Vapor Space Volume (Vv), cu. ft.	102.38		
Daily Ambient Temperature Range (Δ Ta), °R	21.50		
Daily Average Ambient Temperature (Taa), °R	514.42		
Liquid Bulk Temperature (Tb), °R	516		
Daily Maximum Liquid Surface Temperature (TIx), °R	526.37		
Daily Minimum Liquid Surface Temperature (TIn), °R	511.87		
Vapor Pressure at Daily Max. Liquid Surface Temp. (Pvx), psia	1.00		
Vapor Pressure at Daily Min. Liquid Surface Temp. (Pvn), psia	0.2777		
Daily Vapor Pressure Range (ΔPv), psia	0.7230		
Daily Ave. Liquid Surface Temp. (Tla), °R	519.12		
Vapor Pressure at Ave. Liquid Surface Temp. (Pva), psia	0.5302		
Vapor Density (Wv), Ibs/cu. ft.	0.0023		
Vented Vapor Saturation Factor (Ks)	0.9646		
Breather Vent Pressure Setting Range (Δ Pb), psig	0.0600		
Daily Vapor Temperature Range (Δ Tv), °R	29.00		
Vapor Space Expansion Factor (Ke)	0.1027		
Standing Storage Loss (Ls), Ibs/year	8.65		
Standing Storage Loss (Ls), tons/year	0.0043		

*Maximum Throughput, gal/year	6,300	
*Actual Throughput (Qg), gal/year	6,300	
Actual Barrels/year, bbl/year	150	
Maximum Barrels/year, bbl/year	150	
Turnover Factor (Kn)	1.00	For N >36 Kn=(180+N)/6N, for N <=36 Kn=1
Working Loss Product Factor (Kp)	0.75	(1 for organics, 0.75 for crude oils)
*Tank Fill Rate, gal/hour	4,800	
Tank maximum liquid volume (VIx) ft3	534	
Number of turnovers (N)	1.58	
Actual Working Loss (Lw), Ibs/year	1.46	
Actual Working Loss (Lw), tons/year	0.0007	
TOTAL VOC LOSS:		
Actual (before control) Ibs/year	10.11	
Actual (before control) tons/year	0.0051	
Emission method source: AP-42, Section 7.1, Storage of Organic	Liquids	
Gasoline Vapor Pressure and Molecular Weight: AP-42, Table 7.1	1-2	
Daily Max. and Min. Ambient Temperatures: AP-42, Table 7.1-7		
Daily Total Insolation Factor: AP-42, Table 7.1-6		

Tank Paint Solar Absorption: AP-42, Table 7.1-7

*Required Information

GRI – GLYCalc Model

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Goff West Compressor Station - Glycol Dehy # 1
File Name: C:\Users\vks.HRP\Desktop\Goff West Compressor Station\Goff West Compressor
Station uncontrolled - 10192016.ddf
 Date: October 20, 2016

DESCRIPTION:

Description: Goff West Compressor Station - Glycol Dehydration Unit with one (1) 1.0 MMBtu/hr Reboiler

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	104.2537	2502.090	456.6314
Ethane	8.5886	206.128	37.6183
Propane	1.0545	25.308	4.6187
Isobutane	0.0846	2.030	0.3705
n-Butane	0.1458	3.499	0.6386
Isopentane	0.0332	0.796	0.1453
n-Pentane	0.0205	0.492	0.0899
Other Hexanes	0.2686	6.446	1.1765
Total Emissions	114.4496	2746.789	501.2890
Total Hydrocarbon Emissions	114.4496	2746.789	501.2890
Total VOC Emissions	1.6072	38.572	7.0394

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	104.2537	2502.090	456.6314
Ethane	8.5886	206.128	37.6183
Propane	1.0545	25.308	4.6187
Isobutane	0.0846	2.030	0.3705
n-Butane	0.1458	3.499	0.6386
Isopentane	0.0332	0.796	0.1453
n-Pentane	0.0205	0.492	0.0899
Other Hexanes	0.2686	6.446	1.1765
Total Emissions	114.4496	2746.789	501.2890
Total Hydrocarbon Emissions	114.4496	2746.789	501.2890
Total VOC Emissions	1.6072	38.572	7.0394

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Uncontrolled Controlled % Reduction tons/yr tons/yr

			Page:	2
Et Pro Isobu	hane 37 opane 4 utane 0 utane 0 utane 0 utane 0 utane 0	.6183 37 .6187 4 .3705 0 .6386 0 .1453 0 .0899 0	.6314 .6183 .6187 .3705 .6386 .1453 .0899 .1765	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Total Emiss Total Hydrocarbon Emiss Total VOC Emiss	ions 501	.2890 501 .2890 501	.2890 .2890 .0394	0.00

