JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT

P3 Well Pad Production Facility Pleasants County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-D GENERAL PERMIT

Jay-Bee Oil & Gas, Inc.

P3 Well Pad Production Facility Pleasants County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Single Source Determination Form
- Attachment B Siting Criteria Waiver Not Applicable
- Attachment C Current Business Certificate
- Attachment D Process Flow Diagram
- Attachment E Process Description
- Attachment F Plot Plan
- Attachment G Area Map
- Attachment H G70-D Section Applicability Form
- Attachment I Emission Units/ERD Table
- Attachment J Fugitive Emissions Summary Sheet
- Attachment K Gas Well Affected Facility Data Sheet
- Attachment L Storage Vessels Data Sheet(s)
- Attachment M Small Heaters and Reboilers Not Subject to 40CFR60 Subpart Dc Data Sheet(s)
- Attachment N Internal Combustion Engine Data Sheet(s)
- Attachment O Tanker Truck Loading Data Sheet(s)
- Attachment P Glycol Dehydration Unit Data Sheet(s)
- Attachment Q Pneumatic Controllers Data Sheet
- Attachment R Pneumatic Pump Data Sheet
- Attachment S Air Pollution Control Device/Emission Reduction Device Sheet(s)
- Attachment T Emission Calculations
- Attachment U Facility-wide Controlled Emission Summary Sheet(s)
- Attachment V Class I Legal Advertisement

SECTION I

Application Form

*	
de	P

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

PREVENTION AND CONTROL OF RELOCATIO		TRATION APPLICATIO TO THE CONSTRUCTION, MODIFICATE TE AND OPERATION OF CATED AT THE WELL SITE			
⊠CONSTRUCTION □MODIFICATION □RELOCATION	□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE				
	SECTION 1. GENERAL INFO	RMATION			
Name of Applicant (as registered with	the WV Secretary of State's Offic	ce): Jay-Bee Oil & Gas, Inc.			
Federal Employer ID No. (FEIN): 55-	-073-8862				
Applicant's Mailing Address: 3570 S					
City: Cairo	State: WV	ZIP Code: 26337			
Facility Name: P3 Well Pad Produ	ction Facility		-		
Operating Site Physical Address: Acc If none available, list road, city or tow	ess road off Arvilla Rd.				
City: Friendly	Zip Code: 26146	County: Pleasant	S		
Latitude & Longitude Coordinates (N. Latitude: 39.440460 Longitude: - 81.060782	AD83, Decimal Degrees to 5 digit	s):			
SIC Code: 1311	DAQ Fa	cility ID No. (For existing facilities)			
NAICS Code: 211111					
	CERTIFICATION OF INFOR	RMATION			
Official is a President, Vice Presider Directors, or Owner, depending on bu authority to bind the Corporati Proprietorship. Required records compliance certifications and all Representative. If a business wishes off and the appropriate names an unsigned G70-D Registration Appli utilized, the application	nt, Secretary, Treasurer, General F isiness structure. A business may on, Partnership, Limited Liability of daily throughput, hours of open required notifications must be sig to certify an Authorized Represen d signatures entered. Any admini cation will be returned to the ap will be returned to the applican	I below by a Responsible Official. A Respo Partner, General Manager, a member of the certify an Authorized Representative who s Company, Association, Joint Venture or Se ration and maintenance, general correspond gned by a Responsible Official or an Autho lative, the official agreement below shall be stratively incomplete or improperly sign plicant. Furthermore, if the G70-D form t. No substitution of forms is allowed.	hall have ole ence, rized e checked ed or ns are not		
I hereby certify that is an Auth business (e.g., Corporation, Partnersh may obligate and legally bind the bus shall notify the Director of the Divis	norized Representative and, in tha nip, Limited Liability Company, A siness. If the business changes its ion of Air Quality immediately.	t capacity, shall represent the interest of the ssociation Joint Venture or Sole Proprieton Authorized Representative, a Responsible (Official		
I hereby certify that all information of documents appended hereto is, to the have been made to provide the most	best of my knowledge, true, accu	ermit Registration Application and any sup rate and complete, and that all reasonable e le.	fforts		
	The !-	201			
Responsible Official Signature: Name and Title: Shane Dowell, Offic Email: sdowell@jaybeeoil.com	Manager Phone: 304-628-31 Date:	19 Fax:			
If applicable: Authorized Representative Signature Name and Title: Email:	:Phone: Date:	Fax:			
If applicable: Environmental Contact Name and Title: Email:	Phone: Date:	Fax:			

OPERATING SITE INFORMATION						
Briefly describe the proposed new operation and/or any change(s) to the facility: Natural gas production and separation of liquids followed by dehydration and transfer to a gathering line, owned and operated by others.						
turn on Highland Rd; Continue onto Bonds Creek Rd; Contin	st to Bunnel Run Rd; Bunnell Run to left on Old US 50; Right ue onto Freeland-Hebron Rd; Right turn on Middle Island- Wick Rd; Continue onto Arvilla Rd; approx. 4.7 mile to well					
ATTACHMENTS AND SU	JPPORTING DOCUMENTS					
I have enclosed the following required document	its:					
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).					
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment I wish to pay by credit card. Contact for payment (incl. n 						
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO ⊠\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or						
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NES requirements by complying with NSPS, Subparts IIII and/or NSPS and NESHAP fees apply to new construction or if the s	1111.					
Responsible Official or Authorized Representative Signat	ure (if applicable)					
Single Source Determination Form (must be completed)	- Attachment A					
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C					
🛛 Process Flow Diagram – Attachment D	Process Description – Attachment E					
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G					
In G70-D Section Applicability Form – Attachment H	🛛 Emission Units/ERD Table – Attachment I					
🛛 Fugitive Emissions Summary Sheet – Attachment J						
⊠ Gas Well Affected Facility Data Sheet (if applicable) – A						
Storage Vessel(s) Data Sheet (include gas sample data, U HYSYS, etc.), etc. where applicable) – Attachment L	SEPA Tanks, simulation software (e.g. ProMax, E&P Tanks,					
M	, Heater Treaters, In-Line Heaters if applicable) – Attachment					
☑ Internal Combustion Engine Data Sheet(s) (include manuf N	acturer performance data sheet(s) if applicable) – Attachment					
In Tanker Truck/Rail Car Loading Data Sheet (if applicable)	– Attachment O					
\boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas a information on reboiler if applicable) – Attachment P	nalysis, GRI- GLYCalc [™] input and output reports and					
Pneumatic Controllers Data Sheet – Attachment Q						
🛛 Pneumatic Pump Data Sheet – Attachment R						
⊠ Air Pollution Control Device/Emission Reduction Device applicable) – Attachment S	(s) Sheet(s) (include manufacturer performance data sheet(s) if					
\boxtimes Emission Calculations (please be specific and include all	calculation methodologies used) – Attachment T					
⊠ Facility-wide Emission Summary Sheet(s) – Attachment U	J					
🖾 Class I Legal Advertisement – Attachment V						
⊠ One (1) paper copy and two (2) copies of CD or DVD wit	h pdf copy of application and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and
45CSR19 is based on the definition of Building, structure, facility, or installation as given in
\$45-14-2.13 and \$45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the
same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the
control of the same person (or persons under common control). Pollutant-emitting activities are a part of the
same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit
code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing
Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equ	ipment and	activities i	n the same	industrial	grouping (defined
by SIC code	e)?					
Yes 🖂	No 🗆					

Is there equipment an	d activities	under the	$\operatorname{control}$	of the sam	e
person/people?					

Yes 🗆 🛛 No 🖾

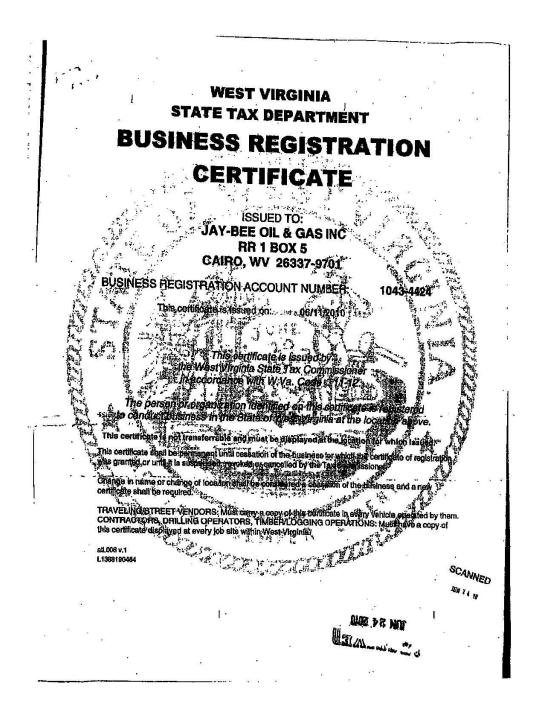
Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes	No	\boxtimes
	 - • •	_

ATTACHMENT B

SITING CRITERIA WAIVER

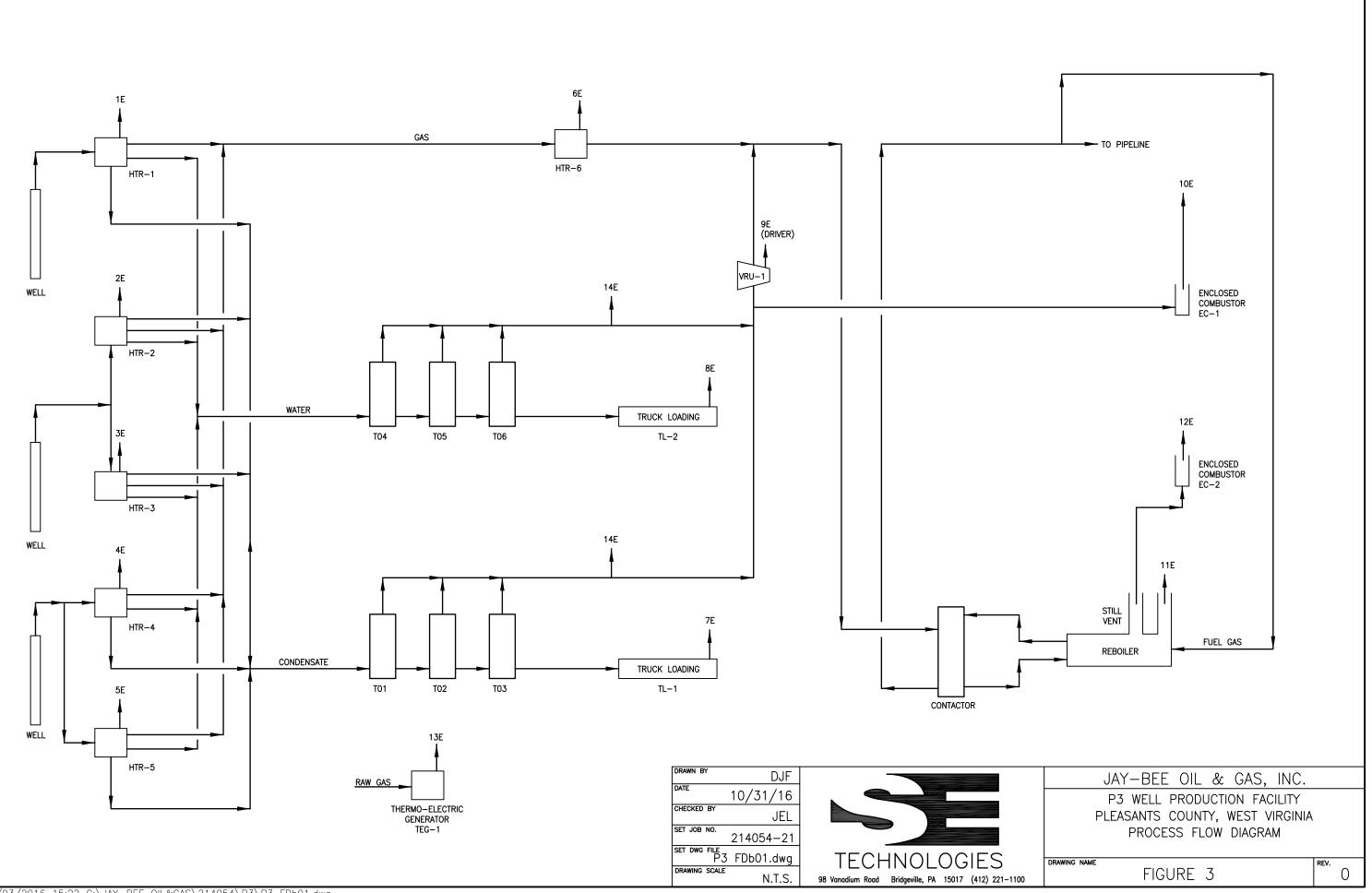
ATTACHMENT B - SITING CRITERIA WAIVER


If applicable, please complete this form and it must be notarized.

Not Applicable

ATTACHMENT C

Current Business Certificate


Attached Current WV Business Certificate

10

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

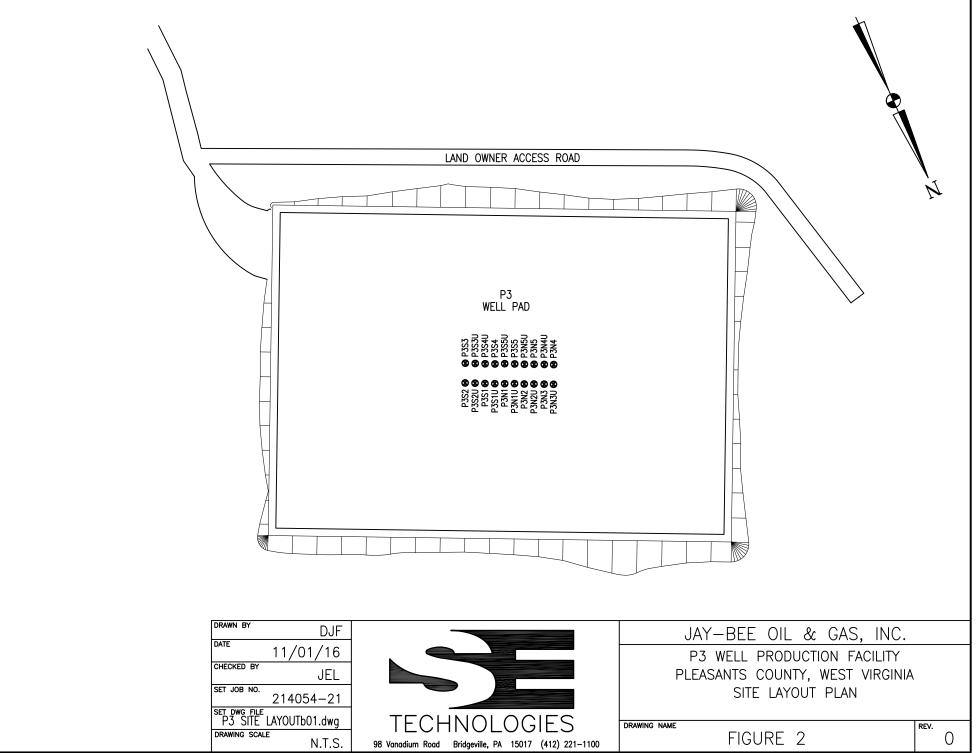
Process Description

ATTACHMENT E – PROCESS DESCRIPTION

At this facility, natural gas and produced fluids (condensate and water) will be received from three wells and passed through gas processing units (GPU) (one per Marcellus well and two per Utica well), to prevent ice formation during subsequent pressure drops, then pass through a three-way separator where condensate and water are separated from the gas. The gas is then dehydrated and transferred to a gathering pipeline owned and operated by others. All gas-fired equipment will use natural gas produced on site as fuel.

Condensate and produced water will be collected in six (6) 210 BBL tanks (three for condensate and three for produced water), pending truck transportation by others. The condensate will be transported to a regional processing facility and the produced water will be transported to a regional disposal facility. Flash, working and breathing losses from these tanks will be routed to a vapor recovery unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available, and will also be utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. A capture and control efficiency of 98% is being applied for this overall combination of controls.

The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent will be comprised of water and various low molecular weight hydrocarbons. Still vent vapors will be routed to an enclosed combustor. A capture and control efficiency of 98% is being applied for the combustor. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line. Water condensing in the still vent column will be routed to the wastewater tanks.


Lastly, Jay-Bee is seeking approval for installation of a Thermoelectric generator to meet the minor electric demands for various monitoring and data tracking equipment.

