JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT

P2 Well Pad Production Facility Pleasants County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-D GENERAL PERMIT

Jay-Bee Oil & Gas, Inc. P2 Well Pad Production Facility Pleasants County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Single Source Determination Form
- Attachment B Siting Criteria Waiver Not Applicable
- Attachment C Current Business Certificate
- Attachment D Process Flow Diagram
- Attachment E Process Description
- Attachment F Plot Plan
- Attachment G Area Map
- Attachment H G70-D Section Applicability Form
- Attachment I Emission Units/ERD Table
- Attachment J Fugitive Emissions Summary Sheet
- Attachment K Gas Well Affected Facility Data Sheet
- Attachment L Storage Vessels Data Sheet(s)
- Attachment M Small Heaters and Reboilers Not Subject to 40CFR60 Subpart Dc Data Sheet(s)
- Attachment N Internal Combustion Engine Data Sheet(s)
- Attachment O Tanker Truck Loading Data Sheet(s)
- Attachment P Glycol Dehydration Unit Data Sheet(s)
- Attachment Q Pneumatic Controllers Data Sheet
- Attachment R Pneumatic Pump Data Sheet
- Attachment S Air Pollution Control Device/Emission Reduction Device Sheet(s)
- Attachment T Emission Calculations
- Attachment U Facility-wide Controlled Emission Summary Sheet(s)
- Attachment V Class I Legal Advertisement

SECTION I

Application Form

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

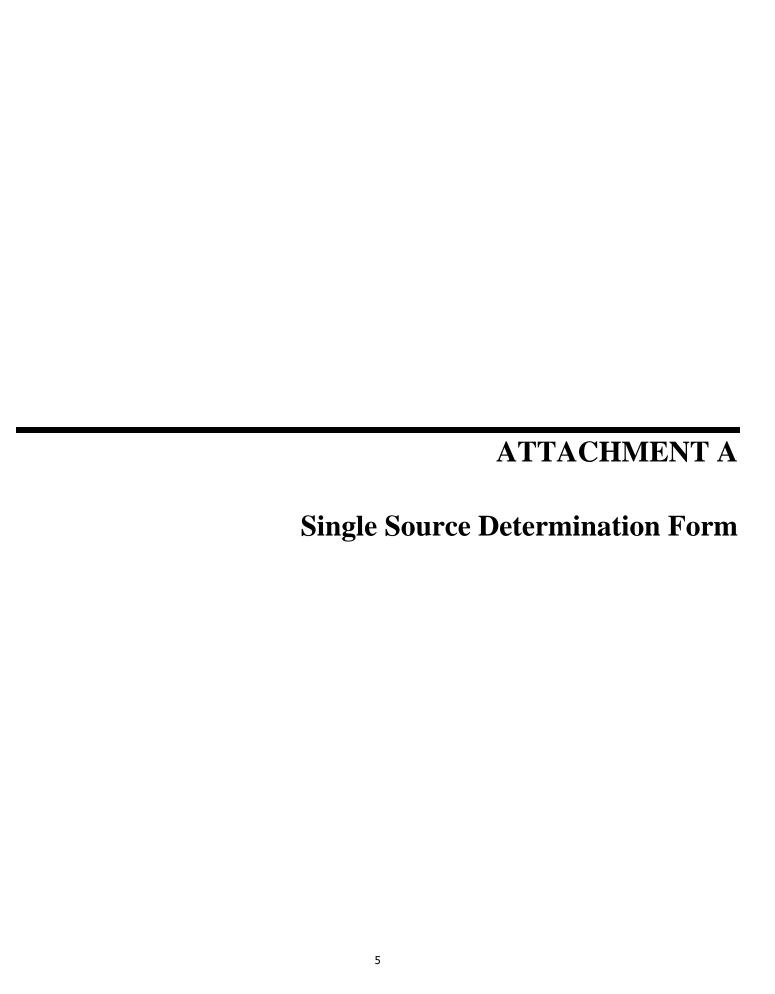
PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GAS FE	RODUCTION FACI	LITIES LOCATED A	THE WELL SI	TE
⊠CONSTRUCTION □MODIFICATION		□CLASS I ADMIN □CLASS II ADMIN		
□RELOCATION				
	SECTION 1. GENE	RAL INFORMATION		
Name of Applicant (as registered with the	he WV Secretary of S	State's Office): Jay-B	ee Oil & Gas, I	nc.
Federal Employer ID No. (FEIN): 55-0	73-8862			
Applicant's Mailing Address: 3570 Shi	ields Hill Rd			
City: Cairo	State: WV		ZIP	Code: 26337
Facility Name: P2 Well Pad Product	ion Facility		2	
Operating Site Physical Address: Acces If none available, list road, city or town		Run Rd.		
City: Friendly	Zip Code: 2614	6	Coun	ty: Pleasants
Latitude & Longitude Coordinates (NAC Latitude: 39.435425 Longitude: -81.042546	083, Decimal Degrees	s to 5 digits):		
SIC Code: 1311		DAQ Facility ID No	. (For existing fac	ilities)
NAICS Code: 211111				
	CERTIFICATION	OF INFORMATION		
This G70-D General Permit Registrat Official is a President, Vice President, Directors, or Owner, depending on busir authority to bind the Corporation, Proprietorship. Required records of compliance certifications and all re Representative. If a business wishes to c off and the appropriate names and s unsigned G70-D Registration Applicat utilized, the application wi	Secretary, Treasurer, ness structure. A busi, Partnership, Limited daily throughput, ho quired notifications recrify an Authorized ignatures entered. An ion will be returned	General Partner, Gene ness may certify an Au Liability Company, Aurs of operation and manust be signed by a Res Representative, the off ay administratively in to the applicant. Fur	ral Manager, a mo thorized Represer ssociation, Joint v intenance, genera sponsible Official icial agreement b complete or impr thermore, if the	ember of the Board of ntative who shall have Venture or Sole 1 correspondence, or an Authorized elow shall be checked roperly signed or G70-D forms are not
business (e.g., Corporation, Partnership, may obligate and legally bind the busine shall notify the Director of the Division	Limited Liability Co ess. If the business ch of Air Quality imme	anges its Authorized R diately.	int Venture or So epresentative, a R	le Proprietorship) and esponsible Official
I hereby certify that all information cont documents appended hereto is, to the bes have been made to provide the most com	st of my knowledge,	rue, accurate and comp	ation Application plete, and that all	and any supporting reasonable efforts
Responsible Official Signature: Name and Title: Shane Dowell, Office M Email: sdowell@jaybeeoil.com	lanager Phone: 30 Date:	4-628-3119	Fax:	
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:		Fax:	
If applicable: Environmental Contact Name and Title:	Phone:		Fax:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Natural gas production and separation of liquids followed by dehydration and transfer to a gathering line, owned and operated by others.

Directions to the facility: From Clarksburg: Follow Rt 50 west to Bunnel Run Rd; Bunnell Run to left on Old US 50; Right turn on Highland Rd; Continue onto Bonds Creek Rd; Continue onto Freeland-Hebron Rd; Right turn on Middle Island-McKim Shawnee Rd; Continue onto Herron Rd; Slight left to Wick Rd; Continue onto Arvilla Rd; Right turn to Beech Run Rd; Follow Beech Run Rd approx. 1 mile to well access road on left.

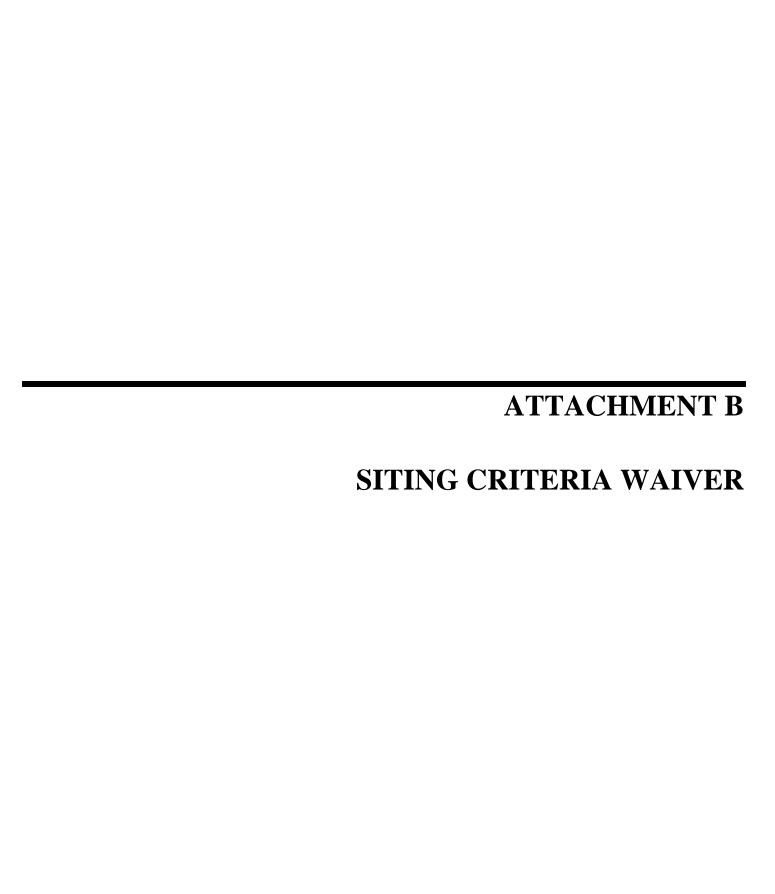

ATTACHMENTS AND SUPPORTING DOCUMENTS

minematic series	TORING DOCUMENTS
I have enclosed the following required document	ts:
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).
 ☑ Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (i ☐ I wish to pay by credit card. Contact for payment (incl. na 	•
 \S\$500 (Construction, Modification, and Relocation) \S\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO a \S\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H 	
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or JJ NSPS and NESHAP fees apply to new construction or if the so	JJJ.
☐ Responsible Official or Authorized Representative Signatur	re (if applicable)
⊠ Single Source Determination Form (must be completed) –	Attachment A
☐ Siting Criteria Waiver (if applicable) – Attachment B	☐ Current Business Certificate – Attachment C
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E
□ Plot Plan – Attachment F	⊠ Area Map – Attachment G
☐ G70-D Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I
□ Fugitive Emissions Summary Sheet – Attachment J	
☐ Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K
 ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USI HYSYS, etc.), etc. where applicable) – Attachment L 	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,
\boxtimes Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	Heater Treaters, In-Line Heaters if applicable) - Attachment
\boxtimes Internal Combustion Engine Data Sheet(s) (include manufa N	cturer performance data sheet(s) if applicable) - Attachment
☐ Tanker Truck/Rail Car Loading Data Sheet (if applicable) -	- Attachment O
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas an information on reboiler if applicable) – Attachment P	alysis, GRI- GLYCalc™ input and output reports and
☐ Pneumatic Controllers Data Sheet – Attachment Q	
☐ Pneumatic Pump Data Sheet – Attachment R	
☑ Air Pollution Control Device/Emission Reduction Device(s applicable) – Attachment S	Sheet(s) (include manufacturer performance data sheet(s) if
⊠ Emission Calculations (please be specific and include all ca	alculation methodologies used) - Attachment T
□ Facility-wide Emission Summary Sheet(s) – Attachment U	
□ Class I Legal Advertisement – Attachment V	
☑ One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments


ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¼ mile of each other.

Is there equestion by SIC cod	sipment and activities in the same industrial grouping (defined e)?
Yes ⊠	No □
person/peo	
Yes □	No 🗵
-	nipment and activities located on the same site or on sites that oment and are within ¼ mile of each other? No ⊠

ATTACHMENT B - SITING CRITERIA WAIVER

If applicable, please complete this form and it must be notarized.

Not Applicable

ATTACHMENT C Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: JAY-BEE OIL & GAS INC RR 1 BOX 5 CAIRO, WV 26337-9701

BUSINESS REGISTRATION ACCOUNT NUMBER

1043-4424

This certificate is issued on:

OBJECT TO A

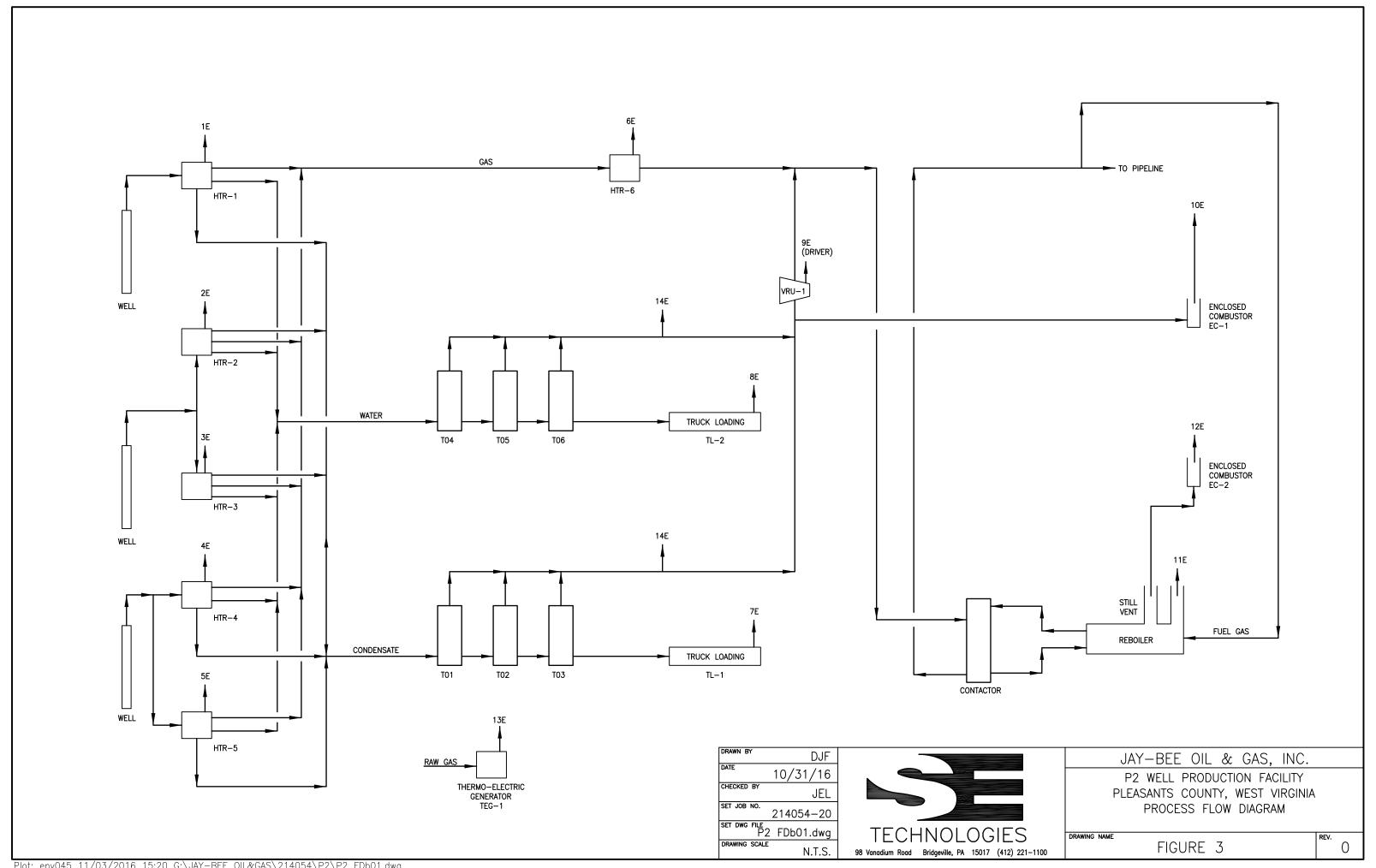
This bentificate is issued by the West Whylina State Tax Commissioner libracionation with W.Va. Cost 211-12

The person of degant upon the lifted on this confictors require most conductive to the control of the conductive terms in the States of the propine at the location along

This certificate is not transferrable and must be displayed at the learning

This certificate shall be partiagent until constitut in the business to which the certificate of registry as granted or until the austral of the payokes expelled by the Tax constitution of

Change in name or change of localism shall be considered a case alon of the distinct and a ruce illighte shall be required.


TRAVELING STREET VENDORS: Must be a copy of this certificate in every Vehicle agreetied by then CONTRACTORS, DRILLING OPERATORS, TIMBER LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L1388190464

Ma is no

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

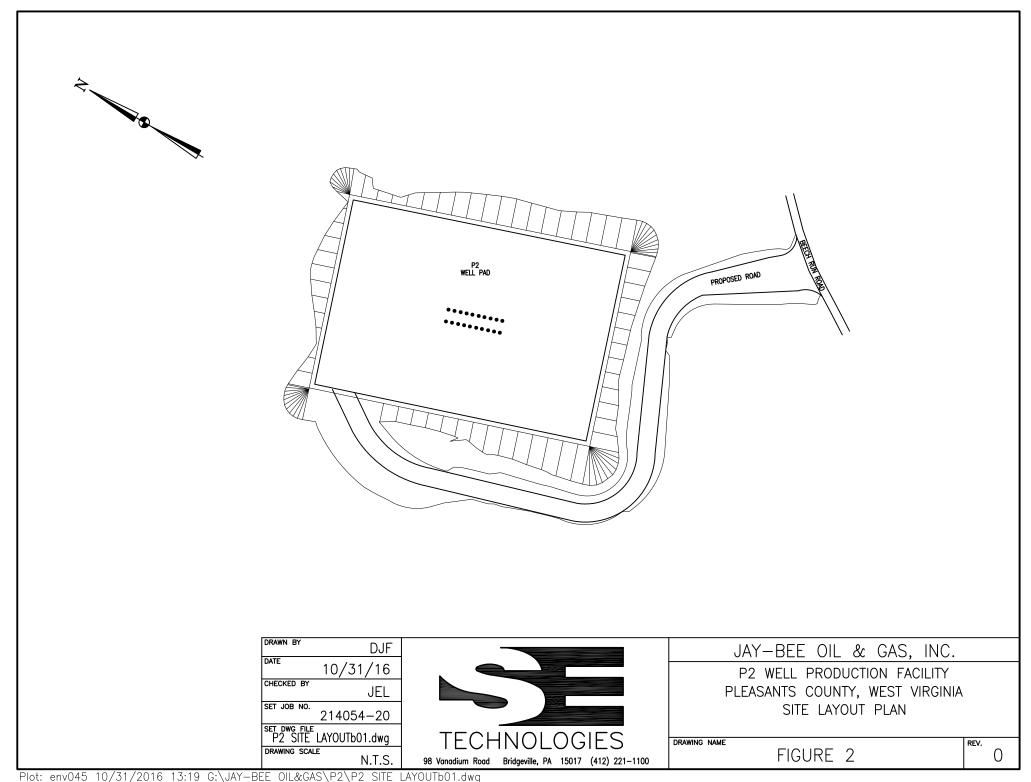
Process Description

ATTACHMENT E - PROCESS DESCRIPTION

At this facility, natural gas and produced fluids (condensate and water) will be received from three wells and passed through gas processing units (GPU) (one per Marcellus well and two per Utica well), to prevent ice formation during subsequent pressure drops, then pass through a three-way separator where condensate and water are separated from the gas. The gas is then dehydrated and transferred to a gathering pipeline owned and operated by others. All gas-fired equipment will use natural gas produced on site as fuel.

