NORTHEAST NATURAL ENERGY, LLC

APPLICATION FOR GENERAL PERMIT

Campbell Well Pad Production Facility Monongalia County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-A GENERAL PERMIT

Northeast Natural Energy, LLC

Campbell Well Pad Production Facility

Monongalia County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Business Registration
- Attachment B Process Description
- Attachment C Description of Fugitive Emissions
- Attachment D Process Flow Diagram
- Attachment E Plot Plan
- Attachment F Area Map
- Attachment G Equipment Data Sheets and Registration Applicability Form
- Attachment H Air Pollution Control Device Sheets
- Attachment I Emission Calculations
- Attachment J Class I Legal Advertisement
- Attachment N Material Safety Data Sheets
- Attachment O Emissions Summary Sheets
- Attachment P Other Supporting Documentation

SECTION I

Application Form

	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTE DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov	v/daq	CO A STAT	PLICATION FOR GENERAL PERMIT REGISTRATION INSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE TIONARY SOURCE OF AIR POLLUTANTS	
			TION	CLASS I ADMINISTRATIVE UPDATE CLASS II ADMINISTRATIVE UPDATE	
	CHECK WHICH TYPE OF GENERAL PE		GISTRATIO	N YOU ARE APPLYING FOR:	
□ G20-B – H □ G30-D – N □ G33-A – S	oal Preparation and Handling ot Mix Asphalt latural Gas Compressor Stations park Ignition Internal Combustion Engines latural Gas Compressor Stations (Flare/Glycol Dehydra	ation Unit)	□ G5 □ G6 □ G6	 IO-C – Nonmetallic Minerals Processing IO-B – Concrete Batch IO-C - Class II Emergency Generator I-C – Class I Emergency Generator I-C – Class II Oil and Natural Gas Production Facility 	
	SECTION I. G	ENERAL	. INFORMAT		
 Name of applicant (as registered with the WV Secretary of State's Office Northeast Natural Energy, LLC 				 Federal Employer ID No. (FEIN): 270945493 	
3. Applicant's mailing address: 4. A			Applicant's p	physical address:	
48 Donley Street Suite 601 Morgantown, WV 26501			48 Donley Street Suite 601 Morgantown, WV 26501		
5. If Applicar N/A	nt is a subsidiary corporation, please provide the name	e of parent	corporation.		
- IF YE s amendments or - IF NO	REGISTRATION. Is the applicant a resident of the State 5 , provide a copy of the Certificate of Incorporation/C other Business Registration Certificate as Attachmen , provide a copy of the Certificate of Authority / Auth s Certificate as Attachment A .	Organizati It A.	ion / Limited F		
	SECTION II.	FACILIT	Y INFORMAT	ΓΙΟΝ	
constructe updated (ant or facility (stationary source) to be ed, modified, relocated or administratively e.g., coal preparation plant, primary crusher, etc.): /ell Pad Production Facility	Classifi	andard Industri cation cation (SIC) co		
9. DAQ Plant	D No. (for existing facilities only):			CSR13 and other General Permit numbers associated existing facilities only):	

	A: PRIMARY OPERATING SITE INFORMA	TION					
11A. Facility name of primary operating site: Campbell Well Pad	12A. Address of primary operating site:						
	Mailing: None	Physical:					
 13A. Does the applicant own, lease, have an opti IF YES, please explain: <u>Applicant ha</u> 							
the Well Pac	the Well Pad and associated equipment						
14A — For Modifications or Administrative the nearest state road;	e Updates at an existing facility, please provid	le directions to the present location of the facility from					
For Construction or Relocation permit MAP as Attachment F.	s, please provide directions to the proposed n	new site location from the nearest state road. Include a					
		City. After 0.8 miles, turn left onto US Rt. 19. Continue					
On US Rt. 19 for 1.7 miles. Turn left on WV		les. Turn left onto County Rt. 25 (Days Run Road). After of the road after1/4 mile.					
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:					
Fairview	Northing (KM): 4394.7671 Monongalia Easting (KM): 569.9746						
		Zone: <u>17</u>					
18A. Briefly describe the proposed new operation or change (s) to the facility: 19A. Latitude & Longitude Coordinate Natural gas production, separation of liquids and compression 19A. Latitude & Longitude Coordinate							
Natural gas production, separation of her		Latitude: 39.69989					
Lonaitude -80.18381							
B: 1 ST ALTERNATE OPERAT	ING SITE INFORMATION (only available for	r G20, G40, & G50 General Permits)					
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site	2					
	Mailing:	Physical:					

 Image: Image

→ IF NO, YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.

	ve Updates at an existing facility, please pro	vide directions to the present location of the facility from	
the nearest state road;			
For Construction or Relocation permits, p MAP as Attachment F.	slease provide directions to the proposed new	w site location from the nearest state road. Include a	
15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:	
	TOD. County:		
		Northing (KM): Easting (KM):	
		Zone:	
18B. Briefly describe the proposed new operation	or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):	
		Latitude:	
		Longitude:	
C: 2 ND ALTERNATE OPERATI	NG SITE INFORMATION (only available for	r G20, G40, & G50 General Permits):	
11C. Name of 2 nd alternate operating site: 12C. Address of 2 nd alternate operating site:			
	Mailing:	Physical:	
13C. Does the applicant own, lease, have an optic	3 ·		
IF YES, please explain:			
IF NO , YOU ARE NOT ELIGIBLE FOR			
	A FERMIT FOR THIS SOURCE.		
14C. —> For Modifications or Administration the nearest state road;	ve Updates at an existing facility, please pro	vide directions to the present location of the facility from	
	lease provide directions to the proposed po	white leastion from the nearest state read. Include a	
MAP as Attachment F.	slease provide directions to the proposed new	w site location from the nearest state road. Include a	
15C. Nearest city or town:	16C. County:	17C. UTM Coordinates:	
		Northing (KM): Easting (KM):	
		Zone:	
18C. Briefly describe the proposed new operation	or change (s) to the facility:	19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):	
		Latitude:	
		Longitude:	

20. Provide the date of anticipated installation or change:	21. Date of anticipated Start-up if registration is granted:
<u>1 / 15 /16</u>	<u>1/ 20 / 16</u>
If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: : // 22. Provide maximum projected Operating Schedule of activity/ac other than 24/7/52 may result in a restriction to the facility's operation	ivities outlined in this application if other than 8760 hours/year. (Note: anything
Hours per day 24 Days per week 7 Weeks p	per year <u>52</u> Percentage of operation <u>100</u>
SECTION III. ATTACHME	INTS AND SUPPORTING DOCUMENTS
23. Include a check payable to WVDEP – Division of Air Quality wit	h the appropriate application fee (per 45CSR22 and 45CSR13)
24. Include a Table of Contents as the first page of your application	
	או אמרימאבי
All of the required forms and additional information can be found un phone.	der the Permitting Section (General Permits) of DAQ's website, or requested by
25. Please check all attachments included with this permit applicati attachments listed below.	on. Please refer to the appropriate reference document for an explanation of the
ATTACHMENT A : CURRENT BUSINESS CERTIF	ICATE
X ATTACHMENT B: PROCESS DESCRIPTION	
X ATTACHMENT C: DESCRIPTION OF FUGITIVE E	MISSIONS
X ATTACHMENT D: PROCESS FLOW DIAGRAM	
X ATTACHMENT E: PLOT PLAN	
🔀 ATTACHMENT F: AREA MAP	
🗷 ATTACHMENT G: EQUIPMENT DATA SHEETS A	ND REGISTRATION SECTION APPLICABILITY FORM
X ATTACHMENT H: AIR POLLUTION CONTROL DE	VICE SHEETS
X ATTACHMENT I: EMISSIONS CALCULATIONS	
X ATTACHMENT J: CLASS I LEGAL ADVERTISEM	ENT
ATTACHMENT K: ELECTRONIC SUBMITTAL	
X ATTACHMENT L: GENERAL PERMIT REGISTRA	ATION APPLICATION FEE
ATTACHMENT M: SITING CRITERIA WAIVER	
X ATTACHMENT N: MATERIAL SAFETY DATA SH	IEETS (MSDS)
X ATTACHMENT O: EMISSIONS SUMMARY SHEE	TS
IXI OTHER SUPPORTING DOCUMENTATION NOT D	DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)
the address shown on the front page of this application. Please DO	mit Registration Application with the signature(s) to the DAQ Permitting Section, at NOT fax permit applications. For questions regarding applications or West Virginia wn on the front page of the application or call the phone number also provided on

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending or business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representatively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

FOR A CORPORATION (domestic or foreign)

I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation

FOR A PARTNERSHIP

I certify that I am a General Partner

FOR A LIMITED LIABILITY COMPANY

I certify that I am a General Partner or General Mar	lager
--	-------

FOR AN ASSOCIATION

	I certify that I am the Preside	nt or a member of the Board of Directors
--	---------------------------------	--

FOR A JOINT VENTURE

I certify that I am the President, General Partner or General Manager

FOR A SOLE PROPRIETORSHIP

I certify that I am the Owner and Proprietor

I hereby certify that (please print or type)

is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,

I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible

Signature	10/22/15 Date
Name & Title Brett Loflin - Vice President Regulatory Affairs	
(please print or type)	т., а
Signature	
(please use blue ink) Authorized Representative (if applicable)	Date
Applicant's Name	
Phone & Fax 304/241-5752	304/414-7061
Phone	Fax
Email bloflin@nne-llc.com	

SECTION II

Attachments

ATTACHMENT A

Business Registration

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

NORTHEAST NATURAL ENERGY LLC

Control Number: 99GX5

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of October 9, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of October 9, 2009

atalil E. Yann

Secretary of State

ATTACHMENT B

Process Description

Northeast Natural Energy, LLC Campbell Well Pad Attachment B Process Description

Natural gas and Produced Fluids (water) is received from five wells on this location at approximately 600 psi and pass through Gas Processing Units (one per well) to avoid ice and methane hydrate formation during subsequent pressure drops. These materials will then pass through a separator where gas and water are separated. The gas will be routed to a gathering pipeline owned and operated by others.

The Produced Water will be accumulated in three 400 BBL tanks and a single 210 BBL tank, pending truck transportation by others. Produced water will be re-used at subsequent wells or disposed of at a regional disposal facility. Flash, working and breathing losses from these tanks will be allowed to vent to atmosphere. *There is no condensate generated at this facility*.

A Process Flow Diagram depicting these features is provided in Attachment D.

There will be two gas-fired compressor engines used to drive compressors which will boost the pressure of the production gas to a pressure suitable for injection into the gathering line owned by others. No dehydration units are proposed for this facility at this time. It is important to note that the compressors and engines are anticipated to operate only for a limited time period (approximately 12-18 months) pending construction and operation of a compressor station by the company providing midstream services for Northeast Energy.

All natural gas fired equipment (GPUs and the compressor engine) use natural gas produced at the site as fuel.