In summary, upon approval of this application, emission sources at this facility will include the following:

- Five Gas Processing Units (GPUs), each with a 1.5 MMBTU/hr heater (Sources 1E, 2E, 3E, 4E, and 5E).
- One Line Heater (Source 6E).
- Condensate Truck Loading (Max. 300 bbl/day) (Source 7E)
- Produced Water Truck Loading (Max. 636 bbl/day) (Source 8E)
- One Vapor Recovery Unit (VRU) with driver engine (Source 9E), controlling emissions from T01-T06.
- Backup Enclosed Combustor for VRU (Source 10E)
- Three Condensate Tanks (T01-T03)
- Three Produced Water Tanks (T04-T06)
- Dehydration Unit (Source 11E reboiler vent and 12E still vent)
- Enclosed Combustor for control of still vent (Source 12E)
- One Thermoelectric Generator (Source 13E)

ATTACHMENT F

Plot Plan

Plot: env045 11/01/2016 11:10 G:\JAY-BEE OIL&GAS\P3\P3 SITE LAYOUTb01.dwg

ATTACHMENT G

Area Map

Plot: env045 11/01/2016 09:52 G:\JAY-BEE OIL&GAS\214054\P3\FIGURE 1 P3 SITE LOC MAPm01.dwg

ATTACHMENT H

G-70D Section Applicability Form

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	GENERAL PERMIT G70-D APPLICABLE SECTIONS				
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)				
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)				
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH				
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)				
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)				
Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)				
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines				
Section 14.0	Tanker Truck/Rail Car Loading ²				
⊠Section 15.0	Glycol Dehydration Units ³				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emissions Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
HTR-1	1E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-2	2E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-3	3E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-4	4E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-5	5E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-6	6E	Line Heater	TBD		0.5 MMBTU/hr	NEW	None	None
TL-1	7E	Condensate Truck Loading	TBD		30,000 BBL/yr	NEW	None	None
TL-2	8E	Produced Water Truck Loading	TBD		63,600 BBL/yr	NEW	None	None
VRU-1	9E	VRU Driver	TBD	3/19/12	84 HP	NEW	1C	None
EC-1	10E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	N/A	None
T01	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T02	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T03	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T04	9E/10E	Produce Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T05	9E/10E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T06	9E/10E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
RBV-1	11E	Dehydration Unit Re-boiler Vent	TBD		0.500 MMBTU/hr	NEW	None	None
RSV-1	12E	Dehydration Unit Still Vent	TBD		40 MMSCFD	NEW	EC-2	None
EC-2	12E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None
TEG-1	13E	Thermoelectric Generator	TBD		4.4 KW/hr	NEW	None	None
T01-T06	14E	Un-captured/Un-controlled VRU-1 Emissions	TBD			NEW	None	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

3

ATTACHMENT J

Fugitive Emissions Summary Sheet

				NT J – FUGITIVE EMIS					
				s may include loading operation pages for each associated source			emissions, etc		
	Source/Equipm	ent: P3 W		puges for each associated source		neeessary.			
	Leak Detection Method Used		Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (please	describe)		□ None required	
Componen	t Closed		Source o	f Leak Factors	Stream type		Estimated Emi	ssions (tpy)	
Туре	Vent System	Count		ther (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (methane, CO ₂ e	
Pumps	□ Yes ⊠ No	1		API	⊠ Gas □ Liquid □ Both	0.004	0.000	0.344	
Valves	□ Yes ⊠ No	224		EPA	□ Gas □ Liquid ⊠ Both	0.92	0.01	17.1	
Safety Relie Valves	ef \square Yes \boxtimes No	12		EPA		0.02	0.001	1.81	
Open Ended Lines	I ☐ Yes ⊠ No	23		EPA		0.07	0.002	5.29	
Connection		899		EPA		0.49	0.003	7.62	
Compressor	s ⊠ Yes ⊠ No	1		API	Gas Liquid Both	0.016	0.001	1.26	
Flanges	□ Yes ⊠ No	180		API	□ Gas □ Liquid ⊠ Both	0.129	0.003	6.71	
Other ¹	□ Yes □ No			NA					
¹ Other equi	pment types ma	ay include	compressor seals, relief valves,	diaphragms, drains, meters, etc.	I		1	1	
Please prov Blowdowns		ion of the	sources of fugitive emissions (e	.g. pigging operations, equipment	blowdowns, pneuma	atic controllers,	etc.):		
Please indic No	ate if there are	any close	d vent bypasses (include compo	nent):					
	equipment used h, VRU and En			D, thief hatches, tanker truck/rail	car loading, etc.)				

ATTACHMENT K

Gas Well Affected Facility Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
2560 Pending Pending Pending Flow to separator and into gathering line as soon as practical		Flow to separator and into gathering line as soon as practical	Yes
Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
	Flowback Pending Pending	Date of FlowbackWell CompletionPendingPendingPendingPending	Date of FlowbackWell Completionand/or Combustion DevicePendingPendingFlow to separator and into gathering line as soon as practicalPendingPendingPendingPendingPendingFlow to separator and into gathering line as soon as practicalPendingPendingPendingPendingPendingFlow to separator and into gathering line as soon as practicalPendingPendingPendingPendingPendingFlow to separator and into gathering line as soon as

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

W	he	ere.	
,,	nu	10.	

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessels Data Sheet(s)

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- $\hfill\square$ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- \Box Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name P3 Tank Farm	2. Tank Name T01-T03				
3. Emission Unit ID number N/A Vapors to combustors,	4. Emission Point ID number 9E/11E				
emission point 11E					
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
Pending Permit Approval	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011 and on or	\Box Relocation				
before September 18, 2015?					
\Box Yes \boxtimes No					
Was the tank manufactured after September 18, 2015?					
\boxtimes Yes \square No					
7A. Description of Tank Modification (if applicable)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\boxtimes Yes \square No					
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 210 BBL ea					
9A. Tank Internal Diameter (ft.) 12.59B. Tank Internal Height (ft.) 15					
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 196 BBL					
13A. Maximum annual throughput (gal/yr) 1,260,000 ea. 13B. Maximum daily throughput (gal/day) 3,452 ea.					
14. Number of tank turnovers per year: 143 ea.15. Maximum tank fill rate (gal/min) 50					

16. Tank fill method 🗆 Submerged 🔅 Splash 🖾 Bottom Loading								
17. Is the tank system a variable vapor space system? \Box Yes \boxtimes No								
If yes, (A) What is the volume expansion capacity of the system (gal)?								
(B) What are the number of transfers into the system per year?								
18. Type of tank (check all that apply):								
\boxtimes Fixed Roof \square vertical \square horizontal \square flat roof \square cone roof \square dome roof \square other (describe)								
\Box External Floating Roof \Box pontoon roof \Box double deck roof								
Domed External (or Covered) Floating Roof								
□ Internal Floating Roof □ vertical column support □ self-supporting								
□ Variable Vapor Space □ lifter roof □ diaphragm								
□ Pressurized □ spherical □ cylindrical								
□ Other (describe)								

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	ly:										
□ Does Not Apply	□ Does Not Apply □ Rupture Disc (psig)										
□ Inert Gas Blanket of	\Box Inert Gas Blanket of \Box Carbon Adsorption ¹										
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)											
$\Box \text{ Conservation Vent (psig)} \qquad \Box \text{ Condenser}^1$											
0.4 oz. Vacuum Setting 14 oz. Pressure Setting											
Emergency Relief Value	ve (psig)										
Vacuum Setting											
☑ Thief Hatch Weighted	🛛 Yes 🛛	∃ No									
¹ Complete appropriate Air	Pollution	n Control	Device Sh	neet							
20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). T01 – T03 total											
Material Name Flashing Loss Breathing Loss Working Loss Total Estimation Method ¹											
Emissions Loss											
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
VOC (uncontrolled) 397.4 1740.8 0.162 0.710 0.731 3.201 398.3 1744.7 MB & EPA											
VOC (uncontrolled)	397.4	1740.8	0.162	0.710	0.731	3.201	398.3	1744.7	MB & EPA		
HAP (uncontrolled)	397.4 12.97	1740.8 56.81	0.162 0.004	0.710 0.016	0.731 0.011	3.201 0.049	398.3 12.99	1744.7 56.88	MB & EPA MB		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 Other (describe) Welde	đ					
21A. Shell Color: Blue21B. Roof Color: Blue21C. Year Last Painted: New							
22. Shell Condition (if metal and unlined):	·	·					
\square No Rust \square Light Rust \square Dense	🗵 No Rust 🛛 Light Rust 🗍 Dense Rust 🗍 Not applicable						
22A. Is the tank heated? 🗆 Yes 🛛 No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?							
23. Operating Pressure Range (psig): 2 oz – 14	23. Operating Pressure Range (psig): 2 oz – 14 oz						
Must be listed for tanks using VRUs wi	th closed vent system.						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slope					
\boxtimes Yes \square No	NA (ft/ft): 0.05						
25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:							

25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
□ Vapor mounted resilient seal □ Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes \Box No							
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \Box Shoe \Box Rim \Box Other (describe):							
25E. Is the floating roof equipped with a weather shield? \Box Yes \Box No							
25F. Describe deck fittings:							
26. Complete the following section for Interna	8		Does not apply				
26A. Deck Type: Deck Type: Welded Welded 26B. For bolted decks, provide deck construction:							
26C. Deck seam. Continuous sheet construction							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):		For column suppo	orted	26G. For column supported		
		tanks,	# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? 🛛 Yes							
28. Closed Vent System with Enclosed Combu	stor? \boxtimes Yes \square No B	ack-up	to VRU				
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based						
30. Daily Avg. Ambient Temperature (°F):			31. Annual Avg. Maximum Temperature (°F):				
32. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed (-			
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):			mospheric Press	ure (psia): 1	4.11		
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk liquid (°F): 58.5	36A. Minimum (°F): 4	19.3		36B. Max	imum (°F): 67.7		
37. Avg. operating pressure range of tank	37A. Minimum (psig)	g): <0.1 psig		37B. Maximum (psig): 0.8 psig			
(psig): 0-0.5 psig							
38A. Minimum liquid surface temperature (°F)	: 36		Corresponding va		-		
39A. Avg. liquid surface temperature (°F): 65			Corresponding va		-		
40A. Maximum liquid surface temperature (°F)			Corresponding va		e (psia): 0.95		
41. Provide the following for each liquid or gas	1	Add add	litional pages if n	ecessary.			
41A. Material name and composition:41B. CAS number:	Condensate						
	68919-39-1						
41C. Liquid density (lb/gal):41D. Liquid molecular weight (lb/lb-mole):	5.49						
41D. Equilibrio molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole):	81.3 39.56						
41E. Vapor molecular weight (10/10-mole): 41F. Maximum true vapor pressure (psia):	39.50						
41G. Maximum Reid vapor pressure (psia):	5.28						
41H. Months Storage per year.	3.20						
From: January To: December	12						
42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name					
P3 Tank Farm	T04-T06					
3. Emission Unit ID number	4. Emission Point ID number					
N/A Vapors to combustors, emission point 10E	9E/10E					
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:					
Pending Permit Approval	\boxtimes New construction \square New stored material \square Other					
Was the tank manufactured after August 23, 2011 and on or	□ Relocation					
before September 18, 2015?						
\Box Yes \boxtimes No						
Was the tank manufactured after September 18, 2015?						
\boxtimes Yes \square No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?	7C. Was USEPA Tanks simulation software utilized?					
□ Yes						
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the in-	ternal cross-sectional area multiplied by internal height.						
210 BBL							
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15						
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 8						
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7						
12. Nominal Capacity (specify barrels or gallons). This is	also known as "working volume". 190 BBL						
13A. Maximum annual throughput (gal/yr) 2,671,200 (each	h) 13B. Maximum daily throughput (gal/day) 7,318 (each)						
14. Number of tank turnovers per year 335 (max)	15. Maximum tank fill rate (gal/min) 50						
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading						
17. Is the tank system a variable vapor space system? \Box	Yes 🛛 No						
If yes, (A) What is the volume expansion capacity of the sys	stem (gal)?						
(B) What are the number of transfers into the system per year?							
18. Type of tank (check all that apply):							
$\boxtimes \text{ Fixed Roof} \qquad \boxtimes \text{ vertical} \qquad \Box \text{ horizontal} \qquad \Box \text{ flat roof} \qquad \Box \text{ cone roof} \qquad \Box \text{ dome roof} \qquad \Box \text{ other (describe)}$							
□ External Floating Roof □ pontoon roof □ double deck roof							
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support □ self-supporting							
□ Variable Vapor Space □ lifter roof □ diaphrag	□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindri	cal						
□ Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
□ Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	□ Carbon Adsorption ¹
☑ Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors) as back-up to VRU
☑ Conservation Vent (psig)	\Box Condenser ¹
0.4 oz Vacuum Setting 14 oz Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\boxtimes Thief Hatch Weighted \boxtimes Yes \square No	
¹ Complete appropriate Air Pollution Control Device S	Sheet

Material Name	Flashi	g Loss Breath		Flashing Loss		ing Loss	Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
VOC	3.87	16.94					3.87	16.94	MB		
HAPs	0.325	1.43					0.325	1.43	MB		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND	OPERATIC	N INFORMATION						
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined	□ Epoxy	-coated rivets 🛛 Oth	ner (describe) Welded					
21A. Shell Color: Blue		21B. Roof Color: Blu	e	21C. Year	Last Painted: 2016			
22. Shell Condition (if metal and un	nlined):							
🖾 No Rust 🛛 Light Rust	🖾 No Rust 🛛 Light Rust 🔲 Dense Rust 🔲 Not applicable							
22A. Is the tank heated? Yes	⊠ No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?			
23. Operating Pressure Range (psig): 2 oz – 14 oz								
Must be listed for tanks using VRUs with closed vent system.								
24. Is the tank a Vertical Fixed Ro	of Tank?	-	roof provide radius (ft):		s, for cone roof, provide slop (ft/ft):			
\boxtimes Yes \Box No		n/a		n/a				
25. Complete item 25 for Floating Roof Tanks Does not apply								
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal								
□ Vapor mounted resilient seal □ Other (describe):								
25C. Is the Floating Roof equipped with a secondary seal? Yes No								
25D. If yes, how is the secondary seal mounted? (check one) \Box Shoe \Box Rim \Box Other (describe):								
25E. Is the floating roof equipped with a weather shield?								
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply								
26A. Deck Type: Bolted Welded			26B. For bolted decks, provide deck construction:					
26C. Deck seam. Continuous sheet	t constructio	n:	1					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)								
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported			
			tanks, # of columns:		tanks, diameter of column:			
	0. 57 3 7 5							
27. Closed Vent System with VRU? 🛛 Yes 🖾 No								
28. Closed Vent System with Enclosed Combustor? 🛛 Yes 🖾 No								
SITE INFORMATION Items 29 through 35 are N/A for Water Tank								
29. Provide the city and state on which the data in this section are based:								
30. Daily Avg. Ambient Temperature (°F):			31. Annual Avg. Maximum Temperature (°F):					
32. Annual Avg. Minimum Temperature (°F):			33. Avg. Wind Speed (mph):					

34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):		35. Atmospheric Pressure (psia):				
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 36			36B. Maximum (°F): 70		
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig)	<0.1 psig		37B. Maximum (psig): 0.8 psig		
(psig): 0-0.5 psig						
38A. Minimum liquid surface temperature (°F)	: 36	38B. (38B. Corresponding vapor pressure (psia): 0.11			
39A. Avg. liquid surface temperature (°F): 65			39B. Corresponding vapor pressure (psia): .031			
40A. Maximum liquid surface temperature (°F): 70		40B. 0	0B. Corresponding vapor pressure (psia): 0.95			
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if	necessary.		
41A. Material name and composition:	Produced Wate	er				
41B. CAS number:	7732-15-8, 7747-4 7647-14-5	0-7,				
41C. Liquid density (lb/gal):	9-10 lb/gal					
41D. Liquid molecular weight (lb/lb-mole):	Varies					
41E. Vapor molecular weight (lb/lb-mole):	/apor molecular weight (lb/lb-mole): 18					
41F. Maximum true vapor pressure (psia):	F. Maximum true vapor pressure (psia): 0.95					
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.						
From: To:	Continuous					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as	n/a					
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Status ²	Content ³	Volume ⁴
NEW	Tri-ethylene Glycol (TEG)	200

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST

Existing Equipment Installation of New Equipment NEW

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Small Heaters and Reboilers Not Subject to 40CFR60 Subpart Dc Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
HTR-1	1E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-2	2E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-3	3E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-4	4E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-5	5E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-6	6E	Line Heater	TBD	NEW	0.5	1263
RBV-1	11E	Reboiler	TBD	NEW	0.500	1263
TEG-1	13E	Thermoelectric Generator	TBD	NEW	4.4 KW/hr	1263

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Internal Combustion Engine Data Sheet

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

shall also u	se this form	•					
Emission Unit I	D#1	VRU-1					
Engine Manufac	turer/Model	Cummi	ns G5.9				
Manufacturers F	Rated bhp/rpm	84 @	1800				
Source Status ²		Ň	IS				
Date Installed/ Modified/Remov	ved/Relocated ³	Upon Recei	pt of Permit				
Engine Manufac /Reconstruction		After 3	/1/2013				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □NESHAP ZZZZ/NSPS JJJJ Window □NESHAP ZZZZ Remote Sources 		 □ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 40CFR60 Subpart JJJJ JJJJ Certified? 40CFR60 Subpart IIII IIII Certified? 40CFR63 Subpart ZZZZ NESHAP ZZZZ/ NSPS JJJJ Window NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		4S	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		RG					
H ₂ S (gr/100 scf))	<1					
Operating bhp/r	pm	84 @ 1800					
BSFC (BTU/bhg	o-hr)	7914					
Hourly Fuel Th	oughput	526.4 ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel Throughput (Must use 8,760 hrs/yr unless emergency generator)		4.62 MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
AP	NO _x	0.19	0.81				
AP	СО	0.37	1.62				
AP	VOC	0.04	0.18				
AP	SO ₂	< 0.01	< 0.01				
AP	PM ₁₀	0.013	0.06				
AP	Formaldehyde	0.015	0.065				
AP	Total HAPs	0.022	0.10				
AP	GHG (CO ₂ e)	90	393				

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB	Two Stroke Lean Burn	4SRE	B Four St	troke Rich Burn		
	4SLB	Four Stroke Lean Burn					
7	Enter th	ne Air Pollution Control Device (APCD) type design	nation(s)	using the fo	ollowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Low Emission Combus Oxidation Catalyst		
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas	RG I	Raw Natura	al Gas /Production Gas	D Diesel	
9	Enter t	he Potential Emissions Data Reference desig	nation u	sing the f	Collowing codes. Attac	h all reference data use	ed.
	MD	Manufacturer's Data	1	AP AF	P-42		
	GR	GRI-HAPCalc [™]	(OT Ot	her (please	list)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# VRU-1)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □

⊠ NSCR □ SCR □ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: Miratech Model #: VXC-1408-04-HSG Design Operating Temperature: 1000 °F Design gas volume: 430± scfm Service life of catalyst: 2+ years, depending on site Provide manufacturer data? 🛛 Yes 🗆 No conditions Volume of gas handled: 430 acfm at 1,078 °F Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F Reducing agent used, if any: None Ammonia slip (ppm): N/A Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Part of the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check. Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \boxtimes No How often is catalyst recommended or required to be replaced (hours of operation)? Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced. How often is performance test required? Initial 🗌 Annual Every 8,760 hours of operation Field Testing Required □ No performance test required. If so, why (please list any maintenance required and the applicable sections in

NSPS/GACT,

ATTACHMENT O

Tanker Truck Loading Data Sheet(s)

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-1 & TL-2 Emission Point ID#:				t: 7E & 8E Year Installed/Modified: TBD			lified: TBD	
Emission Unit Descriptio	n: Condensate	Truck Lo	oading					
			Loading A	Area Data				
Number of Pumps: 2		Numbe	r of Liquids	Loaded: 2			nber of tru l) time: 2	cks/rail cars loading
Are tanker trucks/rail car If Yes, Please describe:	s pressure teste	d for lea	ks at this or a	any other loc	ation?	□ Yes	🗆 No	⊠ Not Required
Provide description of clo	osed vent system	n and an	y bypasses.	None				
Are any of the following Closed System to tank Closed System to tank Closed System to tank Proje	ker truck/rail ca ker truck/rail ca	r passing r passing r not pas	g a MACT le g a NSPS lev ssing an annu	vel annual lea el annual lea al leak test a	k test? .nd has v	-)
Time	Jan – Ma	r	Apr	- Jun		Jul – Sept		Oct - Dec
Hours/day	24		2	4		24		24
Days/week	7			7 7			7	
	Bull	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	(Condens	ondensate Produced W		ater			
Max. Daily Throughput (1000 gal/day)		12.6			26.7			
Max. Annual Throughput (1000 gal/yr)		3,780		8,014				
Loading Method ¹		SUB		SP				
Max. Fill Rate (gal/min)		50		50				
Average Fill Time (min/loading)		120		120				
Max. Bulk Liquid Temperature (°F)	Iax. Bulk Liquid75remperature (°F)75		75					
True Vapor Pressure ²	Vapor Pressure ² 3.6 psia		a	n/a				
Cargo Vessel Condition ³		U			U			
Control Equipment or Method ⁴		None		None				
Max. Collection Efficient	cy	n/a			n/a			

Max. Control (%)	Efficiency	n/a	n/a	
Max.VOC Loading (lb/hr)		2.96	0.14	
Emission Rate	Annual (ton/yr)	4.00	0.19	
Max.HAP	Loading (lb/hr)	0.16	0.016	
Emission Rate	Annual (ton/yr)	0.22	0.02	
Estimation Method ⁵		EPA	EPA	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
2	At maxim	um bulk liquid temperature				

Ballasted Vessel С U 3 В Cleaned Uncleaned (dedicated service) Other (describe) 0

MB

Material Balance

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Carbon Adsorption Enclosed Combustion Device Dedicated Vapor Balance (closed system) CAVB

F Flare ECD

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 то

EPA

5

ТМ Test Measurement based upon test data submittal 0 Other (describe)

ATTACHMENT P

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

		ch Glycol Dehy				
		clude gas sample		RI- GLYCalc TM	¹ input and	
		ges if necessary				
Manufacturer: Exter			Model: 48875001			
Max. Dry Gas Flow	Rate: 40 mmscf/day		8	at Input: 0.500 MMH	3TU/hr	
Design Type: 🛛 TE	EG DEG	EG	Source Status ¹ : NS			
Date Installed/Mode	ified/Removed ² : TBD		Regenerator Still V	ent APCD/ERD ³ : TO)	
Control Device/ERI	D ID# ³ : EC-2		Fuel HV (BTU/scf):	: 1263		
H ₂ S Content (gr/100	0 scf): <0.001%		Operation (hours/ye	ear): 8760		
Pump Rate (gpm): 7	7.5					
Water Content (wt 9	%) in: Wet Gas: Sat	urated Dr	y Gas: 7.0 lb/MMscf			
Is the glycol dehydr	ration unit exempt fro	om 40CFR63 Section	764(d)? ⊠Yes	□ No: If Yes, answ	er the following:	
The actual annual a	verage flowrate of na	tural gas to the glyco	l dehydration unit is l	less than 85 thousand	d standard cubic	
		cedures specified in §		-	⊠ No	
•		from the glycol dehy etermined by the proc	-	-		
Is the glycol dehydr	ration unit located wi	thin an Urbanized Are	ea (UA) or Urban Clu	ster (UC)? 🗆 Yes	⊠No	
Is a lean glycol pun	np optimization plan	being utilized? 🗆 Yes	s 🛛 No			
Recycling the glyco \Box Yes \boxtimes No	l dehydration unit ba	ck to the flame zone of	of the reboiler.			
Recycling the glyco □ Yes ⊠ No	ol dehydration unit ba	ck to the flame zone of	of the reboiler and mi	ixed with fuel.		
Still vent emissi	ons to the atmosphere ons stopped with value		e reboiler? Still ven	t to enclosed combu	stor (EC-2).	
Still vent emissi						
🗌 Flash Tank	e following equipment	nt is present. nuously burns conder	iser or flash tank vap	ors		
		Control Device				
	Pollutants Controlled			Guaranteed Control	Efficiency (%)	
Hydrocarbons			99+% (Note: 98% used for calculations)			
	1	Emissio	ns Data	1		
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)	
		AP-42	NO _x	0.05	0.22	
		AP-42	СО	0.04	0.18	
RBV-1 / 11E	Reboiler Vent	AP-42	VOC	<0.01	0.01	
KD, I/IIL	Reboner vent	AP-42	SO_2	< 0.01	< 0.01	
		AP-42	PM ₁₀	<0.01	0.02	
		AP-42	GHG (CO ₂ e)	60.4	264.5	

		GRI-GlyCalc TM	VOC	0.62	2.73
	-	GRI-GlyCalc TM		0.008	0.036
		GRI-GIYCalc ^{-m}	Benzene	0.008	0.036
RSV-1 / 12E	Glycol Regenerator	GRI-GlyCalc TM	Toluene	0.03	0.13
K3V-1/12E	Still Vent	GRI-GlyCalc TM	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc [™]	Xylenes	< 0.01	<0.01
		GRI-GlyCalc [™]	n-Hexane	0.02	0.07
	Glycol Flash Tank	GRI-GlyCalc [™]	VOC		
		GRI-GlyCalc TM	Benzene		
None		GRI-GlyCalc [™]	Toluene		
None		GRI-GlyCalc [™]	Ethylbenzene		
		GRI-GlyCalc [™]	Xylenes		
		GRI-GlyCalc [™]	n-Hexane		

1 Enter the Source Status using the following codes: NS ES

Existing Source

Construction of New Source MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or 2 removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: Condenser FL Flare

NA None CD

CCCondenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- Manufacturer's Data MD AP AP-42
 - GR GRI-GLYCalc[™] OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controllers Data Sheet

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
🗌 Yes 🛛 No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						

ATTACHMENT R

Pneumatic Pump Data Sheet

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size
-			

ATTACHMENT S

Air Pollution Control Device/Emission Reduction Device Sheet

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: T01-T06	Make/Model: Condensate and Produced Water Tanks				
Primary Control Device ID: VRU-1	Make/Model: Arrow/WRC2				
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ⊠ Yes □ No				
Secondary Control Device ID: EC-1	Make/Model: Hy-Bon CH 10.0				
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ⊠ Yes □ No				

	VAPOR COMBUSTION (Including Enclosed Combustors)						
		General II	nformation				
Control Device ID#: EC-1			Installation	Installation Date: TBD – Upon Permit			
Maximum Rated Total Flow scfh	Capacity cfd					Heat Content 3TU/scf	
		Control Devic	e Informati	on			
Enclosed Combustion Do	vice	Type of Vapor Co Elevat		ontrol?		Ground Flare	
Manufacturer: Hy-Bon Model: CH-10.0			Hours of o	peration	per year? 8	3760	
List the emission units whose	e emissions	are controlled by this	vapor contr	ol device	(Emission	n Point ID#)	
Emission Unit ID# Emission Source	Descriptio	n	Emission Unit ID#	Emissio	on Source	Description	
RBV-1 Dehydration Un	t Still Vent						
If this vapor combustor	controls en	nissions from more the	an six (6) en	nission ur	iits, please	e attach additional pages.	
Assist Type (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?	
SteamAiPressureNo		feet	feet			☐ Yes ☐ No Provide determination.	
		Waste Gas	Information	ı			
Maximum Waste Gas Flo 64.3 (scfm)	w Rate	Heat Value of W 660.7 I	⁷ aste Gas Sti BTU/ft ³	ream	Exit Vel	elocity of the Emissions Stream (ft/s)	
Provide	n attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.	
		Pilot Gas I	nformation				
Number of Pilot Lights 1		Flow Rate to Pilot ame per Pilot 798 scfh		nput per 100 BTU		Will automatic re-ignition be used? ⊠ Yes □ No	
If automatic re-ignition is us will go into manual mode w							
1 1 11	Is pilot flame equipped with a monitor to detect the If Yes, what type? 🛛 Thermocouple 🗌 Infrared						
unavailable, please indicate	Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (<i>If unavailable, please indicate</i>). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.						
	Additional information attached? 🛛 Yes 🔲 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and						

	VAPOR RECOVERY UNIT See Attachment N								
	General Information								
Emission U	Unit ID#:	Installation	n Date:	Relocated					
	Device In	formation							
Manufactu Model:	rer:								
List the en	nission units whose emissions are controlled by this	s vapor recov	very unit (Emission Poi	int ID#)					
Emission Unit ID#Emission Source DescriptionEmission Unit ID#Emission Source Description									
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please a	uttach additional pages.					
Please atta	information attached?	1	0	time) for the vapor					
The regist	rant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements					

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

ATTACHMENT T

Emission Calculations

Jay-Bee Oil & Gas, Inc.

P3 Well Pad Production Facility Pleasants County, WV

Emission Unit ID	Description	NOx lb/hr	CO lb/hr	CO ₂ , lb/hr	CH ₄ lb/hr	VOC ⁴ lb/hr	SO ₂ lb/hr	PM lb/hr	Benzene lb/hr	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldchyde lb/hr	Total HAPs lb/hr
HTR-1	GPU #I	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-2	GPU #2	0.150	0,126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0,003
HTR-3	GPU #3	0,150	0.126	181,1	0.003	0.008	0.001	0.011	3.15 <u>E-06</u>			0,003	5,10E-06	<u>l.13E-04</u>	0,003
HTR-4	GPU #4	0.150	0.126	181.1	0,003	0,008	0.001	0.011	3.15E-06			0,003	5.10E-06	I.13E-04	0.003
HTR-5	GPU #5	0,150	0.126	181.1	0,003	0.008	0,001	0.011	3.15E-06			0,003	5.10E-06	I.13E-04	0.003
HTR-6	Line Heater	0,050	0.042	60.4	0.0012	2,75E-03	0,0003	0.004	1.05E-06			0.001	1.70E-06	3,75E-05	
TL-I	Truck Loading - Condensate ²					2.96						0,16			0,160
TL-2	Truck Loading - Produced Water ²					0.143						0.016			0.016
VRU-I	VRU Compressor	0.185	0,370	89.7	0.126	0.04	0.0004	0.013	0.001	1.65E-05	1.30E-04		3.71E-04	0.015	0.022
TEG-1	Thermoelectric Generator	0.001	0,001	1.6	0.0007	7.15E-05	7.80E-06	9.88E-05	2.73E-08			2.34E-05	4.42E-08		2.45E-05
T01-T06	Condensate Tanks + Water Tanks ³			28,5		8,06			0.004	5.74E-04	7.70E-03	0,241	0.0094		0.263
EC-1	Condensate Tanks + Water Tanks	0,922	4.57	1564.6	1.14	8.07	5.91E-04	0.047	1.31E-05			0.011		4.67E-04	0.012
RBV-I	500 MBTU/hr Reboiler	0,050	0,042	60.4	0.0012	0.003	3.00E-04	0.0038	1.05E-06			0.001	1.70 <u>E-06</u>	3,75E-05	0.001
EC-2	Dehydration Unit Combustor	0.272	1.03	417.4	0,008	0,63	5,91E-04	0,037	0.008			0.018	0,031	3.63E-04	0.057
	Truck Traffic Fugitive Dust							4.30							
	Fugitive Emissions				0,37	0.39									0.004
Total (Exluding	; Fugitive Emissions)	2.23	6,68	3128.24	1.30	11.89	0.007	0,16	0.013	5.91E-04			0,041	0.016	0.546
Total		2.23	6.68	3137,42	1.66	12.27	0.007	4,46	0.013	5,91E-04	7.83E-03	0,462	0.041	0,016	0.550

Emission		NOx	CO	CO2.	СН	VOC	SO ₂	РM	Benzene	Ethylbenzene	Xylenes	n-Hexane	Toluene	Formaldchyde	Total HAPs
Unit ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tę y	tpy	фу	tpy	tpy	tpy	tpy
HTR-I	GPU #1	0,657	0.552	793.4	0,015	0.036	0,004	0.050				0,012	2.23E-05	4.93E-04	0.012
HTR-2	GPU #2	0,657	0.552	793,4	0.015	0.036	0.004	0,050				0,012	2.23E-05	4,93E-04	0.012
HTR-3	GPU #3	0.657	0.552	793,4	0.015	0.036	0,004	0.050				0,012	2.23E-05	4,93E-04	0.012
HTR-4	GPU #4	0,657	0,552	793.4	0,015	0.036	0,004	0.050				0.012	2.23E-05	4.93E-04	0,012
HTR-5	GPU #5	0.657	0.552	793.4	0.015	0,036	0.004	0.050				0.012	2.23E-05	4,93E-04	0.012
HTR-6	Line Heater	0.219	0.184	264,5	0.005	0.012	0,001	0.017				0.004	7.45E-06	1.64E-04	0,004
TL-1	Truck Loading - Condensate ²					4,00						0.216			0.22
TL-2	Truck Loading - Produced Water ²					0.193						0.021			0.021
VRU-I	VRU Compressor	0.811	1.62	393.0	0.553	0,18	0. <u>0017</u>	0,057	0.0046	7,22E-05	5.68E-04		0.002	0,065	0.096
TEG-1	Thermoelectric Generator	0.006	0,00	6.9	0,003	3. <u>13E-04</u>	3,42E-05	4.33E-04	1,20E-07			1.03E-04	1.94E-07		1.07E-04
T01-T06	Condensate Tanks + Water Tanks ³			124.9		35. <u>31</u>			0,018	2 <u>,52E-03</u>	0.034	1.06	0,041		1,15
EC-1	Condensate Tanks + Water Tanks	4.04	20.00	6,852.8	0.260	1,79	0.003	0,207				0.041		0.002	0.051
RBV-1	500 MBTU/hr Reboiler	0,219	0.184	264,5	0.005	0.012	0,001	0.017				0.004	7.45E-06	1,64E-04	0,004
EC-2	Dehydration Unit Combustor	L,19	4.50	1828.1	0,03	2.74	0,003	0.161	0.035			0.078	0,136	0.002	0,25
	Truck Traffic Fugitive Dust							3,77							
•	Fugitive Emissions			40.18	1.61	1.70							_		0.018
Total (Extuding	Fugitive Emissions)	9.77	29.25	13701.70	0.94	44,42	0.029	0.708	0.058	2.59E-03		1.48	0.179	0.071	1.86
Tetal	-	9.77	29,25	13741.88	2.54	46.11	0.029	4.48	0.058	2.59E-03	0.0343	1,48	0.179	0,071	1.87

¹ Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This line represents the un-controlled 2%.

² Truck loading is un-controlled.

³ This line represents the 2% Un-captured/Controlled associated with the VRU.

⁴ VRU-1 and EC-1 would not run concurrent so hourly VOC emissions for these sources are only accounted for once.

Jay-Bee Oil &Gas ,LLC ENGINE EMISSIONS

P3 Well Pad Production Facility Pleasants County, WV

Controlled Emission Rates

Source VRU-1

Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins G5,9 Rich Burn Natural				
Manufacturer Rating Speed at Above Rating	84 1,800	hp rpm			
Configuration (In-line or V)	In-line	rpin			
Number of Cylinders	6				
Engine Bore	4.020	inches			
Engine Stroke	4.720	inches			
Engine Displacement	359	cu. in.			
Engine BMEP	103	psi			
Fuel Consumption (HHV)	7,914	Btu/bhp-hr			191000-000-00 AL-0
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr	lb/day b/MMBu
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44 Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89 453.59 grams = 1 pound
VOC (NMNEHC) CO2	0.220 449	0.04 83	0.18 364	18 37,716	0.98 2,000 pounds = 1 ton
CO2e	40	90	393	57,710	1,550
Total Annual Hours of Operation	8,760				
SO2		0.0004	0.0017		100000 COOK
PM2.5		0.00632	0.0277		00021
PM (Condensable)		0.00659	0.0289		
CH4		0.12623	0.5529		40 CFR 98, Table C-2
N ₂ O		0.01148	0.0503		CONCEPTION Factor From 40 CFR 98, Table C-2
acrolein acetaldehyde		0.00175 0.00185	0.0077 0.0081		
formaldehyde	0.080	0.0148	0.0649		Per Mfg.
benzene		0.00105	0.0046		1 2 20 001 58
toluene		0.00037	0.0016		1000555
ethylbenzene		1.6E-05	0.0001		0000248
xylenes		0.00013	0.0006		(2000)195
methanol Total HAPs		0.00203 0.02202	0.0089 0.0964		
		0.02202	0.0904		an a
Exhaust Parameters:					
Exhaust Gas Temperature	1,078	deg. F			
Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate	420	lb/hr			
Exhaust Gas Mass Flow Rate	430	acfm			
Exhaust Stack Height	96	inches			
	8.00	feet			
Exhaust Stack Inside Diameter	4	inches			
	0.333	feet			
Exhaust Stack Velocity	82.1	ft/sec			
-	4,927.4	ft/min			

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Sources: HTR-1 Through HTR-5 *Emissions shown below are for each Gas Processing Unit

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,084.8 scfd 0.000 Mole % 8760

NOx	0.1501	lb/hr	0.657	tpy
со	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CH4	0.0035	lb/hr	0.0151	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	ib/hr	0.050	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	3.15E-06	lb/hr	0.000	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

AP-42 Factors Used

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
РМ	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source HTR-4 Line Heater

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 9,694.9 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
со	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CH4	0.0012	lb/hr	0.005	tpy
CO2e	60	lb/hr	264	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

AP-42 Factors Used

.

