

November 2, 2015

Assistant Director for Permitting WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

RE: Antero Midstream LLC – Bluestone Compressor Station West Virginia Department of Environmental Protection, Division of Air Quality, General Air Permit Modification G35-A004A

To Whom it May Concern,

On behalf of Antero Midstream LLC (Antero), please find attached the permit modification application for permit number G35-A004A for Facility Number 033-00172 located in Harrison County, West Virginia. The facility was recently purchased by Antero and its name changed to Bluestone Compressor Station. Below is a list of requested modifications to the permitted facility included in the application:

- 1. The facility name to be changed from Salem Compressor Station to Bluestone Compressor Station (see attached Permit Transfer document).
- 2. The owner and operator of the facility to be transferred from Hall Drilling, LLC to Antero Midstream LLC (see attached Permit Transfer document).
- 3. Three (3) existing Caterpillar engines to be removed.
- 4. Two (2) existing dehydration units and three (3) reboilers to be removed.
- 5. A 25 million standard cubic feet per day (MMSCFD) dehydration unit expected to process no more than 6 MMSCFD with 0.5 MMBtu/hr reboiler to be added to the facility.
- 6. One (1) 210 barrel produced water tank and one (1) 50 barrel produced water tank to be added to the facility with an expected produced water production of 210 barrels per day.
- 7. One (1) horizontal filter separator to be added to the facility.

Enclosed is a hard-copy of the entire permit application plus two (2) electronic CDs of the permit application form and the required attachments. Per 45CSR13, a \$4,000 application fee is also enclosed, which covers the Class II General Permit Registration \$500 application fee and an additional \$1,000 for NSPS requirements and \$2,500 for MACT requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment J. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

November 2, 2015

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at <u>kmeszaros@kleinfelder.com</u>.

Sincerely, Kleinfelder

Kaitlin Amesyaros

Kaitlin Meszaros Air Quality Professional

Enclosure: Bluestone Compressor Station General Air Permit Modification

Antero Midstream LLC

Bluestone Compressor Station

General Permit Modification West Virginia Department of Environmental Protection Division of Air Quality G35-A004A

Harrison County, West Virginia

November 2015

Prepared by:

KLEINFELDER Bright People. Right Solutions.

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 <u>www.kleinfelder.com</u>

> © 2015 Kleinfelder DEN15O23608

Table of Contents

Attachment A. Attachment B. Attachment C.	General Permit Application Form Discussion of Nearby Facilities Business Certificate Process Description Description of Fugitive Emissions a. Equipment Leaks b. Venting Episodes c. Haul Road Dust
Attachment D.	Process Flow Diagram
Attachment E.	Plot Plan
Attachment F.	Area Map
Attachment G.	Emission Unit Data Sheets
	a. Registration Section Applicability Form
	b. Emission Units Table
	c. Compressor Engine
	d. Storage Tanks
	e. Dehydration Unit f. Reboiler
	g. Tank Truck Loading
Attachment H.	Air Pollution Control Device Data Sheets
	a. Oxidation Catalyst
Attachment I.	Supporting Emission Calculations
	a. Emission Calculations
	b. ProMax 3.2 Simulation
	c. GRI-GLYCalc 4.0 Reports
	d. Gas Analysis
Attachment J.	Public Notice
Attachment N.	Material Safety Data Sheets
Attachment O.	Emissions Summary Sheets
Attachment R.	Authority of Corporation

ST WEST A	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTEC DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov/o		APPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS				
	CTION Ξ MODIFICATION \Box RE	LOCAT	TION CLASS I ADMINISTRATIVE UPDATE				
		STRATIV	IVE UPDATE				
	CHECK WHICH TYPE OF GENERAL PERMIT REGISTRATION YOU ARE APPLYING FOR:						
G10-D – Coal	Preparation and Handling		G40-C – Nonmetallic Minerals Processing				
G20-B – Hot N	lix Asphalt		G50-B – Concrete Batch				
G30-D – Natur	al Gas Compressor Stations		G60-C - Class II Emergency Generator				
G33-A – Spark	Ignition Internal Combustion Engines		G65-C – Class I Emergency Generator				
Ξ G35-A – Natura	al Gas Compressor Stations (Flare/Glycol Dehydration	on Unit)	G70-A – Class II Oil and Natural Gas Production Facility				
	SECTION I. GE						
1. Name of applica Antero Midstre	ant (as registered with the WV Secretary of State's C ${f am\ LLC}$	ffice):	 Federal Employer ID No. (FEIN): 46-5517375 				
3. Applicant's mail	ing address:	4. <i>A</i>	Applicant's physical address:				
_	1615 Wynkoop Street Denver, CO 80202						
5. If applicant is a	subsidiary corporation, please provide the name of p	arent cor	orporation:				
 6. WV BUSINESS REGISTRATION. Is the applicant a resident of the State of West Virginia? ☐ YES Ξ NO IF YES, provide a copy of the Certificate of Incorporation/ Organization / Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. IF NO, provide a copy of the Certificate of Authority / Authority of LLC / Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 							
	SECTION II. FA	CILITY I	(INFORMATION				
modified, relocated	facility (stationary source) to be constructed, d or administratively updated (e.g., coal primary crusher, etc.): Natural Gas	andard Industrial AND 8b. North American Industry ication ication (SIC) code: 4922 System (NAICS) code: 486210					
9. DAQ Plant ID N	lo. (for existing facilities only):		t all current 45CSR13 and other General Permit numbers associated s process (for existing facilities only):				
033	<u>- 0 0 1 7 2</u>	<u>G3</u>	<u>35-A004A</u>				

,	A: PRIMARY OPERATING SITE INFORMAT	ION			
11A. Facility name of primary operating site:	12A. Address of primary operating site:				
Bluestone Compressor Station	_Bluestone Compressor Station_ Mailing:Same as applicant address				
	Physical: US-50 Salem, WV 26426 Harrison County				
		,			
 13A. Does the applicant own, lease, have an optic IF YES, please explain:Antero Midst 	on to buy, or otherwise have control of the pro ream LLC owns the land for the B	•			
- IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS SOURCE.				
14A. – For Modifications or Administrative U nearest state road;	pdates at an existing facility, please provide c	lirections to the present location of the facility from the			
 For Construction or Relocation permits, MAP as Attachment F. 	please provide directions to the proposed new	v site location from the nearest state road. Include a			
_From Bridgeport, WV head west on US-50 the facility will be 0.2 miles ahead on the right.) W. In 20 miles, turn right onto 50/28. Take	e the first right to stay on 50/28. The entrance to			
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:			
Salem	Harrison	Northing (KM):4350.034			
Salem		Easting (KM):534.947			
		Zone:17			
18A. Briefly describe the proposed new operation	or change (s) to the facility:	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):			
Modified construction – removal of th		Latitude: _39.29898			
dehydration units, and three reboilers dehydration unit, one reboiler and two		Longitude:80.59471			
denyulation unit, one reponer and two					
B: 1 ST ALTERNATE OPERATII	NG SITE INFORMATION (only available for	G20, G40, & G50 General Permits)			
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:				
	Mailing:	Physical:			
	5				
 13B. Does the applicant own, lease, have an optic IF YES, please explain: 	on to buy, or otherwise have control of the pro				
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS SOURCE.				
 For Modifications or Administrative U nearest state road; 	pdates at an existing facility, please provide c	lirections to the present location of the facility from the			
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. 					

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B. Briefly describe the proposed new operation	or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
		Latitude: Longitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits):

11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:				
	Mailing:		Physical:			
13C. Does the applicant own, lease, have an optic						
 IF YES, please explain: 						
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	ERMIT FOR THIS S	SOURCE.				
14C. – For Modifications or Administrative U nearest state road;	pdates at an existi	ng facility, please provide direc	tions to the present	location of t	he facility from the	
 For Construction or Relocation permits, MAP as Attachment F. 	please provide dire	ctions to the proposed new site	e location from the n	earest state	road. Include a	
15C. Nearest city or town:	16C. County:		17C. l	JTM Coordi	inates:	
			Northing (KM): Easting (KM):			
			Zone: _			
18C. Briefly describe the proposed new operation	or change (s) to th	e facility:	19C. Latitude & L (NAD83, Decimal			
			Latitude:			
		21. Data of anticipated Start	Longitude:			
20. Provide the date of anticipated installation or c	hange:	21. Date of anticipated Start-	up il registration is g	jranieu.		
//		//				
If this is an After-The-Fact permit application, p upon which the proposed change did happen: :	provide the date					
5_/_10/_2015_						
	22. Provide maximum projected Operating Schedule of activity/activities outlined in this application if other than 8760 hours/year. (Note: anything other than 24/7/52 may result in a restriction to the facility's operation).					
Hours per day 24 Days per week 7 Weeks per year 52 Percentage of operation 100%						

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- $\Xi\,$ ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- Ξ ATTACHMENT B: PROCESS DESCRIPTION
- $\Xi\,$ ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- Ξ ATTACHMENT D: PROCESS FLOW DIAGRAM
- Ξ ATTACHMENT E: PLOT PLAN
- Ξ ATTACHMENT F: AREA MAP
- Ξ ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- Ξ ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- Ξ ATTACHMENT I: EMISSIONS CALCULATIONS
- Ξ ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT K: ELECTRONIC SUBMITTAL
- Ξ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
- ATTACHMENT M: SITING CRITERIA WAIVER
- Ξ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
- Ξ ATTACHMENT O: EMISSIONS SUMMARY SHEETS
- Ξ OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATIC	SECTION IV.	CERTIFICATION	OF INFORMATIO
---	-------------	---------------	---------------

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.
FOR A CORPORATION (domestic or foreign)
I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation
FOR A PARTNERSHIP
I certify that I am a General Partner
FOR A LIMITED LIABILITY COMPANY
I certify that I am a General Partner or General Manager
FOR AN ASSOCIATION
I certify that I am the President or a member of the Board of Directors
FOR A JOINT VENTURE
I certify that I am the President, General Partner or General Manager
FOR A SOLE PROPRIETORSHIP
I certify that I am the Owner and Proprietor
I hereby certify that (please print or type)
Signature
(please use blue ink) Responsible Official Date
Name & Title <u>Ward McNeilly, Vice President Reserves Planning & Midstream</u>
Signature M. Mully
(please use blue ink) Authorized Representative (if applicable) Date
Applicant's Name Ward McNeilly
Phone & Fax(303)357-6822(303)357-7315
Phone Fax Email wmcneilly@anteroresources.com

Discussion of Nearby Facilities

Bluestone Compressor Station – Closest Antero Midstream LLC Facilities

1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes Antero Resources Corporation production facilities in addition to the Antero Midstream LLC midstream facilities.

2. SIC Code: The Bluestone Compressor Station operates under SIC code 4922 (pipeline transportation of natural gas. The closest facility owned by Antero Midstream LLC with this SIC code is a compressor station 4.5 miles southwest of Bluestone Compressor Station. All Antero Resources Corporation facilities operate under the SIC code of 1311 (crude oil and natural gas). The closest facility with this SIC code is approximately 2 miles to the southwest.

3. Contiguous or Adjacent: The land between the Bluestone Compressor Station and its nearest compressor station operating under the same SIC code is not owned or managed by Antero Midstream LLC. Therefore, the facilities are not considered to be adjacent or contiguous.

Based on this three-pronged evaluation, there are no other existing facilities that should aggregate emissions with Bluestone Compressor Station.

Attachment A. Business Certificate

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO MIDSTREAM LLC

Control Number: 9A5E1

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of April 29, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of April 29, 2014

talil & Your

Secretary of State

	APR 292014 IN THE OFFICE WV SECRETARY OF			Submitted by: CT Corporation Rep-Terry Terry.Stamper@wolterski 304-776-1152
Sec 190 Bidj Cha FIL (Tw star	LE ONE ORIGINAL CERTIFI	APPLICATIO CATE OF AUT D LIABILITY	HORITY OF	Penney Barker, Manager Corporations Division Tel: (304)558-8000 Fax: (304)558-8381 Website: <u>www.wwsos.com</u> E-mail: <u>business@wwsos.com</u> Office Hours: Monday – Friday 8:30 a.m. – 5:00 p.m. ET Control #
1.	The name of the company as registered home state is:	d in its	Midstream LLC	
	I UNEX NERE IO MUICALE YOU HAVE OF	btained and submit	ted with this app	lication a CERTIFICATE OF
	EXISTENCE (GOOD STANDING), di incorporation as required to process ye Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations so "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of tra	ated during the cor our application. The estate of original in will be: Hou terms such (If uch as for e list of de name.] DBA (SL L	rent tax year, fro e certificate may corporation. ne State name as name is not availabilitow special instruc- tion special instruc- te special instruction etter of Resolution	lication a <u>CERTIFICATE OF</u> m your home state of original be obtained by contacting the listed above, if available in WV e. check DBA Name box below and tions in Section 2. attached.) is in Section 2. Regarding the attached to this application.)
	EXISTENCE (GOOD STANDING), da incorporation as required to process ye Secretary of State's Office in the home The name to be used in West Virginia (The name must contain one of the required t as limited liability company" or abbreviations su "LLC" or "PLLC". See instructions for complet	ated during the cor- our application. The estate of original in will be: Hoo terms such (If uch as for e list of de name.] DBA (So L r limitations X r til members a Letter of I	rent tax year, fro e certificate may corporation. ne State name as name is not availabilitow special instruc- tion special instruction especial instruction etter of Resolution egular L.L.C.	m your home state of original be obtained by contacting the listed above, if available in WV le. check DBA Name box below and tions in Section 2. attached.) is in Section 2. Regarding the
3.	 EXISTENCE (GOOD STANDING), di incorporation as required to process ye Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations so "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of tra The company will be at [See instructions fo on professions which may form P.L.L.C. in WV. A must have WV professional license. In most cases, Authorization/Approval from the appropriate S 	ated during the cur our application. The estate of original in events such (If uch as free list of DBA (Souther as the second of	rent tax year, fro e certificate may corporation. ne State name as name is not availabilitow special instruc- in some	m your home state of original be obtained by contacting the listed above, if available in WV e, check DBA Name box below and tions in Section 2. attached.) is in Section 2. Regarding the attached to this application.)
3.	 EXISTENCE (GOOD STANDING), di incorporation as required to process ye Secretary of State's Office in the home. The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations st "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of transformers on professions which may form P.L.L.C. in WV. A must have WV professional license. In most cases, Authorization/Approval from the appropriate S Licensing Board is required to process the applica 	ated during the cor- our application. The estate of original in will be: Hoo- terms such (If uch as for e list of de name.] DBA (So L r limitatious I r til menthers a Letter of I itate thion.] ce No. & Stre City/State/2	rent tax year, fro e certificate may corporation. ne State name as name is not availabl illow special instruc- in same	m your home state of original be obtained by contacting the listed above, if available in WV ke, check DBA Name box below and tions in Section 2. attached.) is in Section 2. Regarding the attached to this application.) . for the profession of
3 . 4.	 EXISTENCE (GOOD STANDING), di incorporation as required to process ye Secretary of State's Office in the home. The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations st "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of traceptable terms and the appropriate S Licensing Board is required to process the applica. The street address of the principal officies: 	ated during the cur our application. The estate of original in events such (If uch as free list of DB/ (Second Contents) (Second Contents) ide name.] DB/ (Second Contents) (Second Contents) is a Letter of If itate the content of City/State/ Street/Rox; City/State/	rent tax year, fro e certificate may corporation. ne State name as name is not availabi- illow special instruc- to special instruction egular L.L.C. rofessional L.L.C rofessional L.L.C tip:	m your home state of original be obtained by contacting the listed above, if available in WV le. check DBA Name box below and tions in Section 2. attached.) is in Section 2. Regarding the attached to this application.) . for the profession of

WV045 - 09/04/2013 Wolters Kluwe: Online

. .

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 2

7.	E-mail address where business correspondence may be received:
8.	Website address of the business, if any:
9.	The company is: an at-will company, for an indefinite period a term company, for the term of years, which will expire on
10.	The company is: member-managed. [List the names and addresses of all members.] manager-managed. [List the names and addresses of all managers.]
	List the Name(s) and Address(es) of the Member(s)/Manager(s) of the company (attach additional pages if necessary).
	Name Street Address City, State, Zip
	Antero Resources Corporation 1625 17th Street, Suite 300 Denver, Colorado 80202
11.	All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company. Yes- Those persons who are liable in their capacity as members for all debts, obligations or liability of the company have consented in writing to the adoption of the provision or to be bound by the provision.
12.	The purpose for which this limited liability company is formed are as follows: (Describe the type(s) of business activity which will be conducted, for example, "real estate." "construction of residentia and commercial buildings," "commercial printing," "professional practice of architecture.")
	Midstream oil and gas operating company
13.	Is the business a Scrap Metal Dealer?
	Yes [If "Yes," you must complete the Scrap Metal Dealer Registration Form (Form SMD-1) and proceed to question 14.].
	No [Proceed to question 14.]

14. The number of pages attached and included in this application is: ______

Form LLF+1

Issued by the Office of the Secretary of State

Revised 8/13

WV045 - 09/04/2013 Wolters Kluwer Online

•

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3

15. The requested effective date is:	the date & time of filing in	the Secretary of State's Office
[Requested date <u>may not be earlier than</u> <u>filing nor later than 90 days after filing</u> <u>in our office.</u>]	the following date	and time

16. Contact and Signature Information* (See below Important Legal Notice Regarding Signature):

a.	Alvyn A. Schopp	(313) 357-7310
	Contact Name	Phone Number
ь.	Alvyn A. Schopp	Chief Administrative Officer and Regional Vice President
0.	Print or type name offait ar	Title / Capacity of Signer
c.	Hz-Tochopp	April 28, 2014
	Signature /	Date

*Important Legal Notice Regarding Signature: Per West Virginia Code §31B-2-209. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Form LLF-1

Issued by the Office of the Secretary of State

•

Revised 8/13

WV045 - 09/04/2013 Wolters Kluwer Opline

•

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ANTERO MIDSTREAM LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF APRIL, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5466900 8300

140532521 You may verify this certificate online at corp.delaware.gov/authver.shtml

••••

Jeffrey W. Bullock, Secretary of State

AUTHENTICATION: 1328067

DATE: 04-29-14

Attachment B. Process Description

Attachment B Bluestone Compressor Station – Process Description

The Bluestone Compressor Station is located in Harrison County, West Virginia. The modified facility will consist of one (1) 1,380 brake horsepower (bhp) Caterpillar G3516B compressor engine with oxidation catalyst, one (1) 210 barrel (bbl) produced water tank, one (1) 50 bbl produced water tank, one (1) 25 million standard cubic feet per day (MMSCFD) capacity triethylene glycol (TEG) dehydration unit with a 0.5 MMBtu/hr reboiler, and one (1) horizontal filter separator.

Gas from surrounding pipelines and onsite well enters the facility through one (1) filter separator for the initial separation of production liquids and sales gas. There are no regular emissions associated with the separator other than fugitive component leaks discussed below. Gas from the filter separator is sent to the 1,380 bhp Caterpillar compressor engine (CE-4). The compressor engine is controlled by an oxidation catalyst (1C). Produced water from the filter separator and compressor engine is sent to the 210 bbl produced water tank (T01) and 50 bbl produced water tank (T02). Gas from the compressor engine is sent to the TEG dehydrator (DEHY-001).

The TEG dehydrator (DEHY-001) contains a flash gas tank and 0.5 MMBtu/hr reboiler (RB-1). The dehydrator has a design rate of 25 MMSCFD, but will only process a maximum of 6 MMSCFD. Within the dehydration unit, vent gas from the flash gas tank is routed to the reboiler and used as fuel with an assumed 95% efficiency for combusting the gas. Emissions from the reboiler are routed to the atmosphere. The still vent is equipped with a condenser. Produced water from the dehydrator is routed to the two (2) produced water tanks. The dry gas from the dehydration process is sent to plant discharge.

Produced water is trucked out via tank trucks as needed (LDOUT). The facility produced water production is 210 barrels per day. Fugitive emissions also occur from component leaks and from haul road dust from onsite truck traffic. The compressor engine will undergo venting episodes from regular maintenance including compressor blowdowns.

The N Ritter 1 is a dry gas well owned by Antero Resources Corporation on the same pad as the Bluestone Compressor Station. Though the well is not covered under the existing G35-A004A, there are no emissions associated with this well as it does not have any associated production equipment and its production is piped to commingle with other compressor station inlet flows.

Sources of emissions from the compressor station include:

- Compressor Engine: NOx, CO, VOC, SOx, PM₁₀, PM_{2.5}, HAPs, CO₂e
- Produced Water Storage Tanks: VOC, HAPs, CO₂e
- Dehydration Unit: VOC, HAPs, CO₂e
- Reboiler: NOx, CO, VOC, SOx, PM₁₀, PM_{2.5}, HAPs, CO₂e
- Truck Loading: VOC, HAPs, CO₂e
- Fugitive Component Leaks: VOC, HAPs, CO₂e
- Venting Episodes: VOC, HAPs, CO₂e
- Fugitive Dust: PM₁₀, PM_{2.5}

Attachment C. Description of Fugitive Emissions

Attachment C Bluestone Compressor Station – Description of Fugitive Emissions

The fugitive emissions that will occur at the Bluestone Compressor Station include:

1. Equipment leaks – components in gas service and light liquid service

Each piece of equipment onsite are fitted with components such as flanges, valves, and pressure relief valves to ensure a safe and efficient compression process. These components are designed to have a small amount of gas vent to the atmosphere. The component counts were estimated using component counts from a similar compressor station configuration. Weight fractions of specific pollutant components were retrieved from a site-specific gas analysis of a nearby well and from the ProMax output of the flashing gas evolved from the produced water.

2. Venting episodes - compressor blowdowns and start-up events

The onsite compressor will undergo scheduled blowdown events to ensure proper operation of the engine. The gas from these events is released to the atmosphere. No regular schedule is set for when these events will occur. Emissions from the blowdowns as well as starting the engine up after the blowdowns were calculated based on the frequency of events, the estimated gas that will be released, and the weight fractions of specific pollutant components of the site-specific gas.

3. Haul road emissions - truck traffic

The gravel access road allowing entry and exit onto the compressor station site is not paved. Truck travel on the gravel access road results in the dislodging of particulates from the road and lifting dust to the atmosphere. It is assumed no more than two produced water tanker trucks and two light-duty pickup trucks will drive onsite per day. The gravel access road distance is approximately 1,250 feet. **Equipment Leaks**

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	105		1 st attempt – 5 days Final repair – 15 days	807.9
	Light Liquid VOC	53		1 st attempt – 5 days Final repair – 15 days	218.9
Safety Relief Valves ¹¹	Gas VOC				
Valvoo	Non VOC				
Open-ended Lines ¹²	Gas VOC				
	Light Liquid VOC				
Sampling Connections ¹³	VOC				
Connections	Non-VOC				
Connectors	Gas VOC				
	Light Liquid VOC				
Flanges	Gas VOC	75		1 st attempt – 5 days Final repair – 15 days	50.0
	Light Liquid VOC	38		1st attempt – 5 days Final repair – 15 days	6.9
Other	Gas VOC	5		1 st attempt – 5 days Final repair – 15 days	75.2
	Light Liquid VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gasservice valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

- Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O - other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Venting Episodes

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Fugitive so no number assigned

1. Name or type and model of proposed affected source:
Fugitive emissions from venting episodes such as compressor blowdowns and startups.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
- compressor blowdown - 0.022 tons VOC per event, 0.0012 tons HAPs per event, 4.65 tons CO2e per event - compressor startup - 0.003 tons VOC per event, 0.0001 tons HAPs per event, 0.49 tons CO2e per event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
None
* The identification number which appears here must correspond to the air pollution control device identification number appearing on the <i>List Form</i> .