40 CFR 60, Subpart OOOO requires that VOC emissions from each "storage vessel affected facility" installed after April 12, 2013 (GROUP 2) must be controlled by at least 95% by April 15, 2014 or within 60 days of installation when the VOC uncontrolled emissions exceed 6 tpy. VOC emissions from the tanks described above will be well below the 6 tpy threshold. Thus, the tanks at this facility will not be regulated under 40 CFR 60, Subpart OOOO.

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
GPU-1	1E	Gas Processing Unit	Pending Permit	1.0 MMBTU/Hr	NEW	None
GPU-2	2E	Gas Processing Unit	Pending Permit	1.0 MMBTU/Hr	NEW	None
GPU-3	3E	Gas Processing Unit	Pending Permit	1.0 MMBTU/Hr	NEW	None
GPU-4	4E	Gas Processing Unit	Pending Permit	1.0 MMBTU/Hr	NEW	None
GPU-5	5E	Gas Processing Unit	Pending Permit	1.0 MMBTU/Hr	NEW	None
CE-1	6E	CAT 3516B	Pending Permit	1380 HP	NEW	1C
CE-1	7E	CAT 3516B	Pending Permit	1380 HP	NEW	2C
T01	8E	Produced Water Tank	Pending Permit	400 BBL	NEW	None
T02	9E	Produced Water Tank	Pending Permit	400 BBL	NEW	None
Т03	10E	Produced Water Tank	Pending Permit	400 BBL	NEW	None
T03	11E	Produced Water Tank	Pending Permit	210 BBL	NEW	None
TL-1	12E	Produced Water Loading	Pending Permit	219,000 BBL/Yr.	NEW	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT C

Description of Fugitive Emissions

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

Northeast Natural Energy, LLC Campbell Well Pad Attachment C – Fugitive Emissions Data

Storage Tank and Haul Road Fugitive Emissions

Haul Road Fugitive Emissions for unpaved roads are calculated and presented in Attachment I. PM is estimated to be 32.3 tons per year and PM-10 to be 4.55 tons per year.

Produced Fluids received by this facility is accumulated in a four tanks prior to off-site shipment. Emissions from these tanks were determined by using direct measurements from produced water tanks at a nearby Northeast well pad. Uncontrolled emissions from these tanks were determined to be 0.72 tons per year of VOCs. There is no control on these emissions. *Note that there is no condensate at this facility.*

Emissions from these sources are summarized in the following fugitive emissions form and the calculations are included in the emissions summary in Attachment I.

Equipment Fugitive Emissions

As noted in the process description, Northeast plans to install various equipment at its Campbell Well Pad. This equipment will contain a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. A potential emission rate of less than 0.01 tpy of VOCs and 54.9 tpy CO_2e has been estimated.

Estimates of these emissions are included in the calculations (Attachment I) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Pigging Emission Estimates

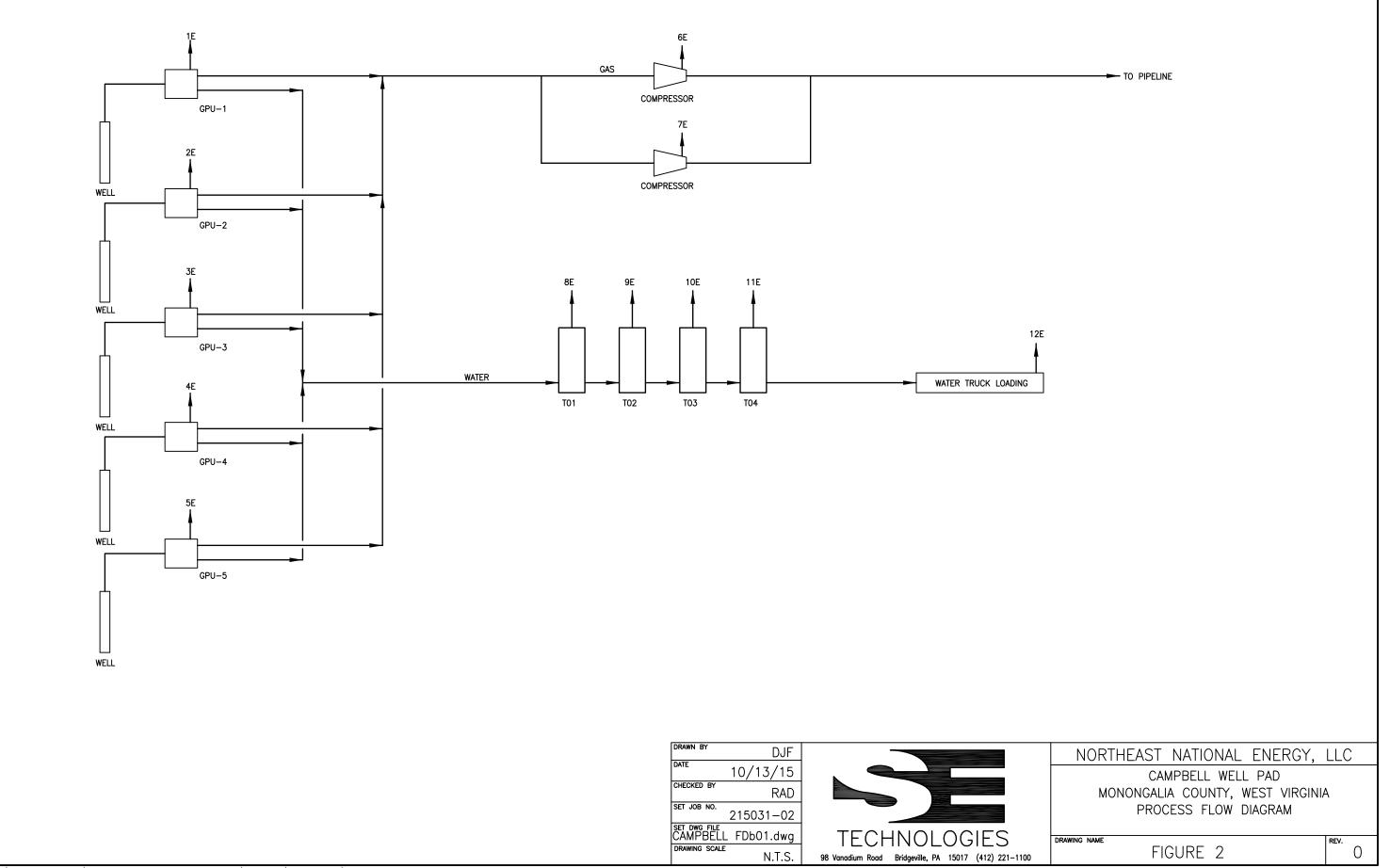
There will be no pigging operations under Northeast Natural Energy ownership/operation in association with this planned facility modification.

Facility Blowdown Emission Estimates

There will be two gas compressors at this facility that will require blowdowns to allow for routine maintenance. The volume of natural gas released per blowdown event from each unit and associated inlet separator and piping is approximately 1570 cubic feet of gas at STP (see attached calculations). There will be a maximum of 24 blow downs per compressor per year. Thus, there is a potential for 75,360 cubic feet of gas emitted from blowdowns per year (1570 x 24 x 2).

The density of this gas at STP is 0.046 pounds per cubic foot (see the Inlet Gas spreadsheet in the calculations). Thus, the mass of gas released per year is 3,467 pounds (75,360 cf x 0.046). As the percentage of VOCs in the gas (by weight) is 0.68 percent (see Inlet Gas spreadsheet in the calculations), the VOC (non-methane/non-ethane) emissions from blowdown operations are estimated at approximately 23.6 lbs (1,733 x 0.0068) or 0.01 tons per year. As the methane concentration in this gas is 93.1 % (by weight), methane emissions will be 3,228 pounds (3,467 x 0.931) per year. Using a GHG factor of 25, methane emissions from blowdowns in CO_{2e} will be 40 tons CO_{2e} (3,228 x 25[GHG factor] /2000).

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	РМ	34.89	32.3	34.89	32.3	EE
	PM-10	4.92	4.55	4.92	4.55	EE
Loading and Unloading Produced Water	VOCs	NA	<0.01	NA	<0.01	EE
Equipment Leaks	VOCs	Does Not Apply	<0.01	Does Not Apply	<0.01	EE
	CO2e	Does Not Apply	54.9	Does Not Apply	54.9	EE
Blowdowns	VOCs	N/A	0.01	N/A	0.01	EE
	CO2e	N/A	40	N/A	40	EE
Other:						


¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O_2 , and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