NOx	100 lb/MMC	F
CO	84 lb/MMC	F
CO ₂	120,000 lb/MMC	F Global Warming Potential = 1
VOC	5.5 lb/MMC	F
РМ	7.6 lb/MMC	F
SO ₂	0.6 lb/MMC	F
CH4	2.3 lb/MMC	F Global Warming Potential = 25
N ₂ O	2.2 lb/MMC	F Global Warming Potential =298
нсон	0.075 lb/MMC	F
Benzene	0.0021 lb/MMC	F
n-Hexane	1.8 lb/MMC	F
Toluene	0.0034 lb/MMC	F

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-1 Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 985.1 MBtu/hr 98.0 % 1263.0 Btu/scf 19100.9 scfd 0.000 Mole % 8760

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CH4	0.0023	lb/hr	0.010	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
CO	84 Ib/MMCF	
CO2	120,000 ib/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
РМ	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-1 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare Estimated Hours VRU Offline 98.0 % 2313.1 Btu/scf 0.126 MMSCFD 12.116 MMBTU/hr 5 %

45.887 MMSCF/yr 106,140 MMBTU/yr

NOx	0.82	lb/hr	3.61	tpy
CO	4.48	lb/hr	19.64	tpy
CO2	1,416.29	lb/hr	6,203.36	tpy
CO2e	1,445.61	lb/hr	6,331.76	tpy
VOC	8.06	lb/hr	1.77	tpy
CH4	1.14	lb/hr	0.25	tpy
N2O	0.0027	lb/hr	0.0117	tpy
PM	0.0398	lb/hr	0.1744	tpy
СНОН	0.0004	lb/hr	0.0017	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0094	lb/hr	0.0413	tpy
Toluene	0.0000	lb/hr	0.0001	tpy
Total HAP	0.0099	lb/hr	0.0431	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	CO	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 Ib/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF	
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF	
AP-42 Table 1.4-3	Нехапе	1.8 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

P3 Well Pad Production Facility Pleasants County, WV

Source RBV-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 MBtu/hr 98.0 % 1263.0 Btu/scf 9,695 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CH4	0.0012	lb/hr	0.005	tpy
CO2e	60.4	lb/hr	264.5	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

.

.

AP-42 Factors Used

NOx	100 li	b/MMCF	
со	84 II	b/MMCF	
CO2	120,000 H	b/MMCF	Global Warming Potential = 1
VOC	5.5 II	b/MMCF	
PM	7.6 1	b/MMCF	
SO ₂	0.6 1	b/MMCF	
CH4	2.3 H	b/MMCF	Global Warming Potential = 25
N ₂ O	2.2 li	b/MMCF	Global Warming Potential = 298
нсон	0.075 II	b/MMCF	
Benzene	0.0021 I	b/MMCF	
n-Hexane	1.8 1	b/MMCF	
Toluene	0.0034 1	b/MMCF	

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-2 Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H₂S Concentration Hours of Operation 985.1 MBtu/hr 98.0 % 1263.0 Btu/scf 19100.9 scfd 0.000 Mole % 8760

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CH4	0.0023	lb/hr	0.010	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

100 lb/MMCF	
84 lb/MMCF	
120,000 lb/MMCF	Global Warming Potential = 1
5.5 lb/MMCF	
7.6 lb/MMCF	
0.6 lb/MMCF	
2.3 lb/MMCF	Global Warming Potential = 25
2.2 lb/MMCF	Global Warming Potential =298
0.075 lb/MMCF	
0.0021 lb/MMCF	
1.8 lb/MMCF	
0.0034 lb/MMCF	
	84 lb/MMCF 120,000 lb/MMCF 5.5 lb/MMCF 7.6 lb/MMCF 0.6 lb/MMCF 2.3 lb/MMCF 2.2 lb/MMCF 0.075 lb/MMCF 0.0021 lb/MMCF 1.8 lb/MMCF

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 660.7 Btu/scf 0.09264 MMSCFD 2.55 MMBtu/hr

811.526 MMSCF/yr 22,341 MMBtu/yr

NOx	0.17	lb/hr	0.76	tpy
CO	0.94	lb/hr	4.13	tpy
CO2	298.11	lb/hr	1,305.74	tpy
CO2e	298.42	lb/hr	1,307.09	tpy
VOC	0.62	lb/hr	2.72	tpy
CH4	0.006	lb/hr	0.0246	tpy
N2O	0.001	lb/hr	0.0025	tpy
PM	0.029	lb/hr	0.128	tpy
Benzene	0.008	lb/hr	0.035	tpy
СНОН	0.000	ib/hr	0.001	tpy
n-Hexane	0.016	lb/hr	0.070	tpy
Toluene	0.031	lb/hr	0.136	tpy
Total HAPs	0.055	lb/hr	0.241	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	РМ	7.6 Ib/MMSCF	
AP-42 Table 1.4-3	снон	0.075 Ib/MMSCF	

P3 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source TEG-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

13.0	MBtu/hr
98.0	%
1263.0	Btu/scf
252.1	scfd
0.000	Mole %
8760	

NOx	0.0013	lb/hr	0.006	tpy
со	0.0011	lb/hr	0.005	tpy
CO2	1.56	lb/hr	6.84	tpy
CO2e	1.57	lb/hr	6.88	tpy
CH4	7.48E-04	ib/hr	3.28E-03	tpy
VOC	7.15E-05	lb/hr	3.13E-04	tpy
SO2	7.80E-06	lb/hr	3.42E-05	tpy
H2S	0.00E+00	lb/hr	0.00E+00	tpy
PM10	9.88E-05	ib/hr	4.33E-04	tpy
СНОН	9.75E-07	lb/hr	4.27E-06	tpy
Benzene	2.73E-08	lb/hr	1.20E-07	tpy
N-Hexane	2.34E-05	lb/hr	1.03E-04	tpy
Toluene	4.42E-08	lb/hr	1.94E-07	tpy
Total HAPs	2.45E-05	lb/hr	1.07E-04	tpy

AP-42 Factors Used

NOx	100 lb/MMCF	MMCF	
CO	84 Ib/MMCF	MMCF	
CO ₂	120,000 lb/MMCF Global Warming Potential =	MMCF Global Warming Potential =	1
VOC	5.5 lb/MMCF	MMCF	
PM	7.6 lb/MMCF	MMCF	
SO ₂	0.6 lb/MMCF	MMCF	
CH₄	2.3 lb/MMCF Global Warming Potential =	MMCF Global Warming Potential = 2	5
N ₂ O	2.2 lb/MMCF Global Warming Potential =	MMCF Global Warming Potential =29	8
нсон	0.075 lb/MMCF	MMCF	
Benzene	0.0021 lb/MMCF	MMCF	
n-Hexane	1.8 lb/MMCF	MMCF	
Toluene	0.0034 lb/MMCF	MMCF	

P3 Well Pad Production Facility Pleasants County, WV

TL-1 Truck Loading - Condensate

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

L_L=12.46*(SPM/T)

Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature	S= P=	0.6 3.1 66.84	lb/1000 gallons psia lb/lb-mol deg R
Maximum Daily Loading	300	BBL/d	ay
Hours of Loading	12,600 9	gpd hr	
	<u></u>	ш	
Total VOC	26.7	lb/day	2.96 lb/hr
Total HAP		lb/day	0.16 lb/hr
Maximum Annual Loading	90,000 3,780,000	BBL/y gpy	r
Total VOC	8001.6	lb/vr	4.00 tpy
Total HAP	432.5		0.22 tpy
Emissions Total VOC		%	
Total HAP	3.841	%	

P3 Well Pad Production Facility Pleasants County, WV

TL-2 Truck Loading - Produced Water

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

L_L=12.46*(SPM/T)

Where,					
Loading Loss		L _L =	0.132	lb/1000 ga	ullons
Saturation Factor		S=	0.6	-	
True Vapor Pressure		P=	0.3	psia	
Molecular Weight of Vapors		M≔	30.68	lb/lb-mol	
Temperature		T=	520	deg R	
Maximum Daily Loading	636		BBL/d	ay	
	26,712		gpd		
Hours of Loading	9		hr		
Total VOC			lb/day		lb/hr
Total HAP		0.1	lb/day	0.016	lb/hr
Maximum Annual Loading	190,800	_	BBL/y	r	
	8,013,60	0	gру		
T I HOG	1 0	<u></u>	11 <i>J</i>	0.40	
Total VOC			lb/yr	0.19	
Total HAP	<u> </u>	42.5	lb/yr	0.02	tpy
Emissions					
m / 11/00	ac a=	/	A /		
Total VOC Total HAP			% %		

P3 Well Pad Production Facility Pleasants County, WV

Truck Loading Fugitive Dust

None	None	
2385	1125	
80	80	
1	1	
0.25	0.25	
10	10	lhs
27	27	54000
18	18	
Produced Water Transportation Trucks	Condensate Transportation Trucks	
	. ~	
	18 27 10 0.25 1 80 2385 None	18 27 10 0.25 1 80 2385 None 18 27 10 0.25 1 80 1125 None

		PM	PM-10
=	Particle size multiplier	0.8	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
— M	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	27
= 0	Number of days per year with precipitation >0.01 in.	157	157

E (lb/ vehicle mile traveled) = $k \times 5.9 \times (s + 12) \times (S + 30) \times (W + 3)^{0.7} \times (w + 4)^{0.5} \times ((365 - p) + 365)$

Item 1 - Produced Water	ced Water	PM	PM-10
Э	lb/vmt	7.378804125	1.220015589
Е	$[Ib \neq VMT] \times [VMT + trip] \times [Trips + Hour] = [b/hr$	1.845	0.305 lb/hr
ы	$[1b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = 1$	2.200	0.364 tp)
Item 2 - Condensate	ensate	PM	PM-10
F	11. /	7 378804175	1 22001 5589

Item 2 - Conde	ensate	FM	PM-10	
ш	lb/vmt	7.378804125	1.220015589	
ш	$[Ib \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = Ib/br$	1.845	0.305 lb/hr	_
ш	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = t$	1.038	0.172 tpy	

Flash Emission Calculations - Condensate Using Gas-Oil Ratio Method			
Un-Controlled			
S	ite specific data		
Gas-Oil-ratio =	500 scf/bbl Using GOW from comparable well pads.		
Throughput =	90,000 bbl/yr		
Stock tank gas molecular weight =	39.56 g/mole		
Number of wells =	3		
Number of tanks =	3		
	Conversions		
1 lb =	453.6 g		
1 mole =	22.4 L		
1 scf =	28.32 L		
1 ton =	2000 lb		
Equations			
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$			
E_{TOT} = Total stock tank flash emissions (TPY)			
R = Measured gas-oil ratio (scf/bbl)			
Q = Throughput (bbl/yr)			
MW = Stock tank gas molecular weight (g/mole)			
$E_{spec} = I$	$E_{TOT} \times X_{spec}$		
E _{spec} = Fl	ash emission from constituent		
$X_{spec} = W$	eight fraction of constituent in stock tank gas		

.

Jay-Bee Oil & Gas - P3

Flash Emissions

Constituent	TPY	
Total	2480.9099	
VOC	1740.8296	
Nitrogen	6.20E-01	
Carbon Dioxide	3.90E+00	
Methane	2.46E+02	
Ethane	4.89E+02	
Propane	6.43E+02	
Isobutane	1.74E+02	
n-Butane	4.00E+02	
2,2 Dimethylpropane	4.89E+00	
Isopentane	1.37E+02	
n-Pentane	1.44E+02	
2,2 Dimethylbutane	5.19E+00	1
Cyclopentane	0.00E+00	1
2,3 Dimethylbutane	7.52E+00	1
2 Methylpentane	3.99E+01	
3 Methylpentane	2.38E+01	1
n-Hexane	5.21E+01	HAP
Methylcyclopentane	3.80E+00	
Benzene	8.93E-01	HAP
Cyclohexane	5.38E+00	1
2-Methylhexane	1.16E+01	1
3-Methylhexane	1.14E+01	1
2,2,4 Trimethylpentane	0.00E+00	1
Other C7's	1.08E+01	1
n-Heptane	1.67E+01	1
Methylcyclohexane	1.04E+01	1
Toluene	2.03E+00	НАР
Other C8's	1.70E+01	1
n-Octane	5.66E+00	1
Ethylbenzene	1.24E-01	HAP
M & P Xylenes	1.46E+00	НАР
O-Xylene	1.98E-01	НАР
Other C9's	7.05E+00	1
n-Nonane	1.69E+00	1
Other C10's	2.65E+00	1
n-Decane	3.47E-01]
Undecanes (11)	3.72E-01	1

E_{TOT} Sum of C3+

Flash Emission Calculations - Produced Water Using Gas-Water Ratio Method										
Un-Controlled										
Site specific data										
Gas-Water-ratio =	4.06 scf/bbl Using GOW from comparable well pads.									
Throughput =	190,800 bbl/yr									
Stock tank gas molecular weight =	30.68 g/mole									
Number of wells =	3									
Number of tanks =	3									
Conversions										
1 lb =	453.6 g									
1 mole =	22.4 L									
1 scf =	28.32 L									
1 ton =	2000 lb									
	Equations									
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)}$	$\frac{1}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$									
$E_{TOT} = T_{C}$	otal stock tank flash emissions (TPY)									
	easured gas-oil ratio (scf/bbl)									
	roughput (bbl/yr)									
	ock tank gas molecular weight (g/mole)									
	$T_{TOT} \times X_{spec}$									
$E_{\text{spec}} = Fla$	ish emission from constituent									
	eight fraction of constituent in stock tank gas									

Jay-Bee Oil & Gas - P3

Flash Emissions

Constituent	TPY	1
Total	33.1209	
VOC	16.9397	1
Nitrogen	5.51E-01	1
Carbon Dioxide	4.98E-01	1
Methane	9.80E+00	1
Ethane	5.33E+00	1
Propane	3.81E+00	1
Isobutane	9.51E-01	1
n-Butane	2.68E+00	
2,2 Dimethylpropane	4.21E-02	
Isopentane	1.35E+00	
n-Pentane	1.87E+00	
2,2 Dimethylbutane	6.99E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.35E-01	
2 Methylpentane	7.51E-01	
3 Methylpentane	4.84E-01	
n-Hexane	1.31E+00	HAP
Methylcyclopentane	1.22E-01	1
Benzene	2.38E-02	HAP
Cyclohexane	1.68E-01	1
2-Methylhexane	3.65E-01	
3-Methylhexane	3.79E-01	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	3.49E-01	
n-Heptane	6.36E-01	
Methylcyclohexane	3.37E-01	1
Toluene	5.23E-02	HAP
Other C8's	5.79E-01	
n-Octane	1.82E-01	1
Ethylbenzene	3.64E-03	HAP
M & P Xylenes	2.98E-02	HAP
O-Xylene	3.31E-03	HAP
Other C9's	1.76E-01	1
n-Nonane	3.28E-02	1
Other C10's	3.84E-02	1
n-Decane	6.62E-03	1
Undecanes (11)	6.29E-03	1

E_{TOT} Sum of C3+ Jay-Bee Oil & Gas, Inc.