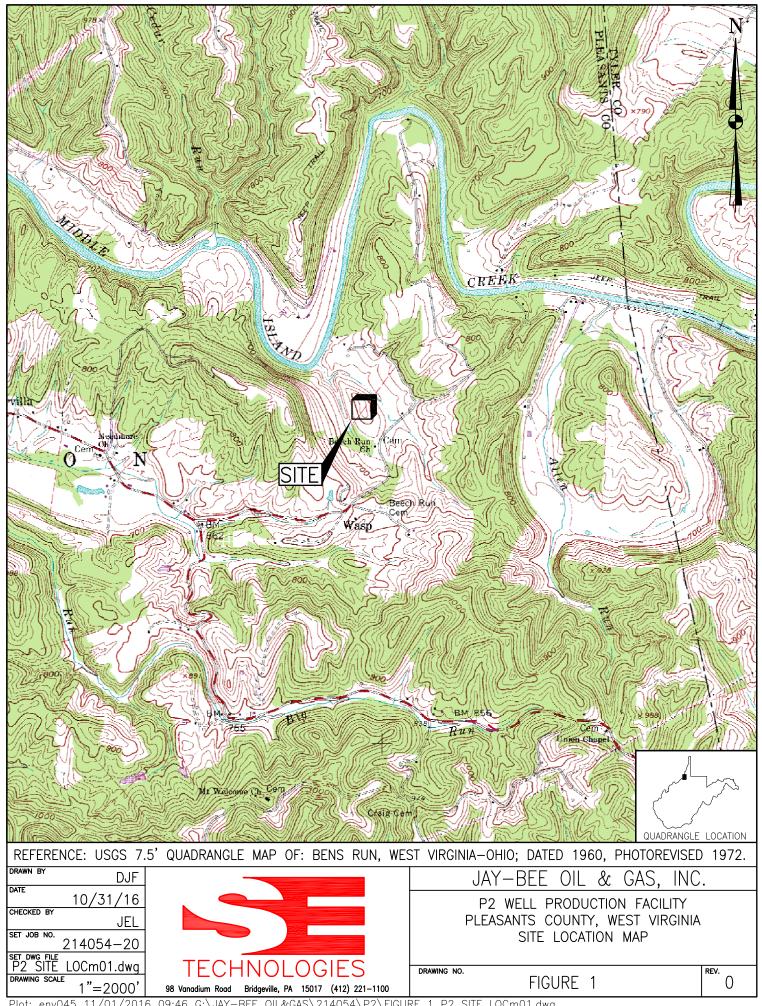
Condensate and produced water will be collected in six (6) 210 BBL tanks (three for condensate and three for produced water), pending truck transportation by others. The condensate will be transported to a regional processing facility and the produced water will be transported to a regional disposal facility. Flash, working and breathing losses from these tanks will be routed to a vapor recovery unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available, and will also be utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. A capture and control efficiency of 98% is being applied for this overall combination of controls.

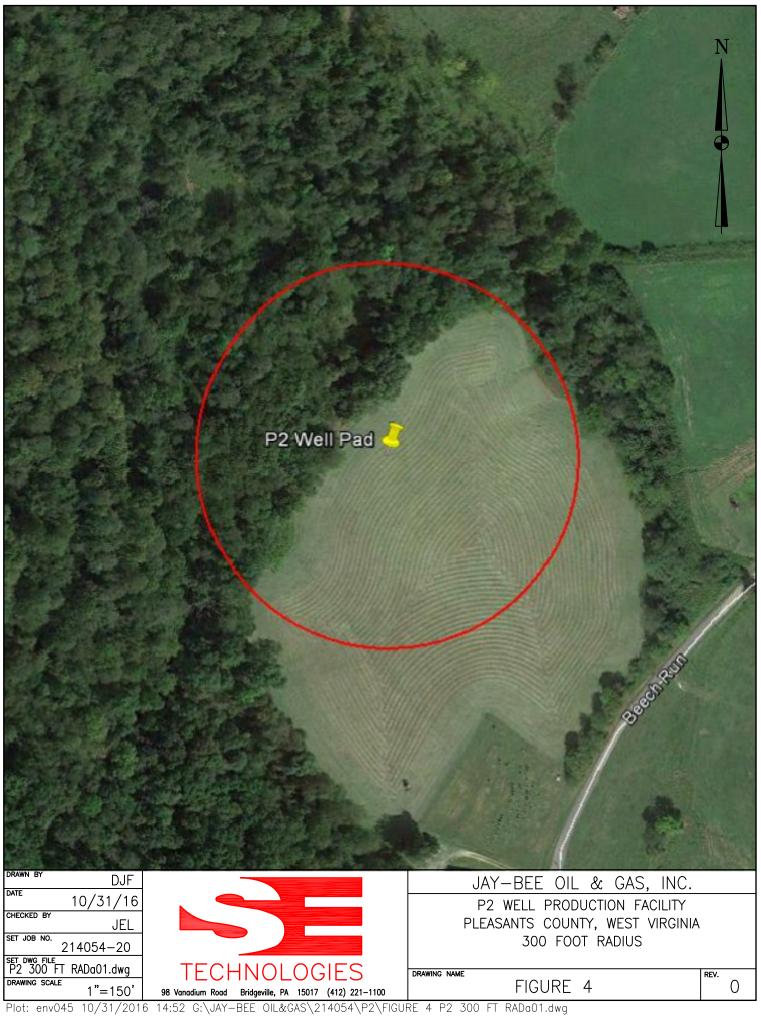
The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent will be comprised of water and various low molecular weight hydrocarbons. Still vent vapors will be routed to an enclosed combustor. A capture and control efficiency of 98% is being applied for the combustor. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line. Water condensing in the still vent column will be routed to the wastewater tanks.


Lastly, Jay-Bee is seeking approval for installation of a Thermoelectric generator to meet the minor electric demands for various monitoring and data tracking equipment.

In summary, upon approval of this application, emission sources at this facility will include the following:

- Five Gas Processing Units (GPUs), each with a 1.5 MMBTU/hr heater (Sources 1E, 2E, 3E, 4E, and 5E).
- One Line Heater (Source 6E).
- Condensate Truck Loading (Max. 300 bbl/day) (Source 7E)
- Produced Water Truck Loading (Max. 636 bbl/day) (Source 8E)
- One Vapor Recovery Unit (VRU) with driver engine (Source 9E), controlling emissions from T01-T06.
- Backup Enclosed Combustor for VRU (Source 10E)
- Three Condensate Tanks (T01-T03)
- Three Produced Water Tanks (T04-T06)
- Dehydration Unit (Source 11E reboiler vent and 12E still vent)
- Enclosed Combustor for control of still vent (Source 12E)
- One Thermoelectric Generator (Source 13E)


ATTACHMENT F


Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT H G-70D Section Applicability Form

ATTACHMENT H - G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	MIT G70-D APPLICABLE SECTIONS
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOa)
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOa)
⊠Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOoa and/or NESHAP Subpart HH
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOa)
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
⊠Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
⊠Section 14.0	Tanker Truck/Rail Car Loading ²
⊠Section 15.0	Glycol Dehydration Units ³

¹ Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

² Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

³ Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Emissions Units/ERD Table

ATTACHMENT I - EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s)6
HTR-1	1E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-2	2E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-3	3E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-4	4E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-5	5E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-6	6E	Line Heater	TBD		0.5 MMBTU/hr	NEW	None	None
TL-1	7E	Condensate Truck Loading	TBD		30,000 BBL/yr	NEW	None	None
TL-2	8E	Produced Water Truck Loading	TBD		63,600 BBL/yr	NEW	None	None
VRU-1	9E	VRU Driver	TBD	3/19/12	84 HP	NEW	1C	None
EC-1	10E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	N/A	None
T01	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T02	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T03	9E/10E	Condensate Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T04	9E/10E	Produce Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T05	9E/10E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
T06	9E/10E	Produced Water Tank	TBD		210 BBL	NEW	EC-1	VRU-1
RBV-1	11E	Dehydration Unit Re-boiler Vent	TBD		0.500 MMBTU/hr	NEW	None	None
RSV-1	12E	Dehydration Unit Still Vent	TBD		40 MMSCFD	NEW	EC-2	None
EC-2	12E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None
TEG-1	13E	Thermoelectric Generator	TBD		4.4 KW/hr	NEW	None	None
T01-T06	14E	Un-captured/Un-controlled VRU-1 Emissions	TBD			NEW	None	None

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMN	MARY SHEE	ET	
			Sources of fugitive emissions Use extra p	may include loading operatio			emissions, etc.	
	Source/Equipn	nent: P2 W			1. 1. 1			
	Leak Detection Method Used	n	☐ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	☐ Other (pleas	e describe)		☐ None required
Compone	Closed		Source of	Leak Factors	Stream type		Estimated Emis	sions (tpy)
Type	Vent System	Count		ner (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e)
Pumps	☐ Yes ⊠ No	1		API	⊠ Gas □ Liquid □ Both	0.004	0.000	0.344
Valves	☐ Yes ⊠ No	224	1	EPA	□ Gas □ Liquid ⊠ Both	0.92	0.01	17.1
Safety Rel Valves	ief □ Yes ⊠ No	12]	EPA	☐ Gas ☐ Liquid ☒ Both	0.02	0.001	1.81
Open Ende Lines	ed □ Yes ⊠ No	23]	EPA	⊠ Gas □ Liquid □ Both	0.07	0.002	5.29
Connection	□ Yes ⊠ No	899	1	EPA	☐ Gas ☐ Liquid ☒ Both	0.49	0.003	7.62
Compresso	ors ☐ Yes ⊠ No	1		API	⊠ Gas □ Liquid □ Both	0.016	0.001	1.26
Flanges	☐ Yes ⊠ No	180		API	□ Gas □ Liquid ⊠ Both	0.129	0.003	6.71
Other ¹	☐ Yes ☐ No			NA	☐ Gas ☐ Liquid ☐ Both			
¹ Other eq	uipment types n	nay include	compressor seals, relief valves, o	diaphragms, drains, meters, etc.				
Please pro Blowdown		tion of the	sources of fugitive emissions (e.g	g. pigging operations, equipment	blowdowns, pneur	natic controllers,	etc.):	
Please ind	icate if there are	e any close	d vent bypasses (include compone	ent):				
Specify all	equipment use	d in the clo	sed vent system (e.g. VRU, ERD	, thief hatches, tanker truck/rail	car loading, etc.)			

Thief Hatch, VRU and Enclosed Combustors

ATTACHMENT K Gas Well Affected Facility Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-073-02556	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-073-02557	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-073-02561	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

	ATTA	CHMEN	IT	L
--	-------------	--------------	----	---

Storage Vessels Data Sheet(s)

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

supporting documents where applicable.
The following information is REQUIRED:
 □ Composition of the representative sample used for the simulation □ For each stream that contributes to flashing emissions: □ Temperature and pressure (inlet and outlet from separator(s)) □ Simulation-predicted composition □ Molecular weight □ Flow rate
□ Resulting flash emission factor or flashing emissions from simulation □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions
Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name P2 Tank Farm	2. Tank Name T01-T03
3. Emission Unit ID number N/A Vapors to combustors,	4. Emission Point ID number 9E/11E
emission point 11E	
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Pending Permit Approval	\boxtimes New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011 and on or	☐ Relocation
before September 18, 2015?	
☐ Yes	
Was the tank manufactured after September 18, 2015?	
⊠ Yes □ No	
7A. Description of Tank Modification (if applicable)	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
☐ Yes	
7C. Was USEPA Tanks simulation software utilized?	
⊠ Yes □ No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal	ll cross-sectional area multiplied by internal height. 210 BBL ea
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 196 BBL
13A. Maximum annual throughput (gal/yr) 1,260,000 ea.	13B. Maximum daily throughput (gal/day) 3,452 ea.
14. Number of tank turnovers per year: 143 ea.	15. Maximum tank fill rate (gal/min) 50