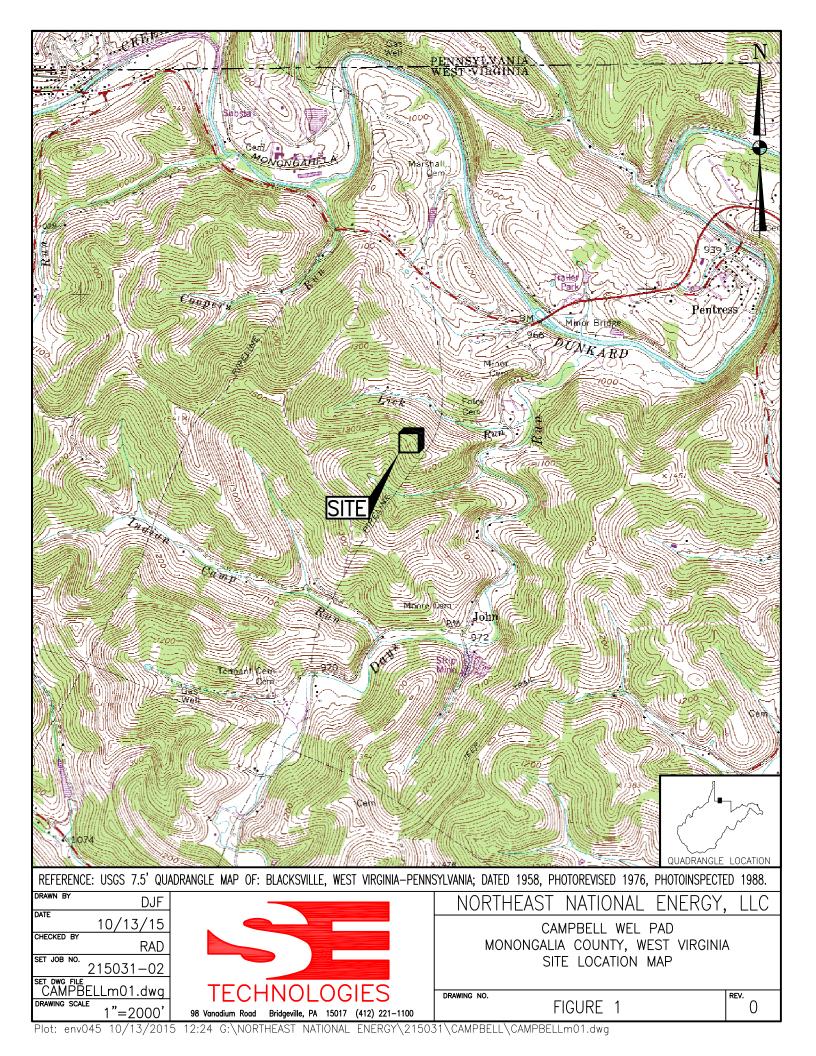
ATTACHMENT D


Process Flow Diagram

|--|

ATTACHMENT E

Plot Plan


· · · ·	10' 20' 30'	60'	90'	12
SCALE 1	<u>"=30'</u>			

7			8		9	
•			0	BILL OF MAT		
	MK NO	QTY		ITEM DESCRIP	TION	
	А	2		hit, Pride of the Hills Manu		GPU0075D-LH
				VD-NE-LH, Left Hand As hit, Pride of the Hills Manu		
	В	3	1440H30096-GPU\	VD-NE-RH, Right Hand A		GPU0075D-RH
	С	5	5000V24120ST3HL	J-ASM1		ST0017C-ASM
	D E				abrication, 12'Ø x 20'-0" HIGH abrication, 10'Ø x 15'-0" HIGH	T400-12 T210-22
	L	ľ				
• •••••••••••••••••••••••••••••••••••						
CH 160 FLOWLINES						
INSTRUMENT GAS	<					
	\searrow					
20'0)"	_				
	ં ર્ે	30, .0,				
		0″				
LINES NY DOSH						
				EDGE OF PAD		
LINES	`.	\searrow				
A X						
X S						
II II	```	`\				
		`>				
	•	/		\sim		
», ⁷	ET/			\sim		
LINES NYR® STAR	HAR DO					
	, S		Ň		\mathbf{i}	
	¥/				\backslash	
	/				\backslash	
					\backslash	
				`\ \		
	. C∕					
	WEI.					
A Q	CI WELL	ME.		/		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WE.	AD	5			
	ill HAN			/		
	(EAD	Ś Ś	¢			
		Ž Ý				
		¢/	/	AST TANK	<	
	/	/			)	
				$\backslash$	/	
	/			$\backslash$	/	
	/				/	
					/	
		/			/	
					/	
1				/ /	/	
$\sim$				/ /		
	$\backslash$					
					L EDGE OF PAD	
$\sim$				/ /		
	$\searrow$					
	$\sim$					
			$\mathbf{i}$	/		
			$\sim$ /			
			$\checkmark$			

			101 MAHOOD ROA				
			FOR: NORTHEAST NATURAL ENERGY, LLC	PROJ: CAMF	BELL WELL	PAD	
			SITE LAYOUT OVERALL PLAN VIEW				
IPRESSOR	10/19/2015	MCCOY		00415			
	10/02/2015	MCCOY	TOWN: -	SCALE	DRAWN BY: MCCOY	CHECKED: SINKUC	ISSUED FOR:
	8/19/2015	MCCOY	COUNTY: -	1" = 30'-0"	10/19/2015	10/19/2015	REVIEW
DATE BY: DRAWINGS. AFTER APPROVAL DRAWINGS SHALL . AFTER APPROVAL REFERENCES TO LETTERED		WINGS SHALL	DIR/FILE: NNE-1483-P-100.dwg	PROJ# 1483		и WG. NO. 1483-Р-100	REV.
r,	7		8	9			

# ATTACHMENT F

Area Map



# ATTACHMENT G

## **Equipment Data Sheets and Registration Section Applicability Form**

#### General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	$\square$
Section 6	Storage Vessels*	$\boxtimes$
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glyco	l
	Dehydration Reboilers	$\boxtimes$
Section 8	Pneumatic Controllers Affected Facility(NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE)**	$\boxtimes$
Section 11	Tank Truck Loading Facility ***	$\boxtimes$
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	$\boxtimes$
Section 14	Control Devices not subject to NSPS, Subpart OOOO	$\boxtimes$
Section 15	National Emissions Standards for Hazardous Air Pollutants	
	for Stationary Reciprocating Internal Combustion Engines	
	(40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	

* Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

### NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provid	Please provide the API number(s) for each NG well at this facility:						
047-061-01678							
047-061-01700							
047-061-01710							
047-061-01711							
047-061-01722							

*Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).* 

*Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.* 

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$ . The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Source ID # ¹	Status ²	Design Heat Input (mmBtu/hr) ³	Hours of Operation (hrs/yr) ⁴	Fuel Heating Value (Btu/scf) ⁵			
GPU-1	NEW	1.0 MMBTU/Hr	8760	1028 BTU/scf (HHV)			
GPU-2	NEW	1.0 MMBTU/Hr	8760	1028 BTU/scf (HHV)			
GPU-3	NEW	1.0 MMBTU/Hr	8760	1028 BTU/scf (HHV)			
GPU-4	NEW	1.0 MMBTU/Hr	8760	1028 BTU/scf (HHV)			
GPU-5	NEW	1.0 MMBTU/Hr	8760	1028 BTU/scf (HHV)			

### NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

2. Enter the Status for each boiler or line heater using the following:

EXIST Existing Equipment

REM Equipment Removed

NEW Installation of New Equipment

3. Enter boiler or line heater design heat input in mmBtu/hr.

4. Enter the annual hours of operation in hours/year for each boiler or line heater.

5. Enter the fuel heating value in Btu/standard cubic foot.

### STORAGE TANK DATA SHEET

Status ²	Content ³	Volume ⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸
NEW	Produced Water	210 BBL	10.0	1,370,500 gallons/yr	VERT	8 feet
NEW	Produced Water	400 BBL	12.0	2,609,200 gallons/yr	VERT	10 feet
NEW	Produced Water	400 BBL	12.0	2,609,200 gallons/yr	VERT	10 feet
NEW	Produced Water	400 BBL	12.0	2,609,200 gallons/yr	VERT	10 feet
	NEW NEW	NEWProduced WaterNEWProduced WaterNEWProduced WaterNEWProduced Water	NEWProduced Water210 BBLNEWProduced Water400 BBLNEWProduced Water400 BBLProduced Water400 BBLProduced Water400 BBL	NEWProduced Water210 BBL10.0NEWProduced Water400 BBL12.0NEWProduced Water400 BBL12.0Produced Water400 BBL12.0	NEWProduced Water210 BBL10.01,370,500 gallons/yrNEWProduced Water400 BBL12.02,609,200 gallons/yrNEWProduced Water400 BBL12.02,609,200 gallons/yrNEWProduced Water400 BBL12.02,609,200 gallons/yrNEWProduced Water400 BBL12.02,609,200 gallons/yr	NEWProduced Water210 BBL10.01,370,500 gallons/yrVERTNEWProduced Water400 BBL12.02,609,200 gallons/yrVERTNEWProduced Water400 BBL12.02,609,200 gallons/yrVERTNEWProduced Water400 BBL12.02,609,200 gallons/yrVERT

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

NEW Installation of New Equipment

EXIST Existing Equipment REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.

4. Enter storage tank volume in gallons.

5. Enter storage tank diameter in feet.

6. Enter storage tank throughput in gallons per year.

7. Enter storage tank orientation using the following:

VERT Vertical Tank

8. Enter storage tank average liquid height in feet.

HORZ Horizontal Tank

## NATURAL GAS-FIRED COMPRESSOR ENGINE (RICE) EMISSION UNIT DATA SHEET

Emission Unit (Source) ID No. ¹		CE	E-1	CH	CE-1		
Emission Point ID No. ²		6E		7E			
Engine Manufacturer and Model		Caterpillar 3516B		Caterpill	Caterpillar 3516B		
Manufactur	er's Rated bhp/rpm	1380 @	@ 1400	1380 @	@ 1400		
Sou	rrce Status ³	N	IS	Ň	S		
Date Installed	/Modified/Removed ⁴	Upon Recei	pt of Permit	Upon Recei	pt of Permit		
Engine Manufactu	red/Reconstruction Date ⁵	After 1	/1/2012	After 1	/1/2012		
Is this engine subj JJJJ?	ect to 40CFR60, Subpart	YI	ES	Y	ES		
Engine according to $(\text{Yes or No})^6$	Stationary Spark Ignition o 40CFR60, Subpart JJJJ?	N	0	N	0		
Is this engine subj ZZZZ? (yes or no)	ject to 40CFR63, Subpart	Ν	0	N	0		
•	Engine Type ⁷	LB	34S	LB			
	APCD Type ⁸	CA	ΑT	CA	ΑT		
г ·	Fuel Type ⁹	R	G	R	G		
Engine, Fuel and	H ₂ S (gr/100 scf)	<	:1	<	<1		
Combustion Data	Operating bhp/rpm	1380 @ 1400		1340 @ 1400			
Data	BSFC (Btu/bhp-hr)	8255		8255			
	Fuel throughput (ft ³ /hr)	11,028		11,028			
	Fuel throughput (MMft ³ /yr)	96	.61	96	.61		
	Operation (hrs/yr)	87	60	87	60		
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
	NO _X	1.52	6.66	1.52	6.66		
	СО	0.52	2.27	0.52	2.27		
	VOC	0.73	3.20	0.73	3.20		
	SO ₂	< 0.01	0.03	< 0.01	0.03		
	PM ₁₀	0.11	0.50	0.11	0.50		
	Formaldehyde	0.13	0.57	0.13	0.57		
MRR ¹²	Proposed Monitoring:						•
		Engine	Hours	Engine Hours			
	Proposed Recordkeeping:	Enging	Hours	Enging	Hours		
	Proposed Reporting:	Engine Hours Calculated Gas Consumption and associated emissions		Engine Hours Calculated Gas Consumption and associated emissions			

Complete this section for any natural gas-fired reciprocating internal combustion engine.

#### Instructions for completing the Engine Emission Unit Data Sheet:

- ¹ Enter the appropriate Emission Unit (Source) identification number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the production pad. Multiple compressor engines should be designated CE-1S, CE-2S, etc. or other appropriate designation. Generator engines should be designated GE-1S, GE-2S, etc. or other appropriate designation. If more than three (3) engines exist, please use additional sheets.
- ² For Emission Points, use the following numbering system: 1E, 2E, etc. or other appropriate designation.
- ³ Enter the Source Status using the following codes: NS = Construction of New Source (installation); ES = Existing Source; MS = Modification of Existing Source; and RS = Removal of Source
- ⁴ Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- ⁵ Enter the date that the engine was manufactured, modified or reconstructed.
- ⁶ Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate. *Provide a manufacturer's data sheet for all engines being registered and a manufacturer's EPA certification of conformity sheet.*
- ⁷ Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke, RB4S = Rich Burn Four Stroke, and LB4S =Lean Burn Four Stroke.
- ⁸ Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: NSCR = Rich Burn & Non-Selective Catalytic Reduction, PSC = Rich Burn & Prestratified Charge, SCR = Lean Burn & Selective Catalytic Reduction, or CAT = Lean Burn & Catalytic Oviderion
- & Catalytic Oxidation
- ⁹ Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas, or RG = Raw Natural Gas

¹⁰ Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*. Codes: MD = Manufacturer's Data, AP = AP-42 Factors,  $GR = GRI-HAPCalc^{TM}$ , or OT =

- Other ______ (please list) Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet as Attachment O*.
- ¹² Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the operation of this engine operation and associated air pollution control device. Include operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.