P3 Well Pad Production Facility Pleasants County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Carbon Dioxide from gas analysis: HAPs from gas analysis: Hexane

Gas Density:

18.40	weight percent
59.35	weight percent
0.32	weight percent

0.62 weight percent 0.0580 lb/scf

Emission Source:	Count	Oil & Gas Production	* VOC % -	VOC (lb/hr)	VOC (tpy)	CO2 (lb/hr)	CO2 (tpy)	CH4 (lb/hr)	CH4 (tpy)	CO2e (tpy)	Hexane (tpy)
Pump Seals:											
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											
Gas/Vapor:	168	0.02700 scf/hr	18.4	0.048	0.212	0.001	0.004	0.156	0.6837	17.096	0.007
Light Liquid:	56	0.05000 scf/hr	100.0	0.162	0.711						
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	12	0.04000 scf/hr	18.4	0.005	0.022	0.000	0.000	0.017	0.0724	1.809	0.001
Open-ended Lines, gas:	23	0.06100 sef/hr	18.4	0.015	0.066	0.000	0.001	0.048	0.2115	5.288	0.002
Connectors:											
Gas:	674	0.00300 scf/hr	18.4	0.022	0.095	0.000	0.002	0.070	0.3049	7.624	0.003
Light Liquid:	225	0.00700 scf/hr	100.0	0.091	0.400						
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:											
Gas:	120	0.00086 lb/hr	18.4	0.019	0.083	0.000	0.001	0.061	0.2683	6.708	0.003
Light Liquid:	60	0.00300 scf/hr	100.0	0.010	0.046						

Blowdowns:

	Pressure (psig)	Internal Volume (scf)	Projected Blowdown Events (per year)		Gas Released Per Year (lbs)	Composition of Gas (% by volume)	I Released	Released (tpy)	CO2e (tpy)
VOC	290	65	16	1040	124.8	0.70	0.0100	0.0438	
CH4	290	65	16	1040	44.0	0.10	0.0005	0.0022	0.0546
HAPs	290	65	16	1040	116.3	0,02	0.0003	0.0013	

1.115	gitive Calculati	043.
	lb/hr	tpy
VOC	0.388	1.698
CH4	0.367	1.607
CO2	0.002	0.009
CO2e	9.175	40.185
HAPs	0.004	0.018

Notes:

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			•		0.0015	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			•		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21,405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

0.058

	Gas Density (STP) =
Ideal Gross (HHV)	1,257.7
Ideal Gross (sat'd)	1,236.6
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Condensate Tank Flash Vapor Composition Information:

Gas Density (STP) =

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2		-	-	•			-		-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.027	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	99.892	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

0.111

Ideal Gross (HHV) Ideal Gross (sat'd)	2,283.4 2,244.3
GPM	-
Real Gross (HHV)	2,313.1
Real Net (LHV)	2,124.9

Water Tank Flash Vapor Composition Information:

	Fuel Gas mole %	Fuel M.W. lb/lb-mole	Fuel S.G.	Fuel Wt. %	LHV, dry Btu/scf	HHV, dry Btu/scf	AFR vol/vol	VOC NM/NE	Z Factor	GPM
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-			
Oxygen, O2	-	-	-	-			•		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.605
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.201
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.640
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.471
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	0.952
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.277

0.069

Gas Density (STP) =

Ideal Gross (HHV) Ideal Gross (sat'd)	1,424.0 1,399.9
GPM	-
Real Gross (HHV)	1,430.5
Real Net (LHV)	1,302.3

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.158	0.044	0.002	0.211	0.0	0.0	-		0.0016	
Carbon Dioxide, CO2	0.164	0.072	0.002	0.343	0.0	0.0	0.012		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		-	
Water	54.800	9.864	0.341	46.930	0.0	0.0	-		0.5483	
Oxygen, O2	-	-	-	-	0.0	0.0	-			
Methane, CH4	30.600	4.909	0.170	23.356	278.3	309.1	5.104		0.3054	
Ethane, C2H6	7.680	2.309	0.080	10.987	124.3	135.9	1.829		0.0762	2.043
Propane	3.300	1.455	0.050	6.923	76.4	83.0	1.022	6.923	0.0324	0.904
Iso-Butane	0.506	0.294	0.010	1.399	15.2	16.5	0.157	1.399	0.0049	0.165
Normal Butane	1.190	0.692	0.024	3.291	35.8	38.8	0.454	3.291	0.0115	0.373
Iso Pentane	0.278	0.201	0.007	0.954	10.3	11.1	0.113	0.954	0.0028	0.101
Normal Pentane	0.328	0.237	0.008	1.126	12.2	13.1	0.133	1.126	0.0033	0.118
Hexane	0.406	0.350	0.012	1.665	17.9	19.3	0.197	1.665	0.0040	0.166
Heptane	0.590	0.591	0.020	2.813	30.1	32.5	1.310	2.813	0.0059	0.271
	100.000	21.018	0.726		600.4	659.3	10.330	18.172	0.9979	4.141

	Gas Density (STP) =	0.058
Ideal Gross (HHV)	659.3	
Ideal Gross (sat'd)	648.7	
GPM	-	
Real Gross (HHV)	660.7	
Real Net (LHV)	601.7	

Specific Gravity of Air, @ 29.92 in. Hg and 60 -F, One mole of gas occupies, @ 14.696 psia & 32 -F, One mole of gas occupies, @ 14.696 psia & 60 -F, 28.9625 359.2 cu ft. per lb-mole 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	<u>0.00000</u> mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0,000 grains H2S/100 scf
		0.00000 mole % H2S

ldeal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z Tactor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Gal/Mole
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Iviole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

Unit Information Sheet

Date: May 27, 2014 Unit #: 6041 Customer: To Be Determined

To:

Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Pac	kage Information
Compressor Manufacturer:	Arrow
Compressor Model:	VRC2
Compressor Serial Number:	12095
Compressor Cylinders:	6.5" x 4.0" x 2.25"
Driver Manufacturer:	Cummins
Driver Model:	G5.9
Rated HP & Speed	84 HP @ 1800 RPM
Driver Type:	4-stroke Rich Burn
Engine Serial Number:	73364060
Engine Manufacturing Date:	3/19/2012
Engine Catalyst Model:	VXC-1408-04-HSG
Engine Catalyst Element:	VX-RE-08XC
Engine AFR Model:	AFR-1RD-10-TK2
Engine Stack Height:	9' 5"
Engine Stack Diameter:	4"
Ор	erating Information
Suction Pressure:	N/A psig
Discharge Pressure:	N/A psig
Design Capacity:	N/A MSCFD
Gas Specific Gravity:	N/A

Emission Output information included in the attached catalyst specification sheet.

MIRATECH Emissions Control Equipment Specification Summary

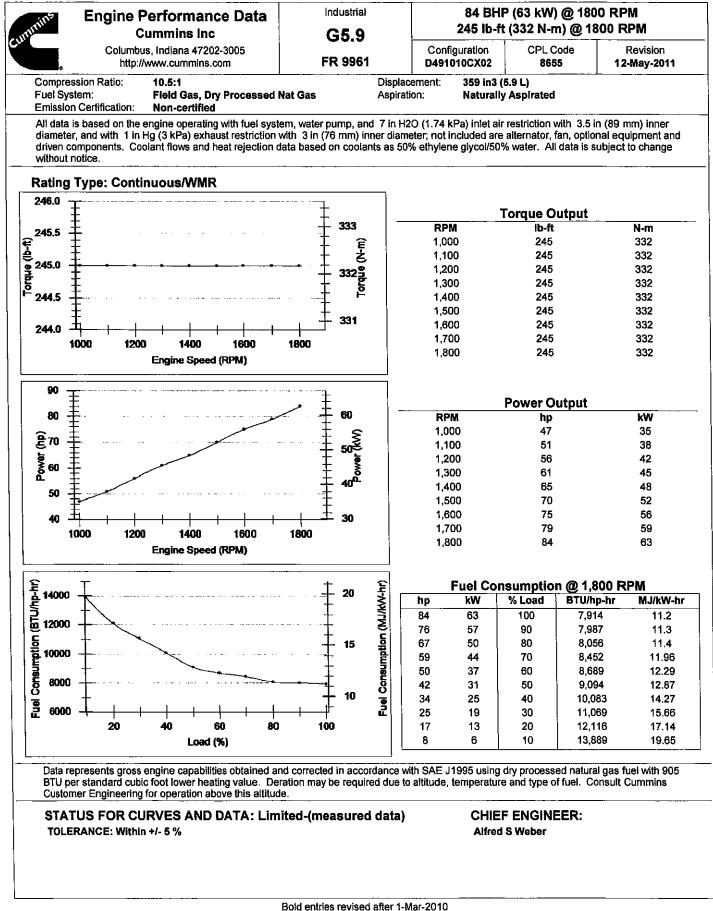
			Proposal Number:	TJ-14-0081 Rev(1)
Engine Data				
Number of Engines:	1			
Application:	Gas Con	npression		
Engine Manufacturer:	Cummin	S		
Model Number:	G 5.9			
Power Output:	84 bhp			
Lubrication Oil:	0.6 wt%	sulfated ash or less		
Type of Fuel:	Natural (Gas		
Exhaust Flow Rate:	430 acfn	n (cfm)		
Exhaust Temperature:	1,078°F			
System Details				
Housing Model Number:	VXC-140	08-04-HSG		
Element Model Number:	VX-RE-0	D8XC		
Number of Catalyst Layers:	1			
Number of Spare Catalyst Laye				
System Pressure Loss:		es of WC (Fresh)		
Sound Attenuation:		BA insertion loss		
Exhaust Temperature Limits:	750 – 12	250°F (catalyst inlet); 1350	°F (catalyst outlet)	
NSCR Housing & Catalys	st Details			
Model Number:	VXC-14	08-04-XC1		
Material:	Carbon	Steel		
Approximate Diameter:	14 inche			
Inlet Pipe Size & Connection:		F Flange, 150# ANSI stand	-	
Outlet Pipe Size & Connection:		F Flange, 150# ANSI stand	ard bolt pattern	
Overall Length:	53 inche	es		
Weight Without Catalyst:	152 lbs			
Weight Including Catalyst:	162 lbs			
Instrumentation Ports:	1 inlet/1	outlet (1/2" NPT)		
Emission Requirements				
			Warranted	
	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOx	11.41	91%	1.00	1.00 g/bhp-hr
CO	14.64	86%	2.00	2.00 g/bhp-hr
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

0%

1.00

0.08


0.5%

CH₂O

Oxygen

1.00 g/bhp-hr

.

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Intake Air System Maximum allowable air ten	nerature rice	over ambia	nt of In	taka Marij	old (Note	rally								
Aspirated Engines) or To parameter impacts emis	urbo Compres	sor inlet (Tu	urbo-ch	arged Eng				15	delta de	eg F		8.3	delta	deg C
Cooling System														
Maximum coolant tempera	ture for engine	e protection	contro	ls				215	deg F			102	dea C)
Maximum coolant operatin	-	•			ink temp)	:			deg F			100	-	
Exhaust System														
Maximum exhaust back pr	essure:							2	in-Hg			7	kPa	
Recommended exhaust pi		er diameter)	:					3	•			76		
Lubrication System														
Nominal operating oil pres	sure													
@ minimum low								10	nsi			69	k₽≏	
@ maximum rate								50	•			345		
Minimum engine oil pressu	-	protection o	leviree					00	P.01			540		
@ minimum low	-	protocilon	1041069					10	nsi			69	k Pa	
-								10	hai			09	nr d	
Fuel System Maximum fuel inlet pressu	ire:							1	psi			5	kPa	
	-							•				•		
Engine low idle speed:									RPM					
Engine low idle speed: Maximum low idle speed:							1	,800	RPM					
Engine low idle speed: Maximum low idle speed: Minimum low idle speed:								,800 800	RPM RPM					
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed								,800	RPM RPM					
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed:								,800 800 1,800	RPM RPM RPM					
Maximum low idle speed: Minimum low idle speed: Engine high idle speed	e at closed thr	ottle low idle	e speed	i:				,800 800 1,800	RPM RPM			68	N-m	
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed:	e at closed thr	ottle low idle		i:		75% L	1	,800 800 1,800	RPM RPM RPM		50%		N-m	
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed:	e at closed thr	100%		l:	1,800		1	,800 800 1,800	RPM RPM RPM Ib-ft	1,800			N-m	
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power		100% RPM	Load	l: kW	63	RPM hp	1	1,800 800 1,800 50	RPM RPM RPM Ib-ft	42	RPM hp	_oad	N-m 	
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed	1,800	100% RPM hp	Load 63		•	RPM hp	1 _ oad	1,800 800 1,800 50 kw	RPM RPM RPM Ib-ft		RPM hp	Load		
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power	1,800 84 245	100% RPM hp	63 332	kW	63 184	RPM hp	- oad 47	1,800 800 1,800 50 kW N-m	RPM RPM RPM Ib-ft	42 123	RPM hp	Load	31 KV	-m
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque	1,800 84 245 -1	100% RPM hp lb-ft	63 332 -3	kW N-m	63 184 -5	RPM hp lb-ft	- Oad 47 249	1,800 800 1,800 50 kW N-m kPa	RPM RPM RPM Ib-ft	42 123 -9	RPM hp lb-ft	_oad 1	31 kV 67 N-	-m Pa
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure	1,800 84 245 -1 121	100% RPM hp lb-ft in-Hg	63 332 -3	kW N-m kPa L/s	63 184 -5 101	RPM hp lb-ft in-Hg	- oad 47 249 -17	1,800 800 1,800 50 50 kW N-m kPa L/s	RPM RPM RPM Ib-ft	42 123 -9 82	RPM hp Ib-ft in-Hg	_oad 1	31 kV 67 N- 30 kF	-m Pa İs
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intak Manifold Pressure Intak Manifold Pressure	1,800 84 245 -1 121	100% RPM hp lb-ft in-Hg ft3/min ft3/min	63 332 -3 57 203	kW N-m kPa L/s	63 184 -5 101 360	RPM hp Ib-ft in-Hg ft3/min	- Oad 47 249 -17 48 170	1,800 800 1,800 50 50 kW N-m kPa L/s	RPM RPM Ib-ft	42 123 -9 82 292	RPM hp lb-ft in-Hg ft3/min	Load 1 -	31 kV 67 N- 30 kF 39 L/	-m Pa is is
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant	1,800 84 245 -1 121 430 1,078 3,824	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min	63 332 -3 57 203 581 67	kW N-m kPa L/s L/s deg C kW	63 184 -5 101 360 999 3,244	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min	- oad 47 249 -17 48 170 537 57	kW N-m kPa L/s deg C kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min	Load 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV	-m Pa śs śs eg C N
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Ambient	1,800 84 245 -1 121 430 1,078 3,824 1,194	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min	Load 63 332 -3 57 203 581 67 21	kW N-m L/s L/s L/s deg C kW kW	63 184 -5 101 360 999 3,244 784	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min	- oad 47 249 -17 48 170 537 57 14	kW kPa L/s kW kPa kVs kV kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min	_oad 11 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV	-m Pa Vs Vs eg C N N
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intek Manifold Pressure Intek Manifold Pressure Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Ambient Heat Rejection to Exhaust	1,800 84 245 -1 121 430 1,078 3,624 1,194 2,523	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	Load 63 332 -3 57 203 581 67 21 44	kW N-m L/s L/s L/s deg C kW kW kW	63 184 -5 101 360 999 3,244 784 1,916	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	- oad 47 249 -17 48 170 537 57 14 34	1,800 800 1,800 50 50 kW kV kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV	-m Pa Ss Heg C N N N
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intake Manifold Pressure Intake Manifold Pressure Inter Air Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914	100% RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr	Load 63 332 -3 57 203 581 67 21 44	kW N-m L/s L/s L/s deg C kW kW	63 184 -5 101 360 999 3,244 784 1,916 8,214	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/np-hr	- oad 47 249 -17 48 170 537 57 14 34	kW kPa L/s kW kPa kVs kV kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV	-m Pa Ss Heg C N N N
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intek Manifold Pressure Intek Manifold Pressure Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Ambient Heat Rejection to Exhaust	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	Load 63 332 -3 57 203 581 67 21 44 11	kW N-m L/s L/s deg C kW kW kW KW MJ/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 16.51	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	- oad 47 249 -17 48 170 537 57 14 34 12	1,800 800 1,800 50 50 kW kV kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094 16.52	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV	-m Pa %s %s eg C W W UJ/kW-
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inter Air Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16,52 26	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/np-hr vol/vol	Load 63 332 -3 57 203 581 67 21 44 11	kW N-m L/s L/s L/s deg C kW kW kW	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 26	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol	- oad 47 249 -17 48 170 537 57 14 34 12	1,800 800 1,800 50 50 kW kPa L/s L/s L/s L/s kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094 16.52 26	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M	-m Pa 's eg C W W W J/KW-
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16,52 26	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg	Load 63 332 -3 57 203 581 67 21 44 11	kW N-m L/s L/s deg C kW kW kW KW MJ/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 26	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/mp-hr vol/vol deg	- oad 47 249 -17 48 170 537 57 14 34 12	1,800 800 1,800 50 50 kW kPa L/s L/s L/s L/s kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094 16.52 26	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M	-m Pa 's eg C W W W J/KW-
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intet Air Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr	63 332 -3 57 203 581 67 21 44 11 26	kW N-m L/s L/s deg C kW kW kW MJ/kW-hr deg	63 184 -5 101 360 999 3,244 784 1,916 8,214 10,51 28 1,3	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/np-hr vol/vol deg g/hp-hr	- oad 47 249 -17 48 170 537 57 14 34 12	1,800 800 1,800 50 50 kW kPa L/s L/s L/s L/s kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094 16.52 26 1.62	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de	-m Pa Ss Seg C W W UJ/KW- eg
Engine low idle speed: MaxImum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Intel Air Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst NOx NOx ppm w/o Catalyst	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg	63 332 -3 57 203 581 67 21 44 11 26	kW N-m L/s L/s deg C kW kW kW KW MJ/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 10,51 28 1,3	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/mp-hr vol/vol deg	- oad 47 249 -17 48 170 537 57 14 34 12 26	1,800 800 1,800 50 50 kW kPa L/s L/s L/s L/s kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft	42 123 -9 82 292 902 2,596 613 1,371 9,094 16.52 26 1.62	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg	_oad 1 - 1 4	31 kV 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de	-m Pa Ss Seg C W W UJ/KW- eg
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst VOC ppm with Catalyst NOx NOx ppm with Catalyst	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48 11.41	100% RPM hp lb-ft in-Hg ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/val deg g/hp-hr g/hp-hr	Load 63 332 -3 57 203 581 67 21 44 11 26 15.3	kW N-m L/s L/s deg C kW kW kW kW MJ/kW-hr deg g/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 28 1,3 13,7	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/no-hr vol/vol deg g/hp-hr g/hp-hr	_oad 47 249 -17 48 170 537 537 14 34 12 26 18.37	I,800 800 I,800 50 50 kW kPa L/s kW kW kW kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft V-hr	42 123 -9 82 292 902 2,596 613 1,371 9,094 18.52 26 1.62 12.85	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr	<u>1</u> 1 1 4	31 kV 67 N- 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de 23 g/	-m Pa % eg C W W IJ/kW- eg
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed: Engine high idle speed: Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Flow Exhaust Gas Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst VOC ppm with Catalyst NOx NOx ppm with Catalyst NOx ppm with Catalyst CO	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48 11.41	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr	Load 63 332 -3 57 203 581 67 21 44 11 26 15.3	kW N-m L/s L/s deg C kW kW kW MJ/kW-hr deg	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 28 1,3 13,7	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/np-hr vol/vol deg g/hp-hr	_oad 47 249 -17 48 170 537 537 14 34 12 26 18.37	1,800 800 1,800 50 50 kW kPa L/s L/s L/s L/s kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft V-hr	42 123 -9 82 292 902 2,596 613 1,371 9,094 18.52 26 1.62 12.85	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr	<u>1</u> 1 1 4	31 kV 67 N- 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de 23 g/	-m Pa Ss Seg C W W JJ/kW-l JJ/kW-l
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Flow VOC ppm w/o Catalyst NOx ppm w/o Catalyst NOx ppm w/o Catalyst CO Go ppm w/o Catalyst CO ppm w/o Catalyst CO ppm w/o Catalyst	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48 11.41 14.64	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr g/hp-hr g/hp-hr	Load 63 332 -3 57 203 581 67 21 44 11 26 15.3 19.63	kW N-m kPa L/s L/s deg C kW kW kW MJ/kW-hr deg g/kW-hr g/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 28 1.3 13.7 0.82	RPM hp lb-ft in-Hg ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/np-hr volvol deg g/hp-hr g/hp-hr g/hp-hr	-oad 47 249 -17 48 170 537 57 14 34 12 26 18.37 1.1	I,800 800 I,800 50 kW kPa L/s L/s deg C kW kW kW kW kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft V-hr hr	42 123 -9 82 292 902 2,596 613 1,371 9,094 16,52 26 1.62 12,85 1.38	RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr g/hp-hr	Load 1: - 1 4 17, 17,	31 kW 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de 23 g/ 85 g/	-m Pa 's eg C N N N N N N N N N N K V-h t /k V-h t
Engine low idle speed: Maximum low idle speed: Minimum low idle speed: Engine high idle speed Governor break speed: Maximum torque available Engine Speed Output Power Torque Intake Manifold Pressure Inlet Air Flow Exhaust Gas Temperature Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Coolant Heat Rejection to Ambient Heat Rejection to Exhaust Fuel Consumption Air Fuel Ratio (dry) Ignition timing (BTDC) Total Hydrocarbons VOC ppm with Catalyst NOx NOx ppm with Catalyst NOx NOx ppm with Catalyst OC oppm with Catalyst	1,800 84 245 -1 121 430 1,078 3,824 1,194 2,523 7,914 16.52 26 1.48 11.41 14.64	100% RPM hp lb-ft in-Hg ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr g/hp-hr g/hp-hr	Load 63 332 -3 57 203 581 67 21 44 11 26 15.3 19.63	kW N-m L/s L/s deg C kW kW kW kW MJ/kW-hr deg g/kW-hr	63 184 -5 101 360 999 3,244 784 1,916 8,214 16,51 28 1.3 13.7 0.82	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr g/hp-hr g/hp-hr	-oad 47 249 -17 48 170 537 57 14 34 12 26 18.37 1.1	I,800 800 I,800 50 50 kW kPa L/s kW kW kW kW kW kW kW kW kW kW kW kW	RPM RPM Ib-ft V-hr hr	42 123 -9 82 292 902 2,596 613 1,371 9,094 16,52 26 1.62 12,85 1.38	RPM hp lb-ft ft3/min ft3/min deg F BTU/min BTU/min BTU/min BTU/min BTU/hp-hr vol/vol deg g/hp-hr g/hp-hr g/hp-hr	Load 1: - 1 4 17, 17,	31 kW 67 N- 30 kF 39 L/ 38 L/ 83 de 46 kV 11 kV 24 kV 13 M 26 de 23 g/ 85 g/	-m Pa Ss Seg C W W W JJ/kW-1