6.	Combustion Data (if applicable):							
	(a) Type and amount in appropriate units of fuel(s) to be burned:							
		<u>.</u>						
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:							
	(C)	Theoret	ical combustior	air requirement	(ACF/unit of fue	l):		
			@		°F and		psia.	
	(d)	Percent	excess air:					
	(e)	Type ar	nd BTU/hr of bu	rners and all othe	er firina equipme	ent planned to b	be used:	
	(0)	. Jpo ai			or ming equipme			
	(f)	If coal is	s proposed as a	source of fuel, id	dentify supplier a	and seams and	give sizing of the	
		coal as	it will be fired:					
	(g)	Propose	ed maximum de	sign heat input:			× 10 ⁶ BTU/hr.	
7.	Pro	jected o	perating schedu	ule:				
Но	ours/l	Day	not a regular schedule	Days/Week	not a regular schedule	Weeks/Year	not a regular schedule	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	@ venting events are uncontrolled °F and						
a.	NOx	lb/hr	grains/ACF				
b.	SO ₂	lb/hr	grains/ACF				
c.	СО	lb/hr	grains/ACF				
d.	PM ₁₀	lb/hr	grains/ACF				
e.	Hydrocarbons	lb/hr	grains/ACF				
f.	VOCs	lb/hr	grains/ACF				
g.	Pb	lb/hr	grains/ACF				
h.	Specify other(s)	1					
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
Engine maintenance and run time will be monitored.	Engine maintenance and run time will be recorded.
REPORTING	TESTING
Reports will be submitted as requested by WVDAQ.	None.
	 E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORD KEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE. 10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty N/A	· · · · · · · · · · · · · · · · · · ·

Haul Road Dust

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

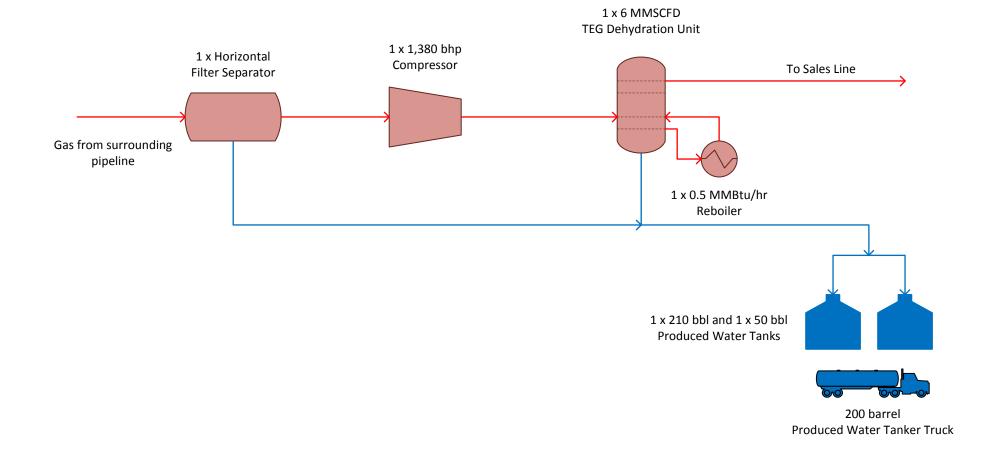
UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_						PM		, -	PM-1	0	
k =	Particle size multiplier					0.80			0.36		
s =	Silt content of road surface ma	aterial (%)				4.8		4.8			
p =	Number of days per year with precipitation >0.01 in.					160			160		
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maxii Trips Ye	s per	Control Device ID Number	Control Efficiency (%)	
1	Produced Water Tank Truck	4	21.5		0.47	1	73	30	NA	NA	
2	Pick-up Trucks	4	21.5		0.47	1	73	30	NA	NA	
3											
4											
5											
6											
7											
8											

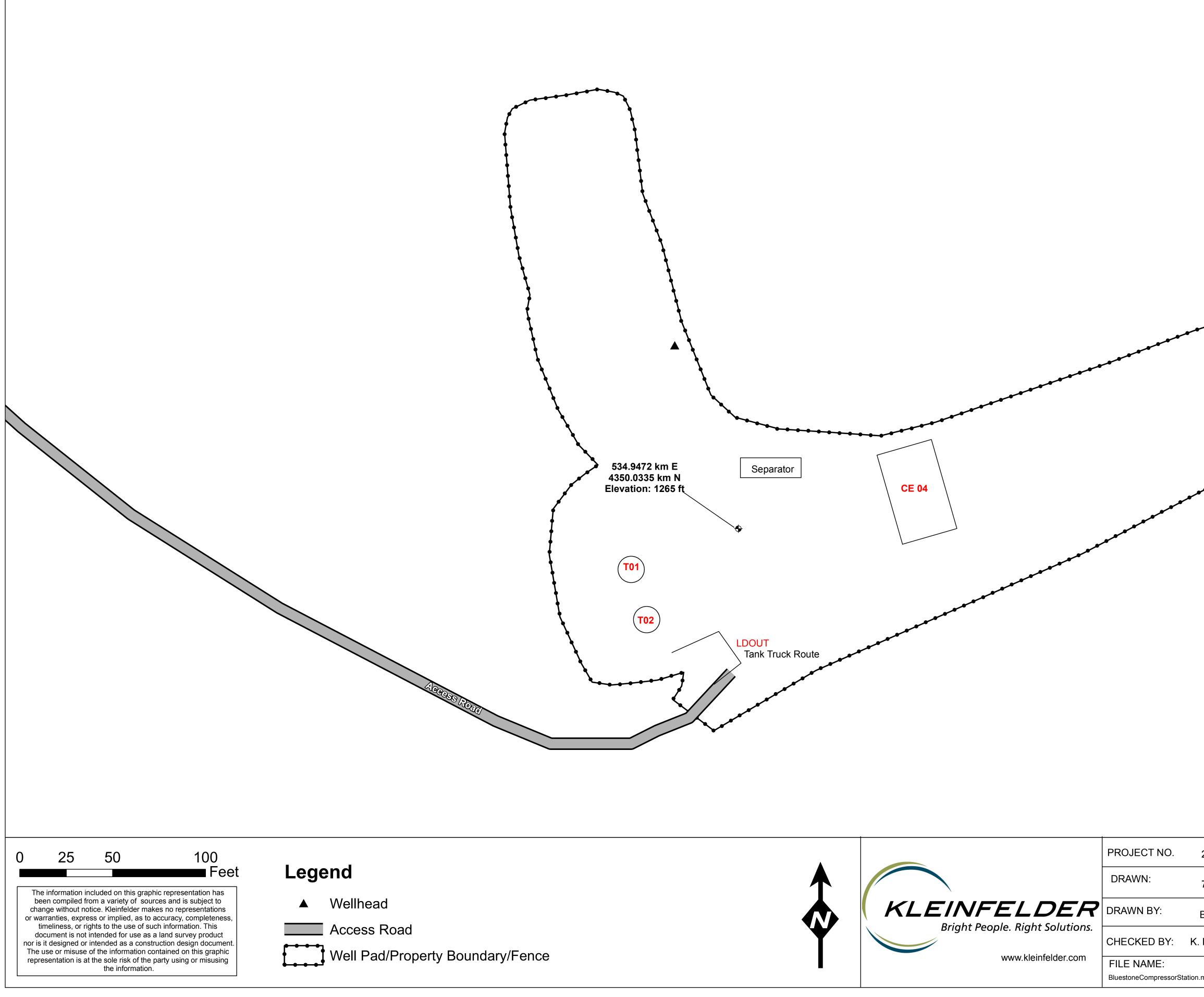
Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	4.8	4.8
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)	21.5	21.5
w =	Mean number of wheels per vehicle	4	4
p =	Number of days per year with precipitation >0.01 in.	160	160

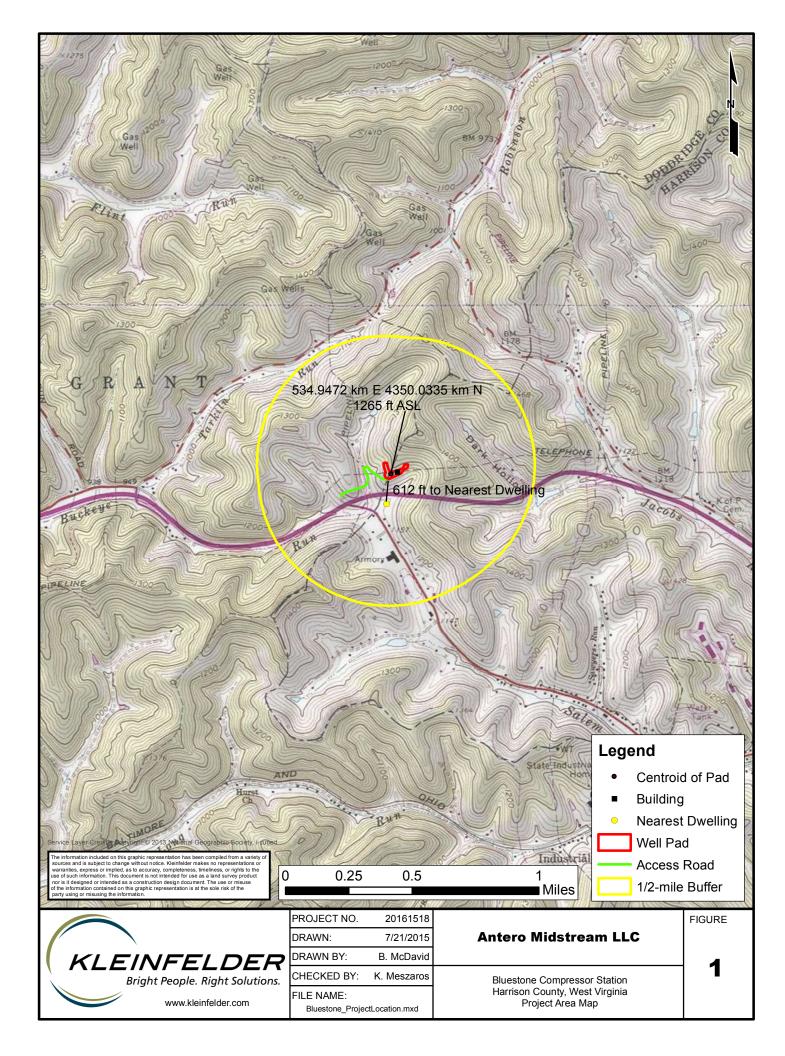

For lb/hr: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] = Ib/hr

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year


SUMMARY OF UNPAVED HAULROAD EMISSIONS	

		Р	Μ			PM	-10		
Item No.	Uncor	Uncontrolled Controll			Uncon	trolled	Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	0.14	0.61	0.14	0.61	0.04	0.16	0.04	0.16	
2	0.14	0.61	0.14	0.61	0.04	0.16	0.04	0.16	
3									
4									
5									
6									
7									
8									
TOTALS									

Attachment D. Process Flow Diagram


<u>Process Flow Diagram</u> Antero Midstream LLC Bluestone Compressor Station Harrison County, West Virginia Attachment E. Plot Plan

BluestoneCompressorStation.m

	RB-1	
20161518	Antero Midstream LLC	FIGURE
7/21/2015		
3. McDavid Meszaros	Bluestone Compressor Station Harrison County, Virginia Plot Plan	1

Attachment F. Area Map

Attachment G. Emission Unit Data Sheets Registration Section Applicability Form

General Permit G35-A Registration Section Applicability Form

General Permit G35-A was developed to allow qualified registrants to seek registration for a variety of sources. These sources include internal combustion engines, boilers, reboilers, line heaters, tanks, emergency generators, dehydration units not subject to MACT standards, dehydration units not subject to MACT standards and being controlled by a flare control device, dehydration units not subject to MACT standards and being controlled by recycling the dehydration unit back to flame zone of reboiler, dehydration units not subject to MACT standards being controlled by a thermal oxidizer, and permit exemptions including the less than 1 ton/year benzene exemption, the 40CFR63 Subpart HHH - Annual Average Flow of Gas Exemption (3 mmscf/day), and the 40CFR63 Subpart HHH - Annual Average Flow of Gas Exemption (10 mmscf/day). All registered facilities will be subject to Sections 1.0, 1.1, 2.0, 3.0, and 4.0.

General Permit G35-A allows the registrant to choose which sections of the permit that they wish to seek registration under. Therefore, please mark which sections that you are applying for registration under. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5 Section 6	Reciprocating Internal Combustion Engines (R.I.C.E.)* Boilers, Reboilers, and Line Heaters	\boxtimes
Section 7	Tanks	\boxtimes
Section 8	Emergency Generators	
Section 9	Dehydration Units Not Subject to MACT Standards	
Section 10	Dehydration Units Not Subject to MACT Standards and being controlled by a flare control device	
Section 11	Dehydration Units Not Subject to MACT Standards being controlled by recycling the dehydration unit back to the flame zone of the reboiler	\boxtimes
Section 12	Dehydration Units Not Subject to MACT Standards and being controlled by a thermal oxidizer	
Section 13	Permit Exemption (Less than 1 ton/year of benzene exemption)	\boxtimes
Section 14	Permit Exemption (40CFR63 Subpart HH – Annual average flow of gas exemption (3 mmscf/day))	
Section 15	Permit Exemption (40CFR63 Subpart HHH – Annual average flow of gas exemption (10 mmscf/day))	
Section 16	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (40CFR60 Subpart JJJJ)	\boxtimes

* Affected facilities that are subject to Section 5 may also be subject to Section 16. Therefore, if the applicant is seeking registration under both sections, please select both. **Emission Units Table**

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)						
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-4	1E	Compressor Engine	2010	1,380 bhp	Modification	1C
T01	2E	Produced Water Storage Tank #1	2015	210 bbl	New	None
T02	3E	Produced Water Storage Tank #2	2015	50 bbl	New	None
DEHY-001	4E	TEG Dehydration Unit	2015	25 MMSCFD	New	RB-1 (2C)
RB-1	5E/2C	Reboiler	2015	0.5 MMBtu/hr	New	None
CE-1		Caterpillar G3516LE Compressor Engine	2015	1,265 bhp	Removal	None
CE-2		Caterpillar G3516LE Compressor Engine	2015	1,085 bhp	Removal	None
CE-3		Caterpillar G3516 Compressor Engine	2015	1,265 bhp	Removal	None
RBV-1		Hanover Glycol Dehydration Unit Reboiler	2015	10 MMSCFD	Removal	None
RBV-2		Exterran Glycol Dehydration Unit Reboiler	2015	0.2 MMBtu/hr	Removal	None
RSV-2		Exterran Glycol Dehydration Unit Still Vent	2015	10 MMSCFD	Removal	None
RBV-3		Exterran Glycol Dehydration Unit Reboiler	2015	0.5 MMBtu/hr	Removal	None
RSV-3		Exterran Glycol Dehydration Unit Still Vent	2015	20 MMSCFD	Removal	None
LDOUT	6E	Produced Water Truck Loadout	2015	210 bbl/day	New	None

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Compressor Engine

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identification Number ¹		C	E-4				
Engine Manufacturer and Model		Caterpilla	ar G3516B				
Manufactur	rer's Rated bhp/rpm	1,380 bhp	/ 1,400 rpm				
So	urce Status ²	Ν	/IS				
Date Installed	d/Modified/Removed ³	20	010				
Engine Manufact	ured/Reconstruction Date4	20	010				
Is this a Certified Engine according (Yes or No) ⁵	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	٦	No				
	Engine Type ⁶	LI	34S				
	APCD Type ⁷	S	CR				
- ·	Fuel Type ⁸	F	PQ				
Engine, Fuel and	H ₂ S (gr/100 scf)		0				
Combustion Data	Operating bhp/rpm	1,380 bhp	/ 1,400 rpm				
Data	BSFC (Btu/bhp-hr)	7,	301				
	Fuel throughput (ft ³ /hr)	8,	851				
	Fuel throughput (MMft ³ /yr)	77	7.54				
	Operation (hrs/yr)	8,	760				
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
	NOx	1.52	6.66				
	СО	0.74	3.24				
	VOC	0.73	3.20				
	SO_2	0.006	0.03				
	PM10	0.10	0.44				
	Formaldehyde	0.13	0.56				
	+						

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)
 - MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

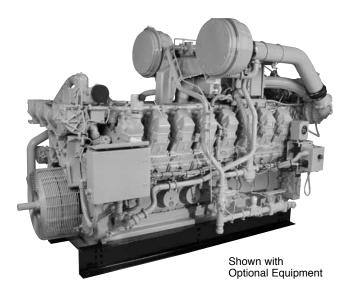
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 - LB2SLean Burn Two StrokeRB4SRich Burn Four StrokeLB4SLean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio	IR	Ignition Retard
	HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
	PSC	Prestratified Charge	LEC	Low Emission Combustion
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction
8.	Enter the F	uel Type using the following codes:		
	PO	Pipeline Quality Natural Gas	RG	Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.


MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	ОТ	Other _	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

CATERPILLAR®

G3516B LE Gas Petroleum Engine

1029 bkW (1380 bhp) 1400 rpm

FEATURES

Engine Design

- Built on G3500 LE proven reliability and durability
- Ability to burn a wide spectrum of gaseous fuels
- Robust diesel strength design prolongs life and lowers owning and operating costs
- Broad operating speed range at lower site air densities (high altitude/hot ambient temperatures)
- Higher power density improves fleet management
- Quality engine diagnostics
- Detonation-sensitive timing control for individual cylinders

Ultra Lean Burn Technology (ULB)

ULB technology uses an advanced control system, a better turbo match, improved air and fuel mixing, and a more sophisticated combustion recipe to provide:

- Lowest engine-out emissions
- Highest fuel efficiency
- Improved altitude and speed turndown
- Stable load acceptance and load rejection

Emissions

- Meets U.S. EPA Spark Ignited Stationary NSPS emissions for 2010
- Lean air/fuel mixture provides best available emissions and fuel efficiency for engines of this bore size

Advanced Digital Engine Management

ADEM A3 engine management system integrates speed control, air/fuel ratio control, and ignition/detonation controls into a complete engine management system. ADEM A3 has improved: user interface, display system, shutdown controls, and system diagnostics.

Full Range of Attachments

Large variety of factory-installed engine attachments reduces packaging time.

0.5 g/bhp-hr NOx or 1.0 g/bhp-hr NOx (NTE)

CAT® ENGINE SPECIFICATIONS

V-16, 4-Stroke-Cycle
Bore 170 mm (6.7 in.)
Stroke 190 mm (7.5 in.)
Displacement
Aspiration Turbocharged-2 Stage Aftercooled
Digital Engine Management
Governor and Protection Electronic (ADEM [™] A3)
Combustion Low Emission (Lean Burn)
Engine Weight, net dry (approx) 8401 kg (18,520 lb)
Power Density 8.2 kg/kW (13.4 lb/hp)
Power per Displacement 19.9 bhp/L
Total Cooling System Capacity 221.5 L (58.5 gal)
Jacket Water 204.4 L (54 gal)
SCAC 17 L (4.5 gal)
Lube Oil System (refill) 424 L (112 gal)
Oil Change Interval 1000 hour
Rotation (from flywheel end) Counterclockwise
Flywheel and Flywheel Housing SAE No. 00
Flywheel Teeth

Testing

Every engine is full-load tested to ensure proper engine performance.

Gas Engine Rating Pro

GERP is a PC-based program designed to provide site performance capabilities for Cat[®] natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves.

Product Support Offered Through Global Cat Dealer Network

More than 2,200 dealer outlets

Cat factory-trained dealer technicians service every aspect of your petroleum engine

Cat parts and labor warranty

Preventive maintenance agreements available for repairbefore-failure options

S•O•S[™] program matches your oil and coolant samples against Caterpillar set standards to determine:

- Internal engine component condition
- Presence of unwanted fluids
- Presence of combustion by-products
- Site-specific oil change interval

Over 80 Years of Engine Manufacturing Experience Over 60 years of natural gas engine production

Ownership of these manufacturing processes enables

Caterpillar to produce high quality, dependable products

- Cast engine blocks, heads, cylinder liners, and flywheel housings
- Machine critical components
- Assemble complete engine

Web Site

For all your petroleum power requirements, visit www.catoilandgas.cat.com.

CATERPILLAR®

G3516B LE GAS PETROLEUM ENGINE

1029 bkW (1380 bhp)

STANDARD EQUIPMENT

Air Inlet System

Axial flow air cleaners Service indicator Cleanable

Cooling System

Two-stage charge air cooling: First stage — JW + OC + 1st stage AC Second stage — 2nd stage AC Engine cooling and charge air cooling thermostats

Exhaust System Dry exhaust manifolds and turbocharger housings

Flywheels and Housings SAE 00 flywheel SAE 00 flywheel housing SAE standard rotation

Fuel System Electronic fuel metering valve Requires 7-50 psig gas supply Gas pressure regulator

Gas shutoff valve
Instrumentation
Bemote-mounted Advisor control p

Remote-mounted Advisor control panel Interconnect harness

Lube System Top-mounted crankcase breathers Oil cooler Oil filter and oil sampling valve Drain valve Turbo oil accumulator API B16.3 approved gas/air-driven pre-lube system

Torsional Vibration Analysis Caterpillar provided

Required through first quarter 2010 **Mounting**

Rails

OPTIONAL EQUIPMENT

Air Inlet System Rectangular air inlet adapter Circular air inlet adapter

Charging System Battery Charger 20 amp

Connections Mechanical joint assembly Inlet connection

Exhaust System Flexible fittings available at first production build Elbows and mufflers

Control Panels

4" LCD Advisor display panel Shipped loose

Starting System 90 psi TDI starter 150 psi TDI starter

Power Take-Offs Front housing, two sided Front lower LH accessory drive

Protection System - Display/Alarm/Shutdown

Low oil pressure Oil filter differential pressure High fuel or oil temperature Engine oil to engine coolant Differential temperature High coolant temperature Engine speed Engine load Battery voltage Detonation Manifold air temperature Coolant JW inlet/outlet pressure Left turbo inlet temperature Right turbo inlet temperature Cylinder port temperature

Protection System – Display Only Service hours Oxygen level

General

Paint — Cat yellow Dual 23" vibration damper with guard CSA Certification, Class 1 Division 2 Groups C and D

Instrumentation Optional interconnect harness

Lube System Shipped with lube oil

Mounting System Rails

Power Take-Offs Front stub shaft

Literature Options available

CATERPILLAR®

1029 bkW (1380 bhp)

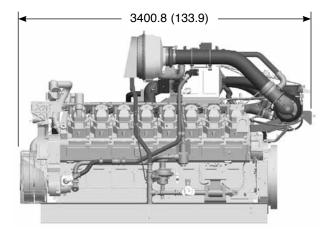
TECHNICAL DATA

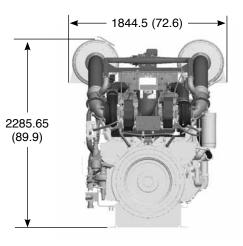
G3516B LE Gas Petroleu	m Engine — 1400 rpm***
------------------------	------------------------

Fuel System		0.5 g NOx NTE Rating DM8800-03	1.0 g NOx NTE Rating DM8850-02
Engine Power @ 100% Load	bkW (bhp)	1029 (1380)	1029 (1380)
Engine Speed	rpm	1400	1400
Max Altitude @ Rated Torque and 38°C (100°F) Speed Turndown @ Max Altitude,	m (ft)	1219.2 (4000)	1828.8 (6000)
Rated Torque, and 38°C (100°F)	%	25	25
Aftercooler Temperature			
Stage 1 (JW)	°C (°F)	98.9 (210)	98.9 (210)
Stage 2 (SCAC)	°C (°F)	54 (130)	54 (130)
Emissions*			
NOx	g/bkW-hr (g/bhp-hr)	0.67 (0.50)	1.34 (1.00)
CO	g/bkW-hr (g/bhp-hr)	3.26 (2.43)	3.75 (2.80)
CO ₂	g/bkW-hr (g/bhp-hr)	635 (474)	603 (449)
VOC**	g/bkW-hr (g/bhp-hr)	0.64 (0.48)	0.51 (0.38)
Fuel Consumption***			
@ 100% Load	MJ/bkW-hr (Btu/bhp-hr)	10.33 (7301)	9.97 (7050)
Heat Balance Heat Rejection to Jacket Water @ 100% Load JW	bkW (Btu/mn)	410.07 (00.451)	419.0 (02.920)
OC	bkW (Btu/mn)	412.37 (23,451) 78.2 (4449)	418.9 (23,820) 78.2 (4449)
Heat Rejection to Aftercooler @ 100% Load 1st Stage AC 2nd Stage AC	bkW (Btu/mn) bkW (Btu/mn)	94.23 (5359) 176.7 (10,047)	78.55 (4467) 157.9 (8984)
Heat Rejection to Exhaust @ 100% Load LHV to 25° C (77° F)	bkW (Btu/mn)	1098 (62,428)	1021.9 (58,113)
Heat Rejection to Atmosphere @ 100% Load	bkW (Btu/mn)	107.34 (6110)	107.34 (6110)
Exhaust System Exhaust Gas Flow Rate @ 100% Load	m ³ /min (cfm)	258.4 (9126)	246.8 (8716)
Exhaust Stack Temperature @ 100% Load	°C (°F)	533.33 (992)	532.22 (990)
Intake System Air Inlet Flow Rate			
@ 100% Load	m³/min (scfm)	88.52 (3126)	84.70 (2991)
Gas Pressure	kPag (psig)	48-345 (7-50)	48-345 (7-50)

*at 100% load and speed, all values are listed as not to exceed

**Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ


***ISO 3046/1


G3516B LE GAS PETROLEUM ENGINE

CATERPILLAR®

1029 bkW (1380 bhp)

DIMENSIONS

Note: General configuration not to be used for installation.

Dimensions	are in	mm	(inches).
Dimonolonio			(1101100).