ATTACHMENT H

**Air Pollution Control Device Sheets** 



#### USA Unit 1399 G3516BLE Engine Emissions

Date of Manufacture	June 27, 2013	Engine Serial Number	JEF02325	Date Modified/Reconstructed	TBD
Driver Rated HP	1380	Rated Speed in RPM	1400	Combustion Type	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio	8:1	Combustion Setting	Ultra Lean Burn
Total Displacement (in ³ )	4230	Fuel Delivery Method	Carburetor	Combustion Air Treatment	T.C./Aftercooled

#### Raw Engine Emissions (With Customer Fuel Gas with little to no H2S)

Fuel Consumption	7442 LHV BTU/bhp-hr or	8255 H	IHV BTU/bhp-hr		
Altitude	1200 ft				
Maximum Air Inlet Temp	90 F				
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ
Nitrogen Oxides (NOx)		0.5		1.52	6.66
Carbon Monoxide (CO)		2.43		7.39	32.38
Volatile Organic Compounds	(VOC or NMNEHC excluding CH2O)	0.48		1.46	6.40
Formaldehyde (CH2O)		0.43		1.31	5.73
Particulate Matter (PM) Filteral	ble+Condensable		9.99E-03	1.14E-01	4.98E-01
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-02
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)		472		1436	5705
Methane (CH4)		4.04		12.29	48.83

¹ g/bhp-hr are based on Caterpillar Specifications (GERP) assuming customer fuel gas, 1200 ft elevation, and 90 F Max Air Inlet Temperature. Note that g/bhp-hr values are based on 100% Load Operation. For Air Permitting, it is recommended to add a safety margin to CO, VOC, and Formaldehyde to account for variations in fuel gas composition and load.

² Emission Factor obtained from EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-2).

#### **Catalytic Converter Emissions**

Catalytic Converter Make and Model:	DCL, 2DC65-14
Element Type:	Oxidation, 30.75" Round
Number of Elements in Housing:	(2) Full Elements
Air/Fuel Ratio Control	Caterpillar ADEM3, NOx Feedback

	% Reduction	<u>1</u>	lb/hr	TPY
Nitrogen Oxides (NOx)	0		1.52	6.66
Carbon Monoxide (CO)	93		0.52	2.27
Volatile Organic Compounds (VOC or NMNEHC)	50	(use 30% DRE for High BTU Fuels)	0.73	3.20
Formaldehyde (CH2O)	90		0.13	0.57
Particulate Matter (PM)	0		1.14E-01	4.98E-01
Sulfur Dioxide (SO2)	0		6.70E-03	2.93E-02
	% Reduction	<u>1</u>	lb/hr	Metric Tonne/yr
Carbon Dioxide (CO2)	0		1436	5705
Methane (CH4)	0		12.29	48.83



1610 Woodstead Ct, Suite 245, The Woodlands, Texas 77380 USA Tel: 877-965-8989 Fax: 281-605-5858 info@dcl-inc.com www.dcl-inc.com

#### **GLOBAL LEADER IN EMISSION CONTROL SOLUTIONS**

То:	Chris Magee	Phone:	814-746-6942
Company:	USA Compression	Email	CMagee@usacompression.com
Date:	March 20, 2015	No. Pages:	1

Dear Chris,

We hereby guarantee that our Model DC65-14 specified below with one (2) elements installed as described below, and sized for the following engine:

Engine Data	
Engine Model	Caterpillar
	G3516B
Power	1380HP
Fuel	PQNG
Exhaust Flow Rate	9127 acfm
Exhaust Temperature	994°F

Catalyst Data	
Catalyst Model	DC65-14
Туре	Oxidation- A
# of Elements	2
Cell Density	300 cpsi
Approx Dimensions	See attached drawing
Approx Pressure Drop	4.0" w.c

will perform as follows:

Exhaust Component	Engine Output g/bhp-hr or % reduction	Converter Output g/bhp-hr or % reduction
со	2.43	93
VOC	0.48	0.25
CH20	0.43	0.05

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best Regards,

On behalf of DCL America Inc.

Lisa Barber

416-788-8021 lbarber@dcl-inc.com



ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

SET POINT TIMING:

COMBUSTION:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx):

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA Northeast Quote 4-10-15

1400

SCAC

130 201

210

TA

ADEM3

DRY

0.5

30

JW+OC+1AC, 2AC

LOW EMISSION

8:1



RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS: FUEL:

FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

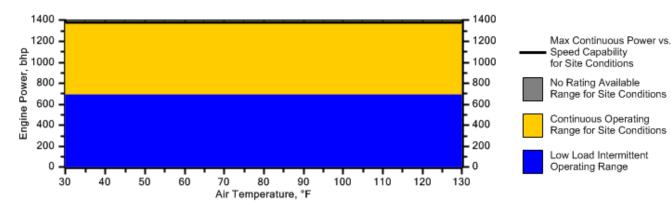
STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Northeast 4-10-15 7.0-40.0 90.5 931 1200 90 1380 bhp@1400rpm

			MAXIMUM SITE RATING AT MAXIMUM			
			RATING	INLET AIR TEMPERATURE		
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	90	90	90	90
	(0)					0.50/
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7442	7442	7971	8561
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8255	8255	8842	9497
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	3199	3202	2511	1756
AIR FLOW (WET)	(3)(4)	lb/hr	13860	13860	10873	7601
FUEL FLOW (60°F, 14.7 psia)		scfm	184	184	148	106
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	992	992	986	1006
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	9106	9106	7122	5053
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	14341	14341	11259	7878
		-				
EMISSIONS DATA - ENGINE OUT						-
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	2.43	2.43	2.60	2.55
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.75	4.75	5.09	5.17
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.71	0.71	0.76	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.43	0.43	0.43	0.42
CO2	(8)(9)	g/bhp-hr	472	472	504	548
EXHAUST OXYGEN	(8)(11)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	23610	23610	21688	20035
	. ,					
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	11577	11577	9642	3428
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5517	5517	5202	3396
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	43496	l		
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5793			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.		•	•			
CONDITIONS AND DEFINITIONS						

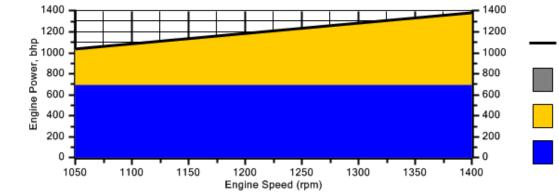
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three


G3516B

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA Northeast Quote 4-10-15

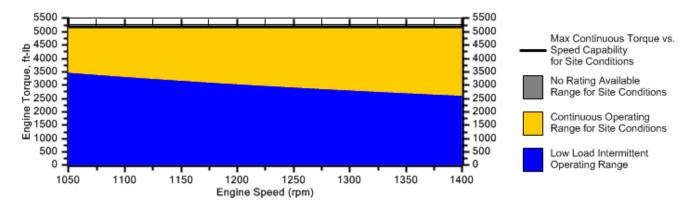



### Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1400 rpm



### Engine Power vs. Engine Speed


Data represents speed sweep at 1200 ft and 90 °F





### Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F



Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

## G3516B

GAS COMPRESSION APPLICATION

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA Northeast Quote 4-10-15



#### NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of  $\pm$  5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of  $\pm$  6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is  $\pm 0.5$ .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	96.4087	96.4087	Fuel Makeup:	Northeast 4-10-15
Ethane	C2H6	2.8479	2.8479	Unit of Measure:	English
Propane	C3H8	0.1781	0.1781		C
Isobutane	iso-C4H1O	0.0055	0.0055	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0157	0.0157		90.5
Isopentane	iso-C5H12	0.0013	0.0013	Caterpillar Methane Number:	90.5
Norpentane	nor-C5H12	0.0015	0.0015		
Hexane	C6H14	0.0226	0.0226	Lower Heating Value (Btu/scf):	931
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1033
Nitrogen	N2	0.2819	0.2819	WOBBE Index (Btu/scf):	1229
Carbon Dioxide	CO2	0.2368	0.2368		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	191.79
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.52%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.72
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.94
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.574
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.311
TOTAL (Volume %)		100.0000	100.0000	opecine rieat constant (K).	1.511

#### CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

# ATTACHMENT I

**Emissions Calculations** 

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane Ib/Hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
CE-1	Compressor Engine #1	1.52	0.52	1744	0.730	0.01	0.11	0.00	0.00	0.13	0.29
	Compressor Engine #2	1.52	0.52	1744	0.730	0.01	0.11	0.00	0.00	0.13	0.29
GPU-1- GPU-5	Five 1.0 MMBTU/Hr GPUs	0.50	0.42	604	0.03	0.00	0.04	0.01	0.00	0.00	0.01
	Haul Road Fugitive Dust						34.890				
T01-T03	Produced Water Tanks ²			221	0.16						0.03
	Equipment Fugitive Emissions			13	0.00						
	Blowdowns ¹			N/A	N/A						
Total		3.54	1.45	4,325	1.65	0.02	35.16	0.01	0.00	0.26	0.62

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
CE-1	Compressor Engine #1	6.66	2.27	7,639	3.20	0.03	0.50	0.01	0.00	0.57	1.27
	Compressor Engine #2	6.66	2.27	7,639	3.20	0.03	0.50	0.01	0.00	0.57	1.27
GPU-1- GPU-5	Five 1.0 MMBTU/Hr GPUs	2.19	1.84	2,645	0.12	0.01	0.17	0.04	0.00	0.00	0.04
	Haul Road Fugitive Dust						32.30				
T01-T03	Produced Water Tanks ²			970	0.72						0.14
	Equipment Fugitive Emissions			55	0.01						
	Blowdowns ¹			20	0.01						
Total		15.52	6.37	18,967	7.25	0.07	33.46	0.05	0.00	1.15	2.72

¹ See Attachment C for Blowdown Calculations

² Water tank emissions are uncontrolled.