16. Tank fill method □						ı Loadıng			
17. Is the tank system a v	ariable va	por space	system?	☐ Yes	⊠ No				
If yes, (A) What is the vo	lume expa	nsion capa	acity of th	e system (gal)?				
(B) What are the n	umber of t	ransfers ir	nto the sys	stem per y	ear?				
18. Type of tank (check a	all that app	ly):							
	vertical	☐ horize	ontal \square	flat roof	□ cone	roof [dome roo	of 🗆 otl	ner (describe)
☐ External Floating Roo	of [nontoor	roof [☐ double d	leck roof				
☐ Domed External (or C		-		_	200111001				
☐ Internal Floating Roof		_		upport [□ solf sur	norting			
					⊥ sen-sup	porting			
☐ Variable Vapor Space		lifter ro		aphragm					
☐ Pressurized	L	☐ spherica	al ⊔ cy	lindrical					
☐ Other (describe)									
RESSURE/VACUUM (L DATA	4						
19. Check as many as app	ply:								
☐ Does Not Apply				☐ Ruptu	re Disc (p	sig)			
☐ Inert Gas Blanket of _				☐ Carbo	on Adsorpt	tion ¹			
□ Vent to Vapor Combu	istion Devi	ice1 (vapo	r combust	tors, flares	, thermal o	oxidizers,	enclosed o	combustor	s)
☐ Conservation Vent (ps		•		☐ Conde		,			
0.4 oz. Vacuum Setting		. Pressure	e Setting						
☐ Emergency Relief Val			- ~						
Vacuum Setting	(P518)	Pressure	Setting						
☐ Thief Hatch Weighted	I ⊠ Vas [betting						
¹ Complete appropriate A			Davias Cl	haat					
Complete appropriate A	II Polludo	n Control	Device Si						
				iicct					
	Pata (submi				ara or alsa	where in t	ha annlica	tion) T01	T03 total
20. Expected Emission R		it Test Da	ta or Calc	ulations he				tion). T0 1	
			ta or Calc		ere or else		Total		L – T03 total Estimation Metho
20. Expected Emission R	Flashi	it Test Da	ta or Calc	ulations he	Workin	ng Loss	Total Emission	ons Loss	
20. Expected Emission R Material Name		t Test Da	ta or Calc Breathi	ulations he			Total		
20. Expected Emission R Material Name VOC (uncontrolled)	lb/hr 397.4	tpy 1740.8	Breathi Ib/hr 0.162	ulations he ing Loss tpy 0.710	Workin	tpy 3.201	Total Emission lb/hr 398.3	tpy 1744.7	Estimation Metho MB & EPA
20. Expected Emission R Material Name	Flashin lb/hr	t Test Da	ta or Calc Breathi	ulations he	Workin	tpy	Total Emissic	ons Loss tpy	Estimation Metho
20. Expected Emission R Material Name VOC (uncontrolled)	lb/hr 397.4	tpy 1740.8	Breathi Ib/hr 0.162	ulations he ing Loss tpy 0.710	Workin	tpy 3.201	Total Emission lb/hr 398.3	tpy 1744.7	Estimation Metho MB & EPA
20. Expected Emission R Material Name VOC (uncontrolled)	lb/hr 397.4	tpy 1740.8	Breathi Ib/hr 0.162	ulations he ing Loss tpy 0.710	Workin	tpy 3.201	Total Emission lb/hr 398.3	tpy 1744.7	Estimation Metho MB & EPA
20. Expected Emission R Material Name VOC (uncontrolled)	lb/hr 397.4	tpy 1740.8	Breathi Ib/hr 0.162	ulations he ing Loss tpy 0.710	Workin	tpy 3.201	Total Emission lb/hr 398.3	tpy 1744.7	Estimation Metho MB & EPA
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled)	Ib/hr 397.4 12.97	tpy 1740.8 56.81	lb/hr 0.162 0.004	tpy 0.710 0.016	Workin	tpy 3.201 0.049	Total Emission Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, M	Flashin	tpy 1740.8 56.81 Balance,	Breathi	tpy 0.710 0.016	Workin	tpy 3.201 0.049	Total Emissic Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled)	Flashin	tpy 1740.8 56.81 Balance,	Breathi	tpy 0.710 0.016	Workin	tpy 3.201 0.049	Total Emissic Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, M emember to attach emissions ca	Ib/hr 397.4 12.97 IB = Materialculations, i	tpy 1740.8 56.81 al Balance, including T	lb/hr 0.162 0.004 SS = Simil	tpy 0.710 0.016 lar Source, mary Sheet	Workin	tpy 3.201 0.049	Total Emissic Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca	Ib/hr 397.4 12.97 IB = Material culations, i	tpy 1740.8 56.81 al Balance, including T	lb/hr 0.162 0.004 SS = Simil	tpy 0.710 0.016 lar Source, mary Sheet	Workin	tpy 3.201 0.049	Total Emissic Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions call tank CONSTRUCTION 21. Tank Shell Construction	Ib/hr 397.4 12.97 IB = Materia lculations, ii	tpy 1740.8 56.81 al Balance, ncluding T	lb/hr 0.162 0.004 SS = Simil	tpy 0.710 0.016 lar Source, mary Sheet	Workin lb/hr 0.731 0.011 ST = Similar s and other	tpy 3.201 0.049 ar Source T	Total Emissic Ib/hr 398.3 12.99	tpy 1744.7 56.88	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction Riveted Gunite	Ib/hr 397.4 12.97 IB = Materia lculations, ii	tpy 1740.8 56.81 al Balance, ncluding T	Ib/hr 0.162 0.004 SS = Simil ANKS Sum	tpy 0.710 0.016 lar Source, mary Sheet	Workin Ib/hr 0.731 0.011 ST = Similar and other	tpy 3.201 0.049 ar Source T	Total Emissio lb/hr 398.3 12.99 eest, Throug	tpy 1744.7 56.88 hput Data, seets if appli	Estimation Metho MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions can TANK CONSTRUCTION 21. Tank Shell Construction Riveted □ Gunite 21A. Shell Color: Blue	Ib/hr 397.4 12.97 IB = Materialculations, i	tpy 1740.8 56.81 Balance, ncluding T RATION I	Ib/hr 0.162 0.004 SS = Simil ANKS Sum	tpy 0.710 0.016 lar Source, mary Sheet	Workin Ib/hr 0.731 0.011 ST = Similar and other	tpy 3.201 0.049 ar Source T	Total Emissio lb/hr 398.3 12.99 eest, Throug	tpy 1744.7 56.88 hput Data, seets if appli	Estimation Metho MB & EPA MB O = Other (specify)
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction Riveted Gunite 21A. Shell Color: Blue 22. Shell Condition (if meta)	Ib/hr 397.4 12.97 IB = Materialculations, i	tpy 1740.8 56.81 al Balance, including T RATION I Epoxy-c 2 d):	Ib/hr 0.162 0.004 SS = Simil ANKS Sum INFORMA oated rive 1B. Roof C	tpy 0.710 0.016 lar Source, mary Sheet ATION ets Ot Color: Blue	Workin Ib/hr 0.731 0.011 ST = Similar is and other ther (describe)	tpy 3.201 0.049 ar Source T	Total Emissio lb/hr 398.3 12.99 eest, Throug	tpy 1744.7 56.88 hput Data, seets if appli	Estimation Metho MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions can TANK CONSTRUCTION 21. Tank Shell Construction Riveted □ Gunite 21A. Shell Color: Blue	Ib/hr 397.4 12.97 IB = Materia Culations, i	t Test Daing Loss tpy 1740.8 56.81 all Balance, including Tender and the second seco	Ib/hr 0.162 0.004 SS = Simil PANKS Sum INFORMA oated rive 1B. Roof Court In N	tpy 0.710 0.016 lar Source, mary Sheet	Workin Ib/hr 0.731 0.011 ST = Similar s and other ther (description)	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug summary sh	tpy 1744.7 56.88 hput Data, weets if appli	Estimation Metho MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions can TANK CONSTRUCTION 21. Tank Shell Construction □ Riveted □ Gunite 21A. Shell Color: Blue 22. Shell Condition (if metalled) No Rust □ Light H 22A. Is the tank heated? □	Ib/hr 397.4 12.97 IB = Materia Iculations, iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	t Test Daing Loss tpy 1740.8 56.81 al Balance, including Tenderal Epoxy-ce 2 d): Dense Ru To 2	SS = Simil PANKS Sum NFORMA Oated rive 1B. Roof Coast	tpy 0.710 0.016 lar Source, mary Sheet ATION tts 🗵 Ott	Workin Ib/hr 0.731 0.011 ST = Similar s and other ther (description)	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug summary sh	tpy 1744.7 56.88 hput Data, weets if appli	MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction □ Riveted □ Gunite 21A. Shell Color: Blue 22. Shell Condition (if metalled in the shell Color) □ No Rust □ Light Fermion Light Fermion Color Pressure Range 23. Operating Pressure Range	Ib/hr 397.4 12.97 IB = Materia lculations, ii AND OPE 1 and unline Rust □ Yes ☒ N ge (psig): 2	t Test Daing Loss tpy 1740.8 56.81 al Balance, including T RATION I Epoxy-c 2 d): Dense Ru To 2	SS = Simil PANKS Sum INFORMA Oated rive 1B. Roof Coast 2B. If yes, or	tpy 0.710 0.016 lar Source, mary Sheet ATION ots 🗵 Ott Color: Blue operating to	Workin Ib/hr 0.731 0.011 ST = Similar and other ther (describe emperature:	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug summary sh	tpy 1744.7 56.88 hput Data, weets if appli	MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction □ Riveted □ Gunite 21A. Shell Color: Blue 22. Shell Condition (if meta □ No Rust □ Light H 22A. Is the tank heated? □ 23. Operating Pressure Rang Must be listed for tanks	Ib/hr 397.4 12.97 IB = Material culations, is considered and unline Rust Yes No See (psig): 2 to using VR	t Test Daing Loss tpy 1740.8 56.81 al Balance, including T RATION I Epoxy-c 2 d): Dense Ru to 2 to 2 to 2 to 2 to 2 to 3 to 4 to 4 to 4 to 4 to 5 to 4 to 5 to 6 to 7 to 8 to 8 to 7 to 8 to 8 to 8 to 8 to 9	Ib/hr 0.162 0.004 SS = Simil PANKS Sum INFORMA Oated rive 1B. Roof Coast 2B. If yes, or colored veri	tpy 0.710 0.016 lar Source, mary Sheet ATION ots 🗵 Ot Color: Blue operating te	Workin Ib/hr 0.731 0.011 ST = Similar and other ther (description of the compensature)	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug nummary sh	tpy 1744.7 56.88 hput Data, veets if appli	MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction □ Riveted □ Gunite 21A. Shell Color: Blue 22. Shell Condition (if metalled in the shell Color) □ No Rust □ Light Fermion Light Fermion Color Pressure Range 23. Operating Pressure Range	Ib/hr 397.4 12.97 IB = Material culations, is considered and unline Rust Yes No See (psig): 2 to using VR	t Test Da ng Loss tpy 1740.8 56.81 al Balance, ncluding T Epoxy-c 2 d): Dense Ru lo 2: oz - 14 o: Us with oank? 2:	Ib/hr 0.162 0.004 SS = Simil PANKS Sum INFORMA Oated rive 1B. Roof Coast 2B. If yes, or colored veri	tpy 0.710 0.016 lar Source, mary Sheet ATION ots 🗵 Ott Color: Blue operating to	Workin Ib/hr 0.731 0.011 ST = Similar and other ther (description of the compensature)	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug nummary sh	tpy 1744.7 56.88 hput Data, weets if appli	MB & EPA MB O = Other (specify) cable.
20. Expected Emission R Material Name VOC (uncontrolled) HAP (uncontrolled) EPA = EPA Emission Factor, Memember to attach emissions ca TANK CONSTRUCTION 21. Tank Shell Construction Riveted Gunite 21A. Shell Color: Blue 22. Shell Condition (if meta No Rust Light H 22A. Is the tank heated? 23. Operating Pressure Rang Must be listed for tanks 24. Is the tank a Vertical Fi	Ib/hr 397.4 12.97 IB = Materialculations, is continuous in the line of the li	t Test Daing Loss tpy 1740.8 56.81 al Balance, including T. RATION I Epoxy-c 2 d): Dense Ru to 2: Vs with cank? 2 N	Ib/hr 0.162 0.004 SS = Simil PANKS Sum INFORMA Oated rive 1B. Roof Coated rive 2B. If yes, or coated very 4A. If yes, (A)	tpy 0.710 0.016 lar Source, mary Sheet ATION ots 🗵 Ot Color: Blue operating te	Workin Ib/hr 0.731 0.011 ST = Similar s and other ther (description of provide second provi	tpy 3.201 0.049 ar Source T modeling s	Total Emissio Ib/hr 398.3 12.99 eest, Throug summary sh 21C. Y 22C. If	tpy 1744.7 56.88 hput Data, weets if appli	MB & EPA MB O = Other (specify) cable.

25B. Primary Seal Type (check one): ☐ Metallic (mechanical) shoe seal ☐ Liquid mounted resilient seal ☐ Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? \Box \text{No} \text{No}							
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \square Shoe \square Rim \square Other (describe):							
25E. Is the floating roof equipped with a weather shield? \square Yes \square No							
25F. Describe deck fittings:							
26. Complete the following section for Internal Floating Roof Tanks							
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:						k construction:	
26C. Deck seam. Continuous sheet	constructio	n:					
\square 5 ft. wide \square 6 ft. wide \square						scribe)	
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported	
			tanks,	# of columns:		tanks, diameter of column:	
27. Closed Vent System with VRU? ⊠ Yes □ No							
28. Closed Vent System with Enclos	sed Combus	stor? 🛛 Yes 🗌 No B	ack-up	to VRU			
SITE INFORMATION							
29. Provide the city and state on whi		in this section are based:					
30. Daily Avg. Ambient Temperatur			31. Annual Avg. Maximum Temperature (°F):				
32. Annual Avg. Minimum Tempera			33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 35. Atmospheric Pressure (psia): 14.11					4.11		
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk 36A. Minimum (°F):			19.3	9.3 36B. N		imum (°F): 67.7	
liquid (°F): 58.5 37. Avg. operating pressure range of	27 A. Minimum (neig)	finimum (psig): < 0.1 psig		37B. Maximum (psig): 0.8 psig			
(psig): 0-0.5 psig	5771. Minimum (psig). (VII psig			5.2. Maximum (polg). Vio polg			
(Porg). V-Viv Porg							
38A. Minimum liquid surface temperature (°F): 36			38B. Corresponding vapor pressure (psia): 0.11				
39A. Avg. liquid surface temperature (°F): 65			39B. Corresponding vapor pressure (psia): 0.31				
40A. Maximum liquid surface temperature (°F): 100			40B. Corresponding vapor pressure (psia): 0.95				
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.							
41A. Material name and composition: Condensate							
41B. CAS number: 68919-39		68919-39-1					
41C. Liquid density (lb/gal): 5.		5.49					
41D. Liquid molecular weight (lb/lb-mole): 81.3							
41E. Vapor molecular weight (lb/lb-mole): 39.56							
41F. Maximum true vapor pressure (
41G. Maximum Reid vapor pressure (psia): 5.28							
41H. Months Storage per year.		12					
From: January To: December	12						
42. Final maximum gauge pressure and							
temperature prior to transfer into tank							
inputs into flashing emission calculat	tions.						

GENE

1. Bulk Storage Area Name P2 Tank Farm 3. Emission Unit ID number N/A Vapors to combustors, emission point 10E 5. Date Installed, Modified or Relocated (for existing tanks) Pending Permit Approval Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No Was the tank manufactured after September 18, 2015?	2. Tank Name T04-T06 4. Emission Point ID number 9E/10E 6. Type of change: ☑ New construction ☐ New stored material ☐ Other ☐ Relocation				
3. Emission Unit ID number N/A Vapors to combustors, emission point 10E 5. Date Installed, Modified or Relocated (for existing tanks) Pending Permit Approval Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No	 4. Emission Point ID number 9E/10E 6. Type of change: ☑ New construction ☐ New stored material ☐ Other 				
N/A Vapors to combustors, emission point 10E 5. Date Installed, Modified or Relocated (for existing tanks) Pending Permit Approval Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No	9E/10E 6. Type of change: ⊠ New construction □ New stored material □ Other				
5. Date Installed, Modified or Relocated (for existing tanks) Pending Permit Approval Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No	6. Type of change: ⊠ New construction □ New stored material □ Other				
Pending Permit Approval Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No	⊠ New construction □ New stored material □ Other				
Was the tank manufactured after August 23, 2011 and on or before September 18, 2015? ☐ Yes ☐ No					
before September 18, 2015? ☐ Yes ☐ No	☐ Relocation				
□ Yes ⊠ No					
_ ::					
Was the tank manufactured after September 18, 2015?					
⊠ Yes □ No					
7A. Description of Tank Modification (if applicable)					
7B. Will more than one material be stored in this tank? <i>If so, a</i> .	separate form must be completed for each material.				
□ Yes					
7C. Was USEPA Tanks simulation software utilized?					
□ Yes					
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.				
INFORMATION					
8. Design Capacity (specify barrels or gallons). Use the interna	ll cross-sectional area multiplied by internal height.				
210 BBL					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 8				
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 190 BBL				
13A. Maximum annual throughput (gal/yr) 2,671,200 (each)	13B. Maximum daily throughput (gal/day) 7,318 (each)				
14. Number of tank turnovers per year 335 (max) 15. Maximum tank fill rate (gal/min) 50					
16. Tank fill method □ Submerged ☒ Splash	☐ Bottom Loading				
17. Is the tank system a variable vapor space system? ☐ Yes	⊠ No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	·-				
18. Type of tank (check all that apply):					
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat roof	□ cone roof □ dome roof □ other (describe)				
☐ External Floating Roof ☐ pontoon roof ☐ double d					
□ Domed External (or Covered) Floating Roof	ICCK 1001				
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting				
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm					
☐ Pressurized ☐ spherical ☐ cylindrical					
☐ Other (describe)					

¹ Complete appropriate Air Pollution Control Device Sheet

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	3.87	16.94					3.87	16.94	MB
HAPs	0.325	1.43					0.325	1.43	MB

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) Welded							
21A. Shell Color: Blue	21B. Roof Color: Blue 21C. Year Last Painted: 2016						
22. Shell Condition (if metal and unlined):							
☑ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable							
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?			
23. Operating Pressure Range (psig): 2 oz – 14 oz							
Must be listed for tanks using VRUs with closed vent system.							
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):			
⊠ Yes □ No	n/a		n/a				
25. Complete item 25 for Floating Roof Tanks □ Does not apply ⊠							
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): ☐ Metallic (mechanical) shoe seal ☐ Liquid mounted resilient seal							
□ Vap	or mounted resilient se	eal	cribe):				
25C. Is the Floating Roof equipped with a secondary seal? ☐ Yes ☐ No							
25D. If yes, how is the secondary seal mounted? (check one) □ Shoe □ Rim □ Other (describe):							
25E. Is the floating roof equipped with a weather shield?							
25F. Describe deck fittings:							
26. Complete the following section for Internal Floating Roof Tanks							
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:							
26C. Deck seam. Continuous sheet construction:							
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.5 ft. wide \square 5 x 12 ft. wide \square other (describe)							
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column support	orted	26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? ⊠ Yes ⊠ No							
28. Closed Vent System with Enclosed Combustor? ⊠ Yes ⊠ No							
SITE INFORMATION Items 29 through 35 are N/A for Water Tank							
29. Provide the city and state on which the data in this section are based:							
30. Daily Avg. Ambient Temperature (°F): 31. Annual Avg. Maximum Temperature (°F):							
32. Annual Avg. Minimum Temperature (°F):	33. Avg. Wind Speed (mph):						

34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):			35. Atmospheric Pressure (psia):			
LIQUID INFORMATION		•				
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	36		36B. Maximur	n (°F): 70	
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig):	<0.1 psig		37B. Maximum (psig): 0.8 psig		
(psig): 0-0.5 psig						
				<u> </u>		
38A. Minimum liquid surface temperature (°F):	: 36	38B. Corresponding vapor pressure (psia): 0.11				
39A. Avg. liquid surface temperature (°F): 65			39B. Corresponding vapor pressure (psia): .031			
40A. Maximum liquid surface temperature (°F): 70			40B. Corresponding vapor pressure (psia): 0.95			
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if	necessary.		
41A. Material name and composition:	Produced Wate	er				
41B. CAS number:	7732-15-8, 7747-4	0-7,				
440 71 111 1 11 11 11	7647-14-5					
41C. Liquid density (lb/gal):	9-10 lb/gal					
41D. Liquid molecular weight (lb/lb-mole):	Varies					
41E. Vapor molecular weight (lb/lb-mole):	18					
41F. Maximum true vapor pressure (psia):	0.95					
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	C	_				
From: To:	Continuous					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as	n/a					
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T07	NEW	Tri-ethylene Glycol (TEG)	200
		` ` ` ` `	

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST

Existing Equipment Installation of New Equipment NEW

REM Equipment Removed

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- Enter the maximum design storage tank volume in gallons.

ATTACHMENT	M
Small Heaters and Reboilers Not Subject to 40CFR6	60
Subpart Dc Data She	

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	alled/ Type' and Date of Design Hea		Fuel Heating Value (BTU/scf) ⁵
HTR-1	1E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-2	2E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-3	3E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-4	4E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-5	5E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-6	6E	Line Heater	TBD	NEW	0.5	1263
RBV-1	11E	Reboiler	TBD	NEW	0.500	1263
TEG-1	13E	Thermoelectric Generator	TBD	NEW	4.4 KW/hr	1263

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N
Internal Combustion Engine Data Sheet

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

situit aiso t	ise inis joini	•					
Emission Unit ID#1		VR	U-1				
Engine Manufac	cturer/Model	Cummi	ns G5.9				
Manufacturers Rated bhp/rpm		84 @	1800				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	Upon Recei	pt of Permit				
Engine Manufac /Reconstruction		After 3	/1/2013				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4SRB					
APCD Type ⁷		NSCR					
Fuel Type ⁸		RG					
H_2S (gr/100 scf)		<1					
Operating bhp/r	pm	84 @ 1800					
BSFC (BTU/bhj	o-hr)	7914					
Hourly Fuel Thi	coughput	526.4 ft³/hr gal/hr		ft³/hr gal/hr		ft³/hr gal/hr	
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	4.62 MMft³/yr gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes ⊠	No □	Yes □	No □	Yes □	No □
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
AP	NO _x	0.19	0.81				
AP	СО	0.37	1.62				
AP	VOC	0.04	0.18				
AP	SO ₂	< 0.01	< 0.01				
AP	PM ₁₀	0.013	0.06				
AP	Formaldehyde	0.015	0.065				
AP	Total HAPs	0.022	0.10				
AP	GHG (CO ₂ e)	90	393				

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# VRU-1) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: Miratech Model #: VXC-1408-04-HSG Design Operating Temperature: 1000 °F Design gas volume: 430± scfm Service life of catalyst: 2+ years, depending on site Provide manufacturer data? ⊠Yes conditions Volume of gas handled: 430 acfm at 1,078 °F Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F Reducing agent used, if any: None Ammonia slip (ppm): N/A Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Part of the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check. Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced. How often is performance test required? ☐ Initial ☐ Annual ☐ Every 8,760 hours of operation Field Testing Required

☐ No performance test required. If so, why (please list any maintenance required and the applicable sections in

NSPS/GACT,

ATTACHMENT O	
Tanker Truck Loading Data Sheet(s)	

ATTACHMENT O - TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	Emission Point ID#: 7E & 8E			Year Installed/Modified: TBD						
Emission Unit Description: Condensate Truck Loading										
			Loading A	Area Data						
Number of Pumps: 2		Numbe	er of Liquids	Loaded: 2		Max number of at one (1) time	nber of trucks/rail cars loading) time: 2			
Are tanker trucks/rail ca If Yes, Please describe:	ars pressure test	ed for lea	ks at this or a	any other loc	ation?	□ Yes □	No ⊠ Not Required	d		
Provide description of c	Provide description of closed vent system and any bypasses. None									
Are any of the following truck/rail car loadout systems utilized? No Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing a NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return?										
Pro	jected Maximu	m Operat	ing Schedul	e (for rack o	r transf	er point as a w	hole)			
Time	Jan – M	ar	Apr -	- Jun	J	ul – Sept	Oct - Dec			
Hours/day	24		2	4		24	24			
Days/week	7		7	7		7	7			
	Bu	lk Liquid	Data (use e	xtra pages a	s necess:	ary)				
Liquid Name		Condens	Condensate Produced Wa			ter				
Max. Daily Throughput (1000 gal/day)		12.6		26.7						
Max. Annual Throughpu (1000 gal/yr)	ıt	3,780		8,014						
Loading Method ¹		SUB		SP						
Max. Fill Rate (gal/min))	50		50						
Average Fill Time (min/loading)		120		120						
Max. Bulk Liquid Temperature (°F)		75		75						
True Vapor Pressure ²	3.6 psi	a		n/a						
Cargo Vessel Condition	U		U							
Control Equipment or Method ⁴		None			None					
Max. Collection Efficient (%)	ncy	n/a			n/a					

Max. Control Efficiency (%)		n/a	n/a	
Max.VOC Emission Rate	Loading (lb/hr)	2.96	0.14	
	Annual (ton/yr)	4.00	0.19	
Max.HAP Emission	Loading (lb/hr)	0.16	0.016	
Rate	Annual (ton/yr)	0.22	0.02	
Estimation Method ⁵		EPA	EPA	

1	BF	Bottom Fill	SP	Splash Fil	l		SUB	Submerged Fill
2	At maxim	um bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as m	any as apply (complete and su	ıbmit app:	ropriate A	ir Pollutio	on Contro	l Device S	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor B	alance (cl	osed system)
	ECD	Enclosed Combustion Device	2	F	Flare			
	TO	Thermal Oxidization or Incir	eration					
5	EPA	EPA Emission Factor in AP-	42			MB	Material	Balance
	TM	Test Measurement based upon test data submittal			11	O	Other (des	cribe)

ATTACHMENT	P
Glycol Dehydration Unit Data Sheet(s	;)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalcTM input and aggregate report. Use extra pages if necessary.