DIMENSIONS				
Length	mm (in.)	3400.8 (133.9)		
Width	mm (in.)	1844.55 (72.6)		
Height	mm (in.)	2285.65 (89.9)		
Shipping Weight	kg (lb)	8401 (18,520)		

RATING DEFINITIONS AND CONDITIONS

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/ generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions. **Conditions:** Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in. Hg) and 15° C (59° F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in. Hg) and 15.6° C (60.1° F). Air flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and 25° C (77° F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and stack temperature.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ADEM, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission. Storage Tanks

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Water Storage Tanks	Produced Water Storage Tank #1			
3. Emission Unit ID number	4. Emission Point ID number			
T01	2E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
5/2015	\boxtimes New construction \square New stored material \square Other			
7A. Description of Tank Modification (<i>if applicable</i>)				
7B. Will more than one material be stored in this tank? If so, a s	reparate form must be completed for each material.			
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)				
None				

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.			
210 barrels			
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15		
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 7.5		
11A. Maximum Vapor Space Height (ft.) 1	11B. Average Vapor Space Height (ft.) 7.5		
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 200 barrels		
13A. Maximum annual throughput (gal/yr) 3,066,000	13B. Maximum daily throughput (gal/day) 8,400		
14. Number of tank turnovers per year 365	15. Maximum tank fill rate (gal/min) TBD		
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading		
17. Is the tank system a variable vapor space system? Yes	🔀 No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per y	year?		
18. Type of tank (check all that apply):			
\square Fixed Roof $_X_$ vertical $_$ horizontal $_$ flat roof $_$ cone roof $_X_$ dome roof $_$ other (describe)			
 External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground Other (describe) 			

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets
 Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

	Refer to enclosed TANKS Summary Sheets
\boxtimes	Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):									
Does Not Apply				Ruptu	re Disc (p	sig)			
Carbon Adsorption ¹				Inert C	Gas Blank	et of		_	
☐ Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers)									
Condenser ¹									
Other ¹ (describe)				Vacuur	n Setting	Pre	ssure Setti	ng	
				Emerg	gency Reli	ief Valve	(psig)		
¹ Complete appropriate Air	Pollution	n Control	Device Sh	eet					
41. Expected Emission Rat	te (submi	it Test Dat	ta or Calcu	ilations he	re or elsev	where in th	ne applicat	tion).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
CAS No.							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	0.44	1.91	1.5E-6	6.4E-6	6.2E-6	2.7E-5	0.44	1.91	O – ProMax
									Simulation

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION						
19. Tank Shell Construction:						
Riveted Gunite lined Epot	xy-coated rivets Other (describe)					
20A. Shell Color: Green20B. Roof Color: Green20C. Year Last Painted: NA						
21. Shell Condition (if metal and unlined):						
No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable					
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig): -0.03 to 0	.03 psig					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):				
Yes No	5 feet					
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply \boxtimes					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal						
🗌 🗌 Vaj	oor mounted resilient seal 🛛 Other (de	escribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No					

25D. If yes, how is the secondary seal mounted	? (check one) Sho	be	Rim 🗌 O	ther (descri	be):
25E. Is the floating roof equipped with a weath	er shield? Yes	1	lo		
25F. Describe deck fittings:					
26. Complete the following section for Interna	-		Does not appl		
26A. Deck Type: Bolted V	Velded	26B. I	For bolted decks,	provide dec	k construction:
26C. Deck seam. Continuous sheet constructio	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	de 🔲 5 x 7.5 ft. wid	e 🗌 5	x 12 ft. wide	other (describe)
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported
		tanks,	# of columns:		tanks, diameter of column:
SITE INFORMATION:					
27. Provide the city and state on which the data					
28. Daily Avg. Ambient Temperature (°F): 54.9					rature (°F): 65.75
30. Annual Avg. Minimum Temperature (°F): 4			g. Wind Speed	· · ·	
32. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day): 1,250.6	33. Atmospheric Pressure (psia): 14.25			
LIQUID INFORMATION:					
34. Avg. daily temperature range of bulk	34A. Minimum (°F): 6	50.0		34B. Max	imum (°F): 75.9
liquid (°F): 65.1					
35. Avg. operating pressure range of tank	35A. Minimum (psig)	-0.03 35B. Maximum (psig): 0.03			imum (psig): 0.03
(psig): 0					
36A. Minimum liquid surface temperature (°F)	60.0	36B (Corresponding va	anor pressure	(nsia): 0.29
37A. Avg. liquid surface temperature (°F): 65.1			Corresponding va		
38A. Maximum liquid surface temperature (°F)		38B. Corresponding vapor pressure (psia): 0.40			
39. Provide the following for each liquid or gas					
39A. Material name and composition:	Produced Water			j.	
39B. CAS number:					
39C. Liquid density (lb/gal):					
39D. Liquid molecular weight (lb/lb-mole):	18.02				
39E. Vapor molecular weight (lb/lb-mole):	18.46				
39F. Maximum true vapor pressure (psia):	0.40				
39G. Maxim Reid vapor pressure (psia):	8.2				
39H. Months Storage per year. From:	January				
To:	December				

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name					
Water Storage Tanks	Produced Water Storage Tank #2					
3. Emission Unit ID number	4. Emission Point ID number					
T02	3E					
5. Date Installed or Modified (for existing tanks)	6. Type of change:					
5/2015	\square New construction \square New stored material \square Other					
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a	a separate form must be completed for each material.					
🗌 Yes 🛛 No						
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)						
None						

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
50 barrels				
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 6			
10A. Maximum Liquid Height (ft.) 5	10B. Average Liquid Height (ft.) 3			
11A. Maximum Vapor Space Height (ft.) 1	11B. Average Vapor Space Height (ft.) 3			
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume. 45 barrels			
13A. Maximum annual throughput (gal/yr) 153,300	13B. Maximum daily throughput (gal/day) 420			
14. Number of tank turnovers per year 81	15. Maximum tank fill rate (gal/min) TBD			
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading			
17. Is the tank system a variable vapor space system?	es 🖾 No			
If yes, (A) What is the volume expansion capacity of the syste	m (gal)?			
(B) What are the number of transfers into the system pe	r year?			
18. Type of tank (check all that apply):				
\square Fixed Roof $_X_$ vertical $_$ horizontal $_$ flat roof $_$ cone roof $_X_$ dome roof $_$ other				
(describe)				
External Floating Roof pontoon roof do	uble deck roof			
Domed External (or Covered) Floating Roof				
Internal Floating Roof vertical column support self-supporting				
Variable Vapor Space lifter roof diaphragm				
Pressurized spherical cylindrical				
Underground				
Other (describe)				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets
Refer to the responses to items $19 - 26$ in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

-	1		·
Refer to enclosed	TANKS Summary Sheets		
Refer to the respon	nses to items 34 – 39 in sectio	on VII	

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):									
Does Not Apply				Ruptu	ire Disc (j	osig)			
Carbon Adsorption ¹				Inert (Gas Blank	et of		_	
Vent to Vapor Combus	tion Dev	vice1 (vapo	or combust	tors, flares	, thermal	oxidizers)			
Condenser ¹ Conservation Vent (psig									
Other ¹ (describe)									
				Emer	gency Rel	lief Valve	(psig)		
¹ Complete appropriate Air	Pollutio	n Control	Device Sh	neet					
41. Expected Emission Ra	te (subm	it Test Da	ta or Calcı	ulations he	ere or else	where in t	he applica	tion).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Workir	ng Loss	Total E	missions	Estimation Method ¹
CAS No.							Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	0.11	0.47	5.7E-7	2.5E-6	7.4E-7	3.3E-6	0.11	0.47	O – ProMax
									Simulation

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION								
19. Tank Shell Construction:								
Riveted Gunite lined Epo	Riveted Gunite lined Epoxy-coated rivets Other (describe)							
20A. Shell Color: Green20B. Roof Color: Green20C. Year Last Painted: NA								
21. Shell Condition (if metal and unlined):	21. Shell Condition (if metal and unlined):							
🛛 No Rust 🗌 Light Rust 🗌 Dense Rust 🗌 Not applicable								
22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?								
23. Operating Pressure Range (psig): -0.03 to	0.03 psig							
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome roof provide radius	24B. If yes, for cone roof, provide slop						
Tank?	(ft):	(ft/ft):						
Yes No 4 feet								
25. Complete item 25 for Floating Roof Tanks Does not apply								
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	etallic (mechanical) shoe seal Liquid	mounted resilient seal						

Vapor mounted resilient seal Other (describe):						
25C. Is the Floating Roof equipped with a secondary seal? Yes No						
25D. If yes, how is the secondary seal mounted	ed? (check one) 🔲 S	hoe	Rim	Other (desc	cribe):	
25E. Is the floating roof equipped with a wea	ther shield? Yes		No			
25F. Describe deck fittings:						
26. Complete the following section for Intern	al Floating Roof Tanks		Does not ap			
26A. Deck Type: Bolted	Welded	26B. 1	For bolted decks	, provide dec	k construction:	
26C. Deck seam. Continuous sheet construct	ion:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	vide 🔲 5 x 7.5 ft. wi	de 🗌	5 x 12 ft. wide	e 🗌 othe	r (describe)	
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. I	For column supp	orted	26G. For column supported	
		tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:						
27. Provide the city and state on which the da			-	•		
28. Daily Avg. Ambient Temperature (°F): 54		29. Annual Avg. Maximum Temperature (°F): 65.75				
30. Annual Avg. Minimum Temperature (°F)			vg. Wind Speed			
32. Annual Avg. Solar Insulation Factor (BT	J/ft ² -day): 1,250.6	33. A	tmospheric Press	sure (psia): 1	4.25	
LIQUID INFORMATION:		(0.0		04D 14		
34. Avg. daily temperature range of bulk liquid (°F): 65.1	34A. Minimum (°F):	60.0		34B. Max	imum (°F): 75.9	
35. Avg. operating pressure range of tank	35A. Minimum (psig)	. 0.02		25D Mov	imum (psig): 0.03	
(psig): 0	55A. Willindin (psig)	0.03	3 35B. Maximum (psig): 0.03		inium (psig). 0.05	
(poig). V						
36A. Minimum liquid surface temperature (°1	F): 60.0	36B.	Corresponding v	apor pressur	e (psia): 0.29	
37A. Avg. liquid surface temperature (°F): 65	.1	37B.	Corresponding v	apor pressur	e (psia): 0.32	
38A. Maximum liquid surface temperature (°	F): 75.9	38B.	Corresponding v	apor pressur	e (psia): 0.40	
39. Provide the following for each liquid or g	as to be stored in the tank	. Add a	dditional pages i	f necessary.		
39A. Material name and composition:	Produced Water					
39B. CAS number:						
39C. Liquid density (lb/gal):						
39D. Liquid molecular weight (lb/lb-mole): 18.02						
39E. Vapor molecular weight (lb/lb-mole):	18.46					
39F. Maximum true vapor pressure (psia):0.40						
39G. Maxim Reid vapor pressure (psia):	8.2					
39H. Months Storage per year. From:	January					
To:	December					

Dehydration Unit

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufact	urer and Model	The Hanove	er Company	
		Max Dry Gas F	low Rate (mmscf/day)	6	.0	
		Design Heat	Input (mmBtu/hr)	0.5		
		Design Typ	be (DEG or TEG)	TE	EG	
	l Glycol	Sou	rce Status ²	N	IS	
	tion Unit ata	Date Installed/	Modified/Removed ³	5/2	015	
		Regenerator	Still Vent APCD ⁴	Ν	Ā	
		Fuel H	IV (Btu/scf)	1,1	38	
		H ₂ S Cont	ent (gr/100 scf)	()	
		Opera	tion (hrs/yr)	8,7	760	
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
	Reboiler Vent	AP-42	NO _X	0.06	0.27	
		AP-42	СО	0.05	0.23	
		AP-42∕ GRI-GLYCalc™	VOC	0.04	0.19	
		AP-42	SO ₂	0.0004	0.002	
5E		AP-42	PM ₁₀	0.005	0.02	
		GRI-GLYCalc [™]	Benzene	0.0006	0.003	
		GRI-GLYCalc [™]	Ethylbenzene	0.0005	0.002	
		GRI-GLYCalc [™]	Toluene	0.003	0.01	
		GRI-GLYCalc [™]	Xylenes	0.005	0.02	
		GRI-GLYCalc [™]	n-Hexane	0.002	0.01	
		GRI-GLYCalc [™]	VOC	1.91	8.36	
		GRI-GLYCalc TM	Benzene	0.06	0.27	
4E	Glycol Regenerator	GRI-GLYCalc [™]	Ethylbenzene	0.09	0.38	
ΤĽ	Still Vent	GRI-GLYCalc TM	Toluene	0.39	1.72	
		GRI-GLYCalc [™]	Xylenes	1.17	5.11	
		GRI-GLYCalc [™]	n-Hexane	0.009	0.04	

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source

ES Existing Source

modification or removal.

MS

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source),

Modification of Existing Source

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

				e	0	
	NA	None		CD	Condenser	
	FL	Flare		CC	Condenser/Combustion C	ombination
	ТО	Thermal Oxidizer				
5.	Enter the Pot	tential Emissions Data Re	eference design	ation using the	e following codes:	
	MD	Manufacturer's Data		AP	AP-42	
	GR	GRI-GLYCalc TM		OT	Other	(please list)

RS

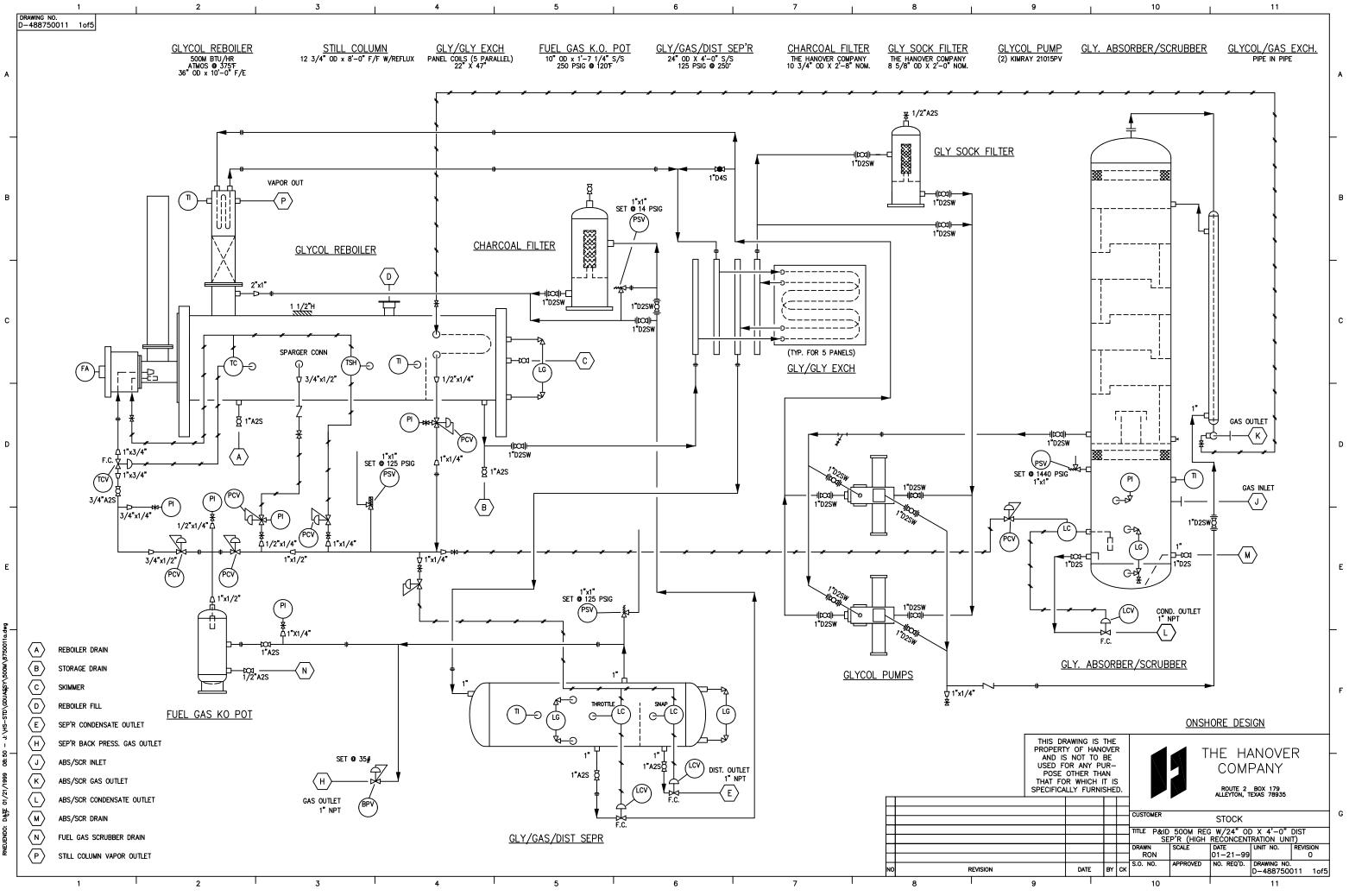
Removal of Source

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

West Virginia Department of Environmental Protection


Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description Affected facility actual annual average natural gas throughput (scf/day): 6,000,000					
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day): 210					
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.					
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas No					
(NG) enters the NG transmission and storage source category or is delivered to the end user.					
The affected facility is:					
prior to the point of custody transfer and there is no NG processing plant					
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution (Yes) No					
company or to a final end user (if there is no local distribution company).					
The affected facility exclusively processes, stores, or transfers black oil. Yes No					
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees					
Section B: Dehydration Unit (if applicable) ¹					
Description: Bluestone Compressor Station Dehydrator (DEHY-001)					
Date of Installation:5/2015Annual Operating Hours:8,760Burner rating (MMbtu/hr):0.5					
Exhaust Stack Height (ft):10Stack Diameter (ft):3Stack Temp. (°F):375					
Glycol Type: \square TEG \square EG \square Other:					
Glycol Pump Type: Electric Gas If gas, what is the volume ratio? _0.029ACFM/gpm					
Condenser installed? Yes					
Incinerator/flare installed? Yes No Destruction Eff%					
Other controls installed? Yes No Describe:					
Wet Gas ² : Gas Temp.: _70°F Gas Pressure875 psig					
(Upstream of Contact Tower) Saturated Gas? 🛛 Yes 🗌 No If no, water content lb/MMSCF					
Dry Gas: Gas Flowrate(MMSCFD) Actual <u>6</u> Design <u>25</u>					
(Downstream of Contact Tower) Water Content _7 lb/MMSCF					
Lean Glycol: Circulation rate (gpm) Actual ³ 0.32 Maximum ⁴ 0.32					
Pump make/model: Kimray 21015PV					
Glycol Flash Tank (if applicable): Temp.: 250 °F Pressure 120 psig Vented? Yes No					
If no, describe vapor control: Flash tank gas is used in reboiler as fuel					
Stripping Gas (if applicable): Source of gas: NA Rate scfm					

		Please atta	ach the following required dehydration unit information:					
1.	System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed							
	<i>v v i</i>	to make the necessary deci						
2.								
			ble should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove					
	1	1 1	to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of					
		, (or similar) should be use						
3.			on maximum Lean Glycol circulation rate and maximum throughput.					
4.	4. Detailed calculations of gas or hydrocarbon flow rate.							
	Section C: Facility NESHAPS Subpart HH/HHH status							
		Subject to S	ubpart HH - applies, but is exempt through <1 tpy benzene exemption					
А	affected facility	Subject to S	ubpart HHH					
	status:	Not Subject	\boxtimes < 10/25 TPY					
(c)	(choose only one) because:		Affected facility exclusively handles black oil					
	-							
	-		\Box The facility wide actual annual average NG throughput is < 650 thousand					
			☐ The facility wide actual annual average NG throughput is < 650 thousand scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					

ë 01/21 D€∄

Reboiler

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
RB-1	5E	Hanover Reboiler	5/2015	New	None	0.5	1,138

- ¹ Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1,
- LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

- ⁴ Complete appropriate air pollution control device sheet for any control device.
- ⁵ Enter design heat input capacity in mmBtu/hr.
- ⁶ Enter the fuel heating value in Btu/standard cubic foot.

Tank Truck Loading

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID: Ll	DOUT 2. Em	2. Emission Point ID: 6E 3. Year Installed/ 2015		ed/ Modified:				
4. Emission Unit Description:								
Produced water loadou	*							
5. Loading Area Data:								
5A. Number of pumps:	TBD 5B. N	umber of liquids loaded: 1		number of bading at one time: 1				
6. Describe cleaning loc	cation, compounds and pro	ocedure for tank trucks: To	be determined					
7. Are tank trucks pressure tested for leaks at this or any other location? □ Yes ☑ No If YES, describe:								
8. Projected Maximum Operating Schedule (for rack or transfer point as a whole):								
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.				
hours/day	10	10	10	10				
days/week	5	5	5	5				

Liquid Name	Produced Water	
Max. daily throughput (1000 gal/day)	8.82	
Max. annual throughput (1000 gal/yr)	3,219	
Loading Method ¹	BF	
Max. Fill Rate (gal/min)	168	
Average Fill Time (min/loading)	50	
Max. Bulk Liquid Temperature (°F)	65.1	
True Vapor Pressure ²	0.32	
Cargo Vessel Condition ³	U	
Control Equipment or Method ⁴	None	
Minimum collection efficiency (%)	0	
Minimum control efficiency (%)	0	

Maximum Emission Rate	Loading (lb/hr)	0.71						
	Annual (ton/yr)	0.14						
Estimation Metho	d ⁵ AP-42 and ProMax outputs							
Notes:								
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill								
² At maximum bulk	liquid temperature							
3 B = Ballasted Vess	el, $C = Cleaned$, $U = Uncleaned$ (ded	cated service), $O = other (desc$	cribe)				
⁴ List as many as app	ly (complete and submit appropriate	Air Pollution	Control Device	Sheets as Attachn	<i>nent "H"</i>):			
CA = Carbon Adsor	otion							
VB = Dedicated Vap	or Balance (closed system)							
ECD = Enclosed CoF = Flare	mbustion Device							
T = Thermal Oxida	tion or Incineration							
	ion Factor as stated in AP-42							
MB = Material Ba								
	ement based upon test data submittal							
O = other (describe								
10. Proposed Mo	nitoring, Recordkeeping, Repo	rting, and [Festing					
	onitoring, recordkeeping, and re							
parameters. Pleas	e propose testing in order to demo	onstrate con	pliance with th	e proposed em	issions limit	S.		
MONITORING P	lease list and describe the process	parameters	RECORDKE	EPING Please	describe the p	proposed recordkeeping		
and ranges that a	are proposed to be monitored in	n order to	that will accompany the monitoring.					
	iance with the operation of th	is process						
equipment operation	<i>air pollution control device.</i>							
M					olling twelv	ve-month average of		
of liquids loaded	nthly and rolling twelve-mont	n average	liquids loade	d out.				
of liquids loaded	out.							
REPORTING <i>Plea</i>	ase describe the proposed frequency of reporting g.		TESTING P	Please describe a	nv proposed e	missions testing for this		
of the recordkeeping			process equipment/air pollution control device.					
Reporting w	Q.	None.						
11 D " "	,• • • ·	1		<u> </u>	. , .			
	perating ranges and maintenance	procedures	required by Ma	inufacturer to n	haintain war	ranty:		
NA								

Attachment H. Air Pollution Control Device Data Sheets **Oxidation Catalyst**

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 1C

Equipment Information

1.	Manufacturer: EMIT Technologies Model No. ELS-3050-1414F-3CE0241	2. Control Device Nam Type: Oxidation Cat	ne: 1C - Catalyst for CE-4 talyst				
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.						
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	signing this collection device.				
5.	Provide a scale diagram of the control device showing	g internal construction.					
6.	Submit a schematic and diagram with dimensions and	d flow rates.					
7. N/A	 Guaranteed minimum collection efficiency for each pollutant collected: N/A – no capture of pollutants 						
8.	Attached efficiency curve and/or other efficiency infor	mation.					
9.	Design inlet volume: 9,126 ACFM	10. Capacity:					
N/A 12. 13.	 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. 						
Re	Replace Catalyst elements when necessary						
	Gas Stream C	haracteristics					
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes					
15.	Inlet Emission stream parameters:	Maximum	Typical				
	Pressure (mmHg):	Not specified					
	Heat Content (BTU/scf):	1,400	1,138				
	Oxygen Content (%):	Not specified					
	Moisture Content (%):	Not specified					
	Relative Humidity (%):	Not specified					

16. Type of pollutant(s) controlled: SO _x				☐ Odor ⊠ Other CO,	VOC, and HCH	0		
17.	17. Inlet gas velocity: 194 ft/sec				18. Pollutant specific gravity:			
19. Gas flow into the collector: 9,126 ACF @ 992°F and PSIA			20. Gas stream temperature: Inlet: 992 °F Outlet: 992 °F					
21.	Gas flow rate: Design Maximum: Average Expected:	9,	126 ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	in grains/scf: N	N/A	
23.	Emission rate of eac		• /				1	
	Pollutant		Pollutant	Emission	OUT Po	1	Control	
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %	
	A CO	7.39			0.74		90	
	B VOC	1.46			0.73		50	
	В НСНО	0.53			0.13		76	
24.	Dimensions of stack	: He	eight 20	ft.	Diameter	1.0	ft.	
25.	Supply a curve show rating of collector.	ving proposed	collection efficier	icy versus gas	volume from 28	5 to 130 perce	nt of design	
			Particulate	Distribution				
	Complete the table:		Particle Size Dia to (stribution at Ir Collector	nlet Fraction	n Efficiency of	Collector	
Pa	articulate Size Range	e (microns)	Weight % fo	or Size Range	Weig	pht % for Size	Range	
	0-2							
	2-4							
	4-6							
	<u>6 – 8</u> 8 – 10							
	10 - 12							
	12 – 16							
	16 – 20							
	20 – 30							
30 – 40								
	40 – 50							
50 - 60								
60 – 70								
70 – 80								
	80 - 90							
	90 – 100							
	>100							

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): **None**

28. Describe the collection material disposal system: Catalyst elements can be cleaned and/or replaced; materials are not disposed on site.

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? yes

Please propose m proposed operatin	 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with proposed operating parameters. Please propose testing in order to demonstrate compliance with proposed emissions limits. 						
MONITORING:		RECORDKEEPING:					
-Monitor catalyst inlet	temperature	-Keep records of manufacturer specifications -Keep records of inspections, observations, preventive maintenance, and malfunctions. -Keep records of engine run time and catalyst inlet temperature.					
REPORTING:		TESTING:					
-Reporting as require	d by WVDAQ	-NSPS JJJJ stack testing every 8,760 hours of operation					
MONITORING: RECORDKEEPING: REPORTING:	Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air						
TESTING:	ESTING: pollution control device. Please describe any proposed emissions testing for this process equipment on pollution control device.						

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. CO: 90%, VOC: 50%, HCHO: 76%

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Inlet temperature range is 750 F – 1250 F. Engine must be operated between 50 – 100 % load. Engine lube oil shall contain less than 0.5 wt% sulfated ash. Catalyst must not be exposed to the following: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, zinc.