#### Yost Well Pad Northeast Natural Energy Monongalia County

#### Proposed Emission Rates

Source Cl	E-1						
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516 B Low Emis Natural	sions					
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement	130 1,380 1,400 V-16 16 6.700 7.500 926 4,231	deg. F hp rpm inches inches BTU/scf cu. in.					
Fuel Consumption (HHV)	8,255	Btu/bhp-hr				AP-42	
Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO VOC (NMNEHC) CO2e CO2	g/bhp-hr 0.50 0.17 0.24 472	lb/hr 1.52 0.52 0.73 1744 1436	tons/year 6.66 2.27 3.20 7638.66 6289.70	g/hr 690 235 331 651,360	lb/day 36.51 12.41 17.52 34464.10	ſ	Comment 453.59 grams = 1 pound 2,000 pounds = 1 ton
Total Annual Hours of Operation SO2 PM (Condensable+ Filterable) $CH_{4 as CO2e}$ N ₂ O as $CO_{2e}$ acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane total HAPs	<b>8,760</b> 4.04 0.043	0.0067 0.1138 307.28 0.7063 0.0952 0.1308 0.0002 0.0002 0.0004 4E-05 0.0002 0.0002 0.0027 0.0012 0.2899	0.0293 0.4985 1345.9 3.0936 0.2565 0.4171 0.5730 0.0010 0.0021 0.00019 0.0002 0.0009 0.0118 0.0052 1.2696			0.0002 F 0.00514 0.00836	Mfg. Spec Used Factor From 40 CFR 98, Table C-2 Mfg. Spec Used
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm					
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	:				
Exhaust Stack Height	260 21.67	inches feet					
Exhaust Stack Inside Diameter	20 1.667	inches feet					
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm ( stack diame	ter )^2

#### Proposed Emission Rates

Source C	CE-2					
Engine Data:						
Engine Manufacturer	CAT					
Engine Model	3516 B					
Type (Rich-burn or Low Emission)	Low Emis	sions				
Aspiration (Natural or Turbocharged)	Natural					
Turbocharge Cooler Temperature	130	deg. F				
Manufacturer Rating	1,380 1,400	hp				
Speed at Above Rating Configeration (In-line or Vee)	V-16	rpm				
Number of Cylinders	16					
Engine Bore	6.700	inches				
Engine Stroke	7.500	inches				
Fuel Heat Content	926	BTU/scf				
Engine Displacement	4,231	cu. in.				
Fuel Consumption (HHV)	8,255	Btu/bhp-hr				
	-,					AP-42 4strokelean
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	lb/mmbtu
Oxides of Nitrogen, NOx	0.50	1.52	6.66	690	36.51	Comment
Carbon Monoxide CO	0.17	0.52	2.27	235	12.41	453.59 grams = 1 pound
VOC (NMNEHC)	0.24	0.73	3.20	331	17.52	2,000  pounds = 1  ton
CO2e		1744	7638.66			
CO2	472	1436	6289.70	651,360	34464.10	
Total Annual Hours of Operation	8,760					
SO2	0,100	0.0067	0.0293			0.000588
PM (Condensable+ Filterable)		0.1138	0.4985			0.00999
CH _{4 as CO2e}	4.04	307.28	1345.9			Mfg. Spec Used
$N_2O$ as $CO_{2e}$	4.04	0.7063	3.0936			
acrolein		0.7083	0.2565			0.0002 Factor From 40 CFR 98, Table C-2 0.00514
acetaldehyde		0.0566	0.2565			0.00836
formaldehyde	0.043	0.0952	0.4171			Mfg. Spec Used
biphenyl	0.040	0.0002	0.0010			0.000212
benzene		0.0002	0.0010			0.00044
toluene		0.0004	0.0019			0.000408
ethylbenzene		4E-05	0.0002			3.97E-05
xylene		0.0002	0.0009			0.000184
methanol		0.0027	0.0118			0.0025
n-hexane		0.0012	0.0052			0.00111
total HAPs		0.2899	1.2696			0.018394
Exhaust Parameters:	992	dog F				
Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm				
Total Exhaust Gas Volume Flow, wet	9,216	acfm				
Total Exhaust Gas Volume Flow, wet	153.6	acf per sec	;			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667	inches feet				
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141		x acfm ( stack diameter )^2

#### **Potential Emission Rates**

#### Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

5000.0 Mbtu/hr 98.0 % 1027.9 Btu/scf 119125.3 scfd 0.000 Mole % 8760

**Sources GPU-1 to GPU-5** 

Five Units at 1.0 Mbtu/Hr Each

NOx	0.5002	lbs/hr	2.191	TPY
СО	0.4202	lbs/hr	1.840	TPY
CO2	600.2	lbs/hr	2629.1	TPY
CO2e	604	lbs/hr	2,645	tpy
VOC	0.0275	lbs/hr	0.120	TPY
SO2	0.0030	lbs/hr	0.013	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0380	lbs/hr	0.167	TPY
СНОН	0.0004	lbs/hr	0.002	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0090	lbs/hr	0.039	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0094	lbs/hr	0.041	TPY

#### **AP-42 Factors Used**

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
$SO_2$	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
$N_2O$	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	0.57	weight percent
Methane from gas analysis:	92.58	weight percent
Carbon Dioxide from gas analysis:	0.42	weight percent
Gas Density	0.0463	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	СН4 ТРҮ	CO2e
Valves:										
Gas/Vapor:	30	0.02700 scf/hr	0.6	0.000	0.001	0.000	0.001	0.035	0.1521	3.803
Light Liquid:	-	0.05000 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.000
Low Bleed Pneumatic	5	1.39000 scf/hr	0.6	0.002	0.008	0.298	1.305	0.298	1.3050	33.931
Relief Valves:	10	0.04000 scf/hr	0.6	0.000	0.000	0.000	0.000	0.017	0.0751	1.878
Open-ended Lines, gas:	-	0.06100 sfc/hr	0.6	0.000	0.000					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										0.000
Gas:	-	0.00529 lb/hr	0.6	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.000
Compressor Seals, Gas:	2	0.01940 lb/hr	0.6	0.000	0.001	0.000	0.001	0.002	0.0073	0.183
Connectors:										0.000
Gas:	140	0.00300 scf/hr	0.6	0.000	0.000	0.000	0.000	0.018	0.0789	1.972
Light Liquid:	0	0.00700 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Flanges:										0.000
Gas:	150	0.00086 lb/hr	0.6	0.001	0.003	0.001	0.002	0.119	0.5231	13.080
Light Liquid:	0	0.00300 scf/hr	100.0	0.000	0.000					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					0.000

Fug	itive Calculatio	ns:
	lb/hr	t/y
VOC	0.001	0.006
CH4	0.191	0.836
CO2	0.001	0.004
CO2e	12.522	54.8

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

#### **GAS ANALYSIS INFORMATION**

#### Campbell Well Pad Northeast Natural Energy Monongalia County

# Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.7619	0.213	0.007	1.283			-		0.0076	
Carbon Dioxide, CO2	0.1586	0.070	0.002	0.419			-		0.0016	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Helium, He		-	-	-			-		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	96.0242	15.405	0.532	92.581	873.2	969.8	9.151		0.9583	
Ethane, C2H6	2.8453	0.856	0.030	5.142	46.1	50.4	0.475		0.0282	0.757
Propane	0.1882	0.083	0.003	0.499	4.4	4.7	0.045	0.499	0.0018	0.052
Iso-Butane	0.0055	0.003	0.000	0.019	0.2	0.2	0.002	0.019	0.0001	0.002
Normal Butane	0.0163	0.009	0.000	0.057	0.5	0.5	0.005	0.057	0.0002	0.005
Iso Pentane		_	-	-			-	-	-	-
Normal Pentane		-	-	-			-	-	-	-
Hexane		-	-	-			-	-	-	-
Heptane		-	-	-			-	-	-	-
	100.000	16.640	0.575		924.3	1,025.6	9.677	0.575	0.9978	0.815

0.046

Gas Density (STP) =

ldeal Gross (HHV) Ideal Gross (sat'd)	1,025.6 1,008.6
GPM	-
Real Gross (HHV)	1,027.9
Real Net (LHV)	926.4

#### GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

#### Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

#### Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468



Report Date: Sep 11, 2015 1:27p

**Gas Analytical** 

Client:	Northeast Natural Energy	Date Sampled:	Sep
Site:	Coastal 7H	Analysis Date:	Sep
Field No:		Collected By:	G. C
Meter:		Date Effective:	Sep
Source Laboratory	Clarksburg (Bridgeport), WV	Sample Pressure (PSI):	975
Lab File No:	X_CH1-5930.CHR	Sample Temp (°F):	
Sample Type:	Spot	Field H2O:	No ⁻
Reviewed By:		Field H2S:	No

Component	Mol %	Gal/MSCF
Methane	96.0242	
Ethane	2.8453	0.76
Propane	0.1882	0.05
I-Butane	0.0055	0.00
N-Butane	0.0163	0.01
I-Pentane	<mdl< td=""><td>0.00</td></mdl<>	0.00
N-Pentane	<mdl< td=""><td>0.00</td></mdl<>	0.00
Nitrogen	0.7619	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1586	
Hexanes+	<mdl< td=""><td>0.00</td></mdl<>	0.00
TOTAL	100.0000	0.82

Date Sampled:	Sep 1, 2015
Analysis Date:	Sep 8, 2015 11:16a
Collected By:	G. Cutright GAS
Date Effective:	Sep 1, 2015 12:00a
Sample Pressure (PSI):	975.0
Sample Temp (°F):	
Field H2O:	No Test
Field H2S:	No Test

Analytical Results at Base Conditions (Real)					
BTU/SCF (Dry):	1,029.8303 BTU/ft ³				
BTU/SCF (Saturated):	1,012.7844 BTU/ft ³				
PSIA:	14.730 PSI				
Temperature (°F):	60.00 °F				
Z Factor (Dry):	0.99790				
Z Factor (Saturated):	0.99756				

Analytical Results at Contract Conditions (Real)						
BTU/SCF (Dry):	1,029.8303 BTU/ft ³					
BTU/SCF (Saturated):	1,012.7844 BTU/ft ³					
PSIA:	14.730 PSI					
Temperature (°F):	60.00 °F					
Z Factor (Dry):	0.99790					
Z Factor (Saturated):	0.99756					

Calculated Specific Gravities							
Ideal Gravity:	0.5745	Real Gravity:	0.5755				
Molecular Wt:	16.6391	lb/lbmol					

Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

Source	Date	Notes
Gas Analytical	Sep 8, 2015	RWarner@nne-llc.com

## Attachment I FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_				F	,	PM		, -	PM-10	0
k =	Particle size multiplier		0.80			0.36				
s =	Silt content of road surface ma	aterial (%)				10		3		
p =	Number of days per year with	precipitati	on >0.01	in.		157			157	
Item Numbe	Item Number Description Description Mean Number of Wheels Weight Speed (tons) (mph)				Miles per Trip	Maximum Trips per Hour	Maxii Trips Ye	s per	Control Device ID Number	Control Efficiency (%)
1	Produced Water Tanker Truck	14	27	10	2.8	1	18	50	None	0
2										
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$  lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	14	14
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$ 

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM			PM-10				
Item No.	Uncon	Uncontrolled Cont			rolled Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	34.89	32.3	34.89	32.3	4.92	4.55	4.92	4.55
2								
3								
4								
5								
6								
7								
8								
TOTALS	34.89	32.3	34.89	32.3	4.92	4.55	4.92	4.55

#### FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor						
n =	Number of traffic lanes						
s =	Surface material silt content (9						
L =	Surface dust loading (lb/mile)						
Item Numbe	Item Description Mean Weig		Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

#### **Source:** AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

None

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} = 10000 \times (W \div 3)^{0.7}$$

lb/Vehicle Mile Traveled (VMT)

Where:

1

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$ 

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

#### SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncon	trolled	Cont	rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

# G3516TALE JGT-4, 2 Stage

(Note: assumed ideal gas behavior and used OD for volume calc)

Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³
1st Stage Cylinder	6.38	4.50	2.00	0.00	129
1st Stage Cylinder	6.38	4.50	2.00	0.00	129
2nd Stage Cylinder	6.38	4.50	2.00	0.00	129
2nd Stage Cylinder	6.38	4.50	2.00	0.00	129

Scrubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³
1st Stage Scrubber	24.00	68.00	30762
1st Stage Suction Drum	16.00	114.50	23022
1st Stage Discharge Drum	16.00	114.50	23022
2nd Stage Scrubber	24.00	68.00	30762
2nd Stage Suction Drum	16.00	114.50	23022
2nd Stage Discharge Drum	16.00	114.50	23022

			-	Total Cooler Tube
Cooler Section	No. of Tubes	OD, in	Length, in	Volume, in ³
1st Stage Cooler Section	86	0.75	216	8207
2nd Stage Cooler Section	146	0.75	216	13932

				Total Piping
	Piping	OD, in	Length, in	Volume, in ³
1st Stg Piping		6.00	150.00	4241
2nd Stg Piping		6.00	150.00	4241

Equipment	Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles
1st Stage Total	89512	718	160	1.17
2nd Stage Total	95238	715	390	2.91
			Total Moles	4.08
Estimated	_			
Total Volume of Blowdown Gas @ STP =		1570 [†]	ft ³	Does not include fuel scrubber

# Northeast Natural Energy, LLC Campbell Well Pad Produced Water Tank Emissions

Utilizing direct measurements of tank vent emissions from Produced Water Tanks at a nearby well pad (attached), gas emissions were determined to be 3.80 scf per barrel of water. Thus, with an anticipated maximum water production rate at the Campbell Well Pad being 600 BBL/hr, an emission rate of 2280 SCFD is anticipated. The natural gas constituents were forced into solution in the Produced Water by the high pressures in the gas production zone. As they are not soluble in water, they are quickly volatilized as the pressure on the water is released as it progresses from the well to the atmospheric pressure tank (flash gas). working and breathing emissions from Produced Water are nominal.