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Cranking System (Cold Starting Capability) Unaided Cold Start: Minimum cranking speed 250 RPM Cold starting aids available Block Heater, Oil Pan Heater Maximum parasitic load at 10 deg F @ **Noise Emissions** Тор 89.9 dBa **Right Side** 90.1 dBa Left Side 89.8 dBa Front 90.5 dBa Exhaust noise emissions 103.1 dBa Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

			Ambient Temp	deg F (deg C)		
ſ	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
0 (0)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
1000 (305)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
2000 (610)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
3000 (914)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
4000 (1219)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
5000 (1524)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
6000 (1829)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
10000 (3048)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)

Altitude ft (m)

End of Report

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

cummin ⁵	Gas/Site Analysis & Engine Selection/Derate	•	Industrial G5.9	NG 84 HP (63 kW) @1800 RPM / 10.5:1 Compression Ratio
,»	Cummins Stationary Natural Gas Engines		Available FR Number(s From Selection:) Catalyst Fuel Rating
	Date: 4/10/2014		FR9936, FR 9 961	Industrial Continuous
Engine (as entered	by user)			
Application:		Industria	al	
Fuel Type: Engine:		NG G5.9		
Fuel Rating:		Catalysi		
Compression Ratio:		10.5:1		
RPM:		1800		
HP (Natural Gas):		84 HP (
HP (Propane):		NA HP	(NA KW)	
Site (as entered by				·····
Ambient Air Temper	ature:	90° F		
Relative Humidity: Altitude:		30%		
Cooling Fan Load:		1200 ft 8 HP		
Generator Efficiency	c.	93%	1	
	culated from Site Conditions Entered):	0.427 in	Hg	
Dew Point (Calculat	ed from Site Conditions Entered):	54.4° F	-	
Dry Barometer (Cal	culated from Site Conditions Entered):	28,22 in	Hg	
Derate (Natural Ga			· · · · · · · · · · · · · · ·	
Advertised NG Rati		84 HP (63 kW)	
	to Site Altitude and Temperature: to Gas Composition:	2%		
	Low BTU Fuel:	0%		A The sample
	Methane Number:	0%		/ percentage for
Total Power Availat	ble (%) After All Applicable Derates:	98% of	rated	∠_= "Name Sample" is
Total Site Derate du	e to Altitude, Temperature, and Gas Composition:	2 HP (1	kW)	99.991%. Results are based on the input sample
	sepower from Selected Engine Running on			normalized to 100%.
	nposition at Specified Site (includes 8 HP reduction for	74105		
for cooling fan loac);	74 HP (55 KVV)	
Derate (Propane)	D-11		ALL 1140	
Advertised Propane			(NA KW)	
	to Site Altitude and Temperature: ble (%) After All Applicable Derates:	NA%	roted	
	ue to Altitude and Temperature:		(NA kW)	
	sepower from Selected Engine Running on Propane			
	ncludes 8 HP reduction for for cooling fan load):	NA HP	(NA kW)	
	equirements for Turbocharged Engines			
Maximum Allowed based on FR9936	Intake Manifold Temperature for Selected Engine is na °F w	ith a Maximur	n Aftercooler Water Inlet (C	AC air inlet) of na °F
			0	
Factory Set Points		+	/ Supplied	Recommended
Engine Speed Targ	icr	1800 m		Ignition Timing Is
Spark Plug Gap:		0.020 i		Recommended Due
Excess Oxygen Ta	-	na %O	- 1	Methane Number of
Propane Engine Ti		na °BT		Fuel
	air Press at Carb Low:	na inH3		
-	s at Sec Reg Target:	na inH:		
Excess Oxygen Ta	•	0.45%	~2	Recommended Timina: 25 °
Natural Gas Engin		Factor	y: 26 °BTDC	BTDC
	ir Press at Carb Target:	5 inH2		
Notural Cas Dress	at Sec Reg Target:	15 inH	20	

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

is Sample Analysis			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:		0.26	0,91
n-Hexane:		0.15	0.62
n-Heptane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonane:		0	0
n-Decane:		0	0.02
Hydrogen:		0	0
Hydrogen Sulfide (H ₂ S):		0 ppm	0 ppm
Carbon Dioxide:	•	0.15	0.32
Carbon Monoxide:	····	0	0
Nitrogen:		0.39	0.53
Oxygen:		0	0
	centage: 99.991%)	Normalized Percentage: 100%	
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/scf	42.5 MJ/scm
Standard Conditions (50F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Standard Conditions (60F/14.696psia)	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:		56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
Wobbe Index :	LHV/√SG	1345 Btu/scf	50.11 MJ/scm
	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:	····	20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1,253
Ideal Gas Density:		0.0549 ibm/ft3	0.8788 kg/m3 std
H/C Ratio:		3,492	3.492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-*R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
		7914	
BTU/HP-HR:			
Maximum Fuel Flow (SCFH):		583	da E.d. Companyon Ion Rodin from TRACA
BTU/HP-HR: Maximum Fuel Flow (SCFH): Maximum Fuel Flow Calculation is Ba	sed on 100% Continuou	583	10.5:1 Compression Ratio from FR9936
BTU/HP-HR: Maximum Fuel Flow (SCFH):		583	10.5:1 Compression Ratio from FR9936

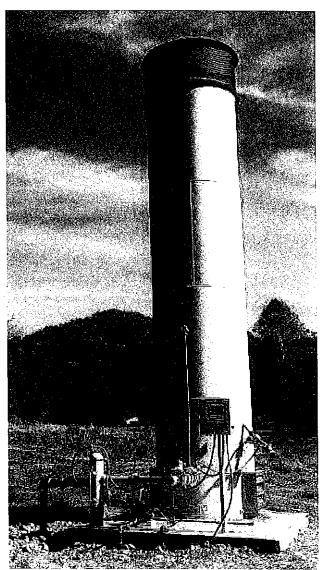
Differences for Selected Engine				
Description of FR Differences for Selected Engin				
Description of FR Differences for Selected Engi	ne FR9936	FR9961	<u>з</u>	
Description of FR Differences for Selected Engin Exhaust Manifold		FR9961 Wet]	

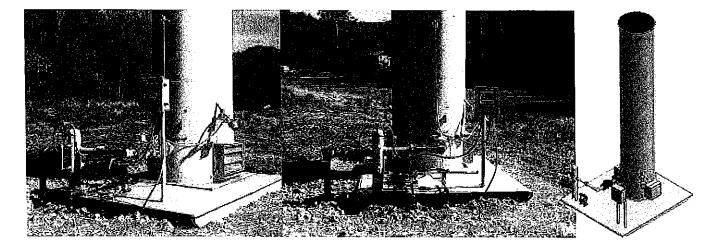
©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

Page 4 of 5

Gas Analysis To References & St				Date: 4/10/2014	
·				Tool Revision Date: 3/27/2014	
Performance Parameters:		Reference Standard or Document			
		Standard Units		Metric Units	
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.0	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa	
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.0	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa	
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.0	•	ASTM D 3588-91 @ 0C/101.3kPa	
Higher Heating Value (HHV):	by volume	ASTM D 3588-91 @ 60F/14.0		ASTM D 3588-91 @ 15.5C/101.3kPa	
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.0	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa	
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.	696psia	ASTM D 3588-91 @ 0C/101.3kPa	
Methane Number:		Cummins Methane Number		Cummins Methane Number	
Specific Gravity (SG) (Ideal Rel. D		<u> </u>		—	
Wobbe Index :	LHV/√SG HV/√SG	Ideal gas @ 60F/14.696psia Ideal gas @ 60F/14.696psia		Ideal gas @ 15.5C/101.3kPa Ideal gas @ 15.5C/101.3kPa	
Molecular Weight:		-		-	
Specific Heat (Cp):		@ 60F/14.696psia		@ 15.5C/101.3kPa	
Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia		@ 15.5C/101.3kPa	
Ideal Gas Density:		ASTM D 3588-91 @ 60F/14.696psia		ASTM D 3588-91 @ 15.5C/101.3kPa	
H/C Ratio:		—		-	
Gas Constant (R _{GAS}):		@ 60F/14.696psia		@ 15.5C/101.3kPa	
Stoich Air Fuel Ratio (Dry):					
Conversion Factors		Standard Units		Metric Units	
l.		· · · · · · · · · · · · · · · · · · ·			
Notes		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·					
			·		
······			-		
·		·····			
·····		·			
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·					

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.




Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines – making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes – making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant
 <u>List of EPA Approved Combustion Control Devices</u>
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- User Friendly Automated System
- Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
- Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

GENERAL PROPERTIES	CH2.5	CH10.0	
BURNER SIZE (MMBTU/hr)	2.5	10.0	
OUTER DIAMETER (inches)	34	54	
HEIGHT (feet)	16	20	
INLET PRESSURE (oz/in²)	2	0.5	
DESTRUCTION EFFICIENCY	≥ 99	.99%	
SMOKELESS CAPACITY	10	100%	
TURN DOWN	SCAI	SCALABLE	

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

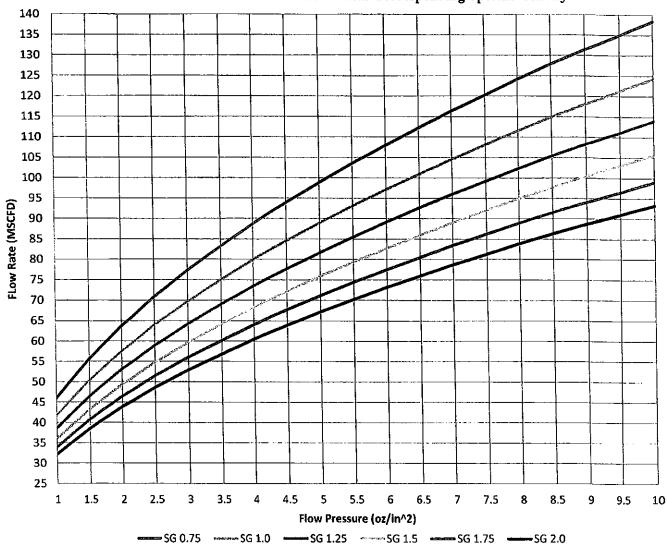
With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the **CH10.0** enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

	GENERAL PROPERTIES			
	ТҮРЕ	Enclosed Tank Battery Flare		
	AMBIENT TEMPERATURE	-20 °F to +100 °F		
	PILOT FUEL REQUIREMENTS	Propane or Site Gas @Spsi of natural gas = 13.3 SCFM @Spsi of propane = 12.5 SCFM		
	BURNER SIZE	10.0 million BTU/hr		
	INLET PRESSURE REQUIRMENTS	Minimum 0,5 oz/in [*] (⊶1.0 inches) w.o.)		
	TURN DOWN RATIO	5:1		
	DESTRUCTION EFFICIENCY	99.99% DRE		
	MECHANICAL PROPERTIES			
	DESIGN WIND SPEED	100 MPH		
	AMBIENT TEMPERATURE	-20 °F to +120 °F		
	ELECTRICAL AREA CLASSIFICATION	General Area Classification (Non- Hazardous)		
	ELEVATION	up to 3,000ft ASL		
	PROCESS PROPERTIES			
	SMOKELESS CAPACITY	100%		
	OPERATING TEMPERATURE	800 °F to 2000 °F (1500 °F Nominal)		
EPA 40 CFR 60, Quad O Compliant	UTILITIES			
Completely Enclosed Combustion	PILOT GAS	Process Gas		
99.99% Destruction Efficiency		1 Phase, 60 Hz, 120V/10A		
Fully Automated System	ELECTRICITY SOLAR PANEL OPTION	1. All as a set of the set of		
Output Operational Data via Thumb Drive	AVAILABLE	YES		

> Capable of SCADA Integration

۶

> >


Þ

≽

Revision #3: 09/04/2015 1 | 2

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015 2 | 2

Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical Adjustment:

6.7V	up to 11 Volts
12 V	12 -18 Volts
24 V	24 - 30 Volts
48 V	48 - 60 Volts

Reverse current protection included.

Output: Terminal block which accepts up to 8 AWG wire. Opening for 3/4 " conduit in the base of the cabinet.

