November 16, 2015

T E C H N O L O G I E S 98 VANADIUM ROAD BUILDING D, 2nd FLOOR BRIDGEVILLE, PA 15017 (412) 221-1100 (412) 257-6103 (FAX) http://www.se-env.com

West Virginia Dept. of Environmental Protection Division of Air Quality – Permitting Section 601 57th Street, SE Charleston, WV 25304

RE: Application for Permit Modification Spencer Well Pad Station Plant No. 095-00021 Triad Hunter, LLC Tyler County, West Virginia

To Whom It May Concern:

On behalf of our client, Triad Hunter Pipeline, LLC, we are pleased to submit one hard copy and two electronic copies of an Application for Modification to permit R13-3035A for its Spencer Well Pad Station in Tyler County near the community of Middlebourne. Triad Hunter wishes to replace one of the permitted natural gas compressors and associated driver engine. In addition, Triad Hunter is also seeking to replace certain emission control equipment and make several other minor revisions to the permit in order to better reflect current and projected operating conditions.

An application fee in the amount of 2,000 (1,000 Permit Fee + 1,000 NSPS Fee) was determined to be applicable. A check, payable to WVDEP – Division of Air Quality is included in the pocket in the application with the original signature.

Triad Hunter is eager to begin operation of this additional equipment at the earliest practical date. Consequently, if there are any questions or concerns regarding this application, please contact me at 412/221-1100, x 1628 or <u>rdhonau@se-env.com</u> and we will provide any needed clarification or additional information immediately.

Sincerely,

loge Ce. Shonau

Roger A. Dhonau, PE, QEP Principal

Enclosures Cc: Triad Hunter, LLC – Ryan Crowe

TRIAD HUNTER, LLC

APPLICATION FOR NSR PERMIT MODIFICATION

Spencer Well Pad Compressor Station Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR NSR PERMIT MODIFICATION Triad Hunter, LLC

Spencer Well Pad Compressor Station

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Business Registration
 - Attachment B Site Location Map
 - Attachment C Construction Schedule
 - Attachment D Regulatory Analysis
 - Attachment E Site Layout Diagram
 - Attachment F Process Flow Diagram
 - Attachment G Process Description
 - Attachment I Emission Unit Table
 - Attachment J Emission Points Data Summary Sheet
 - Attachment K Fugitive Emissions
 - Attachment L Emission Unit Data Sheets
 - Attachment M Air Pollution Control Device Sheets
 - Attachment N Supporting Calculations
 - Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan
 - Attachment P Public Notice Affidavit

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.wvdep.org/dag		LICATION FOR NSR PERMIT AND TLE V PERMIT REVISION (OPTIONAL)				
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FA FOR TITLE V FACILITIES ONLY: Please refer to "Title V R	ADMINISTRA SIGNIFICANT IF ANY BOX ABC INFORMATION A	OVE IS CHECKED, INCLUDE TITLE V REVISION AS ATTACHMENT S TO THIS APPLICATION				
(Appendix A, "Title V Permit Revision Flowchart") and al						
 Name of applicant (as registered with the WV Secretary Triad Hunter, LLC 		2. Federal Employer ID No. (FEIN): 27-1355830				
 Name of facility (if different from above): Spencer Well Pad Station 		4. The applicant is the: ☐ OWNER □OPERATOR ⊠ BOTH				
5A. Applicant's mailing address: 125 Putnam St. Marietta, Ohio 45750	None	5B. Facility's present physical address: None On CR 26 near Middlebourne, WV				
 6. West Virginia Business Registration. Is the applicant a If YES, provide a copy of the Certificate of Incorporat change amendments or other Business Registration Ce If NO, provide a copy of the Certificate of Authority/A amendments or other Business Certificate as Attachm 	ion/Organization/Limi ertificate as Attachmen uthority of L.L.C./Reg	ted Partnership (one page) including any name at A.				
7. If applicant is a subsidiary corporation, please provide th	e name of parent corpo	pration: Magnum Hunter Resources				
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Applicant has a lease agreement with the land owner for installation of the well pad and all equipment necessary to manage produced liquid and gas If NO, you are not eligible for a permit for this source. 						
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 486210 						
11A. DAQ Plant ID No. (for existing facilities only): 095-0002111B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-3035A						
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

12A.

 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 							
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 							
 From In the town of Middleborne, take Bridgeway Road it turns right approximately 1,000 feet after crossing 26 bears to the left. Bear right. Entrance to the star 	the creek. After approximately 0.6 mil	es there is a Y in the road. Route					
12.B. New site address (if applicable):	B. New site address (if applicable): 12C. Nearest city or town: 12D. County:						
	Middlebourne	Tyler					
12.E. UTM Northing (KM): 4376.709	12F. UTM Easting (KM): 528.757	12G. UTM Zone: 17					
13. Briefly describe the proposed change(s) at the facilit liquids to be managed by the facility.	y: Modification of equipment to bette	r match the volume of gas and					
14A. Provide the date of anticipated installation or changed	•	14B. Date of anticipated Start-Up					
 If this is an After-The-Fact permit application, provi change did happen: / / 	de the date upon which the proposed	if a permit is granted: Within 90 days of approval					
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit		units proposed in this permit					
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52							
16. Is demolition or physical renovation at an existing factor	cility involved? YES NO						
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the					
proposed process (if known). A list of possible application	ble requirements is also included in Atta	achment S of this application					
(Title V Permit Revision Information). Discuss applica	(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance <i>(if known)</i> . Provide this						
information as Attachment D.							
information as Attachment D.	,,						
	achments and supporting d						
	achments and supporting d	ocuments.					
Section II. Additional att 19. Include a check payable to WVDEP – Division of Air	achments and supporting de Quality with the appropriate application	ocuments.					
Section II. Additional atta 19. Include a check payable to WVDEP – Division of Air 45CSR13).	achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope	ocuments. In fee (per 45CSR22 and					
Section II. Additional atta 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketo	Achments and supporting de Quality with the appropriate application ar application package. Ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>).	ocuments. a fee (per 45CSR22 and arty on which the stationary					
 Section II. Additional attained 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch source(s) is or is to be located as Attachment E (Reference) 	achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>) . e (e.g. church, school, business, residen	ocuments. fee (per 45CSR22 and arty on which the stationary ce).					
 Section II. Additional attain 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Reference) and the structure of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show 	achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>) . e (e.g. church, school, business, residen	ocuments. fee (per 45CSR22 and arty on which the stationary ce).					
 Section II. Additional attained 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch source(s) is or is to be located as Attachment E (Reference) – Indicate the location of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>) . e (e.g. church, school, business, residen <i>v</i> ing each proposed or modified emissio	ocuments. a fee (per 45CSR22 and arty on which the stationary ce). ns unit, emission point and control					
 Section II. Additional attained 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Reference) and the source of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 23. Provide a Process Description as Attachment G. 	Achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope effer to <i>Plot Plan Guidance</i>). (e.g. church, school, business, residen ving each proposed or modified emissio	ocuments. a fee (per 45CSR22 and arty on which the stationary ce). ns unit, emission point and control e last permit review (if applicable).					
 Section II. Additional attachment F. Section II. Additional attachment F. Section II. Additional attachment G. Include a check payable to WVDEP – Division of Air 45CSR13). Include a Table of Contents as the first page of you Provide a Plot Plan, e.g. scaled map(s) and/or sketch source(s) is or is to be located as Attachment E (Reference) is or is to be located as Attachment E (Reference) and the second structure Provide a Detailed Process Flow Diagram(s) show device as Attachment F. Provide a Process Description as Attachment G. Also describe and quantify to the extent possible at the second structure of the secon	Achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>). c (e.g. church, school, business, residen ving each proposed or modified emissio all changes made to the facility since the found under the Permitting Section of DA	ocuments. a fee (per 45CSR22 and arty on which the stationary ce). ns unit, emission point and control e last permit review (if applicable). AQ's website, or requested by phone.					
 Section II. Additional attachment for the required forms and additional of the required forms and additional information can be 	Achments and supporting de Quality with the appropriate application ar application package. ch(es) showing the location of the proper- efer to Plot Plan Guidance). (e.g. church, school, business, residen <i>v</i> ing each proposed or modified emission all changes made to the facility since the found under the Permitting Section of DA I materials processed, used or produced mpound emitted to the air.	ocuments. a fee (per 45CSR22 and arty on which the stationary ce). ns unit, emission point and control e last permit review (if applicable). AQ's website, or requested by phone.					

26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.						
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	as Attachment K.				
28. Check all applicable Emissions Unit Data Sheets listed below:						
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry				
Chemical Processes*	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage				
Concrete Batch Plant	Incinerator	Facilities				
Grey Iron and Steel Foundry	Natural Gas Compressors	Storage Tanks				
General Emission Unit, specify:						
*Leak Source Data Sheet Only						
Fill out and provide the Emissions Unit E	Data Sheet(s) as Attachment L.					
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed below	v:				
Absorption Systems	Baghouse	⊠ Flare				
Adsorption Systems	Condenser	Mechanical Collector				
Afterburner	Electrostatic Precipitate	or Wet Collecting System				
Other Collectors, specify: Catalyst						
Fill out and provide the Air Pollution Cor	trol Device Sheet(s) as Attachn	nent M.				
30. Provide all Supporting Emissions C Items 28 through 31.	Calculations as Attachment N, o	r attach the calculations directly to the forms listed in				
	compliance with the proposed en	proposed monitoring, recordkeeping, reporting and hissions limits and operating parameters in this permit				
	y not be able to accept all measu	er or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.				
32. Public Notice. At the time that the a	application is submitted, place a C	lass I Legal Advertisement in a newspaper of general				
circulation in the area where the sour	ce is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>				
Advertisement for details). Please s	submit the Affidavit of Publicatio	n as Attachment P immediately upon receipt.				
33. Business Confidentiality Claims.	Does this application include confi	dential information (per 45CSR31)?				
🗌 YES	🖂 NO					
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.						
Se	ction III. Certification o	f Information				
34. Authority/Delegation of Authority. Check applicable Authority Form be		ner than the responsible official signs the application.				
Authority of Corporation or Other Busin	ness Entity	Authority of Partnership				
Authority of Governmental Agency		Authority of Limited Partnership				
Submit completed and signed Authority Form as Attachment R.						
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE(Please of	ATE:	
35B. Printed name of signee: Michael Horan	35C. Title: Vice President - Operations	
35D. E-mail:	36E. Phone:	36F. FAX:
mhoran@triadhunter.com	740/374-2940	
36A. Printed name of contact person (if differe	nt from above):	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:				
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 				
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.					

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

□ Forward 1 copy of the application to the Title V Permitting Group and:
For Title V Administrative Amendments:
NSR permit writer should notify Title V permit writer of draft permit,
For Title V Minor Modifications:
Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer of draft permit.
For Title V Significant Modifications processed in parallel with NSR Permit revision:
NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

SECTION II

Attachments

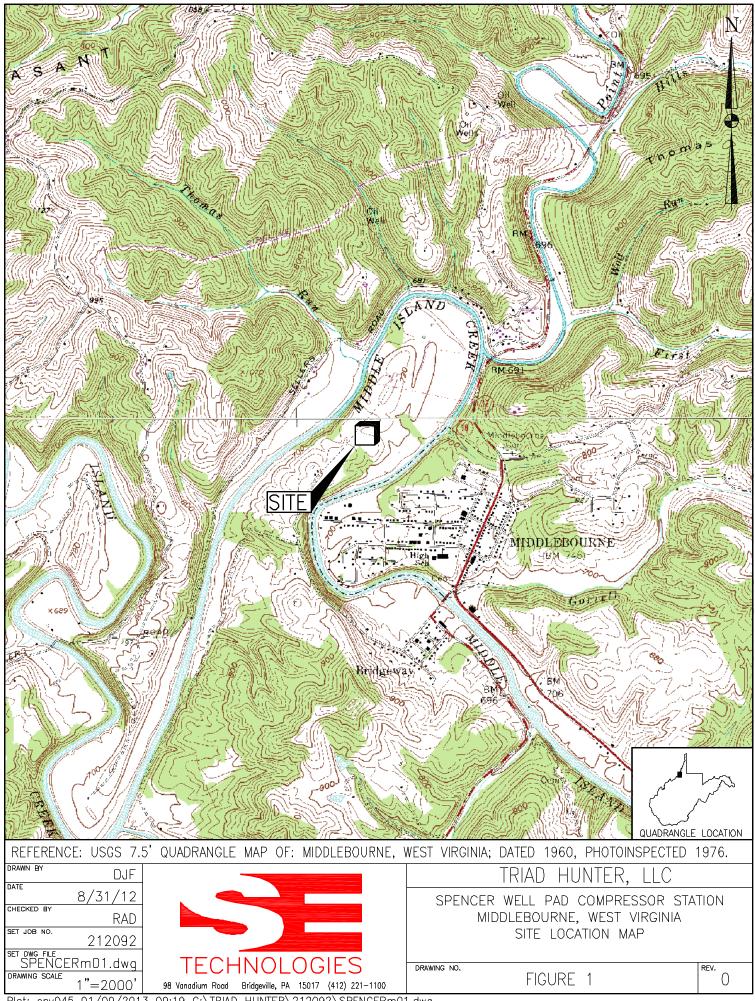
ATTACHMENT A


Business Registration

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Triad Hunter, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.


Given under my hand and the Great Seal of West Virginia on this day of January 29, 2010

talil Egennand

Secretary of State

ATTACHMENT B

Site Location Map

Plot: env045 01/09/2013 09:19 G:\TRIAD HUNTER\212092\SPENCERm01.dwg

ATTACHMENT C

Construction Schedule

Triad Hunter, LLC Spencer Well Pad Compressor Station Attachment C – Construction Schedule

The requested installations and removals in this application all involve easily exchanged or removed equipment. It is anticipated that all work can be completed within 90 days of receipt of approval.

ATTACHMENT D

Regulatory Analysis

TRIAD HUNTER, LLC Spencer Well Pad Station Attachment D - Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to Triad Hunter, LLC's (Triad) Spencer Compressor Station near the community of Middlebourne in Tyler County, West Virginia. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state.

The following is a summary of relevant and applicable regulations governing air emissions from this facility. The planned modifications to the facility do not trigger the applicability of any additional regulations.

1.1 PSD and NSR

The facility will remain a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant.

The facility is within an area designated as attainment for all criteria pollutants. Consequently, the facility is not subject to the New Source Review (NSR) regulations. Additionally, potential emissions are below the annual emission thresholds triggering PSD. Consequently, neither PSD nor NSR requirements are not applicable to this project.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Potential emissions at this facility, including the proposed modifications, are below both of these thresholds. In addition to this annual potential emissions threshold, any facility operating under certain federal New Source Performance Standards also fall under the Title V program. While the facility is indeed regulated under certain New Source Performance Standards, none of these require participation in the Title V Operating Permit Program. Thus, a Title V operating permit is not required.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

The planned changes to the Spencer Compressor Station will not impact aggregation of this facility with any other Triad facility.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). Specific NSPS requirements *potentially* applicable to the planned fractionation facility are as follows:

- 40 CFR 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- 40 CFR 60, Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- 40 CFR 60, Subpart KKK Equipment Leaks of VOC from Onshore Natural Gas Processing Stations
- 40 CFR 60, Subpart LLL Onshore Natural Gas Processing Stations: SO₂ Emissions
- 40 CFR 60, Subpart III Stationary Compression Ignition Internal Combustion Engines
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 Subpart Dc

This subpart limits SO_2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations is to control SO_2 and PM emissions from coal and oil-fired boilers and heaters, natural gas fired units greater than 10 MMBTU/Hr heat input are also covered under this rule. There are no combustion devices at this facility that are regulated by this rule.

1.4.2 Subpart K/Ka/Kb

These three subparts apply to volatile organic liquid storage tanks of specific sizes constructed in certain timeframes. Subpart K applies to tanks constructed or modified between 1973 and 1978 while Subpart Ka applies to tanks constructed between 1978 and 1984. Subpart Kb applies to storage tanks constructed or modified after 1984. The proposed additional Condensate Tanks are potentially subject to one or more of these rules, depending upon its date of manufacture. However, the capacity of these tanks (16,800 gallons each) is below the threshold for Subpart K and Ka (40,000 gallons), excluding it from these rules. As the tanks have been manufactured after this date, they are potentially regulated under Subpart Kb. However, again, the capacities of these tanks are below the threshold for regulation under this rule (19,800 gallons or 75 cubic meters).

The planned modifications will not impact Spencer Compressor Station's status with respect to this rule.

1.4.3 Subpart KKK

This subpart regulates VOC emissions from equipment and piping connection leaks at natural gas processing plants, including fractionation facilities. The Spencer Compressor Station is not a gas processing or fractionation plant. Hence, this rule does not apply.

1.4.4 Subpart LLL

This set of regulations governs emissions from processes used to remove sulfur gases from the field gas stream (sweetening unit) and subsequent sulfur recovery operations. Neither the existing nor the proposed modifications include any sulfur removal processes. Hence, this rule does not apply.

1.4.5 <u>Subpart IIII</u>

This subpart governs emissions from new compression ignition internal combustion engines (CI ICE) manufactured after July 11, 2005. There are no compression ignition engines (e.g. dieselfired emergency generator) currently at this station or planned as part of this modification. Hence, this rule does not apply.

1.4.6 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. The existing gas compressor engines fall under jurisdiction of this rule. The replacement compressor engine was manufactured prior to the effective date of this rule.

1.4.7 <u>Subpart OOOO</u>

The potentially applicable sections of this rule sets restrictions on any pneumatic controllers present at the Spencer Compressor Station; establishes maintenance requirements for the compressors and sets requirements for storage vessels with potential VOC emissions greater than 6 tons per year. These portions of Subpart OOOO will continue to apply to the Spencer Compressor Station.

One of the key components to this rule [40 CFR 60.5390(b)] is the requirement that all pneumatic controllers located between the well head and a processing plant must have a bleed rate of less than 6 scfh. All pneumatic controllers installed at the Spencer Compressor Station meet this criterion. Thus, this aspect of the rule does not apply.

This rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The planned modifications will not impact Spencer Compressor Station's status with respect to this rule.

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total

HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned facility:

- 40 CFR 63, Subpart HH NESHAP from Oil and Natural Gas Production Facilities
- 40 CFR 63, Subpart HHH NESHAP from Natural Gas Transmission and Storage Facilities
- 40 CFR 63, Subpart ZZZZ NESHAP from Stationary Reciprocating Internal Combustion Engines
- 40 CFR 63, Subpart DDDDD NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters

1.5.1 <u>Subpart HH</u>

This Subpart contains MACT standards for major and area source dehydration units located at natural gas production facilities. The facility contains a dehydration units covered by this rule. The planned modifications will not impact Spencer Compressor Station's status with respect to this rule.

1.5.2 Subpart HHH

This Subpart applies to dehydration units at facilities which are major sources of HAPs that transport or store natural gas in association with transmission pipelines as defined by 40 CFR 63.1271. The current operations and proposed amendments do not contain a dehydration operation associated with natural gas transmission. Hence, this rule does not apply.

1.5.3 Subpart ZZZZ

This Subpart governs emissions from a stationary Reciprocating Internal Combustion Engine (RICE) located both at major and area source of HAPs. As noted above, the existing engines fall under NSPS JJJJ. The new CAT 3508 TALE main gas compressor is not regulated under Subpart JJJJ as it was manufactured prior to the effective date of that rule. However, the manufacture date of this engine (May 23, 2007) falls after the effective date of Subpart ZZZZ (June 12, 2006 per 40 CFR63.6590). Hence, this rule does not apply. Thus, the planned modifications will not impact Spencer Compressor Station's status with respect to this rule.

1.5.4 <u>Subpart DDDDD</u>

This Subpart applies to industrial process heaters of various sizes and fuel types located at facilities that are classified as a major source of HAPs. As the facility is not and will not become a major HAPs source under this application, this rule still does not apply.

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. However, in accordance with 68.115(c(ii), flammable naturally occurring mixtures at a location prior to entering a gas processing plant need not be considered when determining if the threshold quantity has been exceeded. Hence, an RMP is not required for this facility.

1.7 West Virginia State Requirements

1.7.1 <u>45 CSR 2</u>

The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

1.7.2 <u>45 CSR 4</u>

This regulation prohibits the emission of objectionable odors. Triad is obligated to run the station in a manner that does not produce objectionable odors.

1.7.3 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the inlet liquid contains no measurable sulfur, anticipated emissions of sulfur oxides is negligible. Thus, while parts of this rule may be applicable to the facility, no actions are required on the part of Triad to attain compliance.

1.7.4 <u>45 CSR 13</u>

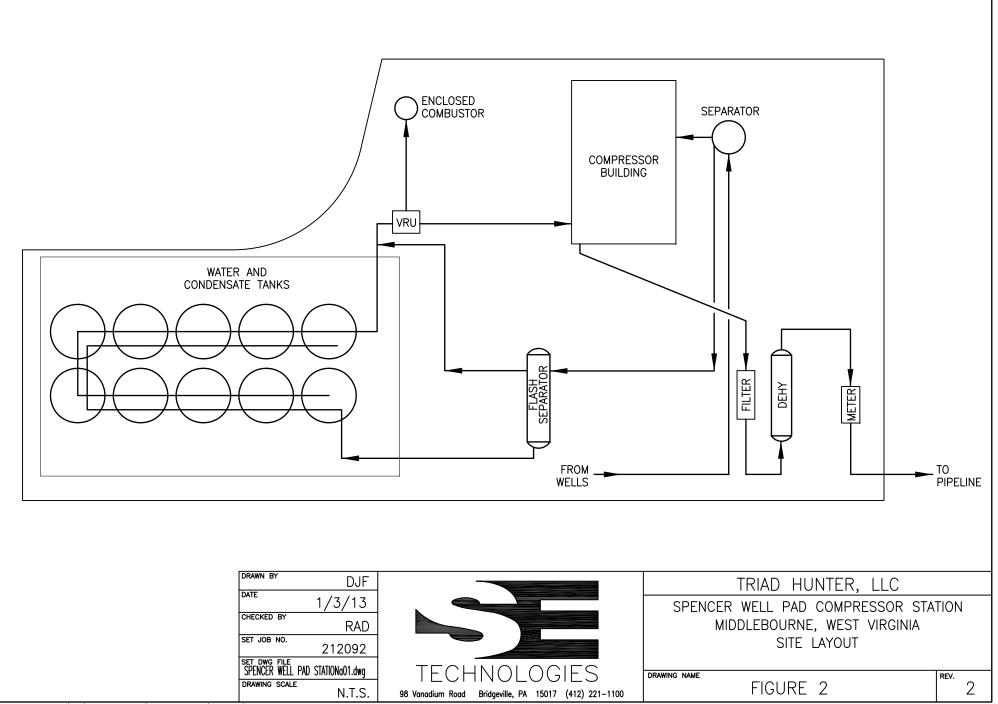
The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The facility has the potential to emit NOx, CO and VOCs in excess of the thresholds that define a stationary source. This will remain true under the proposed amendment. Additionally, as the facility is regulated under a federal New Source Performance Standard, it is required to have a permit.

It is important to note that the facility's potential to emit is less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

1.7.5 <u>45 CSR 16</u>

This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the planned fractionation facility is subject to the emission limitations, monitoring, testing and recordkeeping of several NSPS Subparts.

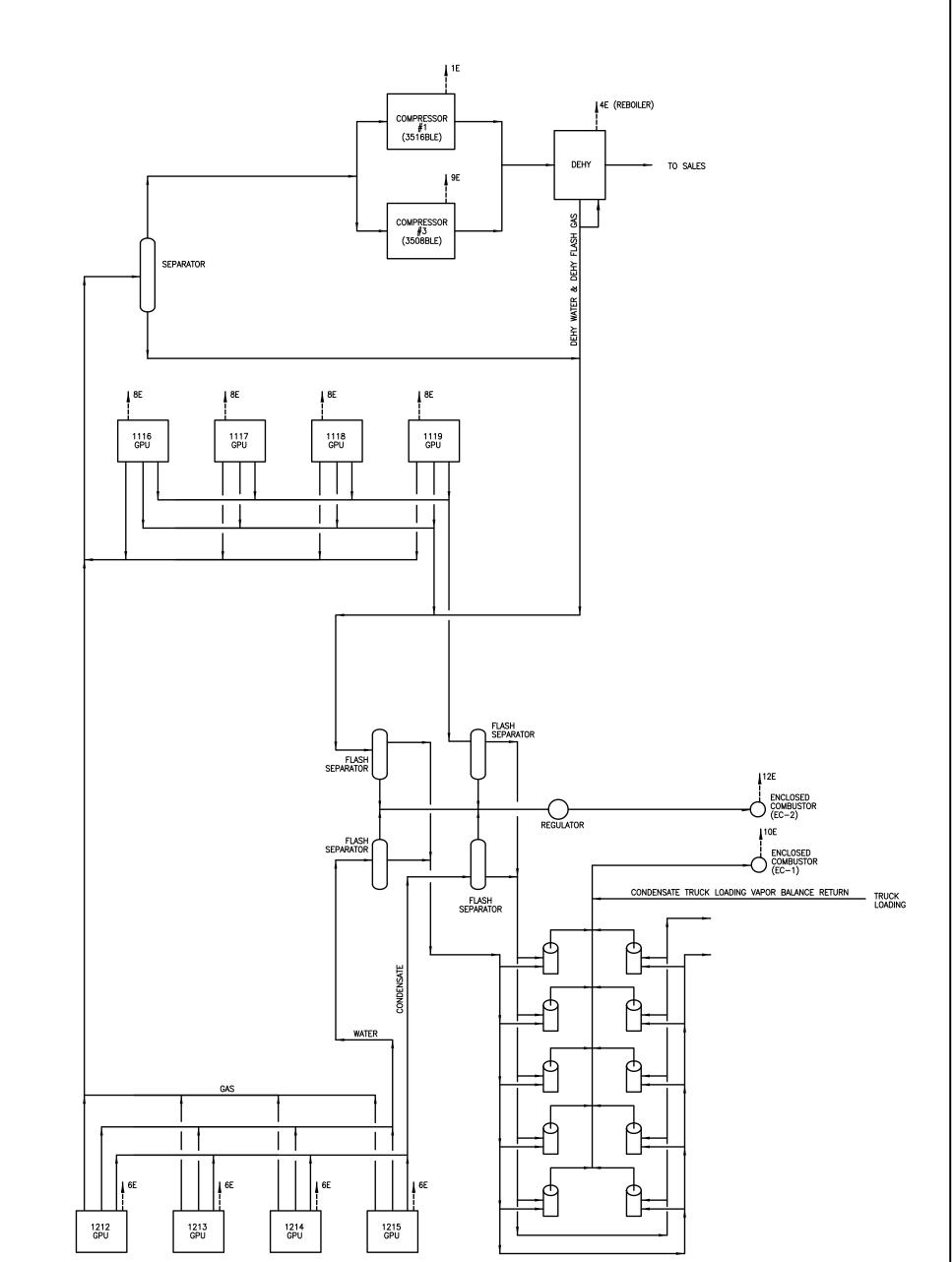
1.7.6 <u>45 CSR 30</u>


The state regulations applicable to Title V operating permits are in Title 45 Series 30. The planned facility, as noted above, does not have the potential to emit any regulated pollutant above the threshold that would define it as a major facility. Although the facility is subject to a New Source Performance Standard, it is not obligated to obtain a Title V permit under this Standard. This federal exclusion has been adopted by WVDEP.

1.7.7 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. This topic has been addressed above.

ATTACHMENT E


Site Layout Diagram

Plot: env045 08/22/2013 15:37 G:\TRIAD HUNTER\212092\SPENCER WELL PAD STATIONa01.dwg

ATTACHMENT F

Process Flow Diagram

WATER AND CONDENSATE TANKS (T01-T08 & T14-T15)

Plot: env045 10/30/2015 16:16 G:\TRIAD HUNTER\212092\SPENCER FLOW DIAGRAMa02.dwg

ATTACHMENT G

Process Description

Triad Hunter, LLC Spencer Well Pad Station Attachment G - Process Description

The following text presents an overview of station operations and the planned equipment modifications and operational changes.

Natural gas and produced fluids (condensate and water) are currently received from the wells located adjacent to this facility at approximately 900-1000 psi. These materials then pass through a separator where gas and produced fluids (a mixture of condensate and water) are separated from the inlet gas stream. The gas is routed directly to one of two main compression units and then to a TEG dehydration unit where the water vapor content in the gas flow is reduced to required concentrations. Upon completion of dehydration, the gas is discharged to a gathering line owned and operated by others. As there have been significant changes in the volume of gas and condensate entering the station, changes in equipment and operational procedures are necessary to maintain a properly sized facility that is operated in a cost-effective manner.

Triad is seeking to make various equipment modifications to accommodate a decrease in the amount of gas and condensate that the station must manage. The requested equipment changes associated with this are as follows:

- With the lower potential condensate throughput, continued use of the flash compressor is no longer cost effective. Accordingly, Triad Hunter is seeking approval for routing the gases being managed by this device to combustors as described below.
- The atmospheric tanks contain condensate and produced water. They are equipped with a capture and control system for the control of vapors. This system is comprised of the flash gas compressor (also described as a Vapor Recovery Unit in the current permit) noted above whereby the vapors are compressed and injected into the inlet side of the main compression units. As allowed in the current permit, these vapors are routed to an enclosed combustor during times when the flash compressor is not available. Triad is seeking approval to route the vapors emitted from the tanks solely to the existing combustor (a COMM 100) plus a second COMM 100 should condensate production approach the vapor flows warranting a second unit. A new combustor (an Abutec100) will manage gas from the flash separator which is currently managed by the VRU. For permitting purposes, a capture and control efficiency 98% of the tanks and associated piping to the combustor and approximately 1 percent loss in the various fittings on the tanks and associated piping to the combustor and approximately 1 percent loss in the combustor efficiency.
- In accordance with the current permit, condensate truck loading takes place with a vapor balance system in place, whereby vapors generated during the condensate loading operation are routed back to the tanks and ultimately captured by the flash compressor (VRU). Triad is seeking to have the condensate truck loading vapors routed to the existing combustor only, so as to allow removal of the VRU and to ensure any oxygen that may be present in the tank trucks is not routed into the inlet side of the gas management system.
- With the decrease in gas that must be managed by the station, Triad Hunter is seeking to replace one of the two CAT 3516 compressor drivers with a smaller CAT 3508.

In addition to the above changes needed to reflect current and anticipated reductions in gas and liquids flow, there are four minor corrections to the permit required:

- There are eight GPUs with heat input of 1 MMBTU/Hr each. The current permit is for eight at 1.2 MMBTU/hr each. This modification seeks to correct this inaccuracy.
- The previous applications and subsequent permits for this facility did not include fugitive dust emissions from water and condensate tanker trucks. This submittal seeks to correct this earlier oversight.
- The previous applications and subsequent permits for this facility did not include the minor VOC emissions from produced water truck loading. This submittal seeks to correct this earlier oversight.
- Lastly, Triad is updating its blowdown calculations to match expected operating conditions and equipment for the requested compressors.

Separately, Triad Hunter anticipates that the next wells drilled at this site may contain higher concentrations of BTEX than was previously assumed. Triad Hunter is therefore seeking to modify the allowable limits for the dehydration unit emissions to better reflect the expected gas composition.

No other changes are being requested at this time.