EQUIPMENT REPORTS:

ABSORBER Calculated Absorber Stages: 1.35 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 110.0 deg. F Pressure: 900.0 psig Dry Gas Flow Rate: 67.0000 MMSCF/day Glycol Losses with Dry Gas: 1.1237 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 83.07 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.12 gal/lb H2O Remaining Absorbed in Dry Gas in Glycol Water 8.41% 91.59%

Water	8.41%	91.59%
Carbon Dioxide	99.87%	0.13%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.91%	0.09%
n-Pentane	99.89%	0.11%
Other Hexanes	99.86%	0.14%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide	22.92% 0.00%	77.08%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%

		Page:
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.26%	99.74%
n-Pentane	0.29%	99.71%
Other Hexanes	0.63%	99.37%

3

STREAM REPORTS:

WET GAS STREAM

Temperature: 110.00 deg. F Pressure: 914.70 psia Flow Rate: 2.80e+006 scfh Conc. Loading Component (vol%) (lb/hr) ----- -----Water 1.75e-001 2.32e+002 Carbon Dioxide 1.63e-001 5.28e+002 Nitrogen 2.69e-001 5.56e+002 Methane 9.57e+001 1.13e+005 Ethane 3.42e+000 7.59e+003 Propane 2.43e-001 7.90e+002 Isobutane 1.31e-002 5.60e+001 n-Butane 1.99e-002 8.51e+001 Isopentane 3.69e-003 1.96e+001 n-Pentane 2.00e-003 1.06e+001 Other Hexanes 1.94e-002 1.23e+002 ----- -----Total Components 100.00 1.23e+005 DRY GAS STREAM _____ Temperature: 110.00 deg. F Pressure: 914.70 psia Flow Rate: 2.79e+006 scfh

Conc. Loading (vol%) (lb/hr) Component ----- -----Water 1.47e-002 1.95e+001 Carbon Dioxide 1.63e-001 5.28e+002 Nitrogen 2.70e-001 5.56e+002 Methane 9.58e+001 1.13e+005 Ethane 3.43e+000 7.59e+003 Propane 2.43e-001 7.90e+002 Isobutane 1.31e-002 5.60e+001 n-Butane 1.99e-002 8.50e+001 Isopentane 3.70e-003 1.96e+001 n-Pentane 2.00e-003 1.06e+001 Other Hexanes 1.94e-002 1.23e+002 ----- -----Total Components 100.00 1.23e+005 LEAN GLYCOL STREAM

Temperature: 110.00 deg. F Flow Rate: 7.50e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.65e-012 6.99e-011

5	1.46e-013 9.13e-018	
Propane Isobutane	2.64e-008 3.91e-010 2.74e-011 4.46e-011 2.03e-006	1.65e-008 1.16e-009 1.88e-009
n-Pentane Other Hexanes Total Components		

RICH GLYCOL AND PUMP GAS STREAM

Tomporatures 110.00 dog E

Temperature:	IIU.UU deg. F	
Pressure:	914.70 psia	
Flow Rate:	8.17e+000 gpm	
NOTE: Stream	has more than one phase.	

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.14e+001 6.08e+000 2.49e-002 1.14e-002 2.29e+000	2.76e+002 1.13e+000 5.18e-001
Propane Isobutane	1.89e-001 2.32e-002 1.86e-003 3.21e-003 7.31e-004	1.05e+000 8.46e-002 1.46e-001
n-Pentane Other Hexanes	4.52e-004 5.94e-003	
Total Components	100.00	4.55e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 7.09e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 6.33e+001 2.13e+002 Carbon Dioxide 1.38e-001 1.13e+000 Nitrogen 9.89e-002 5.18e-001 Methane 3.48e+001 1.04e+002 Ethane 1.53e+000 8.59e+000 GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Goff West Compressor Station - Glycol Dehy # 2
File Name: C:\Users\vks.HRP\Desktop\Goff West Compressor Station\Goff West Compressor
Station uncontrolled - 10192016.ddf
 Date: October 20, 2016

DESCRIPTION:

Description: Goff West Compressor Station - Glycol Dehydration Unit with one (1) 1.0 MMBtu/hr Reboiler