Manufacturer: Exte	rran		Model: 48875001							
Max. Dry Gas Flow	Rate: 40 mmscf/day		Reboiler Design He	at Input: 0.500 MMB	TU/hr					
Design Type: ⊠ TE	G □ DEG	□ EG	Source Status ¹ : NS							
Date Installed/Modi	ified/Removed2: TBD)	Regenerator Still V	ent APCD/ERD3: TO						
Control Device/ERI	O ID# ³ : EC-2		Fuel HV (BTU/scf)	: 1263						
H ₂ S Content (gr/100	0 scf): <0.001%		Operation (hours/ye	ear): 8760						
Pump Rate (gpm): 7	7.5									
Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lb/MMscf										
Is the glycol dehydi	ration unit exempt fro	om 40CFR63 Section	764(d)? ⊠Yes	□ No: If Yes, answe	er the following:					
meters per day, as d The actual average megagram per year	letermined by the pro emissions of benzene	tural gas to the glyco redures specified in § from the glycol dehy etermined by the prod	\$63.772(b)(1) of this dration unit process	subpart. Yes Yent to the atmospher	⊠ No re are less than 0.90					
☐ No Is the glycol dehydi	ration unit located wi	thin an Urbanized Arc	ea (UA) or Urban Clu	ster (UC)?	⊠No					
Is a lean glycol pun	np optimization plan	being utilized? □ Ye	s 🛮 No							
		ck to the flame zone								
□ Yes ⊠ No	•	ck to the flame zone		xed with fuel.						
☐ Still vent emissi☐ Still vent emissi	temperature controllons to the atmosphere ons stopped with valvons to glow plug.		e reboiler? Still ven	t to enclosed combus	stor (EC-2).					
Flash Tank	e following equipme nent system that conti	nt is present.	nser or flash tank vap	ors						
		Control Device	Technical Data							
	Pollutants Controlled	[Manufacturer's	Guaranteed Control	Efficiency (%)					
Hydrocarbons			99+% (Note: 98% used for calculations)							
		Emissio	ons Data							
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)					
		AP-42	NOx	0.05	0.22					
		AP-42	СО	0.04	0.18					
DDW 1 / 115		AP-42	VOC	< 0.01	0.01					
RBV-1 / 11E	Reboiler Vent	AP-42	SO ₂	< 0.01	< 0.01					
		AP-42	PM ₁₀	< 0.01	0.02					
		AP-42	GHG (CO ₂ e)	60.4	264.5					

		GRI-GlyCalc TM	VOC	0.62	2.73
		GRI-GlyCalc [™]	Benzene	0.008	0.036
RSV-1 / 12E	Glycol	GRI-GlyCalc [™]	Toluene	0.03	0.13
KSV-1 / 12E	Regenerator Still Vent	GRI-GlyCalc [™]	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc [™]	Xylenes	< 0.01	< 0.01
		GRI-GlyCalc [™]	n-Hexane	0.02	0.07
	Glycol Flash	GRI-GlyCalc [™]	VOC		
		GRI-GlyCalc TM	Benzene		
N		GRI-GlyCalc TM	Toluene		
None	Tank	GRI-GlyCalc TM	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1	Enter the	Source Status using the following cod	es:							
	NS	Construction of New Source	ES	Existing Sourc	e					
	MS	Modification of Existing Source								
2		date (or anticipated date) of the glycol	l dehydrat	ion unit's instal	lation (constr	uction of	source), modi	fication or		
	removal.									
3		Air Pollution Control Device (APCD)	/Emission	Reduction Devi	ice (ERD) typ	e designa	tion using the	following cod		
	and the d	evice ID number:								
	NA	None	CD	Condenser		FL	Flare			
	CC	Condenser/Combustion Combination	TO	Thermal Oxidi	zer	O	Other	(please list)		
4	Enter the	appropriate Emission Unit ID Number	s and Emi	ssion Point ID I	Numbers for tl	ne glycol	dehydration u	nit reboiler ve		
	and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be									
	designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol									
	Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3									
	and RSV	-3, etc.	_							
5	Enter the Potential Emissions Data Reference designation using the following codes:									
	MD	Manufacturer's Data	AP	AP-42	•					
	GR	GRI-GLYCalc TM	OT	Other	(please list)					
6	Enter the	Reboiler Vent and Glycol Regenerator	Still Ven	t Potential to E	nit (PTE) for	the listed	regulated pol	lutants in lbs		
	per hour	and tons per year. The Glycol Regenera	ator Still '	Vent potential e	missions may	be detern	nined using th	e most recent		
							-			

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controllers Data Sheet

ATTACHMENT Q - PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? ☐ Yes ⊠ No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after **September 18, 2015?** Yes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? Yes ⊠ No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015? ☐ Yes ⊠ No Please list approximate number.

Pneumatic Pump Data Sheet

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID#	Date	Pump Make/Model	Pump Size

ATTACHMENT S
Air Pollution Control Device/Emission Reduction Device Sheet

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: T01-T06	Make/Model: Condensate and Produced Water Tanks					
Primary Control Device ID: VRU-1	Make/Model: Arrow/WRC2					
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ⊠ Yes □ No					
Secondary Control Device ID: EC-1	Make/Model: Hy-Bon CH 10.0					
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ☑ Yes ☐ No					

VAPOR COMBUSTION (Including England Combustors)									
(Including Enclosed Combustors) General Information									
			General In						
Control De	evice ID#: EC-1			Installation New		BD – Upor Iodified	n Permit Relocated		
Maximum scfh	Rated Total Flow C						leat Content ΓU/scf		
			Control Devic	e Informati	on				
	Type of Vapor Combustion Control? Enclosed Combustion Device								
Manufactu Model: CH	rer: Hy-Bon [-10.0			Hours of o	peration	per year? 8	3760		
List the en	nission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID#)		
Emission Unit ID#	Emission Source	Description	1	Emission Unit ID#	Emissio	on Source I	Description		
RBV-1	Dehydration Unit	Phydration Unit Still Vent							
If this	vapor combustor c	controls em	nissions from more the	an six (6) em	ission un	its, please	attach additional pages.		
Assist Typ	e (Flares only)		Flare Height	Tip Diameter Was the design per \$60.					
Steam Pressu	□ Air re ⊠ Non		feet				☐ Yes ☐ No Provide determination.		
			Waste Gas 1	Information					
Maxim	um Waste Gas Flow 64.3 (scfm)	Rate		Vaste Gas Stream Exit Velocity of the Emissions Stream BTU/ft ³ (ft/s)					
	Provide an	attachmei	it with the characteri	stics of the v	vaste gas	stream to	be burned.		
			Pilot Gas I	nformation					
Number	low Rate to Pilot ame per Pilot 798 scfh		nput per 100 BTU		Will automatic re-ignition be used? ⊠ Yes □ No				
If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will go into manual mode which means someone will need to manually start. Gas flow is shut off if it fails to ignite.									
Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No ✓ If Yes, what type? ✓ Thermocouple ✓ Infrared ✓ Ultraviolet ✓ Camera ✓ Other:									
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.									
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per \$60.18 or \$63.11(b) and performance testing.									

VAPOR RECOVERY UNIT See Attachment N										
	General II	nformation								
Emission U	Emission Unit ID#: Installation Date: New Modified Relocated									
	Device In	formation								
Manufactu Model:	Manufacturer: Model:									
List the em	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Point ID#)							
Emission Unit ID#	Emission Source Description Emission Source Description									
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please attach additional pages.							
	Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.									
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.										
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.										
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.										

ATTACHMENT T

Emission Calculations

P2 Well Pad Production Facility Pleasants County, WV

Emission Unit ID	Description	NOx lb/br	CO lb/hr	CO ₂ ,	CH.	VOC ⁴	SO₂ lb/hr	PM lb/hr	Benzene lb/br	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldehyde lb/br	Total HAPs lb/hr
HTR-1	GPU #1	0.150	0.126	181.1	0.003	0,008	0,001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-2	GPU #2	0.150	0.126	181.1	0.003	0,008	0.001	0.011	3.15E-06			0,003	5.10E-06	1.13E-04	0.003
HTR-3	GPU #3	0.150	0,126	181.1	0.003	0,008	0.001	0.011	3.15E-06			0,003	5,10E-06	1.13E-04	0.003
HTR-4	GPU #4	0.150	0,126	181.1	0.003	0,008	0.001	0.011	3.15E-06			0.003	5,10E-06	1.13E-04	0.003
HTR-5	GPU #5	0.150	0.126	181.1	0,003	0.008	0,001	0,011	3.15E-06			0.003	5.10E-06	1.13E-04	0,003
HTR-6	Line Heater	0,050	0.042	60.4	0.0012	2.75E-03	0,0003	0.004	1.05E-06			0.001	1.70E-06	3.75E-05	0.001
TL-1	Truck Loading - Condensate ²					2.96						0,16			0.160
TL-2	Truck Loading - Produced Water ²					0.143						0.016			0,016
VRU-I	VRU Compressor	0.185	0,370	89.7	0,126	0.04	0,0004	0.013	0.001	1.65E-05	1,30E-04		3.71E-04	0,015	0,022
TEG-1	Thermoelectric Generator	0.001	0.001	1,6	0,0007	7.15E-05	7.80E-06	9.88E-05	2.73E-08			2.34E-05	4,42E-08		2.45E-05
T01-T06	Condensate Tanks + Water Tanks ³			28.5		8,06			0.004	5.74E-04	7,70E-03	0,241	0,0094		0.263
EC-1	Condensate Tanks + Water Tanks	0.922	4.57	1564.6	1.14	8.07	5.91E-04	0.047	1.31E-05			0,011		4,67E-04	0.012
RBV-1	500 MBTU/hr Reboiler	0.050	0.042	60.4	0,0012	0,003	3.00E-04	0.0038	1.05E-06			0,001	1,70E-06	3.75E-05	0,001
EC-2	Dehydration Unit Combustor	0.272	1.03	417.4	0.008	0,63	5.91E-04	0,037	0,008			0,018	0,031	3.63E-04	0.057
	Truck Traffic Fugitive Dust							4.30							
	Fugitive Emissions			9.2	0,37	0.39									0,004
Total (Exluding	Fugitive Emissions)	2.23	6.68	3128.24	1.30	11,89	0.007	0.16	0.013	5.91E-04	7.83E-03	0.462	0.041	0.016	
Total		2,23	6.68	3137,42	1.66	12.27	0.007	4.46	0,013	5.91E-04	7.83E-03	0,462	0.041	0.016	0.550

Émission Unit ID	Description	NOx toy	CO tpy	CO _{2e} tpy	CH₄ tpy	VOC tpy	SO ₂	PM tpy	Benzenc tov	Ethylbenzene tpy	Xylenes tpy	n-Hexane tpy	Toluene tpy	Formaldehyde tpy	Total HAPs tpy
	GPU #1	1 1				0.036	0,004	0,050	-	77	- 72	0.012	2.23E-05		
HTR-1		0.657	0,552	<u>793.4</u>											
HTR-2	GPU #2	0.657	0,552	793.4	0,015	0,036	0,004	0,050			_	0.012	2.23E-05		
HTR-3	GPU #3	0.657	0.552	793.4	0,015	0.036	0,004	0.050				0.012	2.23E-05	4,93E-04	0.012
HTR-4	GPU #4	0,657	0,552	793.4	0,015	0.036	0,004	0.050				0.012	2.23E-05	4,93E-04	0.012
HTR-5	GPU #5	0.657	0,552	7 93.4	0.015	0,036	0.004	0,050			_	0.012	2.23E-05	4,93E-04	0.012
HTR-6	Line Heater	0.219	0.184	264.5	0,005	0.012	0,001	0.017				0.004	7,45E-06	1.64E-04	
TL-1	Truck Loading - Condensate ²					4,00						0.216			0.22
TL-2	Truck Loading - Produced Water ²					0.193						0.021			0,021
VRU-1	VRU Compressor	0,811	1.62	393.0	0,553	0.18	0,0017	0,057	0,0046	7.22E-05	5.68E-04		0.002	0,065	0.096
TEG-1	Thermoelectric Generator	0.006	0,005	6.88	0,003	3.13£-04	3.42E-05	4.33E-04	1.20E-07			1.03E-04	1.94E-07		1.07 <u>E</u> -04
T01-T06	Condensate Tanks + Water Tanks3			124.9		35.31			0.018	2.52E-03	0.034	1.06	0.041		. 1.15
EC-1	Condensate Tanks + Water Tanks	4.04	20.00	6,852.8	0,260	1.79	0,003	0.207				0,041		0,002	0.051
RBV-I	500 MBTU/hr Reboiler	0.219	0.184	264,5	0.005	0.012	0.001	0,017				0.004	7.45E-06	1,64E-04	
EC-2	Dehydration Unit Combustor	1.19	4.50	1828.1	0.03	2,74	0.003	0.161	0.035			0,078	0,136	0.002	0.25
	Truck Traffic Fugitive Dust							3.77							
	Fugitive Emissions			40,18	1.61	1.70									810,0
Total (Exluding	Fugitive Emissions)	9.77	29,25	13701.70	0,94	44.42	0.029	0.708	0.058	2.59E-03	0.0343	1.48	0.179	0.071	1.86
Tetal		9.77	29,25	13741.88	2.54	46.11	0,029	4.48	0.058	2.59E-03	0.0343	1.48	0.179	0.071	1.87

¹ Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This line represents the un-controlled 2%.

² Truck loading is un-controlled.

³ This line represents the 2% Un-captured/Controlled associated with the VRU.

⁴ VRU-1 and EC-1 would not run concurrent so hourly VOC emissions for these sources are only accounted for once.

Jay-Bee Oil &Gas ,LLC ENGINE EMISSIONS

P2 Well Pad Production Facility Pleasants County, WV

Controlled Emission Rates

Source VRU-1

Engine Data: Engine Manufacturer Engine Model	Cummins G5,9					
Type (Rich-burn or Low Emission)	Rich Burn					
Aspiration (Natural or Turbocharged)	Natural					
Manufacturer Rating	84	hp				
Speed at Above Rating	1,800	LDED LD				
Configuration (In-line or V)	In-line					
Number of Cylinders	6					
Engine Bore	4.020	inches				
Engine Stroke	4.720	inches				
•						
Engine Displacement	359	cu. in.				
Engine BMEP	103	psi				
Fuel Consumption (HHV)	7,914	Btu/bhp-hr			Na mara da la foración	oci
					Ar-42 Astrokerich	3
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr	lb/day lb/MMBtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44	Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89	453,59 grams = 1 pound
VOC (NMNEHC)	0.220	0.04	0.18	18	0.98	2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996	
CO2e		90	393		,	
Total Annual Hours of Operation	8,760				Security of the Sec	125
SO2		0.0004	0.0017		0.00	<u> </u>
PM2.5		0,00632	0.0277		0.00	2
PM (Condensable)		0.00659	0.0289			
CH ₄		0.12623	0.5529		6 PE 6 2 PE 6 PE 6 PE 6 PE	Factor From 40 CFR 98, Table C-2
N ₂ O		0.01148	0.0503		S57925336000000	2 Factor From 40 CFR 98, Table C-2
acrolein		0.00175	0.0077		€ 20,002	3
acetaldehyde		0.00185	0.0081		8. ED.QQZ	(9)
formaldehyde	0,080	0.0148	0.0649		scanner and a	Per Mfg.
benzene		0.00105	0.0046			>8.
toluene		0.00037	0.0016		2000	8
ethylbenzene xylenes		1.6E-05 0.00013	0.0001 0.0006			
methanol		0.00203	0.0089		0.003	
Total HAPs		0.00203	0.0064		169-49 1980	%
100011111		0.02202	0.0704			P1 45
Exhaust Parameters;						
Exhaust Gas Temperature	1,078	deg. F				
Exhaust Gas Mass Flow Rate		lb/hr				
Exhaust Gas Mass Flow Rate	430	acfm				
Exhaust Stack Height	96	inches				
Exhibits black Height	8.00	feet				
	0.00					
Exhaust Stack Inside Diameter	4	inches				
	0.333	feet				
Exhaust Stack Velocity	82.l	ft/sec				
	4,927.4	ft/min				

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Sources: HTR-1 Through HTR-5 *Emissions shown below are for each Gas Processing Unit

Burner Duty Rating 1500.0 Mbtu/hr
Burner Efficiency 98.0 %
Gas Heat Content (HHV) 1263.0 Btu/scf
Total Gas Consumption 29,084.8 scfd
H2S Concentration 0.000 Mole %
Hours of Operation 8760

NOx	0.1501	lb/hr	0.657	tpy
со	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	lb/hr	0.050	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

AP-42 Factors Used

NOx	100 lb/MMCF	
CO	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
НСОН	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source HTR-4 Line Heater

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 Mbtu/hr 98.0 % 1263.0 Btu/sef 9,694.9 sefd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
со	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60	lb/hr	264	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

AP-42 Factors Used

100 lb/MMCF	
84 lb/MMCF	
120,000 lb/MMCF	Global Warming Potential = 1
5.5 lb/MMCF	
7.6 lb/MMCF	
0.6 lb/MMCF	
2.3 lb/MMCF	Global Warming Potential = 25
2.2 lb/MMCF	Global Warming Potential =298
0.075 lb/MMCF	
0.0021 lb/MMCF	
1.8 lb/MMCF	
0.0034 lb/MMCF	
	84 lb/MMCF 120,000 lb/MMCF 5.5 lb/MMCF 7.6 lb/MMCF 0.6 lb/MMCF 2.3 lb/MMCF

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-1 Enclosed Combustor Pilot

Burner Duty Rating 985.1 MBtu/hr
Burner Efficiency 98.0 %
Gas Heat Content (HHV) 1263.0 Btu/scf
Total Gas Consumption 19100.9 scfd
H2S Concentration 0.000 Mole %
Hours of Operation 8760