Attachment I. Supporting Emission Calculations

Emission Calculations

EMISSIONS SUMMARY TOTAL

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia

UNCONTROLLED POTENTIAL EMISSION SUMMARY

Source	N	Ox	C	0	V	C	S	0 ₂	PN	I-10	PM	-2.5	HA	\Ps	CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines															
Compressor Engine	1.52	6.66	7.39	32.38	1.46	6.40	0.006	0.03	0.10	0.44	0.10	0.44	0.73	3.19	6,322
Storage Tanks															
Produced Water Tanks					0.54	2.38							0.02	0.10	520
Dehydrators															
TEG Dehydrator					2.71	11.87							1.93	8.46	161
<u>Heaters</u>															
Reboiler	0.06	0.27	0.05	0.23	0.003	0.01	0.0004	0.002	0.005	0.02	0.005	0.02	0.001	0.005	257
Hydrocarbon Loading															
Truck Loadout					0.71	0.14							0.03	0.01	30
Fugitive Emissions															
Component Leak Emissions					0.13	0.58							0.01	0.03	28
Venting Emissions						0.29								0.02	62
Haul Road Dust Emissions									0.07	0.31	0.007	0.03			
Total Facility PTE =	1.58	6.93	7.44	32.61	5.56	21.66	0.01	0.03	0.18	0.77	0.11	0.49	2.72	11.81	7,378

CONTROLLED POTENTIAL EMISSION SUMMARY

Source	N	Ox	C	:0	V	00	S	O ₂	PM	-10	PM	-2.5	HA	\Ps	CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines															
Compressor Engine	1.52	6.66	0.74	3.24	0.73	3.20	0.006	0.03	0.10	0.44	0.10	0.44	0.23	1.00	6,322
Storage Tanks															
Produced Water Tanks					0.54	2.38							0.02	0.10	520
Dehydrators															
TEG Dehydrator					1.91	8.36							1.72	7.52	5
Heaters															
Reboiler	0.06	0.27	0.05	0.23	0.04	0.19	0.0004	0.002	0.005	0.02	0.005	0.02	0.01	0.05	265
Hydrocarbon Loading															
Truck Loadout					0.71	0.14							0.03	0.01	30
Fugitive Emissions															
Component Leak Emissions					0.13	0.58							0.01	0.03	28
Venting Emissions						0.29								0.02	62
Haul Road Dust Emissions									0.07	0.31	0.007	0.03			
Total Facility PTE =	1.58	6.93	0.79	3.46	4.06	15.13	0.01	0.03	0.18	0.77	0.11	0.49	2.02	8.73	7,231

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Compressor Engine

Source Information-Per Engine

Emission Unit ID:	(CE-4			
Engine Make/Model	Caterpillar G3516B				
Service	Com	pression			
Controls - Y or N / Type	Y	OxCat/AFRC			
Site Horsepower Rating	1,380	hp			
Fuel Consumption (BSFC) ¹	7,301	Btu/(hp-hr)			
Heat Rating ²	10.08	MMBtu/hr			
Fuel Consumption ²	77.54	MMscf/yr			
Fuel Consumption ²	8,851	scf/hr			
Fuel Heating Value	1,138	Btu/scf			
Operating Hours	8,760	hrs/yr			
Notes:					

1. Values from Caterpillar specification sheet 2. Calculated values.

Potential Emissions

		U	ncontrolle	d		Controlled					
Pollutant	Emissio			imated Emissi		Emissio		Estimated Emissions ²			Source of Emissions Factors
	(Ib/MMBtu)	(g/hp-hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	
NOx ⁴		0.50	1.52		6.66		0.50	1.52		6.66	Uncontrolled and controlled - manufacturer specifications
CO ⁴		2.43	7.39		32.38		0.24	0.74		3.24	Uncontrolled - manufacturer specifications; controlled - catalyst specifications
VOC		0.48	1.46		6.40		0.24	0.73		3.20	Uncontrolled - manufacturer specifications; controlled - catalyst specifications
SO ₂	5.88E-04		0.0059		0.026	5.88E-04		0.0059		0.026	AP-42, Chapter 3.2, Table 3.2-2
PM ₁₀	9.99E-03		0.10		0.44	9.99E-03		0.10		0.44	AP-42, Chapter 3.2, Table 3.2-2
PM _{2.5}	9.99E-03		0.10		0.44	9.99E-03		0.10		0.44	AP-42, Chapter 3.2, Table 3.2-2
1,3-Butadiene ⁴	2.67E-04		2.69E-03	23.57	1.18E-02	1.34E-04		1.35E-03	11.78	5.89E-03	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
2,2,4-Trimethylpentane	2.50E-04		2.52E-03	22.07	1.10E-02	1.25E-04		1.26E-03	11.03	5.52E-03	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Acenaphthene	1.25E-06		1.26E-05	0.11	5.52E-05	1.25E-06		1.26E-05	0.11	5.52E-05	AP-42, Chapter 3.2, Table 3.2-2
Acenaphthylene	5.53E-06		5.57E-05	0.49	2.44E-04	5.53E-06		5.57E-05	0.49	2.44E-04	AP-42, Chapter 3.2, Table 3.2-2
Acetaldehyde ⁴	8.36E-03		8.42E-02	737.9	3.69E-01	4.18E-03		4.21E-02	368.9	1.84E-01	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Acrolein ⁴	5.14E-03		5.18E-02	453.7	2.27E-01	2.57E-03	-	2.59E-02	226.8	1.13E-01	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Benzene ⁴	4.40E-04		4.43E-03	38.83	1.94E-02	2.20E-04		2.22E-03	19.42	9.71E-03	AP-42, Chapter 3.2, Table 3.2-2
Benzo(b)fluoranthene	1.66E-07		1.67E-06	0.015	7.33E-06	1.66E-07		1.67E-06	0.015	7.33E-06	AP-42, Chapter 3.2, Table 3.2-2
Benzo(e)pyrene	4.15E-07		4.18E-06	0.037	1.83E-05	4.15E-07		4.18E-06	0.037	1.83E-05	AP-42, Chapter 3.2, Table 3.2-2
Benzo(g,h,i)perylene	4.14E-07		4.17E-06	0.037	1.83E-05	4.14E-07		4.17E-06	0.037	1.83E-05	AP-42, Chapter 3.2, Table 3.2-2
Biphenyl ⁴	2.12E-04		2.14E-03	18.71	9.36E-03	1.06E-04		1.07E-03	9.36	4.68E-03	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Chrysene	6.93E-07		6.98E-06	0.061	3.06E-05	6.93E-07		6.98E-06	0.061	3.06E-05	AP-42, Chapter 3.2, Table 3.2-2
Ethylbenzene ⁴	3.97E-05		4.00E-04	3.50	1.75E-03	1.99E-05		2.00E-04	1.75	8.76E-04	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Fluoranthene	1.11E-06		1.12E-05	0.10	4.90E-05	1.11E-06		1.12E-05	0.10	4.90E-05	AP-42, Chapter 3.2, Table 3.2-2
Fluorene	5.67E-06		5.71E-05	0.50	2.50E-04	5.67E-06		5.71E-05	0.50	2.50E-04	AP-42, Chapter 3.2, Table 3.2-2
Formaldehyde	5.28E-02		5.32E-01	4,660	2.33E+00	1.27E-02		1.28E-01	1,118	5.59E-01	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - catalyst specifications
Methanof ⁴	2.50E-03		2.52E-02	220.7	1.10E-01	1.25E-03		1.26E-02	110.3	5.52E-02	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Methylene Chloride ⁴	2.00E-05		2.02E-04	1.77	8.83E-04	1.00E-05		1.01E-04	0.88	4.41E-04	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
n-Hexane ⁴	1.11E-03		1.12E-02	97.97	4.90E-02	5.55E-04		5.59E-03	48.98	2.45E-02	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Napthalene	7.44E-05		7.50E-04	6.57	3.28E-03	7.44E-05		7.50E-04	6.57	3.28E-03	AP-42, Chapter 3.2, Table 3.2-2
PAH	2.69E-05		2.71E-04	2.37	1.19E-03	2.69E-05		2.71E-04	2.37	1.19E-03	AP-42, Chapter 3.2, Table 3.2-2
Phenanthrene	1.04E-05		1.05E-04	0.92	4.59E-04	1.04E-05		1.05E-04	0.92	4.59E-04	AP-42, Chapter 3.2, Table 3.2-2
Phenol ⁴	2.40E-05		2.42E-04	2.12	1.06E-03	1.20E-05		1.21E-04	1.06	5.30E-04	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Pyrene	1.36E-06		1.37E-05	0.12	6.00E-05	1.36E-06		1.37E-05	0.12	6.00E-05	AP-42, Chapter 3.2, Table 3.2-2
Tetrachloroethane ⁴	2.48E-06		2.50E-05	0.22	1.09E-04	1.24E-06		1.25E-05	0.11	5.47E-05	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Toluene ⁴	4.08E-04		4.11E-03	36.01	1.80E-02	2.04E-04		2.06E-03	18.01	9.00E-03	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Vinyl Chloride ⁴	1.49E-05		1.50E-04	1.32	6.58E-04	7.45E-06		7.51E-05	0.66	3.29E-04	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Xylenes ⁴	1.95E-04		1.96E-03	17.21	8.61E-03	9.75E-05		9.82E-04	8.61	4.30E-03	Uncontrolled - AP-42, Chapter 3.2, Table 3.2-2; controlled - see note 4
Other HAPs ³	2.62E-04		2.64E-03	23.10	1.15E-02	2.62E-04		2.64E-03	23.10	1.15E-02	AP-42, Chapter 3.2, Table 3.2-2
Total HAPS			0.73	6.370	3.19			0.23	1.991	1.00	
Pollutant	Emissio	n Factor		imated Emissi		Emissio	1 Factor		mated Emissie		Source of Emissions Factors
	(kg/MMBtu)	(g/hp-hr)	(lb/hr)	(lb/yr)	(tpy)	(kg/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	
CO ₂		474	1,442.1		6,316		474	1,442.1		6,316	Uncontrolled and controlled - manufacturer specifications
CH ₄	0.001		0.022		0.10	0.001		0.022		0.10	40 CFR Part 98, Subpart C, Table C-2
N ₂ O	0.0001		0.0022		0.010	0.0001		0.0022		0.010	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e			1,443.3		6,322			1,443.3		6,322	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

 Cute
 II

 Notes:
 3. Other HAPs include those HAPs listen in AP-42 below the detection thresholds.

 4. All those HAPs that are also VOCs will be controlled to the same efficiency as VOCs by the oxidation catalyst.

 Example Calculations

 Ib/tr = (g/kp-hr)* (hp)* (1 Ib/453.6 g) or (Ib/MMBlu)* (MMBlu/hr)

 tpy = (Ib/hr)* (1 ton/2000 lb)* (hrs/yr) or (MMscflyr)* (Blu/scf)* (ib/MMBlu)*(1 ton/2000 lb)

Produced Water Storage Tank Flashing Emissions

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Produced Water Tanks
Emission Unit ID:	T01 and T02

Number of Produced Water Storage Tanks:2tanksProduced Water Throughput:210bbl/day

	Pro	duced Water Fl	ashing Emissi	ons	
Component	Emiss	ed Flashing ions ¹ /hr)	Uncontrolled Flashing Emissions (tons/yr)		
	T01	T02	T01	T02	
Methane	3.82	0.93	16.73	4.06	
Ethane	0.71	0.17	3.10	0.76	
Propane	0.20	0.049	0.89	0.22	
i-Butane	0.043	0.010	0.19	0.045	
n-Butane	0.055	0.013	0.24	0.059	
i-Pentane	0.027	0.0066	0.12	0.029	
n-Pentane	0.019	0.0047	0.085	0.021	
Hexanes	0.0064	0.0015	0.028	0.0067	
Heptanes	0.027	0.0066	0.12	0.029	
Octanes	0.028	0.0068	0.12	0.030	
Nonanes	0.0063	0.0015	0.028	0.0067	
Decanes+	0.0023	0.00056	0.010	0.0025	
Benzene	0.00019	0.00010	0.00085	0.00046	
Toluene	0.0010	0.00052	0.0046	0.0023	
Ethylbenzene	0.00021	0.00010	0.0009	0.00044	
Xylenes	0.0012	0.00069	0.0055	0.0030	
n-Hexane	0.016	0.0037	0.068	0.016	
Water	0.10	0.025	0.45	0.11	
Nitrogen	0.013	0.0031	0.057	0.014	
Carbon Dioxide	0.012	0.0035	0.052	0.015	
VOC Subtotal	0.:	54	2.	.38	
HAP Subtotal ²	0.	02	0.	.10	
CO₂e Subtotal ³	118	8.69	51	9.87	
Total	6.	33	27	.73	

Notes:

1. Flashing emissions calculated by ProMax 3.2. Flash gas is stream Uncontrolled Flash Gas of the associated ProMax simulation.

2. HAP emissions include those of benzene, toluene, ethylbenzene, xylenes and n-hexane.

3. CO_2e emissions calculated using global warming potentials published in 40 CFR Part 98 Subpart A Table A-1.

4. No control devices are utilized for the produced water tanks.

Storage Tank Working and Breathing Emissions

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Produced Water Tanks
Emission Unit ID:	T01 and T02

	Uncontrolled								
Tank	VOC	Benzene	Toluene	Ethylbenzene	Xylenes	n-Hexane	HAP	CH₄	CO ₂ e
Description	Emissions ¹	Emissions ²	Emissions ¹	Emissions ³					
	(tons/yr)								
210 bbl Produced Water Storage Tank (T01)	3.48E-05	3.60E-09	9.30E-09	1.10E-09	7.60E-09	6.20E-10	2.22E-08	2.60E-03	0.065
50 bbl Produced Water Storage Tank (T02)	5.77E-06	1.30E-09	3.00E-09	3.50E-10	2.70E-09	1.00E-10	7.45E-09	4.20E-04	0.011
TOTAL	4.06E-05	4.90E-09	1.23E-08	1.45E-09	1.03E-08	7.20E-10	2.97E-08	3.02E-03	0.08

Notes:

1. Uncontrolled emissions retrieved from Tank Losses simulation tool in ProMax for individual tanks.

2. HAP emissions are the sum of benzene, toluene, ethylbenzene, xylenes, and n-hexane emissions.

3. CO2e emissions estimated using global warming potentials retrieved from 40 CFR Part 98 Subpart A Table A-1.

4. No control devices are utilized for the produced water tanks.

Dehydrator Emissions

6.0

1

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Dehydrator Unit

Total Gas Throughput: Number of Dehydrators: MMSCFD dehydrator

Potential Emissions

		ID: DEHY-001		
Pollutant	Dehydrate	or Still Vent	Flash T	ank Gas
Pollutant	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Uncontrolled Emissions ¹				
VOC	1.91	8.36	0.80	3.51
Total HAPs	1.72	7.52	0.21	0.94
Benzene	0.062	0.27	0.01	0.05
Toluene	0.39	1.72	0.06	0.27
Ethylbenzene	0.087	0.38	0.01	0.04
Xylenes	1.17	5.11	0.10	0.45
n-Hexane	0.0093	0.041	0.03	0.12
Methane	0.049	0.21	1.42	6.22
Carbon Dioxide	0.0045	0.020	0.023	0.10
CO ₂ e	1.22	5.36	35.5	155
Controlled Emissions ²				
VOC	1.91	8.36	0.040	0.18
Total HAPs	1.72	7.52	0.011	0.047
Benzene	0.062	0.27	0.0006	0.0025
Toluene	0.39	1.72	0.0031	0.014
Ethylbenzene	0.087	0.38	0.0005	0.0022
Xylenes	1.17	5.11	0.0052	0.023
n-Hexane	0.0093	0.041	0.0014	0.0060
Methane	0.049	0.21	0.071	0.31
Carbon Dioxide	0.0045	0.020	0.023	0.10
CO ₂ e	1.22	5.36	1.80	7.9

¹Output from GRI-GLYCalc 4.0 for both the still vent (regenerator) and flash tank gas emissions.

²Flash tank gas is used in the reboiler as the primary fuel source. Assumed 95% combustion

of flash tank gas. The still vent will not be controlled.

Natural Gas Fueled Reboiler Emissions

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Location:	Harrison County, West Virginia
Source Description:	Reboiler

Source Information

Emission Unit ID:		RB-01					
Source Description:		Reboiler					
Number of Heaters	1	heater					
Hours of Operation	8,760	hr/yr					
Design Heat Rate	0.5	MMBtu/hr per Heater					
Heater Efficiency	0.8						
Fuel Heat Value ¹	1,138	Btu/scf					
Fuel Use	4.8	MMscf/yr per Heater					

¹ Site-specific gas heating value.

Emission Calculations

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Follutalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO _X	100	0.061	0.27	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.051	0.23	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0034	0.015	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.0047	0.020	AP-42 Ch. 1.4 Table 1.4-2
PM _{2.5}	7.6	0.0047	0.020	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.00037	0.0016	AP-42 Ch. 1.4 Table 1.4-2
2-Methylnapthalene	2.40E-05	1.47E-08	6.44E-08	AP-42 Ch. 1.4 Table 1.4-3
Benzene	2.10E-03	1.29E-06	5.64E-06	AP-42 Ch. 1.4 Table 1.4-3
Dichlorobenzene	1.20E-03	7.35E-07	3.22E-06	AP-42 Ch. 1.4 Table 1.4-3
Fluoranthene	3.00E-06	1.84E-09	8.05E-09	AP-42 Ch. 1.4 Table 1.4-3
Fluorene	2.80E-06	1.72E-09	7.51E-09	AP-42 Ch. 1.4 Table 1.4-3
Formaldehyde	7.50E-02	4.60E-05	2.01E-04	AP-42 Ch. 1.4 Table 1.4-3
n-Hexane	1.80E+00	1.10E-03	4.83E-03	AP-42 Ch. 1.4 Table 1.4-3
Napthalene	6.10E-04	3.74E-07	1.64E-06	AP-42 Ch. 1.4 Table 1.4-3
Phenanathrene	1.70E-05	1.04E-08	4.56E-08	AP-42 Ch. 1.4 Table 1.4-3
Pyrene	5.00E-06	3.06E-09	1.34E-08	AP-42 Ch. 1.4 Table 1.4-3
Toluene	3.40E-03	2.08E-06	9.13E-06	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs	1.88	0.0012	0.0051	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	58.6	257	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0011	0.0048	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00011	0.00048	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		58.7	257	40 CFR Part 98, Subpart A, Table A-1

1. Only those HAPs that are above detection thresholds are speciated. Total HAPs includes all HAPs above and below detection.

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf) * Heater Efficiency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Produced Water Truck Loadout
Emission Unit ID:	LDOUT

AP - 42, Chapter 5.2 L_L = 12.46 x S x P x M / T

- L_{L} = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)
 - S = Saturation Factor
 - P = True Vapor Pressure of the Loaded Liquid (psia)
 - M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)
 - T = Temperature of Loaded Liquid (°R)

VOC Emissions (tpy) = L_{L} (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

1000 gal * 2000 lbs/ton															
							Uncontrolled								
L					Loading	VOC	Benzene⁵	Toluene⁵	E-benzene ⁵	Xylenes⁵	n-Hexane⁵	HAPs⁵	CO ₂ e ⁶		
Source	S ¹	P (psia) ²	M ³	T (⁰F)⁴	T (°R)	(lb/1000 gal)	bbl/day	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Produced Water 0.6 0.3 18 65 524.77 0.08 210						0.14	6.52E-05	3.48E-04	6.97E-05	4.24E-04	4.83E-03	0.006	29.7		

Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service)

2. True vapor pressure is estimated from ProMax working and breathing report calculated using the Tank Losses simulation tool.

3. Molecular weight of vapor is estimated from ProMax 3.2 report "Uncontrolled Flash Gas" stream.

4. Temperature based on ProMax working and breathing report (the annual average temperature of Charleston, West Virginia).

5. HAP emissions estimated assuming 0.4% by weight of the vent gas are HAPs and 8.5% by weight are VOCs (per ProMax simulation). Speciated HAPs use their individual weight fraction to calculate emissions.

6. CO₂e emissions estimated assuming 75% of the vent gas by weight is methane and 8.5% by weight are VOCs (per ProMax simulation).

Assume 1 truck loaded per hour, 200 bbl truck, for short term emissions

											Uncontro	olled			
						L	Loading	VOC	Benzene⁵	Toluene⁵	E-benzene ⁵	Xylenes⁵	n-Hexane⁵	HAPs⁵	CO ₂ e ⁶
Source	S ¹	P (psia) ²	M ³	T (⁰F) ⁴	T (°R)	(lb/1000 gal)	bbl/hr	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Produced Water	0.6	0.3	18	65	524.77	0.08	200	0.71	3.40E-04	1.82E-03	3.64E-04	2.21E-03	2.52E-02	0.03	154.8

Component Fugitive Emissions

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Fugitive Emissions - Component Leaks

	VOC Fugitive Emissions											
Equipment Type and Service	Number of Units ¹	Hours of Operation (hours/yr)	THC Emission Factor ² (kg/hr-unit)	VOC Weight Fraction ³	THC Emissions (tpy)	VOC Emissions (tpy)						
Flanges - Gas Service	75	8,760	3.90E-04	0.088	0.28	0.025						
Valves - Gas Service	105	8,760	4.50E-03	0.088	4.57	0.40						
Other - Gas Service	5	8,760	8.80E-03	0.088	0.43	0.038						
Flanges - Liquid Service	38	8,760	1.10E-04	0.085	0.040	0.0035						
Valves - Liquid Service	53	8,760	2.50E-03	0.085	1.28	0.11						
Total Emissions (tons/yr)					6.61	0.58						

				HAP Fugitive I	Emissions					
	Benzene		Toluene		Ethylbenzene		Xylenes		n-Hexane	
Equipment Type	of VOC	Benzene	of VOC	Toluene	of VOC	Ethylbenzene	of VOC	Xylene	of VOC	n-Hexane
and Service	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions
	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)
Flanges - Gas Service	0.002	4.10E-05	0.007	1.69E-04	0.001	2.72E-05	0.01	2.50E-04	0.03	8.70E-04
Valves - Gas Service	0.002	6.63E-04	0.007	2.73E-03	0.001	4.39E-04	0.01	4.04E-03	0.03	1.40E-02
Other - Gas Service	0.002	6.17E-05	0.007	2.54E-04	0.001	4.09E-05	0.01	3.77E-04	0.03	1.31E-03
Flanges - Liquid Service	0.0005	1.66E-06	0.003	8.87E-06	0.0005	1.78E-06	0.003	1.08E-05	0.04	1.23E-04
Valves - Liquid Service	0.0005	5.27E-05	0.003	2.81E-04	0.0005	5.63E-05	0.003	3.43E-04	0.04	3.90E-03
Total Emissions (tons/yr)		8.20E-04		3.44E-03		5.65E-04		5.02E-03		2.02E-02

1) Component counts estimated from configuration of similar compressor station.

2) API average emission factors are for oil and gas production operations - Table 2.4, EPA Protocol for Equipment Leak Emission Estimates - 1995.

3) Gas and liquid weight fractions from site-specific gas analysis and ProMax simulation.

	GHG Fugitive Emissions											
Equipment Type	Number of	Hours of Operation	Emission Factor⁵	CH₄ Concentration ⁶	CO₂ Concentration ⁶	CH₄ Emissions	CO ₂ Emissions	CO₂e Emissions				
	Units ⁴	(hours/yr)	(scf/hr-unit)			(tpy)	(tpy)	(tpy)				
Flanges	113	8,760	0.003	0.98	0.011	0.061	0.0019	1.53				
Valves	158	8,760	0.027	0.98	0.011	0.77	0.024	19.30				
Other	5	8,760	0.300	0.98	0.011	0.27	0.0084	6.79				
Total Emissions (tons/yr)						1.10	0.03	27.62				

4) Component counts estimated from configuration of similar compressor station.

5) Emission factors from 40 CFR Part 98 Subpart W, Table W1-A; Gas service where available, else light crude service

6) CH₄ and CO₂ concentrations as defined in 40 CFR Part 98.233(r)

Fugitive Emissions From Venting Episodes

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Fugitive Emissions-Venting Episodes

	VOC Venting Emissions											
Type of Event	Number Of Events ¹ (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (Ib/Ib-mol)	Total Emissions (ton/yr)	VOC Weight Fraction ⁴	VOC Emissions (ton/yr)						
Compressor Blowdown ²	12	10,000	18.49	2.92	0.088	0.26						
Compressor Startup ³	12	1,050	18.49	0.31	0.088	0.027						
Total Emissions (tons/yr)						0.29						

HAPs Venting Emissions										
Type of Event	Benzene Weight Fraction ⁴	Benzene Emissions (tpy)	Toluene Weight Fraction ⁴	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ⁴	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ⁴	Xylene Emissions (tpy)	n-Hexane Weight Fraction ⁴	n-Hexane Emissions (tpy)
Compressor Blowdown ²	0.0001	4.24E-04	0.0006	1.74E-03	0.0001	2.81E-04	0.0009	2.58E-03	0.003	8.98E-03
Compressor Startup ³	0.0001	4.45E-05	0.0006	1.83E-04	0.0001	2.95E-05	0.0009	2.71E-04	0.003	9.43E-04
Total Emissions (tons/yr)		0.0005		0.002		0.0003		0.003		0.01

GHG Venting Emissions								
Type of Event	Number Of Events ¹	Amount Vented per Event	Molecular Weight of Vented Gas	CH₄ Weight	CO₂ Weight	CH₄ Emissions	CO₂ Emissions	CO₂e Emissions
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction ⁴	Fraction ⁴	(ton/yr)	(ton/yr)	(tpy)
Compressor Blowdown ²	12	10,000	18.49	0.76	0.003	2.23	0.0088	55.84
Compressor Startup ³	12	1,050	18.49	0.76	0.003	0.23	0.00093	5.86
Total Emissions (tons/yr)						2.47	0.01	61.70

1) Estimated number of events and venting per event from engineering based on other facilities.

2) Total number of compressor blowdowns based on 12 blowdowns per compressor per year.

3) Total number of compressor startups based on 12 starts per compressor per year.

4) Weight Fractions are from a site-specific gas analysis.

Fugitive Dust Emissions

Company:	Antero Midstream LLC
Facility Name:	Bluestone Compressor Station
Facility Location:	Harrison County, West Virginia
Source Description:	Fugitive Dust Emissions

Gravel Access Road	Loaded Truck Weight ¹	Trips per year ²	ar ² Trips per day ²	Distance per round trip (truck in and out) ³		VMT per year⁴
	tons			feet	miles	miles
Produced Water Tank Truck	40.00	730	2.0	2,500	0.47	346
Pick-Up Trucks	3.00	730	2.0	2,500	0.47	346

Equation Parameter	PM-10/PM-2.5	PM-Total	
E , annual size-specific emission factor for PM ₁₀ & PM _{2.5} (upaved industrial roads) extrapolated for natural mitigation ⁶	see table below	see table below	
k, Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	1.5	- 4.9	
k, Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.15		
s, surface material silt content, (%) (Source: AP-42 Table 13.2.2-1)	4.8	4.8	
W, mean weight (tons) of the vehicles traveling the road	21.50	21.50	
a, constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.9	0.7	
b , constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.45	0.45	
P, number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.2-1.	160	160	

$$E = \left[k \left(\frac{s}{12} \right)^a \times \left(\frac{W}{3} \right)^b \right] \times \left(365 - \frac{P}{365} \right)$$

Source of Equation: AP-42 Section 13.2.2

PM ₁₀ Emissions	
----------------------------	--

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM ₁₀ Emissions (tpy)
0.90	691	0.31

PM_{2.5} Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM _{2.5} Emissions (tpy)	
0.090	691	0.031	

PM- Total Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM-Total Emissions (tpy)
3.52	691	1.22

Notes:

Loaded truck weight for tanker trucks is based on typical weight limit for highway vehicles. Loaded truck weight for pick-up trucks is based on typical weight for mid-1. sized pick-up gasoline trucks.