The composition of the flash gas is assumed to be very similar to that of the nearby pad where flash gas testing was performed. As noted on the attached analysis, the specific gravity of the flash gas was measured to be 0.612. Thus, as shown in the following calculation spreadsheet, annual flash emissions at the maximum production rate of 219,000 BBL/yr is 45.88 tpy and 0.72 tpy of VOCs (0.16 lb/hr). Potential HAP emissions are 0.14 tpy (0.03 lb/hr).

Methane comprises approximately 84.6% of the gas by weight. Thus, methane emissions are projected to be 38.8 tpy. Using a GHG factor of 25, potential  $CO_{2e}$  emissions will be 970.4 tpy or 221.5 lb/Hr  $CO_{2e}$ 

# Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

# **Un-Controlled**

Site specific data						
Gas-Water-ratio	=	3.8 scf/bbl Using GOW from comparable well pac				
Throughput	=	219,000 bbl/yr (600 BBL/Day)				
Stock tank gas molecular weight	=	39.56 g/mole				

Conversions						
1 lb =	453.6 g					
1 mole =	22.4 L					
1 scf =	28.32 L					
1 ton =	2000 lb					

#### Equations

Γ	$E_{} = 0$	$2\frac{(bbl)}{\times}$	$R\frac{(scf)}{x}$	28.32( <i>L</i> )	$\times \frac{1(mole)}{\times M}$	$W^{(g)} \times$	1( <i>lb</i> )	$\times \frac{1(ton)}{1}$
	-101 \$	(yr)	(bbl)	1(scf)	22.4( <i>L</i> )	(mole)	453.6( <i>g</i> ) [']	2000( <i>lb</i> )

 $E_{TOT}$  = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 $E_{spec}$  = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

# **Flash Emissions**

Constituent	ТРҮ	]
Total	45.8803	
VOC	0.7185	
Nitrogen	4.50E-01	
Carbon Dioxide	4.22E+00	
Methane	3.88E+01	
Ethane	1.68E+00	
Propane	9.63E-02	
Isobutane	1.19E-02	
n-Butane	2.11E-02	
2,2 Dimethylpropane	0.00E+00	
Isopentane	1.84E-03	
n-Pentane	1.51E-02	
2,2 Dimethylbutane	0.00E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	4.59E-03	
2 Methylpentane	1.79E-02	
3 Methylpentane	2.48E-02	
n-Hexane	7.62E-02	HAP
Methylcyclopentane	2.20E-02	
Benzene	5.96E-03	HAP
Cyclohexane	3.49E-02	
2-Methylhexane	7.80E-03	
3-Methylhexane	7.80E-03	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	1.56E-02	
n-Heptane	1.56E-02	
Methylcyclohexane	1.79E-02	
Toluene	2.16E-02	HAP
Other C8's	4.86E-02	
n-Octane	3.26E-02	
Ethylbenzene	2.75E-03	HAP
M & P Xylenes	3.03E-02	HAP
O-Xylene	5.51E-03	HAP
Other C9's	6.88E-02	
n-Nonane	2.98E-02	
Other C10's	5.51E-02	
n-Decane	1.10E-02	
Undecanes (11)	1.51E-02	

E_{TOT}

Sum of C3+



## FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Northeast Natural Energy LLC 707 Virginia St. East, Suite 1200 Charleston, West Virginia 25301 Date Sampled: 04/16/14

Date Analyzed: 04/30/14

Job Number: J42910

Sample: Statler No. 6H

FLASH LIBERATION OF SEPARATOR WATER				
Separator Stock Tank				
Pressure, psig	670	0		
Temperature, °F	73	70		
Gas Water Ratio (1)		3.80		
Gas Specific Gravity (2)		0.612		
Separator Volume Factor (3)	1.000	1.000		

(1) - Scf of water saturated vapor per barrel of stock tank water

(2) - Air = 1,000

(3) - Separator volume / Stock tank volume

Analyst: T.G.

Piston No.: WF-305*

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Northeast Natural Energy LLC 707 Virginia St. East, Suite 1200 Charleston, West Virginia 25301

Sample: Statler No. 6H

Gas Liberated from Separator Water From 670 psig & 73 °F to 0 psig & 70 °F

Date Sampled: 04/16/14

Job Number: 42910.001

#### CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.619	
Carbon Dioxide	3.691	
Methane	93.208	
Ethane	2.155	0.581
Propane	0.084	0.023
Isobutane	0.008	0.003
n-Butane	0.014	0.004
2-2 Dimethylpropane	0.000	0.000
Isopentane	0.001	0.000
n-Pentane	0.008	0.003
Hexanes	0.055	0.023
Heptanes Plus	<u>0.157</u>	<u>0.072</u>
Totals	100.000	0.709

#### **Computed Real Characteristics Of Heptanes Plus:**

Specific Gravity	3.811	(Air=1)
Molecular Weight	110.14	
Gross Heating Value	5776	BTU/CF

#### **Computed Real Characteristics Of Total Sample:**

Specific Gravity	0.612	(Air=1)	
Compressibility (Z)	0.9977		
Molecular Weight	- 17.68		
Gross Heating Value			
Dry Basis	- 1007	BTU/CF	
Saturated Basis	- 990	BTU/CF	

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <a href="https://www.communication.com"></a> (GPA 2377) Results: <a href="https://www.communication.com"></a> (GPA 2377)

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: WF# 13 S

David Dannhaus 361-661-7015

#### CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.619		0.981
Carbon Dioxide	3.691		9.190
Methane	93.208		84.597
Ethane	2.155	0.581	3.666
Propane	0.084	0.023	0.210
isobutane	0.008	0.003	0.026
n-Butane	0.014	0.004	0.046
2,2 Dimethylpropane	0.000	0.000	0.000
Isopentane	0.001	0.000	0.004
n-Pentane	0.008	0.003	0.033
2,2 Dimethylbutane	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.002	0.001	0.010
2 Methylpentane	0.008	0.003	0.039
3 Methylpentane	0.011	0.005	0.054
n-Hexane	0.034	0.014	0.166
Methylcyclopentane	0.010	0.003	0.048
Benzene	0.003	0.001	0.013
Cyclohexane	0.016	0.005	0.076
2-Methylhexane	0.003	0.001	0.017
3-Methylhexane	0.003	0.001	0.017
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.006	0.003	0.034
n-Heptane	0.006	0.003	0.034
Methylcyclohexane	0.007	0.003	0.039
Toluene	0.009	0.003	0.047
Other C8's	0.017	0.008	0.106
n-Octane	0.011	0.006	0.071
Ethylbenzene	0.001	0.000	0.006
M & P Xylenes	0.011	0.004	0.066
O-Xylene	0.002	0.001	0.012
Other C9's	0.021	0.011	0.150
n-Nonane	0.009	0.005	0.065
Other C10's	0.015	0.009	0.120
n-Decane	0.003	0.002	0.024
Undecanes (11)	0.004	<u>0.002</u>	<u>0.033</u>
Totals	100.000	0.709	100.000

# Computed Real Characteristics Of Total Sample:Specific Gravity ------0.612(Air=1)Compressibility (Z) ------0.99770.9977Molecular Weight ------17.6817.68Gross Heating ValueDry Basis ------1007BTU/CFSaturated Basis ------990BTU/CF

# ATTACHMENT J

**Class I Legal Advertisement** 

# Affidavit Notice Will Be Submitted Upon Receipt

# AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Northeast Natural Energy LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70A General Permit Registration for its Campbell Well Pad located off of Township Road 837 near Pentress in Monongalia County, West Virginia (Lat.39.69980, Long.-80.18381).

The applicant estimates the potential to discharge the following regulated air pollutants:

15.52 tons of Nitrogen Oxides per year
6.37 tons of Carbon Monoxide per year
7.25 tons of Volatile Organics per year
0.07 tons of Sulfur Dioxide per year
33.46 tons of Particulate Matter per year
1.15 tons of Formaldehyde per year
0.05 tons of n-Hexane
18,967 tons of Greenhouse Gases per year

Startup of operation is planned to begin upon approval of this permit. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Brett Loflin Vice President Regulatory Affairs Northeast Natural Energy, LLC

# ATTACHMENT N

**Material Safety Data Sheets** 



Heath	1
[]]] maintelly	4
Reactivity	0
PPE	
* *	

#### Material Name: Produced Water

***	Section 1 - Chemical Product and Company Identification ***
Product name:	Produced Water - Sweat Salt Water, H ₂ O, Otly Water, Formation Water
Synonyms: Chemical Family:	Water
Formula:	Complex mixture

Emerdency Phy	one Number: Chemtrec - 860-424-9300	
	*** Section 2 - Hazards Identification **	* *
Emergency Ove	JUIGW	
Nay cau	use eye, skin, respiratory and gastrointestinal tract irritation.	
<b>Potential Health</b>	n Effecis: Eyes	
May cau	ise eye initation.	
<b>Potential Health</b>	) Effects: Skin	
Contact	may cause skin irritation.	
<b>Potential Health</b>	h Effects: Ingestion	comiting and diarmag
Ingestion	n may cause irritation of the digestive tract that may result in nausea,	Addumu2 and enviriger
Potential Health	Effects: Inhalation	
Breathin	g the mist and vapors may be irriteting to the respiratory fract.	
HMIS Ratings: 1	Health: 1 Fire: 4 HMIS Reactivity 0	ronie bazard
Hazard Scale: C	) = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe *= Ch	- Manén # 8 %
<b>-</b>	*** Section 3 - Composition / Information on Ingr	BOICH15
Produced water	is a mixture of varying amounts of water and oil produced from variou	exploration and production
modecos Proj	hivey mater may contain all 1909, 1946, of Hamiliadia infime and pairor	r hydrocarbons. Produceu water
may include snx	all emounts of natural gas condensate, and benzena may be present.	
-	and the second	Porcent
CAS #	Component	>88
7732-18-5	Weiter	<32
Not available	Dissolved Minerals	

71-43-2 Benzeste <1 Petroleum distillates (naphtha) 8002-05-9 Normal composition ranges are shown. Exceptions may could depending on the source of the produced water.