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	104.2537	2502.090	456.6314
Ethane	8.5886	206.128	37.6183
Propane	1.0545	25.308	4.6187
Isobutane	0.0846	2.030	0.3705
n-Butane	0.1458	3.499	0.6386
Isopentane	0.0332	0.796	0.1453
n-Pentane	0.0205	0.492	0.0899
Other Hexanes	0.2686	6.446	1.1765
Total Emissions	114.4496	2746.789	501.2890
Total Hydrocarbon Emissions	114.4496	2746.789	501.2890
Total VOC Emissions	1.6072	38.572	7.0394

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	104.2537	2502.090	456.6314
Ethane	8.5886	206.128	37.6183
Propane	1.0545	25.308	4.6187
Isobutane	0.0846	2.030	0.3705
n-Butane	0.1458	3.499	0.6386
Isopentane	0.0332	0.796	0.1453
n-Pentane	0.0205	0.492	0.0899
Other Hexanes	0.2686	6.446	1.1765
Total Emissions	114.4496	2746.789	501.2890
Total Hydrocarbon Emissions	114.4496	2746.789	501.2890
Total VOC Emissions	1.6072	38.572	7.0394

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Uncontrolled Controlled % Reduction tons/yr tons/yr

			Page:	2
Et Pro Isobu	hane 37 opane 4 utane 0 utane 0 utane 0 utane 0 utane 0	.6183 37 .6187 4 .3705 0 .6386 0 .1453 0 .0899 0	.6314 .6183 .6187 .3705 .6386 .1453 .0899 .1765	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Total Emiss Total Hydrocarbon Emiss Total VOC Emiss	ions 501	.2890 501 .2890 501	.2890 .2890 .0394	0.00

EQUIPMENT REPORTS:

ABSORBER Calculated Absorber Stages: 1.35 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 110.0 deg. F Pressure: 900.0 psig Dry Gas Flow Rate: 67.0000 MMSCF/day Glycol Losses with Dry Gas: 1.1237 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 83.07 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.12 gal/lb H2O Remaining Absorbed in Dry Gas in Glycol Water 8.41% 91.59%

Water	8.41%	91.59%
Carbon Dioxide	99.87%	0.13%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.91%	0.09%
n-Pentane	99.89%	0.11%
Other Hexanes	99.86%	0.14%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide	22.92% 0.00%	77.08%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%

		Page:
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.26%	99.74%
n-Pentane	0.29%	99.71%
Other Hexanes	0.63%	99.37%

3

STREAM REPORTS:

WET GAS STREAM

Temperature: 110.00 deg. F Pressure: 914.70 psia Flow Rate: 2.80e+006 scfh Conc. Loading Component (vol%) (lb/hr) ----- -----Water 1.75e-001 2.32e+002 Carbon Dioxide 1.63e-001 5.28e+002 Nitrogen 2.69e-001 5.56e+002 Methane 9.57e+001 1.13e+005 Ethane 3.42e+000 7.59e+003 Propane 2.43e-001 7.90e+002 Isobutane 1.31e-002 5.60e+001 n-Butane 1.99e-002 8.51e+001 Isopentane 3.69e-003 1.96e+001 n-Pentane 2.00e-003 1.06e+001 Other Hexanes 1.94e-002 1.23e+002 ----- -----Total Components 100.00 1.23e+005 DRY GAS STREAM _____ Temperature: 110.00 deg. F Pressure: 914.70 psia Flow Rate: 2.79e+006 scfh

Conc. Loading (vol%) (lb/hr) Component ----- -----Water 1.47e-002 1.95e+001 Carbon Dioxide 1.63e-001 5.28e+002 Nitrogen 2.70e-001 5.56e+002 Methane 9.58e+001 1.13e+005 Ethane 3.43e+000 7.59e+003 Propane 2.43e-001 7.90e+002 Isobutane 1.31e-002 5.60e+001 n-Butane 1.99e-002 8.50e+001 Isopentane 3.70e-003 1.96e+001 n-Pentane 2.00e-003 1.06e+001 Other Hexanes 1.94e-002 1.23e+002 ----- -----Total Components 100.00 1.23e+005 LEAN GLYCOL STREAM

Temperature: 110.00 deg. F Flow Rate: 7.50e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.65e-012 6.99e-011

5	1.46e-013 9.13e-018	
Propane Isobutane	2.64e-008 3.91e-010 2.74e-011 4.46e-011 2.03e-006	1.65e-008 1.16e-009 1.88e-009
n-Pentane Other Hexanes Total Components		

RICH GLYCOL AND PUMP GAS STREAM

Tomporatures 110.00 dog E

Temperature:	IIU.UU deg. F	
Pressure:	914.70 psia	
Flow Rate:	8.17e+000 gpm	
NOTE: Stream	has more than one phase.	