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

100 lb/N	IMCF
84 lb/N	IMCF
120,000 lb/N	IMCF Global Warming Potential = 1
5.5 lb/N	IMCF
7.6 lb/N	IMCF
0.6 lb/N	IMCF
2.3 lb/N	1MCF Global Warming Potential = 25
2.2 lb/N	IMCF Global Warming Potential =298
0.075 lb/N	IMCF
0.0021 lb/N	MCF
1.8 lb/N	IMCF
0.0034 lb/N	MCF
	5.5 lb/N 7.6 lb/N 0.6 lb/N 2.3 lb/N

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-1 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency

98.0 %

Gas Heat Content (HHV)

2313.1 Btu/scf

Max Flow to T-E

0.126 MMSCFD 12.116 MMBTU/hr 45.887 MMSCF/yr

Max BTUs to Flare

5 %

106,140 MMBTU/yr

NOx	0.82	lb/hr	3.61	tpy
CO	4.48	lb/hr	19.64	tpy
CO2	1,416.29	lb/hr	6,203.36	tpy
CO2e	1,445.61	lb/hr	6,331.76	tpy
VOC	8.06	lb/hr	1.77	tpy
CH4	1.14	lb/hr	0.25	tpy
N2Ö	0.0027	lb/hr	0.0117	tpy
PM	0.0398	lb/hr	0.1744	tpy
СНОН	0.0004	lb/hr	0.0017	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0094	lb/hr	0.0413	tpy
Toluene	0.0000	lb/hr	0.0001	tpy
Total HAP	0.0099	ib/hr	0.0431	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions

Global Warming Potential = 1 Global Warming Potential = 25 Global Warming Potential = 298

Factors	Used

AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU
AP-42 Table 13.5-1	CO	0.37 lb/MMBTU
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU
40 CFR 98 Table C-2	СН4	0.0022 lb/MMBTU
40 CFR 98 Table C-2	N2O	0,00022 lb/MMBTU
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF
AP-42 Table 1.4-3	Benzene	0,0021 lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF

P2 Well Pad Production Facility Pleasants County, WV

Source RBV-1

Burner Duty Rating500.0 MBtu/hrBurner Efficiency98.0 %Gas Heat Content (HHV)1263.0 Btu/scfTotal Gas Consumption9,695 scfdH2S Concentration0.000 Mole %Hours of Operation8760

NOx	0.0500	lb/hr	0.219	tpy
CO	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CO2e	60.4	lb/hr	264.5	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

AP-42 Factors Used

100	lb/MMCF	
84	lb/MMCF	
120,000	Ib/MMCF	Global Warming Potential = 1
5.5	Ib/MMCF	
7.6	Ib/MMCF	
0.6	lb/MMCF	
2.3	lb/MMCF	Global Warming Potential = 25
2,2	Ib/MMCF	Global Warming Potential = 298
0.075	Ib/MMCF	
0.0021	lb/MMCF	
1.8	lb/MMCF	
0.0034	Ib/MMCF	
	84 120,000 5.5 7.6 0.6 2.3 2.2 0.075 0.0021 1.8	5.5 lb/MMCF 7.6 lb/MMCF 0.6 lb/MMCF 2.3 lb/MMCF

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-2 Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H₂S Concentration 985.1 MBtu/hr 98.0 % 1263.0 Btu/scf 19100.9 scfd 0.000 Mole % 8760

Hours of Operation

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3) NOx 100 lb/MMCF

NOX	TOU ID/MMCF	
CO	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source EC-2 Enclosed Vapor Combustor

Destruction Efficiency
Gas Heat Content (HHV)
Max Flow to T-E
Max BTUs to Flare

98.0 % 660.7 Btu/scf 0.09264 MMSCFD 2.55 MMBtu/hr

811.526 MMSCF/yr 22,341 MMBtu/yr

NOx	0.17	lb/hr	0.76	tpy
CO	0.94	lb/hr	4.13	tpy
CO2	298.11	lb/hr	1,305.74	tpy
CO2e	298.42	lb/hr	1,307.09	tpy
VOC	0.62	lb/hr	2.72	tpy
CH4	0.006	lb/hr	0.0246	tpy
N2O	0.001	lb/hr	0.0025	tpy
PM	0.029	lb/hr	0.128	tpy
Benzene	0.008	lb/hr	0.035	tpy
СНОН	0.000	lb/hr	0.001	tpy
n-Hexane	0.016	lb/hr	0.070	tpy
Toluene	0.031	lb/hr	0.136	tpy
Total HAPs	0.055	lb/hr	0.241	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors	Used

AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	CO	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116,89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 1Ь/ММВТИ	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

P2 Well Pad Production Facility Pleasants County, WV

Potential Emission Rates

Source TEG-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 MBtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

NOx	0.0013	lb/hr	0.006	tpy
СО	0.0011	lb/hr	0.005	tpy
CO2	1.56	lb/hr	6.84	tpy
CO2e	1.57	lb/hr	6.88	tpy
CH₄	7.48E-04	lb/hr	3.28E-03	tpy
VOC	7.15E-05	lb/hr	3.13E-04	tpy
SO2	7.80E-06	lb/hr	3.42E-05	tpy
H2S	0.00E+00	lb/hr	0.00E+00	tpy
PM10	9.88E-05	lb/hr	4.33E-04	tpy
СНОН	9.75E-07	lb/hr	4.27E-06	tpy
Benzene	2.73E-08	lb/hr	1.20E-07	tpy
N-Hexane	2.34E-05	lb/hr	1.03E-04	tpy
Toluene	4.42E-08	lb/hr	1.94E-07	tpy
Total HAPs	2.45E-05	lb/hr	1.07E-04	tpy

AP-42 Factors Used

NOx	100 lb/MMCF	
co	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

P2 Well Pad Production Facility Pleasants County, WV

TL-1 Truck Loading - Condensate

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

 $L_L=12.46*(SPM/T)$

Where,

Loading Loss L_L = 2.979 lb/1000 gallons

Saturation Factor S= 0.6 True Vapor Pressure P= 3.1

True Vapor Pressure P= 3.1 psia
Molecular Weight of Vapors M= 66.84 lb/lb-mol

Temperature T=520 deg R

Maximum Daily Loading 300 BBL/day

12,600 gpd

Hours of Loading 9 hr

Total VOC	26.7 lt	b/day	2.96	lb/hr
Total HAP	1.4 lt	b/day	0.16	lb/hr

Maximum Annual Loading 90,000 BBL/yr

3,780,000 gpy

Total VOC	8001.6 lb/yr	4.00 tpy
Total HAP	432.5 lb/yr	0.22 tpy

Emissions

Total VOC 71.059 % Total HAP 3.841 %

P2 Well Pad Production Facility Pleasants County, WV

TL-2 Truck Loading - Produced Water

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows:

 $L_L=12.46*(SPM/T)$

Where,

Loading Loss L_L = 0.132 lb/1000 gallons

Maximum Daily Loading 636 BBL/day

26,712 gpd

Hours of Loading 9 hr

Total VOC	1.3 lb/day	0.14 lb/hr
Total HAP	0.1 lb/day	0.016 lb/hr

Maximum Annual Loading 190,800 BBL/yr

8,013,600 gpy

Total VOC	385.7 lb/yr	0.19 tpy
Total HAP	42.5 lb/yr	0.02 tpy

Emissions

Total VOC 36.376 % Total HAP 4.009 %

P2 Well Pad Production Facility Pleasants County, \overline{WV}

Truck Loading Fugitive Dust

	None	2385	80		0.25	10 10	27	18	Produced Water Transportation Trucks Condensate Transportation Trucks	1 2
	None	2385	08	-	0.25	2	27	100	Produced Water Transportation Tricks	t
Control ol Efficiency (%)	n Control	Maximum Trips per Year	Maximum Truck Capacity Trips per (BBL/Truck) Hour		Miles per Trip	Mean Vehicle Speed (mph)	Mean Vehicle Weight (tons)	Number of Wheels	Description	Item Number

		PM	PM-10
= 1	Particle size multiplier	8.0	0.36
= 8	Silt content of road surface material (%)	10	3
1 0	Mean vehicle sneed (mph)	01	10
W =	Mean vehicle weight (tons)	27	27
_ = M	Mean number of wheels per vehicle	18	27
=======================================	Number of days ner year with precipitation >0.01 in.	157	157

E (lb/ vehicle mile traveled) = $k \times 5.9 \times (s + 12) \times (S + 30) \times (W + 3)^{0.7} \times (w + 4)^{0.5} \times ((365 - p) + 365)$

F. Ib/vmt		7.378804125	1.220015589
E IIb÷VMTI×I	Γ × Γ VMT ÷ trip] × Γ Trips ÷ Hour] = Γ Ib/hr	1.845	0.305 lb/hr
E IIb÷VMT	$VMT1 \times VMT \div trip1 \times [Trips \div Hour] \times [Ton \div 2000 lb] = 1$	2.200	0.364 tp

	lb/hr	ф			305 lb/hr	ф
	0.305 lb/hr	0.364 tpy	PM-10	1.220015589	0.305	0.172 tpy
	1.845	2.200	PM	7.378804125	1.845	1.038
IO! VIIII	$[1]b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	$[1b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = 1$	lensate	lb/vmt	$[I]b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = Ib/hr$	$[1b \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 1b] = 1$
1	E E	ıш	Item 2 - Condensate	H	I EX	H

Flash Emission Calculations - Condensate

Using Gas-Oil Ratio Method

Un-Controlled

Site specific data

Gas-Oil-ratio = 500 scf/bbl Using GOW from comparable well pads.

Throughput = 90,000 bbl/yr

Stock tank gas molecular weight = 39.56 g/mole

Number of wells = 3 Number of tanks = 3

Conversions

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

Equations

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbi/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	2480.9099	
VOC	1740.8296	
Nitrogen	6.20E-01	
Carbon Dioxide	3.90E+00	
Methane	2.46E+02	
Ethane	4.89E+02	
Propane	6.43E+02	
Isobutane	1.74E+02	
n-Butane	4.00E+02	
2,2 Dimethylpropane	4.89E+00	
Isopentane	1.37E+02	
n-Pentane	1.44E+02	
2,2 Dimethylbutane	5.19E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	7.52E+00	
2 Methylpentane	3.99E+01	
3 Methylpentane	2.38E+01	ŀ
n-Hexane	5.21E+01	HAP
Methylcyclopentane	3.80E+00	1
Benzene	8.93E-01	HAP
Cyclohexane	5.38E+00	1
2-Methylhexane	1.16E+01	1
3-Methylhexane	1.14E+01	1
2,2,4 Trimethylpentane	0.00E+00	1
Other C7's	1.08E+01	1
n-Heptane	1.67E+01	1
Methylcyclohexane	1.04E+01]
Toluene	2.03E+00	HAP
Other C8's	1.70E+01	1
n-Octane	5.66E+00	1
Ethylbenzene	1.24E-01	HAP
M & P Xylenes	1.46E+00	НАР
O-Xylene	1.98E-01	HAP
Other C9's	7.05E+00	1
n-Nonane	1.69E+00	1
Other C10's	2.65E+00	1
n-Decane	3.47E-01	1
Undecanes (11)	3.72E-01]

E_{TOT} Sum of C3+

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.036		0.025
Carbon Dioxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6.993	19.719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1.116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000		0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	0.015
Totals	100.000	22.579	100.000

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data

Gas-Water-ratio = 4.06 scf/bbl Using GOW from comparable well pads.

Throughput = 190,800 bbl/yr

Stock tank gas molecular weight = 30.68 g/mole

Number of wells = 3 Number of tanks = 3

Conversions

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

Equations

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	33.1209	
VOC	16.9397	
Nitrogen	5.51E-01	
Carbon Dioxide	4.98E-01	
Methane	9.80E+00	
Ethane	5.33E+00	
Propane	3.81E+00	
Isobutane	9.51E-01	
n-Butane	2.68E+00	
2,2 Dimethylpropane	4.21E-02	
Isopentane	1.35E+00	
n-Pentane	1.87E+00	
2,2 Dimethylbutane	6.99E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.35E-01	
2 Methylpentane	7.51E-01	
3 Methylpentane	4.84E-01	l
n-Hexane	1.31E+00	HAP
Methylcyclopentane	1.22E-01	
Benzene	2.38E-02	HAP
Cyclohexane	1.68E-01	1
2-Methylhexane	3.65E-01	1
3-Methylhexane	3.79E-01	1
2,2,4 Trimethylpentane	0.00E+00	l
Other C7's	3.49E-01	
n-Heptane	6.36E-01	
Methylcyclohexane	3.37E-01	1
Toluene	5.23E-02	HAP
Other C8's	5.79E-01	1
n-Octane	1.82E-01	1
Ethylbenzene	3.64E-03	HAP
M & P Xylenes	2.98E-02	HAP
O-Xylene	3.31E-03	HAP
Other C9's	1.76E-01	1
n-Nonane	3.28E-02	
Other C10's	3.84E-02	1
n-Decane	6.62E-03	1
Undecanes (11)	6.29E-03	1

E_{TOT} Sum of C3+

COMPONENT	MOL %	GPM	WT%
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56,602		29,592
Ethane	16,424	4.367	16.095
Propane	8.000	2,191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4,274	1,340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.808	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.327	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	0.004	0.002	0.019
Totals	100.000	12.514	100.000

P2 Well Pad Production Facility Pleasants County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis:

Methane from gas analysis: Carbon Dioxide from gas analysis:

HAPs from gas analysis:

Hexane

Gas Density:

18.40 weight percent

59.35 weight percent 0.32 weight percent

0.62 weight percent 0.0580 lb/scf

Emission Source:	Count	Oil & Gas Production*	voc %	VOC (lb/hr)	VOC (tpy)	CO2 (lb/hr)	CO2 (tpy)	CH4 (lb/hr)	CH4 (tpy)	CO2e (tpy)	Hexane (tpy)
Pump Seals:											
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											J. 30
Gas/Vapor:	168	0.02700 scf/hr	18.4	0.048	0.212	0.001	0.004	0.156	0.6837	17.096	0.007
Light Liquid:	56	0.05000 scf/hr	100.0	0.162	0.711	可有要求				2 to 30 Gen	
Low Bleed Pneumatic		1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	12	0.04000 scf/hr	18.4	0.005	0.022	0.000	0.000	0.017	0.0724	1.809	0.001
Open-ended Lines, gas:	23	0.06100 scf/hr	18.4	0.015	0.066	0.000	0.001	0.048	0.2115	5.288	0.002
Connectors:			Language (7 (0 1					表现实		
Gas:	674	0.00300 scf/hr	18.4	0.022	0.095	0.000	0.002	0.070	0.3049	7.624	0.003
Light Liquid:	225	0.00700 scf/hr	100.0	0.091	0.400						ne je jeju.
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:	15 2 PM							4.10		19.6	
Gas:	120	0.00086 lb/hr	18.4	0.019	0.083	0.000	0.001	0.061	0.2683	6.708	0.003
Light Liquid:	60	0.00300 scf/hr	100.0	0.010	0.046			3900	ara.		

Blowdowns:

2507,407,107	Pressure (psig)	Internal Volume (scf)	Projected Blowdown Events (per year)		l Released	Composition of Gas (% by volume)	l Released	Released (tpy)	CO2e (tpy)
VOC	290	65	16	1040	124.8	0.70	0.0100	0.0438	N. Y.
CH4	290	65	16	1040	44.0	· 0.10	0.0005	0.0022	0.0546
HAPs	290	65	16	1040	116.3	0.02	0.0003	0.0013	940) \$ 7.45

Fugitive Calculations:

	lb/hr	tpy
VOC	0.388	1.698
CH4	0.367	1.607
CO2	0.002	0.009
CO2e	9,175	40.185
HAPs	0.004	0.018

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

P2 Well Pad Production Facility Pleasants County, WV

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			•		0.0015	
Hydrogen Sulfide, H2S				•			-		-	
Helium, He	-	-	-	-			•			
Oxygen, O2	•	-	-	-			-			
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,257.7

 Ideal Gross (sat'd)
 1,236.6

 GPM

 Real Gross (HHV)
 1,263.0

 Real Net (LHV)
 1,145.6

P2 Well Pad Production Facility Pleasants County, WV

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	•	-	-	•					-	
Oxygen, O2	,	-		-			-		-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.027	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1,219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	99.892	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

Gas Density (STP) = 0.111

 Ideal Gross (HHV)
 2,283.4

 Ideal Gross (sat'd)
 2,244.3

 GPM

 Real Gross (HHV)
 2,313.1

 Real Net (LHV)
 2,124.9

P2 Well Pad Production Facility Pleasants County, WV

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855		l	•		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-								
Oxygen, O2	-	-	•	-			-		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.605
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.201
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.640
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.471
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	0.952
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.277

Gas Density (STP) = 0.069

 Ideal Gross (HHV)
 1,424.0

 Ideal Gross (sat'd)
 1,399.9

 GPM

 Real Gross (HHV)
 1,430.5

 Real Net (LHV)
 1,302.3

P2 Well Pad Production Facility Pleasants County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.158	0.044	0.002	0.211	0.0	0.0	-		0.0016	
Carbon Dioxide, CO2	0.164	0.072	0.002	0.343	0.0	0.0	0.012		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		<u> </u>	
Water	54.800	9.864	0.341	46.930	0.0	0.0	•		0.5483	
Oxygen, O2	-	-	-	-	0.0	0.0				
Methane, CH4	30.600	4.909	0.170	23.356	278.3	309.1	5.104		0.3054	
Ethane, C2H6	7.680	2.309	0.080	10.987	124.3	135.9	1.829		0.0762	2.043
Propane	3.300	1.455	0.050	6.923	76.4	83.0	1.022	6.923	0.0324	0.904
Iso-Butane	0.506	0.294	0.010	1.399	15.2	16.5	0.157	1.399	0.0049	0.165
Normal Butane	1.190	0.692	0.024	3.291	35.8	38.8	0.454	3.291	0.0115	0.373
Iso Pentane	0.278	0.201	0.007	0.954	10.3	11.1	0.113	0.954	0.0028	0.101
Normal Pentane	0.328	0.237	0.008	1.126	12.2	13.1	0.133	1.126	0.0033	0.118
Hexane	0.406	0.350	0.012	1.665	17.9	19.3	0.197	1.665	0.0040	0.166
Heptane	0.590	0.591	0.020	2.813	30.1	32.5	1.310	2.813	0.0059	0.271
	100.000	21.018	0.726		600.4	659.3	10.330	18.172	0.9979	4,141