2. Based on production, it's assumed a maximum of two produced water trucks (200 bbl truck) will be onsite per day. Also, it is assumed 2 pick up trucks carrying onsite personnel will be onsite per day.

3. Distance per round trip is based on the site layout. The one way distance is measured as 1,250 feet for the gravel access road.

4. VMT/yr = Trips/yr x Roundtrip Distance

5. Hourly emissions determined from tons per year calculation using 2,000 lb/ton and 8,760 hours per year.

Facility Gas Analysis

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	88.05	16.04	14.12	0.76
Ethane	8.74	30.07	2.63	0.14
Propane	1.71	44.10	0.75	0.041
i-Butane	0.27	58.12	0.15	0.0084
n-Butane	0.35	58.12	0.21	0.011
i-Pentane	0.14	72.15	0.10	0.0055
n-Pentane	0.099	72.15	0.071	0.0039
Hexanes	0.027	106.72	0.029	0.0016
Heptanes	0.10	100.20	0.10	0.0054
Octanes	0.085	114.23	0.10	0.0053
Nonanes	0.018	128.26	0.022	0.0012
Decanes+	0.0064	142.29	0.0091	0.00049
Benzene	0.0034	78.11	0.0027	0.00014
Toluene	0.012	92.14	0.011	0.00060
Ethylbenzene	0.0017	106.17	0.0018	0.00010
Xylenes	0.015	106.16	0.016	0.00088
n-Hexane	0.066	86.18	0.057	0.0031
Nitrogen	0.17	28.01	0.049	0.0026
Carbon Dioxide	0.13	44.01	0.056	0.0030
Total	100.000		18.49	1.00

Heating Value (Btu/scf)	1,138.3
Molecular weight	18.49
VOC weight fraction	0.088
Methane weight fraction	0.76
HAPs weight fraction	0.0048
THC weight fraction	0.99
VOC of THC wt fraction	0.089
CH4 of THC wt fraction	0.77
HAPs of THC wt fraction	0.0048

1. Site-specific gas sample from Bluestone Compressor Station.

2. Speciated BTEX is estimated based on mole fractions from nearby well.

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	85.93	16.04	13.79	0.75
Ethane	8.51	30.07	2.56	0.14
Propane	1.66	44.10	0.73	0.040
i-Butane	0.27	58.12	0.15	0.0084
n-Butane	0.34	58.12	0.20	0.011
i-Pentane	0.14	72.15	0.10	0.0054
n-Pentane	0.097	72.15	0.070	0.0038
Hexanes	0.027	86.18	0.023	0.0012
Heptanes	0.099	100.20	0.10	0.0054
Octanes	0.089	114.23	0.10	0.0055
Nonanes	0.018	128.26	0.023	0.0012
Decanes +	0.0059	142.28	0.0084	0.00046
Benzene	0.0010	78.11	0.00076	0.000041
Toluene	0.0044	92.14	0.0040	0.00022
Ethylbenzene	0.00076	106.17	0.00081	0.000044
Xylenes	0.0046	106.17	0.0049	0.00027
n-Hexane	0.065	86.18	0.056	0.0030
Nitrogen	0.17	28.01	0.047	0.0025
Carbon Dioxide	0.099	44.01	0.043	0.0024
Water	2.48	18.02	0.45	0.024
Totals	100.00		18.46	1.00

Gas Evolved from Flashed Liquid

Molecular weight	18.46
VOC weight fraction	0.085
Methane weight fraction	0.75
HAPs weight fraction	0.0036
THC weight fraction	0.97
VOC of THC wt fraction	0.088
CH ₄ of THC wt fraction	0.77
HAPs of THC wt fraction	0.0037

1. Stream "Uncontrolled Flash Gas" of site-specific ProMax simulation.

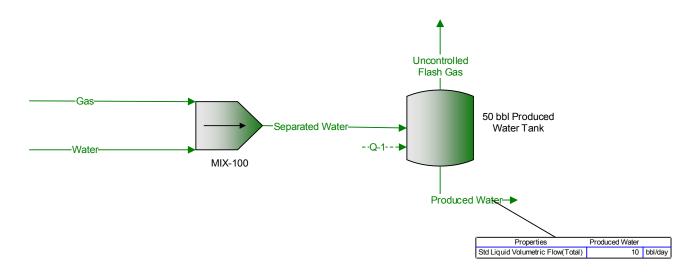
ProMax 3.2 Simulation

Copyright @ BRE Group, Ltd. 2002-2013. All Rights Reserved.

Simulation Report

Project: Bluestone CS.pmx

Licensed to Kleinfelder, Inc. and Affiliates


Client Name: Antero Midstream LLC Location: West Virginia Job: Bluestone Compressor Station

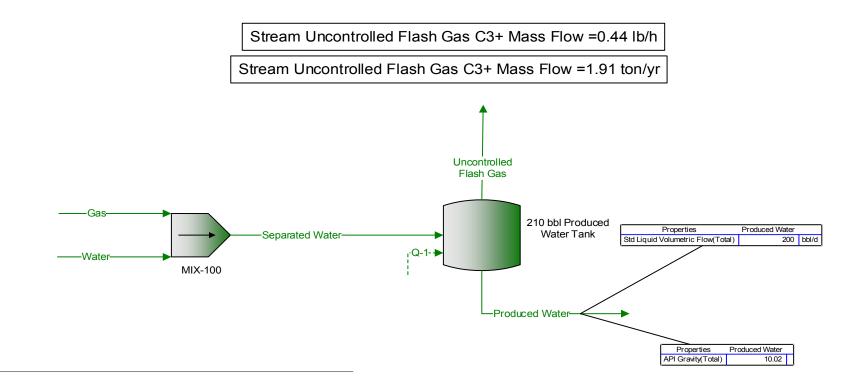
ProMax Filename: W:\20161518 Antero Bluestone CS Air Permit\2.0 Technical Information\WVDEQ Application\Attachment I\ProMax\Bluestone CS.pmx ProMax Version: 3.2.13330.0 Simulation Initiated: 8/11/2015 12:04:15 PM

> Bryan Research & Engineering, Inc. Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value. Stream Uncontrolled Flash Gas C3+ Mass Flow =0.11 lb/h