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.14e+001 6.08e+000 2.49e-002 1.14e-002 2.29e+000	2.76e+002 1.13e+000 5.18e-001
Propane Isobutane	1.89e-001 2.32e-002 1.86e-003 3.21e-003 7.31e-004	1.05e+000 8.46e-002 1.46e-001
n-Pentane Other Hexanes	4.52e-004 5.94e-003	
Total Components	100.00	4.55e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 7.09e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 6.33e+001 2.13e+002 Carbon Dioxide 1.38e-001 1.13e+000 Nitrogen 9.89e-002 5.18e-001 Methane 3.48e+001 1.04e+002 Ethane 1.53e+000 8.59e+000 Propane 1.28e-001 1.05e+000 Isobutane 7.79e-003 8.46e-002 n-Butane 1.34e-002 1.46e-001 Isopentane 2.46e-003 3.32e-002 n-Pentane 1.52e-003 2.05e-002 Other Hexanes 1.67e-002 2.69e-001 Total Components 100.00 3.29e+002 Propane 1.28e-001 1.05e+000 Isobutane 7.79e-003 8.46e-002 n-Butane 1.34e-002 1.46e-001 Isopentane 2.46e-003 3.32e-002 n-Pentane 1.52e-003 2.05e-002 Other Hexanes 1.67e-002 2.69e-001 Total Components 100.00 3.29e+002

Tank Loadout Calculations

MOUNTAINEER KEYSTONE – TANK LOADOUT CALCULATIONS

Assumptions:

- VOC Emissions equations are from AP-42 Chapter 5: Petroleum Industry, Section 5.2: Transportation and Marketing of Petroleum Liquids.
- Temperature (T) of condensate is 80 °F of 539.67 °R.
- Condensate is assumed to have a Reid Vapor Pressure of 15 psi, this equates to a true vapor pressure (P) of 10.2 psi, pursuant to EPA liquid Storage Tanks Figure 7.1-13a from AP-42 Chapter 7: Liquid Storage Tank, Section 7.1: Organic Liquid Storage Tanks
- Condensate has a molecular weight (M) of Gasoline of 60 g / mol.
- The saturation factor (S) for loading a tanker truck is 1.0, which is the factor for 'dedicated vapor balance service for submerged loading'.
- The tanker trucks utilized have a volume (V) of 3,500 gallons.
- All vapors are considered to have 100% capture, and 98% control (eff).
- Production Liquid is 0.05 % Condensate by weight

Liquid Loading (L_L) = $12.46 \left(\frac{SPM}{T}\right) = 12.46 \left(\frac{1.0*10.2*60}{539.67}\right) = 14.13$ lbs of VOC per 10³ gallons

VOC emissions per Load out = $(V)^{*}(L_{L})^{*}(1-eff) = 3.5^{*}14.13 = 49.455$ lbs of VOC per Load out

Production Liquid Load out Factor = 49.455 * 0.05 = 2.47 lbs VOC per Load out

Tank	Capacity (bbl)	Average Annual Loadouts	Annual VOC Emissions (lbs/yr)
TK-1	100	3	7.41
TK-2	210	10	24.70
TK-3	100	6	14.82
TK-4	50	6	14.82
TK-5	50	6	14.82
Total	-	-	76.57

Reboiler Calculations

	Fuel Usage	
Fuel	Units	Total
Natural Gas	ft ³	8,504,854

Emission Factors		
	Reboiler	
Pollutant	Natural Gas (lbs/ 10 ⁶ ft ³)	
Particulates	7.60	
Sulfur Dioxide	0.6000	
Oxides of Nitrogen	100.00	
PM-10	7.60	
VOC	5.50	
Carbon Monoxide	84.00	
Lead	0.0005	
TOC	11.00	
CO2 Equiv	120,000	

	Emissio	ns	
		Reboiler	
Pollutant	Natural Gas (lbs/yr)	Natural Gas (lbs/hr)	Natural Gas (tons/yr)
Particulates	64.64	0.0074	0.0323
Sulfur Dioxide	5.10	0.0006	0.0026
Oxides of Nitrogen	850.49	0.0971	0.4252
PM-10	64.64	0.0074	0.0323
VOC	46.78	0.0053	0.0234
Carbon Monoxide	714.41	0.0816	0.3572
Lead	0.0043	4.85E-07	2.13E-06
TOC	93.55	0.0107	0.0468
CO2 Equiv	1,020,583	116.50	510.29

Notes:

- Natural Gas Emission Factors were taken from AP-42 Tables 1.4-1 and 1.4-2
- Emissions assume 8,760 hours of operation for the reboiler per year
- Heating value of Natural Gas assumed to be 1030 Btu/ft3
- Reboiler rating: 1 MMBtu/hr

Natural Gas Boiler
HAP
ft ³
8,504,854

- Emission Factors from AP-42 Tables 1.4-3 and 1.4-4

		Natural Gas		
	HAP Emissions		Reb (Ibs/yr)	oiler (tons/yr)
НАР	CAS No.	Natural Gas (Ib/10 ³ gal)		
2-Methylnaphthalene	91-57-6	2.40E-05	0.0002	1.02E-07
3-Methylchloranthrene	56-49-5	1.80E-06	1.53E-05	7.65E-09
7,12-Dimethylbenz(a)anthracene	-	1.60E-05	0.0001	6.80E-08
Acenaphthene	83-32-9	1.80E-06	1.53E-05	7.65E-09
Acenaphthylene	203-96-8	1.80E-06	1.53E-05	7.65E-09
Anthracene	120-12-7	2.40E-06	2.04E-05	1.02E-08
Benz(a)anthracene	56-55-3	1.80E-06	1.53E-05	7.65E-09
Benzene	71-43-2	2.10E-03	0.0179	8.93E-06
Benzo(a)pyrene	50-32-8	1.20E-06	1.02E-05	5.10E-09
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.53E-05	7.65E-09
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.02E-05	5.10E-09
Benzo(k)fluoranthene	207-08-9	1.80E-06	1.53E-05	7.65E-09
Chrysene	218-01-9	1.80E-06	1.53E-05	7.65E-09
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.02E-05	5.10E-09
Dichlorobenzene	25321-22-6	1.20E-03	0.0102	5.10E-06
Fluoranthene	206-44-0	3.00E-06	2.55E-05	1.28E-08
Fluorene	86-73-7	2.80E-06	2.38E-05	1.19E-08
Formaldehyde	50-00-0	7.50E-02	0.6379	0.0003
Hexane	110-54-3	1.80E+00	15.31	0.0077
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.53E-05	7.65E-09
Naphthalene	91-20-3	6.10E-04	0.0052	2.59E-06
Phenanathrene	85-01-8	1.70E-05	0.0001	7.23E-08
Pyrene	129-00-0	5.00E-06	4.25E-05	2.13E-08
Toluene	108-88-3	3.40E-03	0.0289	1.45E-05
Arsenic	7440-38-2	2.00E-04	0.0017	8.50E-07
Beryllium	7440-41-7	1.20E-05	0.0001	5.10E-08
Cadmium	7440-43-9	1.10E-03	0.0094	4.68E-06
Chromium	7440-47-3	1.40E-03	0.0119	5.95E-06
Cobalt	7440-48-4	8.40E-05	0.0007	3.57E-07
Manganese	7439-96-5	3.80E-04	0.0032	1.62E-06
Mercury	7439-97-6	2.60E-04	0.0022	1.11E-06
Nickel	7440-02-0	2.10E-03	0.0179	8.93E-06
Selenium	7782-49-2	2.40E-05	0.0002	1.02E-07
		Total:	16.06	0.0080