In Summary, emission sources at the Spencer facility that Triad Hunter will include the following:

- Eight GPUs rated at 1.0 MMBTU/Hr (EXISTING SOURCE Corrected)
- One 40 MMSCFD Dehydration Unit with 500 MBTU/Hr Reboiler (MODIFIED SOURCE)
- One CAT 3516B Compressor Driver engine (EXISTING SOURCE)
- One CAT 3508B Compressor Driver engine (NEW SOURCE)
- Four 400 BBL Produced Water Tanks (EXISTING SOURCE)
- Four 400 BBL Condensate Tanks (EXISTING SOURCE)
- Fugitive Emissions Facility Roadways (EXISTING SOURCE)
- Fugitive Emissions Component Leaks (NEW AND EXISTING SOURCE)

ATACHMENT I

Emission Unit Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴	
1 S	1E	Caterpillar 3516B	2013	1380 Hp	EXIST	1C	
2S	2E	Caterpillar 3516B	2013	1380 Hp	REM	2C	
38	3E	Caterpillar 3304 NA	2013	95 Hp	Previously Removed	3C	
4S	4E (Reboiler +Still Vent) 12E (Flash Gas)	40 MMCF/Day Gas Flow		MOD	Condenser w/ Still Vent Gases to Re- boiler. Flash Gas to EC-2		
58	5E	Gas Production Units 2012 0.012 MMBTU/Hr Each Previously Removed				None	
6S	6E	Four Gas Production Units	2012	1.0 MMBTU/Hr Each	EXIST	None	
7S	7E	Caterpillar 3306 TA	2014	203 Hp	REM	7C	
8S	8E	Four Gas Production Units	2013	2.0 MMBTU/Hr Each	EXIST	None	
9S	9E	Caterpillar 3508B	Caterpillar 3508B 2015 630 HP		NEW	9C	
EC-1	10E	Enclosed Combustor (COMM 100)	2014	Two at EXIST 2.5 MMBTU/Hr each +NEW		N/A	
T01-T08	10E	Condensate and Water Tanks 2013		16,800 Gallons Each EXIST		Enclosed Combustor EC-1	
T09-T10	T09-T10	Lube Oil Storage Tanks	2013	1,500 Gallons Each	EXIST	None	
T11	T11	Used Oil Storage Tank	2013	2,000 Gallons	EXIST	None	

T12	T12	Ethylene Glycol Storage Tank	2013	2,000 Gallons	EXIST	None
T13	T13	TEG Storage Tank	2013	600 Gallons	EXIST	None
T14-T15	10E	Condensate and Water Tanks	2013	16,800 Gallons Each	EXIST	Enclosed Combustor EC-1
TL-1	10E	Condensate Truck Loading	2013	8,474 Gallons per Day	EXIST	Enclosed Combustor EC-1
TL-2	10E	Produced Water Truck Loading	2013	55,524 Gallons per Day	EXIST	None
EC-2	12E	Enclosed Combustor (Abutech 100)	2012 9.2 MMBTU/F		NEW	N/A
		Fugitive + Blowdowns	2012 +2015	N/A	EXIST + NEW	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

ATTACHMENT J

Emission Points Data Summary Sheet

ATTACHMENT J

Emission Points Data Summary Sheet New Equipment Only

	Table 1: Emissions Data																													
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Ver Through (Must Emissio	on Unit nted This Point match on Units Plot Plan)	Contro (Mus Emissi	ollution ol Device t match ion Units Plot Plan)	Vent Time for Emission Unit (chemical processes only)		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		All Regulated Pollutants - Chemical Name/CAS ³	Maxi Poter Uncon Emiss	ntial trolled	Cont	n Potential rolled sions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)			
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²		(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/iii)															
								NO _x	2.78	12.17	2.78	12.17	GAS	EE																
										l													СО	2.83	12.41	1.42	6.21	GAS	EE	
	Hannad							VOC	0.50	2.19	0.25	1.10	GAS	EE																
9E	Upward Vertical Stack6	9E	9S	9C	Catalyst	С	8760	SO ₂	< 0.01	0.01	< 0.01	0.01	GAS	EE																
	Stacko							PM/PM10	0.05	0.24	0.05	0.24	Solid	EE																
								Formaldehyde	0.39	1.70	0.19	0.85	Gas	EE																
								CO2e	953	4,172	953	4,172	Gas	EE																

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that un-captured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g., uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ^{1.} Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ^{2.} Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ^{3.} List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS2, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, etc. **DO NOT LIST** CO₂, H₂O, N₂, O₂, and Noble Gases.
- ^{4.} Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).
- ^{5.} Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).
- Indicate method used to determine emission rate as follows: MB = material balance;
 ST = stack test (give date of test);
 EE = engineering estimate;
 O = other (specify).

Page _1_ of _2_

ATTACHMENT J

Emission Points Data Summary Sheet New Equipment

	Table 2: Release Parameter Data								
Emission		Exit Gas			Emission Poir	nt Elevation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow 1 (acfm)Velocity (fps) (fps)at operating conditions(fps)		Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
9E	1.67	855	3478	58		12			

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions

TRIAD HUNTER, LLC Spencer Well Pad Compressor Station Attachment K - Fugitive Emissions

As noted in the process description, Triad Hunter will continue to operate two main gas compressors, a single dehydration unit, a flash gas compressor and various tanks and ancillary equipment at this facility. This equipment contains a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. Estimates of these emissions are included in the calculations (Attachment H) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute.

In addition, there will also be release of natural gas in association with compressor blowdowns associated with routine maintenance. The following text summarizes anticipated emissions associated with these activities.

Blowdown Emission Estimates

Compressor blowdowns take place on a routine basis in order to allow maintenance on the engines and associated compressors. It is anticipated that each engine will be depressurized a maximum of 60 times per year for maintenance and repair activities. As provided in the attached sheets from the compressor vendor, the volume of a blowdown for the each of these three compressors is:

CAT 3516 compressor	6503 scf
CAT 3508 compressor	3081 scf

Thus, with 60 events per year per device, a total of 575,040 cubic feet of gas is released per year. With a density of 0.0572 lb/scf, a maximum of 32,892 lb of gas will be released per year via blowdowns. The composition of the gas will have approximately 16.2% VOCs by weight. Thus, 5,329 pounds or 2.66 tons of VOCs will be emitted via blowdowns per year.

There is a potential for both engines to be blown down within a single hour should complete shutdown of the station be required. Under this circumstance, 9,584 cubic feet of gas would be released, equating to 88.8 lb of VOCs.

The blowdown gas is approximately 60.3% methane by weight. Thus, if both engines are blown down within an hour, this equates to 329.0 pounds of methane or 8,225 lbs CO_{2e} . With 575,040 cubic feet of gas being released per year, 19,834 pounds or 9.92 tpy of methane will be released in blowdowns. This is equivalent to 248 tpy CO_{2e} .

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	⊠ Yes □ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
-	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum P Controlled Em	otential lissions ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	РМ					
Unpaved Haul Roads	РМ	13.16	18.50	13.16	18.50	EE
Storage Pile Emissions						
Loading/Unloading Operations	VOCs	53.3	19.3	16.0	5.79	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	Inlet Natural Gas(VOCs)	0.315	2.375	0.315	1.381	EE
General Clean-up VOC Emissions						
Other: Blowdowns	Inlet Natural Gas(VOCs)	88.8	2.66	88.8	2.66	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

3516B. 2-Stage (Note: assumed ideal gas behavior and used OD for volume calc)

ENTER the following Values:	Suction Pressure, psig	180	Suction Temperature, F	70					
									sectio
	Discharge Pressure, psig	900	Discharge Temperature, F	120					volume
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles	FT3 @ S ⁻
Ist Stage Cylinder	9.13	4.50	2.00	0.00	280	529	500	0.01	6
Ist Stage Cylinder	9.13	4.50	2.00	0.00	280	529	890	0.03	10
nd Stage Cylinder	6.00	4.50	2.00	0.00	113	739	890	0.01	3
nd Stage Cylinder	6.00	4.50	2.00	0.00	113	739	900	0.01	3
Scrubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	
st Stage Scrubber	30.00	68.00	48066			529	180	0.95	367
st Stage Suction Drum	20.00	120.00	37699			529	180	0.75	288
st Stage Discharge Drum	20.00	120.00	37699			739	890	2.49	958
nd Stage Scrubber	30.00	68.00	48066			589	890	3.98	1532
and Stage Suction Drum	16.00	114.50	23022			589	890	1.91	734
nd Stage Discharge Drum	16.00	114.50	23022			739	1440	2.44	940
Cooler Section	No. of Tubes	OD, in	Length, in	Total Tube Volume, in ³		Temperature, R	Pressure, psig	Calculated Moles	
st Stage Cooler Section	137	0.63	288	12299		739	890	0.81	312
nd Stage Cooler Section	170	0.63	288	15262		739	1440	1.62	623
Piping	OD, in	Length, in	Total Piping Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	
st Stage Piping	8.00	114	5730			739	500	0.22	83
nd Stage Piping	6.00	492	13911			739	1100	1.13	435
iping after Cooler	6.00	60	1696			739	1440	0.18	69
Sypass	4.00	348	4373			589	900	0.37	141
					Total Estimated Moles of	of Gas Discharged to Atmosp	nere per Blowdown =	= 16.91	
					Total Estimated Volume o	of Blowdown Gas, ft ³ @ STI	P (68F, 14.7 psia) =	6503	6503

piping and cylinders and scrubber stage 1 cooler section stage 1

ENTER the following Values:	Suction Pressure, psig	250	Suction Temperature, F	70					
	stage 1 inter	600		206					
	Stage 2 inter			216					
									secti
	Final discharge Pressure, psig	1100	Discharge Temperature, F	130					volur
				Pocket Clearance,	Total Cylinder				
		Stroke, in	Rod Diameter, in	in ³	Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles	FT3 @
ylinders	Bore, in						Constant of the second s	0.01	
st Stage Cylinder	7.38	3.50	1.50	70.00	213	529	250 600	0.01	2
st Stage Cylinder	7.38	3.50	1.50	70.00	213	529			5
nd Stage Cylinder	4.63	3.50	1.50	30.00	83	665	1100	0.01	3
nd Stage Cylinder	4.63	3.50	1.50	30.00	83	665	1100	0.01	3
crubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	The second
at Stage Scrubber	30.00	68.00	48066			529	250	1.30	50
st Stage Suction Drum	18.00	52.00	13232			529	250	0.36	13
st Stage Discharge Drum	18.00	84.50	21503			665	600	1.07	41
nd Stage Scrubber	30.00	68.00	48066			589	600	2.71	104
nd Stage Suction Drum	10.75	52.00	4720			589	600	0.27	10:
nd Stage Discharge Drum	10.75	52.00	4720			675	1100	0.42	16:
				Total Tube Volume	9				Alexander
color Section	No. of Tubes	00, in	Length, in	io ²		Temperature, R	Pressure, psig	Calculated Moles	distant.
st Stage Cooler Section	42	1.00	192	6333		665	600	0.32	12
nd Stage Cooler Section	58	0.63	192	3471		675	1100	0.31	11
lping	OD, in	Longth, in	Total Piping Volume, in ²			Temperature, R	Pressure, psig	Calculated Moles	Sec. C.
st Stage Piping	8.00	88	4423			529	250	0.12	4
nd Stage Piping	6.00	62	1753			665	600	0.09	34
ping after Cooler	3.00	45	318			589	1100	0.03	1:
ypass	3.00	330	2333			589	1100	0.24	9
//					Total Estima	ated Moles of Gas Discharged t	o Atmosphere per Blowdown =	7.25	
							ias, ft ³ @ STP (68F, 14.7 psia) =		28
1								+10%	308

dida at any holes and used OD desustance coles

ATTACHMENT L

Emission Unit Data Sheets

Source Identification Number ¹		S1		S	52	S7	
Engine Manufacturer and Model		Caterpillar 3516B		Caterpillar 3516B		Caterpillar 3306 TA	
Manufactu	rer's Rated bhp/rpm	1380	1380/1400		/1400	203/1800	
So	ource Status ²	l	ES	ŀ	RS	RS Est. Dec 15, 2013	
Date Installe	d/Modified/Removed ³	Est. Marc	ch 15, 2013	Est. Marc	h 15, 2013		
Engine Manufact	cured/Reconstruction Date ⁴	After Ja	n 01,2010	After Ja	n 01,2010	August	8, 2005
	l Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No	ז	ło	Ν	ło
	Engine Type ⁶	Ll	B4S	LI	34S	RI	34S
	APCD Type ⁷	A/F	+SCR	A/F	+SCR	A/F +	NSCR
F '	Fuel Type ⁸	F	RG	F	kG	R	kG
Engine, Fuel and	H ₂ S (gr/100 scf)	<1		<1		<	<1
Combustion Data	Operating bhp/rpm	1380/1400		1380/1400		203/1800	
Duiu	BSFC (Btu/bhp-hr)	7500		7500		8098	
	Fuel throughput (ft ³ /hr)	11,436		11,436		1324	
	Fuel throughput (MMft ³ /yr)	100.18		100.18		11.59	
	Operation (hrs/yr)	8760		8760		8760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	lbs/hr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.52	6.66	1.52	6.66	0.90	3.92
MD	СО	4.41	19.32	4.41	19.32	0.90	3.92
MD	VOC	1.22	5.33	1.22	5.33	0.03	0.12
AP	SO ₂	0.006	0.03	0.006	0.03	< 0.01	0.04
AP	PM ₁₀	0.103	0.45	0.103	0.45	0.03	0.14
MD	Formaldehyde	0.75	3.28	0.75	3.28	0.06	0.25
AP	Total HAPs	0.89	3.91	0.89	3.91	0.07	0.32

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ider			S	9		
Engine Man			Caterpillar	3508 TALE		
Manufactur	er's Rated bhp/rpm			630/	1400	
Sou	arce Status ²			N	S	
Date Installed	d/Modified/Removed ³			Upon Recei	pt of Permi	
	ared/Reconstruction Date ⁴					
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?			N	ю	
	Engine Type ⁶			LB	4S	
	APCD Type ⁷			A/F -	SCR	
F '	Fuel Type ⁸			R	G	
Engine, Fuel and	H ₂ S (gr/100 scf)			<1		
Combustion Data	Operating bhp/rpm			630/1400		
Dutu	BSFC (Btu/bhp-hr)			8627		
	Fuel throughput (ft ³ /hr)			4187		
	Fuel throughput (MMft ³ /yr)			36.68		
	Operation (hrs/yr)			87	60	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tpy	lbs/hr	tpy	
MD	NO _X			2.78	12.17	
MD	СО			1.42	6.21	
MD	VOC			0.25	1.10	
AP	SO ₂			< 0.01	0.01	
AP	PM ₁₀			0.054	0.24	
MD	Formaldehyde			0.194	0.85	
AP	Total HAPs			0.27	1.20	
EPA	CO _{2e}			953	4,172	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NSConstruction of New Source (installation)ESMSModification of Existing SourceRS
- S Existing Source
 - Modification of Existing Source R.
- RS Removal of Source
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 LB2S Lean Burn Two Stroke
 LB4S Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio	IR	Ignition Retard				
	HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers				
	PSC	Prestratified Charge	LEC	Low Emission Combustion				
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction				
8.	Enter the F	Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas				
9.	9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this							
	Compressor/Generator Data Sheet(s).							

MD	Manufacturer's Data	ΔP	AP-42	
MD		7 11	111 72	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

		Manufact	turer and Model	Nat	со	
		Max Dry Gas F	low Rate (mmscf/day)	40 MMCF/day		
		Design Heat	: Input (mmBtu/hr)	0.500 MN	1BTU/hr	
	-	Design Typ	pe (DEG or TEG)	TE	G	
	Glycol	Sou	rce Status ²	Μ	S	
•	tion Unit ata	Date Installed	/Modified/Removed ³	January	2016	
		Regenerator	Still Vent APCD ⁴	CO	2	
		Fuel I	HV (Btu/scf)	1126 B	tu/scf	
		H ₂ S Cont	tent (gr/100 scf)	<0.1g	y/scf	
		Opera	tion (hrs/yr)	8760		
Source ID # ¹	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
	Reboiler Vent (Includes Still Vent)	AP	NO _X	0.0385	0.168	
		AP	СО	0.0323	0.141	
4S		AP	VOC	0.0.5267	2.307	
		AP	SO ₂	< 0.001	< 0.001	
		AP	PM ₁₀	0.0029	0.013	
		ProMax TM	VOC	0.5246	2.298	
		ProMax TM	Benzene	0.0255	0.112	
4S	Glycol Regenerator	ProMax TM	Ethylbenzene	0.0862	0.378	
40	Still Vent	ProMax TM	Toluene	0.0171	0.075	
		ProMax TM	Xylenes	0.0796	0.348	
		ProMax TM	n-Hexane	0.0231	0.101	

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA	None	CD	Condenser
FL	Flare	CC	Condenser/Combustion Combination

TO Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

NOTE: ProMax was utilized in lieu of GRI-GLYCalc. A GLYCalc run was completed and found to match well with the ProMax results. The ProMax data was used instead of GLYCalc for overall facility model consistency.

West Virginia Department of Environmental Protection

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description		
Affected facility actual annual average natural gas throughput (scf/day):	40 MMS	CF/Day
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):		
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes	X No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	X No
(NG) enters the NG transmission and storage source category or is delivered to the end user.		
The affected facility is: X prior to a NG processing plant a NG processing plant		
prior to the point of custody transfer and there is no NG processing plant		
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	X No
distribution company or to a final end user (if there is no local distribution company).		
The affected facility exclusively processes, stores, or transfers black oil.	Yes	X No
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees		
Section B: Dehydration Unit (if applicable) ¹		
Description: 40 MMCFD Glycol Dehydrator		
Date of Installation:11/01/2012Annual Operating Hours:8760Burner rating (MM)	lbtu/hr):	0.50
Exhaust Stack Height (ft):16Stack Diameter (ft):0.667Stack Ten	np. (°F):	600
Glycol Type: \Box TEG \Box EG \Box Other:		
Glycol Pump Type:	<u>8</u> _ACFI	M/gpm
Condenser installed? Xes No Exit Temp °F Condenser Press	ure	_psig
Incinerator/flare installed? Yes No Destruction Eff%		
Other controls installed? Xes No Describe: Vapors from Condenser to F	Reboiler a	s Fuel
Wet Gas ² : Gas Temp.: <u>100</u> °F Gas Pressure <u>900</u> psig		
(Upstream of Contact Tower) Saturated Gas? Xes No If no, water content	lb/	MMSCF
Dry Gas: Gas Flowrate(MMSCFD) Actual Design40 MMSCF	7/Day	
(Downstream of Contact Tower) Water Content <u>7.0</u> lb/MMSCF		
Lean Glycol: Circulation rate (gpm) Actual ³ 2.0 Maximum ⁴ 2.5		
Pump make/model: TBD		
Glycol Flash Tank (if applicable): Temp.: <u>90</u> °F Pressure <u>700</u> psig Vented? Ye	s 🗌	No 🛛
If no, describe vapor control: To Reboiler as Fuel		
Stripping Gas (if applicable): Source of gas: N/A Rate	scfm	

1. 2.	applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.					
3. 4.	GRI-GLYCalc Ver.	3.0 aggregate report based	on maximum Lean Glycol circulation rate and maximum throughput.			
т.	 Detailed calculations of gas or hydrocarbon flow rate. Section C: Facility NESHAPS Subpart HH/HHH status 					
		Subject to S				
A	ffected facility	Subject to S	ubpart HHH			
	status:	Not Subject	⊠ <10/25 TPY			
(cł	noose only one)	because:	Affected facility exclusively handles black oil			
	\Box The facility wide actual annual average NG throughput is < 650 thousand					
	scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					
			No affected source is present			

ATTACHMENT M

Air Pollution Control Device Sheets

12620 FM 1960 W, Ste A4 Box # 560, Houston, TX 77065 Tel: 877-897-9759 Fax: 281-605-5858 E-mail: Info@delamerica.com

То	Chris Magee	Phone	
	USA Compression	Fax	
Date	February 27, 2015	Email	cmagee@usacompression.com

RE: Emissions Guarantee - Unit 1828

ENGINE DATA

Engine model	Cat 3508TALE
Power	630 bhp
Fuel	PONG
Exhaust Flow	6039 lb/hr
Exhaust Temperature	813 F

CATALYST SYSTEM DATA

Catalyst Model	DC64-10	
Catalyst Type	Oxidation A	
Number of Elements	1	<u> </u>
Element Diameter	24.23"x3.50"	
Cell Density	300 cpsi	

EMISSION REQUIREMENTS

Exhaust Gas Component	% Reduction
NOx	0
СО	50
VOC (NMNEHC)	50
НСНО	50

Regards,

Sam Kirk Regional Sales Manager DCL America 281-253-3091

Confidential Communication

USA Compression Unit 1828 Caterpillar G3508TALE Engine Emissions Date of Manufacture May 23, 2007 Engine Serial Number WPN00224 Date Modified/Reconstructed Not Any Driver Rated HP 630 Rated Speed in RPM Combustion Type 1400 Spark Ignited 4 Stroke Number of Cylinders 8 **Compression Ratio** 8:1 **Combustion Setting** Lean Burn Total Displacement, in³ 2105 Fuel Delivery Method Carburetor **Combustion Air Treatment** T.C./Aftercooled Raw Engine Emissions (customer supplied Fuel Gas with little to no H2S) Fuel Consumption 7820 LHV BTU/bhp-hr or 8627 HHV BTU/bhp-hr Altitude 1200 ft Maximum Air Inlet Temp 90 F g/bhp-hr 1 Ib/MMBTU ² lb/hr TPY Nitrogen Oxides (NOx) 2.0 2.78 12.17 Carbon Monoxide (CO) 2.04 2.83 12.41 Volatile Organic Compounds (VOC or NMNEHC) 0.36 0.50 2.19 Formaldehyde (CH2O) 0.28 0.39 1.70 Particulate Matter (PM) ^{Filterable+Condensable} 9.99E-03 5.43E-02 2.38E-01 Sulfur Dioxide (SO2) 5.88E-04 3.20E-03 1.40E-02 g/bhp-hr lb/hr Metric Tonne/yr Carbon Dioxide (CO2) 544 756 3002 Methane (CH4) 1 45 2.01 8.00 g/bhp-hr are based on Caterpillar Specifications (GERP) customer supplied fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are Nominal and are not representative of Not-To-Exceed Values and are based on 100% Load Operation. It is recommended to add a safety margin to the above emissions for Air Permitting to allow for operational flexibility and variations in fuel gas composition. Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2). Catalytic Converter Emissions Catalytic Converter Make and Model: DCL DC64A-10 Element Type: Oxidation Number of Elements in Housing: 1 Air/Fuel Ratio Control ADEM3, O2 feedback % Reduction ib/hr TPY Nitrogen Oxides (NOx) n 2.78 12.17 Carbon Monoxide (CO) 50 1.42 6.21 Volatile Organic Compounds (VOC or NMNEHC) 50 0.25 1.10 Formaldehyde (CH2O) 50 0.19 0.85 Particulate Matter (PM) 0 5.43E-02 2.38E-01 Sulfur Dioxide (SO2) 0 3.20E-03 1.40E-02 % Reduction lb/hr Metric Tonne/yr Carbon Dioxide (CO2) 0 756 3002 Methane (CH4) 0 2.01 8.00

GAS COMPRESSION APPLICATION

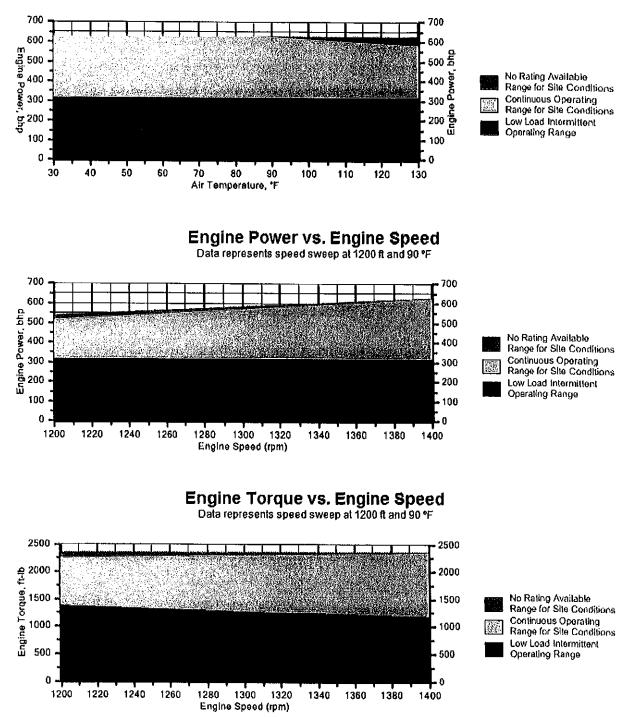
Triad Hunter Spencer Collins G3508 u1828 9-14-15

GAS COMPRESSION APPLICATION	mau numer spencer comins	6 G3508 U	1828 9-14-	15			
ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: JACKET WATER OUTLET ("F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	8:1 RATING SCAC FUELS 210 TA <u>SITE CC</u> JW+OC, AC FUEL: ADEM3 FUEL PL ASWC FUEL M LOW EMISSION FUEL M 2.0 ALTITUI 26 MAXIMU	ONDITIONS: RESSURE RAN ETHANE NUMI IV (Blu/sci):	BER:		Tria	R FUEL RATI ad Spencer C 630 b	oltins 9-14-1 35.0-40 62 109 109 120 9 19@1400rp
				MAXIMUM RATING	SITE RA	TING AT M	
RA RA	TING	NOTES	LOAD	100%	100%	75%	51%
ENGINE POWER	(WITHOUT FAN)		bhp	630	623	467	315
INLET AIR TEMPERATURE			٩F	83	90	90	90
ENGIN	E DATA						
FUEL CONSUMPTION (LHV)		(2)	Btu/php-hr	7820	7838	8259	9194
FUEL CONSUMPTION (HHV)		(2)	8tu/bhp-hr	8627	8648	9113	10144
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(3)(4)	ft3/min	1327	1331	1042	746
AIR FLOW	(WET)		lib/hr	5819	5760	4509	3228
FUEL FLOW (60ºF, 14.7 psia)			scfm	75	74	59	44
INLET MANIFOLD PRESSURE		(5)	in Hg(abs)	64.1	63.5	50.2	37.5
EXHAUST TEMPERATURE - ENGINE OUTLI		(6)	۴F	855	855	848	834
EXHAUST GAS FLOW (@engine outlet temp,	, 14.5 psia) (WET)	(7)(4)	ft3/min	3478	3443	2683	1907
EXHAUST GAS MASS FLOW	(WET)	(7)(4)	b /hr	6058	5997	4696	3369
EMISSIONS DA	TA - ENGINE OUT						
NOx (as NO2)		(8)(9)	g/bhp-hr	2.00	2,00	2.00	2.00
co		(8)(9)	g/bhp-hr	2.04	2.04	2.15	2.00
THC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	2,39	2.40	2.52	2.66
NMHC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	0.94	0.94	0.99	1.04
NMNEHC (VOCs) (mol, wt. of 15.84)		(8)(9)(10)	g/bhp-hr	0.36	0.36	0.37	0.39
HCHO (Formaldehyde)		(8)(9)	g/bhp-hr	0,28	0.28	0.28	0.33
CO2		(8)(9)	g/bhp-hr	544	545	573	636
EXHAUST OXYGEN		(8)(11)	% DRY	7,4	7.4	7.3	6.8
HEAT R	EJECTION]					
HEAT REJ. TO JACKET WATER (JW)		(12)	Btulmin	2275B	22668	19742	17204

HEAT REJ. TO ATMOSPHERE HEAT REJ. TO LUBE OIL (OC) HEAT REJ. TO LUBE OIL (OC)	(12) (12) (12) (12) (12)(13)	Btu/min Btu/min Btu/min Btu/min	22758 3188 3599 4614	22668 3163 3584 4614	19743 2638 3122 2520	17381 2126 2748 908	
COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+OC) TOTAL AFTERCOOLER CIRCUIT (AC)	(13) (13)(14)	Blu/min Blu/min	29352 4845			<u>, av</u>	I

TOTAL AFTERCOOLER CIRCUIT (AC) A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site intet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load altowed. No overload permitted at rating shown.


For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

Triad Hunter Spencer Collins G3508 u1828 9-14-15

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1400 rpm

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1400 rpm. The minimum speed for loading at these conditions is 1200 rpm.

PREPARED BY: Chris Magee, USAC Data generated by Gas Engine Rating Pro Version 5.04.01 Ref. Data Set DM8592-02-001, WPN00001-WPN00242, Printed 14Sep2015

G3508 NON-CURRENT

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

GAS COMPRESSION APPLICATION

Triad Hunter Spencer Collins G3508 u1828 9-14-15

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wei" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is all engine exhaust flange prior to any after treatment.

9, Emission values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Fuel methane number cannot vary more than ± 3, NOx tolerances are ± +111 %, -96 % of specified value. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part foad are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S); 1. The lower heating value of the fuel is higher than or equal to 1050 Blu/scf and lower than 1250 Blu/scf. May require up to two 7E+1569 valve washers in the carburetor to tean out the part load operating points. The lower heating value of the fuel is higher than the known capabilities of the air fuel ratio control. To achieve part load NOx emissions, manuel adjustment of the carburator and air fuel ratio control settings will be required.

Constituent	Abbrev	Mole %	Norm	
Water Vapor	H2O	0.0000	0.0000	
Methane	CH4	76.9704	76.9704	Fuel Makeu
Ethane	C2H6	15.4382	15.4382	Unit of Meas
Propane	C3H8	4.5030	4.5030	
Isobutane	iso-C4H1O	0.3711	0.3711	Coloulated
Norbutane	nor-C4H1O	0.7589	0.7589	Calculated
Isopentane	iso-C5H12	0.0808	0.0808	Caterpillar N
Norpentane	nor-C5H12	0.0760	0.0760	
Hexane	C6H14	0.0000	0.0000	Lower Heati
Heptane	C7H16	0.0000	0.0000	Higher Heat
Nitrogen	N2	1.4259	1.4259	WOBBE Ind
Carbon Dioxide	CO2	0.1589	0.1589	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free I
Carbon Monoxide	CO	0.0000	0.0000	
Hydrogen	H2	0.0000	0.0000	Total % Iner
Oxygen	02	0.2168	0.2168	RPC (%) (T
Helium	HE	0.0000	0.0000	
Neopentane	neo-C5H12	0.0000	0.0000	Compressib
Octane	C8H18	0.0000	0.0000	Stoich A/F F
Nonane	C9H20	0.0000	0.0000	Stoich A/F F
Ethylene	C2H4	0.0000	0.0000	Specific Gra
Propylene	C3H6	0.0000	0.0000	-
TOTAL (Volume %)		100.0000	100.0000	Specific He

Fuel Makeup:	Triad Spencer Collins
Unit of Measure:	English
Calculated Fuel Properties	
Caterpillar Methane Number:	62.5
Lower Heating Value (Btu/scf):	1098
Higher Heating Value (Btu/scf):	1211
WOBBE Index (Btu/scf):	1 312
THC: Free Inert Ratio:	127.74
Total % Inerts (% N2, CO2, He):	1.58%
RPC (%) (To 905 Blu/scf Fuel):	100%
Compressibility Factor:	0.997
Stoich A/F Ratio (Vol/Vol):	11.39
Stoich A/F Ratio (Mass/Mass):	16,26
Specific Gravity (Relative to Air):	0.700
Specific Heat Constant (K):	1.284

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fue). It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are dereted for altitude and ambient sile conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14,696 psia,

Celerpiller shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

EVEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severa damage to the angine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

WARNING(S)

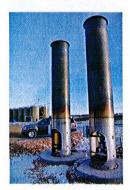
1. The lower healing value of the fuel is higher than or equal to 1050 Blu/scf and lower than 1250 Blu/scf. May require up to two 7E-1569 valve washers in the carburator to lean out the part load operating points. The lower healing value of the fuel is higher than the known capabilities of the air fuel ratio control. To achieve part load NOx emissions, manual adjustment of the carburator and air fuel ratio control settings will be required.

QUAD O COMPLIANCE INFORMATION & QUESTIONS

r ologies

HOME

PRODUCTS 🔻


SERVICE

COMPANY

MAN

ABUTEC 100

Don't combust - ABUTEC 100 is Quad O Approved

The ABUTEC 100 (SCUF MTF 2.7), has been approved by the Environmental Protection Agency (EPA) as having achieved specific performance requirements related to emissions. Read the full report here.

The announcement relieves owners and operators from the burden of performing thirdparty testing on approved combustion devices. Because the ABUTEC 20 and ABUTEC 100 have been approved, these owners and operators will save time and expense.

For larger sites that need a customizable solution for emission control, the ABUTEC 100

is an ideal addition. Because it meets all government regulations for vapor combustion, the ABUTEC 100 lets your facility remain compliant and in control of your emissions.

The reliability of the ABUTEC 100 is second to none, especially for remote locations without available electricity. It is able to be paired with other systems, giving your facility exactly the combustion you require. Additionally, the ABUTEC 100 is easy to install, and works in even the toughest environmental conditions.

View Oil and Gas Brochure

Read about the ABUTEC 100 in action

Key Features of the ABUTEC 100:

- Quad O Compliant Ready
- Local Service Team availability
- Low Capital and Operating Costs
- Meets 40 CFR 60.18 regulations
- Flexible & Scalable System

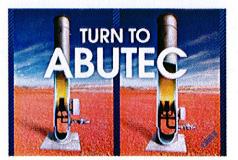
- · Continuous pilot
- 99%+ Destruction Efficiency (Independent 3rd party tested)
- Very High Turndown Ratio
- Scalable flow rates from 20-100 MSCFD
- Inlet pressure as low as 2oz/in² and up to 8oz/in²
- Capable of 9,212,400 BTU/hour
- TERO License from Three Affiliated Tribes
- · Solar Panel functionality
- Profire 2100 Control Panel for standard units
- SCADA integration with control panel for remote monitoring
- Stainless steel construction

Customizing the ABUTEC 100

The ABUTEC 100 can be paired with the ABUTEC High Pressure (HP) units to give your site the high/low pressure solution it needs.

The HP 1500 and HP 3000 can be installed as a stand-alone unit, or paired with the ABUTEC 100 on the same skid or included on the same site on a different skid.

Learn more about HP + ABUTEC Integrated Systems



Check out our Case Studies and Blog Posts

ABUTEC Units Bring Safety and Reliability to Your Site

🛗 2/17/2015 · 🗣 0 Comments

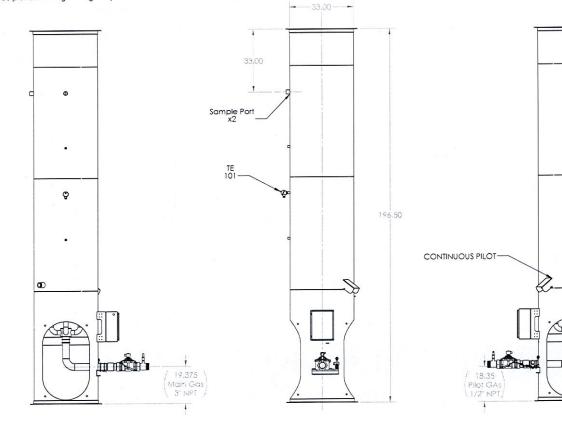
At ABUTEC, safety and reliability are our No. 1 priority. Moreover, we recognize that...

Turn to ABUTEC as North Dakota turns up the regulations

🛗 7/22/2014 · 🗣 0 Comments

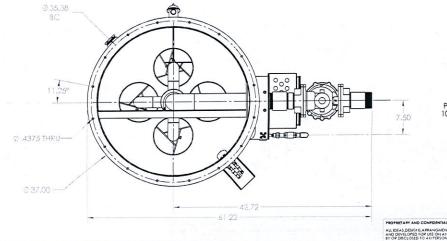
On July 1, 2014, the North Dakota Industrial Commission cracked down on gas flaring...