Gas Density (STP) =

0.058

 Ideal Gross (HHV)
 659.3

 Ideal Gross (sat'd)
 648.7

 GPM

 Real Gross (HHV)
 660.7

 Real Net (LHV)
 601.7

Jay-Bee Oil & Gas, Inc. GAS DATA INFORMATION

Specific Gravity of Air, @ 29.92 in. Hg and 60 -F,

28.9625

One mole of gas occupies, @ 14.696 psia & 32 -F, One mole of gas occupies, @ 14.696 psia & 60 -F,

359.2 cu ft. per lb-mole 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

 0 grains H2S/100 scf
 =
 0.00000 mole % H2S

 0 mole % H2S
 =
 0.00 ppmv H2S

 0 mole % H2S
 =
 0 grains H2S/100 scf

 0 ppmv H2S
 =
 0.000 ppmv H2S

 0 ppmv H2S
 =
 0.0000 pmv H2S/100 scf

 0.00000 mole % H2S
 0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

tucat Gas at 14.070 psia and 00 F												
		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	L lactor	
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997	
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964	
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846	
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006	
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992	
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980	
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919	
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825	
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711	
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667	
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000	
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000	
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879	
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947	

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Gal/Mole
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gai/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

Unit Information Sheet

Date: May 27, 2014

Unit #: 6041 Customer: To Be Determined

To:

Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Package Information					
Compressor Manufacturer:	Arrow				
Compressor Mariotaciorer.	Arrow				
Compressor Model:	VRC2				
Compressor Serial Number:	12095				
Compressor Cylinders:	6.5" x 4.0" x 2.25"				
Driver Manufacturer:	Cummins				
Driver Model:	G5.9				
Rated HP & Speed	84 HP @ 1800 RPM				
Driver Type:	4-stroke Rich Burn				
Engine Serial Number:	73364060				
Engine Manufacturing Date:	3/19/2012				
Engine Catalyst Model:	VXC-1408-04-HSG				
Engine Catalyst Element:	VX-RE-08XC				
Engine AFR Model:	AFR-1RD-10-TK2				
Engine Stack Height:	9' 5"	•			
Engine Stack Diameter:	4"				
Ор	erating Information				
Suction Pressure:	N/A psig				
Discharge Pressure:	N/A psig				
Design Capacity:	N/A MSCFD				
Gas Specific Gravity:	N/A				

Emission Output informtion included in the attached catalyst specification sheet,

MIRATECH Emissions Control Equipment Specification Summary

Proposal Number: TJ-14-0081 Rev(1)

Engine Data

Number of Engines: 1

Application: Gas Compression

Engine Manufacturer: Cummins
Model Number: G 5.9
Power Output: 84 bhp

Lubrication Oil: 0.6 wt% sulfated ash or less

Type of Fuel: Natural Gas
Exhaust Flow Rate: 430 acfm (cfm)
Exhaust Temperature: 1,078°F

System Details

Housing Model Number: VXC-1408-04-HSG Element Model Number: VX-RE-08XC

Number of Catalyst Layers: 1
Number of Spare Catalyst Layers: 1

System Pressure Loss: 3.0 inches of WC (Fresh)
Sound Attenuation: 28-32 dBA insertion loss

Exhaust Temperature Limits: 750 - 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number: VXC-1408-04-XC1
Material: Carbon Steel
Approximate Diameter: 14 inches

Inlet Pipe Size & Connection: 4 inch FF Flange, 150# ANSI standard bolt pattern
Outlet Pipe Size & Connection: 4 inch FF Flange, 150# ANSI standard bolt pattern

Overall Length: 53 inches
Weight Without Catalyst: 152 lbs
Weight Including Catalyst: 162 lbs

Instrumentation Ports: 1 inlet/1 outlet (1/2" NPT)

Emission Requirements								
			Warranted					
	Engine Outputs		Converter Outputs	Requested				
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets				
NOx	11.41	91%	1.00	1.00 g/bhp-hr				
CO	14.64	86%	2.00	2.00 g/bhp-hr				
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr				
CH ₂ O	0.08	0%	1.00	1.00 g/bhp-hr				
Oxygen	0.5%							

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

MIRATECH Catalyzer (TM) 1/13/2014

Engine Performance Data

Columbus, Indiana 47202-3005 http://www.cummins.com Industrial

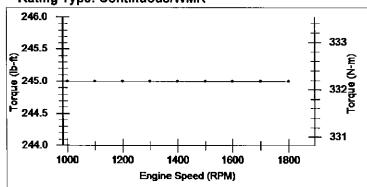
G5.9 FR 9961

84 BHP (63 kW) @ 1800 RPM 245 lb-ft (332 N-m) @ 1800 RPM

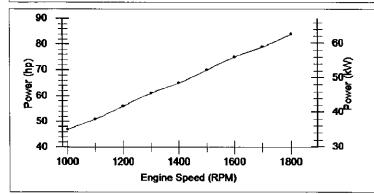
Configuration D491010CX02

CPL Code 8655 Revision 12-May-2011

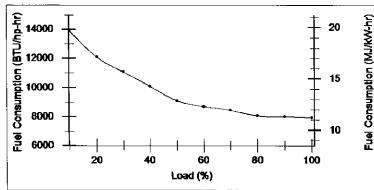
Compression Ratio: Fuel System: Emission Certification: 10.5:1


Field Gas, Dry Processed Nat Gas

Non-certified


Displacement: Aspiration: 359 in3 (5.9 L) Naturally Aspirated

All data is based on the engine operating with fuel system, water pump, and 7 in H2O (1.74 kPa) inlet air restriction with 3.5 in (89 mm) inner diameter, and with 1 in Hg (3 kPa) exhaust restriction with 3 in (76 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.


Rating Type: Continuous/WMR

	Torque Output				
RPM	lb-ft	N-m			
1,000	245	332			
1,100	245	332			
1,200	245	332			
1,300	245	332			
1,400	245	332			
1,500	245	332			
1,600	245	332			
1,700	245	332			
1,800	245	332			

	Power Output				
RPM	hp	kW			
1,000	47	35			
1,100	51	38			
1,200	56	42			
1,300	61	45			
1,400	65	48			
1,500	70	52			
1,600	75	56			
1,700	79	59			
1,800	84	63			

	Fuel Consumption @ 1,800 RPM								
hp	kW	% Load	BTU/hp-hr	MJ/kW-hr					
84	63	100	7,914	11.2					
76	57	90	7,987	11.3					
67	50	80	8,056	11.4					
59	44	70	8,452	11.96					
50	37	60	8,689	12.29					
42	31	50	9,094	12.87					
34	25	40	10,083	14.27					
25	19	30	11,069	15.66					
17	13	20	12,116	17.14					
8	6	10	13,889	19.65					

Data represents gross engine capabilities obtained and corrected in accordance with SAE J1995 using dry processed natural gas fuel with 905 BTU per standard cubic foot lower heating value. Deration may be required due to altitude, temperature and type of fuel. Consult Cummins Customer Engineering for operation above this altitude.

STATUS FOR CURVES AND DATA: Limited-(measured data)

CHIEF ENGINEER:
Alfred S Weber

TOLERANCE: Within +/- 5 %

Bold entries revised after 1-Mar-2010

Intake Air System Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)	15	delta deg F	8.3	delta deg C
Cooling System				
Maximum coolant temperature for engine protection controls	215	deg F	102	deg C
Maximum coolant operating temperature at engine outlet (max. top tank temp):	212	deg F	100	deg C
Exhaust System				
Maximum exhaust back pressure:	2	in-Hg	7	kPa
Recommended exhaust piping size (inner diameter):	3	in	76	mm
Lubrication System				
Nominal operating oil pressure				
@ minimum low idle	10	psi	69	kPa
@ maximum rated speed	50	psi	345	kPa
Minimum engine oil pressure for engine protection devices				
@ minimum low idle	10	psi	69	kPa
Fuel System				
Maximum fuel inlet pressure:	1	psi	5	kPa
Performance Data				
Engine low idle speed:	900	RPM		
Maximum low idle speed:	1,800	RPM		
Minimum low idle speed:	800	RPM		
Engine high idle speed	1,800	RPM		
Governor break speed:				
Maximum torque available at closed throttle low idle speed:	50	lb-ft	68	N-m

		100%	Load			75% L	-oad			50% L	oad	•
Engine Speed	1,800	RPM			1,800	RPM			1,800	RPM		
Output Power	84	hp	63	kW	63	hp	47	kW	42	hp	31	kW
Torque	245	lb-ft	332	N-m	184	lb-ft	249	N-m	123	lb-ft	167	N-m
Intake Manifold Pressure	-1	in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
Inlet Air Flow	121	ft3/min	57	L/s	101	ft3/min	48	L/s	82	ft3/min	39	L/s
Exhaust Gas Flow	430	ft3/min	203	L/s	360	ft3/min	170	L/s	292	ft3/min	138	L/s
Exhaust Gas Temperature	1,078	deg F	581	deg C	999	deg F	537	deg C	902	deg F	483	deg C
Heat Rejection to Coolant	3,824	BTU/min	67	kW	3,244	BTU/min	57	kW	2,596	BTU/min	46	kW
Heat Rejection to Ambient	1,194	BTU/min	21	kW	784	BTU/min	14	kW	613	BTU/min	11	kW
Heat Rejection to Exhaust	2,523	BTU/min	44	kW	1,916	BTU/min	34	kW	1,371	BTU/min	24	kW
Fuel Consumption	7,914	BTU/hp-hr	11	MJ/kW-hr	8,214	BTU/hp-hr	12	MJ/kW-hr	9,094	BTU/hp-hr	13	MJ/kW-h
Air Fuel Ratio (dry)	16.52	vol/vol			16.51	vol/vol			16.52	vol/vol		
Ignition timing (BTDC)		deg	26	deg		deg	26	deg		deg	26	deg
Total Hydrocarbons	1.48	g/hp-hr			1.3	g/hp-hr		[1.62	g/hp-hr		
VOC ppm w/o Catalyst	i							İ				
VOC ppm with Catalyst NOx	11.41	g/hp-hr	15.2	g/kW-hr	127	g/hp-hr	18 37	g/kW-hr	12.85	g/hp-hr	17 23	g/kW-hr
NOx ppm w/o Catalyst	11.41	g/mp=m	10.0	9/644-111	13.1	g/Hp-H	10.57	g/KVV-III	12.00	g/np-ni	17.23	Aveas-III
NOx ppm with Catalyst												
CO	14.64	g/hp-hr	19.63	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
CO ppm w/o Catalyst				-				1				
CO ppm with Catalyst												
CO2		g/hp-hr	602	g/kW-hr		g/hp-hr	656	g/kW-hr		g/hp-hr	724	g/kW-hr
O2	0.45	%			1.66	%	•••	i	3.67	%		

Cranking System (Cold Starting Capability)

Unaided Cold Start:

Minimum cranking speed

Cold starting aids available

Maximum parasitic load at 10 deg F @

250 RPM

Block Heater, Oil Pan Heater

Noise Emissions

Right Side

Left Side Front

Exhaust noise emissions

89.9 dBa

90.1 dBa

89.8 dBa

90.5 dBa

103.1 dBa

Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

Ambient Temp deg F (deg C)

	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
0 (0)	(0.)	(0.)	(.0)	(0.)	(.0)	(.0)
1000 (305)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)
2000 (610)	(0.)	(.0)	(.0)	(0.)	(.0)	(0.)
3000 (914)	(.0)	(.0)	(.0)	(0.)	(.0)	(0.)
4000 (1219)	(.0)	(.0)	(.0)	(0.)	(.0)	(0.)
5000 (1524)	(0.)	(.0)	(.0)	(.0)	(.0)	(0.)
6000 (1829)	(0.)	(0.)	(.0)	(.0)	(.0)	(.0)
7000 (2134)	(0.)	(0.)	(.0)	(0.)	(.0)	(0.)
8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(0.)
10000 (3048)	(0.)	(.0)	(.0)	(.0)	(.0)	(.0)

Altitude ft (m)

End of Report

Curprints	Gas/Site Analysis & Engine Selection/Derate Cummins Stationary Natural Gas Engines Date: 4/10/2014		Industrial G5.9 Available FR Number(s) From Selection: FR9936, FR9961	NG 84 HP (63 kW) @1800 RPM & 10.5:1 Compression Ratio Catalyst Fuel Rating Industrial Continuous
Engine (as entered by	usor			
Application: Fuel Type: Engine: Fuel Rating: Compression Ratio: RPM: HP (Natural Gas): HP (Propane):	usuif	Industria NG G5.9 Catalyst 10.5:1 1800 84 HP (I	:	
Site (as entered by us	er)			
Ambient Air Temperatu Relative Humidity: Altitude: Cooling Fan Load: Generator Efficiency: Vapor Pressure (Calcul Dew Point (Calculated I		90° F 30% 1200 ft 8 HP 93% 0.427 in 54.4° F 28.22 in	-	
Derate (Natural Gas)				· ···
Engine Derate Due to Co Derate Due to Lov Derate Due to Me Total Power Available (Total Site Derate due to Total Available Horsepo Specified Fuel Compo- for cooling fan load):	w BTU Fuel:	84 HP (2% 0% 0% 98% of 2 HP (1	rated kW)	The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Derate (Propane)	A!		(NA 134A	
Total Power Available (Total Site Derate due to Total Available Horsep	ising. Site Altitude and Temperature: %) After All Applicable Derates: b Altitude and Temperature: bower from Selected Engine Running on Propane des 8 HP reduction for for cooling fan load):	NA% NA% of NA HP	(NA kW) rated (NA kW) (NA kW)	
	irements for Turbocharged Engines ke Manifold Temperature for Selected Engine is na °F wi	th a Maximun	n Aftercooler Water Inlet (CA	C air inlet) of na °F
Factory Set Points		Factory	Supplied	Recommended
Engine Speed Target: Spark Plug Gap: Excess Oxygen Target Propane Engine Timing Propane Gas over air F Propane Gas Press at Excess Oxygen Target	g Target: Press at Carb Low: Sec Reg Target:	1800 rp 0.020 ir na %O; na °BTI na inH2 na inH2 0.45% (1 2 DC 10	NOTICE: A Change to ignition Timing Is Recommended Due to Methane Number of Fuel
Natural Gas Engine Tir			26 °BTDC	Recommended Timing: 25 °
Natural Gas over air Pr Natural Gas Press at S		5 inH20 15 inH2)	

FR9936 Created/Revised On: 4/30/2013. Data Files Updated On: 12/12/2013

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

as Sample Analysis			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:	 -	0.26	0.91
n-Hexane;		0.15	0.62
n-Heptane: n-Octane:		0.04	0.2
n-Octane:	 -	0.02	0.09
n-Decane:			0.02
Hydrogen:		- i	0.02
Hydrogen Sulfide (H ₂ S):			
Carbon Dioxide:		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Nitrogen:		0.39	0.53
Oxygen:		0.39	0.55
	centage: 99.991%)	Normalized Percentage:	, , , , , , , , , , , , , , , , , , ,
Performance Parameters:		Standard Units	Metric Units
	by volume	1140.6 Btu/scf	42.5 MJ/scm
Lower Heating Value (LHV): Standard Conditions (60F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Standard Conditions (80F/14.696psia)	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:	· · · · · · · · · · · · · · · · · · ·	56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
Wobbe Index :	LHV/√SG	1345 Btu/scf	50.11 MJ/scm
	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1.253
Ideal Gas Density:		0.0549 lbm/ft3	0.8788 kg/m3 std
H/C Ratio:		3.492	3,492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-°R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
uel Flow Data			
BTU/HP-HR:		7914	
Maximum Fuel Flow (SCFH):		583	.1
Maximum Fuel Flow Calculation is Bas	sed on 100% Continuous	s Rating of 84 HP at 1800 RPM and	10.5:1 Compression Ratio from FR9936
Gas Regulator Details			
The Industrial G5.9 uses a Maxitrol Regu		T-4	Notes:

Differences for Selected Engine			
Description of FR Differences for Selected Engi	ine		
	FR9936	FR9961	_
Exhaust Manifold		FR9961 Wet	3

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

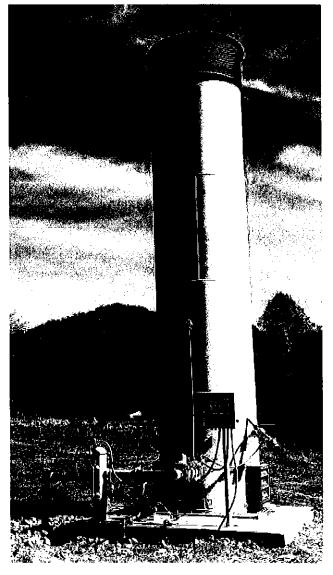
Gas Analysis Tool References & Standards

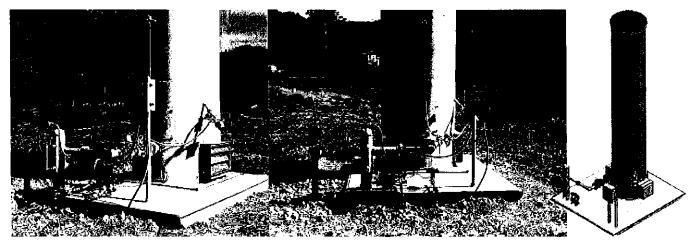
Date: 4/10/2014

Tool Revision Date: 3/27/2014

Performance Parameters:		Reference Standard or Document	
		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.696psia	ASTM D 3588-91 @ 0C/101.3kPa
Higher Heating Value (HHV):	by volume	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.696psia	ASTM D 3588-91 @ 0C/101.3kPa
Methane Number:		Cummins Methane Number	Cummins Methane Number
Specific Gravity (SG) (Ideal Rel. I	Density):	_	_
Wobbe Index :	LHV/√SG	ldeal gas @ 60F/14.696psia	Ideal gas @ 15.5C/101.3kPa
TTODDE III.	HŸ/√ SG	ldeal gas @ 60F/14.696psia	ldeal gas @ 15.5C/101.3kPa
Molecular Weight:			_
Specific Heat (Cp):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Ideal Gas Density:	···	ASTM D 3588-91 @ 60F/14.696psia	ASTM D 3588-91 @ 15.5C/101,3kPa
H/C Ratio:			
Gas Constant (R _{GAS}):		@ 60F/14.696psia	@ 15.5C/101.3kPa
Stoich Air Fuel Ratio (Dry):			-
Conversion Factors			
		Standard Units	Metric Units
Notes			
			-
		, <u> </u>	
			
			I

©2014 Cummins Inc., All Rights Reserved
All Data is Subject To Change Without Notice
Information contained in this report may be considered ©2014 Cummins Confidential
Discretion is recommended when distributing. All rights reserved.
Cummins, Inc. reserves the right to make changes at any time without obligation.