Engine HAP Calculations

1380HP - Natural Gas
4SLB
HAP
MMBtu
30,748

- Emission Factors from AP-42 Table 3.2-2

		Natural Gas	
<u>HAP Emi</u>	ssions	4SI (Ibs/yr)	_B (tons/yr)
		(1037 yr)	
НАР	Natural Gas (Ib/MMBtu)		
1,1,2,2-Tetrachloroethane	4.00E-05	1.23	0.0006
1,1,2-Trichloroethane	3.18E-05	0.9778	0.0005
1,3-Butadiene	2.67E-04	8.21	0.0041
1,3-Dichloropropene	2.64E-05	0.8117	0.0004
2-Methylnaphthalene	3.32E-05	1.02	0.0005
2,2,4-Trimethylpentane	2.50E-04	7.69	0.0038
Acenaphthene	1.25E-06	0.0384	1.92E-05
Acenaphthylene	5.53E-06	0.1700	8.50E-05
Acetaldehyde	8.36E-03	257.05	0.1285
Acrolein	5.14E-03	158.04	0.0790
Benzene	4.40E-04	13.53	0.0068
Benzo(b)fluoranthene	1.66E-07	0.0051	2.55E-06
Benzo(e)pyrene	4.15E-07	0.0128	6.38E-06
Benzo(g,h,i)perylene	4.14E-07	0.0127	6.36E-06
Bipheyl	2.12E-04	6.52	0.0033
Carbon Tetrachloride	3.67E-05	1.13	0.0006
Chlorobenzene	3.04E-05	0.9347	0.0005
Chloroform	2.85E-05	0.8763	0.0004
Chrysene	6.93E-07	0.0213	1.07E-05
Ethylbenzene	3.97E-05	1.22	0.0006
Ethylene Dibromide	4.43E-05	1.36	0.0007
Iuoranthene	1.11E-06	0.0341 1.7	
Iuorene	5.67E-06	0.1743 8.72	
Formaldehyde	5.28E-02	1,623 0.81	
Vethanol	2.50E-03	76.87 0.03	
Methylene Chloride	2.00E-05	0.6150 0.00	
n-Hexane	1.11E-03	34.13 0.017	
Naphthalene	7.44E-05	2.29	0.0011
PAH	2.69E-05	0.8271	0.0004
Phenanthrene	1.04E-05	0.3198 0.0	
Phenol	2.40E-05	0.7379 0.	
Pyrene	1.36E-06	0.0418 2.04	
Styrene	2.36E-05	0.7256 0	
Tetrachloroethane	2.48E-06	0.0763 3.8	
Toluene	4.08E-04	12.55	0.0063
/inyl Chloride	1.49E-05	0.4581	0.0002
Kylene	1.84E-04	5.66	0.0028
	Total:	2,220	1.11

1775HP - Natural Gas
4SLB
НАР
MMBtu
39,595

- Emission Factors from AP-42 Table 3.2-2

	Natural Gas		
HAP Emi	ssions	4SI (Ibs/yr)	.B (tons/yr)
		(1037 yr)	(10113/ yr)
НАР	Natural Gas (Ib/MMBtu)		
1,1,2,2-Tetrachloroethane	4.00E-05	1.58	0.0008
1,1,2-Trichloroethane	3.18E-05	1.26	0.0006
1,3-Butadiene	2.67E-04	10.57	0.0053
1,3-Dichloropropene	2.64E-05	1.05	0.0005
2-Methylnaphthalene	3.32E-05	1.31	0.0007
2,2,4-Trimethylpentane	2.50E-04	9.90	0.0049
Acenaphthene	1.25E-06	0.0495	2.47E-05
Acenaphthylene	5.53E-06	0.2190	0.0001
Acetaldehyde	8.36E-03	331.02	0.1655
Acrolein	5.14E-03	203.52	0.1018
Benzene	4.40E-04	17.42	0.0087
Benzo(b)fluoranthene	1.66E-07	0.0066	3.29E-06
Benzo(e)pyrene	4.15E-07	0.0164	8.22E-06
Benzo(g,h,i)perylene	4.14E-07	0.0164	8.20E-06
Bipheyl	2.12E-04	8.39	0.0042
Carbon Tetrachloride	3.67E-05	1.45	0.0007
Chlorobenzene	3.04E-05	1.20	0.0006
Chloroform	2.85E-05	1.13	0.0006
Chrysene	6.93E-07	0.0274	1.37E-05
Ethylbenzene	3.97E-05	1.57	0.0008
Ethylene Dibromide	4.43E-05	1.75	0.0009
Iuoranthene	1.11E-06	0.0440 2.20	
Iuorene	5.67E-06	0.2245 0.0	
Formaldehyde	5.28E-02	2,091 1.0	
Vethanol	2.50E-03	98.99 0.04	
Methylene Chloride	2.00E-05	0.7919 0.000	
1-Hexane	1.11E-03	43.95 0.022	
Naphthalene	7.44E-05	2.95	0.0015
PAH	2.69E-05	1.07	0.0005
Phenanthrene	1.04E-05	0.4118	0.0002
Phenol	2.40E-05	0.9503 0.0	
^o yrene	1.36E-06	0.0538 2.69	
Styrene	2.36E-05	0.9344 0.0	
Fetrachloroethane	2.48E-06	0.0982 4.9	
Toluene	4.08E-04	16.15	0.0081
Vinyl Chloride	1.49E-05	0.5900	0.0003
Kylene	1.84E-04	7.29	0.0036
	Total:	2,859	1.43