General Arrangement Drawing

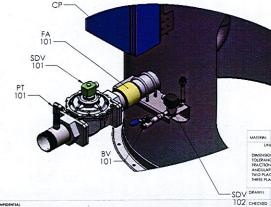

8

D

C


8

NOTE: This drawing is intended for your review and approval of the general arrangement for an ABUTEC 100 Some dimensions are subject to change during the final engineering phase of this project. "As Built" drawings will be provided at engineering completion.



6

5

7

ALL IDEAS, DESIGNS, ARRANGMENTS, AND PLATC IPDICATED OP REPRESENTED BY THIS DRAWING ARE OWNED BY ANUTEC LIC. AND WERE CREATED EVOLED. AND DEVELOPED FOR USE ON AND IN CONNECTION WITH THE SPECIFIED PROJECT, NONE SUCH IDEAS, DESIGNS, ARRANGENETS OR PLANS SHALL BE USED BY OR DIRECTORIED ON ALL PROSENT INFOLVED AND THE OPPOSE WITHAUTDREW WITHOUT THE WITHIN THE MALTICL. HvP 4 3

MATERIAL

UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES TOLERANCES: FRACTIONAL: ANGULAR MACH: BEND : TWO PLACE DECIMAL : THREE PLACE DECIMAL :

J.PHILLIPS

2

SUTEC Arbancod TITLE: ABUTEC 100

D

C

REV

SIZE DWG. NO. ABUTEC-100GAD

2

3

SHEET 1 OF 1 SCALE: 1:24 WEIGHT: 975.41

ADVANCED INDUSTRIAL RESOURCES, INC.

MANUFACTURER'S CERTIFICATION PERFORMANCE TEST ENCLOSED GAS VAPOR COMBUSTOR CERTIFICATION TEST ENCLOSED GAS VAPOR COMBUSTORS (Small Combustion Utility Flare (SCUF) MTF 0.7 and MTF 2.7)

AT ABUTEC – Advanced Burner Technologies Chattanooga, Tennessee

> PREPARED FOR: Advanced Burner Technologies 2959 CHEROKEE STREET, SUITE 101 KENNESAW, GEORGIA 30144

PREPARED BY: ADVANCED INDUSTRIAL RESOURCES, INC. 3407 Novis Pointe Acworth, Georgia 30101

OCTOBER 18-23, 2012

3407 NOVIS POINTE ACWORTH, GEORGIA 30101 V. 404.843.2100 F. 404.845.0020

ADVANCED INDUSTRIAL RESOURCES, INC.

CERTIFICATION SHEET

Having conducted the Technical Review of this report, I hereby certify the data, information, results, and calculations in this report to be accurate and true according to the methods and procedures used.

Derek Stephens Technical Director Advanced Industrial Resources

December 13, 2012 Date

Having written and prepared this report, I hereby certify that the data, information and results in this report to be correct and all inclusive of the necessary information required for a complete third-party review of the testing event.

too Haid

Steven Haigh Report Preparation Director Advanced Industrial Resources

December 13, 2012 Date

Having supervised all aspects of the field testing, I hereby certify the equipment preparation, field sample collection procedures, and all equipment calibrations were conducted in accordance to the applicable methodologies.

ling to gle

Bill Nelson Field Project Supervisor Advanced Industrial Resources

October 26, 2012 Date

3407 NOVIS POINTE ACWORTH, GEORGIA 30101 V. 404.843.2100 F. 404.845.0020

TABLE OF CONTENTS

.

<u>1.0</u>	INTRODUCTION 1
1.1 1.2	SUMMARY OF TEST PROGRAM 1 KEY PERSONNEL
<u>2.0</u>	PLANT AND SAMPLING LOCATION DESCRIPTIONS
2.1 2.2	PROCESS & CONTROL EQUIPMENT DESCRIPTION
<u>3.0</u>	SUMMARY AND DISCUSSION OF TEST RESULTS
3.1 3.2 3.3	OBJECTIVES
<u>4.0</u>	SAMPLING AND ANALYTICAL PROCEDURES
<u>5.0</u>	QUALITY ASSURANCE ACTIVITIES11
5.1	GAS ANALYZER CALIBRATION 11
5.1.	
5.1.3	
5.1.	
5.1.4	
5.1.	
5.1.0	
5.2	NO ₂ ·NO CONVERSION EFFICIENCY
5.3	INSTRUMENT INTERFENCE RESPONSE
5.4	INSTRUMENT RESPONSE TIME
5.5	DATA REDUCTION CHECKS
<u>6.0</u>	DATA QUALITY OBJECTIVES 14

_

LIST OF APPENDICES

- APPENDIX A TEST RESULTS
- APPENDIX B FIELD DATA REDUCTION
- APPENDIX C EXAMPLE CALCULATIONS AND NOMENCLATURE
- APPENDIX D FIELD DATA (SEE ATTACHED FILE FOR COMPLETE MONITOR DATA)
- APPENDIX E LABORATORY REPORT
- APPENDIX F CALIBRATION DATA
- APPENDIX G PROCESS OPERATION DATA

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

ABUTEC, an acronym for Advanced Burner Technologies, is an international manufacturer of Environmentally Friendly Combustion Solutions. ABUTEC specializes in offering high efficiency, low emission, burners and flares to various industry segments and applications. ABUTEC manufactures Infrared Burners, Enclosed Flares, Vapor Combustors, Incinerators, Thermal Oxidizers, and CHP "Gas-to-Energy" systems all aimed at reducing plant emissions and increasing efficiency.

ABUTEC is seeking Manufacturers' Certification in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d) for two (2) models of Enclosed Gas Vapor Combustors including the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*. These units are manufactured at ABUTEC's manufacturing facility in Chattanooga, Tennessee.

The following test report describes the sampling and measurement procedures that were used to certify the subject combustors in accordance to Subpart OOOO 60.5413(d). Upon inquiry into the certification process to Mr. Steffan Johnson of the EPA's Measurement Policy Group, it was made aware to AIR and ABUTEC that the Federal Register Volume 77, Number 159 issued on August 16, 2012 contained incorrect information regarding the performance test procedures used to 'manufacturer certify' enclosed combustors. As directed in email correspondence from Mr. Johnson received on September 13, 2012, the test program is to be conducted in accordance to guidelines presented in 40 CFR Part 63 Subpart HH 63.1282(g). It was also indicated by Mr. Johnson at that time that it was anticipated that 60 Subpart OOOO 60.5413(d) test requirements would be corrected and updated in a later revision to the Subpart and an additional Federal Register will be issued as applicable.

However, through additional communication with Mr. Johnson on December 3, 2012, it was determined that there were no current plans for any updated revisions to 60 Subpart OOOO in the near term and that testing needed to be conducted and results assessed in accordance to the currently issued regulation. As stated, this information was not learned until <u>after</u> the testing was completed. Therefore, the test program was conducted in accordance to 63 Subpart HH 63.1282(g) as described above and the associated site-specific test protocol. The major difference between the two regulatory guidance

documents is in the quantity of inlet fuel gas samples to be collected. 63 Subpart HH calls for one (1) inlet fuel sample to be collected per test condition over a period of at least three (3) hours while 60 Subpart OOOO calls for three (3) inlet fuel samples to be collected per test condition over a period of at least one (1) hour per test run. Additionally, 63 Subpart HH does not require the fuel samples to be analyzed for sulfur compounds while 60 Subpart OOOO does require the sulfur compounds to be analyzed. It is noted that although the sulfur compounds were not initially required to be quantified, in fact they were for this test program.

In accordance to 63.1282(g) and 60.5413(d), testing on each unit included determining the inlet volumetric flow rate to the combustors as well as collecting inlet fuel samples for content determination. Additionally, testing on the combustor exhausts included determining the volumetric flow rates, molecular weight, exhaust gas contents, carbon monoxide, visual emissions, and volatile organic compounds measured as propane. Testing on each unit was conducted under four (4) separate operating conditions, as described in this test report.

Testing was conducted on October 18-23, 2012. All testing and sample analysis, as applicable, was conducted by Advanced Industrial Resources, Inc. (*AIR*) in accordance with approved USEPA sampling methods (40 CFR 60 Appendix A Method 1, 2, 2A, 3, 3B, 3C, 4, 10, 22, 25A, 205) and ASTM analytical methods (ASTM D1945, ASTM D3588).

1.2 KEY PERSONNEL

The key personnel who coordinated and this Test Report and their telephone numbers are:

Brad Ward, ABUTEC	770-846-2554
Derek Stephens, Advanced Industrial Resources	800-224-5007
Scott Wilson, Advanced Industrial Resources	404-843-2100

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS & CONTROL EQUIPMENT DESCRIPTION

ABUTEC manufactures several models of Enclosed Gas Vapor Combustors (Combustors). The company seeks 'manufacturers' certification' on two (2) specific models currently in production in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d). These models include the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*.

Testing consisted of four (4) operating conditions per source with three (3), sixty (60) minute tests being conducted under each condition:

Condition 1: 90–100 percent of maximum design rate (fixed rate).

Condition 2: 70–100–70 percent (ramp up, ramp down).

Condition 3: 30–70–30 percent (ramp up, ramp down).

Condition 4: 0–30–0 percent (ramp up, ramp down).

Minimum and maximum design rates are determined by the manufacturer. Through discussion with the manufacturer's representative, Mr. Brad Ward of ABUTEC, it was determined that the minimum design rate (i.e. 0%) for the MTF 2.7 unit was 20 standard cubic feet per minute (SCFM) and the maximum design rate (100%) was 100 SCFM. The minimum design rate for the MTF 0.7 unit was 5 SCFM and maximum was 25 SCFM.

2.2 SAMPLING LOCATION

The (SCUF) MTF 0.7 exhaust stack has a circular cross section with an internal diameter of approximately 18.5 inches. The sampling location is located 3.6 equivalent diameters downstream from the nearest upstream flow disturbance and 4.9 equivalent diameters upstream from the stack exhaust. Two (2) sampling ports oriented 90 degrees to one

ABUTEC – Chattanooga, Tennessee	October 18-23, 2012
Enclosed Gas Vapor Combustor Certification Test	Page 4 of 14

another in a plane perpendicular to the flow direction. Sixteen (16) sampling points were used for USEPA Methods 2, 3, and 4 sampling, in accordance with USEPA Method 1 requirements. Three (3) traverse points located at 16.7%, 50%, and 83.3% were used for EPA Methods 10 and 25A sampling.

The (SCUF) MTF 2.7 exhaust stack has a circular cross section with an internal diameter of approximately 33.0 inches. The sampling location is located 3.0 equivalent diameters downstream from the nearest upstream flow disturbance and 2.2 equivalent diameters upstream from the stack exhaust. Two (2) sampling ports oriented 90 degrees to one another in a plane perpendicular to the flow direction. Sixteen, (16), sampling points were used for USEPA Methods 2, 3, and 4 sampling, in accordance with USEPA Method 1 requirements. Three (3) traverse points located at 16.7%, 50%, and 83.3% were used for EPA Methods 10 and 25A sampling.

The inlet gas flow metering system conducted via Method 2A was located at least 8 duct diameters downstream from the fuel contents sampling location during each test set.

3.0 SUMMARY AND DISCUSSION OF TEST RESULTS

3.1 **OBJECTIVES**

ABUTEC is seeking Manufacturers' Certification in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d) for two (2) models of Enclosed Gas Vapor Combustors including the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*.

3.2 FIELD TEST CHANGES AND PROBLEMS

No significant problems were encountered during testing that required deviation from the planned test protocol. Items of note include the following:

- Initially the inlet volumetric flow rate measurements were attempted to be conducted using a ROOTS Series B3 3M173 Meter via EPA Method 2A. However, because the facility was utilizing the inlet volumetric flow rate measurements to determine the various operating conditions and thus generate the required system fluctuations, this system was found to not be efficient in determining this information. Therefore, prior to beginning the testing, ABUTEC removed the Vane meter from the selected sample location and installed a thermal mass flow measuring system (Model Proline t-mass, 65F, 65I) which provided real-time, instantaneous flow rate measurements. This unit also measured the inlet fuel delivery line pressure and temperature.
- 2) The moisture content of the inlet gas fuel samples was not able to be conducted by the analytical laboratory. This information was also not able to be measured in the field due to the limited access and gas stream characteristics of the inlet fuel delivery sample line and locations.

3.3 PRESENTATION OF TEST RESULTS

Emission test results are presented in Appendix A. Reduced and tabulated data from the field-testing is included in Appendix B. The calculations and nomenclature used to reduce the data are presented in Appendix C. Actual raw field data sheets are presented in Appendix D. Laboratory reports and custody records are presented in Appendix E

Equipment calibration information and gas calibration certification sheets are presented in Appendix F. . Process operation data information is presented in Appendix G.

Performance criteria of the control devices (Enclosed Combustors) were assessed as follows:

1) No visible emissions were observed throughout the test periods. Method 22 data sheets are presented and required digital photographs of the exhaust stacks are presented in Appendix D.

2) THC as propane corrected to 3.0 percent CO_2 did not exceed 10.0 ppmvw. Results are presented in Appendix A.

3) CO emissions corrected to 3.0 percent CO_2 did not exceed 10.0 ppmvd. Results are presented in Appendix A.

(4) It was determined that the maximum inlet gas flow rate measured for each unit did not result in emissions of VE, THC, or CO which exceeded the applicable criteria listed above. Results are presented in Appendix A.

(6) The control device HAP destruction efficiency (DRE) requirement (>95.0%) listed in 63 Subpart HH was determined, through communication with the previously referenced EPA contact, to not be applicable to these units and thus was not specifically assessed during this test event and therefore the unit exhaust samples were not requested to be analyzed for HAP contents. Additionally, as indicated by the EPA contact, it is expected that a unit which successfully demonstrates the ability to combust propylene and meet the emissions criteria listed in the rule, will be able to combust >95% of any HAPs or other organic compounds it encounters in field usage with the assumption that no liquid is fed to the burners.

(7) The control device VOC destruction efficiency (DRE) requirement listed in 60 Subpart OOOO is also greater than 95.0%. The inlet 'VOC' mass rates were determined via the inlet fuel sample contents' analysis and fuel flow rate. The exhaust VOC emissions were determined via Method 25A and measured as total hydrocarbons. As expected, the inlet fuel samples contained greater than 99.99% of hydrocarbons (C2-C6+). The resulting DRE was determined to be greater than 99.99% for both units tested.

Additionally, this test report includes the following information:

(i) Full schematic of the control device and dimensions of the device components.

SEE Appendix G.

(ii) Design net heating value (minimum and maximum) of the devices ranged from 220-3500 BTU/FT³.

(iii) Test fuel gas flow range (in both mass and volume). Include the minimum and maximum allowable inlet gas flowrate. See Appendix A.

(iv) Air/stream injection/assist ranges are not applicable to these units.

(v) The test parameter ranges listed in paragraphs (A) through (O), as applicable for the tested model.

(A) Fuel gas delivery pressure and temperature. - see Appendix D

(B) Fuel gas moisture range. – See note in Section 3.2

(C) Purge gas usage range. – PURGE GAS NOT USED

(D) Condensate (liquid fuel) separation range. - NO LIQUIDS IN THE GAS

(E) Combustion zone temperature range was found to be 1400-2100 deg F.

(F) Excess combustion air range. - see Appendix A

(G) Flame arrestor(s). - see Appendix G - Components List

(H) Burner manifold pressure ranged from 2 to 4 oz/ in^2 .

(I) Pilot flame sensor. – Type K thermocouple; see Components List in Appendix G.

(J) Pilot flame design fuel and fuel usage - Optional 50kW Coander Anti-

Flashback Pilot Burner; Pilot not used during testing.

(K) Tip velocity range.- for 0.7 unit = 23.75ft/sec; for 2.7 unit = 36.7 ft/sec; both at full flow / max capacity

(L) Momentum flux ratio. -see Appendix G

(M) Exit temperature range. - see Appendix B, D

(N) Exit flowrate. - see Appendix A

(O) Wind velocity and direction. - see Appendix D

	I ABLE 3-1: Kesuits Summary							
Source	Condition #	Pollutant / Parameter	Average Measured	Allowable	Units	% of Allowable		
Flare 2.7	1 - 90-100%	СО	2.71	10	ppm _D @ 3% CO ₂	27%		
		THC (as propane)	0.2	10	ppmw @ 3% CO2	2%		
	2 - 70-100%	СО	2.75	10	ppm _D @ 3% CO ₂	27%		
		THC (as propane)	0.2	10	ppmw @ 3% CO2	2%		
Outlet	A =0.100.01	со	1.08	10	ppm _D @ 3% CO ₂	11%		
	2 - 70-100%	THC (as propane)	0.2	10	ppm _w @ 3% CO ₂	2%		
	4 - 0-30%	со	0.67	10	ppm _D @ 3% CO ₂	7%		
		THC (as propane)	0.1	10	ppm _w @ 3% CO ₂	1%		
-	1 00 100 01	со	4.14	10	ppm _D @ 3% CO ₂	41%		
	1 - 90-100%	THC (as propane)	0.3	10	ppm _w @ 3% CO ₂	3%		
	3 5 0 100 07	со	2.96	10	ррт _D @ 3% CO ₂	30%		
Flare 0.7	2 - 70-100%	THC (as propane)	0.3	10	ppmw @ 3% CO2	3%		
Outlet	3 - 30-70%	со	2.60	10	ppm _D @ 3% CO ₂	26%		
		THC (as propane)	0.6	10	ppmw @ 3% CO2	6%		
	4 - 0-30%	со	0.89	10	ppm _D @ 3% CO ₂	9%		
		THC (as propane)	0.4	10	ppmw @ 3% CO2	4%		

TABLE 3-1: Results Summary

TABLE 3-2: THC Destruction & Removal Efficiency Summary

Source	Condition	Measured (Inlet)	Average Measured (Outlet)	Units	Destruction & Removal Efficiency (%)
Flare 0.7	1	76.7	0.00157		99.998%
	2	67.4	0.00207	kg/hr	99.997%
	3	48.9	0.00213		99.996%
	4	41.0	0.000548		99.999%
Flare 2.7	1	279.0	0.00591		99.998%
	2	257.57	0.00520	1	99.998%
	3	175.00	0.00587	kg/hr	99.997%
	4	93.98	0.00161]	99.998%

Notes:

Inlet THC measured as C2-C6 on a dry mole percent basis; Outlet THC measured via Method 25A on a carbon converted to 'as propane' basis.

COMM OOOO Combustor 100

The COMM OOOO Combustor 100 is an effective emissions control device that has been designed to meet both federal and state requirements. The COMM Combustor is an enclosed combustion system in an insulated stack that can achieve >99% destruction efficiency.


Base Design

- 2.5 MMBTU/HR
- No Visible Flame
- No Electricity Required
- Smokeless Combustion
- Stainless Steel Burner
- · Connections for Pilot Fuel and Waste Gas
- Dual Layer Insulation
- Sample Ports
- Built in Liquid Knock Out Vessel
- Inlet Air Flame Arrestor
- Bird Screen

Options

- Control Panel w/ Temperature Display and Modbus
- Electric Pilot w/ Auto Re-Ignition and Flame Ionization
- Solenoid Valves for Emergency Shutdown of Fuel Lines
- Manual Air Damper
- Temperature Probe
- Inline Deflagration Arrestor
- Solar Panel and Battery Package
- Thermal Mass Flow Meter

SPECIFICATIONS	
Dimensions	36" diameter x 15' long
Volume	Up to 100 MSCFD (2.5 MMBTU/HR)
Waste Gas Pressure	> ½ oz/sq in
Pilot Gas	Natural gas, propane
Air Requirements	Natural draft

1319 West Pinhook Road Lafayette, LA 70503 (337)-237-4373 www.commengineering.com

ATTACHMENT N

Supporting Calculations

Spencer Well Pad Station

Tyler County

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	H2S lb/hr	PM lb/hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
1S	Compressor Engine #1	1.52	4.41	1765.5	1.22	0.006	0.00	0.103	0.000	0.748	0.893
2S	Compressor Engine #2 (Removed)	0.00	0.00	0.0	0.00	0.000	0.00	0.000	0.000	0.000	0.000
9S	Compressor Engine #3 (NEW)	2.78	1.42	952.6	0.25	0.003	0.00	0.054	0.000	0.194	0.273
7S	Flash Gas (VRU) Compressor (Removed)	0.00	0.00	0.0	0.00	0.000	0.00	0.000	0.000	0.000	0.000
4S	Dehy Reboiler Vent	0.04	0.03	46.2	0.53	0.000	0.00	0.003	0.026		1.014
6S	Gas Processing Units	0.39	0.33	473.4	0.02	0.002	0.00	0.030		0.000	
8S	Gas Processing Units	0.39	0.33	473.4	0.02	0.002	0.00	0.030		0.000	
	Blowdowns ¹ EC-1 Flare Pilot + Waste Gas Combustion (including water and			8225.0	88.80						
EC-1	condensate tank vapors) ²	0.17	0.90	289.1	2.54	0.000	0.00	0.008	0.000	0.000	0.002
EC-2	EC-2 Flare Pilot + Waste Gas Combustion	0.59	3.19	1067.8	3.11	0.000	0.00	0.042	0.000	0.000	0.010
TL-1	Un-Captured Condensate Truck Loading			26.0	12.13						
TL-2	Un-Captured Water Truck Loading				0.28						
	Haul Road Fugitive Dust							13.160			
	Fugitive			19.0	0.38						0.002
Total		5.88	10.61	13,338	109.28	0.01	0.00	13.43	0.03	0.94	2.20

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	H2S tpy	PM tpy	benzene tpy	formaldehyde tpy	Total HAPs tpy
1S	Compressor Engine #1	6.66	19.32	7,733	5.33	0.027	0.00	0.45	0.00	3.28	3.91
2S	Compressor Engine #2 (Removed)	0.00	0.00	0	0.00	0.000	0.00	0.00	0.00	0.00	0.00
9S	Compressor Engine #3 (NEW)	12.17	6.21	4,172	1.10	0.014	0.00	0.24	0.00	0.85	1.20
	Flash Gas (VRU) Compressor										
7S	(Removed)	0.00	0.00	0	0.00	0.000	0.00	0.00	0.00	0.00	0.00
4S	Dehy Reboiler Vent	0.17	0.14	202	2.31	0.000	0.00	0.01	0.11		1.01
6S	Gas Processing Units	1.72	1.44	2,073	0.09	0.010	0.00	0.13		0.00	0.00
8S	Gas Processing Units	1.72	1.44	2,073	0.09	0.010	0.00	0.13		0.00	0.00
	Blowdowns ¹			248	2.66						
	EC-1 Flare Pilot + Waste Gas Combustion (including water and										
EC-1	condensate tank vapors) ²	0.58	3.04	986	6.31	0.000	0.00	0.03	0.00	0.00	0.01
EC-2	EC-2 Flare Pilot + Waste Gas Combustion Un-Captured Condensate Truck	1.57	8.48	2,984	13.62	0.000	0.00	0.11	0.00	0.00	0.03
TL-1	Loading			1	2.19						
TL-2	Un-Captured Water Truck Loading				0.61						
	Haul Road Fugitive Dust							18.50			
	Fugitive			83.17	1.65						0.01
Total		24.58	40.07	20,557	35.97	0.06	0.00	19.60	0.12	4.13	6.17
	Current Permit	23.72	48.83	23,946	51.19	0.10	0.00	1.53	0.07	6.81	8.72
	Increase/Decrease	0.85	-8.76	-3389.14	-15.22	-0.03	0.00	18.07	0.05	-2.67	-2.55

¹ See Appendix C for Blowdown Calculations

² Condensate and water tanks equipped with Combustor
 ² Combined capture and control effiency of system for controlleding water and condensate tanks is 98%
 All emissions from this capture and control system are presented in this line. VOC emissions are approximately an equal mix of un-captured/un-controlled emissions from the tanks and piping and incomplete combustion.

Triad Hunter, LLC ENGINE EMISSIONS

Spencer Well Pad Station Tyler County

Sourc	e 1S						
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516B Low Emise Natural	sions					
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption	130 1,380 1,400 V-16 16 6.700 7.500 1,205 4,231 7,500	deg. F hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr				AP-42 4strokelean	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	lb/mmbtu	
Oxides of Nitrogen, NOx	0.50	1.52	6.66	690	36.51	Cor	nment
Carbon Monoxide CO	1.45	4.41	19.32	2,001	105.87		453.59 grams = 1 pound
VOC (NMNEHC)	0.40	1.22 1766	5.33 7733.01	552	29.21		2,000 pounds = 1 ton
CO2e CO2	474	1442	6316.35	654,120	34610.13		
Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) Methane acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane total HAPs Exhaust Parameters:	8,760 0.2460	0.0062 0.0008 0.1026 12.938 0.0532 0.0865 0.7484 0.0002 0.0004 4E-05 0.0002 0.0024 0.0024 0.0011 0.8929	0.0272 0.0035 0.4493 56.666 0.2330 0.3790 3.2780 0.0009 0.0019 0.0017 0.0002 0.0008 0.0107 0.0047 3.9109			0.0006 7.71E-05 0.00991 1.25 0.00514 0.00836 0.00222 0.000212 0.00044 0.000408 3.97E-05 0.000184 0.0025 0.00111 0.071194	j. Spec Used
Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm					
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	:				
Exhaust Stack Height	260 21.67	inches feet					
Exhaust Stack Inside Diameter	20 1.667	inches feet					
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm (stack diameter)^2

Source 2S (REMOV	/ED)					
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516B Low Emis Natural	sions				
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption	130 1,380 1,400 V-16 16 6.693 7.491 1,205 4,217 7,500	deg. F hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr				AP-42 4strokelean
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	lb/mmbtu
Oxides of Nitrogen, NOx	0.50	1.52	6.66	690	36.51	
Carbon Monoxide CO	1.45	4.41	19.32	2,001	105.87	453.59 grams = 1 pound
VOC (NMNEHC)	0.40	1.22	5.33	552	29.21	2,000 pounds = 1 ton
CO2e	474	1766	7733.01	054.400	0404040	
CO2	474	1442	6316.35	654,120	34610.13	
Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) Methane acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	8,760 0.2460 1,089 9216	0.0062 0.0008 0.1026 12.938 0.0532 0.0865 0.7484 0.0002 0.0004 4E-05 0.0002 0.0024 0.0011 0.8929 deg. F acfm	0.0272 0.0035 0.4493 56.666 0.2330 0.3790 3.2780 0.0009 0.0019 0.0017 0.0002 0.0008 0.0107 0.0047 3.9109			0.0006 7.71E-05 0.00991 1.25 0.00514 0.00836 0.0528 Catalyst Spec Used. 0.000212 0.00044 0.000408 3.97E-05 0.000184 0.0025 0.00111 0.071194
Total Exhaust Gas Volume Flow, wet	9,216	acfm				
Total Exhaust Gas Volume Flow, wet	153.6	acf per sec	:			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667	inches feet				
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm (stack diameter)^2

Source 9S (N	EW)						
Engine Data:	o/-						
Engine Manufacturer	CAT						
Engine Model	3508B	-:					
Type (Rich-burn or Low Emission)	Low Emiss Natural	sions					
Aspiration (Natural or Turbocharged)	Naturai						
Turbocharge Cooler Temperature	130	deg. F					
Manufacturer Rating	630	hp					
Speed at Above Rating	1,400	rpm					
Configeration (In-line or Vee)	V-8						
Number of Cylinders Engine Bore	8 6.693	inches					
Engine Stroke	7.491	inches					
Fuel Heat Content	1,205	BTU/scf					
Engine Displacement	2,108	cu. in.					
Fuel Consumption	8,627	Btu/bhp-hr					
						AP-42	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	4strokelean lb/mmbtu	
Oxides of Nitrogen, NOx	2.00	2.78	12.17	1,260	66.67		Comment
Carbon Monoxide CO	1.02	1.42	6.21	643	34.00	_	453.59 grams
VOC (NMNEHC)	0.18	0.25	1.10	113	6.00		2,000 pounds
CO2e		953	4172.34				
CO2	544	756	3309.39	342,720	18133.65		
	0 700						
Total Annual Hours of Operation SO2	8,760	0 0022	0.0140			0.0006	Manufacturar Saca
PM2.5 + Condensables		0.0033 0.0543	0.0143 0.2378				Manufacturer Spec Manufacturer Spec
Methane		7.8808	0.2378 34.518				Manufacturer Spec
acrolein		0.0279	0.1224			0.00514	
acetaldehyde		0.0273	0.1224			0.00836	
formaldehyde	0.1400	0.1944	0.8517				Catalyst Spec Used.
biphenyl		0.0002	0.0010			0.000212	
benzene		0.0005	0.0022			0.00044	
toluene		0.0005	0.0020			0.000408	
ethylbenzene		4E-05	0.0002			3.97E-05	
xylene		0.0002	0.0009			0.000184	
methanol		0.0028	0.0123			0.0025	
n-hexane		0.0012	0.0055			0.00111	
total HAPs		0.2733	1.1971			0.071194	
Exhaust Parameters:	050	dan E					
Exhaust Gas Temperature Exhaust Gas Flow Rate	850 3478	deg. F acfm					
	3470	aciiii					
Total Exhaust Gas Volume Flow, wet	3,478	acfm					
Total Exhaust Gas Volume Flow, wet	58.0	acf per sec	•				
Exhaust Stack Height	192	inches					
	16.00	feet					
Exhaust Stack Inside Diameter	20	inches					
	1.667	feet					
	00.0	f t/= = =			1	x acfm	
Exhaust Stack Velocity	26.6	ft/sec			4	x aciiii	

Triad Hunter,LLC ENGINE EMISSIONS

Spencer Well Pad Station Tyler County

Source 7S							
Removed Flash Gas Compresso	r (VRU)						
Engine Data:							
Engine Manufacturer	CAT						
Engine Model	3306 TA Rich Burn						
Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Natural						
	Natural						
Turbocharge Cooler Temperature	130	deg. F					
Manufacturer Rating	203	hp					
Speed at Above Rating	1,800	rpm					
Configeration (In-line or Vee)	In line						
Number of Cylinders	6						
Engine Bore	4.764	inches					
Engine Stroke	5.984	inches					
Fuel Heat Content (HHV)	1,327 640	BTU/scf cu. in.					
Engine Displacement Fuel Consumption	640 8,098	cu. m. Btu/bhp-hr ((HH\/)				
	0,090		(1117)			AP-42	
						4strokerich	
Emission Rates:	g/bhp-hr		tons/year	g/hr		lb/mmbtu	
Oxides of Nitrogen, NOx	2.00	0.90	3.92	406	21.48	Comment	
Carbon Monoxide CO	2.00	0.90	3.92	406	21.48	453.59 grams =	
VOC (NMNEHC)	0.06	0.03	0.12	12	0.64	2,000 pounds =	1 ton
CO2e	F 44	238	1044	100 700	F 400 00		
CO2	511	229	1002	103,733	5488.62		
Total Annual Hours of Operation	8,760						
SO2		0.001	0.0043			0.0006	
PM2.5 AP-42 0.0000771 lb/mmbtu		0.0156	0.0684			0.0095	
PM	1.00	0.0163	0.0714			0.00991	
Methane	1.02	0.4565	1.9994			1.25 Mfg. Spec Used	
acrolein		0.0043	0.0189			0.00263	
acetaldehyde formaldehyde mfr control rate	0.1250	0.0046 0.0559	0.0201 0.2450			0.00279 0.0205 Per Catalyst Warranty	
benzene	0.1200	0.0559	0.2450			0.0205 Per Catalyst Warranty	
toluene		0.0020	0.00114			0.00056	
methanol		0.0005	0.0040			0.00306	
xylene		0.0003	0.0220			0.00019	
total HAPs		0.0737	0.3229			0.03131	
Exhaust Parameters: Exhaust Gas Temperature	1,064	deg. F					
Exhaust Gas Flow Rate	1,004 970	acfm					
	010	aonn					
	070						
Total Exhaust Gas Volume Flow, wet	970 16 2	acfm					
Total Exhaust Gas Volume Flow, wet	16.2	acf per sec					
Exhaust Stack Height	72	inches					
	6.00	feet					
Exhaust Stack Inside Diameter	6	inches					
	0.500	feet					
Exhaust Stack Velocity	82.3	ft/sec ft/min	_	0 1/1		x acfm	
	4,940.2	ft/min		3.141	бх (stack diameter)^2	

DEHYDRATOR EMISSIONS

Spencer Well Pad Station Tyler County

Burner/Still Vent Emissions Source 4S

40,000 MCFD

120 Deg F

3.0 Gal/lb H2O

Reboiler Burner

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration 500.0 Mbtu/hr 98.0 % 1326.6 Btu/scf 9230.1 scfd 0.000 Mole %

ef 3.37 MMscf/yr

lb/MMscf

NOx	0.0385	lbs/hr	0.168	TPY
СО	0.0323	lbs/hr	0.141	TPY
CO2e	46	lb/hr	202.312	TPY
VOC	0.0021	lbs/hr	0.009	TPY
SO2	0.0000	lbs/hr	0.000	TPY
РМ	0.0029	lbs/hr	0.013	TPY
H2S	6.351E-05	5 lbs/hr	0.0002782	TPY

Controlled Still Vent Emissions

From ProMax Dehy Stream 8

Dry Gas Rate Glycol Circulation Rate Treating Temperature Treating Pressure

800	psi			
Total HC	0.5934	lbs/hr	2.599	TPY
Total VOC	0.5246	lbs/hr	2.298	TPY
Total HAP	0.2315	lbs/hr	1.014	TPY
benzene	0.0255	lbs/hr	0.112	TPY
toluene	0.0862	lbs/hr	0.378	TPY
ethyl benzene	0.0171	lbs/hr	0.075	TPY
xylene	0.0796	lbs/hr	0.348	TPY
n-hexane	0.0231	lbs/hr	0.101	TPY

Total Dehy Emissions (4S)

NOx	0.0385	lbs/hr	0.168	TPY
СО	0.0323	lbs/hr	0.141	TPY
CO2e	46.1899	lb/hr	202.3	TPY
VOC	0.5267	lbs/hr	2.307	TPY
SO2	0.0000	lbs/hr	0.000	TPY
PM	0.0029	lbs/hr	0.013	TPY

AP-42 Factors Used for Reboiler:

HCOI	0.075 Lbs/MMCF	Giobai Warning I otentiai –276
N ₂ O	2.2 Lbs/MMCF	Global Warming Potential =298
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
СО	84 Lbs/MMCF	
NOx	100 Lbs/MMCF	

Potential Emission Rates

Source 6S GPU Heaters

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 4000.0 Mbtu/hr 99.0 % PM Btu/scf 1326.6 scfd 0.000 Mole % **8760** Four Units at 1.0 MMbtu/Hr Each

NOx	0.3922	lbs/hr	1.718	TPY
СО	0.3294	lbs/hr	1.443	TPY
CO2	470.5882	lbs/hr	2061	TPY
VOC	0.0216	lbs/hr	0.094	TPY
PM10	0.0298	lbs/hr	0.131	TPY
SO2	0.0024	lbs/hr	0.010	TPY
CH4	0.0090	lbs/hr	0.040	TPY
N2O	0.0086	lbs/hr	0.038	TPY
CO2e	473	lbs/hr	2073	TPY
НСОН	0.0003	lbs/hr	0.001	TPY

AP-42 (table 1.4) Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	PM = PM10 = PM2.5
PM10	7.6 Lbs/MMCF	
PM2.5	7.6 Lbs/MMCF	
SO2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	

Potential Emission Rates

Source 8S Collins GPU Heaters

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 4000.0 Mbtu/hr 99.0 % 1326.6 Btu/scf 73,094.89 scfd 0.000 Mole % **8760** Four Units at 1.0 MMbtu/Hr Each

NOx	0.3922	lbs/hr	1.718	TPY
СО	0.3294	lbs/hr	1.443	TPY
CO2	470.5882	lbs/hr	2061	TPY
VOC	0.0216	lbs/hr	0.094	TPY
PM10	0.0298	lbs/hr	0.131	TPY
SO2	0.0024	lbs/hr	0.010	TPY
CH4	0.0090	lbs/hr	0.040	TPY
N2O	0.0086	lbs/hr	0.038	TPY
CO2e	473	lbs/hr	2073	TPY
НСОН	0.0003	lbs/hr	0.001	TPY

AP-42 (table 1.4) Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	PM = PM10 = PM2.5
PM10	7.6 Lbs/MMCF	
PM2.5	7.6 Lbs/MMCF	
SO2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N ₂ O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	

otential Emission Rate

Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 23.6 Mbtu/hr 98.0 % 1326.6 Btu/scf 435.7 scfd 0.000 Mole % 8760

NOx	0.0024	lbs/hr	0.010	TPY
CO	0.0020	lbs/hr	0.009	TPY
CO2	2.8	lbs/hr	12.4	TPY
CO2e	3	lbs/hr	12	TPY
VOC	0.0001	lbs/hr	0.001	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0002	lbs/hr	0.001	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0000	lbs/hr	0.000	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0000	lbs/hr	0.000	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

100 Lbs/MMCF
84 Lbs/MMCF
120,000 Lbs/MMCF
5.5 Lbs/MMCF
7.6 Lbs/MMCF
0.6 Lbs/MMCF
2.3 Lbs/MMCF
2.2 Lbs/MMCF
0.075 Lbs/MMCF
0.0021 Lbs/MMCF
1.8 Lbs/MMCF
0.0034 Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =298

Potential Emission Rates

Source EC-1

Enclosed Combustor #1

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare

98.0	%
2437.0	Btu/scf ¹
23,730	scf/day
2.410	MMBTU/Hr

6.700	MMCF/Yr ²
16,328	MMBTU/Yr

NOx	0.16	lbs/hr	0.56	tpy
СО	0.89	lbs/hr	3.02	tpy
CO2	281.66	lbs/hr	954.28	tpy
CO2e	283.39	lb/hr	961.00	tpy
VOC	2.54	lb/hr	6.31	tpy
CH4	0.072	lbs/hr	0.24	tpy
N2O	0.0005	lbs/hr	0.0018	tpy
PM	0.0075	lb/hr	0.0255	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
СНОН	0.0001	lb/hr	0.0003	tpy
n-Hexane	0.0018	lb/hr	0.0060	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0019	lb/hr	0.0063	tpy

 ^1BTU content of gas is derived as shown in attached discussion of gas streams to combustor 2 Annual flow assumes daily flow 365 days per year.