Stream Uncontrolled Flash Gas C3+ Mass Flow =0.47 ton/yr

No.b Fraction % % % % % % CO2 0.130001* 0.504081.0 0.0114977 0.14974 N2 0.170003* 2.102278-05 0.001149773 0.146760 C2 0.74171* 0.0022425 0.710474 86.2539 C3 0.74177* 0.0022425 0.710474 86.2539 C4 0.720007* 0.3332816 0.00224241 0.342441 0.342732 C5 0.140003* 2.264828E-06 0.0112266 0.12720 1.05485 C5 0.359007* 1.78582E-06 0.00077883 0.0224479 1.024479 C5 0.496002* 1.78582E-06 0.00077883 0.0224479 1.02486 C7 0.10000* 2.3144E-07 0.00007883 0.022479 1.02486 1.032232 C7 0.002000* 2.75442 0.000007883 0.022497 0.00018989 1.08487 C1 0.000001* 2.2827E-06 2.45786 0.00018999 0.0848991 1.024899 1	Process Streams		Gas	Produced Water	Separated Water	Uncontrolled Flash Gas	Water
To Block: MK-10 - MK2-00 Olde Fraction 5 500 0.01014987 0.119754 CO2 0.130003* 0.50005* 0.01014987 0.119754 CH4 BL0519* 0.00223425 0.1710174 0.82338 CH4 0.0270005* 2.02594476 0.0117978 0.224845 CH4 0.270005* 2.33325466 0.00217883 0.2248455 CH4 0.36000** 2.324847 0.000217883 0.0249445 CH3 0.0440002* 2.334847 0.0002178830 0.0249499 CH3 0.0490004* 1.594947 0.000178255 0.00198403 CH3 0.0960004* 1.594947 0.000178255 0.00198403 CH3 0.0960004* 1.594947 0.000182263 0.00198403 CH4 0.0960004* 1.5949478 0.000182263 0.00198403 CH4 0.0960004* 4.43378456 0.00111035 0.09737375 CH4 0.0960003* 4.433778456 0.00111035 0.09737375 <th>Composition</th> <th>Status:</th> <th></th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th>	Composition	Status:		Solved	Solved	Solved	Solved
No.b Fraction % % % % % % CO2 0.130001* 0.504081.0 0.0114977 0.14974 N2 0.170003* 2.102278-05 0.001149773 0.146760 C2 0.74171* 0.0022425 0.710474 86.2539 C3 0.74177* 0.0022425 0.710474 86.2539 C4 0.720007* 0.3332816 0.00224241 0.342441 0.342732 C5 0.140003* 2.264828E-06 0.0112266 0.12720 1.05485 C5 0.359007* 1.78582E-06 0.00077883 0.0224479 1.024479 C5 0.496002* 1.78582E-06 0.00077883 0.0224479 1.02486 C7 0.10000* 2.3144E-07 0.00007883 0.022479 1.02486 1.032232 C7 0.002000* 2.75442 0.000007883 0.022497 0.00018989 1.08487 C1 0.000001* 2.2827E-06 2.45786 0.00018999 0.0848991 1.024899 1	Phase: Total	From Block:		50 bbl Produced Water Tank	MIX-100	50 bbl Produced Water Tank	
CO2 0.139003* 6.56006-05 0.00114807 0.116756 CH4 88.0518* 0.00225425 0.710474 88.2338 C3 1.71003* 0.00256912 0.0705229 88.5419 C3 1.71003* 0.00256912 0.0705229 88.5419 C3 1.71003* 0.00256912 0.0705229 88.5419 C4 0.270005* 0.333225.66 0.000718580 0.127220 C4 0.270005* 2.31346E-47 0.000078830 0.02970441 C5 0.0990002* 2.13486E-47 0.000078830 0.02964979 C4 0.070005* 2.31346E-47 0.00078229 0.883811 C5 0.0990005* 2.31346E-47 0.00078229 0.883811 C6 0.080001* 4.82160-47 0.000745242 0.0169107 C6 0.080001* 4.82160-47 0.000745242 0.0169108 C7 0.000070* 3.2827E-68 4.43138E-55 0.001910877 C10 0.080001* 4.429216-66 1.81330E-55		To Block:	MIX-100				MIX-100
N2 0,170003* 2,1087F2.66 0,0137173 0,16700 C2 8,74017* 0,0022452 0,0776229 8,85439 C2 8,74017* 0,0022452 0,0776229 8,85439 C4 0,270007* 3,33242-66 0,0137780 1,872720 C4 0,270007* 2,313461-67 0,00277833 0,0294953 C5 0,0960020* 1,786866-66 0,000778833 0,0294919 C5 0,0960020* 2,313461-67 0,00068689 0,9891300 C7 0,010002* 9,577881-67 0,00068689 0,9891300 C8 0,0960020* 1,56817-66 2,407176253 0,0284697 C8 0,0960020* 2,751472 0,00068689 0,989130 C9 0,020000* 2,751472 0,00068689 0,989130 C9 0,020000* 2,751472 0,00068689 0,999130 C9 0,020000* 2,751472 0,00051350 0,0997375 T0uene 0,020000* 2,85176 0,00011003 <	Mole Fraction		%	%		%	%
CH4 88.0518* 0.00223425 0.71074* 88.238 C2 8.74017* 0.00206912* 0.0705229 9.54549 C3 1.77009* 6.20944-05 0.00179830 0.24274 C4 0.27009* 3.33224-05 0.00217983 0.242845 C4 0.350007* 9.273445-05 0.00279853 0.0229497 C4 0.10002* 9.57788-07 0.00021800* 0.0228497 C5 0.0990018* 4.82130-07 0.0002180* 0.0288311 C6 0.0180004* 1.56944-07 0.000145242 0.0176867 C6 0.0180004* 2.422076-06 1.61388-05 0.00142206 C10 0.0000004* 4.42206-06 1.61388-05 0.00142206 C10 0.0000004* 4.42206-06 1.61388-05 0.00142206 C10 0.0000004* 4.42206-06 1.61388-05 0.00142305 C4 0.0015003* 4.14378-05 0.000127035 0.0067375 C5 0.00249100 0.00015100 0.000	CO2		0.130003*	6.59409E-05	0.00104897	0.119754	0*
C2 8,74017* 0.00265912 0.0707529 8.5549 C3 1,71003* 6.29546-05 0.00173690 16.727 C4 0.27006* 3.33325-06 0.00272613 0.26485 C3 0.140007* 2.87845-06 0.0021263 0.264870 C3 0.140007* 2.87845-07 0.00021263 0.0282414 0.342747 C4 0.00017260* 1.31346-07 0.00001263 0.00014930 0.0014930 C4 0.000001* 1.894940-07 0.000172639 0.0083901 C5 0.0000001* 1.894940-07 0.000149242 0.0178647 C10 0.00500001* 1.894940-07 0.00014250 0.0058690 C10 0.00500000* 7.8817E-06 2.42076-05 0.0014256 C10 0.0020004* 4.42326-06 1.813816-06 0.0014256 C10 0.002004* 4.42326-06 1.813816-06 0.00211203 0.00514256 C10 0.00201030* 4.14372E-05 0.00111203 0.00514556 0.228519 <td>N2</td> <td></td> <td>0.170003*</td> <td>2.10267E-06</td> <td>0.00137173</td> <td>0.166760</td> <td>0*</td>	N2		0.170003*	2.10267E-06	0.00137173	0.166760	0*
C3 17/003* 6.2094E-05 0.0137863 0.2247 C4 0.25000* 3.3322±0 0.00217863 0.22485 nC4 0.35000* 9.27948E-06 0.002217863 0.22497 nC5 0.099002* 1.7968E-07 0.000217883 0.029749 C7 0.10002* 9.3788E-07 0.000217883 0.028129 C7 0.10002* 9.3788E-07 0.0000149 0.038129 C3 0.0000012* 2.26227E-08 4.4139E-05 0.0059089 C10 0.0000000* 7.7883FFC 0.0001429 0.0059089 C10 0.002002* 2.75142E-05 0.82725-05 0.0014203 0.0059089 C10 0.002002* 2.75142E-05 0.802750 0.0014208 0.0014208 C4 0.002002* 2.75142E-05 0.802750 0.0014208 0.00141208 C4 0.015003* 4.14378E-05 0.000142353 0.0046737 C4 0.025249 4.03778E-07 0.00052553 0.00473275 C2			88.0518*	0.00223425	0.710474	86.2338	0*
C4 0.27006* 3.3323E-06 0.0027663 0.26465 C5 0.14003* 2.66282-06 0.0012364 0.37220 C5 0.14003* 2.66282-06 0.00179830 0.137220 C4 0.027703* 2.1348E-07 0.00027829 0.08914 C4 0.027703* 2.1348E-07 0.00072829 0.08914 C4 0.018004* 4.6706 0.00072829 0.08914 C9 0.0180004* 4.5206E-07 0.00072829 0.00189840 C10 0.00000007* 7.8817E-06 9.420726-05 0.0014256 C10 0.00200004* 4.4207E-05 0.00012103 0.0014256 C10 0.0020004* 4.4207E-05 0.00012103 0.0047820 C10 0.0020004* 4.4207E-06 0.00012103 0.0014256 C10 0.0020004* 4.4207E-06 0.00012103 0.0047832 C10 0.014505* 0.0207223 0.044785 0.225518 C10 0.014505* 0.0207233 0.0447835			8.74017*	0.000265912	0.0705229	8.55439	0*
nc4 0.35007* 0.27945-06 0.0022341 0.342732 nC5 0.999020* 1.79856-06 0.00017863 0.0287441 nC5 0.099020* 2.31346-07 0.000017863 0.0287441 C7 0.100002* 9.37386-07 0.000017863 0.008128 C7 0.100002* 9.37386-07 0.000072820 0.008911* C8 0.000001** 1.58597-06 4.24101-06 0.00179896 C9 0.000000** 2.75142*-05 4.241076-05 0.00179896 Benzare 0.002000** 2.75142*-05 9.80277-06 0.00127055 0.0014596 Toluene 0.0120002* 2.75142*-05 0.00012* 0.0014596 0.00012* Toluene 0.0120002* 4.43276-05 0.00012* 0.0014596 0.0012* NC6 0.0150005* 4.1432* 0.00012* 0.0015* 0.0012* NC6 0.0225* 0.00014* 0.00014* 0.00014* 0.00014* NC6 0.0225* 0.00014* 0.00014*	C3		1.71003*	6.20594E-05	0.0137980	1.67247	0*
C5 0.440003* 2.8623E-06 0.00179850 0.037220 AMEM (pertaine) 0.0270005* 2.31346E-07 0.00079850 0.0264979 C7 0.100002* 2.31346E-07 0.000086899 0.0882611 C8 0.0500018* 4.2550E-07 0.000145242 0.017647 C10 0.0560012* 2.2527E-08 4.41354-05 0.0056809 C10 0.05600012* 2.2527E-08 4.41354-05 0.00142506 C10 0.05600013* 7.85917E-07 0.000112035 0.0097275 C10 0.0220004* 4.4520E-08 1.6138E-05 0.00121035 0.0097275 C30 0.0660013* 4.53975E-07 0.00052553 0.047860 1.6138E-05 0.001142506 0.00254108 0.0225108 0.00254108 0.0225108 0.00254108 0.0225108 0.00142505 0.00254108 0.0225108 0.00254108 0.02254108 0.0255108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108 0.0254108<	iC4		0.270005*	3.33323E-06	0.00217863	0.264855	0*
nc5 0.0990020* 1.7985E-06 0.000217883 0.027041 C7 0.10002* 9.5778E-07 0.000217823 0.0264979 C8 0.090018* 4.82150-27 0.000728209 0.0881280 C9 0.0180004* 1.59040E-07 0.000728209 0.088242 0.0176647 C10 0.00600012* 3.28627-268 4.84138E-45 0.00198940 0.01180004 C10 0.005000012* 2.78142-55 9.88278E-45 0.0019804677 C10iune 0.0120002* 2.78142-55 0.000121035 0.00172755 C43 0.0220004* 4.4230E-56 0.000121035 0.00172755 C43 0.0260013* 4.3372E-57 0.00023135 0.00472755 C43 0.2690013* 4.3372E-57 0.002213255 0.0261335 0.0494789 C44 0.269002* 1.1388E-65 0.0021335 0.228319 1.068 C42 1.4223* 0.00116186 0.02213255 0.228319 1.068 C4 7.63893* 0.001618101 <t< td=""><td>nC4</td><td></td><td>0.350007*</td><td>9.27948E-06</td><td>0.00282414</td><td>0.342732</td><td>0*</td></t<>	nC4		0.350007*	9.27948E-06	0.00282414	0.342732	0*
2)MeBrybertane 0.02210005" 2.31346E.07 0.000088899 0.0264979 C7 0.1000002" 9.5788E.07 0.000808899 0.0883811 C9 0.0160004" 3.25627E.08 4.4159E.65 0.0088909 C10 0.00600012" 3.25627E.08 4.4159E.65 0.0019840 C10uene 0.0120002" 2.75142E.05 9.8627E.05 0.00946677 C10uene 0.0120002" 2.75142E.06 0.6000125 0.00073275 C4267 0.00060013" 4.14378E.06 0.000532553 0.00973275 C426 0.000500013" 4.14378E.06 0.000532553 0.00973275 C427 0.039401" 0.000161086 0.00251858 0.00253253 0.00973275 C42 0.275741" 3.2092640" 0.00211325 0.226202 C C42 1.4778" 0.000161086 0.00211325 0.226302 C C42 1.4723" 0.00140221 0.17843 3.39224 C42 1.4777" 0.000140723 0.0041470 0.53289	iC5		0.140003*	2.66282E-06	0.00112966	0.137220	0*
C7 0.100002* 9.57786E-07 0.0008989 0.0881280 C6 0.090018* 4.82150E-07 0.000728209 0.0882181 C9 0.0180004* 1.59040E-07 0.000728209 0.0882611 C9 0.0030000* 7.88817E-06 2.42070E-05 0.0019840 C10 0.0050002* 2.8517E-05 2.42070E-05 0.0012253 C10 0.0050002* 2.75142E-05 9.68278E-05 0.001212035 0.00127275 C10 0.0050003* 4.53976E-07 0.000121035 0.00727275 0.000121035 0.00727275 C4 0.02600013* 4.53976E-05 0.00213256 0.027275 0.001121035 0.00471808 0.28330 C4 0.369401* 0.283317 0.00181808 0.02213256 0.228302 1.0013 C2 142123* 0.001918087 0.001213256 0.28330 4.62202 C4 0.48669* 1073395 0.02213256 0.28330 4.62202 C4 0.48669* 10013987 0.0127340 0.3	nC5		0.0990020*	1.79856E-06	0.000798830	0.0970441	0*
C6 0.080001* 4.82150E.07 0.00782209 0.083511 C9 0.0180004* 1.59040E-67 0.000145242 0.0078947 C10 0.00800012* 3.28527E-68 4.84139E-05 0.000199840 Toluene 0.0120002* 2.75142E-55 9.8527E-05 0.00984677 Emylenzane 0.0020004* 4.4629E-06 1.613396E-05 0.000142560 ovylene 0.0150003* 4.14378E-05 0.000152355 0.0647860 r-C6 0.066013* 4.5375E-67 0.00552555 0.0547860 10 Mass Fraction % % % % % C22 0.306401* 0.000161086 0.0025256 0.222302 C44 76.3893* 0.00148577 0.52538 7.8893 C22 1.4122* 0.00044827 0.127826 0.339849 C4 76.3892* 0.00119857 0.52536 3.9254 C32 1.4122* 0.00148327 0.127884 3.9254 C4 0.47777 0.00025	2-Methylpentane		0.0270005*	2.31346E-07	0.000217863	0.0264979	0*
C9 0.0180004* 1.59040E-07 0.0045242 0.0176847 C10 0.00500012* 3.28527E-08 4.84139E-05 0.00098407 Benzene 0.0120002* 2.75142E-05 9.68278E-05 0.00094667 Entytherzene 0.00200004* 4.46290E-06 1.61398E-05 0.000472575 A-CG 0.0060013* 4.14378E-05 0.000121035 0.00097237 A-CG 0.0660013* 4.13378E-07 0.00255198 0.0285198 A-CG 0.0660013* 4.13378E-05 0.00255198 0.228531 N2 0.0530401* 0.000151068 0.00255198 0.2285319 N2 0.257541* 3.28959E-06 0.00255198 0.228531 N2 0.257541* 3.28959E-05 0.00255198 0.228531 N2 0.257541* 3.28959E-05 0.00255198 3.99254 C3 0.27774* 0.00043827 0.137868 3.99254 C4 1.62629* 1.07339E-05 0.000102133 0.237864 C5 0.368275* <t< td=""><td>C7</td><td></td><td>0.100002*</td><td>9.57788E-07</td><td>0.000806899</td><td>0.0981280</td><td>0*</td></t<>	C7		0.100002*	9.57788E-07	0.000806899	0.0981280	0*
C10 0.00600012" 3.25627F-08 4.84398-05 0.00789809 Toluene 0.0120002" 2.75142F-05 9.642077E-05 0.00142595 Ehlyberzene 0.0020004" 4.4250E-05 1.61380E-05 0.00142595 o-Xylene 0.0150003" 4.13378E-05 0.00142595 0.00647860 h2G 0.0150003" 4.13378E-07 0.00532553 0.0047860 H2O 0" 99.9973 99.1931 2.08906 10 Mass Fraction % % % % % C22 0.304011" 0.200161086 0.252305 7.48933 C2 1.47123" 0.000148327 0.17684 13.922 C4 7.63893" 0.00151901 0.0337668 3.9924 C4 0.446669" 1.07539E-05 0.0001052 1.07443 C5 0.446424" 1.06422-05 0.0442375 0.33394 C4 0.386275" 7.20295E-06 0.001449705 0.33394 C5 0.446424" 1.0644424-05 <td></td> <td></td> <td>0.0900018*</td> <td>4.82150E-07</td> <td>0.000726209</td> <td>0.0883611</td> <td>0*</td>			0.0900018*	4.82150E-07	0.000726209	0.0883611	0*
Benzane 0.000000° 7.85817E-06 2.42070E-05 0.00199840 Ehryberzene 0.0020004° 4.46290E-06 1.1380E-05 0.00442596 -Xylene 0.0560013° 4.1387E-05 0.000532553 0.0647860 PCG 0.0660013° 4.5397E-07 0.000532553 0.0647860 10 Mass Fraction %			0.0180004*	1.59040E-07	0.000145242	0.0176647	0*
Toluene 0.012002* 2.75142E-05 9.8278E-05 0.0044677 Emplanzance 0.015003* 4.14378E-05 0.000121035 0.00973275 n-G6 0.0660013* 4.14378E-05 0.000121035 0.00973275 H2O 0* 99.9973 99.1931 2.08806 10 Mass Fraction % <t< td=""><td>C10</td><td></td><td>0.00600012*</td><td>3.25627E-08</td><td>4.84139E-05</td><td>0.00589069</td><td>0*</td></t<>	C10		0.00600012*	3.25627E-08	4.84139E-05	0.00589069	0*
Entylenzene 0.0202004* 4.4220E-06 1.130E-05 0.00142586 o-Xjene 0.0660013* 4.5397EE-07 0.000532553 0.0647860 h-CG 0* 99.9973 99.1931 2.08806 10 Mass Fraction %	Benzene		0.00300006*	7.85817E-06	2.42070E-05	0.00199840	0*
o-Xylene 0.0150003* 4.14378E-05 0.000121035 0.00973275 h-GG 0" 99.9973 99.1931 2.08905 10 Mass Fraction % % % % % CO2 0.309401* 0.000161086 0.00256186 0.285315 0.282302 N2 0.297541* 3.29856E-06 0.00213225 0.222302 CH4 76.3833 0.0001618067 0.652236 74.4833 C2 14.2123* 0.000443827 0.117864 13.9252 C3 4.07778 0.000161801 0.0337668 3.93284 C4 0.48689* 1.07338E-05 0.0091052 1.07843 C5 0.546248* 1.06642E-05 0.0045216 0.535669 C7 0.541887* 5.32724E-06 0.0014491 0.123620 C7 0.541887* 5.32724E-06 0.004460355 0.546244 C9 0.128282* 0.000149191 0.123620 0.023491 C10 0.0446171* 2.51714E-07 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0*</td>							0*
n.C6 0.0660013* 4.53975E-07 0.000532853 0.0647860 0* 99.9973 99.9131 2.08965 10 Mass Fraction % % % % % % 02 0.30401* 0.000161086 0.00213255 0.252902 0.257541* 0.000168697 0.00233256 0.252902 02 14.2123* 0.000448277 0.117684 13.9552 0.25502 03 4.47773* 0.000151601 0.033384 0.633384 0.65 0.000151261 0.33384 04 0.86869* 1.07539E-05 0.00045216 0.53598 0.65 0.546248* 1.09642E-05 0.0045216 0.53598 0.52299 0.55 0.42648* 1.09642E-05 0.0044521 0.12842 0.77 0.555868* 3.05713E-06 0.00446795 0.522909 0.546249* 1.09632E-05 0.00446795 0.522909 0.55686* 3.05713E-06 0.00446795 0.522909 0.55686* 3.05713E-06							0*
H2O 0" 99.9973 99.1931 2.08806 10 Mass Fraction %							0*
Mass Fraction % % % % % % % CO2 0.306401* 0.000161086 0.00255168 0.28530 N2 0.257541* 3.26969E-06 0.00213255 0.282536 C2 14.2123* 0.000161901 0.0337688 3.98254 C3 4.07778* 0.000151901 0.0337688 3.98254 C4 0.848669* 1.07539E-05 0.000702734 0.833384 nC4 1.10013* 2.99380E-05 0.000452316 0.535969 nC5 0.364624* 1.06642E-05 0.0467316 0.535969 nC5 0.368275* 7.20295E-06 0.00014911 0.123820 C7 0.548487* 5.32724E-06 0.0044705 0.532309 C8 0.555968* 3.05713E-06 0.0044705 0.532309 C8 0.025477* 3.40718E-05 0.0004338 0.0045374 C9 0.124847* 1.3224E-06 0.00014338 0.0025493 0.0025495 C4 0.037581*<							0*
CO2 0.304041* 0.00161086 0.00256198 0.285319 N2 0.257541* 3.28695-06 0.00213255 0.222902 C14 76.3893* 0.00198957 0.632556 7.48933 C2 14.4123* 0.000443827 0.117684 13.9252 C3 4.07778* 0.000161901 0.0337658 3.98254 IC4 0.848669* 1.07393E-05 0.00010952 1.07843 IC5 0.548248* 1.06642E-05 0.00452316 0.535969 IC5 0.386275* 7.20295E-06 0.001319852 0.379046 C7 0.541887* 5.32724E-06 0.0010379 0.1228620 C3 0.355968* 3.05713E-06 0.00448705 0.532309 C4 0.428427* 1.1062-05 0.532309 0.0453743 C9 0.128467* 1.3224E-06 0.00010379 0.122852 C10 0.0461671* 2.57174E-07 0.00038233 0.0453743 Denzene 0.0461671* 2.57174E-07 0.00014379 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100*</td>							100*
N2 0.257541* 3.26959E-06 0.00213255 0.252902 C14 76.3893* 0.00198957 0.632253 74.8933 C2 14.2123* 0.000443827 0.117684 13.9252 C3 4.07779* 0.000161901 0.0337658 3.98254 C4 0.848669* 1.07539E-05 0.00702734 0.833384 nC4 1.10013* 2.99380E-05 0.00919952 1.07843 C5 0.546244* 1.06632E-05 0.00442315 0.555969 nC5 0.368275* 7.20295E-06 0.00141911 0.122632 C7 0.546244* 1.106632E-06 0.00144705 0.532309 C8 0.555968* 3.05713E-06 0.00448075 0.532309 C3 0.545244* 1.126232* 0.00049516 0.042231 C9 0.124827* 3.40718E-07 0.000049516 0.042231 C10 0.045773* 3.40718E-05 0.000149136 0.042231 Ehybenzene 0.0148727* 2.43000E-05 9.50816E-0							
CH4 T6.3863* 0.00198957 0.632356 T4.803 C2 14.2123* 0.00044827 0.117684 13.9254 C3 4.07778* 0.000151901 0.0337658 3.99254 C4 0.84669* 1.075395-05 0.00702734 0.833384 C4 1.10013* 2.993305-05 0.000491052 0.379046 C5 0.346275* 7.22025E-06 0.00319852 0.339046 C7 0.551887* 5.32724E-06 0.00448705 0.532309 C3 0.55968* 3.05713E-06 0.00448705 0.532309 C4 0.055968* 3.05713E-06 0.00448705 0.532309 C3 0.0451671* 2.5714E-07 0.00048365 0.646424 C9 0.0461671* 2.5714E-06 0.000140335 0.0453743 C10 0.0461671* 2.57147E-07 0.000348705 0.0022491 C10 0.0461671* 2.57147E-07 0.000348105 0.042231 C10 0.0461671* 2.57174E-07 0.0003769116 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0*</td>							0*
C2 14.2123* 0.000443827 0.117844 13.252 C3 4.0773* 0.000151901 0.0337656 3.96254 IC4 0.848669* 1.07539E-05 0.00702734 0.833384 nC4 1.10013* 2.99380E-05 0.0091952 1.07843 IC5 0.546244* 1.06632E-05 0.00452316 0.5337904 IC5 0.368275* 7.20295E-06 0.00194191 0.125820 C7 0.541887* 5.32724E-06 0.00448205 0.533209 C8 0.555968* 3.05713E-06 0.0046035 0.546244 C9 0.122652* 1.000332706 0.0246197 1.02265 C10 0.0461671* 2.57174E-07 0.00038283 0.0453743 Benzene 0.01126727* 3.40718E-05 0.000114933 0.00245490 C10ane 0.0587936* 0.000244194 0.000713112 0.0553385 o-Xylene 0.081702* 0.00024490 0.302781 1 o-Xylene 0.08376916* 0.00234933 <							0*
C3 407778* 0.000151901 0.0337658 3.98254 IC4 0.846669* 1.07595-05 0.00702734 0.833384 nC4 1.10013* 2.99380E-05 0.00910952 1.07843 IC5 0.546248* 1.06642E-05 0.00452316 0.535669 0.25 0.386275* 7.20295E-06 0.0014191 0.123620 2.4Methylpentane 0.125829* 1.10663E-06 0.00446705 0.533209 C3 0.555968* 3.05713E-06 0.00460355 0.54424 C9 0.124847* 1.13224E-06 0.00103379 0.122652 C10 0.0461671* 2.57174E-07 0.00032283 0.0455743 Benzene 0.0126727* 3.40718E-05 0.00014936 0.00645072 Toluene 0.0148272* 0.63000E-05 9.50816E-05 0.00819583 PC6 0.307581* 2.17156E-06 0.00254690 0.302245 PC6 0.307581* 2.17156E-06 0.00376916 0.0035417 C10 0.00376916* 0.0							0*
IC4 0.848669* 1.07539E-05 0.00702734 0.833384 nC4 1.10013* 2.9930E-05 0.00910952 1.07843 IC5 0.546248* 1.06642E-05 0.00452316 0.555969 AMEthylpentane 0.125529* 1.10663E-06 0.0014191 0.122620 C7 0.541887* 5.32734E-06 0.00448705 0.532309 C8 0.555566* 3.05713E-06 0.00448705 0.532309 C3 0.125652* 0.1026477* 0.122652 0.122652 C10 0.0461671* 2.5714E-07 0.0003805 0.0453743 Benzene 0.0126727* 3.40718E-05 0.00014936 0.042231 Toluene 0.0114427* 2.6300E-105 9.50816E-05 0.00245186 o-Xylene 0.0861202* 0.000244194 0.000713112 0.055385 n-C6 0.307581* 2.117156E-06 0.0025460 0.302245 H2O 0* 99.9967 99.1720 2.03647 N2 0.00376916* 0.000224993							0*
nC4 1.10013* 2.99380E-05 0.00910952 1.0783 iC5 0.546248* 1.06642E-05 0.00452316 0.555969 c7 0.368275* 7.20295E-06 0.00104191 0.123820 C7 0.541887* 5.32724E-06 0.00104191 0.123820 C8 0.555968* 3.05713E-06 0.00460365 0.546244 C9 0.124847* 1.13224E-06 0.00104379 0.122652 C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0128727* 3.40718E-05 0.00014936 0.00245072 C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0114827* 2.63000E-05 9.50816E-05 0.00819563 -0Xylene 0.00876916* 0.000244902 0.00254490 0.302245 +2O 0* 99.9967 99.1720 2.03647 10 Mass Flow Ibh Ibh Ibh 0.00354914 0.00355317 N2 0.00376916* 0.000234993 0.00376916 0.00332633 C2							0*
IC5 0.546248* 1.06642E-05 0.0045216 0.53599 nC5 0.386275' 7.20295E-06 0.00319852 0.379046 2.Methylpentane 0.128629' 1.10663E-06 0.0014191 0.123620 C7 0.541887' 5.32724E-06 0.00448705 0.532309 C8 0.0555968' 3.05713E-06 0.000403055 0.546424 C9 0.124847' 1.13224E-06 0.00103379 0.122652 C10 0.0461671' 2.57174E-07 0.00038283 0.00453743 Benzene 0.0559736' 0.000140720 0.000495116 0.0422331 C1uene 0.05973936' 0.000244194 0.0002713112 0.0559385 o-Xjene 0.0681202' 0.000244194 0.00037616 0.0035917 N2 0.307581' 2.17156E-06 0.00376916 0.0035917 N2 0 0.00376916' 0.00254690 0.0035917 N2 0.00313740' 4.76969E-06 0.00313740 0.0035917 N2 0.00313740' <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0*</td></t<>							0*
nC5 0.386275* 7.2026E-06 0.00319652 0.379046 2.Methylpentane 0.125829* 1.10663E-06 0.00104191 0.123620 C7 0.541887* 5.32724E-06 0.00448705 0.552309 C8 0.555968* 3.05713E-06 0.00460365 0.542407 C9 0.124847* 1.3224E-06 0.00103379 0.122652 C10 0.0461671* 2.57174E-07 0.00038283 0.0463743 Benzene 0.0114827* 2.63000E-05 9.50816E-05 0.00845072 Toluene 0.0857936* 0.000140720 0.000495116 0.0422331 c-Xjelne 0.0861202* 0.000244194 0.000713112 0.0559385 n-C6 0.307581* 2.17156E-06 0.00376916 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow Ib/n Ib/n Ib/n Ib/n Ib/n C2 0.00376916* 0.00224593 0.00376916 0.00331240 C3 0.0133							0*
2-Methylpentane 0.125822" 1.10663E-06 0.00104191 0.123620 C7 0.541887" 5.32724E-06 0.00448705 0.532309 C8 0.555966" 3.05713E-06 0.00448705 0.54424 C9 0.124847" 1.13224E-06 0.00103379 0.122652 C10 0.0461671" 2.57174E-07 0.000382283 0.04453743 Benzene 0.0126727" 3.40718E-05 0.00014936 0.00845072 Toluene 0.0597396" 0.000140720 0.000495116 0.0422331 Ethylbenzene 0.0181202" 0.00024194 0.000713112 0.0559385 n-C6 0.00376916" 0.00224493 0.00376916" 0.00376916 N2 0.00376916" 0.000234993 0.00376916" 0.00376916 N2 0.00376916" 0.000234993 0.00376916 0.00331263 C2 0.00376916" 0.00024194 0.00376916 0.00331263 N2 0.00376916" 0.00024194 0.00376916 0.0033241 N2 0							0*
Cr 0.54188* 5.32724F.06 0.00448705 0.532309 C8 0.555968* 3.05713E-06 0.00460365 0.546424 C9 0.124847* 1.13224F.06 0.00103379 0.122652 C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0126727* 3.40718E-05 0.000104936 0.008495072 Toluene 0.0597936* 0.000140720 0.000713112 0.0453743 Ehylbenzene 0.0114827* 2.63000E-05 9.50816E-05 0.00819563 o-Xylene 0.0307581* 2.17156E-06 0.00254490 0.302245 H2O 0* 99.967 99.172 2.03647 10 Mass Flow Ib/h							0*
C8 0.555968* 3.067132-06 0.0460365 0.546424 C9 0.124847* 1.13224E-06 0.00103379 0.122652 C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0126727* 3.40718E-05 0.00014936 0.00485072 Toluene 0.0597936* 0.000140720 0.000495116 0.0422331 Ethylbenzene 0.0114827* 2.63000E-05 9.50816E-05 0.00819563 o-Xylene 0.0861202* 0.000241944 0.000273112 0.0559386 n-C6 0.3075916* 0.17156E-06 0.00254960 0.302245 H2O 0* 99.9967 99.1720 2.03847 10 Mass Flow Ib/h Ib/h Ib/h K/h K/h K/h K/h C2 0.0376916* 0.00234993 0.00376916 0.00313263 0.227680 C44 0.930583* 0.00290240 0.930583 0.927680 0.227680 C2 0.173135* 0.000647457 0.173135<							0*
C9 0.124847* 1.13224-06 0.00103379 0.12262 C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0126727* 3.40718E-05 0.00014936 0.0042331 Toluene 0.0597936* 0.000140720 0.000495116 0.0422331 Ethylbenzene 0.014827* 2.6300E-05 9.50816E-05 0.0059385 o-Xylene 0.037581* 2.17156E-06 0.002244890 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow Ib/h							0*
C10 0.0461671* 2.57174E-07 0.000382283 0.0453743 Benzene 0.0126727* 3.40718E-05 0.00014936 0.00245072 Toluene 0.0597936* 0.000140720 0.00049316 0.0422331 Ethylbenzene 0.0114827* 2.63000E-05 9.50816E-05 0.00819563 o-Xylene 0.0861202* 0.000244194 0.000713112 0.0593985 n-C6 0.307581* 2.17156E-06 0.00254690 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow lb/n lb/n lb/n lb/n lb/n lb/n CQ2 0.00376916* 0.000234930 0.00376916 0.0035417 0.00313263 C14 0.3030583* 0.0020240 0.930583 0.927680 0.172488 C3 0.0496760* 0.000221594 0.0496760 0.0133862 0.0133862 C4 0.013386* 1.56570E-05 0.01665444 0.00663889 0.0133862 C5 0.00665444*							0*
Benzene 0.0126727* 3.40718E-05 0.000104936 0.00845072 Toluene 0.059736* 0.000140720 0.000495116 0.0422331 Ethylbenzene 0.0114827* 2.63000E-05 9.50816E-05 0.0081503 o-Xylene 0.0861202* 0.000244194 0.000713112 0.0559385 n-C6 0.307581* 2.17156E-06 0.00224690 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow 1b/h 1b/h 0.00376916 0.003313740 0.003313740 N2 0.00313740* 4.76969E-06 0.00313740 0.00313263 0.927680 C14 0.930583* 0.00221594 0.0496760 0.0494544 0.0494544 C3 0.0133013* 1.56878E-05 0.0133086 0.0133282 0.0133862 C4 0.0134018* 4.36737E-05 0.00665444 0.00666388 0.00153286 0.00153286 0.00153286 0.00153286 0.00153286 0.00153286 0.00153285 0.00665435 0.00665435							0*
Toluene 0.0597936* 0.000140720 0.000495116 0.042231 Ethylbenzene 0.061202* 0.000241194 0.000713112 0.0559385 n-C6 0.307581* 2.17156E-06 0.00254690 0.302245 n-C6 0.307581* 2.17156E-06 0.00254690 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow Ib/h							0* 0*
Ethylbenzene 0.0114827* 2.63000E-05 9.50816E-05 0.00819563 o-Xylene 0.0861202* 0.000713112 0.0559385 h-C6 0.307581* 2.17156E-06 0.00254690 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow Ib/n Ib/n Ib/n Ib/n Ib/n Ib/n Ib/n CO2 0.00313740* 4.76969E-06 0.00313740 0.0033263 0.927680 CH4 0.930583* 0.0029240 0.930583 0.927680 0.013229 C3 0.173135* 0.000647457 0.173135 0.172488 0.0133263 C3 0.01496760* 0.000221594 0.0496760 0.0494544 0.0133283 iC4 0.013386* 1.56878E-05 0.0133386 0.0133283 0.013229 nC5 0.00470564* 1.05977E-05 0.00465444 0.00665444 0.0066544 C5 0.0066132* 7.77141E-06 0.00153266 0.00153265 C8							
o-Xylene 0.0861202* 0.000244194 0.000713112 0.0559385 n-C6 0.307581* 2.17156E-06 0.00254690 0.302245 V20 0* 99.9967 99.1720 2.0867 10 Mass Flow lb/h							0* 0*
n-C6 0.307581* 2.17156E-06 0.00254690 0.302245 H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow lb/h lb/h <thl>lb/h lb/h lb/h</thl>							0* 0*
H2O 0* 99.9967 99.1720 2.03647 10 Mass Flow lb/h							0* 0*
Mass Flow lb/h							-
CO2 0.00376916* 0.000234993 0.00376916 0.00353417 N2 0.00313740* 4.76969E-06 0.00313740 0.00313263 CH4 0.930583* 0.0290240 0.930583 0.927680 C2 0.173135* 0.000647457 0.173135 0.172488 C3 0.0496760* 0.000221594 0.0496760 0.0494544 iC4 0.0103386* 1.56878E-05 0.0103386 0.0103229 nC4 0.0134018* 4.36737E-05 0.01434018 0.0133582 iC5 0.00665444* 1.55570E-05 0.00470564 0.00465813 c7 0.00470564* 1.69077E-05 0.00470564 0.00465913 c7 0.00660132* 7.77141E-06 0.00660132 0.00659355 C8 0.00077285* 4.45975E-06 0.00152090 0.00151925 C9 0.00152090* 1.65172E-06 0.00052037 0.000562412 0.00056237 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene							
N20.00313740*4.76969E-060.003137400.00313263CH40.930583*0.002902400.9305830.927680C20.173135*0.0006474570.1731350.172488C30.0496760*0.0002215940.04967600.0494544C40.0103386*1.56878E-050.01033860.0103229nC40.0134018*4.36737E-050.010340180.013582iC50.00665444*1.55570E-050.006654440.00663889nC50.00470564*1.05077E-050.004705640.004695132-Methylpentane0.00153286*1.61436E-060.001532860.0015326C70.00660132*7.77141E-060.006601320.00659355C80.0007285*4.45975E-060.001520900.00151925C100.000562412*3.75166E-070.0005624120.000562037Benzene0.000154381*4.97041E-050.0001543810.000104677Toluene0.000728411*0.0002052820.0007284110.000523129Ethylbenzene0.00019883*3.8366E-050.0001398830.000101517o-Xylene0.000194913*0.000362310.001649130.00082894n-C60.00374698*3.16788E-060.003746980.00374381							
CH40.930583*0.002902400.9305830.927680C20.173135*0.0006474570.1731350.172488C30.0496760*0.0002215940.04967600.0494544iC40.0103386*1.56878E-050.01033860.0103229iC40.0134018*4.36737E-050.010340180.013582iC50.00665444*1.55570E-050.006654440.00663889iC50.00470564*1.05077E-050.004705640.004695132-Methylpentane0.00153286*1.61438E-060.001532860.00153124C70.00660132*7.77141E-060.006601320.00659355C80.0017285*4.45975E-060.000772850.00076839C90.00152090*1.65172E-060.001520900.00151925C100.000562412*3.75166E-070.0005624120.000562037Benzene0.000154381*4.97041E-050.0001543810.000104677Toluene0.000728411*0.000252820.0007284110.000523129Ethylbenzene0.00019493*3.83666E-050.0001398830.000101517o-Xylene0.0014913*0.00037662310.001049130.00082894n-C60.00374698*3.16788E-060.003746980.00374381							0* 0*
C2 0.173135* 0.000647457 0.173135 0.172488 C3 0.0496760* 0.000221594 0.0496760 0.0494544 iC4 0.0103366* 1.56878E-05 0.0103386 0.0103229 nC4 0.0134018* 4.36737E-05 0.0134018 0.0133582 iC5 0.00665444* 1.55570E-05 0.004665444 0.00668389 nC5 0.00470564* 1.05077E-05 0.00470564 0.00469513 2-Methylpentane 0.00153286* 1.61436E-06 0.00153286 0.00153124 C7 0.00660132* 7.77141E-06 0.006671285 0.0067839 C8 0.00075285* 4.45975E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.00025282 0.000728411 0.000523129 Ethylbenzene 0.00014913* 3.83666E-05 0.000139883 0.000101517							0*
C3 0.0496760* 0.000221594 0.0496760 0.0494544 iC4 0.0103366* 1.56878E-05 0.0103386 0.0103229 nC4 0.0134018* 4.36737E-05 0.0134018 0.0133582 iC5 0.00665444* 1.55570E-05 0.00665444 0.00663889 nC5 0.00470564 1.05077E-05 0.00470564 0.00469513 2-Methylpentane 0.00153286* 1.61436E-06 0.00153286 0.00153124 C7 0.00660132* 7.77141E-06 0.00667285 0.0067839 C8 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.00025282 0.000728411 0.000523129 Ethylbenzene 0.00013983* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.0013468* 3.16788E-06 0.00374698 0.00374381							0*
iC4 0.0103386* 1.56878E-05 0.0103386 0.0103229 nC4 0.0134018* 4.36737E-05 0.0134018 0.0133582 iC5 0.00665444* 1.55570E-05 0.00665444 0.00663889 nC5 0.00470564* 1.05077E-05 0.00470564 0.00469513 2-Methylpentane 0.00153286* 1.61436E-06 0.00153286 0.00153124 C7 0.00660132* 7.77141E-06 0.00660132 0.00659355 C8 0.0017285* 4.45975E-06 0.00152090 0.00151925 C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.00025282 0.000728411 0.000523129 Ethylbenzene 0.00014913* 3.8366E-05 0.000139883 0.000101517 o-Xylene 0.00014913* 0.00056231 0.00104913 0.00062894							0*
nC40.0134018*4.36737E-050.01340180.0133582iC50.00665444*1.55570E-050.006654440.00663889nC50.00470564*1.05077E-050.004705640.004695132-Methylpentane0.00153286*1.61436E-060.001532860.00153124C70.00660132*7.77141E-060.006601320.00659355C80.00152090*1.65172E-060.001520900.00151925C100.000562412*3.75166E-070.0005624120.000562037Benzene0.000154381*4.97041E-050.0001543810.000104677Toluene0.000728411*0.0002052820.0007284110.000523129ethylbenzene0.00019883*3.8366E-050.001398830.000101517o-Xylene0.000194913*0.000362310.001398830.000104513n-C60.00374698*3.16788E-060.003746980.00374381							0 0*
IC50.00665444*1.55570E-050.006654440.00663889nC50.00470564*1.05077E-050.004705640.004695132-Methylpentane0.00153286*1.61436E-060.001532860.00153124C70.00660132*7.77141E-060.006601320.00659355C80.0017285*4.45975E-060.006772850.00676839C90.00152090*1.65172E-060.001520900.00151925C100.000562412*3.75166E-070.0005624120.000562037Benzene0.000154381*4.97041E-050.0001543810.000104677Toluene0.000728411*0.0002052820.0007284110.000523129Ethylbenzene0.00019883*3.8366E-050.0001398830.000101517o-Xylene0.000194913*0.000362310.001749130.00082894n-C60.00374698*3.16788E-060.003746980.00374381							0*
nC5 0.00470564* 1.05077E-05 0.00470564 0.00469513 2-Methylpentane 0.00153286* 1.61436E-06 0.00153286 0.00153124 C7 0.00660132* 7.77141E-06 0.00660132 0.00659355 C8 0.00152090* 1.65172E-06 0.00677285 0.00676839 C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.00025282 0.000728411 0.000523129 Ethylbenzene 0.00019883* 3.8366E-05 0.000139883 0.000101517 o-Xylene 0.000194913* 0.00025282 0.00139883 0.000101517 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
2-Methylpentane 0.00153286* 1.61436E-06 0.00153286 0.00153124 C7 0.00660132* 7.77141E-06 0.00660132 0.00659355 C8 0.00677285* 4.45975E-06 0.00677285 0.0067839 C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000728411* 4.97041E-05 0.000728411 0.000523129 Toluene 0.000728411* 0.00025282 0.000728411 0.000523129 Ethylbenzene 0.00019483* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.00174913* 0.0003765231 0.00104913 0.000282894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
C7 0.00660132* 7.77141E-06 0.00660132 0.00659355 C8 0.00677285* 4.45975E-06 0.00677285 0.00676839 C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.000139883* 3.83666E-05 0.000139883 0.000115177 o-Xylene 0.00014913* 0.000356231 0.0014913 0.000692894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
C8 0.00677285* 4.45975E-06 0.00677285 0.00676839 C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.000139883* 3.8366E-05 0.000139883 0.000101517 o-Xylene 0.000374698* 0.000374698 0.00374381							0*
C9 0.00152090* 1.65172E-06 0.00152090 0.00151925 C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.00013983* 3.8366E-05 0.000139883 0.000101517 o-Xylene 0.00014913* 0.000356231 0.0014913 0.00028294 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
C10 0.000562412* 3.75166E-07 0.000562412 0.000562037 Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.00019883* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.000374698* 0.0003766231 0.00174913 0.00082894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
Benzene 0.000154381* 4.97041E-05 0.000154381 0.000104677 Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.000139883* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.00104913* 0.000356231 0.00104913 0.000692894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
Toluene 0.000728411* 0.000205282 0.000728411 0.000523129 Ethylbenzene 0.000139883* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.00104913* 0.000356231 0.00104913 0.000692894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
Ethylbenzene 0.000139883* 3.83666E-05 0.000139883 0.000101517 o-Xylene 0.00104913* 0.000356231 0.00104913 0.000692894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
o-Xylene 0.00104913* 0.000356231 0.00104913 0.000692894 n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
n-C6 0.00374698* 3.16788E-06 0.00374698 0.00374381							0*
							0*
145.901 U.U252251 145.90	H2O		0*	145.876	145.901	0.0252251	145.901*