Fuel

Natural Gas:

Propane: Max. Supply Pressure: Min. Supply Pressure: Fuel Connection: 8.8 m³/day (311 ft³/day) of Std. 1000 BTU/SCF (37.7 MJ/SM³) gas 11.4 l/day (3.0 US gal/day) 1724 kPa (250 psi) 103 kPa (15 psi) 1/4" MNPT

Environmental

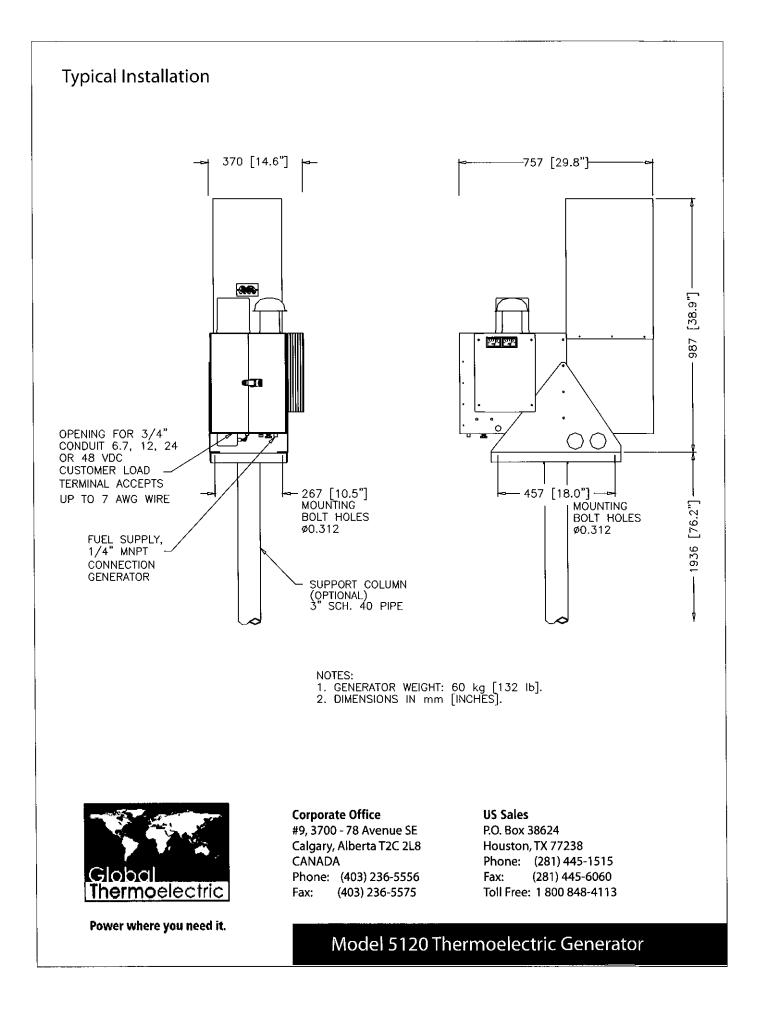
Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

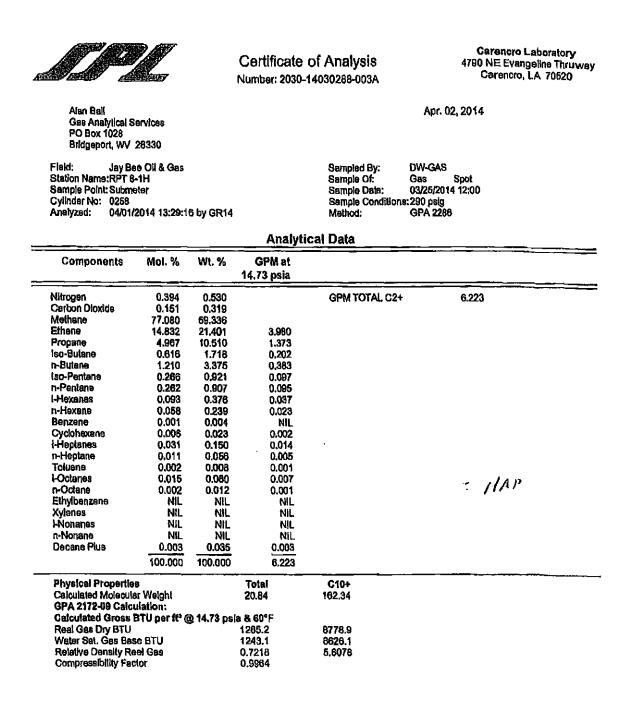
Materials of Construction

Cabinet:	304 SS
Cooling Type:	Natural Convection
Thermopile:	Hermetically Sealed Lead Tin-Telluride (PbSnTe)
Burner:	Meeker Type/Inconel 600
Fuel System:	Brass, Aluminum & SS

Standard Features

- Automatic Spark Ignition (SI)
- Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- Volt & Amp Meter


Optional Features


- Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- Corrosive Environmental Fuel System
- Flame Arrestor

Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

Power where you need it.

Pater S. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Jay Bae Oli & Gas Station Name:RPT 8-1H Sample Point: Submater Cylinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

Certificate of Analysis Number; 2030-14030288-003A Cerencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Apr. 02, 2014

Sampled By: DW-GAS Sample Of: Gae Spot Sample Date: 03/25/2014 12:00 Sample Conditions: 290 psig. Method: GPA 2286

Analytical Data

Components	Mol. %	WL %	GPM at 14.73 psia			
Nitrogen	0.394	0.630	•	GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0.319		GPM TOTAL C3+	2.243	
Methane	77,080	59.335		GPM TOTAL IC5+	0.285	
Ethane	14.832	21.401	3,960			
Propene	4.967	10,510	1.373			
ieo-butane	0.615	1.718	0.202			
n-Bulane	1.210	3.375	0.383			
leo-pentane	0.268	0.921	0.097			
n-Pentane	0.262	0.907	0.095			
Hexanes Plus	0.222	0.963	0.093			
	100.000	100.000	6.223			
Physical Properties			Total	C6+		
Relative Density Re	al Gas		0.7218	3.1591		
Calculated Molecula	# Weight		20.84	91.50		
Compressibility Feo	tor		0.9964	•		
GPA 2172-09 Calca	alation:					
Calculated Gross I	BTU per tt? @	2 14.73 psi	a â 60°F			
Real Gas Dry STU			1285.2	5014.1		
Weter Sat. Gas Bas	ie 611U	•	1243.1	4926.8		
Comments: H2O	Mol% : 1.740	; WI% : 1.8	506			

Jun S. Jo

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Page 8 of 9

Alan Sali Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Jay Bee Oil & Gas Station Nema:RPT 8-1H Sample Point: Submeter Cylinder No: 0258 Analyzad: 04/01/2014 13:29:16 by GR14

Certificate of Analysis Number: 2030-14030288-003A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Apr. 02, 2014

Sampled By: DW-GAS Sample Of: Gas Spot Sample Date: 03/25/2014 12:00 Sample Conditions: 290 pelg Method: GPA 2285

Analytical Data Components Mol. % Wt. % GPM at 14,73 psiz Nitrogen 0.394 0,530 GPM TOTAL C2+ 6.223 Carbon Dioxide 0.151 77.080 GPM TOTAL C3+ 0,319 2.243 Methane 69.338 GPM TOTAL IC6+ 0.285 Ethane 14.832 21,401 3,980 1.373 0.202 0.383 Propane 4,967 10.510 lao Butene 0.616 1.718 n-Butane 1.210 8.376 iso-Pentane 0.921 0.097 n-Pentane 0.262 0.907 0.095 Hexanes 0.151 0.615 0.080 0.071 Heptanes Pius 0.368 0.033 100.000 100.000 6.223 Physical Properties Total C7+ Relative Density Real Gas Calculated Molacular Weight Compressibility Factor GPA 2172-08 Calculation; 0.7218 20.84 3.6570 103.02 0.9964 Celculated Gross BTU per ft' @ 14.73 psia & 60'F Real Ges Dry BTU 1265.2 5577,8 Water Sal, Gas Base BTU 1243.1 5480.7 Comments: H2O Nol% : 1,740 ; Wt% : 1,508

Paris L. Paro

Quality Assurance:

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Sample:

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For:	SE Technologies, LLC
	Building D, Second Floor
	98 Vanadium Road
	Bridgeville, Pennsylvania 15017-3061

Well B1 2H

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number: Junio

FLASH LIBERATION OF SEPARATOR WATER				
	Separator	Stock Tank		
Pressure, psig	540	0		
Temperature, °F	78	70		
Gas Water Ratio (1)		4.06		
Gas Specific Gravity (2)		1.069		

(1) - Sof of water saturated vapor per barrel of stock tank water (2) - Air = 1.000 (3) - Separator volume / Stock tank volume Analyst: ______T.G.

Piston No. : WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: EESCO, Ltd. Alice, Texas

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadlum Road Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dioxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	Ó.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Computed Re	al Character	istics Of He	ptanes Plus:
-------------	--------------	--------------	--------------

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez Analyst: MR Processor: OA Cylinder ID: WF# 10S

Certified: **FESCO**, Ltd. Alice, Texas C.AV

David Dannhaus 361-661-7015

ī

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	. WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	58.602		29.592
Ethane	16 .42 4	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1 712	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Separator Hydrocarbon Liquid Sampled @ 340 psig & 65 *F

Date Sampled: 04/07/14

Job Number: 42794.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0.014
Methane	7.015	3.036	1.384
Ethane	7.995	5.481	2.958
Propane	9.072	6.384	4.919
leobutene	2.654	2.218	1.896
n-Butane	7.473	6,018	5,541
2,2 Dimethylpropane	0.192	0.188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5,369	5,144
2,2 Dimethylbutane	0.319	0,341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimelhylbutane	0.532	0.557	0.564
2 Methylpentane	3.616	3,833	3.831
3 Methylpentane	2.379	2.461	2.521
n-Hexane	8.324	6.642	6,701
Heptanes Plus	<u>42,259</u>	63.409	60.372
Totala:	100.000	100.000	100.000

Characteristics of Heptanes Plus:	
Orthold on Openality	

Introctatione of Laborita Little		
Specific Gravity	0,7441	(Water=1)
"AP! Gravity		@ 60'F
Molecular Weight	116.2	•
Vapor Volume	20.33	CF/Gal
Weight	6.20	Lbs/Gat

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)
"AP! Gravity		@ 60'F
Molecular Weight	61.3	•
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Base Conditions: 14.850 PSi & 60 'F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2408

David Dannhaus 361-661-7016

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.025	0.011	0.014
Nitrogen	0.011	0.003	0.004
Methane	7,015	3,036	1.384
Ethane	7,995	5,461	2,958
Propana	9.072	6.384	4,919
isobutane	2.654	2.218	1,896
n-Butano	7.666	6.206	5.511
isopentane	4,335	4.049	3.845
n-Pentane	5.799	5.389	5.144
Other C-6's	6.846	7.212	7.264
Heptanes	13,266	15.122	16.031
Octanes	12.897	15,144	16.932
Nonanes	4,935	8.808	7.697
Decanes Plus	8.665	13,799	16.337
Benzene	0.113	0.081	0.108
Toluena	0.613	0.525	0.695
E-Benzene	0.534	0.526	0.697
Xylenes	1.436	1.407	1,875
n-Hexane	6.324	6.642	6.701
2,2,4 Trimethylpentane	0.000	0.000	0.000
Totale:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)	
'API Gravity	83.46	@ 60°F	
Molecular Weight	81.3	-	
Vapor Voluma	25.69	CF/Gal	
Weight	5.48	Lbs/Gal	

Characteristics of Decanes (C10) Plus:		
Specific Grevity	0.7794	(Water=1)
Molecular Weight-	153,3	•

Characteristics of Atmospheric Sample:

*API Gravity	70.79 @ 60°F
Reid Vapor Pressure (ASTM D-5191)	5.28 psi

QUALITY CONTROL CHECK				
Sampling Conditions Test Samples				
Cylinder Number		W-2408*	W-2423	
Presaure, PSIG	340	299	297	
Temperature, *F	65	66	66	

* Sample used for analysis

FESCO, Ltd.

.

TOTAL EXTENDED REPORT - GPA 2186-M

Job Number: 42794.002

COMPONENT	Mol %	LlqVot %	Wt %
Nilrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0.004
Methane	7.015	3,036	1.384
Ethane	7.995	5.481	2.956
Propane	9.072	6.384	4.919
Isobutane	2.854	2.218	1.896
n-Butane	7,473	6.018	5.341
2,2 Dimethylpropane	0.192	0.188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5.144
2,2 Dimethylbutane	0.319	0.341	0.338
Cyclopentane 2,3 Dimethylbutane	0.000	0.000	0.000
2 Methylpentane	0.532	0.557	0.564
3 Methylpentane	3.616	3.833	3.831
n-Hexane	2.379	2.481	2,521
Melhylcyclopentane	6.324	6.642	6.701
Benzene	0.537	0.486	0.556
Cyclohexane	0.113 0.966	0.081	0.108
2-Methylhexane	3.063	0.831	0.989
3-Methylhexane	2.577	3.637	3.774
2,2,4 Trimethylpentane	0.000	3.022	3.175
Other C-7's	1.532	0.000 1.725	0.000
n-Heptane	4.601	5.422	1.888 5.669
Methylcyclohexane	2.764	2.838	3.337
Toluene	0.613	0.525	0.695
Olher C-8's	7.205	8.736	9.764
n-Octane	2.728	3.569	3,831
E-Benzene	0.534	0.526	0.897
M & P Xylenes	0.618	0.611	0.804
O-Xylene	0.820	0.796	1.071
Other C-9's	3.468	4,696	5.383
n-Nonane	1.467	2,109	2.314
Other C-10's	2.979	4.434	5.175
n-decane	0.771	1.208	1.349
Undecanes(11)	2,240	3.420	4,048
Dodecenes(12)	1.277	2.107	2,529
Tridecanes(13)	0.746	1.320	1.606
Tetradecanes(14)	0.349	0.660	0.814
Pentadecanes(15)	0.160	0.324	0.404
Hexadecanes(16) Heptadecanes(17)	0.078	0.169	0.213
Octadecanes(18)	0.037	0.065	0.108
Nonadecanes(19)	0.018	0.043	0.055
Elcosanes(20)	0.007 0.002	0.017 0.005	0.022 0.005
Henelcosanes(21)	0.002	0.003	
Docosanes(22)	0.001	0.001	0.003 0.002
Tricosanes(23)	0.000	0.001	0.002
Tetracosanes(24)	0.000	0.001	0.001
Penlacosanes(25)	0.000	0.000	0.000
Hexacosanes(26)	0.000	0.000	0.000
Heptacosanes(27)	0.000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes(29)	0,000	0.000	0.000
Triacontanes (30)	0.000	0.000	0.000
Hentriacontanes Plus(31+)	<u>0.000</u>	<u>0.000</u>	0.000
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Job Number: J42794

FLASH LIBERATION OF HYDROCARBON LIQUID				
Separator HC Liquid Stock Tank				
Pressure, psig	340	0		
Temperature, *F	65	70		
Gas Oil Ratio (1)		500		
Gas Specific Gravity (2)		1.387		
Separator Volume Factor (3)	1.2987	1.000		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

Quality Control Check				
	Sampling Conditions	Test Samples		
Cylinder No.		W-2408*	W-2423	
Pressure, psig	340	299	297	
Temperature, °F	65	66	66	

(1) - Sci of flashed vapor per barrel of stock tank of

(2) - Air = 1,000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F Analyst: ______M. G.

Analyst <u>M. G.</u> * Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

£

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT Hydrogen Sulfide* Nitrogen Carbon Dioxide Methane	MOL% < 0.001 0.036 0.141 24.485	gpm
Ethane Propane	25.943 23.253	6.993 6.457
Isobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
tsopentane	3.027	1.116
n-Pentane	3.175	1.180
Hexanes	2.378	0.988
Heptanes Plus	<u>1.701</u>	0.761
Totals	100.000	22.579

Computed Real Characteristics Of Hep	tanes P	lus:
Specific Gravity	3 500	

specific Glavity	3.599	(Air=1)
Molecular Weight	102.69	•••
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	
Molecular Weight	39,58	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF
rogen Sulfide tested in laboratory by: S		

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Analyst: MR Processor: AL Cylinder ID: ST# 20 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

ŝ

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.036		0.025
Carbon Dioxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6,993	19.719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1.118	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0,181	0.961
n-Hexane	0.964	0.400	2,100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.07 9	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

1

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oll & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.1 85	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Alr=1)	
Compressibility (Z)	0.9539	. ,	
Molecular Weight	66.64		
Gross Heating Value			
Dry Basis	3921	BTU/CF	
Saturated Basis		BTU/CF	
tronen Sulfide tested in Jahoratory by: S			(C)

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

ŧ

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	.	< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	<u>0.000</u>	0.000	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Alr=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	P3 T01-T03
City:	Huntington
State:	West Virginia
Company:	Jay-Bee Oil & Gas
Type of Tank:	Vertical Fixed Roof Tank
Description:	P3 Condensate Tanks 210 BBL Tanks - Single Tank Emissions
Tank Dimensions	
Shell Height (ft):	15.00
Diameter (ft):	10.00
Liquid Height (ft) :	14.00
Avg. Liquid Height (ft):	10.00
Volume (gallons):	8,225.29
Turnovers:	153.19
Net Throughput(gal/yr):	1,260,000.00
Is Tank Heated (y/n):	N
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.25
Slope (ft/ft) (Cone Roof)	0.05
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

P3 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	58.50	49.32	67.67	53.39	2.8439	2.3395	3.4338	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

P3 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	470 5405
Standing Losses (Ib):	473.5495
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0353 0.1626
Vapor Space Expansion Factor:	
Vented Vapor Saturation Factor:	0.5662
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft)	10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0353
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.8439
Daily Avg. Liquid Surface Temp. (deg. R):	518,1654
Daily Average Ambient Temp. (deg. F):	50.3083
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	513.0583
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,202.9556
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0,1626
Daily Vapor Temperature Range (deg. R):	36.6923
Daily Vapor Pressure Range (psia):	1.0943
Breather Vent Press. Setting Range(psia):	0,0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2,8439
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2,3395
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	3,4338
Daily Avg. Liquid Surface Temp. (deg R):	518,1654
Daily Min. Liquid Surface Temp. (deg R):	508,9923
Daily Max, Liquid Surface Temp. (deg R):	527.3385
Daily Ambient Temp. Range (deg. R):	19.1500
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5662
Vapor Pressure at Daily Average Liquid:	0.0002
Surface Temperature (psia):	2.8439
Vapor Space Outage (ft):	5.0833
Faper opage canage (ii).	2.2300

Warking Losses (lb): Vapor Molecular Weight (ib/lb-mole):	2,134.0644 69.0000	
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.):	2.8439 1,260,000.0000	
Annual Turnovers: Turnover Factor: Maximum Liquid Volume (gal):	153,1861 0.3625 8,225,2880	
Maximum Liquid Height (ft): Tank Diameter (ft):	14.0000 10.0000	
Working Loss Product Factor:	1,0000	
Total Losses (Ib):	2,607.6138	

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

P3 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 6)	2,134.06	473.55	2,607.61				