VOC emissons are 2% of VOC loading to the combustor.

Factors Used		
AP-42 Table 13.5-1	NOx	0.068 Lbs/MMBTU
AP-42 Table 13.5-1	СО	0.37 Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89 Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022 Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022 Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF

Potential Emission Rates

Source EC-2

Enclosed Combustor #2

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare

98.0	%
1562.0	Btu/scf ¹
132,460	scf/day
8.621	MMBTU/Hr

29.3	MMCF/Yr ²
45,767	MMBTU/Yr

NOx	0.59	lbs/hr	1.56	tpy
СО	3.19	lbs/hr	8.47	tpy
CO2	1,007.70	lbs/hr	2,674.83	tpy
CO2e	1,064.97	lb/hr	2,971.33	tpy
VOC	3.11	lb/hr	13.62	tpy
CH4	2.6900	lbs/hr	11.7800	tpy
N2O	0.0019	lbs/hr	0.0050	tpy
PM	0.0419	lb/hr	0.1113	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
СНОН	0.0004	lb/hr	0.0011	tpy
n-Hexane	0.0099	lb/hr	0.0264	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0104	lb/hr	0.0275	tpy

 ^1BTU content of gas is derived as shown in attached discussion of gas streams to combustor 2 Annual flow assumes daily flow 365 days per year.

VOC emissons are 2% of VOC loading to the combustor.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068	Lbs/MMBTU
AP-42 Table 13.5-1	со	0.37	Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89	Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022	Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022	Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6	lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021	lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034	lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8	lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075	lb/MMSCF

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	23.80	weight percent
Methane from gas analysis:	53.73	weight percent
Total HAPs Estimated	0.080	weight percent
Total HAP from Condensate Analysis	10.656	weight percent
Carbon Dioxide from gas analysis:	0.357	weight percent
Gas Density	0.0613	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	HAP, lb/Hr	HAP TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:												
Gas/Vapor:	120	0.02700 scf/hr	23.8	0.047	0.207	0.0002	0.001	0.001	0.003	0.107	0.4678	11.697
Light Liquid:	4	0.05000 scf/hr	100.0	0.012	0.054	0.0013	0.006					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000							0.000
Low Bleed Pneumatic	12	1.39000 scf/hr	23.8	0.244	1.067	0.0008	0.004	0.550	2.408	0.550	2.4081	62.612
Relief Valves:	6	0.04000 scf/hr	23.8	0.004	0.015	0.0000	0.000	0.000	0.000	0.008	0.0346	0.866
Open-ended Lines, gas:		0.06100 sfc/hr	23.8	0.000	0.000	0.0000	0.000					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000							0.000
Pump Seals:												0.000
Gas:	-	0.00529 lb/hr	23.8	0.000	0.000			0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000							0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000							0.000
Compressor Seals, Gas:	6	0.01940 lb/hr	23.8	0.028	0.121	0.0000	0.000	0.000	0.002	0.004	0.0168	0.422
Connectors:												0.000
Gas:	325	0.00300 scf/hr	23.8	0.014	0.062	0.0000	0.000	0.000	0.001	0.032	0.1408	3.520
Light Liquid:	36	0.00700 scf/hr	100.0	0.252	1.104	0.0000	0.000					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000							0.000
Flanges:												0.000
Gas:	80	0.00086 lb/hr	23.8	0.016	0.072	0.0000	0.000	0.000	0.001	0.037	0.1619	4.049
Light Liquid:	24	0.00300 scf/hr	100.0	0.004	0.019	0.0000	0.000					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000							0.000

	lb/hr	t/y
VOC	0.378	1.655
HAP	0.002	0.010
CH4	0.188	0.822
CO2	0.002	0.007
CO2e	18.988	83.1

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Triad Hunter, LLC

Spencer Station Tyler County

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.460	0.129	0.004	0.585			-		0.0046	
Carbon Dioxide, CO2	0.179	0.079	0.003	0.357			-		0.0018	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	73.829	11.844	0.409	53.731	671.4	745.7	7.036		0.7368	
Ethane, C2H6	15.777	4.744	0.164	21.522	255.4	279.2	2.632		0.1565	4.197
Propane	5.732	2.528	0.087	11.466	132.7	144.2	1.365	11.466	0.0563	1.571
Iso-Butane	0.679	0.395	0.014	1.790	20.4	22.1	0.210	1.790	0.0066	0.221
Normal Butane	1.691	0.983	0.034	4.459	50.9	55.2	0.524	4.459	0.0163	0.530
Iso Pentane	0.405	0.292	0.010	1.326	15.0	16.2	0.154	1.326	0.0041	0.147
Normal Pentane	0.504	0.364	0.013	1.650	18.7	20.2	0.192	1.650	0.0050	0.182
Hexane	0.421	0.363	0.013	1.646	18.5	20.0	0.191	1.646	0.0042	0.172
Heptane	0.323	0.324	0.011	1.468	16.5	17.8	0.169	1.468	0.0032	0.148
	100.000	22.044	0.761		1,199.4	1,320.5	12.473	23.805	0.9954	7.168

Gas Density (STP) = 0.06135

Ideal Gross (HHV) Ideal Gross (sat'd)	1,320.5 1,298.3
GPM	-
Real Gross (HHV)	1,326.6
Real Net (LHV)	1,205.0

Triad Hunter, LLC

Spencer Station Tyler County

Dehy Flash Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.435	0.122	0.004	0.518			-		0.0043	
Carbon Dioxide, CO2	0.331	0.146	0.005	0.619			-		0.0033	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Water	0.193	0.035	0.001	0.148			-		0.0019	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	68.900	11.054	0.382	46.966	626.6	695.9	6.566		0.6876	
Ethane, C2H6	17.500	5.262	0.182	22.359	283.3	309.7	2.919		0.1736	4.655
Propane	6.990	3.082	0.106	13.097	161.8	175.9	1.665	13.097	0.0687	1.916
Iso-Butane	0.875	0.509	0.018	2.161	26.3	28.5	0.271	2.161	0.0085	0.285
Normal Butane	2.350	1.366	0.047	5.804	70.8	76.7	0.728	5.804	0.0227	0.737
Iso Pentane	0.535	0.386	0.013	1.640	19.8	21.4	0.204	1.640	0.0054	0.195
Normal Pentane	0.711	0.513	0.018	2.180	26.4	28.5	0.271	2.180	0.0071	0.256
Hexane	0.862	0.743	0.026	3.156	38.0	41.0	0.390	3.156	0.0085	0.352
Heptane	0.318	0.319	0.011	1.354	16.2	17.5	0.167	1.354	0.0032	0.146
	100.000	23.536	0.813		1,269.0	1,395.0	13.181	29.391	0.9948	8.542

,395.0
,371.4
-
,402.2
,275.6

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

-		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	1
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H2O	18.002	0.6216	0.0474	21.089						1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

										_	
		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Helium	He	4.003	0.1382	0.0105	94.848						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468

Attachment N FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_					,	PM		PM-1	0	
k =	Particle size multiplier					0.80		0.36		
s =	Silt content of road surface m	aterial (%)				10		3		
p =	Number of days per year with		157		157					
ltem Numbe	r Description	Description Number Vehicle Vehicle Miles per Trips per Trips				Maximu Trips po Year	er Device ID	Control Efficiency (%)		
1	Produced Water Tanker Truck	10	27	10	1.04	1	6032	None	0	
2	Condensate Tanker Truck	18	27	10	1.04	1	410	None	0	
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	14	14
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	Μ		PM-10			
Item No.	Uncon	trolled	Cont	rolled	Uncor	trolled	rolled Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	5.62	16.95	5.62	16.95	0.73	2.29	0.73	2.29
2	7.54	1.55	7.54	1.55	1.02	0.21	1.02	0.21
3								
4								
5								
6								
7								
8								
TOTALS	13.16	18.50	13.16	18.50	1.75	2.50	1.75	2.50

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor (dimensionless)						
n =	Number of traffic lanes						
s =	Surface material silt content (%)						
L =	Surface dust loading (lb/mile)						
Item Numbe	r Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

None

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

1

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncon	trolled	Cont	rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Triad Hunter LLC Station Name: Spencer Combine Sample Point: Cylinder No: GAS Analyzed: 11/16/2013 21:26:19 by GR

Certificate of Analysis

Number: 2030-13110103-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Nov. 17, 2013

Sampled By: AW-GAS Sample Of: Gas Spot Sample Date: 11/05/2013 Sample Conditions: 1045 psig, @ 77 °F Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.460	0.584		GPM TOTAL C2+	7.232
Carbon Dioxide	0.179	0.357			
Methane	73.829	53.695			
Ethane	15.777	21.507	4.236		
Propane	5.732	11.459	1.586		
Iso-Butane	0.679	1.789	0.224		
n-Butane	1.691	4.456	0.535		
Iso-Pentane	0.405	1.325	0.148		
n-Pentane	0.504	1.649	0.183		
i-Hexanes	0.220	0.859	0.091		
n-Hexane	0.177	0.696	0.074		
Benzene	0.003	0.010	0.001		
Cyclohexane	0.021	0.079	0.007		
i-Heptanes	0.125	0.561	0.056		
n-Heptane	0.059	0.274	0.028		
Toluene	0.007	0.029	0.002		
i-Octanes	0.087	0.421	0.039		
n-Octane	0.015	0.076	0.008		
Ethylbenzene	0.001	0.002	NIL		
Xylenes	0.005	0.022	0.002		
i-Nonanes	0.019	0.104	0.009		
n-Nonane	0.003	0.016	0.002		
Decane Plus	0.002	0.030	0.001		
	100.000	100.000	7.232		
Physical Properties			Total	C10+	
Calculated Molecula GPA 2172-09 Calcu			22.06	137.55	
Calculated Gross E	and the second	0 14.73 psi	a & 60°F		
Real Gas Dry BTU			1329.0	7211.5	
Water Sat. Gas Base BTU			1305.9	7086.0	
Relative Density Rea	al Gas		0.7641	4.7546	
Compressibility Fact			0.9959		

Pater L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Triad Hunter LLC Station Name:Spencer Combine Sample Point: Cylinder No: GAS Analyzed: 11/16/2013 21:26:19 by GR

Certificate of Analysis

Number: 2030-13110103-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Nov. 17, 2013

Sampled By:AW-GASSample Of:GasSpotSample Date:11/05/2013Sample Conditions:1045 psig, @ 77 °FMethod:GPA 2286

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.460	0.584	Contraction of the second second	GPM TOTAL C2+	7.232	
Carbon Dioxide	0.179	0.357		GPM TOTAL C3+	2.996	
Methane	73.829	53.695		GPM TOTAL iC5+	0.651	
Ethane	15.777	21.507	4.236			
Propane	5.732	11.459	1.586			
Iso-butane	0.679	1.789	0.224			
n-Butane	1.691	4.456	0.535			
Iso-pentane	0.405	1.325	0.148			
n-Pentane	0.504	1.649	0.183			
Hexanes Plus	0.744	3.179	0.320			
	100.000	100.000	7.232			
Physical Properties	5		Total	C6+		
Relative Density Rea	al Gas		0.7641	3.2119		
Calculated Molecular Weight			22.06	93.02		
Compressibility Factor			0.9959			
GPA 2172-09 Calcu						
Calculated Gross B	TU per ft ³ @	14.73 psia	& 60°F			
Real Gas Dry BTU			1329.0	5085.7		
Water Sat. Gas Base	BTU		1305.9	4997.2		

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Triad Hunter LLC Station Name: Spencer Combine Sample Point: Cylinder No: GAS Analyzed: 11/16/2013 21:26:19 by GR

Certificate of Analysis Number: 2030-13110103-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Nov. 17, 2013

Sampled By:AW-GASSample Of:GasSpotSample Date:11/05/2013Sample Conditions: 1045 psig, @ 77 °FMethod:GPA 2286

Analytical Data Components Mol. % Wt. % **GPM** at 14.73 psia **GPM TOTAL C2+** 7.232 0.584 Nitrogen 0.460 0.179 0.357 **GPM TOTAL C3+** 2.996 Carbon Dioxide 0.651 Methane 73.829 53.695 **GPM TOTAL iC5+** 21.507 4.236 Ethane 15.777 Propane 5.732 11.459 1.586 0.679 1.789 0.224 Iso-Butane 4.456 n-Butane 1.691 0.535 **Iso-Pentane** 1.325 0.148 0.405 0.183 n-Pentane 0.504 1.649 Hexanes 0.397 1.555 0.165 **Heptanes** Plus 1.624 0.155 0.347 100.000 100.000 7.232 **Physical Properties** C7+ Total 3.5132 **Relative Density Real Gas** 0.7641 Calculated Molecular Weight 22.06 101.75 **Compressibility Factor** 0.9959 GPA 2172-09 Calculation: Calculated Gross BTU per ft³ @ 14.73 psia & 60°F Real Gas Dry BTU 1329.0 5506.9 Water Sat. Gas Base BTU 1305.9 5411.0

Para S. Pero

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Condensate Loading Lost Emission Factor Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_{L} = 12.46[SPM/T]$$

Where:

 $\begin{array}{l} L_L = \text{uncontrolled loading loss in pounds per 1000 gallons of liquid loaded} \\ S= \text{saturation factor (0.6)} \\ P= \text{true vapor pressure of liquid loaded 7.8 psia (AP-42 conversion of actual measurement of RVP of site condensate)} \\ M= Molecular weight of vapor in lb/lb-mole (estimated at 43.8 - ProMax Stream 115) \\ T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F used) \\ \end{array}$

Thus, $L_L = 12.46[0.6 \text{ x } 7.8 \text{ x } 43.8]/[460+60]$ $L_L = 4.92 \text{ lb}/1000 \text{ gallons loaded}$

Given a maximum loading of 8,474 gallons per hour, uncontrolled emissions are estimated at 41.7 lb of vapors per hour [8.474 x 4.92]. As shown in the ProMax Model for Streams 115 (condensate tank losses), the vapors from the tanks is approximately 97% VOCs. Thus, total VOC emissions from truck loading of condensate are 40.45 lb/hr. The control system [enclosed combustor] will reduce these emissions greater than 99%. However, non-certified trucks will now be utilized, allowing only a claim of 70% capture and control efficiency per AP-42, Chapter 5.2.2.1.1. Thus, un-captured VOC emissions are 12.13 lb/hr. All daily loading normally takes place within 1 hour.

Annual throughput is now anticipated to not exceed 3,066,000 gallons per year. Thus, uncaptured VOC emissions are conservatively estimated at 4,390 pounds per year (3,066 x 4.92 x 30% x 97%) or 2.19 tons per year.

Greenhouse gas (methane) is conservatively estimated to be approximately 2.5% of the loading emissions. Thus, hourly and annual un-captured methane emissions are estimated at 1.04 lb/hr and 0.06 tpy. Using a GHG factor of 25, CO_{2e} emissions are estimated at 26 lb/hr and 1.4 tpy.

Captured truck loading emissions are included in the combustor emission calculations.

Total vapor loading to the combustor is 29.2 lb/hr [41.7 x 70%], again with all loading on a given day loading generally taking place during a one hour period. Maximum annual vapors to the combustor from truck loading will be 10,560 lb (3,066 x 4.92 x 70%) or 5.28 tons.

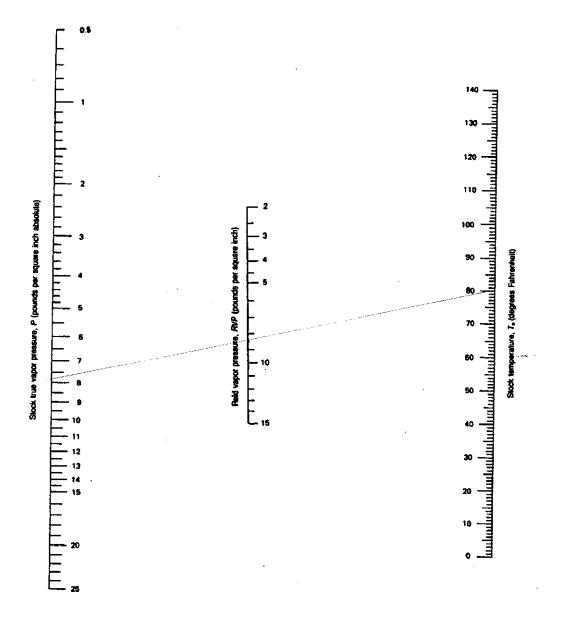


Figure 7.1-13a. True vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.⁴

Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_{L} = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded (0.3 psia) Based on water at 60 Deg. F M= Molecular weight of vapor in lb/lb-mole (37.74) From flash gas of comparable water sample T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 0.3 \text{ x } 37.74]/[460+60]$ $L_L = 0.16 \text{ lb}/1000 \text{ gallons loaded}$

Based on produced water flash gas from comparable wells, estimated that these emissions are 37.6% VOCs

Given a maximum water production of 1322 BBL (55,524 gallons) a day, uncontrolled emissions are estimated at 3.34 lb of VOC per day [55.524 x 0.16 x .376]. There is no control on the water truck loading operations. Therefore, uncaptured emissions are also estimated at 3.34 lb/day. As all daily loading will take place within a 12 hour period, the uncaptured hourly emission rate is conservatively estimated at 0.28 lb/hr [3.34 lb/2].

Maximum annual throughput is 482,500 BBL per year (20,266,260 gallons per year). Thus, uncaptured water loading emissions are estimated at 1219 pounds per year [20,266 x 0.16 x 0.376] or 0.61 tons per year.

FESCO, Ltd. 1100 Fesco Ave. - Allce, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Children 6H

Gas Liberated from Separator Water From 197 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 07/15/14

Job Number: 44304.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	4.661	
Carbon Dioxide	0.993	
Methane	41.510	
Ethane	15.219	4.047
Propane	10.282	2.817
Isobutane	2.863	0.932
n-Butane	7.027	2.203
2-2 Dimethylpropane	0.000	0.000
Isopentane	3.722	1.353
n-Pentane	4.186	1.509
Hexanes	5.394	2.212
Heptanes Plus	4.143	<u>1.817</u>
Totals	100.000	16.890

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.535	(Air=1)
Molecular Weight	101.04	
Gross Heating Value	5356	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.321	(Air=1)
Compressibility (Z)	0.9868	
Molecular Weight	37.74	
Gross Heating Value		
Dry Basis	2086	BTU/CF
Saturated Basis	2051	BTU/CF
		Linkland (Of

*Hydrogen Sulfide tested in laboratory by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: OA Cylinder ID: WF-1S

ÿ

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	4.661		3.460
Carbon Dloxide	0.993		1.158
Methane	41.510		17.646
Elhane	15.219	4.047	12.125
Propane	10.282	2.817	12.013
isobutane	2.863	0.932	4.409
n-Butane	7.027	2.203	10.822
2,2 Dimethylpropane	0.000	0.000	0.000
Isopentane	3.722	1.353	7.115
n-Pentane	4.186	1.509	8.002
2,2 Dimethylbutane	0.205	0.085	0.468
Cyclopentane	0.369	0.153	0.686
2,3 Dimethyibutane	0.000	0.000	0.000
2 Methylpentane	1.592	0.657	3.635
3 Methylpentane	0.996	0.404	2.274
n-Hexane	2.232	0.913	5.096
Methylcyclopentane	0.174	0.060	0.388
Benzene	0.036	0.010	0.075
Cyclohexane	0.230	0.078	0.513
2-Methylhexane	0.548	0.253	1.455
3-Melhylhexane	0.521	0.236	1.383
2,2,4 Trimethylpentane	0.000	0.000	0.000
Olher C7's	0.533	0.231	1.401
n-Heptane	0.707	0.324	1.877
Methylcyclohexane	0.418	0.167	1.087
Toluene	0.057	0.019	0.139
Other C8's	0.553	0.256	1.615
n-Octane	0.163	0.083	0.493
Ethylbenzene	0.004	0.002	0.011
M & P Xylenes	0.020	0.008	0.056
O-Xylene	0.004	0.002	0.011
Other C9's	0.145	0.073	0.485
n-Nonane	0.030	0.017	0.102
Other C10's	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	0.000
Totals	100.000	16.890	100.000
Computed Real Char	antariation	Of Total Sample:	
	actalistics		

Computed Real Characteristics Of Lotal Sample:						
1.321	(Air=1)					
0.9868						
37.74						
2086	BTU/CF					
2051	BTU/CF					
	1.321 0.9868 37.74 2086					

Triad Hunter Spencer CS Loading to Combustors

EC-1 Combustors

As noted in the Project Overview, residual flash gas released during the final drop in pressure on the condensate and produced water (from 60 psia to atmospheric) as it is routed to the atmospheric pressure storage tanks from the flash separator and subsequent working and breathing losses during storage of condensate in these tanks will be controlled by one or two enclosed combustors (COMM 100), depending upon the actual load. Under the revised operating conditions associated with this application, waste gas generated from the following operations within the Spencer CS will be routed to the EC-1 combustors:

- Flash Losses from the Condensate and Water Tanks
- Vapors from Condensate Truck Loading (indirectly via vapor balance back to the tanks
- Working and Breathing Vapors from the Condensate and Water Tanks

All waste gases are hard piped to the combustor. This hard pipe capture system is conservatively estimated at 99% effective. Additionally, the combustor is warranted by the manufacturer to have 99%+ destruction efficiency, resulting in an overall 98% reduction in VOC emissions from un-controlled emissions.

Loading to the combustor is a combination of ProMax Streams 8 (Condensate and Water Tank breathing losses), 111 (water tank flash gas) and 115 (condensate tank flash gas) plus the truck loading emissions. Together, these sources are summarized as follows:

Stream	Max Hourly	Max Annual	Max Hourly	Max Annual
	Mass Loading	Mass Loading	Heat Loading	Heat Loading
	(lb/Hr)	(tpy)	(MMBTU/Hr)	(MMBTU/yr)
ProMax Stream 8	10.58	46.34	0.21	1840
Promax Stream 111	0.91	3.98	0.02	175
Promax Stream 115	75.46	330.5	1.61	14,104
Truck Loading	29.2	5.28	0.57	208
TOTAL	116.15	386.1	2.41	16,327

VOC Emissions

VOC content of this combined vapor stream is approximately 77.3%. With a 98% capture and control efficiency of all VOCs going to the combustor, hourly VOC emissions are 1.80 lb/hr

[116.15 lb/Hr x 0.773 x 0.02] and 5.97 tpy [386.1 x 0.773 x 0.02]. This hourly and annual VOC emission rate has been entered into the preceding emissions spreadsheet.

GHG Emissions

As noted in the ProMax model, these various emissions have methane (a GHG) emissions as well as VOCs. Using the attached ProMax model, data, the maximum Methane loading to the combustor is modeled at 3.60 lb/hr during truck loading and 11.97 tpy. After 98% capture and control methane emissions are 0.072 lb/hr and 0.24 tpy. This has been incorporated into the combustor calculation sheet in lieu of the AP-42 methane emission factors which are not appropriate for a gas stream of this composition.

EC-2 Combustor

Excess flash gas from the dehydration unit (not consumed in the re-boiler) is routed to this combustor (Abutec 100). For permitting purposes, it is conservatively assumed that the entire dehydration flash gas stream will be routed to the combustor. A run of GRI-GLYCalc closely matched the ProMax model. Thus for the sake of consistency, the ProMax model is used herein. As shown in Stream 107 of the ProMax dehy model, the maximum flow is 3,338 scf/hr (80,111 SCFD) or 206.8 lb/hr. The heat content of this gas is 1397 BTU/scf. Thus, heat loading to the combustor from this stream is 4.66 MMBTU/Hr.

This combustor also received flash gas from the flash separators that is currently managed by the VRU. Based on a ProMax Model (Stream 14), this is approximately 52,300 SCFD (2,180 scf/hr) of gas with a heat content of 1834 BTU/scf. Thus, heat loading to the combustor based on this maximum flow is 3.97 MMBTU/Hr.

The combined maximum gas flow and heat loading to EC-2 is 5,520 scf/hr and 8.62 MMBTU/Hr. This is within the 9.2 MMBTU/Hr capacity of the proposed combustor.

VOC Emissions

VOC content of this combined vapor stream is approximately 40.1%. With a 98% capture and control efficiency of all VOCs going to the combustor, hourly VOC emissions are 3.11 lb/hr [388.72 lb/Hr x 0.401 x 0.02] and 7.62 tpy. This hourly and annual VOC emission rate has been entered into the preceding emissions spreadsheet.

GHG Emissions

Again, as noted in the ProMax model, these two emission sources have methane (a GHG) emissions as well as VOCs. Using the attached ProMax model, data, the maximum Methane emission from the combustor is 2.69 lb/hr [Max loading of 134.6 lb/hr at 98% capture and control] and 11.78 tpy, This has been incorporated into the combustor calculation sheet in lieu of the AP-42 emission factors which are not appropriate for a gas stream of this composition.

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Triad Hunter, LLC 27724 S. Rt, 7 Marietta, Ohio 45750

Sample: Collins Spencer Production Separator Hydrocarbon Liquid Sampled @ 60 psig & 64 °F

Date Sampled: 06/10/14

Job Number: 43815.002

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.007	0.002	0.002
Carbon Dioxide	0.009	0.004	0.005
Methane	1.003	0.426	0.192
Ethane	5.054	3.388	1.810
Propane	9.860	6.809	5,177
Isobutane	2.992	2.454	2.071
n-Butane	10.489	8,289	7.260
2,2 Dimethylpropane	0.211	0.203	0.182
Isopentane	5.693	5.219	4.891
n-Pentane	8.990	8.169	7.724
2,2 Dimethylbutane	0.267	0.279	0.274
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.515	0.529	0.528
2 Methylpentane	3.972	4.132	4.076
3 Methylpentane	2.531	2.591	2.598
n-Hexane	7.501	7.731	7.697
Heptanes Plus	<u>40,906</u>	<u>49,774</u>	55.515
Totals:	100.000	100.000	100.000
Characteristics of Hept			
Specific Gravity			(Water=1)
*API Gravity		- 58.69	@ 60°F
Molecular Weight			
Vapor Volume			CF/Gai
Weight	····	- 6.20	Lbs/Gal

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

Characteristics of Total Sample:		
Specific Gravity	0.6671	(Water=1)
*API Gravity	80.62	@ 60°F
Molecular Weight	84.0	•
Vapor Volume	25.21	CF/Gal
Weight	5.56	Lbs/Gal

Base Conditions: 14.650 PSI & 60 °F

Certified:

FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: XGdjv Cylinder ID: W-1231

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %	
Carbon Dioxide	0.009	0.004	0.005	
Nitrogen	0.007	0.002	0.002	
Methane	1.003	0.426	0.192	
Ethane	5.054	3.388	1.810	
Propane	9.860	6.809	5.177	
Isobutane	2.992	2.454	2.071	
n-Butane	10.700	8.492	7.441	
Isopentane	5.693	5.219	4.891	
n-Pentane	8.990	8.169	7.724	
Olher C-6's	7.285	7.531	7.475	
Heptanes	14.158	15.707	16.477	
Octanes	12.506	14.575	16.158	
Nonanes	4.731	6.363	7.146	
Decanes Plus	7.068	10.874	12.777	
Benzene	0.112	0.079	0.105	HAP
Toluene	0.558	0.468	0.612	HAP 4 10.65690
E-Benzene	0.476	0.461	0.602	HAP Y 10.6-010
Xylenes	1.297	1.247	1.640	HAP
n-Hexane	7.501	7.731	7.697	
2,2,4 Trimethylpentane	0.000	<u>0.000</u>	<u>0.000</u> (
Totals:	100.000	100.000	100.000	

Characteristics of Total Sample:

Specific Gravity	0.6671	(Water=1)
°API Gravity	80.62	@ 60°F
Molecular Weight	84.0	-
Vapor Volume	25.21	CF/Gal
Weight	5.56	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7838	(Water=1)
Molecular Weight	151.8	

Characteristics of Atmospheric Sample:

°API Gravity	72.00 @ 60°F
Reid Vapor Pressure (ASTM D-5191)	8.57 psi

QUA	LITY CONTRO	L CHECK	
	Sampling Conditions	Test Samples W-1231* T-3030 60 56 56	
Cylinder Number		W-1231*	T-3030
Pressure, PSIG	60	56	56
Temperature, °F	64	66	66

* Sample used for analysis

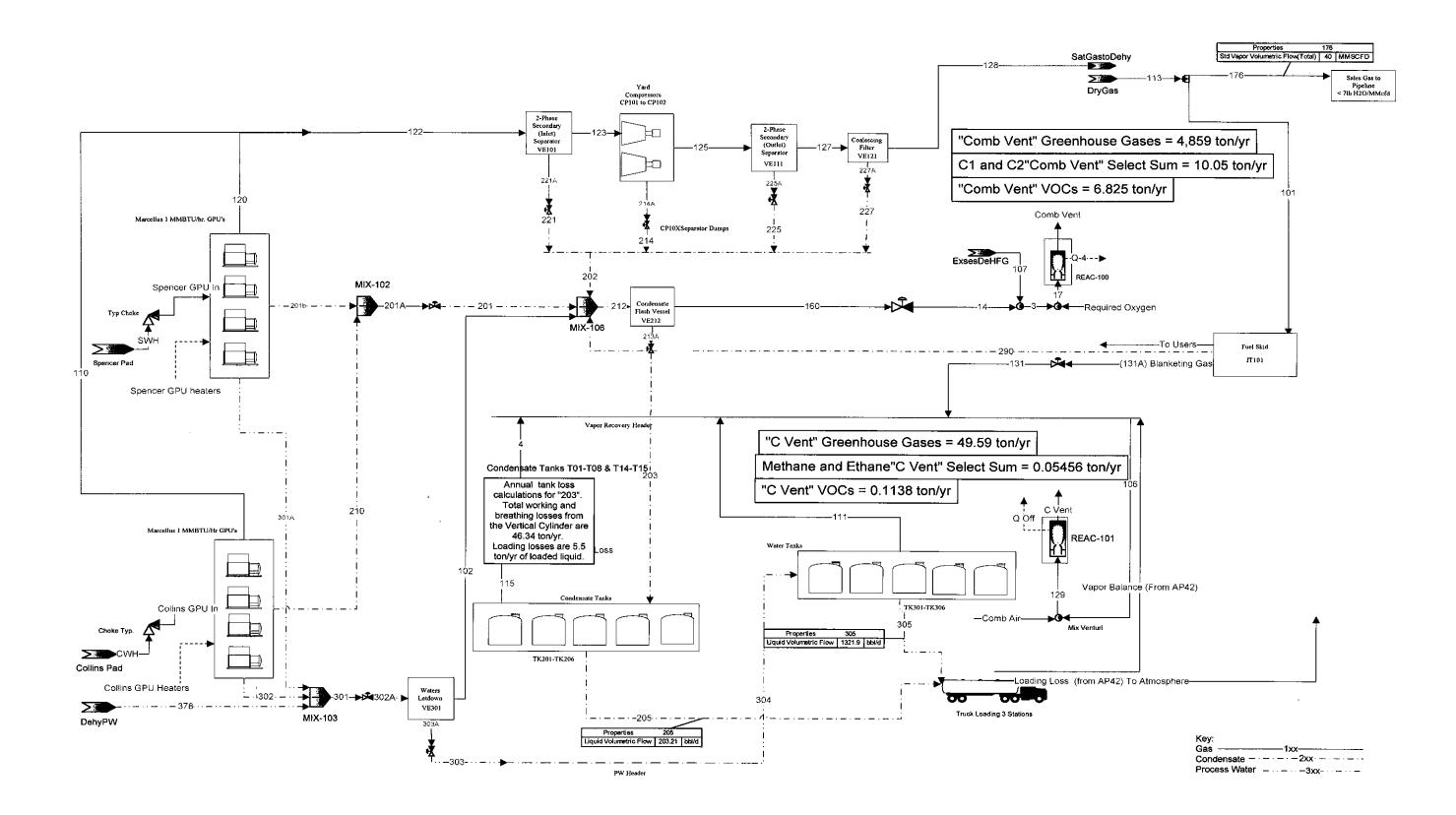
.