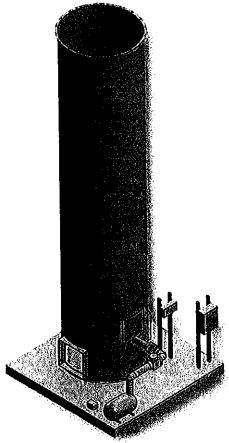



Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines — making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes — making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant <u>List of EPA Approved Combustion Control Devices</u>
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- . User Friendly Automated System
- · Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
- Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

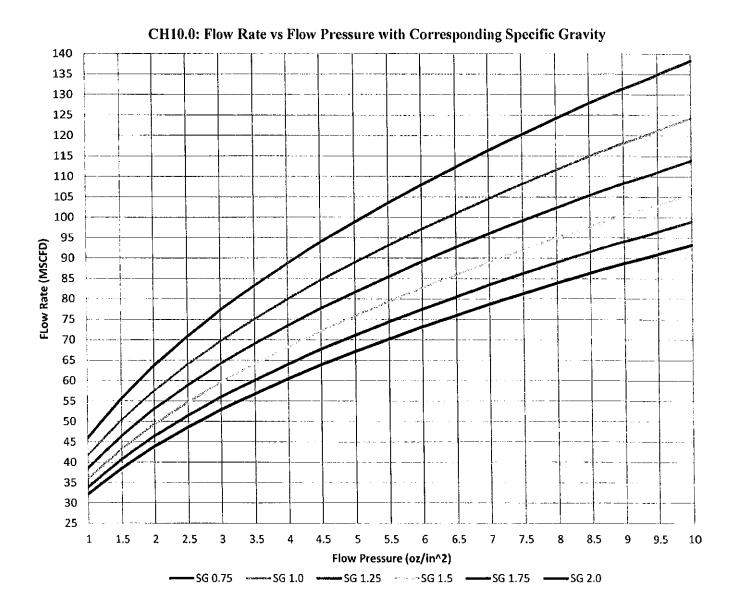
GENERAL PROPERTIES	CH2.5	CH10.0
BURNER SIZE (MMBTU/hr)	2.5	10.0
OUTER DIAMETER (inches)	34	54
HEIGHT (feet)	16	20
INLET PRESSURE (oz/in²)	≥	0.5
DESTRUCTION EFFICIENCY	≥ 99	.99%
SMOKELESS CAPACITY	10	0%
TURN DOWN	SCAL	.ABLE

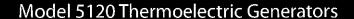


2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the CH10.0 enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

	wife. 1 .
\triangleright	EPA 40 CFR 60, Quad O Compliant


- Completely Enclosed Combustion99.99% Destruction Efficiency
- Fully Automated System
- Output Operational Data via Thumb Drive
- > Capable of SCADA Integration


GENERAL PROPERTIES	
TYPE	Enclosed Tank Battery Flare
AMBIENT	
TEMPERATURE	-20 °F to +100 °F
PILOT FUEL	Propane or Site Gas
REQUIREMENTS	@Spsi of natural gas = 13.3 SCFM @Spsi of propane = 12.5 SCFM
-	(A (Copyright Propage - 12.5 SCF)VI
BURNER SIZE	10.0 million BTU/hr
INLET PRESSURE	Minimum 0/5 oz/in² (~1.0 inches
REQUIRMENTS	w.o.)
TURN DOWN RATIO	5:1
DESTRUCTION	
EFFICIENCY	99.99% DRE
MECHANICAL PROPERTIES	
DESIGN WIND SPEED	100 MPH
AMBIENT	
TEMPERATURE	-20 °F to +120 °F
ELECTRICAL AREA	General Area Classification (Non-
CLASSIFICATION	Hazardous)
ELEVATION	up to 3,000ft ASL
PROCESS PROPERTIES	
SMOKELESS CAPACITY	100%
OPERATING	800 °F to 2000 °F (1500 °P
TEMPERATURE	Nominal)
UTILITIES	
PILOT GAS	Process Gas
ELECTRICITY	1 Phase, 60 Hz, 120V/10A
SOLAR PANEL OPTION	YES
AVAILABLE	A Section of the Control of the Cont

Revision #3: 09/04/2015

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical

Adjustment: 6.7V up to 11 Volts 12 V 12 -18 Volts

> 24 V 24 - 30 Volts 48 V 48 - 60 Volts

Reverse current protection included.

Output: Terminal block which accepts up to 8 AWG wire. Opening for

3/4" conduit in the base of the cabinet.

Fuel

Natural Gas: 8.8 m³/day (311 ft³/day) of Std.

1000 BTU/SCF (37.7 MJ/SM3) gas

Propane: 11.4 l/day (3.0 US gal/day)

Max. Supply Pressure: 1724 kPa (250 psi)
Min. Supply Pressure: 103 kPa (15 psi)
Fuel Connection: 1/4" MNPT

Environmental

Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

Materials of Construction

Cabinet: 304 SS

Cooling Type: Natural Convection

Thermopile: Hermetically Sealed Lead Tin-Telluride (PbSnTe)

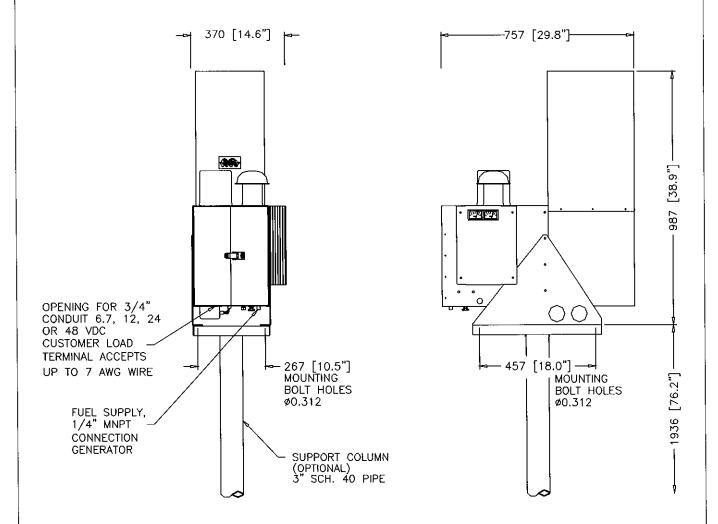
Burner: Meeker Type/Inconel 600 Fuel System: Brass, Aluminum & SS

Standard Features

- · Automatic Spark Ignition (SI)
- Fuel Filter
- · Low Voltage Alarm Contacts (VSR)
- · Volt & Amp Meter

Optional Features

- · Cathodic Protection Interface
- · Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- · Corrosive Environmental Fuel System
- · Flame Arrestor


Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

Power where you need it.

Typical Installation

NOTES:

- 1. GENERATOR WEIGHT: 60 kg [132 lb].
 2. DIMENSIONS IN mm [INCHES].

Power where you need it.

Corporate Office

#9, 3700 - 78 Avenue SE Calgary, Alberta T2C 2L8 **CANADA**

Phone: (403) 236-5556 Fax: (403) 236-5575

US Sales

P.O. Box 38624

Houston, TX 77238 Phone: (281) 445-1515

(281) 445-6060 Fax: Toll Free: 1800848-4113

Model 5120 Thermoelectric Generator

Certificate of Analysis Number: 2030-14030288-003A Carenero Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Bali Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Fleid: Jay Bee Oil & Gas Station Name:RPT 8-1H Sample Point: Submeter Cylinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

 Sampled By:
 DW-GAS

 Sample Of:
 Gas
 Spot

 Sample Date:
 03/25/2014 12:00

 Sample Conditions: 290 psig
 Method:
 GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.394	0.530		GPM TOTAL C2+	6.223
Carbon Oloxide	0.151	0.319			
Methane	77.080	59,336			
Ethene	14.832	21.401	3.980		
Propane	4.967	10.510	1.373		
Iso-Bulane	0.616	1.718	0,202		
n-Butane	1.210	3.375	0.383		
Iso-Penlane	0.266	0.921	0.097		
n-Pentane	0.262	0.907	0.095		
I-Hexanas	0.093	0.376	0.037		
n-Hexane	0.058	0.239	0.023		
Benzene	0.001	0.004	NIL.		
Cyclohexane	0.006	0.023	0.002		
i-Heptanes	0.031	0.150	0.014	•	
n-Heptan e	0.011	0.056	0,005		
Toluene	0.002	0.008	0.001		
i-Octanes	0.015	0.080	0.007		: //AP
n-Octane	0.002	0.012	0.001		· /179
Ethylbenzene	NIL	NIL	NIL		
Xylenes	NIL	NIL	NIL		
l-Nonanes	NIL	NIL	NIL.		
n-Nonane	NIL	NIL	NIL		
Decane Plus	0.003	0.035	0.003		
	100.000	100.000	6.223		
Physical Propertie			Total	C10+	
Calculated Molecula			20.84	162,34	
GPA 2172-09 Calcu					
Calculated Gross I	3TU per ft³ @) 14.73 ps/			
Real Gas Dry BTU			1265.2	6778.9	
Water Sal. Gas Bas			1243.1	8 626 .1	
Relative Density Re			0.7218	5.6078	
Compressibility Fac	tor		0.9964		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Field: Jay 8ee Oil & Gas Stetlon Name:RPT 8-1H Sample Point: Submater Cylinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

Sampled By: Sample Of: Sample Date:

DW-GAS Spot

Sample Or. Gas spot Sample Date: 03/25/2014 12:00 Sample Conditions: 290 pslg Method: GPA 2286

Analytical Data

				ICOI DELLE		
Components	Mol. %	Wt. %	GPM at 14.73 psla			
Nitrogen	0.394	0.630	•	GPM TOTAL C2+	8.223	
Carbon Dioxide	0.151	0,319		GPM TOTAL C3+	2.243	
Methane	77,080	59,338		GPM TOTAL ICS+	0.285	
Ethane	14.832	21,401	3,960			
Ргореле	4.967	10,510	1.373			
iso-butane	0.616	1,718	0.202			
n-Sulane	1.210	3.375	0.383			
leo-pentane	0.266	0.921	0.097			
n-Pantane	0.262	0.907	0.095			
Hexanes Plus	0.222	0.963	0.093			
	100.000	100.000	6.223			
Physical Properties			Total	C8+		
Relative Density Real	d Gas		0.7218	3.1591		
Calculated Moleculer	Welght		20.84	91,50		
Compressibility Factor	or T		0,9984	****		
GPA 2172-09 Calcul			-1000			
Calculated Gross B'	TU per ft @	14.73 pai	a & 60°F			
Reel Gas Dry BTU		 .	1265.2	5014.1		
Water Sat. Gas Base	BTU	•	1243.1	4926.8		
Comments: H2O M	lol% : 1.740	; Wt% : 1.5		*******		

Hydrocarbon Laboratory Managar

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurence, unless otherwise stated.

Certificate of Analysis Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Bak Gas Analytical Services
PO Box 1028 Bridgeport, WV 26330

Apr. 02, 2014

Field: Jay Bee Oil & Gas Station Name:RPT 8-1H Sample Point; Submeter Cylinder No: 0258

Analyzed: 04/01/2014 13:29:16 by GR14

Sampled By: Sample Of: DW-GAS

Gas

03/25/2014 12:00

Sample Or, Sample Date: 03/25/2014 Sample Conditions: 280 paig GPA 2286

Analytical Data

	====				
Components	Mol. %	Wt. %	GPM at 14,73 psla		
Nitrogen	0.394	0,530		GPM TOTAL C2+	6.223
Carbon Dioxide	0.151	0,319		GPM TOTAL C3+	2,243
Methane	77,080	69.338		GPM TOTAL IC6+	0.285
Ethane	14.832	21.401	3,980		
Propene	4.967	10.510	1.373		
leo-Butane	0,816	1.718	0.202		
n-Butane	1.210	3.375	0.383		
Iso-Pentane	0.266	0.921	0.097		
n-Pentane	0.282	0.907	0.095		
Hexanes	0.151	0.615	0.080		
Heptanes Pius	0.071	0.368	0.033		
	100.000	100,000	6.223		
Physical Properties		<u> </u>	Total	C7+	
Relative Density Res	d Gae		0.7218	3.6570	
Calculated Molecular	r Weight		20.84	103.02	
Compressibility Facts	of _		0.9964		
GPA 2172-09 Calcu	lation:				
Calculated Gross B	TU per ft' &	14.73 pci	a & 60°F		
Real Ges Dry BTU		•	1265.2	5577.8	
Water Sat, Gas Base	BTU		1243.1	6480.7	
Commenta: H2O N	lol% : 1,740	; Wt% : 1.6	i08		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above enalyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC

Building D, Second Floor 98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number: 🛛 🛊

Sample: Well B1 2H

FLASH LIBERATION OF SEPARATOR WATER				
	Separator	Stock Tank		
Pressure, psig	540	0		
Temperature, °F	78	70		
Gas Water Ratio (1)		4.06		
Gas Specific Gravity (2)	FP488-	1.069		

(1) - Scf of water saturated vapor per barrel of stock tank water

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

Analyst:

T.G.

Piston No.: WF# 235

Base Conditions: 14.66 PSI & 60 °F

Certified: FESCO,

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Sample: Weil B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dloxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	•
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez

Analyst: MR Processor: OA Cylinder ID: WF# 10S Certified: FESCO, Ltd.

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56.602		29,592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.158	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	0,002	0.019
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

•	p	
Specific Gravity	1.069	(Alr=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Separator Hydrocarbon Liquid Sampled @ 340 psig & 85 "F

Date Sampled: 04/07/14 Job Number: 42794.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT 🕏
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0,014
Methane	7.015	3.036	1.384
Ethane	7.995	5.481	2.958
Propane	9.072	6.384	4.919
leobutene	2.654	2,218	1.896
n-Butane	7.473	6,018	5.341
2,2 Dimethylpropane	0.192	0.188	0,170
Isopantane	4.335	4,049	3,845
n-Pentane	5.799	5.369	5,144
2,2 Dimethylbutane	0.319	0.341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.532	0.557	0.584
2 Methylpentana	3.616	3,833	3.831
3 Methylpentene	2.37 9	2.481	2.521
n-Hexane	8.324	6.642	6,701
Heptanes Plus	42,259	<u>53.409</u>	60.372
Totals:	100.000	100.000	100,000

Characteristics of Heptanes Plus:

Specific Gravity	0.7441	(Water=1)
*API Gravity	58.86	@ 60'F
Molecular Weight	116.2	
Vapor Volume	20.33	CF/Gal
Weight	6.20	Lbs/Gat

Characteristics of Total Sample:

SINGRAPORTOR OF LOUR ORIGINALS.		
Specific Gravity	0.6583	(Water=1)
*API Gravity	83.46	@ 60°F
Molecular Weight	81.3	•
Vapor Volume	25.69	CF/Gal
Welght	5.48	Lbs/Gal

Base Conditions: 14.850 PSi & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2408

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Moi %	LId/of %	Wt %
Carbon Dioxide	0.025	0.011	0.014
Nitrogen	0.011	0.003	0.004
Methane	7,015	3,036	1,384
Ethane	7,995	5,481	2.958
Propana	9.072	6.384	4,919
Isobutane	2.654	2,218	1.896
n-Butane	7.666	6,206	5.511
isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.389	5.144
Other C-6's	6.846	7,212	7,254
Heptanes	13.266	15.122	16.031
Octanes	12.697	15,144	16,932
Nonanes	4.935	6,806	7,697
Decanes Plue	8.665	13,799	16,337
Benzene	0.113	0.081	0.108
Toluene	0.613	0.525	0.695
E-Benzene	0.534	0.526	0.697
Xylenas	1.436	1.407	1,875
n-Hexane	6.324	6.642	6,701
2,2,4 Trimethylpentane	0.000	0.000	0.000
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.6683	(Water=1)
*API Gravity		@ 60°F
Molecular Weight	81.3	•
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7794	(Water=1)
Molecular Weight-	153.3	, ,

Characteristics of Atmospheric Sample:

*API Gravity	70.79	@ 80°F
Reid Vapor Pressure (ASTM D-5191)	5,28	pei

QUA	LITY CONTROL	CHECK	
Sampling Conditions Test Samples			
Cylinder Number		W-2408*	W-2423
Pressure, PSIG		299	297
Temperature, °F	65	66	68

^{*} Sample used for analysis

= HAP

TOTAL EXTENDED REPORT - GPA 2186-M

10 (112 2)	THOSE ILLI ON	OLW TIGO-IN	
COMPONENT	Mol %	LiqVoi %	Wt %
Nitrogen	0.011	0.003	0.004
Carbon Dloxide	0.025	0.011	0.014
Methane	7.015	3.036	1.384
Ethane	7.995	5.481	2.956
Propane	9,072	6,384	4.919
Isobutane	2.854	2,218	1.896
n-Butane	7,473	6.018	5.341
2,2 Dimethylpropane	0.192	0.188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5,369	5.144
2,2 Dimethylbutane	0.319	0.341	0.338
Cyclopentane	0,000	0.000	0.000
2,3 Dimethylbutane	0.532	0.557	0.564
2 Methylpentane	3.616	3.833	3.831
3 Methytpentane	2.379	2,481	2,521
n-Hexane	6.324	6.642	6.701
Melhylcyclopentane	0.537	0.486	0.558
Benzene	0.113	0.081	0.108
Cyclohexane	0.986	0.831	0.989
2-Wethylhexane	3.063	3.637	3.774
3-Methylhexane	2.577	3.022	3.175
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	1.532	1.725	1,868
n-Heptane	4.601	5.422	5,669
Methylcyclohexane	2.764	2.838	3.337
Toluene	0.613	0.525	0,695
Olher C-8's	7.205	8.736	9,764
л-Octane	2.728	3.569	3.831
E-Benzene	0.534	0.526	0.697
M & P Xylenes	0.616	0.611	0.804
O-Xylene	0.820	0.796	1.071
Other C-9's	3.468	4,696	5.383
n-Nonane	1.467	2,109	2.314
Other C-10's	2.979	4,434	5.175
n-decane	0.771	1,206	1,349
Undecanes(11)	2,240	3,420	4.048
Dodecanes(12)	1,277	2,107	2.529
Tridecanes(13)	0.746	1.320	1,606
Tetradecanes(14)	0.349	0.660	0.814
Pentadecanes(15)	0.160	0.324	0.404
Hexadecanes(16)	0.078	0.169	0.213
Heptadecanes(17)	0.037	0.085	0.108
Octadecanes(18)	0.018	0.043	0.055
Nonadecanes(19)	0.007	0.017	0.022
Elcosanes(20)	0,002	0.005	0,006
Heneicosanes(21)	0.001	0.003	0.003
Docosanes(22)	0.001	0. 00 1	0.002
Tricosanes(23)	0.000	0.001	0.001
Tetracosanes(24)	0.000	0.001	0.001
Pentacosanes(25)	0.000	0.000	0.000
Hexacosanes(26)	0.000	0.000	0.000
Heptacosanes(27)	0,000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes (29)	0.000	0.000	0.000
Triacontanes (30)	0.000	0.000	0.000
Hentdacontanes Plus(31+)	<u>0.000</u>	0.000	0,000
Total	100.000	100,000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East

Date Sampled: 04/07/14

Union, New Jersey 07083

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERAT	TION OF HYDROCARBON LIQUID	
	Separator HC Liquid	Stock Tank
Pressure, psig	340	0
Temperature, °F	65	70
Gas Oil Ratio (1)		500
Gas Specific Gravity (2)	£44	1.387
Separator Volume Factor (3)	1.2987	1.000

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

Quality Control Check				
	Sampling Conditions Test		Samples	
Cylinder No.		W-2408*	W-2423	
Pressure, psig	340	299	297	
Temperature, °F	65	66	66	

^{(1) -} Sof of flashed vapor per barrel of stock tank oil

Analyst

M. Q.

* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd.