TANKS 4.0 Report

Description: 40 MMSCFD Still vent to combustor No flash tank Annual Hours of Operation: 8760.0 ET GAS: Temperature: 85.00 deg. F	
Description: 40 MMSCFD Still vent to combustor No flash tank Annual Hours of Operation: 8760.0 ET GAS: Temperature: 85.00 deg. F	<u>.</u>
Still vent to combustor No flash tank Annual Hours of Operation: 8760.0 ET GAS: Temperature: 85.00 deg. F	
ET GAS: Temperature: 85.00 deg. F) hours/yr
Temperature: 85.00 deg. F	
Temperature: 85.00 deg. F	
Temperature, 55.00 deg, r	
Pressure: 290.00 psig	
Wet Gas Water Content:	: Saturated
Component	Conc.
	(vol %)
Carbon Dioxide	0.1510
Nitrogen	0.3940
Methane Ethane	77.0800
Ethane	14.8320
Propane	4.9670
Isobutane	0.6160
n-Butane	1.2100
Isopentane n-Pentane	0.2660
n-Pentane	0.2620
n-Hexane	0.0580
Cyclohexane	0.0060
Cyclohexane Other Hexanes	0.0930
Heptanes	0.0420
Benzene	0.0010
Toluene	0.0020
C8+ Heavies	0.0200
DRY GAS:	
Flow Rate:	40.0 MMSCF/day
Water Content:	7.0 lbs. H2O/MMSCF
EAN GLYCOL:	
	
Glycol Type: TEG	
Water Content:	1.5 wt% H2O
Flow Rate:	7.5 gpm

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device:	Combustion Device
Destruction Efficiency:	98.0 %
Excess Oxygen:	5.0 %
Ambient Air Temperature:	60.0 deg. F

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: Jay-Bee Oil & Gas P3 Well Pad
File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee P3.ddf
Date: November 03, 2016

CONTROLLED	REGENERATOR	EMISSIONS

0.5677 0.2765 0.1898	13.624 6.635	2.4864
0.1898		1 0100
		1.2109
	4.556	0.8314
0.0407	0.977	0.1784
0.0988	2.372	0.4329
0.0300	0.721	0.1316
0.0363	0.871	0.1589
0.0163	0.391	0.0713
0.0063	0.151	0.0275
0.0201	0.483	0.0881
0.0275	0.660	0.1204
0.0083	0.199	0.0364
0.0305	0.732	0.1336
0.1192	2.861	0.5221
1.4680	35.233	6.4299
1.4680 0.6239 0.0551	35.233 14.973 1.322	6.4299 2.7326 0.2413 0.1700
	0.0407 0.0988 0.0300 0.0363 0.0163 0.0063 0.0201 0.0275 0.0083 0.0305 0.1192 1.4680 1.4680 0.6239	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	28.3840	681.216	124.3219
Ethane	13.8234	331.761	60.5465
Propane	9.4907	227.778	41.5694
Isobutane	2.0363	48.870	8.9188
n-Butane	4.9420	118.607	21.6459
Isopentane	1.5018	36.044	6.5780
n-Pentane	1.8142	43.541	7.9463
n-Hexane	0.8144	19.547	3.5673
Cyclohexane	0.3141	7.539	1.3759
Other Hexanes	1.0058	24.139	4.4054
Heptanes	1.3746	32.991	6.0209
Benzene	0.4153	9.967	1.8190
Toluene	1.5251	36.601	6.6798
C8+ Heavies	5.9595	143.028	26.1026
Total Emissions	73.4012	1761.630	321.4974
Total Hydrocarbon Emissions	73.4012	1761.630	321.4974
Total VOC Emissions	31.1939	748.653	136.6291
Total HAP Emissions	2.7548	66.115	12,0660

				Page: 2
Total BTEX	Emissions	1.9404	46.568	8.4987

GRI-GLYCalc VERSION 4.0 - EQUIPMENT SUMMARY REPORT

Case Name: Jay-Bee Oil & Gas P3 Well Pad
File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee P3.ddf
Date: November 03, 2016

COMBUSTION DEVICE ______ Ambient Temperature:60.00 deg. FExcess Oxygen:5.00 %Combustion Efficiency:98.00 % Supplemental Fuel Requirement: 3.88e-001 MM BTU/hr Emitted Destroyed Component Methane2.00%98.00%Ethane2.00%98.00%Propane2.00%98.00%Isobutane2.00%98.00%n-Butane2.00%98.00%
 Isopentane
 2.00%
 98.00%

 n-Pentane
 2.00%
 98.00%

 n-Hexane
 2.00%
 98.00%

 Cyclohexane
 2.00%
 98.00%

 Other Hexanes
 2.00%
 98.00%
 Heptanes2.00%98.00%Benzene2.00%98.00%Toluene2.00%98.00%C8+ Heavies2.00%98.00% ABSORBER ______ Calculated Absorber Stages: 1.29 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 85.0 deg. F Pressure: 290.0 psig Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1072 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 101.00 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.87 gal/lb H2O RemainingAbsorbedComponentin Dry Gasin Glycol _____ **__**____
 Water
 6.92%
 93.08%

 Carbon Dioxide
 99.89%
 0.11%

 Nitrogen
 99.99%
 0.01%

 Methane
 99.99%
 0.01%

 Ethane
 99.98%
 0.02%

 Propane
 99.95%
 0.05%

 Isobutane
 99.92%
 0.08%

 n-Butane
 99.89%
 0.11%

 Isopentane
 99.87%
 0.13%

 n-Pentane
 99.83%
 0.17%

n-Hexane	99.67%	0.33%
Cyclohexane	98.63%	1.37%
Other Hexanes	99.76%	0.24%
Heptanes	99.30%	0.70%
Benzene	87.94%	12.06%
Toluene	81.21%	18.79%
C8+ Heavies	96.06%	3.94%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	28.81%	71.19%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.37%	99.63%
n-Pentane	0.40%	99.60%
n-Hexane	0.44%	99.56%
Cyclohexane	3.10%	96.90%
Other Hexanes	0.84%	99.16%
Heptanes	0.47%	99.53%
Benzene	4.98%	95.02%
Toluene	7.89%	92.11%
C8+ Heavies	11.93%	88.07%

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay-Bee Oil & Gas P3 Well Pad
File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee P3.ddf
Date: November 03, 2016

DESCRIPTION:

Description: 40 MMSCFD Still vent to combustor No flash tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.5677	13.624	2.4864
Ethane	0.2765	6.635	1.2109
Propane	0.1898	4.556	0.8314
Isobutane	0.0407	0.977	0.1784
n-Butane	0.0988	2.372	0.4329
Isopentane	0.0300	0.721	0.1316
n-Pentane	0.0363	0.871	0.1589
n-Hexane	0.0163	0.391	0.0713
Cyclohexane	0.0063	0.151	0.0275
Other Hexanes	0.0201	0.483	0.0881
Heptanes	0.0275	0.660	0.1204
Benzene	0.0083	0.199	0.0364
Toluene	0.0305	0.732	0.1336
C8+ Heavies	0.1192	2.861	0.5221
Total Emissions	1.4680	35.233	6.4299
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1.4680 0.6239 0.0551 0.0388	35.233 14.973 1.322 0.931	6.4299 2.7326 0.2413 0.1700

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	28.3840	681.216	124.3219
Ethane	13.8234	331.761	60.5465
Propane	9.4907	227.778	41.5694
Isobutane	2.0363	48.870	8.9188
n-Butane	4.9420	118.607	21.6459
Isopentane	1.5018	36.044	6.5780
n-Pentane	1.8142	43.541	7.9463
n-Hexane	0.8144	19.547	3.5673

				Page: 2
CZ	vclohexane	0.3141	7.539	1.3759
Othe	er Hexanes	1.0058	24.139	4.4054
	Heptanes	1.3746	32.991	6.0209
	Benzene	0.4153	9.967	1.8190
	Toluene	1,5251	36.601	6.6798
C8	8+ Heavies	5.9595	143.028	26.1026
Total	Emissions	73.4012	1761.630	321.4974
Total Hydrocarbon	Emissions	73.4012	1761.630	321.4974
Total VOC	Emissions	31.1939	748.653	136.6291
Total HAP	Emissions	2.7548	66.115	12.0660
Total BTEX	Emissions	1.9404	46.568	8.4987

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature:60.00 deg. FExcess Oxygen:5.00 %Combustion Efficiency:98.00 %Supplemental Fuel Requirement:3.88e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane Ethane	2.00% 2.00%	98.00% 98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

Calculated Absorber Stages: 1.29 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 85.0 deg. F Pressure: 290.0 psig Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1072 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 101.00 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.87 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.92%	93.08%
Carbon Dioxide	99.89%	0.11%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.95%	0.05%
Isobutane	99.92%	0.08%
n-Butane	99.89%	0.11%
Isopentane	99.87%	0.13%
n-Pentane	99.83%	0.17%
n-Hexane	99.67%	0.33%
Cyclohexane	98.63%	1.37%
Other Hexanes	99.76%	0.24%
Heptanes	99.30%	0.70%
Benzene	87.94%	12.06%
Toluene	81.21%	18.79%
C8+ Heavies	96.06%	3.94%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	28.81%	71.19%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.378	99.63%
n-Pentane	0.40%	99.60%
n-Hexane	0.44%	99.56%
Cyclohexane	3.10%	96.90%
Other Hexanes	0.84%	99.16%
Heptanes	0.47%	99.53%
Benzene	4.98%	95.02%
Toluene	7.89%	92.11%
C8+ Heavies	11.93%	88.07%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F Pressure: 304.70 psia Flow Rate: 1.67e+006 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.13e-001 1.51e-001 3.93e-001 7.69e+001 1.48e+001	2.92e+002 4.85e+002 5.43e+004
Isobutane n-Butane Isopentane	4.96e+000 6.15e-001 1.21e+000 2.65e-001 2.61e-001	1.57e+003 3.09e+003 8.43e+002
Cyclohexane Other Hexanes Heptanes		2.22e+001 3.52e+002 1.85e+002
Toluene C8+ Heavies	2.00e-003 2.00e-002	
Total Components	100.00	9.18e+004

DRY GAS STREAM

Pressure:	85.00 deg. F 304.70 psia 1.67e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	1.47e-002 1.51e-001 3.94e-001 7.71e+001 1.48e+001	2.92e+002 4.85e+002 5.43e+004
	Isobutane n-Butane Isopentane	4.96e+000 6.15e-001 1.21e+000 2.66e-001 2.62e-001	1.57e+003 3.09e+003 8.42e+002
	Cyclohexane Other Hexanes Heptanes		2.19e+001 3.51e+002 1.84e+002
	Toluene C8+ Heavies	1.62e-003 1.92e-002	

LEAN GLYCOL STREAM ______ Temperature: 85.00 deg. F Flow Rate: 7.50e+000 gpm Conc. Loading (wt%) (lb/hr) Component TEG 9.85e+001 4.16e+003 Water 1.51e+000 6.36e+001 Carbon Dioxide 7.31e-013 3.08e-011 Nitrogen 7.55e-014 3.19e-012 Methane 2.81e-018 1.19e-016 Ethane 5.43e-008 2.29e-006 Propane 4.90e-009 2.07e-007 Isobutane 9.36e-010 3.95e-008 n-Butane 2.07e-009 8.75e-008 Isopentane 1.33e-004 5.61e-003 n-Pentane 1.71e-004 7.21e-003 n-Hexane 8.50e-005 3.59e-003 Cyclohexane 2.38e-004 1.00e-002 Other Hexanes 2.02e-004 8.53e-003 Heptanes 1.54e-004 6.48e-003 Benzene 5.16e-004 2.18e-002 Toluene 3.09e-003 1.31e-001 C8+ Heavies 1.91e-002 8.07e-001 _____ ----- -----Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: Pressure:	-
Flow Rate:	7.97e+000 gpm
	has more than one phase.

Component Conc. Loading (wt%) (lb/hr) TEG 9.34e+001 4.15e+003 Water 4.96e+000 2.21e+002 Carbon Dioxide 9.93e-003 4.42e-001 Nitrogen 5.70e-003 2.54e-001 Methane 6.38e-001 2.84e+001 Ethane 3.11e-001 1.38e+001 Propane 2.13e-001 9.49e+000 Isobutane 4.58e-002 2.04e+000 n-Butane 1.11e-001 4.94e+000 Isopentane 3.39e-002 1.51e+000 n-Pentane 4.09e-002 1.82e+000 n-Hexane 1.84e-002 8.18e-001 Cyclohexane 7.29e-003 3.24e-001 Other Hexanes 2.28e-002 1.01e+000

Heptanes 3.10e-002 1.38e+000

Benzene 9.82e-003 4.37e-001 Toluene 3.72e-002 1.66e+000 C8+ Heavies 1.52e-001 6.77e+000 Total Components 100.00 4.45e+003

REGENERATOR OVERHEADS STREAM

212.00 deg. F 14.70 psia 4.34e+003 scfh		
Component		Loading (lb/hr)
 Carbon Dioxide Nitrogen Methane	7.62e+001 8.77e-002 7.91e-002 1.55e+001 4.02e+000	4.42e-001 2.54e-001 2.84e+001
Isobutane n-Butane Isopentane	1.88e+000 3.06e-001 7.43e-001 1.82e-001 2.20e-001	2.04e+000 4.94e+000 1.50e+000
Cyclohexane Other Hexanes Heptanes		3.14e-001 1.01e+000 1.37e+000
Toluene C8+ Heavies	1.45e-001 3.06e-001	
 Total Components	100.00	2.31e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: Pressure: Flow Rate:	1000.00 14.70 2.05e+001	psia	 F			
	Component				Loading (lb/hr)	
		Etha Propa sobuta	ane ane ane	6.54e+001 1.70e+001 7.95e+000 1.29e+000 3.14e+000	2.76e-001 1.90e-001 4.07e-002	
	n Cyc	n-Penta n-Hexa lohexa	ane ane ane	7.69e-001 9.29e-001 3.49e-001 1.38e-001 4.31e-001	3.63e-002 1.63e-002 6.28e-003	

Benzene	5.07e-001 1.96e-001 6.12e-001 1.29e+000	8.31e-003 3.05e-002
Total Components	100.00	1.47e+000

ATTACHMENT U

Facility-wide Controlled Emission Summary Sheet(s)

	ATT	ACHM	IENT U	U – FAG	CILITY	Y-WID	E CON	TROL	LED E	MISSI	ONS SU	U MMA	RY SH	IEET		
List all sources	of emi	ssions	in this t	able. U	Jse ext	ra page	s if nec	essary.								
Emission Point ID# -	NC	D _x	СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		CH ₄		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
2E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
3E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
4E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
5E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
6E	0.05	0.22	0.04	0.18	0.00	0.01	0.000	0.001	< 0.01	0.02	< 0.01	0.02	0.001	0.005	60.4	264.5
7E					2.96	4.00										
8E					0.14	0.19										
9E	0.19	0.81	0.37	1.62	0.04	0.18	0.000	0.002	0.013	0.06	0.013	0.06	0.13	0.55	89.7	393.0
10E	0.92	4.04	4.57	20.00	8.07	1.79	0.001	0.00	0.047	0.21	0.047	0.21	1.14	0.26	1564.6	6,852.8
11E	0.05	0.22	0.04	0.18	0.003	0.01	0.000	0.001	0.004	0.017	0.004	0.017	0.001	0.005	60.4	264.5
12E	0.27	1.19	1.03	4.50	0.63	2.74	0.001	0.003	0.037	0.161	0.037	0.161	0.008	0.03	417.4	1,828.1
13E	0.001	0.006	0.001	0.005	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.001	0.003	1.6	6.9
TOTAL	2.23	9.77	6.68	29.25	11.89	44.42	0.007	0.029	0.16	0.71	0.16	0.71	1.30	0.94	3,128	13,702

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

		ATTAC	HMENT	U – FAC	CILITY-V	VIDE HA	P CONT	ROLLEI) EMISS	IONS SU	MMARY	SHEET		
List all	sources o	f emissio	ns in this	table. U	se extra p	ages if ne	ecessary.							
Emission	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
2E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
3E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
4E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
5E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
6E	3.75E-05	1.64E-04	1.05E-06		1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
7E											0.16	0.22	0.160	0.22
8E											0.02	0.021	0.016	0.021
9E	0.015	0.065	0.001	0.005	0.009	0.002	1.65E-05	7.22E-05	1.30E-04	5.68E-04			0.022	0.096
10E	4.67E-04	0.002	1.31E-05								0.011	0.041	0.012	0.051
11E	3.75E-05	1.64E-04	1.05E-06		1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
12E	3.63E-04	0.002	0.008	0.04	0.031	0.136					0.002	0.078	0.0657	0.25
13E			2.73E-08	1.20E-07	4.42E-08	1.94E-07					2.34E-05	1.03E-04	2.45E-05	1.07E-07
TOTAL	0.016	0.071	0.013	0.058	0.041	0.179	5.91E-04	2.59E-03	7.83E-03	0.034	0.461	1.48	0.546	1.86

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT Affidavit Notice Will Be Submitted Upon Receipt

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for a natural gas production facility located on Arvilla Road, near Friendly, in Pleasants County, West Virginia. The latitude and longitude coordinates are: 39.440460, -81.060782.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

9.77 tons of Nitrogen Oxides per year
29.25 tons of Carbon Monoxide per year
3.04 tons of Particulate Matter per year
46.11 tons of Volatile Organic Compounds per year
0.03 tons of Sulfur Dioxide per year
0.07 tons of Formaldehyde per year
0.06 tons of Benzene per year
0.18 tons of Toluene per year
1.48 tons of Hexane per year
1.87 tons of Total Hazardous Air Pollutants per year
13,797 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 1^{st} day of <u>February</u>, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the day of , 2016.

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Ave. Cairo, WV 26337