1

TOTAL EXTENDED REPORT - GPA 2186-M

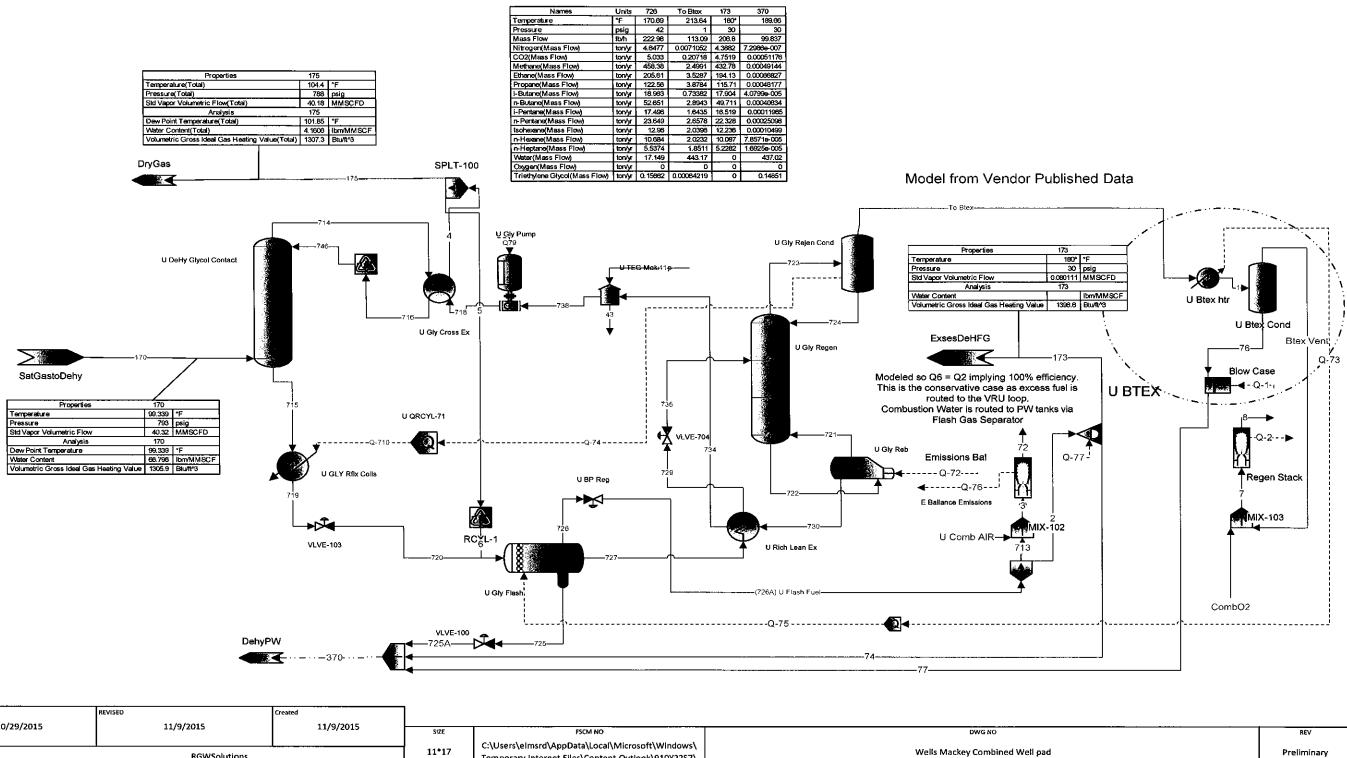
TOTAL EXT	ENDED REPORT - (GPA 2186-M	
COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.007	0.002	0.002
Carbon Dioxide	0.009	0.004	0.005
Methane	1.003	0.426	0.192
Ethane	5.054	3.388	1.810
Propane	9.860	6.809	5.177
Isobutane	2.992	2.454	2.071
n-Butane	10.489	8.289	7.260
2,2 Dimethylpropane	0.211	0.203	0.182
Isopentane	5.693	5.219	4.89 1
n-Pentane	8.990	8.169	7.724
2,2 Dimethylbutane	0.267	0.279	0.274
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.515	0.529	0.528
2 Methylpentane	3.972	4.132	4.076
3 Methylpentane	2.531	2.591	2.598
n-Hexane Nethyleyelenentene	7.501	7.731	7.697
Methylcyclopentane Benzene	1.016	0.901	1.018
Cyclohexane	0.112	0.079	0.105
2-Methylhexane	1.088	0.928	1.090
3-Methylhexane	3.083 2.655	3.592 3.056	3.678
2,2,4 Trimethylpentane	0.000	0.000	3.168 0.000
Other C-7's	1.234	1.352	1,458
n-Heptane	5.082	5.877	6.064
Methylcyclohexane	2.698	2.718	3.154
Toluene	0.558	0.468	0.612
Other C-8's	7.052	8.318	9.256
n-Octane	2.755	3,539	3.748
E-Benzene	0.476	0.461	0.602
M & P Xylenes	0.547	0.532	0.691
O-Xylene	0.750	0.715	0.948
Other C-9's	3.333	4.391	5.0 10
n-Nonane	1.398	1.972	2.136
Other C-10's	2.826	4.092	4.755
n-decane	0.672	1.034	1.138
Undecanes(11)	1.687	2.506	2.954
Dodecanes(12)	0.954	1.531	1.829
Tridecanes(13)	0.460	0.791	0.958
Telradecanes(14)	0.241	0.445	0.546
Pentadecanes(15)	0.119	0.235	0.292
Hexadecanes(16)	0.053	0.112	0.140
Hepladecanes(17) Octadecanes(18)	0.029 0.013	0.064 0.031	0.081 0.039
Nonadecanes(19)	0.009	0.022	0.039
Eicosanes(20)	0.002	0.005	0.028
Heneicosanes(21)	0.001	0.003	0.004
Docosanes(22)	0.001	0.002	0.004
Tricosanes(23)	0.000	0.001	0.002
Tetracosanes(24)	0.000	0.001	0.002
Pentacosanes(25)	0.000	0.000	0.001
Hexacosanes(26)	0.000	0.001	0.001
Heptacosanes(27)	0.000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes(29)	0.000	0.000	0.000
Triacontanes(30)	0.000	0.000	0.000
Hentriacontanes Plus(31+)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Total	100.000	100.000	100.000

Page 3 of 3


UCP

 $X_{1,2} \in \mathcal{K}_{1}$ 113 TRIAD HUNTER 2. SPENCER 800 06/27/12 UCP BORON BEFORE J.T. • • ē, > Chandler Engineering Co. Model 292/2920 BTU Analyzer Test time: June28 12 09:30 Calibration #: Test #:138 1 Location No. :3812 _ Standard/Dry Analysis . Saturated/Wet Analysis Mole% BTU* R.Den.* GPM** MoleX BTU* R.Den.* Methane 77.239 781.92 0.4278 75.895 Ethane 768.31 0.4204 15.147 268.67 0.1573 4.0498 14.883 Propane 264.00 0.1545 4.777 120.47 0.0727 1.3157 4.694 118.37 0.0715 i-Butane 0.477 15.54 0.0096 0.1560 0.468 15.27 0.0094 n-Butane 1.036 33.89 0.0208 0.3266 1.018 33.30 0.0204 i-Pentane 0.174 6.97 0.0043 0.0635 0.171 6.85 0.0043 n-Pentane 0.181 7.29 0.0045 0.0657 0.178 7.16 0.0044 (c6+) 0,098 4,96 0,0031 0.0421 0.096 4.87 0.0030 Moisture 0.000 0.00 0.0000 ~ • 1.740 0.88 0.0108 Nitrogen 0.625 0.00 0.0060 ------0.614 0.00 0.0059 (CO2) 0.247 0.00 0.0037 ---0.242 0.00 0.0037 Idea] 100.00 1239.7 0.7099 * ; Uncorrected for compressibility at 60.0F & 14.730PSIA. 6.0194 **: Liquid Volume reported at 60.0F. Standard/Dry Analysis Saturated/Wet Analysis Relative Density -0.7121 0.7107 Compressibility Factor = 0.9965 0.9964 Gross Heating Value 1244.1 Btu/CF 1223.4 Btu/CF

United Chart Processors Natura) Ges Measurement


1461 Masonic Park Road Merietts, Ohio 45750

Phone: 740.373.5891 Fax: 740,373.8335

Process Streams		131A) Blanketing Gas AP	2Loading Loss C Vent	Collins GPU In	Comb Air Comb Vent	1	2	3	4	7	8	10	11	12	14	17	101	102	106	107	110
Composition	Status:	Solved	Solved Unsolved	Solved	Solved Solved	Solved	Solved	Solved	Unsolved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Unsolved	Solved	Solved
hase: Total	From Block:	SPLT-101	- REAC-101	Choke Typ.	- REAC-100	CMPR-100	XCHG-100	MXSP-101	MIX-108	VLVE-100	-	VSSL-100	VSSL-100	XCHG-101	VL.VE-106	MXSP-100	SPLT-100	VE301	Vapor Recovery Header		rcellus 1 MMBTU/Hr GPU's
ass Fraction	To Block:	BGR131		Marcellus 1 MMBTU/Hr GPU's	Mix Venturi	XCHG-100 %	CP10XSeparator Dumps %	MXSP-100		VSSL-100 %	MIX-108	XCHG-101 %	XCHG-101 %	SPLT-101	MXSP-101	REAC-100	VLVE-100	MIX-106	Mix Venturi	MXSP-101	MIX-105
rethylene Glycol		8.30392E-11	1.18023E-10*	0	0* 0	0		2.49644E-11	5.76449E-11	0.000274753	1.18023E-10*	0.00331354	8.30392E-11	8.30392E-11	5.33633E-11	5.28057E-12	0.000274753	4.94283E-11		0	0
Dxygen		0	0*	0	100* 0.788476	0	0	0	0	0	0*	0	0	0	0	78.6476	0	0		0	0
litrogen CO2		0.640054 0.386497	0.000111893* 0.0594565*	0.472751 0.289031	0* 0.0625477 0* 60.3108	0.585972 0.357092	0.585972 0.357092	0.295700	0.00334699 0.115209	0.587285 (0.000111893*	0.00365557 0.0345890	D.640054 0.386497	0.640054 0.386497	0.0809673 0.324060	0.0625477 0.0911229		0.348206 1.78187		0.484464 0.524617	0.593291 0.361295
Vater		0.00635820	0.145719*	18.2805	0* 38.6285	0.179231	0.179231	0.170212		0.00724292	0.145719*	0.0170280	0.00635820		0.363842		0.00724292	1.17963		0.024017	0.153602
fethane		59.5479	0.398757*	43.4516	0* 0.0732672	54.6166	54.6166	34.6378	2.63982	54.7325	0.398757*	1.47299	59.5479	59.5479	19.6880	7.32672		57.1801		47.7795	54.4992
Ethane Propane		22.9791 11.1445	15.8080* 30.4962*	17.4165 9.30964	0* 0.0515440 0* 0.0392777	21.5199 11.4202	21.5199 11.4202	24.3679 18.5689	18.9586 32.6502	21.5590 11.4373	15.8080* 30,4962*	5.85293 14.6764	22.9791 11.1445	22.9791 11.1445	27.7076 25.1602	5.15440 3.92777		22.4314 11.2370		21.4322 12.7748	21.7706 11.5301
-Sulane		1.39147	7.49860*	1.46266	0* 0.00664075	1.77122	1.77122	3.13948	7.12502	1.77385	7.49860*	6.00301	1.39147	1.39147	4.46228	0.664075	1.77385	0.640693		1.97665	1.78155
-Bulane		2.89703	21.0912*	3.65774	0* 0.0172674	4.38905	4.38905	8.16335	18.7539	4.39397	21.0912*	20.9503	2.89703		11.2066	1.72674	4.39397	3.21351		5.48813	4.40257
-Pentane 1-Pentane		0.451963 0.427781	6.62946* 8.07037*	1.10838	0* 0.00507827 0* 0.00638678	1.27690	1.27690 1.56802	2.40080 3.01941	5.38135 6.43454	1.27763 1.56824	6.62946* 8.07037*	10.4096 14.1818	0.451963 0.427781	0.451963 0.427781	3.05726 3.65005	0.507827 0.638678	1.27763 1.56824	0.590492 0.734388		1.82374 2.46505	1.26565
sohexane		0.0755006	3.81985*	0.764695	0* 0.00312842		0.776979	1.47899		0.776624	3.81985*	8.53110	0.0755006		1.62470	0.312842		0.171156		1.35090	0.742139
n-Hexane Senzene		0.0375687 0.000644760	2.75445* 0.0256426*	0.614831 0.00934469	0* 0.00241286 0* 0.000123312	0.589161	0.589161 0.00888785	1.14070		0.588575	2.75445*	6.68275	0.0375687	0.0375687	1.17149	0.241286		0.101012		1.11364	0.553343
Cyclohexene		0.00228613	0.210513*	0.0632829	0* 0.000460550		0.0557853	0.0582968 0.217730	0.0298335 D.182428	0.00817641 0.0544499	0.0256426* 0.210513*		0.000644760 0.00228613		0.0182134 0.107721	0.0123312 0.0460550		0.0401765 0.162095		0.0935326 0.314434	0.00835411 0.0512340
leptane, 2-Methyl-		0.00129712	0.818341*	0.523815	0* 0.00103802	0.249094	0.249094	0.490733	0.585290	0.248149	0.818341*	2.97835	0.00129712	0.00129712	0.355893	0.103802	0.248149	0.0112662		0.609266	0.200252
1-Heptane Foluene		0.00408308 0.000236058	0.859869* 0.0475230*	0.343263 0.0280567	0* 0.00104142 0* 0.000244683	0.239965	0.239965 0.0180021	0.492343 0.115676		0.239201 0.0158385	0.859869* 0.0475230*		0.00408308 0.000236058		0.395818 0.0302815	0.104142 0.0244683		0.0351006 0.0761492		0.577194 0.190743	0.208105 0.0153666
sooclane		0.00541052	0.963236*	0.364575	0* 0.00110720		0.263186	0.523439		0.262503	0.963236*			0.00541052	0.0302013	0.0244003 0.110720		0.00632879		0.592280	0.230357
Octane		0.000246354	0.181760*	0.158637	0* 0.000281174		0.0635490	0.132928	0.139855	0.0631968	0.181760*	0.759434	0.000246354	0.000246354	0.0872022	0.0281174	0.0631968			0.173124	0.0499271
Ethylbenzene 5-Xylene		9.18308E-06 1.84595E-05	0.00687867* 0.0183991*	0.00821534 0.0312464	0* 3.50873E-05 0* 0.000117149		0.00294466 0.00926298	0.0165879 0.0553833		0.00253828 0.00743006	0.00687867*			9.18308E-06 1.84595E-05		0.00350873 0.0117149		0.0110998 0.0378961		0.0275172 0.0929770	0.00229366 0.00708022
sononane		2.03882E-05	0.0541592*	0.0893968	0* 8.85441E-05		0.0201463			0.0200006	0.0541592*			2.03862E-05		0.00865441				0.0572446	0.0149117
Nonane		8.84788E-06	0.0280661*	0.0659937	0* 5.48450E-05		0.0119055				0.0280661			8.84788E-06						0.0363281	0.00875104
Decane Mass Flow		1.43254E-06 ib/h	0.0133850* ib/h ib/h	0.0964087	0* 3.17998E-05 lb/h lb/h	0.00698246 Ib/h	0.00698246 Ib/h	0.0150337 lb/h	0.0108528	0.00688145	0.0133850*	0.0829750	1.43254E-06	1.43254E-06	0.00742407 lb/h	0.00317998	0.00688145	0.000563093 lb/h	ib/h	0.0217230	0.00527198
Friethylene Glycol		4.51340E-14	1.48192E-12*	0		0		9.70096E-11		0.00118362						9.70096E-11	0.00118362			0	0
Oxygen		0	0*	0	14.4851		D	0	0	0	0*	0	0	0	0	1448.51	0	0		0	0
Nitrogen CO2		0.000347886 0.000210071	1.40495E-06* 0.000746549*	282.985 173.012	1.14907 1107.97		565.819 344.811	1.14907	0.00287987	2.52999 1.53930	1.18375E-05* 0.00629011*	0.00130580 0.0123554	2.52869 1.52695		0.147191 0.589111	1.14907 1.67402		0.0282907 0.144772		1.00188 1.08491	282.893 172.272
Nater		3.45585E-06	0.00182968*	10942.6	709.647		173.067	0.661431		0.0312021	0.0154161*	0.00608251	0.0251196		0.661431	0.661431		0.0958420		0	73.2403
lethane		0.0323659	0.00500688*	26009.8	1.34600		52738.2	134.600			0.0421859*	0.526161	235.259		35.7910	134.600		4.64572		98.8086	25986.3
Ethane Propane		0.0124897 0.00605731	0.198489* 0.382918*	10425.4 5572.68	0.946918 0.721573		20779.8 11027.5	94.6918 72.1573		92.8752 49.2714	1.67239* 3.22631*	2.09071 5.24251	90.7845 44.0289		50.3698 45.7390	94.6918 72.1573		1.82249 0.912978		44.3220 26.4184	10380.6 5497.78
-Butane		0.000756299	0.0941541*	875.536	0.121998		1710.30			7.64165	0.793303*	2.14432	5.49733		8.11202	12.1998		0.0520545		4.08774	849.476
n-Butane		0.00157461	0.264825*	2189.49	0.317221		4238.10			18.9290	2.23131*	7.48358	11.4454		20.3726	31.7221		0.261088		11.3495	2099.23
-Pentane n-Pentane		0.000245654 0.000232510	0.0832410* 0.101333*	663.466 831.713	0.0932933 0.117332		1232.99 1514.09			5.50396 6.75590	0.701353* 0.853793*	3.71837 5.06585	1.78559		5.55782 6.63545	9.32933 11.7332		0.0479758		3.77151 5.09775	603.488 736.584
sohexane		4.10365E-05	0.0479629*	457.741	0.0574725	750.257	750.257	5.74725	2.47412	3.34565	0.404115*	3.04737	0.298283		2.95356	5.74725				2.79369	353.866
n-Hexane		2.04195E-05	0.0345855*	368.033	0.0443268		568.898	4.43268		2.53555	0.291403*	2.38713	0.148424		2.12966	4.43268				2.30302	263.845
Benzene Cyclohexene		3.50444E-07 1.24257E-06	0.000321975* 0.00264325*	5.59368 37.8807	0.00226537 0.00846080		8.58218 53.8667	0.226537 0.846080			0.00271283*	0.0326762 0.225535			0.0331102 0.195828	0.226537 0.846080		0.00326423 0.0131698		0.193427 0.650253	3.98340 24.4294
Heptane, 2-Methyl-		7.05020E-07	0.0102753*	313.552	0.0190695	5 240.527	240.527	1.90695	0.503604	1.06901	0.0865752*			0.00512459	0.646980	1.90695		0.000915343		1.25997	95,4841
n-Heptane Totuene		2.21926E-06 1.28304E-07	0.0107967* 0.000596710*	205.475 16.7945	0.0191320		231.712 17.3830			1.03047	0.0909686*	1.01434		0.0161312	0.719561	1.91320		0.00285183		1.19364	99.2287
isooctane		2.94076E-06	0.0120946*	218.232	0.00449508 0.0203404		254.135			0.0682314 1.13085	0.00502763* 0.101904*	0.0672988		0.000932603 0.0213756	0.0550490 0.809199	0.449508 2.03404		0.00618691 0.000514196		0.394459 1.22484	7.32708 109.839
Octane		1.33900E-07	0.00228222*	94,9588	0.00516547	61.3634	61.3634	0.516547		0.272249	0.0192290*			0.000973280	0.158526	0.516547	0.272249	0.000517971		0.358022	23.8062
Ethylbenzene o-Xylene		4.99125E-09 1.00332E-08	8.63702E-05* 0.000231023*	4.91764 18.7038	0.000644592 0.00215215		2.84339				0.000727719*			3.62800E-05 7.29287E-05		0.0644592				0.0569058	1.09366
Isononane		1.10815E-08	0.000680035*	53.5122			8.94441 19.4534				0.00194650* 0.00572969*			7.29287E-05 8.05483E-05		0.215215 0.162665		0.00307895		0.192277 0.118382	3.37599 7.11019
Nonane		4.80905E-09	0.000352405*	39.5033	0.00100756	3 11.4960	11.4960	0.100756	0.0187858	0.0507984	0.00296921*	0.0507634	3.49557E-05	3.49557E-05	0.0256292	0.100756	0.0507984	0.000135676		0.0751269	4.17268
Decane	3 10 10 10 10 10 10 10 10 10 10 10 10 10	7.78623E-10	0.000168065*	57.7095	0.00058419	6.74232	6.74232	0.0584197	0.00933810	0.0296449	0.00141604*	0.0296393	5.65959E-06	5.65959E-06	0.0134963	0.0584197	0.0296449	4.57497E-05		0.0449234	2.51378
														建管理的							
Process Streams		131A) Blanketing Gas AP	42Loading Loss C Vent	Collins GPU In	Comb Air Comb Ven	t 1	2	3	4	7	8	10	11	12	14	17	101	102	106	107	110
Properties	Status:	Solved	Solved Unsolved	Solved	Solved Solved	Solved	Solved	Solved	Unsolved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Unsolved	Solved	Solved
Phase: Total	From Block: To Block:	SPLT-101 BGR131	- REAC-101	Choke Typ. Marcellus 1 MMBTU/Hr GPU's	REAC-100 Mix Venturi	CMPR-100 XCHG-100	XCHG-100 CP10XSeparator Dumps	MXSP-101 MXSP-100		VLVE-100 VSSL-100	- MIX-108	VSSL-100 XCHG-101	VSSL-100 XCHG-101	XCHG-101 SPI T-101	VLVE-106	MXSP-100 REAC-100		VE301 MIX-106	Vapor Recovery Header Mix Venturi	r ExsesDeHFG Ma MXSP-101	arcellus 1 MMBTU/Hr GPU's MIX-105
Property	Units					A0100-100	- ivoupaiatui Dullips	(IIAGF - 100		+50L-100	anix-100	7010-101	AGU-101	94 E 1-191	MINOF-IVI	NEA0-100	1212-100	MIA-100	INIA VENEUR	mAOF*IVI	miX-100
Temperature	°F	80	74.1259* 600*	80.2148		239.681	100		3	48.4905	74.1259*	-20	-20*	80.0000	58.7725	79.2784		85.5034		180.000	80*
Pressure Mass Flow	psig lb/h	100 0.0543526	3.16475 0* 1.25562*	280* 59859.2		1 810 1 96560.8	800 96560.8		1 86.0436	120* 430.795	3.16475 10.5794*	100 35.7207			1* 181 701	1 1837.11	788 430 795	30* 8.12472		1 30	280
Mass Fraction Vapor	%	100	100	79.6727			99.9382			99.3674	10.5794		395.074			1037.11		0.12472		206.801 100	47681.9 100
Enthalpy	MMBtu/h	-8.95957E-05	-0.00126088	-151.865	-8.0520	7 -147.980	-156.220	-0.532594	-0.0918424	-0.692319	-0.0106236		-0.670211	-0.651246	-0.230584	-0.540411	-0.692319			-0.302010	-76.4580
Vole Fraction Vapor Volecular Weight	% Ib/Ibmol	100 20.6260	100* 48.6928	77.9081 21.3137	100 10 31,9988 28,174		99,9253 21,7947			99.8311 21.7973	100* 48.6928	0 58.6112	100 20.6260		100 31.6571	100 30.7176		100 20.9392		100 23.5107	100 21.7937
Molar Flow	ibmol/h	0.00263515	0.0257866	2808.48							0.217267	0.609452						0.388014		8.79605	21.7937 2187.87
Specific Gravity		0.712159	1.68123		1.10483 0.97278	0.752513		0.922859	•		1.68123	D.636964	0.712159	0.712159	1.09303	1.06060		0.722975		0.811760	0.752479
Dynamic Viscosity Kinematic Viscosity	cP cSt	0.0107756 1.60135	0.00805872 3.23254		0.0202735 0.024995 15.2855 40.076			0.0107343 9.99058			0.00805872 3.23254	0.271216 0.425620	0.00902232 1.06422					0.0108199 4.17744		0.0120233 4.86472	0.0109690 0.568775
Thermal Conductivity	Btu/(h*ft*°F)	0.0177577	0.00998433		0.0147670 0.024765			0.0172903			0.00998433	0.0729261?								0.0209740	0.0181284
Std Vapor Volumetric Flow	MMSCFD	2.40000E-05*	0.000234855	25.5786						0.18		0.00555066	0.174449	0.174449	0.0523006	0.544694	0.18*	0.00353389		0.0801112	19.9263
Std Liquid Volumetric Flow Gross Ideal Gas Heating Value	Mbbl/d e Btu/fl^3	1.10027E-05 1244.50	0.000166425 2752.72	10.2073 1053.24			18.8616 1304.96				0.00140223 2752.72	0.00427988 3281.06	0.0799759 1244.50		0.0296583 1834.08			0.00161064 1233.18		0.0387226 1396.57	9.32008 1305.13
CpCv Ratio		1.28234	1.12322	1.35270	1.39932 1.26173		1.54725			1.29444	1.12322	1.26895	1.33591		1.18217	1.32236		1.25921		1.20511	1.33522
Compressibility		0.972374 2.38047	0.975490	0.721438 0.665474	0.999154 0.99872	4 0.926114	0.815808	0.995063	3	0.954917	0.975490	0.0358636	D.947339	0.972374	0.989901	0.998250	0.824351	0.989321		0.992130	0.921104
						7 0.386703	0.275954	14.9087	,	1.77367	6.42538	0.0251719	1.88944	2.38047	11.0840	11.9750	0.285202	6.18453		6.48120	0.830606
Mass Volume	ft^3/ib lb/ft*3		6.42538 0.155633												0.0902198						
	lb/ft*3 Btu/lb	0.420085 22835.6 1128.54	0.42556 0.155633 21294.5 2535.69	1.50269 18500.5 947.010	0.0827999 0.038936	8 2.58596 9 22650.8	3.62379 22650.8	0.0670750) 21324.5	0.563803	0.155633 21294.5 2535.69	39.7268 21088.0	0.529257	0.420085 22835.6	21857.2	0.0835072 4691.39	3.50628 22690.7	0.161694 22274.1 1118.02		0.154293 22461.9 1270.63	1.20394 22654.9