Process Streams		Gas	Produced Water	Separated Water	Uncontrolled Flash Gas	Water
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		50 bbl Produced Water Tank	MIX-100	50 bbl Produced Water Tank	
	To Block:	MIX-100		50 bbl Produced Water Tank		MIX-100
Property	Units					
Temperature	°F	82.8909	65*	65.0520	65	65
Pressure	psia	54.6959*	14.6959*	54.6959	14.6959	54.6959
Mole Fraction Vapor	%	100	0	0.801497	100	(
Mole Fraction Light Liquid	%	0	100	99.1985	0	100
Mole Fraction Heavy Liquid	%	0	0	0	0	(
Molecular Weight	lb/lbmol	18.4917	18.0154	18.0191	18.4716	18.0153
Mass Density	lb/ft^3	0.175515	62.3194	16.3447	0.0483624	62.3236
Molar Flow	lbmol/h	0.0658788	8.09756	8.16462	0.0670579	8.09874
Mass Flow	lb/h	1.21821	145.881	147.119	1.23867	145.901
Vapor Volumetric Flow	ft^3/h	6.94078	2.34085	9.00102	25.6123	2.34102
Liquid Volumetric Flow	gpm	0.865344	0.291846	1.12221	3.19322	0.291868
Std Vapor Volumetric Flow	MMSCFD	0.0006*	0.0737495	0.0743603	0.000610739	0.0737603
Std Liquid Volumetric Flow	sgpm	0.00757162	0.291643	0.299238	0.00759579	0.291667
Compressibility		0.989703	0.000754514	0.0107082	0.996886	0.0028079
Specific Gravity		0.638467	0.999205		0.637776	0.99927
API Gravity			10.0162			10.0069
Mass Cp	Btu/(lb*°F)	0.509225	0.983569	0.979603	0.497539	0.983484
Ideal Gas CpCv Ratio		1.27127	1.32608	1.32560	1.27683	1.32608
Net Ideal Gas Heating Value	Btu/ft^3	1026.79	0.0304586	8.28503	1005.06	(
Net Liquid Heating Value	Btu/lb	21036.2	-1059.09	-876.796	20591.8	-1059.76
Gross Ideal Gas Heating Value	Btu/ft^3	1135.60	50.3421	59.0670	1112.64	50.3
Gross Liquid Heating Value	Btu/lb	23269.0	0.703069	192.678	22801.9	(

Input Summary

Process Stream	Produced Water	
Tank Geometry	Vertical Cylinder	
Shell Length	6	ft
Shell Diameter	8	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Annual Net Throughput	10	bbl/day
Include Non-VOC components in calculations?	FALSE	
Maximum fraction fill of tank	90	%
Average fraction fill of tank	50	%
Material category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of domed roof	4	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

Promax AP-42 Emissions Report Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	0.0060	0.0047	0.011
CO2	2.30E-05	1.80E-05	4.00E-05
N2	2.90E-07	2.20E-07	5.10E-07
CH4	0.00024	0.00018	0.00042
C2	4.10E-05	3.20E-05	7.30E-05
C3	3.00E-06	2.30E-06	5.30E-06
iC4	7.70E-08	6.00E-08	1.40E-07
nC4	1.50E-07	1.20E-07	2.70E-07
iC5	1.90E-08	1.50E-08	3.40E-08
nC5	9.60E-09	7.50E-09	1.70E-08
C6	5.90E-10	4.60E-10	1.10E-09
C7	5.20E-10	4.10E-10	9.30E-10
C8	9.50E-11	7.50E-11	1.70E-10
C9	1.00E-11	8.00E-12	1.80E-11
C10	6.90E-13	5.40E-13	1.20E-12
Benzene	7.10E-10	5.60E-10	1.30E-09
Toluene	1.70E-09	1.30E-09	3.00E-09
Ethylbenzene	1.90E-10	1.50E-10	3.50E-10
o-Xylene	1.50E-09	1.20E-09	2.70E-09
n-C6	5.70E-11	4.40E-11	1.00E-10
H2O	0.0057	0.0044	0.01

Process Streams		Gas	Produced Water	Separated Water	Uncontrolled Flash Gas	Water
Composition s	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total Fro	m Block:		210 bbl Produced Water Tank	MIX-100	210 bbl Produced Water Tank	
Тс	Block:	MIX-100		210 bbl Produced Water Tank		MIX-100
Mole Fraction		%	%	%	%	%
CO2		0.130003*	5.38172E-05	0.000219940	0.0977378	0*
N2		0.170003*	2.11676E-06	0.000287614	0.167881	0*
CH4		88.0518*	0.00223550	0.148967	86.2837	0*
C2		8.74017*	0.000265430	0.0147867	8.53912	0*
C3		1.71003*	6.17772E-05	0.00289306	1.66492	0*
iC4		0.270005*	3.35554E-06	0.000456798	0.266638	0*
nC4		0.350007*	9.27955E-06	0.000592146	0.342748	0*
iC5		0.140003*	2.67221E-06	0.000236858	0.137710	0*
nC5		0.0990020*	1.80562E-06	0.000167493	0.0974296	0*
2-Methylpentane		0.0270005*	2.33307E-07	4.56798E-05	0.0267238	0*
C7		0.100002*	9.65439E-07	0.000169185	0.0989177	0*
C8		0.0900018*	4.86968E-07	0.000152266	0.0892501	0*
C9		0.0180004*	1.60365E-07	3.04532E-05	0.0178131	0*
C10		0.00600012*	3.28866E-08	1.01511E-05	0.00594976	0*
Benzene		0.00300006*	3.54736E-06	5.07554E-06	0.000902152	0*
Toluene		0.0120002*	1.33423E-05	2.03021E-05	0.00410589	0*
Ethylbenzene		0.00200004*	2.19479E-06	3.38369E-06	0.000701296	0*
o-Xylene		0.0150003*	1.81561E-05	2.53777E-05	0.00426462	0*
n-C6		0.0660013*	4.58188E-07	0.000111662	0.0653908	0*
H2O		0*	99.9973	99.8308	2.08805	100*
Mass Fraction		%	%	%	%	%
CO2		0.309401*	0.000131469	0.000537267	0.233070	0*
N2		0.257541*	3.29151E-06	0.000447214	0.254826	0*
CH4		76.3893*	0.00199069	0.132648	75.0027	0*
C2		14.2123*	0.000443025	0.0246792	13.9126	0*
C3		4.07778*	0.000151210	0.00708096	3.97800	0*
iC4		0.848669*	1.08258E-05	0.00147369	0.839733	0*
nC4		1.10013*	2.99383E-05	0.00191034	1.07943	0*
iC5		0.546248*	1.07018E-05	0.000948544	0.538356	0*
nC5		0.386275*	7.23126E-06	0.000670756	0.380888	0*
2-Methylpentane		0.125829*	1.11601E-06	0.000218498	0.124784	0*
C7		0.541887*	5.36981E-06	0.000940971	0.537065	0*
C8		0.555968*	3.08768E-06	0.000965422	0.552408	0*
C9		0.124847*	1.14167E-06	0.000216794	0.123791	0*
C10		0.0461671*	2.59732E-07	8.01679E-05	0.0458696	0*
Benzene		0.0126727*	1.53808E-05	2.20059E-05	0.00381833	0*
Toluene		0.0597936*	6.82384E-05	0.000103830	0.0204986	0*
Ethylbenzene		0.0114827*	1.29340E-05	1.99394E-05	0.00403422	0*
o-Xylene n-C6		0.0861202*	0.000106995	0.000149545	0.0245323	0* 0*
n-C6 H2O		0.307581* 0*	2.19172E-06 99.9970	0.000534106 99.8264	0.305335 2.03825	0^ 100*
Mass Flow		lb/h	lb/h	99.0204 lb/h	2.03625	lb/h
CO2						0*
CO2 N2		0.0157048*	0.00383628 9.60464E-05	0.0157048 0.0130725	0.0118685 0.0129764	0* 0*
NZ CH4		0.0130725*		3.87743	3.81934	0* 0*
CH4 C2		3.87743* 0.721397*	0.0580884 0.0129275	3.87743 0.721397	0.708470	0^ 0*
C2 C3		0.206983*	0.0129275	0.206983	0.708470	0 0*
iC4		0.0430774*	0.000315898	0.0430774	0.202371	0*
nC4		0.0558410*	0.000873600	0.0558410	0.0549674	0*
iC5		0.0556410	0.000873800	0.0558410	0.0549674	0 0*
nC5		0.0196068*	0.000312279	0.0196068	0.0193958	0*
2-Methylpentane		0.00638690*	3.25653E-05	0.00638690	0.00635434	0*
C7		0.0275055*	0.000156691	0.0275055	0.0273488	0*
C8		0.0282202*	9.00987E-05	0.0282202	0.0281301	0*
C9		0.00633710*	3.33140E-05	0.00633710	0.00630379	0*
C10		0.00234338*	7.57899E-06	0.00234338	0.00233581	0*
Benzene		0.000643253*	0.000448813	0.000643253	0.000194440	0*
Toluene		0.00303505*	0.00199120	0.00303505	0.00104385	0*
Ethylbenzene		0.000582847*	0.000377414	0.000582847	0.000205433	0*
o-Xylene		0.00437135*	0.00312210	0.00437135	0.00124925	0*
n-C6		0.0156124*	6.39544E-05	0.0156124	0.0155485	0*
H2O		0*	2917.92	2918.02	0.103793	2918.02*
		5	2011.02	2010:02	0.100700	2010.02

Process Streams		Gas	Produced Water	Separated Water	Uncontrolled Flash Gas	Water
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		210 bbl Produced Water Tank	MIX-100	210 bbl Produced Water Tank	
	To Block:	MIX-100		210 bbl Produced Water Tank		MIX-100
Property	Units					
Temperature	°F	-22.3552	65*	64.9329	65	65
Pressure	psia	54.6959*	14.6959*	54.6959	14.6959	54.6959
Mole Fraction Vapor	%	99.6407	0	0.160271	100	(
Mole Fraction Light Liquid	%	0.359272	100	99.8397	0	100
Mole Fraction Heavy Liquid	%	0	0	0	0	(
Molecular Weight	lb/lbmol	18.4917	18.0153	18.0161	18.4554	18.0153
Mass Density	lb/ft^3	0.220674	62.3194	39.8852	0.0483196	62.3236
Molar Flow	lbmol/h	0.274495	161.973	162.249	0.275923	161.975
Mass Flow	lb/h	5.07588	2918.00	2923.10	5.09227	2918.02
Vapor Volumetric Flow	ft^3/h	23.0016	46.8233	73.2877	105.387	46.8205
Liquid Volumetric Flow	gpm	2.86774	5.83772	9.13717	13.1392	5.83736
Std Vapor Volumetric Flow	MMSCFD	0.0025*	1.47519	1.47771	0.00251301	1.4752
Std Liquid Volumetric Flow	sgpm	0.0315484	5.83363	5.86488	0.0312487	5.83333
Compressibility		0.976610	0.000754512	0.00438843	0.996890	0.00280798
Specific Gravity			0.999205		0.637215	0.99927
API Gravity			10.0163			10.0069
Mass Cp	Btu/(lb*°F)	0.481504	0.983570	0.982774	0.497852	0.983484
Ideal Gas CpCv Ratio		1.29591	1.32608	1.32599	1.27692	1.32608
Net Ideal Gas Heating Value	Btu/ft^3	1026.79	0.0284305	1.73714	1004.79	(
Net Liquid Heating Value	Btu/lb	21036.2	-1059.13	-1021.39	20604.5	-1059.76
Gross Ideal Gas Heating Value	Btu/ft^3	1135.60	50.3400	52.1461	1112.37	50.31
Gross Liquid Heating Value	Btu/lb	23269.0	0.658717	40.4061	22816.7	(

Input Summary

Process Stream	Produced Water	
Tank Geometry	Vertical Cylinder	
Shell Length	15	ft
Shell Diameter	10	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Annual Net Throughput	200	bbl/day
Include Non-VOC components in calculations?	FALSE	
Maximum fraction fill of tank	90	%
Average fraction fill of tank	50	%
Material category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of domed roof	5	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

Promax AP-42 Emissions Report Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	0.052	0.013	0.065
CO2	1.60E-04	4.00E-05	2.00E-04
N2	2.50E-06	6.20E-07	3.10E-06
CH4	2.00E-03	5.10E-04	2.60E-03
C2	3.60E-04	8.90E-05	4.50E-04
C3	2.60E-05	6.50E-06	3.20E-05
iC4	6.70E-07	1.70E-07	8.40E-07
nC4	1.30E-06	3.20E-07	1.60E-06
iC5	1.70E-07	4.10E-08	2.10E-07
nC5	8.40E-08	2.10E-08	1.00E-07
C6	5.20E-09	1.30E-09	6.50E-09
C7	4.60E-09	1.10E-09	5.70E-09
C8	8.40E-10	2.10E-10	1.00E-09
C9	9.00E-11	2.20E-11	1.10E-10
C10	6.00E-12	1.50E-12	7.50E-12
Benzene	2.90E-09	7.20E-10	3.60E-09
Toluene	7.50E-09	1.90E-09	9.30E-09
Ethylbenzene	8.70E-10	2.20E-10	1.10E-09
o-Xylene	6.10E-09	1.50E-09	7.60E-09
n-C6	4.90E-10	1.20E-10	6.20E-10
H2O	0.049	0.012	0.062

GRI-GLYCalc 4.0 Reports

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Bluestone Compressor Station File Name: W:\20161518 Antero Bluestone CS Air Permit\2.0 Technical Information\WVDEQ Application\Attachment I\GLYCalc\Bluestone CS.ddf Date: August 12, 2015 DESCRIPTION: _____ Description: 1 x 6 MMSCFD TEG Dehydration Unit with 0.5 MMBtu/hr reboiler Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 70.00 deg 875.00 psig 70.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- ----Carbon Dioxide 0.1270 Nitrogen 0.1743 Methane 88.0529 Ethane 8.7429 Propane 1.7103 Isobutane 0.2658 n-Butane 0.3537 Isopentane 0.1404 n-Pentane 0.0987 n-Hexane 0.0659 Other Hexanes Other Hexanes 0.0271 Heptanes 0.0997 Benzene 0.0034 Toluene 0.0120 Ethylbenzene 0.0017 0.0271 Xylenes 0.0154 C8+ Heavies 0.1090 DRY GAS: Flow Rate: 6.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Recirculation Ratio: 3.0 gal/lb H2O PUMP: Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.029 acfm gas/gpm glycol

Flash Control: Combustion device Flash Control Efficiency: 95.00 % Temperature: 250.0 deg. F Pressure: 120.0 psig

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Bluestone Compressor Station File Name: W:\20161518 Antero Bluestone CS Air Permit\2.0 Technical Information\WVDEQ Application\Attachment I\GLYCalc\Bluestone CS.ddf Date: July 21, 2015

DESCRIPTION:

Description: 1 x 6 MMSCFD TEG Dehydration Unit with 0.5 MMBtu/hr reboiler

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	$\begin{array}{c} 0.0488\\ 0.0325\\ 0.0229\\ 0.0069\\ 0.0129\end{array}$	1.171 0.780 0.551 0.165 0.310	$\begin{array}{c} 0.2137\\ 0.1423\\ 0.1005\\ 0.0301\\ 0.0565\end{array}$
Isopentane	0.0061	0.147	0.0268
n-Pentane	0.0059	0.143	0.0260
n-Hexane	0.0093	0.224	0.0409
Other Hexanes	0.0026	0.062	0.0112
Heptanes	0.0382	0.917	0.1674
Benzene	0.0617	1.480	0.2701
Toluene	0.3923	9.415	1.7182
Ethylbenzene	0.0867	2.080	0.3796
Xylenes	1.1675	28.019	5.1135
C8+ Heavies	0.0962	2.309	0.4213
Total Emissions	1.9905	47.771	8.7183
Total Hydrocarbon Emissions	1.9905	47.771	8.7183
Total VOC Emissions	1.9092	45.820	8.3622
Total HAP Emissions	1.7174	41.218	7.5223
Total BTEX Emissions	1.7081	40.994	7.4814

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0710	1.703	0.3108
Ethane	0.0193	0.464	0.0847
Propane	0.0070	0.168	0.0307
Isobutane	0.0018	0.042	0.0077
n-Butane	0.0028	0.068	0.0124
Isopentane	0.0014	0.034	0.0062
n-Pentane	0.0012	0.029	0.0053
n-Hexane	0.0014	0.033	0.0060
Other Hexanes	0.0005	0.011	0.0020
Heptanes	0.0037	0.089	0.0163
Benzene	$\begin{array}{c} 0.0006 \\ 0.0031 \\ 0.0005 \\ 0.0052 \\ 0.0109 \end{array}$	0.014	0.0025
Toluene		0.075	0.0136
Ethylbenzene		0.012	0.0022
Xylenes		0.124	0.0226
C8+ Heavies		0.262	0.0478

Total	Emissions	0.1303	3.128	0.5709
	Emissions Emissions	0.1303 0.0401 0.0107 0.0094	3.128 0.961 0.258 0.225	0.5709 0.1754 0.0470 0.0410

FLASH TANK OFF GAS

------------Component lbs/hr lbs/day tons/yr Methane1.419134.058Ethane0.38669.277Propane0.14003.361Isobutane0.03520.844n-Butane0.05681.362 6.2155 1.6931 0.6134 0.1541 0.2486 Isopentane 0.0283 0.679 0.1238 0.0241 0.577 0.1054 n-Pentane 0.0275 n-Hexane 0.661 0.1206 0.0093 0.223 0.0407 Other Hexanes 0.0744 1.786 0.3260 Heptanes 0.0115 0.276 0.0504 Benzene Toluene0.06221.493Ethylbenzene0.01020.246Xylenes0.10312.475C8+ Heavies0.21855.243 0.2725 0.0449 0.4517 0.9568 ----- -----Total Emissions 2.6067 62.562 11.4175 Total Hydrocarbon Emissions2.6067Total VOC Emissions0.8011Total HAP Emissions0.2146Total PTTY Emissions0.1871 62.562 11.4175 3.5089 19.227 5.151 0.9401 4.490 0.8194

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1198	2.874	0.5245
Ethane	0.0518	1.244	0.2270
Propane	0.0299	0.719	0.1311
Isobutane	0.0086	0.207	0.0378
n-Butane	0.0157	0.378	0.0690
Isopentane	0.0075	0.181	0.0330
n-Pentane	0.0071	0.172	0.0313
n-Hexane	0.0107	0.257	0.0469
Other Hexanes	0.0030	0.073	0.0133
Heptanes	0.0420	1.007	0.1837
Benzene	0.0623	1.494	0.2727
Toluene	0.3954	9.490	1.7318
Ethylbenzene	0.0872	2.092	0.3818
Xylenes	1.1726	28.143	5.1360
C8+ Heavies	0.1071	2.571	0.4692
Total Emissions	2.1208	50.899	9.2891
Total Hydrocarbon Emissions	2.1208	50.899	9.2891
Total VOC Emissions	1.9492	46.782	8.5377
Total HAP Emissions	1.7281	41.475	7.5693
Total BTEX Emissions	1.7174	41.218	7.5223

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	6.4293	0.5245	91.84
Ethane	1.8354	0.2270	87.63
Propane	0.7139	0.1311	81.63
Isobutane	0.1842	0.0378	79.48
n-Butane	0.3051	0.0690	77.40
Isopentane	0.1506	0.0330	78.09
n-Pentane	0.1314	0.0313	76.18
n-Hexane	0.1616	0.0469	70.94
Other Hexanes	0.0520	0.0133	74.44
Heptanes	0.4934	0.1837	62.76
Benzene	0.3206	0.2727	14.94
Toluene	1.9907	1.7318	13.00
Ethylbenzene	0.4244	0.3818	10.05
Xylenes	5.5651	5.1360	7.71
C8+ Heavies	1.3781	0.4692	65.96
Total Emissions	20.1358	9.2891	53.87
Total Hydrocarbon Emissions	20.1358	9.2891	53.87
Total VOC Emissions	11.8711	8.5377	28.08
Total HAP Emissions	8.4624	7.5693	10.55
Total BTEX Emissions	8.3008	7.5223	9.38

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	2.10 lbs. H2O/MMSCF
Temperature:	70.0 deg. F
Pressure:	875.0 psig
Dry Gas Flow Rate:	6.0000 MMSCF/day
Glycol Losses with Dry Gas:	0.0222 lb/hr

Wet Gas	Water Content:	Saturated
Calculated Wet Gas		
Specified Lean Glycol	Recirc. Ratio:	3.00 gal/lb н2о

Component	Remaining in Dry Gas	Absorbed in Glycol
Water Carbon Dioxide Nitrogen Methane Ethane	$\begin{array}{r} 8.16\% \\ 99.94\% \\ 100.00\% \\ 100.00\% \\ 99.99\% \end{array}$	$\begin{array}{c} 91.84\% \\ 0.06\% \\ 0.00\% \\ 0.00\% \\ 0.01\% \end{array}$
Propane	99.98%	0.02%
Isobutane	99.97%	0.03%
n-Butane	99.96%	0.04%
Isopentane	99.96%	0.04%
n-Pentane	99.95%	0.05%
n-Hexane	99.91%	0.09%
Other Hexanes	99.93%	0.07%
Heptanes	99.84%	0.16%
Benzene	95.83%	4.17%
Toluene	93.77%	6.23%

Ethylbenzene	91.86%	8.14%
xylenes	88.21%	11.79%
C8+ Heavies	99.75%	0.25%

FLASH TANK			
Flash Contr Flash Control Efficien Flash Temperatu Flash Pressu	rol: Combust ncy: 95.00 ire: 250 ire: 120	%	
Component	Left in Glycol	Removed in Flash Gas	
Water Carbon Dioxide Nitrogen Methane Ethane	3.29%	83.45% 96.71% 96.67%	
Propane Isobutane n-Butane Isopentane n-Pentane	14.08% 16.34% 18.53% 18.11% 20.14%	85.92% 83.66% 81.47% 81.89% 79.86%	
n-Hexane Other Hexanes Heptanes Benzene Toluene	25.66% 22.30% 34.25% 85.06% 87.39%	74.34% 77.70% 65.75% 14.94% 12.61%	
Ethylbenzene Xylenes C8+ Heavies	90.53% 92.94% 38.58%	9.47% 7.06% 61.42%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	25.24% 0.00% 0.00% 0.00% 0.00%	$74.76\%\\100.00\%\\100.00\%\\100.00\%\\100.00\%\\100.00\%$
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 2.12% 2.02%	100.00% 100.00% 100.00% 97.88% 97.98%
n-Hexane Other Hexanes Heptanes Benzene Toluene	1.71% 3.80% 1.36% 5.86% 9.03%	98.29% 96.20% 98.64% 94.14% 90.97%
Ethylbenzene Xylenes C8+ Heavies	11.50% 13.93% 29.90%	88.50% 86.07% 70.10%

WET GAS STREAM			
Temperature: Pressure: Flow Rate:	70.00 deg. F 889.70 psia 2.50e+005 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	5.41e-002 1.27e-001 1.74e-001 8.80e+001 8.74e+000	3.68e+001 3.22e+001 9.31e+003
	Isobutane n-Butane Isopentane	1.71e+000 2.66e-001 3.54e-001 1.40e-001 9.86e-002	1.02e+002 1.35e+002 6.67e+001
	Other Hexanes Heptanes Benzene	6.59e-002 2.71e-002 9.96e-002 3.40e-003 1.20e-002	1.54e+001 6.58e+001 1.75e+000
	Ethylbenzene Xylenes C8+ Heavies	1.54e-002	1.08e+001
	Total Components	100.00	1.22e+004

DRY GAS STREAM

DIVI	6,15 511(2,11			
	Temperature: Pressure: Flow Rate:	70.00 deg. F 889.70 psia 2.50e+005 scfh		
		Component	Conc. (vol%)	Loading (1b/hr)
		Carbon Dioxide Nitrogen Methane	4.41e-003 1.27e-001 1.74e-001 8.81e+001 8.74e+000	3.68e+001 3.22e+001 9.31e+003
		Isobutane n-Butane Isopentane	1.71e+000 2.66e-001 3.54e-001 1.40e-001 9.87e-002	1.02e+002 1.35e+002 6.67e+001
		Other Hexanes Heptanes Benzene	6.58e-002 2.71e-002 9.95e-002 3.26e-003 1.13e-002	1.54e+001 6.57e+001 1.68e+000
		Ethylbenzene Xylenes C8+ Heavies	1.36e-002	9.50e+000
		Total Components	100.00	1.22e+004