#### Section 4 - First Aid Measures *** ***

First Aid: Eyes

Flush eyes with clean, low-pressure water for at least 15 minutes, occasionally lifting the eyelids. If pain or redness persists after flushing, obtain medical attention. If eye is exposed to het liquid, cover eyes with cloth and seek medical attention immediately.

First Ald: Skin

In case of hot liquid exposure, do not remove clothing or treat-wash only unburned area and seek medical altention immediately.

## First Aid: Ingestion

Do not induce vomiting. Seek medical attention,

#### First Ald: Inhalation

Immediately remove person to area of fresh air. For respiratory distress, give oxygen, rescue breathing, or administer CPR If necessary. Obtain prompt medical attention.

Material Name: Produced Water

## *** Section 5 - Fire Fighting Measures ***

General Fire Hazards

See Section 9 for Flammability Properties.

May react with strong oxidizing materials and a wide variety of chemicals. Forms explosive mixtures with air. Hazardous Combustion Products

Not Determined.

# Extinguishing Media

Dry chemical, foam, carbon dioxide, or water spray.

Fire Fighting Equipment/Instructions

Any fire would be associated with any natural gas condensate floating on the surface of the produced water. Water may be ineffective on flames but should be used to keep fire exposed containers cool. Keep the surrounding areas cool by using water mists. Firefighters should wear self-contained breathing apparatus and full protective clothing.

## NFPA Ratings: Health: 1 Fire: 4 Reactivity: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

*** Section 6 - Accidental Release Measures ***

#### **Containment Procedures**

Stop the source of the leak or release. Clean up releases as soon as possible, observing precautions in Personal Protection Equipment section. Contain liquid to prevent further contamination of soil and surface water.

## **Clean-Up Procedures**

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal. Response and clean-up crews must be properly trained and must utilize proper protective equipment. Where feasible and appropriate, remove contaminated soil or flush with fresh water. Follow prescribed procedures for reporting and responding to larger releases. Advise authorities and the National Response Center (800-424-8802) if the release is to a watercourse.

#### **Evacuation Procedures**

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible.

# Special Procedures

Avoid excessive skin contact with the spilled material.

# *** Section 7 - Handling and Storage ***

Handling Procedures

Handle as a flammable liquid. Keep away from heat, sparks, and open flamel Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

#### Storage Procedures

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition. Do not enter storage areas and confined spaces without adequate ventilation. Use appropriate respiratory protection if there is a potential to exceed component exposure limit(s).

# *** Section 8 - Exposure Controls / Personal Protection ***

#### A: Component Exposure Limits

Petroleum distillates (naphtha) (8002-05-9) OSHA: 600 ppm TWA; 2000 mg/m³ TWA NIOSH: 350 mg/m³ TWA

1800 mg/m³ Ceiling (15 min)

Material Name: Produced Water

Benzene (71-43-2)

ACGIH: 0.5 ppm TWA 2.5 ppm STEL

Skin - potential significant contribution to overall exposure by the cutaneous route

OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)

- 0.1 ppm TWA NIOSH:
  - 1 ppm STEL

**Engineering Controls** 

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

PERSONAL PROTECTIVE EQUIPMENT

Personal Protective Equipment: Eyes/Face

Chemical goggles or face shield should be worn when handling product if the possibility of spray exists.

Personal Protective Equipment: Skin

Normal working clothes should be worn. Wash contaminated clothing prior to reuse.

Personal Protective Equipment: Respiratory

Respiratory protection is not required for normal use. At excessive concentrations, wear a NIOSH approved air purifying respirator with organic vapor cartridges.

Personal Protective Equipment: General

A source of clean water should be in the work area for flushing eyes and skin.

*** Section 9 - Physical & Chemical Properties *** Salty with a slight hydrocarbon Odor: Appearance: Clear or opaque odor. pH: 4,9-8,5 Physical State: Liquid Vapor Density: 1.2Vapor Pressure: NA Melting Point: ND 212°F Boiling Point: Specific Gravity: >1@0°C Solubility (H2O): Soluble Evaporation Rate: ND Freezing Point: <32°F Octanol/H2O Coeff.: ND VOC: ND Flash Point Method: ND Flash Point: ND Lower Flammability Limit 4.0 (LFL): Upper Flammability Limit 46,0 (UFL): Burning Rate: ND Auto Ignition: NA

*** Section 10 - Chemical Stability & Reactivity Information ***

**Chemical Stability** 

Stable under normal ambient and anticipated conditions of storage and handling. Chemical Stability: Conditions to Avoid

Keep material away from heat, sparks, and open flames.

Incompatibility

Keep away from strong oxidizers.

Hazardous Decomposition

Not Determined.

**Possibility of Hazardous Reactions** 

Will not occur.

Material Name: Produced Water

# *** Section 11 - Toxicological Information ***

**Acute Dose Effects** 

Component Analysis - LD50/LC50 Water (7732-18-5) Oral LD50 Rat: >90 mL/kg

> Petroleum distillates (naphtha) (8002-05-9) Oral LD50 Rat: >4300 mg/kg; Dermai LD50 Rabbit: >2000 mg/kg

Benzene (71-43-2) Inhalation LC50 Rat: 13050-14380 ppm/4H; Oral LD50 Rat: 1800 mg/kg

Carcinogenicity

#### **Component Carcinogenicity**

Petroleum distillates (naphtha) (8002-05-9) IARC: Monograph 45 [1989] (Group 3 (not classifiable))

48 Hr EC50 Daphnia magna

Benzene (71-43-2) ACGIH: A1 - Confirmed Human Carcinogen OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.) potential occupational carcinogen NIOSH:

NTP:

Known Human Carcinogen (Select Carcinogen)

IARC: Supplement 7 [1987], Monograph 29 [1982] (Group 1 (carcinogenic to humans))

#### *** Section 12 - Ecological Information ***

#### Ecotoxicity

Component Analysis - Ecotoxicity - Aquatic Toxicity Petroleum distillates (naphtha) (8002-05-9) **Test & Species** Conditions 96 Hr LC60 Salmo galrdneri 258 mg/L [static] 24 Hr EC50 Daphnia magna 36 mg/L Benzene (71-43-2) Test & Species Conditions 96 Hr LC50 Pimephales prometas 12,6 mg/L [flowthrough] 5.3 mg/L [flow-96 Hr LC50 Oncorhynchus mykiss through] 96 Hr LC50 Lepomis macrochirus 22 mg/L [static] 96 Hr LC50 Poecilla reticulata 28.6 mg/L [static] 72 Hr EC50 Selenastrum 29 mg/L capricornutum 48 Hr EC50 water flea 356 mg/L [Static]

10 mg/L

Material Name: Produced Water

## *** Section 13 - Disposal Considerations ***

This product as produced is not specifically listed as an EPA RCRA hazardous waste according to federal regulations (40 CFR 261). However, when discarded or disposed of, it may meet the criteria of a "characteristic" hazardous waste. This product could also contain benzene at low concentrations and may exhibit the characteristic of "toxicity" (D018) as determined by the toxicity characteristic leaching procedure (TCLP). This material could become a hazardous waste if mixed with or contaminated with a hazardous waste or other substance(s). It is the responsibility of the user to determine if disposal material is hazardous according to federal, state and local regulations.

## *** Section 14 - Transportation Information ***

#### **US DOT Information**

Shipping Name: Not Regulated

Additional Info.: This may not apply to all shipping situations. Consult 49CFR 172 for additional information.

## *** Section 15 - Regulatory Information ***

#### **US Federal Regulations**

#### **Component Analysis**

This material may contain one or more of the following chemicals identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

- Benzene (71-43-2)
  - SARA 313: 0.1 % de minimis concentration

GERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carchogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

#### State Regulations

#### **Component Analysis - State**

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	ŊJ	PA	RI
Petroleum distillates (naphtha)	8002-05-9	No	Yes	Yes	Yes	Yes	Yes
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNINGI This product contains a chemical known to the state of California to cause cancer. WARNINGI This product contains a chemical known to the state of California to cause reproductive/developmental effects.

#### **Component Analysis - WHMIS IDL**

The following components are Identified under the Canac	lian Hazardous I	Products Act Ingredient Disclosure List
Component	CAS#	Minimum Concentration
Benzene	71-43-2	0.1 %

Additional Regulatory Information

Material Name: Produced Water

#### Component Analysis - Inventory

Component	CAS#	TSCA	CAN	EEC
The second se	7732-18-5	Yes	DSL	EINECS
Petroleum distillates (naphtha) Benzene	8002-05-9	Yes	DSL	EINECS
Deuzelie	71-43-2	Yes	DSL	EINECS

## *** Section 16 - Other Information ***

Other Information

The information presented herein has been compiled from sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warrantles, expressed or implied, except those that may be contained in our written contract of sale or acknowledgement.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

#### Key/Legend

NA - Not Applicable ND - Not Determined ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit RQ - Reportable Quantity TWA - Time Weighted Average STEL - Short Term Exposure Limit NTP - National Toxicology Program IARC - International Agency for Research on Cancer

# ATTACHMENT O

**Emissions Summary Sheets** 

# **G70-A EMISSIONS SUMMARY SHEET**

Emission Point ID No. Emission Point Type ¹		Emission Unit Vented Through This Point		Air Pollution Control Device		All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit conditions.	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)	
			GPU			NOx	0.10	0.44	0.10	0.44	Gas	EE
						CO	0.08	0.37	0.08	0.37	Gas	EE
				None		VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
1E	Upward	GPU-1				PM	< 0.01	0.03	< 0.01	0.03	Solid	EE
	Vertical Stack					HCOH	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						Total HAPs	< 0.01	0.03	< 0.01	0.03	Gas	EE
						CO2e	121	529	121	529	Gas	EE
	Upward Vertical Stack	GPU-2	GPU	None		NOx	0.10	0.44	0.10	0.44	Gas	EE
						CO	0.08	0.37	0.08	0.37	Gas	EE
						VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
2E						PM	< 0.01	0.03	< 0.01	0.03	Solid	EE
						НСОН	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						Total HAPs	< 0.01	0.03	< 0.01	0.03	Gas	EE
						CO2e	121	529	121	529	Gas	EE
	Upward Vertical Stack		GPU	None		NOx	0.10	0.44	0.10	0.44	Gas	EE
						СО	0.08	0.37	0.08	0.37	Gas	EE
						VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
3E		GPU-3				PM	< 0.01	0.03	< 0.01	0.03	Solid	EE
						НСОН	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						Total HAPs	< 0.01	0.03	< 0.01	0.03	Gas	EE
						CO2e	121	529	121	529	Gas	EE
4E	Upward Vertical Stack	GPU-4	GPU	None		NOx	0.10	0.44	0.10	0.44	Gas	EE
						СО	0.08	0.37	0.08	0.37	Gas	EE
						VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
						PM	< 0.01	0.03	< 0.01	0.03	Solid	EE
						НСОН	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						Total HAPs	< 0.01	0.03	< 0.01	0.03	Gas	EE
						CO2e	121	529	121	529	Gas	EE