Process Streams		110	111	113	115	120	122	123	125	127	128	129	131	160	176	201	201A	201b
omposition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Unsolved	Solved	Solved	Solved	Solved	Solved	Solved
hase: Total		Marcellus 1 MMBTU/Hr GPU's	TK301-TK306			Marcellus 1 MMBTU/hr. GPU's	MIX-105	VE101	CP10XSeparator Dumps	VE111	VE121	Mix Venturi	BGR131	VE212	SPLT-100	VLVE-101	MIX-102	Marcellus 1 MMBTU/hr. GPU's
ass Fraction	To Block:	MIX-105	Vapor Recovery Header %	SPL1-100 %	MIX-108 %	MIX-105 %	VE101 %	CMPR-100 %	<u>VE111</u> %	VE121 %	SatGastoDehy %	REAC-101 %	Vapor Recovery Header %	VLVE-106 %	~	MIX-106 %	VLVE-101 %	MIX-102
riethylene Glycol		0	1.47711E-11	0.000274753	4.91805E-11	0	0	0	0	0	0	<i>,,</i>		5.33633E-11	0.000274753	0		0
)xygen		0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
Nitrogen CO2		0.593291 0.361295	0.214652 3.52071	0.587285 0.357317	0.00380052 0.123025	0.578552 0.352831	0.585829 0.357009	0.585972 0.357092	0.586334 0.357309	0.586339	0.586343 0.357314		0.640054 0.386497	0.0809673 0.324060	0.587285 0.357317	0.00548559 0.0246945	0.00548559 0.0246945	0.00515335 0.0226589
Vater		0.153602	1.41010	0.00724292	0.559848	0.210832	0.182579	0.179231	0.117586	0.116761	0.116125		0.00635820	0.363842	0.00724292	0.0240545	0.0240845	0.0142964
lethane		54.4992	56.6112	54.7325	2.95399	54.7050	54.6034	54.6166	54.6503	54.6507	54.6511		59.5479	19.6880	54.7325	1.50400	1.50400	1.42039
Ethane Propane		21.7706	22.9434 10.6374	21.5590 11.4373	19.4003 32.9521	21.2663 11.3097	21.5152 11.4185	21.5199 11.4202	21.5332 11.4273	21.5334 11.4274	21.5335 11.4274		22.9791 11,1445	27.7076 25.1602	21.5590 11.4373	3.13901 5.32763	3.13901 5.32763	2.84165 4.76976
-Butane		1.78155		1.77385	7.07265	1.76104	1.77116	1.77122	1.77231	1.77233	1.77234		1.39147	4,46228	1.77385	1.85731	1.85731	1.64547
n-Butane		4.40257	2.82236	4.39397	18.4263	4.37635	4.38930	4.38905	4.39176	4.39180	4.39183		2.89703	11.2066	4.39397	6.41284	6.41284	5.65634
-Pentane n-Pentane		1.26565		1.27763 1.56824	5.20638 6.20521	1.28901 1.59270	1.27748 1.56905	1.27690 1.56802	1.27769 1.56898	1.27770	1.27771		0.451963	3.05726	1.27763	4.28289	4.28289	3.80243
sohexane		0.742139	0.0677055	0.776624	2.74302	0.813692	0.778368	0.776979	0.777459	0.777465	1.56901 0.777470		0.427781 0.0755006	3.65005 1.62470	0.776624	6.80903 7.53566	6.80903 7.53566	6.06976 6.87515
-Hexane		0.553343		0.588575	1.95905	0.626968	0.590621	0.589161	0.589525	0.589530	0.589533		0.0375687	1.17149	0.588575	7.62427	7.62427	7.05992
lenzene		0.00835411	0.0635290		0.0304210	0.00945222	0.00891011	0.00888785	0.00889315	0.00889322	0.00889328		0.000644760		0.00817641	0.115775	0.115775	0.108394
Cyclohexene leptane, 2-Methyl-		0.0512340	0.267008 0.00123645	0.0544499 0.248149	0.178491 0.552618	0.0606129 0.304204	0.0559827 0.252885	0.0557853	0.0558196 0.249248	0.0558201 0.249250	0.0558205 0.249252		0.00228613 0.00129712		0.0544499 0.248149	0.996815 17.6259	0.996815 17.6259	0.945016 18.9400
1-Heptane		0.208105		0.239201	0.634732	0.274384	0.241664	0.239965	0.240114	0.240116	0.240117		0.00408308		0.239201	8.17345	8.17345	8.19408
foluene		0.0153666		0.0158385		0.0208764	0.0181563	0.0180021	0.0180130	0.0180131	0.0180133		0.000236058		0.0158385	0.734459	0.734459	0.751534
sooctane Octane		0.230357 0.0499271	0.000359210			0.298592	0.264906	0.263186	0.263349	0.263351	0.263353		0.00541052		0.262503	8.31469	8.31469	8.29977
Ethylbenzene		0.0499271				0.0793394 0.00371589	0.0648191 0.00301377	0.0635490	0.0635883 0.00294646	0.0635888 0.00294648	0.0635892 0.00294650		0.000246354 9.18308E-06		0.0631968	5.86118 0.318210	5.86118 0.318210	6.45475 0.355633
o-Xylene		0.00708022			0.0192249	0.0119484	0.00954507	0.00926298	0.00926860	0.00926868	0.00926874		1.84595E-05		0.00743006	1.29517	1.29517	1.47483
sononane		0.0149117			0.0364267	0.0269711	0.0210176	0.0201463	0.0201588	0.0201589	0.0201591		2.03882E-05		0.0200006	3.99262	3.99262	4.63452
Nonane Decane		0.00875104 0.00527198				0.0163008 0.0106491	0.0125736	0.0119055 0.00698246	0.0119128 0.00698678	0.0119129	0.0119130		8.84788E-06	0.0140982	0.0117918	3.07821 4.95818	3.07821 4.95818	3.62413 6.03435
Vass Flow		1b/h	ib/h	lb/h	lb/h	lb/h	lb/h	1b/h	1b/h	lb/h	lb/h	ib/h	1.40204E-00	10.00742407	1b/h	10/h	4.80010 lb/h	0.03435 Ib/h
Friethylene Glycol		0		0.264213	3.71137E-11	0	0	0	0	0	0		4.51340E-14	9.70096E-11	0.263029	0	0	0
Oxygen		0	Ŭ	0	0	0	0	0	0	0	0		0	0	0	0	0	0
Nitrogen CO2		282.893		564.756 343.610		282.928 172.544	565.820 344.816	565.819 344.811	565.819 344.807	565.819 344.807	565.819 344.807		0.000347886 0.000210071	0.147191 0.589111	562.226 342.071	0.119153 0.536394	0.119153 0.536394	0.0448366 0.197143
Nater		73.2403				103.102	176.343	173.067	113.472	112.675	112.060		3.45585E-06		6.93387	0.272713	0.272713	0.124386
Methane		25986.3		52632.9	2.22921	26752.2	52738.5	52738.2	52738.1	52738.1	52738.1		0.0323659	35.7910	52397.1	32.6687	32.6687	12.3581
Ethane Propane		10380.6		20732.0 10998.6		10399.8	20780.4	20779.8	20779.8	20779.8	20779.8		0.0124897	50.3698	20639.1	68,1829	68.1829	24.7237
-Butane		849.476		1705.80		5530.74 861.197	11028.5 1710.67	11027.5 1710.30	11027.4 1710.30	11027.4 1710.30	11027.4 1710.30		0.00605731 0.000756299	45.7390 8.11202	10949.3 1698.16	115.722 40.3429	115.722 40.3429	41.4992 14.3164
n-Butane		2099.23		4225.42		2140.15	4239.39	4238.10	4238.10	4238.10			0.00157461	20.3726	4206.49		139.294	49.2129
-Pentane		603.488				630.361	1233.85	1232.99	1232.99	1232.99	1232.99		0.000245654	5.55782	1223.11	93.0294	93.0294	33.0830
n-Pentane Isohexane		736.584 353.866		1508.08 746.832		778.875 397.917	1515.46 751.783	1514.09 750.257	1514.09 750.257	1514.09 750.257	1514.09 750.257		0.000232510 4.10365E-05		1501.33 743.486	147.900 163.683	147.900 163.683	52.8098 59.8172
n-Hexane		263.845				306.604	570.449	568.898	568.898	568.898	568.898		2.04195E-05		563,461	165.608	165.608	61.4247
Benzene		3.98340		7.86275		4.62239	8.60579	8.58218	8.58199	8.58199	8.58199		3.50444E-07	0.0331102	7.82753	2.51478	2.51478	0.943079
Cyclohexene Heptane, 2-Methyl-		24.4294				29.6413 148.764	54.0707 244.248	53.8667 240.527	53.8666	53.8666	53.8666		1.24257E-06		52.1266		21.6520	8.22209
n-Heptane		99.2287				134.181	233.410	231.712	240.527 231.712	240.527 231.712	240.527 231.712		7.05020E-07 2.21926E-06		237.561 228.995	382.855 177.537	382.855 177.537	164.787 71.2924
Toluene		7.32708	0.00108640	15.2309	0.0366578	10.2091	17.5362	17.3830	17.3827	17.3827	17.3827		1.28304E-07		15.1627	15.9533	15.9533	6.53871
sooctane Octane		109.839				146.020	255.859	254.135	254.135	254.135			2.94076E-06		251.302		180.605	72.2120
Ethylbenzene		23.8062				38.7991 1.81717	62.6053 2.91083	61.3634 2.84339	61.3634 2.84337	61.3634 2.84337	61.3634 2.84337		1.33900E-07	0.158526	60.5003 2.42998	127.312 6.91190	127.312 6.91190	56.1594 3.09418
a-Xylene		3.37599				5.84308	9.21907	8.94441	8.94431	8.94430			1.00332E-08		7.11303		28.1326	12.8317
sononane		7.11019				13.1896	20.2998	19.4534	19.4534	19.4534	19.4534		1.10815E-08		19.1472		86.7245	40.3226
Nonane Decane		4.17266 2.51378				7.97154 5.20769	12.1442 7.72147	11.4960 6.74232		11.4960 6.74232			4.80905E-09 7.78623E-10		11.2886 6.58783		66.8623 107.697	31.5317 52.5018
				0.01141 2.25%26.251	0.00102200		11214 12121	0.14202 				1.111 원 · 211 전 2 1 12	7.70023L-10	0.0104800	0.00700	107.007	107.097 2017 - 2017	02.0010
Process Streams		110	111	113	115	120	122	123	125	127	128	129	131	160	176	201	201A	201b
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Unsolved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block To Block:	: Marcellus 1 MMBTU/Hr GPU's MIX-105	TK301-TK306	DryGas SPLT-100	TK201-TK206 MIX-108	Marcellus 1 MMBTU/hr. GPU's MIX-105	MIX-105 VE101	VE101 CMPR-100	CP10XSeparator Dumps	VE111	VE121	Mix Venturi	BGR131	VE212	SPLT-100	VLVE-101	MIX-102	Marcellus 1 MMBTU/hr. GPU's
Property	Units	MIX-100	Vapor Recovery Header	3FL1-100	MIA-100	80A-105	VEIUI	CMPR-100	VE111	VE121	SatGastoDehy	REAC-101	Vapor Recovery Header	VLVE-106		MIX-106	VLVE-101	MIX-102
Temperature	°F	80	• 60*	104.397	7 55*	90*	85,1246	84.6182	100*	99.6927	99.3387		71.5321	62.8813	104.397	64.0691	83.9892	90
Pressure	psig	280		788		280	280	278	800*	798	793			30	788	30*	280	280
Mass Flow Mass Fraction Vapor	15/h %	47681.9					96584.6	96560.8		96500.3	96499.7		0.0543526		95733.2		2172.12	870.048
Enthalpy	™ MMBtu/n	-76.4580					99.9894 -154.745	100 -154.723		100 -155.820			100 -8.95957E-05		100 -153.850		0.00574008	0 -0.851561
Mole Fraction Vapor	%	100					99,9955	100		100.020			-0.0000/100		100		0.0206123	-0.001301
Molecular Weight	lb/lbmol	21.793					21.7979	21.7947		21.7976			20.6260		21.7973		78.1798	80.7288
Molar Flow Specific Gravity	lbmol/h	2187.87				2243.03	4430.90	4430.46		4427.11	4427.07		0.00263515		4391.97	27.7836	27.7836	10.7774
Dynamic Viscosity	с₽	0.0109690				0.752766 0.0111304		0.752513 0.0110400	0.752611 0.0126421	0.752612 0.0126323	0.752613 0.0126115		0.712159 0.0105017		0.752603			0.645775 0.255305
Kinematic Viscosity	cSt	0.568775	5 10.9675	0.224986	5 3.98046	0.590723		0.583061	0.217915	0.218164	0.219163		11.4980		0.224986			0.395720
Thermal Conductivity	Btu/(h*ft**F)	0.0181284				0.0185309		0.0183067	0.0213769	0.0213567	0.0213182		0.0170653	0.0132309	0.0214439			0.0647197
Std Vapor Volumetric Flow Std Liquid Volumetric Flow	MMSCFD Mbbl/d	19.9263				20.4287	40.3550	40.3510		40.3204	40.3201		2.40000E-05		40.0004		0.253043	0.0981567
ora cidara Aorai, ing Linda		1305.13				9.54399 1305.04	18.8641 1305.09	18.8616 1304.96		18.8575 1305.91			1.10027E-05 1244.50		18.7237 1307.30	0.233779 4310.00	0.233779 4310.00	0.0926553 4444.21
Gross Ideal Gas Heating Value		1.3352				1.32595	1.33039	1.33010		1.54728	1.54569		1.25671	1.19369	1.52736		1.20676	1.19892
Gross Ideal Gas Heating Value CpCv Ratio																		
CpCv Ratio Compressibility	540 ML	0.921104	4 0.995675				0.923616	0.923937		0.816396			0.996010		0.824351	0.188905	0.0987220	0.100135
CpCv Ratio Compressibility Mass Volume	ft^3/lb lb/ft^3	0.921104 0.830600	4 0.995675 5 16.8845	0.285202	7.88349	0.850148	0.840618	0.845993	0.276115	0.276644	0.278370		17.5382	3.85081	0.285202	0.303851	0.0249998	0.0248285
CpCv Ratio Compressibility	ft^3/lb lb/ft^3 Btu/lb	0.921104	4 0.995675 5 16.8845 4 0.0592261	0.285202	2 7.88349 3 0.126847				0.276115 3.62168		0.278370			3.85081 0.259686		0.303851		

Printed		REVISED	Created	ן		
	10/29/2015	11/9/2015	11/9/2015	StZE	FSCM NO	 DWG NO
DRAWN	• •	RGWSolutions	L	11*17	C:\Users\elmsrd\AppData\Local\Microsoft\\ Temporary Internet Files\Content.Outlook\9	Wells Mackey Combine
ISSUED		Preliminary		SCALE	None	DeHy

SHEET

3 OF 3

ocess Streams		212	213A	214	214A	221	221A	225	225A	227	227A	290	301	301A	302	302A	303	303A	304	305	378
nposition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
e: Total	From Block:	MIX-106	VE212	VLVE-103	CP10XSeparator Dumps	VLVE-102	VE101	VLVE-104	VE111	VLVE-105	VE121	XCHG-101	MIX-103	Marcellus 1 MMBTU/hr. GPU's N	farcellus 1 MMBTU/Hr GPU's	VLVE-112	VLVE-107	VE301	PW Header	TK301-TK306	DehyPM
	To Block:	VE212	VLVE-108	MIX-100	VLVE-103	MIX-100	VLVE-102	MIX-100	VLVE-104	MIX-100	VLVE-105	MIX-106	VLVE-112	MIX-103	MIX-103	VE301	PW Header	VLVE-107		Truck Loading 3 Stations	MIX-103
s Fraction		%	%	<u>%</u>	%	<u>%</u>	.%	<u>%</u>	<u> </u>	<u>%</u>	<u>%</u>	%	%	%	%	%	%	%	%	%	%
thylene Glycol		5.14422E-05 D	5.585532-05	0	0	0	0	0	0	0	0	0.00331354 0	0.0001/5/42	Ű	0	0.000175742	0.000175816	0.000175816		0.000175824	0.0339
rgen ogen		-	0.000138244	-	0.000425966	0.00465901	0 00465901	0.000425508	0 000425508	0.000423453	0 000423453	0.00365557 (000160255	0.000153612	0.000166806	0.000160255	•	5	÷	3.49072E-06	1.66905E
2			0.00536828	0.00698021	0.00698021	0.0213295		0.00698503		D.00697368		0.0345890	=	0.00325202	0.00367816			0.00272679		0.00256062	
ter		2.81013	3.02000	99.8919	99.8919	13.7420	13.7420	99.8920	99.8920	99.8922	99.8922	0.0170280	99.9461	99.9484	99.9444	99.9461	99.9877	99.9877	99.9877	99.9924	
hane		1.65966	0.113046	0.0673653	0.0673653	1.27881	1.27881	0.0673141	0.0673141	0.0670594	0.0670594	1.47299	0.0286404	0.0279392	0.0294387	0.0286404	0.00456340	0.00456340	0.00456340	0.00188965	0.0001123
ane		3.16140	1.05565	0.0209819	0.0209819	2.64698	2.64698	0.0209858	0.0209858	0.0209543	0.0209543	5.85293	0.0114598	0.0108917	0.0119981	0.0114598	0.00201460	0.00201460	0.00201460	0.000930994	0.0001528
pané		5.34375	3.64375	0.00807673	0.00807673	4.48971				0.00810859			0.00576828	0.00530589	0.00617391			0.00103672		0.000534320	
Itane		1.86503			0.000364360	1.56303				0.000365701			0.000290639	0.000273013			2.08471E-05			5.47543E-06	
utane		6.44652	6.03816		0.00199421	5.39408				0.00199983			0.00158742	0.00151338			0.000234283			0.000100983	
entane entane		4.24434 6.71035		0.000276582	0.000276582 0.000361998	3.61216 5.75075				0.000278369			0.000276818	0.000262734 0.000335638			2.81692E-05 3.57416E-05			1.00491E-05 1.22344E-05	
exane		7.31338		7.20855E-05	7.20855E-05	6.40557				7.24343E-05			7.60506E-05	7.72053E-05			3.97732E-06			7.79516E-07	
exane		7.36914		3.99427E-05	3.99427E-05	6.50718				4.01674E-05			4.43847E-05	4.57163E-05			1.84842E-06			3.03574E-07	
zene		0.111893		0.000310787	0.000310787	0.0990789				0.000314040			0.000365488	0.000338833			0.000348716			0.000345732	
lohexene	Í	0.960280	1.03342	0.000179478	0.000179478	0.855887	0.855887	0.000179969	0.000179969	0.000180877	0.000180877	0.631385	0.000205457	0.000207556	0.000196734	0.000205457	0.000137255	0.000137255	0.000137255	0.000124650	0.0009803
itane, 2-Methyl-		16.8475	18.2623	3 16848E-06	3.16848E-06	15.6099	15.6099	3.17648E-06	3.17648E-06	3.19739E-06	3.19739E-06	2.97835	4.80642E-06	5.69684E-06	4.11122E-06	4.80642E-06	6.21835E-08	6.21835E-08	6.21835E-08	3.78391E-09	6.34229E
eptane		7.83405		8.98147E-06	8.98147E-06	7.12140				9.14482E-06			1.53747E-05	1.56181E-05			5.93810E-07			1.38437E-07	
lene		0.703223		0.000397399	0.000397399	0.642790				0.000402062			0.000573343	0.000561491			0.000541504			0.000535897	
ctane		7.97257		2.21423E-06	2.21423E-06	7.23137				2.22124E-06			2.68248E-06	3.05656E-06			1.73949E-08			4.28857E-10	
318 (benzene		5.59898		1.69319E-06 3.88178E-05	1.69319E-06 3.88178E-05	5.21019 0.282053				1.71151E-06 3.94554E-05			2.76550E-06	3.31478E-06			8.08702E-08			1.09661E-08 6.64309E-05	
ylbenzene vlene	1	0.303849		0.000175500	3.88178E-05 0.000175500	0.282953				0.000178165			7.17777E-05 0.000343814	7.56589E-05 0.000348793			0.000327994		6.71317E-05	0.000325439	
ylene nonane		3.80973		3.87975E-07	3.87975E-07	3.55061				3.93284E-07			7.77243E-07	9.76034E-07			2.16060E-08			3.03441E-09	
nane		2.93634	3, 18703		3.49338E-07	2.71943				3.54285E-07			7.35545E-07	9.32573E-07			3.23473E-08			6.73977E-09	
ane		4.72457	5.12924		8.44433E-08	4.10784				8.58771E-08		0.0829750		3.15040E-07					6.32235E-09		
is Flow		lb/h	ib/h	lb/h	lb/h	lb/h	ib/h	lb/h	ib/h	lb/h	lb/h	lb/h	ib/h	lb/h	lb/h	lb/h	lb/h	ib/h	lb/h	íb/h	lb/h
thylene Glycol		0.00118362	0.00118362	0	0	0	0	0	0	0	0	0.00118362	0.0339071	0	0	0.0339071	0.0339071	0.0339071	0.0339071	0.0339071	0.03390
rgen		0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0	• •	C) 0	0	
ogen		0.150121				0.00111052						0.00130580	0.0309192	0.0127784	0.0181406			0.00262842			
2		0.702869	0.113758	0.00416439		0.00508411					4.29413E-05	0.0123554	0.670649	0.270524	0.400008	0.670649		0.525877			0.0001168
er		64.6576	63.9962	59.5955	59.5955	3.27555	3.27555		0.796800			0.00608251	19283.3	8314.35	10869.2	19283.3		19283.2		19283.2	
hane		38.1866	2.39555	0.0401901	0.0401901	0.304819				0.000412927		0.526161	5.52580	2.32416	3.20152			0.880078			0.0001122
ane		72.7399	22.3700	0.0125178	0.0125178	0.630936				0.000129029		2.09071	2.21101	0.906039	1.30482	2.21101		0.388528			0.0001525
pane Itane		122.953 42.9121	77.2140 34,8000	0.00481857 0.000217377	0.00481857 0.000217377	0.372566				4.99296E-05 2.25185E-06		5.24251 2.14432	1.11292 0.0560750	0.441378 0.0227110	0.671427 0.0333547	1.11292		0.199937			0.0001099
utane		148.326	127.954		0.00118975	1.28573				1.23142E-05		7.48358	0.306271	0.125891	0.180287	0.306271	0.0451829	0.0451829			
antane		97.6569	92.0991		0.000165009	0.860997					1.71409E-06	3.71837	0.0534084	0.0218559	0.0315252					0.00193793	
entane		154.397		0.000215968	0.000215968	1.37075				2.23921E-06		5.06585	0.0665599	0.0279205	0.0385821	0.0665599		0.00689297		0.00235936	
hexane		168.272		4.30062E-05	4.30062E-05	1.52684				4.46023E-07		3.04737	0.0146730	0.00642243	0.00822658		0.000767050				
exane		169.555	167.425	2.38298E-05	2.38298E-05	1.55106	1.55106	3.19132E-07	3.19132E-07	2.47336E-07	2.47336E-07	2.38713	0.00856346	0.00380298	0.00474254	0.00856346	0.000356478	0.000356478	0.000356478	5.85433E-05	1.79386E
nzene		2.57452		0.000185416	0.000185416					1.93374E-06		0.0326762	0.0705161	0.0281863	0.0385588					0.0666732	0.003770
clohexene		22.0948		0.000107077	0.000107077	0.204010				1.11377E-06		0.225535	0.0396402	0.0172658	0.0213953						0.0009791
otane, 2-Methyl-		387.640		1.89032E-06	1.89032E-06					1.96883E-08			0.000927336	0.000473899	0.000447104			1.19925E-05			
leptane luene		180.252 16.1803		5.35834E-06 0.000237088	5.35834E-06 0.000237088	1.69746 0.153216				5.63103E-08 2.47574E-06		1.01434 0.0672988	0.00296635	0.00129922 0.0467084	0.00166326 0.0528565					2.66971E-05	3.86419E- 0.01105
octane		183,439	182.629		1.32101E-06	1.72367				1.36775E-08			0.000517551	0.000254264		0.000517551					
tane		128.825	128,667	1.01016E-06	1.01016E-06	1.24190				1.05388E-08			0.000533568	0.000275745		0.000533568					
yibenzene	ļ	6.99117		2.31587E-05	2.31587E-05					2.42951E-07		0.0108985	0.0138486	0.00629379	0.00625419						0.001300
ylene	1	28.4423		0.000104703	0.000104703						1.09707E-06		0.0663346	0.0290148	0.0270221						0.01029
nonane		87.6571		2.31466E-07	2.31466E-07		0.846324	3.10749E-09	3.10749E-09	2.42170E-09	2.42170E-09			8.11928E-05			4.16685E-06			5.85175E-07	1.63846E-
nane		67.5614		2.08415E-07	2.08415E-07	0.648205					2.18155E-09		0.000141914	7.75773E-05					6.23837E-06		
ane		108.706	108.693	5.03789E-08	5.03789E-08	0.979147	0.979147	6.76951E-10	6.76951E-10	5.28798E-10	5.28798E-10	0.0296393	4.69690E-05	2.62070E-05	1.96698E-05	4.69690E-05	5 1.21930E-06	1.21930E-06	3 1.21930E-06	1.71373E-07	1.09225E-
	ي وي من			and the second second					<u> 1975 - 19</u>						an a						78 7-2 Č
		1 - 40 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	n on an Carles.				1.555 A.1555 (2010) 4 4 6 6		:>≪3:327\52% ∧≮#2	arrandi (j. 1997) Arra	NARASINI.	in de la constancia. A A A	12-73-53-53 ***			95,894,695,695 25,854,695,695,695 26,854,695,695,695,695,695,695,695,695,695,695			an -		
cess Streams	<u> </u>	212	213A	214	214A	221	221A	225	225A	227	227A	290	301	301A	302	302A	303	303A	304	305	378
operties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
se: Total	From Block:	MIX-106 VE212	VE212 VLVE-108	VLVE-103 MIX-100	CP10XSeparator Dumps VLVE-103	VLVE-102 MIX-100	VE101 VLVE-102	VLVE-104 MIX-100	VE111 VI VE.104	VLVE-105 MIX-100	VE121	XCHG-101 MIX-106	MIX-103 VLVE-112	Marcellus 1 MMBTU/hr. GPU's I MIX-103	Marcellus 1 MMBTU/Hr GPU's MIX-103	VLVE-112 VE301	VLVE-107 RW Header	VE301	PW Header TK301-TK306	TK301-TK306 Truck Londing 3 Statione	DehyPW
perty	To Block: Units	VEGIA	A T'A K*100	MIA*100	a ra 6+1A9	MIX-IW	VLVE-IVA	MIX-100	VLVE-104	MIA-100	VLVE-105	MIA-100	*LVC-172	MIX-199	mix-103	45301	PW Header	VLVE-107	11301-11306	Truck Loading 3 Stations	MIX-103
mperature	•F	62.8813	62.8813	101.950	100	72.2580	84.6182	101.637	99.6927	101.270	99.3387	-20	85.5034	90		84.2481	85.5282	85.5034	85.5282	60	189.6
ssure	psig	30	30	45*	800		278	45*	55.0527 798	45*		-20	30	280	280		20*	30			103.0
sserie ss Flow	lb/h	2300.87			59.6600							35,7207	19293.7	8318.64	10875.2			19285.6			99.83
ss Fraction Vapor	%	7.90095	0	0.0954410	0	5.27276	Ō	0.0953758	0	0.0950445	0	0	0.0421107	0	0) (0.00185213	(0	
halpy	MMBtu/h	-2.66454	-2.43395	-0.405186	-0.405186		-0.0426312		-0.00541763		-0.00418242	-0.0408353	-131.398	-56.6125	-74.1161	-131.398		-131.384		-131.868	-0.6696
e Fraction Vapor	%	17.6076	0	0.0871349	0	9.28321	0	0.0870556	0	0.0867103	0	0*	0.0362340	0	0) C	0.00159111	C	0.00159111	0	
ecular Weight	lb/lbmol	70.5490		18.0175	18.0175							58.6112	18.0171	18.0169	18.0171	18.0171		18.0160			
ar Flow	lbmol/h	32.6138		3.31123	3.31123			0.0442715		0.0341758		0.609452	1070.86	461.713	603.606			1070.47			
cific Gravity			0.679384		0.992788		0.676358		0.992849		0.992920	0.636964		0.994905	0.996640			0.995920		0.999889	0.9680
amic Viscosity	cP		0.353861		0.703057		0.305499		0.705375		0.708048	0.271216		0.783274	0.880235			0.824394		1.13427	0.3230
ematic Viscosity	cSt		0.515655		0.708834		0.432409		0.711127		0.713771	0.425620		0.788029	0.884037	0.843526		0.828553		1.13547	0.3340
ermal Conductivity	Btu/(h*ft*°F) MMSCFD	0.007035	0.0736083	0.0004574	0.358575		0.0916545	0.000402202	0.358453	0.000244000	0.358316	0.0729261?	0 75007	0.355269	0.350904	0.352801		0.353927		0.342248	
Vapor Volumetric Flow	MMSCFD Mbbl/d	0.297035 0.246297		0.0301574 0.00409754	0.0301574 0.00409754		0.00403550 0.00243274		0.000403208 5.47846E-05		0.000311260 4.22912E-05	0.00555066 0.00427988	9.75297 1.32365	4.20511 0.570685	5.49742 0.746125			9.74944 1.32204			0.0504/
l Liquid Volumetric Flow oss Ideal Gas Heating Value		3788.02		51.3727	51.3727		2578.31	51.3725				3281.06	50.8349	50.8147	50.8514			50.4063			0.00684, \$0.7;
Cv Ratio		1.18298		1.42794								1.26895	1.41186	1.41553	1.40597	1.40930					1.52
mpressibility		0.183301	0.0148337	0.00374096								0.0358636	0.00257349	0.0145057	0.0147489			0.00221582			
	ft^3/lb	0.325986		0.0209628				0.0209546				0.0251719	0.0186969	0.0161157	0.0160877	0.0160959		0.0160993			
iss Volume				47.7035	61.9192		42.1838	47.7222				39.7268	53.4849	62.0513	62.1595			62.1146			60.37
	Ib/ft^3	3.06761	42.3725	47.7030	01.0102	0.02001															
ss Volume ss Density oss Liquid Heating Value t Ideal Gas Heating Value	lb/ft^3 Btu/lb Btu/ft^3	3.06761 20197.6 3502.04		23.3418 1.00637				23.3361 1.00613	23.3361 1.00613	23.2742 1.00349		21088.0 3028.84	11.4848 0.496806	11.0461 0.477709	11.8467 0.512394	11.4848		2.10591 0.0917359			8.6222 0.39012