LEAN GLYCOL STREAM

Temperature: 70.00 deg. F Flow Rate: 2.33e-001 gpm	
Component	Conc. Loading (wt%) (lb/hr)
Water Carbon Dioxide Nitrogen	5 9.83e+001 1.29e+002 1.50e+000 1.97e+000 2 1.75e-012 2.29e-012 1.08e-013 1.42e-013 2 9.20e-018 1.20e-017
Propane Isobutane n-Butane	e 7.65e-008 1.00e-007 e 3.22e-009 4.22e-009 e 6.85e-010 8.98e-010 e 1.01e-009 1.33e-009 e 1.01e-004 1.33e-004
n-Hexane Other Hexanes Heptanes	e 9.36e-005 1.23e-004 e 1.24e-004 1.63e-004 5 7.73e-005 1.01e-004 5 4.02e-004 5.27e-004 e 2.93e-003 3.84e-003
Ethylbenzene Xvlenes	2.97e-002 3.89e-002 8.59e-003 1.13e-002 1.44e-001 1.89e-001 3.13e-002 4.10e-002
Total Components	5 100.00 1.31e+002

RICH GLYCOL AND PUMP GAS STREAM

_

Temperature: 70.00 deg. F Pressure: 889.70 psia Flow Rate: 2.55e-001 gpm NOTE: Stream has more than one	ohase.	
Component		Loading (lb/hr)
Water Carbon Dioxide	9.10e+001 5.56e+000 1.93e-002 3.71e-003 1.04e+000	7.87e+000 2.73e-002
Propane Isobutane	2.96e-001 1.15e-001 2.97e-002 4.92e-002 2.44e-002	1.63e-001 4.20e-002 6.97e-002
n-Hexane Other Hexanes Heptanes	2.13e-002 2.62e-002 8.45e-003 8.00e-002 5.44e-002	3.70e-002 1.20e-002 1.13e-001
Ethvlbenzene	1.03e+000	1.08e-001 1.46e+000
Total Components	100.00	1.42e+002

FLASH TANK OFF GAS STREAM

Temperature: 250.00 deg. F

Pressure: Flow Rate:	134.70 psia 4.40e+001 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	3.56e+000 4.46e-001 1.56e-001 7.63e+001 1.11e+001	2.27e-002 5.08e-003 1.42e+000
	Isobutane n-Butane Isopentane	2.74e+000 5.22e-001 8.42e-001 3.38e-001 2.87e-001	3.52e-002 5.68e-002 2.83e-002
	Other Hexanes Heptanes Benzene	2.76e-001 9.30e-002 6.40e-001 1.27e-001 5.82e-001	9.30e-003 7.44e-002 1.15e-002
	Ethylbenzene Xylenes C8+ Heavies	8.37e-001	1.03e-001
	Total Components	100.00	2.71e+000

FLASH TANK GLYCOL STREAM

Temperature: 250.00 deg. F Flow Rate: 2.49e-001 gpm		
Component	Conc. (wt%)	Loading (1b/hr)
Water Carbon Dioxide Nitrogen	9.27e+001 5.61e+000 3.25e-003 1.25e-004 3.52e-002	7.79e+000 4.51e-003 1.73e-004
Propane Isobutane	2.34e-002 1.65e-002 4.95e-003 9.30e-003 4.50e-003	2.29e-002 6.87e-003 1.29e-002
n-Hexane Other Hexanes Heptanes	4.37e-003 6.85e-003 1.92e-003 2.79e-002 4.72e-002	9.50e-003 2.67e-003 3.88e-002
Ethvlbenzene	9.77e-001	9.79e-002 1.36e+000
Total Components	100.00	1.39e+002

FLASH GAS EMISSIONS

Flow Rate: 1.65e+002 scfh Control Method: Combustion Device Control Efficiency: 95.00

> Component Conc. Loading (vol%) (lb/hr)

Carbon Dioxide Nitrogen Methane	6.11e+001 3.76e+001 4.18e-002 1.02e+000 1.48e-001	7.17e+000 5.08e-003 7.10e-002
Isobutane n-Butane Isopentane	3.66e-002 6.98e-003 1.13e-002 4.52e-003 3.84e-003	1.76e-003 2.84e-003 1.41e-003
Other Hexanes Heptanes Benzene	3.69e-003 1.24e-003 8.56e-003 1.70e-003 7.79e-003	4.65e-004 3.72e-003 5.75e-004
Ethylbenzene Xylenes C8+ Heavies	1.12e-002	5.16e-003
Total Components	100.00	1.21e+001

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. F 14.70 psia 1.32e+002 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	9.33e+001 2.96e-002 1.78e-003 8.78e-001 3.12e-001	4.51e-003 1.73e-004 4.88e-002
	Isobutane n-Butane Isopentane	1.50e-001 3.41e-002 6.40e-002 2.45e-002 2.38e-002	6.87e-003 1.29e-002 6.12e-003
	Other Hexanes Heptanes Benzene	3.13e-002 8.59e-003 1.10e-001 2.28e-001 1.23e+000	2.57e-003 3.82e-002 6.17e-002
	Ethylbenzene Xylenes C8+ Heavies	2.35e-001 3.17e+000 1.63e-001	8.67e-002 1.17e+000 9.62e-002
	Total Components	100.00	7.82e+000

Gas Analysis

MSES consultants, inc. Extended Fractional Analysis				
Conversion Productives N Antero Resources				
PO Drawer 190 - Clarksbur Telephone: 304.624.9700			Analysis No: Analysis Date: MSES Project No.:	1 07/01/2015 15-040
SAMPLE COLLECTIO	N INFORMATIO	ON		
Client:	Antero Rea	sources	Sample Date:	6/26/2015
Sample Location:	luestone Compre	ssor Dischar	Sample Time:	1:30 PM
Sample Collection Source:	Discha	rge	Collected By:	TB
MSES Sample Number:	N/A		Sample Pressure:	875
Date Received at Lab:	6/26/20	015	Sample Temp. (°F):	N/A
Collection Remarks:	N/A		Sample Container Type:	Cylinder
			MSES/CPD ID#	070
			Client ID #:	N/A
ANALYSIS REPORT				
FRACTIONA	L ANALYSIS		ANALYTICAL RES	ULTS
COMPONENTS	MOLE PERCENT	GPM	REAL VALUES ARE CALCULATED AT	14.696 PSI AND 60° F
NITROGEN	0.1743		BTU/SCF (DRY):	1138.32
CARBON DIOXIDE	0.1270		BIU/SCF (DRI):	1130.32
METHANE	88.0529		BTU/SCF (WET):	1133.29
ETHANE	8.7429	2.33	BIU/SCF (WEI):	1133.27
PROPANE	1.7103	0.47	SUM. FACTOR (DRY):	0.9973
I-BUTANE	0.2658	0.09	SOM, FACTOR (DRT):	0.3373
N-BUTANE	0.3537	0.11	SIDA EACTOR WITT	0.9968
I-PENTANES	0.1404	0.05	SUM. FACTOR (WET):	0.9908
N-PENTANE	0.0987	0.04		2.2400
I-HEXANES	0.0305	0.01	ETHANE + GPM:	3.2488
N-HEXANE	0.0659	0.03		0.430
I-HEPTANES	0.0398	0.02	REAL DENSITY:	0.6397
N-HEPTANE	0.0719	0.03	COMMENTS	S
I-OCTANES	0.0109	0.01		
N-OCTANE	0.0913	0.05		
I-NONANES	0.0080	0.00		
N-NONANE	0.0095	0.01		
I-DECANES	0.0024	0.00		
N-DECANE	0.0037	0.00		
I-UNDECANES	<0.0001	0.00		
I-DECANE	< 0.0001	0.00		
DODECANES +	< 0.0001	0.00		
TOTAL	100.000			
ANALYTICAL METHOD	S AND VALUE	S		

(1) Extended analysis and reporting performed following procedures outlined in GPA 2286-95: Tentative Method of Extended Analysis for Natural Gas and Similar Mxitures by Temperature Programmed Gas Chromatography

(2) Physical properties and values used in calculations were acquired from GPA 2145-09: Table of Physical properties for Hydrocarbons and Other Compounds of Interest to the Natural Gas Industry

(3) Limit of Detection = 0.0001 Mole Percent

Attachment J. Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application – Bluestone Compressor Station

Notice is given that Antero Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification to the existing General Permit Registration G35-A004A for natural gas compressor station located north of US-50 near Salem, in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.29885N, 80.59530W.

The applicant estimates the change in potential to discharge of the following Regulated Air Pollutants in the table below. Please note that negative changes are a result of decreased potential to emit and positive change are a result of increased potential to emit.

Pollutant	Emission Change (tons per year)
Nitrogen Oxides (NOx)	-69.87
Carbon Monoxide (CO)	-70.74
Volatile Organic Compounds (VOC)	-3.22
Formaldehyde	-9.13
Benzene	0.17
Toluene	1.44
Ethylbenzene	-0.02
Xylenes	4.05
n-Hexane	-0.28

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated the 17th day of August 2015.

By: Antero Midstream LLC Luz Slauter Midstream Environmental and Regulatory Manager 1615 Wynkoop Street Denver, CO 80202 Attachment N. Material Safety Data Sheets

Material Name: Dry Field Natural Gas

US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAM		Dry Field Natural Gas CAS Reg. No. 68410-63-9	EMERGENCY PHONE: AFTER HOURS:	(800) 878-1373 (800) 878-1373
PRODUCER: ADDRESS:	16′	tero Resources I5 Wynkoop Street nver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure – Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place. Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS * * *
--

CAS #	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3	Hexanes	0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas


First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 - 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas

US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

Appearance:	Colorless	Odor:	Odorless to slight petroleum odor
Physical State:	Gas	pH:	ND
Vapor Pressure:	40 atm @ -187°F (-86°C)	Vapor Density:	0.6
Boiling Point:	-259°F (-162°C)	Melting Point:	ND
Solubility (H2O):	3.5%	Specific Gravity:	0.4 @ -263°F (-164°C)

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *

Material Name: Dry Field Natural Gas

Evaporation Rate: ND Octanol / H2O Coeff.: ND Flash Point Method: N/A Lower Flammability Limit: 3.8 – 6.5 (LFL): Auto Ignition: 900-1170°F (482-632°C) VOC: ND Flash Point: Flammable Gas

Upper Flammability Limit: 13-17 (UFL): Burning Rate: ND

* * * Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

*** Section 11 – TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas

Butanes (106-97-8) Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0) Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3) Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9) Simple Asphyxiant

Carbon Dioxide (124-38-9) Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7) N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas

*** Section 15 – REGULATORY INFORMATION ***

Regulatory Information Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

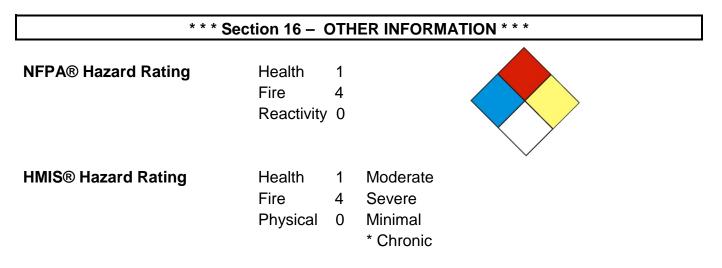
SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Х	Х	

SARA Section 313 – Supplier Notification

This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations


Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No

Material Name: Dry Field Natural Gas

US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

Material Name: Produced Water

US GHS

SYNONYMS: Produced Brine Water, Brine, Brine Water, Formation Water

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME:	Produced Water	EMERGENCY PHONE:	(800) 878-1373
PRODUCT CODES:	Mixture	AFTER HOURS:	(800) 878-1373
ADDRESS: 16	ntero Resources 15 Wynkoop Street enver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water

US GHS

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS #	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

First Aid: Skin

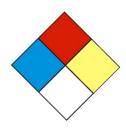
First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.


Material Name: Produced Water

US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5) ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *					
Appearance:	Clear to Brown	Odor:	Salty		
Physical State:	Liquid	pH:	ND		
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1		
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C		
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C		
Evaporation Rate:	Variable	VOC:	ND		
Octanol / H2O Coeff.:	ND	Flash Point:	ND		
Flash Point Method:	ND				
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND		
(LFL):		(UFL):			
Auto Ignition:	ND	Burning Rate:	ND		

Material Name: Produced Water

*** Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION ***

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

*** Section 11 - TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis – D50/LC50

Water (7732-18-5) Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Material Name: Produced Water

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC, NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water

US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 – DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information Shipping Description: Not Regulated UN #: Not Regulated

Material Name: Produced Water

*** Section 15 – REGULATORY INFORMATION ***

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372,

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 – OTHER INFORMATION * * *

NFPA® Hazard Rating

Fire	0	
Fire	0	Minimal
	Fire Reactivit Health Fire	Health 1 Fire 0 Reactivity0 Health 1 Fire 0 Physical 0

Material Name: Produced Water

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

JMN Specialties, Inc.

1100 Victory Drive Westwego, LA 70094 (504) 341-3749 ISO 9001 Registered HMIS HEALTH:.....2 HMIS FLAMMABILITY:.....1 HMIS REACTIVITY:.....0 PERSONAL PROTECTION:C

SECTION 1 – IDENTIFICATION OF CHEMICAL PRODUCT

PRODUCT NAME:TRIETHYLENE GLYCOL (TEG)**EFFECTIVE DATE:**October 1, 2007**CHEMICAL FAMILY:**Glycol**FORMULA:** $C_6H_{14}O_4$ **CAS NUMBER:**112-27-6

SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT	PERCENT	CAS NUMBER	PEL
TRIETHYLENE GLYCOL	> 99	112-27-6	None Established by ACGIH
			or OSHA.

The criteria for listing components in the composition section are as follows: Carcinogens are listed when present at 0.1% or greater; components which are otherwise hazardous according to OSHA are listed when present at 1.0% or greater. Non-hazardous components may be listed at 3.0% or greater if not proprietary in nature. This is not intended to be complete compositional disclosure. Refer to section 14 for applicable states right to know and other regulatory information.

SECTION 3 – HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW	
APPEARANCE / ODOR:	. Clear Liquid / Mild Odor
SHORT TERM EXPOSURE:	Inhalation: No adverse health effects expected from inhalation.
	Ingestion: No adverse effects expected. Skin Contact: Prolonged
	exposure may cause skin irritation. Eye Contact: Splashing in eye
	causes irritation with transitory disturbances of corneal epithelium.
	However, these effects diminish and no permanent injury is expected.
	Vapors are non-irritating. Chronic Exposure: Possible skin irritation.
	Aggravation of Pre-existing Conditions: No information found.
OSHA REGULATED:	. No
LISTED CARCINOGEN:	. NTP: No IARC MONOGRAPHS: No

POTENTIAL HEALTH EFFECTS

INHALATION:	Unlikely
INGESTION:	Irritant
SKIN (DERMAL):	Slight Irritant After Prolonged Contact

OVER EXPOSURE EFFECTS: Inhalation: No adverse health effects expected from inhalation. Ingestion: No adverse effects expected. Skin Contact: Prolonged exposure may cause skin irritation. Eye Contact: Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. Chronic Exposure: Possible skin irritation. Aggravation of Pre-existing Conditions: No information found.

SECTION 4 – FIRST AID MEASURES

FIRST AID:	SKIN CONTACT: Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. EYE CONTACT: Flush eyes immediately with large amounts of water or normal saline solution, occasionally lifting upper and lower lids until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. INGESTION: Give large amounts of fresh water or milk immediately. Do not give anything by mouth if person is unconscious or otherwise unable to swallow. If vomiting occurs, keep head below hips to prevent aspiration. Treat symptomatically and supportively. Seek medical attention immediately. INHALATION: Remove from exposure area to fresh air immediately. If breathing has stopped, perform artificial resuscitation. Keep person warm and at rest. Treat symptomatically and supportively. Seek medical attention immediately. Qualified medical personnel should consider
NOTE TO PHYSICIAN:	administering oxygen. • Ethylene Glycol (EG) and diethylene glycol (DEG) intoxication may initially produce behavioral changes, drowsiness, vomiting, diarrhea, thirst, and convulsions. EG and DEG are nephrotoxic. End stages of poisoning may include renal damage or failure with acidosis. Supportive measures, supplemented with hemodialysis if indicated, may limit the progression and severity of toxic effects. Primary toxic effects of EG when swallowed are kidney damage and metabolic acidosis. This product may contain trace amounts of Ethylene Glycol (EG) or Diethylene Glycol (DEG).

SECTION 5 - FIRE FIGHTING MEASURES

FLASHPOINT:	.350°F
EXTINGUISHING MEDIA:	Water fog or spray, Foam, Dry Powder, Carbon Dioxide (CO ₂).
DECOMPOSITION	
PRODUCTS:	. From fire; Smoke, Carbon dioxide, & Carbon Monoxide
LOWER FLAME LIMIT:	. < 0.9
HIGHER FLAME LIMIT:	.>9
UNUSUAL FIRE AND	
EXPLOSION HAZARDS:	• Toxic levels of carbon monoxide, carbon dioxide, irritation aldehydes and ketones may be formed on burning. Heating in air may produce
	irritating aldehydes, acids, and ketones.
FIRE FIGHTING	

EOUIPMENT:	Fire fighters and others exposed to products of combustion should wear
-	self-contained breathing apparatus. Equipment should be thoroughly
	decontaminated after use.

SECTION 6 – ACCIDENTAL RELEASE MEASURES

CHEMTEL EMERGENCY NUMBER (24 Hour):	. 1-800-255-3924
SPILL:	. Ventilate area of leak or spill. Wear appropriate personal protective
	equipment as specified in Section 8. Isolate hazard area. Keep
	unnecessary and unprotected personnel from entering. Contain and
	recover liquid when possible. Collect liquid in an appropriate container
	or absorb with an inert material (e. g., vermiculite, dry sand, earth), and
	place in a chemical waste container. Do not use combustible materials,
	such as saw dust. Do not flush to sewer!
RCRA STATUS:	. None

SECTION 7 – HANDLING AND STORAGE

HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES. THESE PRACTICES INCLUDE AVOIDING UNNECESSARY EXPOSURE AND PROMPT REMOVAL OF MATERIAL FROM EYES, SKIN, AND CLOTHING.

HANDLING AND STORAGE: .. No special storage requirements. Do not store above 120°F. PRECAUTIONARY

MEASURES: Provide fresh air ventilation during and after application. Close container after each use. Avoid prolonged or repeated contact with skin. Avoid contact with skin, eyes, and clothing. After handling this product, wash hands before eating, drinking, or smoking. If needed, take first aid action shown in Section 4.

SECTION 8 – EXPOSURE CONTROL / PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment.

EYE PROTECTION:	• Chemical safety goggles meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 should be worn whenever there is the possibility of splashing or other contact with the eyes. Wear safety glasses meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 where no contact with the eye is anticipated.
RESPIRATORY PROTECTION:	• Not normally needed. Use NIOSH approved vapor respirator if exposure is unknown or exceeds permissible limits. A respiratory protection program that meets OSHA's 29 CFR 1910.134 or ANSI Z88.2 requirements must be followed whenever workplace conditions warrant respirator use.

Use NIOSH / MSHA approved respiratory protection equipment when airborne exposure limits are exceeded (see below). Consult the respirator manufacturer to determine appropriate type of

PAGE 3 of 6

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

MECHANICAL EXHAUST: Desired in closed places LOCAL EXHAUST: Recommended

VENTILATION:

VENTILATION NOTES: Provide natural or mechanical ventilation to control exposure levels below Airborne exposure limits (see below). The use of local mechanical exhaust ventilation is preferred at sources of air contamination such as open process equipment. Consult NFPA Standard 91 for design of exhaust systems.

THRESHOLD LIMIT VALUE: None Established

PROTECTIVE EQUIPMENT:... HMIS PERSONAL PROTECTION: C: Safety Glasses, Gloves, Apron The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

SECTION 10 – STABILITY AND REACTIVITY

STABILITY:StableHAZARDOUSWill Not OccurPOLYMERIZATION AVOID:Will Not OccurPOLYMERIZATION AVOID:Explosive decomposition may occur if combined with strong acids or
strong bases and subjected to elevated temperatures. Therefore, avoid
strong acids and strong bases at elevated temperatures. Avoid
contamination with strong oxidizing agentsand materials reactive with
hydroxyl compounds. Avoid burning or heating in air. This may
produce irritating aldehydes, acids, and ketones.CONDITIONS TO AVOID:Excessive heat. Will ignite in air at 700°F

SECTION 11 – TOXICOLOGICAL INFORMATION

EYE EFFECTS:

The eye irritation hazard is based on data from information supplied by raw material(s) supplier(s). **SKIN EFFECTS:**

The skin irritation hazard is based on data from information supplied by raw material(s) supplier(s). **ACUTE ORAL EFFECTS:**

The acute oral toxicity is based on data from information supplied by raw material(s) supplier(s). **ACUTE INHALATION EFFECTS:**

The acute respiratory toxicity is based on data from information supplied by raw material(s) supplier(s).

SECTION 12 – ECOLOGICAL INFORMATION

Data from laboratory studies and from scientific literature is noted below if available.

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Treatment, storage, transportation and disposal must be in accordance with Federal, State/Provincial and Local Regulations. Regulations may vary in different locations. Characterization and compliance with applicable laws are the responsibility solely of the generator. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

SECTION 14- TRANSPORTATION INFORMATION

The data provided in this section is for information only. The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate regulations to properly classify your shipment for transportation.

SECTION 15 - REGULATORY INFORMATION

EPA CHRONIC: No EPA IGNITABILITY: No EPA REACTIVITY: No **EPA SUDDEN RELEASE** OF PRESSURE: No CERCLA RQ VALUE: None SARA TPO: None SARA RQ:..... None EPA HAZARD WASTE #:..... None CLEAN AIR: NA CLEAN WATER:..... NA SARA SECTION 313:..... No NFPA FLAMMABILITY:.....1 NFPA REACTIVITY:0 **DEA Chemical Trafficking Act:..** No TSCA STATUS: All ingredients in this product are on the TSCA Inventory List.

SECTION 16 - ADDITIONAL INFORMATION

FOOT NOTES: NA - NOT APPLICABLE ND - NO DATA AVAILABLE > = GREATER THAN < = LESS THAN

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Company Health and Risk Assessment Unit, PO Box 1519, Gretna, LA 70054-1519.

REVISION STATEMENT: Changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

DISCLAIMER:

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, the Company makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving this MSDS will make their own determination as to its suitability for their intended purposes prior to use. Since the product is within the exclusive control of the user, it is the user's obligation to determine the conditions of safe use of this product. Such conditions should comply with all Federal Regulations concerning the Product. It must be recognized that the physical and chemical properties of any product may not be fully understood and that new, possibly hazardous products may arise from reactions between chemicals. The information given in this data sheet is based on our present knowledge and shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED. OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

 Attachment O. Emissions Summary Sheets

G35-A EMISSIONS SUMMARY SHEET

COMPI	RESSOR	STATIO	N EMISS	ION SUM	IMARY S	SHEET F	OR CRIT	ERIA PO	LLUTAN	<u>ГS</u>
	С	ompressor S	tation				Registrati	on Number (Age	ncy Use) G35-A	
Potential Emissions (lbs/hr)							Potent	ial Emissions	(tons/yr)	
Source ID No.	NOx	СО	VOC	SO ₂	PM ₁₀	NOx	СО	VOC	SO ₂	PM ₁₀
CE-4 (1E)	1.52	0.74	0.73	0.006	0.10	6.66	3.24	3.20	0.03	0.44
T01 (2E)			0.44					1.91		
T02 (3E)			0.11					0.47		
DEHY-001 (4E)			1.91					8.36		
RB-1 (5E)	0.06	0.05	0.04	0.0004	0.005	0.27	0.23	0.19	0.002	0.02
LDOUT (6E)			0.71					0.14		
Total	1.58	0.79	3.93	0.01	0.11	6.93	3.46	14.27	0.03	0.46

COMPRESSOR STATION EMISSION SUMMARY SHEET FOR HAZARDOUS/TOXIC POLLUTANTS

		Comp	oressor Stat	ion				Registr	ation Num	ber (Agency Use)	G35-A	
	Potential Emissions (lbs/hr) Potential En					tential Emis	ssions (tons	/yr)				
Source ID No.	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde
CE-4 (1E)	0.002	0.0002	0.002	0.001	0.006	0.13	0.01	0.0009	0.009	0.004	0.02	0.56
T01 (2E)	0.0002	0.0002	0.001	0.001	0.02		0.0009	0.001	0.005	0.006	0.07	
T02 (3E)	0.0001	0.0001	0.0005	0.0007	0.004		0.0005	0.0005	0.002	0.003	0.02	
DEHY-001 (4E)	0.06	0.09	0.39	1.17	0.009		0.27	0.38	1.72	5.11	0.04	
RB-1 (5E)	0.0006	0.0005	0.003	0.005	0.002	4.6E-5	0.003	0.002	0.01	0.02	0.01	0.0002
LDOUT (6E)	0.0003	0.0004	0.002	0.002	0.03		0.00007	0.00007	0.0003	0.0004	0.005	
Total	0.06	0.09	0.40	1.18	0.04	0.13	0.28	0.38	1.75	5.15	0.17	0.56

G35-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹	Maximum Potenti Emissi		Maximum Potential Controlled Emissions ³		Est. Method
	Numeror to	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	PM-10 PM-2.5					EE
Unpaved Haul Roads	PM-10 PM-2.5	0.07 0.007	0.31 0.03	0.07 0.007	0.31 0.03	EE
Loading/Unloading Operations						
Equipment Leaks	VOC HAPs CO2e	Does not apply	0.58 0.03 27.6	Does not apply	0.58 0.03 27.6	EE
Blowdown Emissions						
Other – Venting Episodes	VOC HAPs CO2e	Does not apply	0.29 0.02 61.7	Does not apply	0.29 0.02 61.7	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

Attachment R. Authority of Corporation

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: , _____,

ATTN.: Director

Corporation's / other business entity's Federal Employer I.D. Number _____46-5517375

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.

Further, the corporation or the business entity certifies as follows:

(1) Luz Slauter and Lou Ann Lee (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may obligate and legally bind the corporation or the business entity.

(2) The corporation or the business entity is authorized to do business in the State of West Virginia.

(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.

Troy Roach, Vice President - EHS

President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)

(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).

Secretary

Antero Midstream LLC