Alice, Texas

David Dannhaus 361-661-7015

⁽²⁾ - Air = 1.000

^{(3) -} Separator volume / Stock tank volume

^{(4) -} Fraction of first stage separator liquid

^{(5) -} Absolute pressure at 100 deg F

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	_,
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24,485	
Ethane	25,943	6.993
Propane	23.253	6.457
Isobutane	4.773	1,574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.180
Hexanes	2.378	0.988
Heptanes Plus	1.701	0.761
Totals	100.000	22,579

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	, ,
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Alr=1)
Compressibility (Z)	0.9850	, ,
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSi & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR
Processor: AL
Cylinder ID: ST# 20

David Dannhaus 381-861-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Suifide*	< 0.001	O . W	< 0.001
Nitrogen	0.036		0.025
Carbon Dioxide	0.141		0.157
Methane	24,485		9.930
Ethane	25.943	6.993	19.719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopeniane	3.027	1,116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.874
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.1 1 5	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	<u>0.004</u>	0.002	<u>0.015</u>
Totals	100.000	22.579	100.000

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	, ,
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor

From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14 Job Number: 42794,011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.547	(Air≃1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	OI III	< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.013
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17,412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.589	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xytene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	0.000	<u>0.000</u>	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Alr=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

P2 T01-T03 Huntington West Virginia Jay-Bee Oil & Gas Vertical Fixed Roof Tank P2 Condensate Tanks 210 BBL Tanks - Single Tank Emissions	15.00 10.00 14.00 10.00 8,225.29 153.19 1,260,000.00		0.25 0.05
P2 T01-T03 Huntington West Virginia Jay-Bee Oil & Gas Vertical Fixed Roof Tank P2 Condensate Tanks 21	z	Gray/Medium Good Gray/Medium Good	Cone
Identification User Identification: City: State: Company: Type of Tank: Description:	Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft): Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

0.03

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

P2 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

Emissions Report - Detail Format Detail Calculations (AP-42) **TANKS 4.0.9d**

P2 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

473.5495 399.244 0.0353 0.1626 0.5662	399.2441 10.0000 5.0833 15.0000 10.0000 0.0833	0.0833 0.2500 0.0500 5.0000	0.0353	2.8439 518.1654 50.3083	10,731 513.0583 0,6800 0.6800	1,202.9556	0.1626 36.6923 1.0943 0.0800	2.8439	2.3395	3.4338 518.1654	527.3385 527.3385 19.1500	0.5662	2.8439 5.0833
Arnual Emission Calcaulations Standing Losses (Ib): Vapor Space Volume (cu ft): Vapor Density (Ib/cu ft): Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Vapor Space Oudage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	Roof Outage (Cone Roof) Roof Outage (ft): Roof Hagint (ft): Roof Slope (ft/ft): Shell Radius (ft):	Vapor Density Vapor Density (Ib/cu ft): Vapor Motecular Weight (Ib/Ib-mole):	vapor Pressure at Leigh viverage Liquid Surface Temperature (psia): Daily Arg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	Ideal Gas Constant K (psia cuft (b-mol-deg R)); Liquid Bulk Temperature (69, R); Tank Paint Solar Absorptance (Shell); Tank Paint Solar Appropriace (Roof);	Daily Total Solar Insulation Factor (Blu/soft day):	Vapor Space Expansion Factor Vapor Space Expansion Factor Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Reatine Vapor Pressure Range (psia): Vector Pressure Temperature (deg. R): Vector Pressure (deg. R): Vector Press	Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	vapor Pressure at Daily Miritifuti Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	Daily Min. Liquid Surface Temp. (deg R.): Daily Max. Liquid Surface Temp. (deg R.): Daily Ambient Temp. Range (deg. R.):	Verted Vapor Saturation Factor Vented Vapor Saturation Factor	Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):

Morking Losses (Ib):	2,134,0644	
Vapor Molecular Weight (Ib/Ib-mole):	0000:69	
Vapor Pressure at Daily Average Liquid		
Surface Temperature (osia):	2.8439	
Annual Net Throughout (gal/vr.):	1,260,000.0000	
Annual Turnovers:	153.1861	
Turnover Factor	0.3625	
Maximum Liquid Volume (gal):	8,225,2880	
Maximum Liquid Height (ft):	14,0000	
Tank Diameter (ft):	10.0000	
Working Loss Product Factor:	1.0000	
otall osses (lb):	2.607.6138	

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

P2 T01-T03 - Vertical Fixed Roof Tank Huntington, West Virginia

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 6)	2,134.06	473.55	2,607.61

TANKS 4.0 Report

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Jay-Bee Oil & Gas P2 Well Pad

File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee P2.ddf

Date: October 24, 2016

DESCRIPTION:

Description: 40 MMSCFD

Still vent to combustor

No flash tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. Pressure: 290.00 psig

85.00 deg. F

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1510
Nitrogen	0.3940
Methane	77.0800
Ethane	14.8320
Propane	4.9670
Isobutane	0.6160
n-Butane	1.2100
Isopentane	0.2660
n-Pentane	0.2620
n-Hexane Cyclohexane	0.0580
Other Hexanes	0.0930
Heptanes	0.0420
Benzene	0.0010
Toluene	0.0020
C8+ Heavies	0.0200

DRY GAS:

Flow Rate: 40.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG

Water Content: 1.5 wt% H2O ter Content: 1.5 wt% Flow Rate: 7.5 gpm

Page: 2 PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device

Destruction Efficiency: 98.0 %
Excess Oxygen: 5.0 %
Ambient Air Temperature: 60.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay-Bee Oil & Gas P2 Well Pad

File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee P2.ddf

Date: October 24, 2016

DESCRIPTION:

Description:

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.5677	13.624	2.4864
Ethane	0.2765	6.635	1.2109
Propane	0.1898	4.555	0.8314
Isobutane	0.0407	0.977	0.1784
n-Butane	0.0988	2.372	0.4329
Isopentane	0.0300	0.721	0.1316
n-Pentane	0.0363	0.871	0.1589
n-Hexane	0.0163	0.391	0.0713
Cyclohexane	0.0063	0.151	0.0275
Other Hexanes	0.0201	0.483	0.0881
Heptanes	0.0275	0.660	0.1204
Benzene	0.0083	0.199	0.0364
Toluene	0.0305	0.732	0.1336
C8+ Heavies	0.1192	2.861	0.5220
Total Emissions	1,4680	35.232	6.4299
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1.4680 0.6239 0.0551 0.0388	35.232 14.973 1.322 0.931	6.4299 2.7325 0.2413 0.1700

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	28.3836	681.206	124.3201
Ethane	13.8232	331.757	60.5456
Propane	9.4906	227.774	41.5688
Isobutane	2.0362	48.869	8.9186
n-Butane	4.9419	118.606	21.6455
Isopentane	1.5018	36.043	6.5779
n-Pentane	1.8142	43.541	7.9461
n-Hexane	0.8144	19.546	3.5672
Cyclohexane	0.3141	7.539	1.3758
Other Hexanes	1.0058	24.139	4.4053

			rage. 2
Heptanes	1.3746	32.991	6.0208
Benzene	0.4153	9.967	1.8189
Toluene	1.5250	36.601	6.6797
C8+ Heavies	5.9594	143.026	26.1022
Total Emissions	73.4002	1761.604	321.4928
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	73.4002	1761.604	321.4928
	31.1934	748.642	136.6271
	2.7548	66.114	12.0659
	1.9403	46.568	8.4986

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F

Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 %

Supplemental Fuel Requirement: 3.88e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

Calculated Absorber Stages: 1.29
Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF
Temperature: 85.0 deg. F
Pressure: 290.00 psig

Dry Gas Flow Rate: 40.0000 MMSCF/day
Glycol Losses with Dry Gas: 0.1072 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 101.00 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.87 gal/lb H2O

Component	in Dry Gas	in Glycol
Water	6.92%	93.08%
Carbon Dioxide	99.89%	0.11%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.95%	0.05%
Isobutane	99.92%	0.08%
n-Butane	99.89%	0.11%
Isopentane	99.87%	0.13%
n-Pentane	99.83%	0.17%
n-Hexane	99.67%	0.33%
Cyclohexane	98.63%	1.37%
Other Hexanes	99.76%	0.24%
Heptanes	99.30%	0.70%
Benzene	87.94%	12.06%
Toluene	81.21%	18.79%
C8+ Heavies	96.06%	3.94%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead		
Water	28.81%	71.19%		
Carbon Dioxide	0.00%	100.00%		
Nitrogen	0.00%	100.00%		
Methane	0.00%	100.00%		
Ethane	0.00%	100.00%		
_	2 222	100 000		
Propane	0.00%	100.00%		
Isobutane	0.00%	100.00%		
n-Butane	0.00%	100.00%		
Isopentane	0.37%	99.63%		
n-Pentane	0.40%	99.60%		
n-Hexane	0.44%	99.56%		
Cyclohexane	3.10%	96.90%		
Other Hexanes	0.84%	99.16%		
Heptanes	0.47%	99.53%		
Benzene	4.98%	95.02%		
Toluene	7.89%	92.11%		
C8+ Heavies	11.93%	88.07%		

	ALI ONTO
STREAM	REPORTS:

WET GAS STREAM

....

Temperature: 85.00 deg. F Pressure: 304.70 psia Flow Rate: 1.67e+006 scfh

Component Conc. Loading (vol%) (lb/hr) Water 2.13e-001 1.69e+002 Carbon Dioxide 1.51e-001 2.92e+002 Nitrogen 3.93e-001 4.85e+002 Methane 7.69e+001 5.43e+004 Ethane 1.48e+001 1.96e+004 Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.65e-001 8.43e+002 n-Pentane 2.61e-001 8.30e+002 n-Hexane 5.79e-002 2.20e+002 Cyclohexane 5.99e-003 2.22e+001 Other Hexanes 9.28e-002 3.52e+002 Heptanes 4.19e-002 1.85e+002 Benzene 9.98e-004 3.43e+000 Toluene 2.00e-003 8.10e+000 C8+ Heavies 2.00e-002 1.50e+002 Total Components 100.00 9.18e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 304.70 psia

Flow Rate: 1.67e+006 scfh

Component Conc.

Conc. Loading (vol%) (lb/hr) Water 1.47e-002 1.17e+001 Carbon Dioxide 1.51e-001 2.92e+002 Nitrogen 3.94e-001 4.85e+002 Methane 7.71e+001 5.43e+004 Ethane 1.48e+001 1.96e+004 Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.42e+002 n-Pentane 2.62e-001 8.29e+002 n-Hexane 5.78e-002 2.19e+002 Cyclohexane 5.92e-003 2.19e+001 Other Hexanes 9.28e-002 3.51e+002 Heptanes 4.17e-002 1.84e+002 Benzene 8.79e-004 3.02e+000 Toluene 1.62e-003 6.57e+000 C8+ Heavies 1.92e-002 1.44e+002

Total Components 100.00 9.16e+004

LEAN GLYCOL STREAM

Temperature: 85.00 deg. F Flow Rate: 7.50e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.51e+000 6.36e+001 Carbon Dioxide 7.31e-013 3.08e-011 Nitrogen 7.55e-014 3.19e-012 Methane 2.81e-018 1.19e-016 Ethane 5.43e-008 2.29e-006 Propane 4.90e-009 2.07e-007 Isobutane 9.36e-010 3.95e-008 n-Butane 2.07e-009 8.75e-008 Isopentane 1.33e-004 5.61e-003 n-Pentane 1.71e-004 7.21e-003 n-Hexane 8.50e-005 3.59e-003 Cyclohexane 2.38e-004 1.00e-002 Other Hexanes 2.02e-004 8.53e-003 Heptanes 1.54e-004 6.48e-003 Benzene 5.16e-004 2.18e-002 Toluene 3.09e-003 1.31e-001 C8+ Heavies 1.91e-002 8.07e-001 ------Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 304.70 psia Flow Rate: 7.97e+000 gpm

NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.34e+001 4.96e+000 9.93e-003 5.70e-003 6.38e-001	2.21e+002 4.42e-001 2.54e-001
Propane Isobutane	3.11e-001 2.13e-001 4.58e-002 1.11e-001 3.39e-002	9.49e+000 2.04e+000 4.94e+000
n-Hexane Cyclohexane Other Hexanes		8.18e-001 3.24e-001 1.01e+000

Benzene 9.82e-003 4.37e-001 Toluene 3.72e-002 1.66e+000 C8+ Heavies 1.52e-001 6.77e+000 Total Components 100.00 4.45e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 4.34e+003 scfh

Conc. Loading Component (vol%) (lb/hr) Water 7.62e+001 1.57e+002 Carbon Dioxide 8.77e-002 4.42e-001 Nitrogen 7.91e-002 2.54e-001 Methane 1.55e+001 2.84e+001 Ethane 4.02e+000 1.38e+001 Propane 1.88e+000 9.49e+000 Isobutane 3.06e-001 2.04e+000 n-Butane 7.43e-001 4.94e+000 Isopentane 1.82e-001 1.50e+000 n-Pentane 2.20e-001 1.81e+000 n-Hexane 8.25e-002 8.14e-001 Cyclohexane 3.26e-002 3.14e-001 Other Hexanes 1.02e-001 1.01e+000 Heptanes 1.20e-001 1.37e+000 Benzene 4.64e-002 4.15e-001 Toluene 1.45e-001 1.53e+000 C8+ Heavies 3.06e-001 5.96e+000 ______ Total Components 100.00 2.31e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 2.05e+001 scfh

Component

Conc. Loading
(vol%) (lb/hr)

Methane 6.54e+001 5.68e-001
Ethane 1.70e+001 2.76e-001
Propane 7.95e+000 1.90e-001
Isobutane 1.29e+000 4.07e-002
n-Butane 3.14e+000 9.88e-002

Isopentane 7.69e-001 3.00e-002
n-Pentane 9.29e-001 3.63e-002
n-Hexane 3.49e-001 1.63e-002
Cyclohexane 1.38e-001 6.28e-003
Other Hexanes 4.31e-001 2.01e-002

Heptanes 5.07e-001 2.75e-002

Page: 7

Benzene 1.96e-001 8.31e-003

Toluene 6.12e-001 3.05e-002

C8+ Heavies 1.29e+000 1.19e-001

Total Components 100.00 1.47e+000

	ATTACHMENT U
Facility-wide Controlled Emission	on Summary Sheet(s)
Facility-wide Controlled Emission	on Summary Sheet(s)
Facility-wide Controlled Emission	on Summary Sheet(s)
Facility-wide Controlled Emission	on Summary Sheet(s)
Facility-wide Controlled Emission	on Summary Sheet(s)
Facility-wide Controlled Emission	on Summary Sheet(s)

ATTACHMENT U – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

E D ID.	NO) _x	С	O	V	OC	S	O_2	PN	M_{10}	PM	I _{2.5}	С	H_4	GHG	(CO_2e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
2E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
3E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
4E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
5E	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.01	0.05	0.01	0.05	0.003	0.015	181.1	793.4
6E	0.05	0.22	0.04	0.18	0.00	0.01	0.000	0.001	< 0.01	0.02	< 0.01	0.02	0.001	0.005	60.4	264.5
7E					2.96	4.00										
8E					0.14	0.19										
9E	0.19	0.81	0.37	1.62	0.04	0.18	0.000	0.002	0.013	0.06	0.013	0.06	0.13	0.55	89.7	393.0
10E	0.92	4.04	4.57	20.00	8.07	1.79	0.001	0.00	0.047	0.21	0.047	0.21	1.14	0.26	1564.6	6,852.8
11E	0.05	0.22	0.04	0.18	0.003	0.01	0.000	0.001	0.004	0.017	0.004	0.017	0.001	0.005	60.4	264.5
12E	0.27	1.19	1.03	4.50	0.63	2.74	0.001	0.003	0.037	0.161	0.037	0.161	0.57	2.51	431.5	1,889.9
13E	0.001	0.006	0.001	0.005	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.001	0.003	1.6	6.9
TOTAL	2.23	9.77	6.68	29.25	11.89	44.42	0.007	0.029	0.16	0.71	0.16	0.71	1.30	0.94	3,128	13,702

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission	Formal	dehyde	Benzene		Toluene		Ethylb	Ethylbenzene		enes	Hexane		Total HAPs	
Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
2E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
3E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
4E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
5E	1.13E-04	4.93E-04	3.15E-06		5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
6E	3.75E-05	1.64E-04	1.05E-06		1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
7E											0.16	0.22	0.160	0.22
8E											0.02	0.021	0.016	0.021
9E	0.015	0.065	0.001	0.005	0.009	0.002	1.65E-05	7.22E-05	1.30E-04	5.68E-04			0.022	0.096
10E	4.67E-04	0.002	1.31E-05								0.011	0.041	0.012	0.051
11E	3.75E-05	1.64E-04	1.05E-06		1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
12E	3.63E-04	0.002	0.008	0.04	0.031	0.136					0.002	0.078	0.0657	0.25
13E			2.73E-08	1.20E-07	4.42E-08	1.94E-07					2.34E-05	1.03E-04	2.45E-05	1.07E-07
TOTAL	0.016	0.071	0.013	0.058	0.041	0.179	5.91E-04	2.59E-03	7.83E-03	0.034	0.462	1.48	0.546	1.86

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT

Affidavit Notice Will Be Submitted Upon Receipt

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for a natural gas production facility located on Beech Run Road, near Friendly, in Pleasants County, West Virginia. The latitude and longitude coordinates are: 39.435425, -81.042546.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

9.77 tons of Nitrogen Oxides per year

29.25 tons of Carbon Monoxide per year

4.48 tons of Particulate Matter per year

46.11 tons of Volatile Organic Compounds per year

0.03 tons of Sulfur Dioxide per year

0.07 tons of Formaldehyde per year

0.06 tons of Benzene per year

0.18 tons of Toluene per year

1.48 tons of Hexane per year

1.87 tons of Total Hazardous Air Pollutants per year

13,741 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the <u>1</u>st day of <u>February</u>, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499.
extension 1250, during normal business hours.
Dated this the day of, 2016.

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Ave. Cairo, WV 26337