															V						
	Process Streams		(726A) U Flash Fuel	Btex Vent	CombO2	To Btex U	Comb AIR	1	2	3	4	5	6	7	8	41	43	72	74	76	77
	Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
	Phase: Total														Regen Stack		U TEG Make up	E Ballance Emissions – F			
	Mole Fraction	To Block:											U Gly Flash «	Regen Stack				~			
	Triethylene Glycol	**************************************											3.98797E-05	3.39861E-09							
	Oxygen		0	0	100*	0	100*	0	0	73.0212	0	0		72.6891	3.22934	0*	0	0.683934	0	0	0
mm 1.750 Date p Mode Jack Date Dat	Nitrogen CO2				-											0*					
bar Bibble B	Water						0*									0.827008*					
nem (1997) - 1997 - 19	Methane		68.4243		-		-		68.4243	18.4600		74.3665	74.3665	2.04376	0.0907977	0*	2.84402E-11				
MAR Special Sp	Ethane						-									•					
Adde Adde Adde Adde State Table Adde State Table Adde State Table State Table State Table State Table State Table	i-Butane				-		+									•					
Name Barrel Barrel Barrel Control Cont	n-Butane				-		0*	0.195730	2.16931	0.585254	1.64785	1.64785	1.64785	0.653362	0.0290267	0*	6.39495E-09	0.00548162			
State State <th< td=""><td>i-Pentane</td><td></td><td></td><td></td><td></td><td></td><td>0*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0*</td><td></td><td></td><td></td><td></td><td></td></th<>	i-Pentane						0*									0*					
Name Submet Submet <td>Isohexane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0*</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Isohexane						0*									0*					
Address Address Address y = 0 Child Y = 0 Child <thy 0<="" =="" th=""> Child Y = 0</thy>	n-Hexane						0*									-					
back Aburg 0 0.00000 0 0 0.0000000 0 0.000000 0 0.000000 0 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.000000 0 0.0000000 0 0.0000000 0 0	Benzene Cyclobevene				_		0* 0*														
min	Heptane, 2-Methyl-				-		Ŏ*									-					
serie Serie <th< td=""><td>n-Heptane</td><td></td><td></td><td></td><td>-</td><td></td><td>0*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>	n-Heptane				-		0*									-					
and mathem Lower and a large at a problem of the state o	Toluene						•														
JAAM JAAM JAAM JAAM J	Octane						0*														
Same in the state is	Ethylbenzene				-		0*														
care 0.000000 c 100000 c 1000000 c 0.000000 c 0.0000000 c 0.00000000 c 0.00000000 c 0.00000000000000000000000000000000000	o-Xylene Isononane						0* 0*														
at fore bob	Nonane						Ŭ*									=					
might fight f	Decane Maga Flaw				-											\$					
open 1 0 0 40007 0 0 0 0 <th></th> <th>1</th> <th></th> <th>CONTRACTOR OF A MALE AND A MALE AND A</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												1		CONTRACTOR OF A MALE AND A MALE AND A							
Copen 1 1 5.572.60 0 0.0000000 p 0.00000000 0.00000000 p 0.00000000 0.00000000 p 0.00000000 0.00000000 p 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000000 0.000000000000 0.0000000000000000 0.00000000000000000000000000000000000	Oxygen		0.0007012	0.079902-09	-			_			· · · · ·						-		0.0537005	0.000140010	0.000140010
eff Single 5 1012 <td>Nitrogen</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00162204</td> <td>- O*</td> <td>-</td> <td></td> <td>0</td> <td></td> <td></td>	Nitrogen				-		•								0.00162204	- O*	-		0		
mine Hields Control Description State Control State State Control State Control State Control State Control State Control State Control State State Control State State Control State State Control State Contro State	CO2 Water						0* 0*										0				
parter District District <thdistrict< th=""> District <t< td=""><td>Methane</td><td></td><td></td><td></td><td>•</td><td></td><td>ŏ*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<></thdistrict<>	Methane				•		ŏ*										0				
wints 4.4380 0.97830 0 0.97830 0 0.97830 4.07780 1.788.6 3.10710 0.17780 0.000700 c 0.000710 0 0.000710 0 0.000710 0 0.000710 0 0.000710 0 0.000710 0 0.000710 0 0.000710 0 0.000710 0.0000710 0.0000710 0.00	Ethane				-		-								0.0402738		0				
Marke 1 0.0000 0 0.00000 0 0.000000 0 0.0000000 0 0.00000000 0 0.00000000 0 0.00000000 0 0.00000000 0 0.000000000 0 0.000000000 0 0.0000000000 0 0.00000000000 0 0.000000000000000 0 0.00000000000000000000000000000000000	Propane i Butane				-		-										-				
Wreams 15.8642 0.8007/16 0 0.8007/16 0 0.8007/16 0.8007/16 0 0.8007/16 0.8007/16 0	n-Butane				-		•										-				
shame 1 2.6499 6.45547 p 0.65597 0 0.05572 p 0 0.05552 0 0.05552 0 0.05552 0 0.05552 0 0.05552 0 0.05552 0 0.055525 0 0.055525 0 0.055525 0 0.055525 0 0.055525 0 0.055525 0 0.0555525 0 0.055555 0 0.055555 0 0.055555 0 0.055555 <th< td=""><td>i-Pentane</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	i-Pentane				-		-														
issues issues<	n-Pentané						•										-				
Setherson Operation Operation <t< td=""><td>n-Hexane</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	n-Hexane				-																
pine	Benzene						+									-	-				
Impairs 1.25420 0.428230 0 0.428234 0.421370 0.421370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.0211370 0.000020117 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.00002000 0.000020000 0.00002000000000 0.000020000000000000000000000000000000	Cyclohexene						•										-				
colame 1.2728 0.494355 0 0.494355 0 0.494355 0.271495 0.494325 0.494355 0.494355 0.0007141 0 0.0007141 0 4.4957450 4.487745 vibratame 0.000713 0.31484 0.0007143 0.34487 0.0007143 0.328812 0.011773 0.011773 0 0.00071431 0.00071431 0.4487450 0.4487450 0.4487450 0.4487450 0.4487450 0.4487450 0.4487450 0.4487450 0.00071431 0.00071441 0.00071441 0	n-Heptané				-		-														
state 0.379106 0.211641 0" 0.211641 0" 0.211641 0.012072 0.011650 0.11176 0.211641 0.0102073 0.011640 0.011773 0.011640 0.011773 0 0.00207173 0.011670 0.011670 0.011640 0.011773 0.011640 0.011773 0.011640 0.011773 0.011640 0.0102073 0.011670 0.0010773 0.011640 0.011773 0.011640 0.0102073 0.011640 0.011773 0.011640 0.0102073 0.011640 0.011773 0.00007173 0.011640 0.011773 0.00007173 0.0102073 0.0102073 0.011640 0.00007173 0.0102073 0.0102073 0.011640 0.00007173 0.0102073 0.0102073 0.0102073 0.0102073 0.0102073 0.0100073 0.00007173 0.00007173 0.0102073 0.0102073 0.0101713 0.01007173 0.01007173 0.0100773 0.00007173 0.0000773 0.0100773 0.0000773 0.0000773 0.0000773 0.0000773 0.0000773 0.0000773 0.0000773 0.0000773	Toluene						0*										-		-		
Vibelizame 0.6502713 0.311546 0" 0.324547 0" 0.324547 0.050005 2.44540 0.0044800 0.314546 0.017773 0" 0 3.33651-653 0 0.0013007 000130773 0" 0 3.33651-653 0 0.0013007 000130773 0" 0 3.33651-653 0 0.0013007 000130773 0" 0 3.33651-653 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0.0013007 0.0013007 0.0013007 0 0.0013007 0 0.0013007 0 0.0013007 0.0013007 0.0013007 0.0013007	Isooctane Octane				-		-									-	-				
memerine 0.125384 0.047109 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0° 0.047125 0.005845 0.005845 0.005845 0° 0.047125 0° 0.047125 0.017276 0.005845 0.005845 0.005845 0.005845 0° 0 4.44315455 0.188846 0.044256 0.005845 0.005845 0.005845 0° 0 4.44315455 0.188846 0.044256 0.005845 0.005845 0.005845 0.005845 0.005845 0.005845 0° 0.0058455 0° 0.0058455 0° 0.0058455 0° 0.0058455 0° 0.0058455 0° 0.0058455 0° 0.0058455 0' 0.0058455 0° 0.0058455 0° 0.0058455 0° 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 0.0058455 <th< td=""><td>Ethylbenzene</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></th<>	Ethylbenzene				-		-									-	-				
Instruct 0.0778700 0.0778820 0.0778700 <th< td=""><td>o-Xylene</td><td></td><td></td><td></td><td>0*</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></th<>	o-Xylene				0*		-										-		-		
came 0.0476802 0.0772789 0 0.0772780 0.044824 0.00285844 0.0272709 0.0028385 0" 0 2.8684E.05 0 1.06228E.08 1.0628E.08	Isononané Nonane				. 0* . 0*		•										Ŷ				
Status: Solved	Decane						-														
Status: Solved		4. C.												가지 지원한							
Status: Solved	Drocope Streams	al de l'était	(796A) II Elash Erra	Diau Varia	Comboa	To Dia	L Comh AID		<u>a</u>	<u> </u>	<u> </u>	<u> </u>	e restant	2012 - 12 12 12 12 12 12 12 12 12 12 12 12 12		1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - Mai - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1 Mai - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1	2000 - 2010 - 20	2011 - 10 - 10 - 10 - 10 - 10 - 10 - 10	<u></u>	76	
From Block: UP Reg Ph/L UBP Reg ML/L UBP Reg ML/L UBP Reg ML/L UBP Reg ML/L UBP Reg ML/L MIX-103 Km/L MIX-103 MIX-103 Km/L Km/		Statue						Solved				-	-	l Solved	0 Roluad						
To Block: SPLT-10 MIX-103 U Bex Cnd Emissions Bal E Balance Emissions SPLT-100 K CYL-1 U Gly Flash Regen Stack - U TEG Make up - - MIX-100 Blow Case MIX-100 Dia Comport - U Gly Flash Regen Stack - U Gly Flash Comport <	Phase: Total																				
Inspendium 'F 169.872 190 53* 213.842 250* 190* 169.872 218.153 104.337 104.337 104.337 104.337 104.337 104.337 104.337 104.337 104.337 104.337 103 15* 1 1 1 30 1 <				MIX-103	MIX-103		MIX-102			E Ballance Emissions							<u> </u>	<u> </u>			
essare pig 30° 1 0° 1 1° 1 1° 1° 1° 1	Property		400.000	40-		010.012		1001	104 474		404.00-	10100	10105-	100					18/**		100.00-
iss Flow iss Flow <th< td=""><td>l'emperature Pressure</td><td>-</td><td></td><td></td><td></td><td>213.042 1</td><td></td><td>190*</td><td></td><td>218.153</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>600* 1</td><td></td><td></td><td>190.038 30*</td></th<>	l'emperature Pressure	-				213.042 1		190*		218.153								600* 1			190.038 30*
Intelpy MMSI -0.343521 -0.0305317 -0.000217976 -0.58358 0.00174297 -0.424217 -0.284217 -0.0352497 -0.238320 -0.000715682 0 -0.284101 -0.644701 La Fradion Vagor % 100 100 100 100 100 100 9.151 10.00201277 0 2.16773 33.0214 29.3406 149.080 138.496 27.7951 18.159 18.0183 Laf Fradion Vagor 5.80867 9.00147 1.9723 21.7973 33.0214 29.3406 149.080 138.496 27.7951 18.159 18.0183 Laf Fradion Vagor 5.80867 0.00147 5.80867 9.00147 1.9728 4.419.48 8.1136 1.7398 1.96814 0.0026267 0 2.06976 0.021676 0.33357 0.32016 0.33357 0.33216 0.33357 0.33216 0.33357 0.322167 0.0113657 0.0114957 0.0114957 0.0114957 0.0114957 0.0114957 0.0114957 0.01149567 0.01149567 0.01149567	Mass Flow	lb/n	222.983	16.9842	40.4689		46.1071		210.532		96340.8	176.852	2 176.854	57.4532	57.4532	0.311960					
Jale Fraient Vagor % 100	Mass Fraction Vapor	·-																	÷	0	0
Ibdumit Ibdumit Ibdumit 23.3886 35.7431 19.4984 19.4984 23.3886 29.6759 21.7973 21.7973 33.0214 29.3406 149.080 138.496 27.7967 18.1898 18.0496 18.0498 18.0496 18.0496 19.0491 18.0496 21.7973 33.0214 29.3406 149.080 138.496 27.7967 0.02057 0 21.6676 0.0205492 0.011305 1.1349 0.0205492 21.9973 0.0205492 21.9973 0.0205492 21.9973 0.0205492 21.9773 0.0205492 21.9773 0.0205492 0.11305 11.3498 0.0205492 0.021435 0.0205492 21.9973 0.020400 0.011305 0.0205492 0.021435 0.020403 0.0205492 0.021435 0.025432 21.9953 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.020407 0.02040	Enthalpy Mole Fraction Vapor																0			-0.644716 0	-0.644705
becific Gravity 0.807544 1.23411 1.0483 0.67226 1.10483 0.807544 1.02463 0.752603 0.752603 0.752603 1.11372 0.959690 0.977590 0.967664 0.967864 nemic Viscosity cP 0.0114367 0.0118367 0.0208890 0.0128364 0.0128364 0.0128364 0.0224995 2.224986 0.24439 0.0214393 <	Molecular Weight	lb/ibmol	23.3886	35.7431	31.9988	19.4694	31.9988	19.4694	23,3886	29.6759	21.7973	21.7973	3 21.7973	33.0214	29.3406	149.080		27.7951	18.1599		
namic Viscosity cP 0.0119367 0.0119467 0.0126459 0.025897 0.0119367 0.0126364 0.0126364 0.0126364 0.0126364 0.0126364 0.0254322 21.1352 0.0248975 0.351397 0.322032 0.321303 0.332030 0.332102 nemati Viscosity G1 4.77603 8.78704 14.4200 18.4992 23.9389 4.77603 20.3252 0.024896 0.224986 0.224986 0.224986 0.224986 0.224986 0.126364 0.0126374 0.024874 0.351397 0.32032 0.038739 0.333039 0.333039 0.333039 0.333039 0.331677 d Vapor Volumetric Flow MMSCFD 0.0048806 0.0043277 0.0118164 0.0022214 0.00267643 0.0022214 0.0389781 0.00507166 18.8425 0.0345953 0.0144855 1.9910E-05 0 0.0045532 0.0018768 0.0024874 0.0025741 0.0065747 0.0056747 0.034595 0.034595 0.034595 0.034595 0.034595 0.034595 0.034585 0.004042813 <th0< td=""><td>Molar Flow Specific Gravity</td><td>lbmot/h</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>	Molar Flow Specific Gravity	lbmot/h																			
nematic Viscosity CSt 4.77603 8.78704 14.4200 18.4992 23.9389 4.77603 20.3542 0.224986 0.224986 0.224986 0.224986 0.224986 0.224986 0.224986 0.224986 0.224986 0.112147 0.0361642 0.033039 0.333039 0	Specific Gravity Dynamic Viscosity	сР																			
Image: Conductivity Btul(h*ff**F) 0.0204400 0.014359 0.014359 0.0153910 0.0189540 0.0204400 0.0214439 0.0214439 0.0214439 0.0214439 0.0214439 0.0246796 0.112147 0.024874 0.381363 0.3867397	Kinematic Viscosity	cSt	4.77603	8.78704	14.4200	18.4992			4.77603						41.8284	18.9959					
d Liquid Volumetric Flow Mbb/d 0.0412833 0.00163467 0.00226814 0.00276643 0.00276643 0.00397616 18.8425 0.0345895 0.00406281 0.00448595 1.89310E-05 0 0.00455352 0.000255411 0.00658747 0.00658747 tooss Ideal Gas Heating Value Btu/ft^3 1365.95 1361.96 0 157.835 1365.95 368.516 1307.30 1307.30 371.936 43.9687 4089.11 3763.06 34.5428 54.7670 50.5655 50.5656 <td>Thermal Conductivity</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0194505</td> <td></td>	Thermal Conductivity									0.0194505											
Solution 1385.95 1381.86 0 157.835 0 157.835 1385.95 368.516 1307.30 1307.30 371.936 43.9687 4089.11 3763.06 34.5428 54.7670 50.5655 50.5655 50.5655 0.0V Ratio 1.20959 1.15770 1.40000 1.30009 1.38862 1.49472 1.20959 1.52736 1.52736 1.25736 1.25815 1.07060 1.26315 1.51267 1.52899 1.52869 0.999454 0.999454 <td></td>																					
1.20959 1.15770 1.40000 1.30009 1.38862 1.49472 1.20959 1.30550 1.52736 1.52736 1.29753 1.26815 1.07060 1.26315 1.51267 1.52889 1.52736 Impressibility 0.991717 0.999910 0.991023 0.999959 0.0816027 0.991717 0.999464 0.824351 0.824351 0.824352 0.98882 0.998945 0.0106115 0.998800 0.00194923 0.000672034 0.00191354 ass Volume ft^3/lb 6.0921 1.5803 1.5169 1.8603 0.285202 0.285202 0.285202 0.285202 0.285064 0.0104115 0.098455 0.01064555 0.0106455 0.016455	Gross Ideal Gas Heating Value						0.00270043														
ft%3/lb 6.40921 12.3029 11.6880 23.4328 15.1629 1.86175 6.40921 15.6083 0.285202 0.285202 0.285203 12.9120 26.3456 0.0143964 26.0321 0.0164855 0.0165660 <t< td=""><td>CpCv Ratio</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.25615</td><td>5 1.07060</td><td>)</td><td></td><td></td><td></td><td></td></t<>	CpCv Ratio														1.25615	5 1.07060)				
ass Density Ib/ft^3 0.156025 0.0812815 0.0855576 0.0426753 0.0659506 0.537129 0.156025 0.0640684 3.50628 3.50628 0.0774476 0.0379569 69.4616 0.0384141 60.6595 60.3647 60.3660 ross Liquid Heating Value Btu/lb 22065.5 14030.2 0 2111.66 0 2111.66 22065.5 4691.77 22690.7 22690.7 22690.7 4147.59 161.374 10144.1 10037.8 2.89984 91.8986 5.38992 5.38992	Compressibility Mass Volume	fl^3/lb																			
ross Liquid Heating Value Btu/lb 22065.5 14030.2 0 2111.66 0 2111.66 22065.5 4691.77 22690.7 22690.7 22690.7 4147.59 161.374 10144.1 10037.8 2.8984 91.8986 5.38992 5.38992	Mass Density																				
at loteal uses mealing value biumthold 1187.14 1187.14 1187.14 1187.14 1187.14 1187.14 339,433 15.0799 3739,83 3437.92 3.13772 4.12706 0.246195 0.246195	Gross Liquid Heating Value		22065.5	14030.2	! O) 2111.66	0	2111.66	22065.5	4691.77	22690.7	22690.7	22690.7	4147.59	161.374	10144.1	10037.8	2.89984	91.8986	5.38992	5.38992
	INet Ideal Gas Heating Value	Btu/ft^3	1241.73	1242.85	> 0	101.897	0	101.897	1241.73	335.004	1187.14	1187.14	a 1187.14	339.433	15.0799	3739.83	3437.92	3.13772	4.12706	0.246195	0.246195

 \mathbf{V}

rocess Streams		(726A) U Flash Fuel	Btex Vent	CombO2	77	170	173	175	370	713	714	715	716	718	719	720	721	722	723
mposition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
se: Total	From Block: To Block:	U BP Reg SPLT-101	U Btex Cond MIX-103		Blow Case MIX-100	SatGastoDehy U DeHy Glycol Contact	Emissions Bai ExsesDeHFG	SPLT-100 DryGas	MIX-100 DehyPW	SPLT-101 MIX-102	U DeHy Glycol Contact U Gly Cross Ex	U DeHy Glycol Contact U GLY Rflx Colls	•	U Gly Pump U Gly Cross Ex	U GLY Rfix Colls VLVE-103	VLVE-103	U Giy Reb II Giv Recen	U Gly Regen U Gly Reb	U Gly Regen U Gly Rejen Cond
le Fraction		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
ethylene Glycol		0.00249749	1.24442E-08		1.83046E-05	0			0.00407638		3.98798E-05	69.2337	91.1617	91.1617	69.2337	69.2337	6.38362		0.00277830
ygen rogen		0.397315	0 0.0121854	100*	0 1.11528E-07	0 0.456242	0 0.406594	0 456069	0 1.07392E-07	0 0.397315	0 0,456968	0 0.00286450	0 1.40194E-15	0 1.40194E-15	0.00286450	0	2 600955 12	0 5.87376E-13	0.000664619
2		0.273864	0.225628		4.97775E-05	0.176975	0.280260		4.79314E-05		0.176975	0.0426771	1.48834E-10	1.48834E-10	0.0426771			9.74303E-09	0.012336
ater		2.27953	59.5949	O*	99.9942	0.140505	0	0.00876346	99.9903	2.27953	0.00876346	26.1189	8.83413	8.83413	26.1189	26.1189	93.5446		97.790
ethane		68.4243	7.48333		0.000131133	74.2570	70.0223		0.000126270	68.4243	74,3665	1.74778	2.84402E-11	2.84402E-11	1.74778			5.53045E-09	0.40819
nane opane		16.3752 6.65575	5.63741 4.22546		9.51359E-05 4.67686E-05	15.6101 5.64889	16.7576 6.81119		9.16077E-05 4.50342E-05	16.3752 6.65575	15.6283 5.65369	1.06467 0.651900	5.46999E-10 2.09258E-09	5.46999E-10 2.09258E-09	1.06467 0.651900			5.15517E-08 1.37435E-07	0.307504 0.23047
utane		0.781318	0.606593		3.00481E-06	0.664682	0.799565		2.89338E-06		0.665239	0.0778551	6.37780E-10	6.37780E-10	0.0778551			3.50845E-08	0.0330833
Butane		2.16931	2.39232		3.00744E-05	1.64707	2.21997		2.89591E-05	2.16931	1.64785	0.281135	6.39495E-09	6.39495E-09	0.281135			2.90081E-07	0.130487
entane Pentane		0.580728 0.784940	1.09443 1.76977		7.09893E-06 1.48912E-05	0.386023 0.474030	0.594290 0.803271		6.83566E-06 1.43389E-05		0.385993 0.473791	0.0973250 0.149084	1.41637E-08 3.54870E-08	1.41637E-08 3.54870E-08	0.0973250 0.149084			4.48164E-07 1.03272E-06	0.0596909 0.0965265
hexane		0.360148	1.13716		5.21509E-06	0.196657	0.368559		5.02168E-06		0.196440	0.0791989	5.70455E-08	5.70455E-08	0.0791989			1.36278E-06	0.0620196
lexane		0.296894	1.12803		3.90295E-06	0.149120	0.303827	0.148875	3.75821E-06	0.296894	0.148875	0.0718293	8.72558E-08	8.72558E-08	0.0718293			1.90165E-06	0.0615210
nzene		0.0275097	1.37606		0.000905150	0.00248173	0.0281521	0.00228165			0.00228165	0.0300903	8.05305E-05	8.05305E-05	0.0300903	0.0300903		0.000459097	0.0756199
clohexene ptane, 2-Methyl-		0.0879418 0.122538	2.09016 1.03716		0.000223491 1.03933E-06	0.0148125 0.0475634	0.0899955 0.125400		0.000215202 1.00078E-06		0.0144486 0.0473523	0.0571187 0.0424893	4.35409E-05 6.50289E-07	4.35409E-05 6.50289E-07	0.0571187 0.0424893	0.0571187		0.000280442 9.05869E-06	0.114132 0.0565634
leptane		0.132338	0.887605		7.23053E-07	0.0522344	0.135429		6.96238E-07		0.0520344	0.0419691	2.65405E-07	2.65405E-07	0.0419691			4.25248E-06	0.0484072
uene		0.0475607	3.93898		0.00224947	0.00426149	0.0486714	0.00374694			0.00374694	0.0773276		0.000751737	0.0773276	0.0773276		0.00342658	0.216247
octane tane		0.119122 0.0348194	0.745478 0.389916		6.91160E-07 7.37929E-07	0.0502543 0.0121344	0.121904 0.0356326	0.0500913 0.0120593	6.65528E-07		0.0500913	0.0360538	1.83498E-07	1.83498E-07	0.0360538			3.18149E-06 6.22802E-06	0.0406561
lylbenzene		0.00595473	0.677040		0.000229693	0.000604971		0.000521149			0.0120593 0.000521149	0.0139559 0.0127148		5.18230E-07 0.000290537	0.0139559 0.0127148	0.0139559		0.00111662	0.0212650 0.0370690
(ylene		0.0201203	3.15438	0*	0.00181862	0.00190304	0.0205901	0.00152551			0.00152551	0.0584205	0.00296430	0.00296430	0.0584205	0.0584205	0.0449930		0.17318
nonane		0.0102541	0.155407		2.39523E-07	0.00342614	0.0104936	0.00339916			0.00339916	0.00479288		4.38828E-07	0.00479288			4.51773E-06	0.00847549
nane cane		0.00650740 0.00350760	0.126321 0.114300		2.99602E-07 1.43934E-07	0.00202468	0.00665937 0.00358952	0.00200405 0.00105423			0.00200405 0.00105423	0.00352125 0.00263737	7.23081E-07 2.60352E-06	7.23081E-07 2.60352E-06	0.00352125 0.00263737			6.46988E-06 1.75302E-05	0.00688926
ss Flow		ib/h	lb/h	lb/h	1.43934E-07	ib/h	10/00000000000000000000000000000000000	0.00103423	1.38390E-07	lb/h	lb/h	ib/h	2.00352E-06	2.00352E-06 ib/h	ib/h	0.00263737 ib/h	9.45216E-05	1.75502E-05	
sthylene Glycol		0.0357572	8.87998E-09	0*	0.000146610	0	0	0.264213	0.0339071	0.00199665	0.264699	3124.59	3124.86	3124.86	3124.59	3124.59	42.4191	3166.97	0.036353
ygen		0	0	40.4689*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
rogen)2		1.06113 1.14908	0.00162204 0.0471838		1.66634E-07 0.000116840	565.819 344.807	1.00188 1.08491		1.66634E-07 0.000116840		565.795 344.242	0.0241155 0.564449		8.96442E-15 1.49512E-09	0.0241155 0.564449			4.48360E-12 1.16838E-07	0.0016222 0.047305
iter		3.91520	5,10157	0* 0*	96.0789	112.060	1.00491	6.96508	99.7754		6.97788	141.410	1.49512E-09 36.3271	36.3271	141.410	141.410	74.5696		153,49
thane		104.652	0.570453	0*	0.000112201	52738.1	98.8086		0.000112201	5.84370	52729.7	8.42639	1.04143E-10	1.04143E-10	8.42639	8.42639		2.41755E-08	0.570570
ane		46.9433	0.805477		0.000152572	20779.8	44.3220		0.000152572		20770.1	9.62091	3.75433E-09	3.75433E-09	9.62091			4.22383E-07	0.80563
opane utane		27.9808 4.32950	0.885368		0.000109992 9.31476E-06	11027.4 1710.30	26.4184 4.08774		0.000109992 9.31476E-06		11018.8 1708.94	8.63893 1.35992		2.10622E-08 8.46135E-09	8.63893 1.35992			1.65134E-06 5.55651E-07	0.885482 0.167540
Butane		12.0208	0.660716		9.32290E-05	4238.10	11.3495		9.32290E-05		4233.19	4.91066		8.48410E-08	4.91066			4.59416E-06	0.66081
entane		3.99456	0.375208		2.73170E-05	1232.99	3.77151		2.73170E-05		1230.88	2.11026		2.33256E-07	2.11026			8.81071E-06	0.37523
Pentane phexane		5.39924 2.95891	0.606738		5.73021E-05 2.39694E-05	1514.09	5.09775		5.73021E-05 2.39694E-05		1510.86	3.23255	5.84419E-07	5.84419E-07	3.23255			2.03029E-05	0.60679
Hexane		2.43922	0.461910		1.79386E-05	750.257 568.898	2.79369 2.30302		1.79386E-05		748.205 567.038	2.05109 1.86024	1.12210E-06 1.71634E-06	1.12210E-06 1.71634E-06	2.05109 1.86024			3.20003E-05 4.46539E-05	0.46567 0.46192
nzene		0.204866	0.510749		0.00377094	8.58199	0.193427		0.00377094		7.87721	0.706362		0.00143583	0.706362	0.706362		0.00977160	0.51466
clohexene		0.688710	0.815843		0.000979142	53.8666	0.650253		0.000979142		52.4574	1.41005		0.000816391	1.41005	1.41005		0.00627714	0.81686
ptane, 2-Methyl- Ieptane		1.33449 1.26424	0.562954 0.422620		6.33199E-06 3.86419E-06	240.527 231.712	1.25997 1.19364		6.33199E-06 3.86419E-06		239.069 230.449	1.45860 1.26383	1.69554E-05 6.07033E-06	1.69554E-05 6.07033E-06	1.45860 1.26383	1.45860		0.000281958	0.56296 0.42262
luene		0.417788	1.72456		0.0110543	17.3827	0.394459	15.2309	0.0110543		15.2589	2.14120		0.0158100		2.14120			1.73604
octane		1.29728	0.404635		4.21081E-06	254.135	1.22484		4.21081E-06		252.897	1.23768	4.78447E-06	4.78447E-06	1.23768	1.23768		9.90261E-05	0.404639
tane		0.379196	0.211641		4.49574E-06	61.3634	0.358022		4.49574E-06		60.8843	0.479089		1.35121E-05	0.479089	0.479089		0.000193852	0.211646
nylbenzene Kylene		0.0602713	0.341546 1.59129		0.00130059 0.0102976	2.84337 8.94430	0.0569058 0.192277	2.44091 7.14504		0.00336551	2.44540 7.15818	0.405670 1.86393		0.00704060 0.0718341	0.405670	0.405670	0.0252615		0.342894 1.60197
nonane		0.125384	0.0947109		1.63846E-06	19.4534	0.118382		1.63846E-06		19.2687	0.184737	1.28468E-05	1.28468E-05	0.184737		0.000145038		0.0947126
nane		0.0795700		0*	2.04942E-06	11.4960	0.0751269	11.3394	2.04942E-06	0.00444313	11.3603	0.135724	2.11684E-05	2.11684E-05	0.135724	0.135724	0.000204939	0.000226108	0.0769867
icane		0.0475802	0.0772769	0*	1.09225E-06	6.74232	0.0449234	6.61747	1.09225E-06	0.00265684	6.62964	0.112773	8.45543E-05	8.45543E-05	0.112773	0.112773	0.000595089	0.000679644	0.0772780
										19 ³ (9 ³)	이 옷을 물건을 얻는						in er e		
ocess Streams	<u> </u>	(726A) U Flash Fuel	Btex Vent	CombO2	77	170	173	175	370	713	714	715	716	718	719	720	721	722	723
operties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
ase: Total	From Block:		U Btex Cond	-	Blow Case	SatGastoDehy	Emissions Bat	SPLT-100	MIX-100	SPLT-101		U DeHy Glycol Contact			U GLY Rfix Colls	VLVE-103	U Gly Reb	U Gly Regen	U Gly Regen
	To Block:	SPLT-101	MIX-103	MIX-103	MIX-100	U Delly Glycol Contact	ExsesDeHFG	DryGas	DehyPW	MIX-102	U Gly Cross Ex	U GLY Rfix Colls	RCYL-2	U Gly Cross Ex	VLVE-103	U Gly Flash	U Gly Regen	U Gly Reb	U Gly Rejen Cond
operty mperature	Units	169.872	190	534	100.038	00 3397	1808	104 207	480.664	100 070	101 000	400.000	101 000	040 303	407 740	(22.040	100	004.004	
essure	psig	30*	190	53* 0*	190.038 30*	99.3387 793	180* 30	104.397 788	189.664 30			100.998 793	121.808 1097	212.707 1100*	127.713 790	130.243 42*	400'	324,361	215.24
ass Flow	ib/h	222.983	16.9842	40.4689	96.1071	96499.7	206.801	96163.9	99.8375			3320.19		3161.29	3320.19	3320.19	117.311	3278.29	165.447
iss Fraction Vapor	%	100			0	100	100	100	C	100		0	0	0		0.949088	100		100
thalpy ste Fraction Vapor	MMBtu/h %	-0.343521		-0.000217976	-0.644705	-155.816			-0.669624	-0.0191819	-154.994	-8.17959		-7.19074	-9.12841	-8.12841	-0.500744		-0.88229
e Fraction Vapor lecular Weight	% lb/lbmol	23.3886	100 35.7431		18.0195	100 21.7976		100 21.7973	18.0247	100 100 23.3866	100 21.7973	0 110.479	0 138.496	0 138.496	0.0189590 110.479	3.52049 110.479	100 26.5116		100 18.9884
lar Flow	lbmol/h	9.53383	0.475175		5.33350	4427.07	8.79605		5.53891		4419.84	30.0527		22.8258	30.0527	30.0527	4.42489		8.7130
cific Gravity		0.807544	1.23411	1.10483	0.967884	0.752613	0.811760	0.752603	0.968062	0.807544	0.752603	1.08529	1.10022	1.04793			0.915375	0.980946	0.655620
namic Viscosity	cP cet	0.0119367	0.0114408		0.322102	0.0126115		0.0126364	0.323098		0.0126223	13.7219		3.60584			0.0159552		0.0126740
ematic Viscosity ermal Conductivity	cSt Btu/(h*ft*°F)	4.77603	8.78704 0.0134509		0.333104 0.386747?	0.219163 0.0213182	4.86472 0.0209740	0.224986 0.0214439	0.334073		0.221846	12.6555 0.115160		3.44416 0.113806?			18.3921 0.0189218	1.24052	19.0552 0.0155154
d Vapor Volumetric Flow	MMSCFD	0.0868306	0.00432772		0.0485755	40.3201	0.0801112	40.1804		0.00484855	40.2543	0.113160	0.207889	0.1138087	0.273709	0.273709			0.0155152
d Liquid Volumetric Flow	Mobi/d	0.0412833	0.00163467		0.00658747	18.8574	0.0387226	18.8080	0.00684288	0.00230523	18.8425	0.207000		0.192103	0.207000	0.207000	0.00770996		0.011810
oss Ideal Gas Heating Valu	ue Btu/ft^3	1365.95	1361.86	0	50.5655	1305.92	1396.57	1307.30	50.7213			2968.76		3763.06	2968.76	2968.76	313.817		122.112
xCv Ratio ompressibility		1.20959 0.991717	1.15770 0.989991	1.40000 0.999012	1.52876 0.00191354	1.54569 0.816953	1.20511	1.52736	1.52815 0.00191484			1.09619		1.07984	1.09802	1.09736	1.18265		1.3087
ass Volume	ft^3/lb	6.40921	12.3029		0.00191354	0.816953	6.48119		0.00191484		0.820558	0.219102 0.0147736		0.327352 0.0153002	0.211130 0.0149701	0.0488992 0.0494221	0.992059		0.991023 24.0836
and the second	lb/ft^3	0.156025	0.0812815		60.3660	3.59234	0.154293		60.3771			67.6882		65.3585	66.8000	20.2339	0.0541565		0.0415220
ass Density				0	5.38992	22665.2			8.62224			9901.64		10037.8	9901.64	9901.64	3722.36		1445.77
ass Density ross Liquid Heating Value et Ideal Gas Heating Value	Btu/b Btu/ft^3	22065.5	14030.2 1242.85			1185.84		1187.14	0.390121	1241.73	1187.14	2704.05	3437.92	3437.92	2704.05	2704.05	244.128	2919.26	68.0411