# **G70-A EMISSIONS SUMMARY SHEET**

Emission Point ID No.	Emission Point Type ¹	Emission Unit Vented Through This Point		Air Pollution Control Device		All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit	Est. Method Used ⁵
5E			GPU	None		NOx	0.10	0.44	0.10	0.44	Gas	EE
						CO	0.08	0.37	0.08	0.37	Gas	EE
						VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
	Upward	GPU-5				PM	< 0.01	0.03	< 0.01	0.03	Solid	EE
	Vertical Stack					НСОН	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						Total HAPs	< 0.01	0.03	< 0.01	0.03	Gas	EE
						CO2e	121	529	121	529	Gas	EE
		CE-1	Engine	None		NOx	1.52	6.66	1.52	6.66	Gas	EE
6E	Upward Vertical Stack					CO	7.39	32.38	0.52	2.27	Gas	EE
						VOC	1.46	6.40	0.73	3.20	Gas	EE
						PM	0.11	0.50	0.114	0.50	Solid	EE
						НСОН	1.31	5.73	0.131	0.57	Gas	EE
						Total HAPs	1.47	6.43	0.290	1.27	Gas	EE
						CO2e	1744	7639	1744	7639	Gas	EE
	Upward Vertical Stack	CE-2	Engine	None		NOx	1.52	6.66	1.52	6.66	Gas	EE
						СО	7.39	32.38	0.52	2.27	Gas	EE
						VOC	1.46	6.40	0.73	3.20	Gas	EE
7E						PM	0.11	0.50	0.114	0.50	Solid	EE
, 1						НСОН	1.31	5.73	0.131	0.57	Gas	EE
						Total HAPs	1.47	6.43	0.290	1.27	Gas	EE
						CO2e	1744	7639	1744	7639	Gas	EE
8E-11E	1	T01- T04	Produced Water	None		NOx					Gas	EE
	Relief Vents					СО					Gas	EE
						VOC	0.16	0.72	0.16	0.72	Gas	EE
						PM					Solid	EE
						НСОН					Gas	EE
						Total HAPs	0.03	0.14	0.03	0.14	Gas	EE
						CO2e	221	970	221	970	Gas	EE

# **G70-A EMISSIONS SUMMARY SHEET**

Emission Point ID No.	Emission Point Type ¹	Emission Unit Vented Through This Point		Air Pollution Control Device		All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit	Est. Method Used ⁵
12E	Fugitive	TL-1	Produced Water Truck Loading	None		NOx CO VOC PM HCOH Total HAPs CO2e	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	Gas Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE EE

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).4C

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

# ATTACHMENT P

# **Other Supporting Documentation**

# Campbell Well Pad Attachment P Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to the planned Campbell Well Pad. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

# 1.1 PSD and NSR

The facility will be a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant with the voluntary restrictions (e.g., catalytic converter on the engine).

The facility is within an area designated as attainment for all criteria pollutants. Consequently, the facility is not subject to the New Source Review (NSR) regulations. Consequently, NSR requirements are not applicable to this project.

# 1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The facility will be a minor source. Additionally, the NSPS regulating this facility does not trigger a Title V permit. Hence, a Title V permit will not be required for the Campbell Well Pad Production Facility.

# 1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

This Northeast Natural Energy facility will receive and manage raw natural gas and associated produced water from the wells. After separation of the produced water, the gas will be injected into gathering lines for transportation via pipeline owned and operated by others to a compressor station, owned and operated by others, where it will be compressed, dehydrated and injected into a transmission line for transportation to customers.

The Campbell Well Pad and the receiving compressor station are under the same general SIC Code. They are not under common ownership and will not have a sharing of staff. Additionally, as the gas can also flow to other compressor stations further away, there is no dependency of the Campbell Well Pad on this compressor station. Additionally, operation of this compressor station is not dependent upon the Campbell Well Pad as it also receives gas from other well pads. Lastly, the distance between the planned Campbell Well Pad and the receiving compressor station (> 1.0 miles) does not rise to the definition of contiguous or adjacent. Thus, not all of the criteria for aggregation are met. Hence, emissions from the Campbell Well Pad should not be aggregated with those of the receiving compressor station.

The closest Northeast Natural Energy facility to the Campbell Well Pad is its Statler Well Pad. This facility is under common ownership, under the same SIC code and may, from time to time, have a sharing of staff. However, these two well pads are approximately 0.63 miles apart. Lastly, there is no interconnection or interdependency between these two facilities. Gas from one well pad does not flow to the other. Accordingly, the operation of one well pad is not dependent upon the operation of the other. Thus, given the lack of dependency and the distance of separation, emissions from these two well pads should not be aggregated.

# 1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). Specific NSPS requirements potentially applicable to the Well Pad Production Facility are as follows:

- 40 CFR 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- 40 CFR 60, Subpart KKK Equipment Leaks of VOC from Onshore Natural Gas Processing Stations
- 40 CFR 60, Subpart LLL Onshore Natural Gas Processing Stations: SO₂ Emissions
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

# 1.4.1 Subpart Dc

This subpart limits SO2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations it to control SOx and PM emissions from coal and oil-fired boilers and heaters, natural gas fired units are also covered under this rule. The planned Gas Processing Units have heat inputs that are well below the threshold of coverage for this rule (10 MMBTU/Hr). Thus, this rule does not apply.

# 1.4.2 Subpart KKK

This subpart limits VOC emissions from equipment at a natural gas processing station. The planned Well Pad does not meet the definition of a processing station under this rule. Hence, this rule does not apply.

# 1.4.3 Subpart LLL

This set of regulations governs emissions from processes used to remove sulfur gases from the field gas stream (sweetening unit) and subsequent sulfur recovery operations. The field gas that will be extracted at this Well Pad does not contain sufficient sulfur compounds to warrant a sweetening unit. Accordingly, not such equipment will be present. Hence, this rule does not apply.

# 1.4.4 Subpart IIII

This subpart governs emissions from new compression ignition internal combustion engines CI ICE) manufactured after July 11, 2005. There will be no compression ignition engines (e.g. diesel-fired emergency generator) at this station. Hence, this rule does not apply.

# 1.4.5 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. The driver for sole gas compressor at this facility will be SI ICE units manufactured after this date. Accordingly, this rule applies to this engine. More specifically, 60.4233(e) stipulates that non-emergency natural gas-fired lean burn engines >500 HP and <1350 HP must comply with the applicable emission standards of Table 1 of this Subpart. The engine, including the catalytic control unit, will meet this standard.

# 1.4.6 Subpart OOOO

This subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at natural gas well pads. The potentially applicable sections of this rule sets restrictions, recordkeeping and reporting requirements on emissions from storage vessels with potential VOC emissions greater than 6 tons per year, fugitive emissions, reciprocating compressors and pneumatic controllers. This rule applies to the Campbell Well Pad Production Facility.

One of the key components to this rule [40 CFR 60.5390(b)] applicable to the Campbell Well Pad is the requirement that all pneumatic controllers located between the well head and a

processing plant must have a bleed rate of less than 6 scfh. All pneumatic controllers to be installed at Campbell Well Pad will meet these criteria.

This rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The Produced Water tanks at the Campbell Well Pad will have an estimated *uncontrolled* VOC emission rate well below this threshold. Thus, emissions from these tanks do not fall under NSPS Subpart OOOO.

# **1.5** National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned Campbell Well Pad Production Facility:

- 40 CFR 63, Subpart ZZZZ NESHAP from Stationary Reciprocating Internal Combustion Engines
- 40 CFR 63, Subpart DDDDD NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters

# 1.5.1 Subpart ZZZZ

This Subpart governs emissions from a stationary reciprocating internal combustion engine (RICE) located both at major and area source of HAPs. The facility will not be a major source of HAPs, but will be considered an area source of HAPs. Hence, this rule is potentially applicable to the facility. In accordance with 40 CFR 63.6590(a)(2)(iii), the single engine at the planned Campbell Well Pad Production Facility will not be considered an Existing Stationary RICE. Rather, it will be considered "new" engine. Thus, the engine will meet the requirements of this rule by meeting the requirements of NSPS, Subpart JJJJ as described above.

# 1.5.2 Subpart DDDDD

This Subpart applies to industrial boilers and process heaters of various sizes and fuel types located at facilities that are classified as a major source of HAPs. As the planned facility is not a major source of HAPs, this rule does not apply.

# 1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or

processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The Campbell Well Pad will not store more than 10,000 lbs of a flammable mixture comprised of the substances listed in Table 3 in 40 CFR 68.130. Hence, it is not covered under this rule.

# 1.7 West Virginia State Requirements

# 1.7.1 <u>45 CSR 2</u>

The purpose of 45CSR2 is to control smoke and particulate matter emissions from fuel burning units. The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

# 1.7.2 <u>45 CSR 4</u>

This regulation prohibits the emission of objectionable odors. Northeast Natural Energy is obligated to run the station in a manner that does not produce objectionable odors.

# 1.7.3 <u>45 CSR 6</u>

This rule establishes emission standards for particulate matter and other requirements for incineration of refuse not subject to or specifically exempted from federal regulation. The GPUs and compressor engine fall under Section 4.1 of this rule. PM emissions from these devices must remain below the allowable limit calculated under this rule.

The emissions must also meet the visible emissions requirements of this rule limiting visible emissions to 20% opacity.

# 1.7.4 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the planned facility, no actions are required on the part of Northeast Natural Energy to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

# 1.7.5 <u>45 CSR 13</u>

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed Campbell Well Pad facility has the potential to emit a regulated pollutant in excess of the thresholds that define a Stationary Source (formaldehyde). Additionally, the presence of a source (the compressor engine) is regulated under NSPS, Subpart JJJJ. As such, a permit is warranted, independent of the exceedance (or lack thereof) of any emission thresholds triggering permitting.

When taking into consideration the voluntary limit to operate the engines equipped with catalysts only when the catalytic converters are properly functioning, the facility's potential to emit is less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

# 1.7.6 <u>45 CSR 16</u>

This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the Campbell Well Pad Production Facility is subject to the emission limitations, monitoring, testing and recordkeeping of Subpart JJJJ. The facility is also subject to Subpart OOOO.

# 1.7.7 <u>45 CSR 30</u>

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The planned Campbell Well Pad Production Facility, as noted above, does not have the potential to emit any regulated pollutant about the threshold that would define it as a major facility. Additionally, although the facility is subject to certain New Source Performance Standards, the NSPS applicable to this facility do not trigger the need to submit a Title V application and obtain a Title V permit. Hence this rule is not applicable.

# 1.7.8 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. Both of these topics have been addressed above.