2370HP - Natural Gas 4SLB
НАР
MMBtu
52,823

- Emission Factors from AP-42 Table 3.2-2

		Natural Gas					
HAP Emi	<u>ssions</u>	4Sl (Ibs/yr)	.B (tons/yr)				
		(1037 yr)	((0137 yr)				
НАР	Natural Gas (Ib/MMBtu)						
1,1,2,2-Tetrachloroethane	4.00E-05	2.11	0.0011				
1,1,2-Trichloroethane	3.18E-05	1.68	0.0008				
1,3-Butadiene	2.67E-04	14.10	0.0071				
1,3-Dichloropropene	2.64E-05	1.39	0.0007				
2-Methylnaphthalene	3.32E-05	1.75	0.0009				
2,2,4-Trimethylpentane	2.50E-04	13.21	0.0066				
Acenaphthene	1.25E-06	0.0660	3.30E-05				
Acenaphthylene	5.53E-06	0.2921	0.0001				
Acetaldehyde	8.36E-03	441.60	0.2208				
Acrolein	5.14E-03	271.51	0.1358				
Benzene	4.40E-04	23.24	0.0116				
Benzo(b)fluoranthene	1.66E-07	0.0088	4.38E-06				
Benzo(e)pyrene	4.15E-07	0.0219	1.10E-05				
Benzo(g,h,i)perylene	4.14E-07	0.0219	1.09E-05				
Bipheyl	2.12E-04	11.20	0.0056				
Carbon Tetrachloride	3.67E-05	1.94	0.0010				
Chlorobenzene	3.04E-05	1.61	0.0008				
Chloroform	2.85E-05	1.51	0.0008				
Chrysene	6.93E-07	0.0366	1.83E-05				
Ethylbenzene	3.97E-05	2.10	0.0010				
Ethylene Dibromide	4.43E-05	2.34	0.0012				
Fluoranthene	1.11E-06	0.0586	2.93E-05				
Fluorene	5.67E-06	0.2995	0.0001				
Formaldehyde	5.28E-02	2,789	1.39				
Vethanol	2.50E-03	132.06	0.0660				
Methylene Chloride	2.00E-05	1.06	0.0005				
n-Hexane	1.11E-03	58.63	0.0293				
Naphthalene	7.44E-05	3.93	0.0020				
PAH	2.69E-05	1.42	0.0007				
Phenanthrene	1.04E-05	0.5494	0.0003				
Phenol	2.40E-05	1.27	0.0006				
Pyrene	1.36E-06	0.0718	3.59E-05				
Styrene	2.36E-05	1.25	0.0006				
Tetrachloroethane	2.48E-06	0.1310	6.55E-05				
Toluene	4.08E-04	21.55	0.0108				
Vinyl Chloride	1.49E-05	0.7871	0.0004				
Xylene	1.84E-04	9.72	0.0049				
-	Total:	3,814	1.91				

Fugitive Emission Calculations

Mountaineer Keystone - Goff West Compressor Station Plant ID# 033-00187 Fugitive Emission Calculations

	Density										
Pollutant	Density (kg/m^3)	Density (lb/ft^3)									
VOC	1.38	0.0860									
CH4	0.656	0.0409									

Emission Factors										
Component Type	Count	(scf /hr/ component)								
Pumps	2	13.30								
Valves	63	0.027								
Safety Relief Valves	3	0.04								
Open Ended Lines	4	0.061								
Sampling Connections	2	0.003								
Connections	203	0.003								
Compressors	6	7.00								
Flanges	36	0.003								

	Emiss	sions	
Componenty Type	VOC Emissions (tons/yr)	Methane (tons/yr)	CO2 eq (tons/yr)
Pumps	1.00	4.29	107.13
Valves	0.0641	0.2740	6.85
Safety Relief Valves	0.0045	0.0193	0.4833
Open Ended Lines	0.0092	0.0393	0.9827
Sampling Connections	0.0002	0.0010	0.0242
Connections	0.0229	0.0981	2.45
Compressors	1.58	6.77	169.15
Flanges	0.0041	0.02	0.4350
Total	2.69	11.50	287.51

Notes:

- VOC calculated using gas analysis average of VOCs
- Emission Factors for Pumps, Valves. Safety Relief Valves, and Open Ended Lines taken from 40 CFR 98 Table W-1A
- Emission Factors for Sampling Connections and Flanges assumed to be equal to Connections
- Emission Factor for Compressors taken from the following presentation:
- VOC volume % assumed to be about 10% of fugitive emissions
- Methane volume % assumed to be about 90% of fugitive emissions