Process Streams		(726A) U Flash Fuel	Btex Vent	CombO2	720	721	722	723	724	725	725A	726	727	729	730	734	736	7
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Sol
Phase: Total	From Block: To Block:	U BP Reg SPLT-101	U Btex Cond MIX-103	_ MIX-103	VLVE-103 U Gly Flash		U Gly Regen U Gly Reb	U Gly Regen U Gly Rejen Cond	U Gly Rejen Cond U Gly Regen	U Gly Flash VLVE-100	VLVE-100 MIX-100	U Gly Flash	U Gly Flash U Rich Lean Ex	U Rich Lean Ex VLVE-704	U Gly Reb	U Rich Lean Ex U TEG Make up	VLVE-704	U TEG I U Giy
Mole Fraction		%	%	%	%	%	%	%	%	%	%	%	<u>%</u>	%	%	%	%	<u> </u>
Triethylene Glycol		0.00249749		0*	69.2337	6.38362	77.3941	0.00277830	0.00830130			0.00249749	72.6671	72.6671	91,1610	91.1610	72.6671	
Oxygen Nitrogen		0 0.397315	0 0.0121854	100* 0*	0 0.00286450	0 3.60985E-12	0 5.87376E-13	0.000664619	0 354005 00			0 0.397315	0	0	0	0	0	4.40
CO2		0.273864	0.225628	0*				0.0123366	9.25409E-09 3.70855E-06			0.397315	0.000202247 0.00375373	0.000202247 0.00375373	1.40207E-15 1.48848E-10	1.40207E-15 1.48848E-10	0.000202247	1.40 1.48
Water		2.27953	59.5949	0*	26.1189	93.5446	22.5908	97.7900	99.9913			2.27953	26.6579	26.6579	8.83486	8.83486	26.6579	
Methane		68.4243	7.48333	0*		3.39100E-08		0.408197	1.06298E-05			68.4243	0.124216	0.124216	2.84428E-11	2.84428E-11	0.124216	2.84
Ethane Propane		16.3752 6.65575	5.63741 4.22546	0* 0*		3.14635E-07 8.35536E-07		0.307504 0.230471	7.55951E-06			16.3752 6.65575		0.0935746 0.0701333	5.47049E-10	5.47049E-10 2.09277E-09	0.0935746 0.0701333	5.46 2.09
i-Butane		0.781318		0*		2.12762E-07		0.0330833	3.51388E-06 2.37703E-07			0.781318	0.0701333 0.0100674	0.0100674	2.09277E-09 6.37839E-10	6.37839E-10	0.0100674	2.08
n-Butane		2.16931	2.39232	0*		1.75334E-06		0.130487	2.40790E-06			2.16931	0.0397078	0.0397078	6.39554E-09	6.39554E-09	0.0397078	6.39
i-Pentane		0.580728	1.09443	0*		2.68675E-06		0.0596909	5.54415E-07			0.580728	0.0181643	0.0181643	1.41650E-08	1.41650E-08	0.0181643	1.41
n-Pentane		0.784940	1.76977	0* 0*		6.17648E-06		0.0965265	1.20761E-06			0.784940	0.0293735	0.0293735	3.54902E-08	3.54902E-08	0.0293735	3.54
Isohexane n-Hexane		0.360148 0.296894	1.13716 1.12803	0*	0.0791989	8.09780E-06 1.12603E-05		0.0620196 0.0615210	4.37377E-07 3.26394E-07			0.360148	0.0188729 0.0187212	0.0188729 0.0187212	5.70507E-08 8.72638E-08	5.70507E-08 8.72638E-08	0.0188729 0.0187212	5.70 8.72
Benzene		0.0275097	1.37606	Ō*	0.0300903		0.000459097	0.0756199	6.20122E-05			0.0275097	0.0230695	0.0230695	8.05379E-05	8.05379E-05	0.0230695	8.05
Cyclohexene		0.0879418		0*	0.0571187		0.000280442	0.114132	1.69400E-05			0.0879418		0.0347640	4.35449E-05	4.35449E-05	0.0347640	4.35
Heptane, 2-Methyl-		0.122538	1.03716	0*	0.0424893	5.24292E-05		0.0565634	8.95909E-08			0.122538	0.0172131	0.0172131	6.50349E-07	6.50349E-07	0.0172131	6.50
n-Heptane Totuene		0.132338 0.0475607	0.887605 3.93898	0* 0*	0.0419691 0.0773276	2.48178E-05 0.0172231	4.25248E-06 0.00342658	0.0484072 0.216247	4.98592E-08 0.000157093			0.132338	0.0147308 0.0663886	0.0147308 0.0663886	2.65430E-07 0.000751805	2.65430E-07 0.000751805	0.0147308	2.65 0.00
Isooctane		0.119122		Ŭ*	0.0360538		3.18149E-06	0.0406561	6.47489E-08			0.119122		0.0123720	1.83515E-07	1.83515E-07	0.0123720	
Octane		0.0348194	0.389916	0*	0.0139559		6.22802E-06	0.0212650	6.09654E-08			0.0348194		0.00647149	5.18277E-07	5.18277E-07	0.00647149	
Ethylbenzene		0.00595473		0*	0.0127148	0.00537743		0.0370690	1.53024E-05			0.00595473		0.0115104	0.000290564	0.000290564	0.0115104	0.00
o-Xylene Isononane		0.0201203 0.0102541	3.15438 0.155407	0* 0*	0.0584205	0.0449930 2.55567E-05		0.173183 0.00847549	0.000124262 1.96887E-08			0.0201203	0.0550511 0.00257949	0.0550511 0.00257949	0.00296458 4.38868E-07	0.00296458 4.38868E-07	0.0550511 0.00257949	0.0 4.34
Nonane		0.00650740		0*		3.61117E-05		0.00688926	2.42119E-08			0.00650740		0.00209702	7.23148E-07	7.23148E-07	0.00209702	7.2
Decane		0.00350760	0.114300	0*	0.00263737		1.75302E-05	0.00623360	1.16652E-08			0.00350760		0.00189900	2.60375E-06	2.60375E-06		2.6
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	ib/h	lb/h	ib/h	lb/h	lb/h	lb/h	lb/h	ib/h	lt
Triethylene Glycol		0.0357572		0* 40.4689*	3124.59 0	42.4191 0	3166.97 0	0.0363530	0.0362063	0	+	0.0357572		3124.55 D	3124.55	3124.55 0	3124.55 0	
Oxygen Nitrogen		1.06113	-	40.4669	0.0241155	-	4.48360E-12	0.00162221	7.529165-09	0	•	1.06113	•	0.00162220	0 8.96442E-15	-	-	
CO2		1.14908		ō*	0.564449		1.16838E-07	0.0473054	4.74021E-06	ő	-	1.14908		0.0473006	1.49512E-09	1.49512E-09	0.0473006	
Water		3.91520		0*	141.4 1 0	74.5696	110.896	153.498	52.3179	0	-	3.91520		137.507	36,3268	36.3268	137.507	
Methane		104.652		0*	8.42639		2.41755E-08	0.570570	4.95269E-06	0		104.652		0.570565	1.04143E-10	1.04143E-10	0.570565	
Ethane Propane		46.9433 27.9808		0* 0*	9.62091 8.63893		4.22383E-07 1.65134E-06	0.805636 0.885482	6.60177E-06 4.50018E-06	0	-	46.9433 27.9808		0.805629 0.885478	3.75433E-09 2.10622E-08	3.75433E-09 2.10622E-08	0.805629	
i-Butane		4.32950		0*	1.35992		5.55651E-07	0.167540		0	-	4.32950		0.167540	8.46135E-09		0.167540	
n-Butane		12.0208		0*	4.91066	4.50932E-06	4.59416E-06	0.660813	4.06470E-06	0	0	12.0208		0.660809	8.48410E-08	8.48410E-08	0.660809	8.4
i-Pentane		3.99456		0*	2.11026		8.81071E-06	0.375237	1.16175E-06	0	-	3.99456		0.375236	2.33256E-07	2.33256E-07	0.375236	
n-Pentane Isohexane		5.39924 2.95891		0* 0*	3.23255 2.05109		2.03029E-05 3.20003E-05	0.606797 0.465672	2.53048E-06 1.09468E-06	0	-	5.39924 2.95891		0.606795 0.465672	5.84419E-07 1.12210E-06	5.84419E-07 1.12210E-06	0.606795	
n-Hexane	1	2.43922		ŏ•	1.86024		4.46539E-05	0.461929	8.16907E-07	0	•	2.43922		0.461930	1.71634E-06		0.461930	
Senzene		0.204866	0.510749	0*	0.706362	0.00833577	0.00977160	0.514661	0.000140683	0	0	0.204866		0.515956	0.00143583	0.00143583	0.515956	
Cyclohexene		0.688710		0*	1.41005			0.816863			=	0.688710		0.817639	0.000816391	0.000816391	0.817639	
Heptane, 2-Methyl- n-Heptane		1.33449 1.26424		0* 0*	1.45860 1.26383		0.000281958 0.000116108	0.562961 0.422624	2.97225E-07 1.45100E-07	0	-	1.33449 1.26424		0.562977 0.422630	1.69554E-05 6.07033E-06		0.562977 0.422630	1.6 6.0
Toluene		0.417788		Ŭ*	2.14120			1.73604	0.000420382	0	-	0.417788		1.75143	0.0158100	0.0158100	1.75143	
Isooctane		1.29728		0*	1.23768	9.42416E-05	9.90261E-05	0.404639		0	Ó	1.29728		0.404644	4.78447E-06	4.78447E-06	0.404644	
Octane		0.379196		0*	0.479089		0.000193852	0.211646		0	-	0.379196		0.211659	1.35121E-05		0.211659	
Ethylbenzene o-Xylene		0.0602713 0.203649		0* 0*	0.405670	0.0252615 0.211363		0.342894 1.60197	4.71832E-05 0.000383148		-	0.0602713		0.349888 1.67342	0.00704060 0.0718341	0.00704060 0.0718341	0.349888 1.67342	
Isononane		0.125384		0*			0.000157885	0.0947126			-	0.203049		0.0947254	1.28468E-05		0.0947254	
Nonane		0.0795700	0.0769845	0*	0.135724	0.000204939	0.000226108	0.0769867	9.01884E-08	0	-			0.0770078	2.11684E-05	2.11684E-05	0.0770078	
Decane		0.0475802		0*		0.000595089		0.0772780	4.82046E-08	0	0			0.0773626	8.45543E-05	8.45543E-05	0.0773626	
				신 영향이										a and a second		1. 1990 - 1997 - 1997		1
Process Streams			in a company sector to a sector	an a	720	721	722	723	724	725	725A	726	72 7	729	730	734	736	7
LINGESS SUGGINS		(726A) U Flash Fuel	Btex Vent	CombO2	120			129	124							1.34		
Process Streams Properties	Status:	(726A) U Flash Fuel Solved	Btex Vent Solved	CombO2 Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Şo
	From Block:	Solved U BP Reg	Solved U Btex Cond	Solved	Solved VLVE-103	Solved U Gly Reb	U Gly Regen	Solved U Gly Regen	Solved U Gly Rejen Cond	Solved U Gly Flash	VLVE-100	Solved U Gly Flash	Solved U Gly Flash	Solved U Rich Lean Ex	Solved U Gly Reb	Solved U Rich Lean Ex	Solved VLVE-704	U TEG
Properties Phase: Total	From Block: To Block:	Solved	Solved	Solved	Solved VLVE-103	Solved U Gly Reb	U Gly Regen	Solved	Solved U Gly Rejen Cond	Solved		Solved	Solved U Gly Flash	Solved	Solved U Gly Reb	Solved	Solved VLVE-704	U TEG
Properties Phase: Total Property	From Block: To Block: Units	Solved U BP Reg SPLT-101	Solved U Btex Cond MIX-103	Solved MIX-103	Solved VLVE-103 U Gly Flash	Solved U Gly Reb U Gly Regen	U Gly Regen U Gly Reb	Solved U Gly Regen U Gly Rejen Cond	Solved U Gly Rejen Cond U Gly Regen	Solved U Gly Flash VLVE-100	VLVE-100 MIX-100	Solved U Gly Flash U BP Reg	Solved U Gly Flash U Rich Lean Ex	Solved U Rich Lean Ex VLVE-704	Solved U Gly Reb U Rich Lean Ex	Solved U Rich Lean Ex U TEG Make up	Solved VLVE-704 U Gly Regen	U TEG U Ghj
Properties Phase: Total Property Temperature	From Block: To Block: Units °F	Solved U BP Reg SPLT-101 169.872	Solved U Btex Cond MIX-103	Solved 	Solved VLVE-103 U Gly Flash 130.243	Solved U Gly Reb U Gly Regen 400*	U Gly Regen U Gly Reb 324.361	Solved U Gly Regen	Solved U Gly Rejen Cond U Gly Regen	Solved U Gly Flash VLVE-100 170.691	VLVE-100 MIX-100	Solved U Gly Flash U BP Reg 170.691	Solved U Gly Flash U Rich Lean Ex 170.691	Solved U Rich Lean Ex VLVE-704 350*	Solved U Gly Reb U Rich Lean Ex 400	Solved U Rich Lean Ex U TEG Make up	Solved VLVE-704 U Gly Regen 327.653	U TEG U Gly
Properties Phase: Total Property	From Block: To Block: Units	Solved U BP Reg SPLT-101	Solved U Btex Cond MIX-103	Solved MIX-103	Solved VLVE-103 U Gly Flash 130.243 42*	Solved U Gly Reb U Gly Regen 400* 4	U Gly Regen U Gly Reb	Solved U Gly Regen U Gly Rejen Cond 215.248 1	Solved U Gly Rejen Cond U Gly Regen 213.642 1	Solved U Gly Flash VLVE-100 170.691 42	VLVE-100 MIX-100	Solved U Gly Flash U BP Reg	Solved U Gly Flash U Rich Lean Ex 170.691 42	Solved U Rich Lean Ex VLVE-704	Solved U Gly Reb U Rich Lean Ex 400	Solved U Rich Lean Ex U TEG Make up	Solved VLVE-704 U Gly Regen	U TEG U Gly
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor	From Block: To Block: Units *F psig Ib/h %	Solved U BP Reg SPLT-101 169.872 30'	Solved U Btex Cond MIX-103 2 190 1 3 16.9842 0 100	Solved MIX-103 53* 0* 40.4689 100	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088	Solved U Gly Reb U Gly Regen 400* 4 117.311	U Gly Regen U Gly Reb 324.361 4 3278.29	Solved U Gly Regen U Gly Rejen Cond 215.248 1	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552	Solved U Gly Flash VLVE-100 170.691 42	VLVE-100 MIX-100	Solved U Gly Flash U BP Reg 170.691 42	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07	Solved U Rich Lean Ex VLVE-704 350* 39	Solved U Gly Reb U Rich Lean Ex 400 4	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97	Solved VLVE-704 U Gly Regen 327.653 2*	U TEG U Gly
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Flow Mass Fraction Vapor Enthalpy	From Block: To Block: Units °F psig Ib/h % MMBtu/h	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521	Solved U Btex Cond MIX-103 2 190 1 16.9842 0 100 -0.0350317	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0 -0.349920	Solved U Gly Flash VLVE-100 170.691 42 0	VLVE-100 MIX-100 30* 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987	Solved VLVE-704 U Gly Regen 327.653 2 ⁴ 3274.07 2.10165 -7.59414	U TEG U Ghy
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor	From Block: To Block: Units *F psig Ib/h % MMBtu/h %	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100	Solved U Btex Cond MIX-103 2 190 1 1 3 16.9842 0 100 -0.0350317 0 100	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744 100	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251 0	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100	Solved U Gly Rejen Cond U Gly Regen 1 52.3552 0 -0.349920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved U Gly Flash VLVE-100 170.691 42 0	VLVE-100 MIX-100 30* 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0	Solved U Rich Lean Ex VLVE-704 350* 3274.07 0.132441 -7.59414 0.562032	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0	Solved VLVE-704 U Gly Regen 327.653 22* 3274.07 2.10165 -7.59414 10.9704	U TEG U Giy
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Mole Craction Vapor Mole Catation Vapor	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3866	Solved U Btex Cond MIX-103 190 1 16.9842 100 -0.0350317 0 100 35.7431	Solved MIX-103 53* 0* 40.4689 100 -0.000217976 100 31.9988	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251 0 120.310	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.9684	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0 0 0.349920 0 0 0 0 18.0265	Solved U Gly Flash VLVE-100 170.691 42 0	VLVE-100 MIX-100 30* 0 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0 114.348	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 138.495	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 138.495	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348	U TEG
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor	From Block: To Block: Units *F psig Ib/h % MMBtu/h %	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100	Solved U Btex Cond MIX-103 2 190 1 16.9842 0 100 -0.0350317 0 100 5 35.7431 3 0.475175	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527	Solved U Gly Rep U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489	U Giy Regen U Giy Reb 324.361 4 3278.29 0 -7.56251 0 0 120.310 27.2486	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.9884 8.71301	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved U Gly Flash VLVE-100 170.691 42 0 0 0	VLVE-100 MIX-100 30* 0 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.53383	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0 3 114.348 28.6324	Solved U Rich Lean Ex VLVE-704 350* 3274.07 0.132441 -7.59414 0.562032	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 0 138.495 22.8237	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 0 138.495 22.8237	Solved VLVE-704 U Gly Regen 327.653 22* 3274.07 2.10165 -7.59414 10.9704	U TEG
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molear Flow	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol Ibmol/h cP	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3896 9.53383	Solved U Btex Cond MIX-103 2 190 1 100 -0.0350317 0 100 3 35.7431 1 0.475175 1 1.23411	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251 0 120.310 27.2486 0.960946	Solved U Gly Regen U Gly Rejen Cond 165.447 165.447 100 -0.882295 100 18.9864 8.71301 0.655620	Solved U Gly Rejen Cond U Gly Regen 1 52.3552 0 -0.349920 0 0 18.0265 2.90434 0.959059	Solved U Gly Flash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 30* 0 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0 114.348 28.6324 1.06797	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 138.495	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 0 138.495 22.8237	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348	U TEG
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Moler Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol Ibmol/h cP cSt	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119367 4.77603	Solved U Btex Cond MIX-103 190 16.9842 100 -0.0350317 0 100 35.7431 0.475175 1.23411 0.0114408 8 8.78704	Solved MIX-103 53* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527	Solved U Gly Rep U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251 0 120.310 27.2486 0.980946 1.21573 1.24052	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.9884 8.71301 0.655220 0.0126740 19.0552	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0 0.349920 0 0 18.0265 2.90434 0.959059 0.277058 0.0289158	Solved U Gly Flash VLVE-100 170.691 42 0 0 0 0	VLVE-100 MIX-100 30* 0 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.63383 0.807544 0.0119645 3.77060	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 -6.82108 0 138.495 22.8237 0.931278 0.792761 0.852066	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 138.495 22.8237 1.0463 2.8237 3.48226 3.33110	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348	U TEG
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Thermal Conductivity	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/bmol Ibmol/h cP cSt Btu/(h*ft**F)	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3866 9.53383 0.807544 0.0119367 4.77603 0.0204400	Solved U Btex Cond MIX-103 2 190 3 16.9842 0 100 -0.0350317 0 100 5 35.7431 3 0.475175 4 1.23411 7 0.0114408 8 8.78704 0 0.0134509	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527	Solved U Gly Rep U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0189218	U Gly Regen U Gly Reb 324.361 4 3278.29 0 -7.56251 0 0 120.310 27.2486 0.980946 1.21573 1.24052 0.113895?	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.984 8.71301 0.655620 0.0126740 19.0552 0.0155154	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0.0349920 0 18.0265 2.90434 0.059059 0.277058 0.289158 0.289158 0.3907617	Solved U Gly Flash VLVE-100 170.691 42 0 0 0 0	VLVE-100 MIX-100 30* 0 0 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119645 3.77060 0.0205130	Solved U Gly Flash U Rich Lean Ex 170.691 42 3274.07 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.117989	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 0 138.495 22.8237 0.931278 0.79276 0.79276 0.931278 0.79276 0.931278 0.79276	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 0 138.495 22.8237 1.04637 3.4825 3.33110 0.113810?	Solved VLVE-704 U Giy Regen 327.653 2° 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324	U TEG U Gly
Properties Phase: Total Property Temperature Pressure Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Thermal Conductivity	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol Ibmol/h cP cSt Btu/(h*ft**F) MMSCFD	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.386 9.53383 0.807544 0.0119367 4.77603 0.0204400 0.0204400 0.0868306	Solved U Btex Cond MIX-103 190 16.9842 100 -0.0350317 100 35.7431 0.0475175 1.23411 0.0114408 8.78704 0.0134509 0.00432772	Solved MIX-103 63* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200 0.0143567 0.0115184	Solved VLVE-103 U Gly Flash 130 243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0159258 0.0403002	U Gly Regen U Gly Reb 324.361 4 3278.29 0 0.7.56251 0 120.310 27.2486 0.990946 1.21573 1.24052 0.1138957 0.248170	Solved U Gly Regen U Gly Rejen Cond 1 215.248 1 165.447 100 -0.882295 100 18.9884 8.71301 0.655620 0.0126740 19.0552 0.0155154 0.0793545	Solved U Gly Rejen Cond U Gly Regen 1 52.3552 0 -0.349920 0 18.0265 2.90434 0.659055 0.277058 0.289158 0.3897617 0.0264516	Solved U Gly Fiash VLVE-100 170.691 42 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119645 3.77060 0.0205130 0.0205130	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex 42 3274 07 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.117899 0.260773	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773	Solved U Giy Reb U Rich Lean Ex 400 4 3160.97 0 0 -6.82108 0 138.495 22.8237 0.931278 0.792761 0.852066 0.1067997 0.207870	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 0 -7.19987 0 138.495 22.8237 1.04637 3.48226 3.33110 0.113810? 0.207870	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773	U TEG U Gh
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Std Vapor Volumetric Flow Std Liquid Volumetric Flow	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/bmol Ibmol/h cP cSt Btu/(h*ft**F)	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119367 4.77600 0.0204400 0.0968306 0.0412833	Solved U Btex Cond MIX-103 190 16.9842 100 -0.0350317 100 35.7431 0.475175 1.23411 0.0114408 8.78704 0.0134509 0.00432772 0.00163467	Solved 	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709 0.207000	Solved U Gly Rep U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0159552 18.3921 0.0159252 18.3921 0.0159253	U Gly Regen U Gly Reb 324.361 4 3276.29 0 -7.56251 0 120.310 27.2486 0.990946 1.21573 1.24052 0.1138957 0.248170 0.199794	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.984 8.71301 0.65562 0.0126740 19.0552 0.0155154 0.0793548 0.0118103	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0.0.349920 18.0265 2.90434 0.049056 0.277058 0.289158 0.3907617 0.0264516 0.000358813	Solved U Gly Fiash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.5383 0.807544 0.0119645 3.77066 0.0205130 0.0868306 0.0412833	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex 170.691 42 3274.07 0 0 -7.97293 0 0 -7.97293 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.117989 0.260773 0.200306	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773 0.200306	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 138.495 22.827 0.931278 0.792761 0.852066 0.1067997 0.207870 0.192084	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 138.495 22.8237 1.04637 3.48226 3.33110 0.1138107 0.207870 0.207870 0.192084	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773 0.200306	U TEG U Ghy
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Kinematic Viscosity Std Vapor Volumetric Flow Gross Ideal Gas Heating Value	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/Ibmol Ibmol/h cP cSt Btu/(htt**F) MMSCFD Mbbl/d	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.386 9.53383 0.807544 0.0119367 4.77603 0.0204400 0.0204400 0.0868306	Solved U Etex Cond MIX-103 190 16.9842 100 -0.0350317 0 100 35.7431 0.475175 1.23411 0.0114408 8.78704 0.00432772 0.00163467 5 1361.86	Solved MIX-103 63* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200 0.0143567 0.0115184 0.00242814	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709 0.207000 2968.76	Solved U Gly Repen U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0189218 0.0189218 0.00170996 313.817	U Gly Regen U Gly Reb 324.361 4 3278.29 0 0 -7.56251 0 120.310 27.2486 0.980946 1.21573 1.24052 0.1138957 0.248170 0.199794 3202.92	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.9884 8.71301 0.655620 0.0126740 19.0552 0.0126740 19.0552 0.0155154 0.0793545 0.0178103 122.112	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0.0349920 0 18.0265 2.90434 0.059059 0.277058 0.0289158 0.3807617 0.0264516 0.00358813 2.50.6668	Solved U Gly Flash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119645 3.77060 0.0205130 0.0205130	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex 170.691 42 3274.07 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.117889 0.260773 0.200306 3031.64	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773	Solved U Giy Reb U Rich Lean Ex 400 4 3160.97 0 0 -6.82108 0 138.495 22.8237 0.931278 0.792761 0.852066 0.1067997 0.207870	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 7.19987 0 138.495 22.8237 1.04637 3.48226 3.33110 0.113810? 0.207870 0.192084 3763.03	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773	U TEG U Gh
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Std Vapor Volumetric Flow Std Liquid Volumetric Flow Std Liquid Volumetric Flow Gross Ideal Gas Heating Value CpCv Ratio Compressibility	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol Ibmol/h cP cSt Btu/(h*ft**F) MMSCFD Mbbl/d Btu/ft*3	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119367 4.77603 0.0204400 0.0868306 0.0412833 1365.95 1.20955 0.991717	Solved U Btex Cond MIX-103 2 190 1 16.9842 1 100 -0.0350317 1 100 3 35.7431 3 0.475175 1 1.23411 7 0.0114408 8 .78704 0 0.0134509 0 0.00432772 0 .00163467 5 1.361.86 9 1.15770 7 0.9899991	Solved MIX-103 63* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200 0.0143567 0.0115184 0.00242814 0.00242814 0.0124000 0.999012	Solved VLVE-103 U Gly Flash 130 243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709 0.207000 2968.76 1.09736 0.0488992	Solved U Gly Reb U Gly Regen 400* 4 117.311 100 -0.500744 100 -0.500744 100 -0.500744 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 0.00770996 3.13.817 1.18265 0.992059	U Gly Regen U Gly Reb 324.361 4 3278.29 0 0 7.56251 0 120.310 27.2486 0.980946 1.21573 1.24052 0.1138957 0.248170 0.199794 3202.92 1.11349 0.00436957	Solved U Gly Regen U Gly Rejen Cond 215.246 1 165.447 100 -0.882295 100 18.9884 8.71301 0.655620 0.0126740 19.0552 0.0155154 0.0793545 0.0793545 0.0793545 0.0118103 122.112 1.30875 0.991023	Solved U Gly Rejen Cond U Gly Regen 1 52.3552 0 0 0 0.349220 0 0 0.4349220 0 0.277058 0 0.277058 0 0.289158 0.3907617 0.0264516 0 0.00358813 5.0.6668 0 1.56065 0 0.000654645	Solved U Gly Fiash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.5383 0.807544 0.0119645 3.77060 0.0205130 0.0205130 0.0205133 1.365.95 1.21183 0.989552	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex 2 3274 07 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12603 0.117989 0.260773 0.200306 3031.64 1.09226 0.0143880	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773 0.200306 3031.64 1.12546 0.0172935	Solved U Giy Reb U Rich Lean Ex 400 4 3160.97 0 0 -6.82108 0 135.495 22.8237 0.931278 0.792761 0.852066 0.106799? 0.207870 0.192084 3763.03 1.10719 0.00483212	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 0 -7.19887 0 138.495 22.8237 1.04637 3.48226 3.33110 0.113810? 0.207870 0.192084 376303 1.08319 0.00451825	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773 0.200306 3031.64 1.10985 0.112600	U TEG U Gly
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Std Vapor Volumetric Flow Std Liquid Volumetric Flow Gross Ideal Gas Heating Value CpCv Ratio Compressibility Mass Volume	From Block: To Block: Units *F psig Ib/h % MMBtw/h % ib/Ibmol Ibmol/h cP cSt Btw/(h*ft**F) MMSCFD Mbbl/d Btw/ft*3	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3866 9.53383 0.807544 0.0119367 4.77600 0.0204400 0.0868306 0.0412833 1365.99 1.20956 0.991711 6.40921	Solved U Btex Cond MIX-103 190 16.9842 100 -0.0350317 100 35.7431 0.475175 1.23411 0.0114408 8.78704 0.0134509 0.00432772 0.00163467 5.1361.86 1.15770 0.989991 12.3029	Solved MIX-103 63* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200 0.0143567 0.0115184 0.00242814 0 0.143060 0.939012 11.6680	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709 0.207000 2968.76 1.09736 0.0488992 0.0488992	Solved U Gly Rep U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.0159552 18.3921 0.00770996 313.817 1.18265 0.992059 18.4650	U Gly Regen U Gly Reb 324.361 4 3276.29 0 0 7.56251 0 120.310 27.2486 0.960946 1.21573 1.24052 0.138957 0.248170 0.199794 3202.92 1.11349 0.00436957 0.0163450	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.984 8.71301 0.65562 0.0126740 19.0552 0.0155154 0.0155154 0.0155154 0.0155154 0.0118103 122.112 1.30378 0.991022 2.4.0836	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0.0.349920 18.0265 2.90434 0.049056 0.277058 0.289158 0.3907617 0.02645165 0.00058813 5.0.66665 1.56085 0.000654645 0.000654645	Solved U Gly Fiash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.5383 0.807544 0.0119645 3.77066 0.0205130 0.0868306 0.0412833 1365.95 1.21163 0.989552 5.04819	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex 170.691 42 3274.07 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.0117989 0.0260773 0.0200306 303164 1.09926 0.00143880 0.0150131	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773 0.200306 3031.64 1.12546 0.0172935 0.0244728	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 138.495 22.8237 0.931278 0.792761 0.852068 0.106799? 0.207870 0.192084 3763.03 1.10719 0.00483212 0.0172168	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 -7.19987 0 138.495 22.8237 1.04637 3.48226 3.33110 0.1138107 0.207870 0.207870 0.192084 3763.03 1.08319 0.00451825 0.0153231	Solved VLVE-704 U Gly Regen 327.603 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773 0.200306 3031.64 1.10985 0.112600 0.498328	U TEG U Gly 0 0 0
Properties Phase: Total Property Temperature Pressure Mass Flow Mass Fraction Vapor Enthalpy Mole Fraction Vapor Molecular Weight Molar Flow Specific Gravity Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Std Vapor Volumetric Flow Std Liquid Volumetric Flow Std Liquid Volumetric Flow Gross Ideal Gas Heating Value CpCv Ratio Compressibility	From Block: To Block: Units *F psig Ib/h % MMBtu/h % ib/lbmol Ibmol/h cP cSt Btu/(h*ft**F) MMSCFD Mbbl/d Btu/ft*3	Solved U BP Reg SPLT-101 169.872 30' 222.983 100 -0.343521 100 23.3886 9.53383 0.807544 0.0119367 4.77603 0.0204400 0.0868306 0.0412833 1365.95 1.20955 0.991717	Solved U Etex Cond MIX-103 190 16.9842 100 -0.0350317 0.100 3.35.7431 0.475175 1.23411 0.0114408 8.78704 0.00432772 0.00183467 5.1361.86 1.15770 0.989991 12.3029 5.0.0812815	Solved MIX-103 63* 0* 40.4689 100 -0.000217976 100 31.9988 1.26470* 1.10483 0.0197627 14.4200 0.0143567 0.0115184 0.00242814 0.00242814 0.0124000 0.999012	Solved VLVE-103 U Gly Flash 130.243 42* 3320.19 0.949088 -8.12841 3.52049 110.479 30.0527 0.273709 0.207000 2968.76 1.09736 0.0488992 0.0488992 0.0488921 20.2339	Solved U Gly Repen U Gly Regen 400* 4 117.311 100 -0.500744 100 26.5116 4.42489 0.915375 0.0159552 18.3921 0.0189248 0.0403002 0.00770996 313.817 1.18265 0.992059 18.4650 0.0541565	U Gly Regen U Gly Reb 324.361 4 3278.29 0 0 -7.56251 0 120.310 27.2486 0.980946 1.21573 1.24052 0.1138957 0.248170 0.199794 3202.92 1.11349 0.00436957 0.0163450 61.1806	Solved U Gly Regen U Gly Rejen Cond 215.248 1 165.447 100 -0.882295 100 18.9884 8.71301 0.655620 0.0126740 19.0552 0.0155154 0.0793545 0.0138103 122.112 1.30876 0.91023 24.0833 0.0415220	Solved U Gly Rejen Cond U Gly Regen 213.642 1 52.3552 0 0 0.0349920 0 18.0265 2.90434 0.0459059 0.277058 0.0289158 0.0289158 0.0264516 0.00358813 5.0.6668 1.66085 0.000654645 0.0.0167161 0 5.9.8156	Solved U Gly Flash VLVE-100 170.691 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VLVE-100 MIX-100 : 30* : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Solved U Gly Flash U BP Reg 170.691 42 222.983 100 -0.343521 100 23.3886 9.5383 0.807544 0.0119645 3.77060 0.0205130 0.0205130 0.0205133 1.365.95 1.21183 0.989552	Solved U Gly Flash U Rich Lean Ex U Rich Lean Ex U Rich Lean Ex 3274.07 0 0 -7.97293 0 0 114.348 28.6324 1.06797 5.47142 5.12803 0.117889 0.260773 0.200306 3031.64 1.09926 0.0143880 0.0150131 6.66083	Solved U Rich Lean Ex VLVE-704 350* 39 3274.07 0.132441 -7.59414 0.562032 114.348 28.6324 0.260773 0.200306 3031.64 1.12546 0.0172935	Solved U Gly Reb U Rich Lean Ex 400 4 3160.97 0 -6.82108 0 138.495 22.8237 0.931278 0.792761 0.852068 0.106799? 0.207870 0.192084 3763.03 1.10719 0.00483212 0.0172168	Solved U Rich Lean Ex U TEG Make up 212.421 1 3160.97 0 0 -7.19987 0 0 138.495 22.8237 1.04637 3.48226 3.33110 0.1138109 0.207870 0.192084 3763.03 1.08319 0.00451825 0.0153231 6.5.2608	Solved VLVE-704 U Gly Regen 327.653 2* 3274.07 2.10165 -7.59414 10.9704 114.348 28.6324 0.260773 0.200306 3031.64 1.10985 0.112600	U TEG U Gly 0

		5 - <u>5</u>
738	746	
Solved	Solved	n Bitt Before North
TEG Make up	RCYL-2	
U Gly Pump %	U DeHy Glycol Contact %	
91.1617	91.1613	
0	0	
1.40194E-15 1.48834E-10	1.65265E-10	
8.83413	8.83425	
2.84402E-11 5.46999E-10	3.21486E-11 6.17823E-10	
2.09258E-09	2.36312E-09	
6.37780E-10	7.21667E-10	
6.39495E-09 1.41637E-08	7.19406E-09 1.59482E-08	
3.54870E-08	3.98416E-08	
5.70455E-08	6.40959E-08	
8.72558E-08 8.05305E-05	9.81483E-08 8.91459E-05	
4.35409E-05	4.85453E-05	
6.50289E-07	7.34148E-07	
2.65405E-07 0.000751737	3.00576E-07 0.000827120	
1.83498E-07	2.07031E-07	
5.18230E-07	5.83278E-07	
0.000290537 0.00296430	0.000317996 0.00321080	
4.38828E-07	4.94067E-07	K 3
7.23081E-07	8.12163E-07	
2.60352E-06 Ib/h	2.92429E-06 Ib/h	
3124.86	3124.85	
0	Q	教室 新聞の高い
8.96442E-15 1.49512E-09	0 1.66018E-09	- C. C.
36.3271	36.3277	A.4.1
1.04143E-10	1.17723E-10	
3.75433E-09 2.10622E-08	4.24044E-09 2.37853E-08	
8.46135E-09	9.57428E-09	K St. Tu
8.48410E-08	9.54428E-08	
2.33256E-07 5.84419E-07	2.62645E-07 6.56135E-07	
1.12210E-06	1.26078E-06	新 拉的 的
1.71634E-06	1.93060E-06	9.630 H 7
0.00143583 0.000816391	0.00158945 0.000910223	Horiza Car
1.69554E-05	1.91419E-05	的行为
6.07033E-06	6.87475E-06	
0.0158100 4.78447E-06	0.0173955 5.39805E-06	
1.35121E-05	1.52082E-05	
0.00704060	0.00770601 0.0778075	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
0.0718341 1.28468E-05	1.44640E-05	
2.11684E-05	2.37763E-05	
8.45543E-05	9.49721E-05	
738	746	
Solved	Solved	
TEG Make up	RCYL-2	
U Gly Pump	U DeHy Glycol Contact	
212.410	121.820	
1 3161.29	1097 3161.28	
0101.20	0101.20	
-7.20059	-7.35735	1. A
0 138.496	u 138.496	
22.8258	22.8259	$\mathcal{T}(f) = \{f_i\}_{i \in I}$
1.04637	1.10021	
3.48270 3.33150	13.8483 12.5989	
0.113810?	0.113863	Sector Sector
0.207889	0.207889	
0.192103* 3763.06	0.192103 3763.06	
1.08319	1.07499	
0.00461832	0.359561	
0.0153230 65.2612	0.0145732 68.6189	
10037.8	10037.8	
3437.92	3437.92	

ATTACHMENT P

Public Notice Affidavit

To Be Provided Upon Receipt of Affidavit

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Triad Hunter, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification to its Permit for its Spencer Well Pad Compressor Station off of County Route 26 near Middlebourne in Tyler County, West Virginia. (Lat. 39.5395, Long. -80.6653)

The applicant estimates the following potential *increases* in potential emissions of Regulated Air Pollutants will be:

0.85 tons of Nitrogen Oxides per year 18.07 tons of Particulate Matter per year 0.05 tons of Benzene per year

The applicant estimates the following potential *decreases* in potential emissions of Regulated Air Pollutants will be:

8.76 tons of Carbon Monoxide per year3,389 tons of Greenhouse Gases per year15.22 tons of Volatile Organics per year0.03 tons of Sulfur Dioxide per year2.67 tons of Formaldehyde per year

Startup of operation is planned to begin on or about the 30th day of February 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Rocky Roberts, Senior Vice President Triad Hunter, LLC PO Box 430 Reno, Ohio 45773