ATTACHMENT S – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of	of emissio	ons in th	is table	e. Use e	xtra pa	iges if n	iecessar	у.						
Emission Point ID#	N	O _x	СО		V	VOC		SO ₂		PM10		M _{2.5}	GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1R	1.52	6.66	0.52	2.27	0.73	3.2	0.007	0.03	0.1	0.44	0.1	0.44	386	1691
CE-2R	1.52	6.66	0.52	2.27	0.73	3.2	0.007	0.03	0.1	0.44	0.1	0.44	386	1691
CE-3R	1.52	6.66	0.52	2.27	0.73	3.2	0.007	0.03	0.1	0.44	0.1	0.44	386	1691
CE-4R	1.52	6.66	0.52	2.27	0.73	3.2	0.007	0.03	0.1	0.44	0.1	0.44	386	1691
CE-5R	2.61	11.44	1.0	4.39	1.65	7.21	0.01	0.05	0.178	0.78	0.178	0.78	663	2905
CE-6R	1.96	8.57	0.75	3.29	1.23	5.4	0.008	0.035	0.13	0.58	0.13	0.58	497	2178
RSV-1	NA	NA	NA	NA	1.6	7.04	NA	NA	NA	NA	NA	NA	2603	11,400
RBV-1	0.097	0.4252	0.082	0.3572	0.005	0.0234	0.0006	0.0026	0.007	0.0323	0.007	0.0323	116	510
RSV-2	NA	NA	NA	NA	1.6	7.04	NA	NA	NA	NA	NA	NA	2603	11,400
RBV-2	0.897	04252	0.082	0.3572	0.005	0.0234	0.0006	0.0026	0.007	0.0323	0.007	0.0323	116	510
TK-1	NA	NA	NA	NA	0.02	0.1	NA	NA	NA	NA	NA	NA	NA	NA
TK2	NA	NA	NA	NA	<0.01	0.02	NA	NA	NA	NA	NA	NA	NA	NA
ТК-З	NA	NA	NA	NA	0.001	0.0053	NA	NA	NA	NA	NA	NA	NA	NA
TK-4	NA	NA	NA	NA	0.002	0.0007	NA	NA	NA	NA	NA	NA	NA	NA
TK-5	NA	NA	NA	NA	0.002	0.0007	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL	13.84	47.5	3.99	17.5	9.04	39.66	0.022	0.21	0.722	3.18	0.722	3.18	8,142	35,677

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

AT	ГАСНМЕ	NT S –	FACIL	LITY-W	IDE H	AP CC	ONTRO	LLED	EMISS	IONS S	SUMM	ARY S	HEET	
List all sources o	f emission	s in this	table.	Use ext	ra page	es if ne	cessary.							
E	Formal	Formaldehyde B			Benzene Tolue		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1R	0.185	0.8117	0.002	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.004	0.0171	0.253	1.11
CE-2R	0.185	0.8117	0.002	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.004	0.171	0.253	1.11
.CE-3r	0.185	0.8117	0.002	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.004	0.171	0.253	1.11
CE-4R	0.185	0.8117	0.002	0.0068	0.001	0.0063	0.001	0.0006	6.39E-4	0.0028	0.004	0.171	0.253	1.11
CE-5R	0.317	1.39	0.031	0.1358	0.002	0.0108	2.28.E-4	0.0006	0.001	0.0049	0.007	0.0293	0.436	1.91
CE-6R	0.240	1.05	0.002	0.0087	0.002	0.0081	1.83.E-4	0.0008	8.22E-4	0.0036	0.005	00.220	0.326	1.43
RSV-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.26	1.17	0.26	1.17
RBV-1	6.85E-5	0.0003	2.03E-6	8.93E-6	3.31E-6	1.45E-5	NA	NA	NA	NA	0.002	0.0077	0.002	0.0080
RSV-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.26	1.17	0.26	1.17
RBV-2	6.85E-5	0.0003	2.03E-6	8.93E-6	3.31E-6	1.45E-5	NA	NA	NA	NA	0.002	0.0077	0.002	0.0080
TK-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TK-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ТК-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TK-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TK-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL	1.30	5.69	0.041	0.172	0.008	0.044	0.013	0.0042	0.0044	0.0197	0.552	2.48	2.298	10.136

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G35-C registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that MK Midstream Holdings, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-C (General Permit Modification) for a natural gas compressor and dehydration facility located on Davisson Run Road, Clarksburg, in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.275550 and -80.403099.

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be: VOCs- 14 Tons per year and HAPs -2 Tons per year.

Startup of operation is planned to begin on or about the November 24, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 24th day of October, 2016.

By: MK Midstream Holdings, LLC Ms. Stacey Lucus Vice President, Health, Safety and Environment 65 Professional Place, Suite 200 Bridgeport, WV 26330