P&A Engineers and Consultants, Inc.

312 Justice Avenue Logan, WV 25601	Phone (304) 752-8320 Fax (304) 752-7488
March 25, 2016 Id. No. <u>777-00138</u> Reg. <u>640</u> Company <u>Premium Energy</u>	<u>D-CO75-PI</u>
Facility <u>Pax</u> Region Initials <u>TEM</u>	4- Inegeiven
Mr. William F. Durham Division of Air Quality 601 57 th Street SE Charleston, WV 25304	WV DEP / DIV OF AIR OUALITY
PE: Promium Energy LLC	

RE: Premium Energy, LLC G40C Relocation Application Facility ID: 777-00138

Dear Mr. Durham:

On behalf of Premium Energy, P & A Engineers and Consultants, Inc. submits the enclosed G40C Relocation/Construction Application for the above-referenced facility. The submittal fee of \$1500 and additional permit copies are enclosed.

The application addresses the construction and operation of a rock crusher/screening system that is being transferred from the Camp Branch Surface Mine to the Pax Surface Mine. In addition to the relocation, Premium Energy proposes to add a power screen system – the system is also addressed in this application.

If additional information or clarification is needed, please contact me at the Logan address listed above or call 304-752-8320.

Sincerely.

Donna J. Toler Air Quality Project Manager

donnatoler@suddenlink.net

TABLE OF CONTENTS

WVDAQ Registration Application

- Section A Current Business Certificate
- Section B Process Description
- Section C Description of Fugitive Emissions
- Section D Process Flow Diagram
- Section E Plot or Site Plan
- Section F Area Map
- Section G Affected Source Sheets
- Section H Baghouse Information
- Section I Emission Calculations
- Section J Class I Legal Advertisement
- Section K Electronic Submittal Diskette
- Section L Certification
- Section M Check List
- Section N Equipment Specs

A CONTRACTOR OF A CONTRACTOR O	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 - 57 th Street SE Charleston, WV 25304 Phone: (304) 926-0475 • www.wvdep.org	APPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTAN					
	CHECK ALL THAT APPLY (IF KNOWN): CTION IN MODIFICATION RELOCATION STRATIVE UPDATE IN AFTER-THE-FACT	FOR AGENCY USE ONLY: PLANT I.D. # PERMIT #					
	CHECK WHICH TYPE OF GENERAL PERMIT	REGISTRATIO	N YOU ARE APPLYING FOR:				
□ G20-B - Hot M □ G30-D - Natur □ G33-A - Class	Preparation and Handling lix Asphalt al Gas Compressor Stations I Spark Ignition Internal Combustion Engine al Gas Compressor Stations (Flare/Glycol Dehydration	□ G50-B - □ G60-C -	Nonmetallic Minerals Processing Concrete Batch Class II Emergency Generator Class I Emergency Generator				
	SECTION I. GENER	AL INFORMATI	ON				
1. NAME OF APPL	ICANT (AS REGISTERED WITH THE WV SECRETARY OF ST PREMIUM ENERGY, LLC	ATE'S OFFICE):	S OFFICE): 2. FEDERAL EMPLOYER ID NO. (FEIN): 20-3562770				
3. APPLICANT'S M	3. APPLICANT'S MAILING ADDRESS: PO BOX 1098, HOLDEN, WV 25625						
4. IF APPLICANT I	S A SUBSIDIARY CORPORATION, PLEASE PROVIDE ALPHA NATURA						
5. WV BUSINESS 다 다	PAGE) INCLUDING ANY NAME CHANGE AMENDMENTS OR OTHER BUSINESS CERTIFICATE AS ATTACHMENT A.						
	SECTION II. FACILIT		2N				
MODIFIED, RELOC	OR FACILITY (STATIONARY SOURCE) TO BE CONS ATED OR ADMINISTRATIVELY UPDATED (E.G., COAI ANT, PRIMARY CRUSHER, ETC.) :	IRUCTED,	8. STANDARD INDUSTRIAL CLASSIFICATION (SIC) CODE FOR THE FACILITY:				
Relocating to	Pax Surface Mine changing material	flow and	1422				

adding several belt conveyors and stockpiles

9A. DAQ PLANT I.D. NO. (FOR AN EXISTING FACILITY:	10A. LIST ALL CURRENT 45CSR13 AND 45CSR30 (TITLE V) PERMIT NUMBERS ASSOCIATED WITH THIS PROCESS (FOR EXISTING FACILITY ONLY):
777-00138	G40-C075

PRIMARY OPERATING SITE INFORMATION

11A. NAME OF PRIMARY OPERATING SITE:	12A. MAILING ADDRESS OF PRIMARY OPERATING SITE:						
PAX SURFACE MINE	SAME A	AS ABOVE					
13A. DOES THE APPLICANT OWN, LEASE, HAVE AN OPTION TO BUY, OR OTHERWISE HAVE CONTROL OF THE <i>PROPOSED SITE</i> ?							
S IF YES, PLEASE EXPLAIN: OWNED A	AND OPERATED BY ALPHA NATU	IRAL RESOURCES					
IF NO, YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS SOURCE.						
14A. ⇔ FOR MODIFICATIONS or ADMINISTR PRESENT LOCATION OF THE FACIL	14A. FOR MODIFICATIONS or ADMINISTRATIVE UPDATES, AT AN EXISTING FACILITY, PLEASE PROVIDE DIRECTIONS TO THE PRESENT LOCATION OF THE FACILITY FROM THE NEAREST STATE ROAD;						
SFOR CONSTRUCTION OR RELOCATING FROM THE NEAREST STATE ROAD	ON PERMITS, PLEASE PROVIDE DIRECTIONS	TO THE PROPOSED NEW SITE LOCATION					
Route 119 South toward Logan, take Route 10 toward Man, follow about 5 miles, take left onto Rum Creek or Dehue Road, follow to foot of Blair Mountain at guard shack and ask for directions to site.							
INCLUDE A MAP AS ATTACHMENT F.							
15A. NEAREST CITY OR TOWN:	16A. COUNTY:						
Pax	Raleigh						
17A. UTM NORTHING (KM):	18A. UTM EASTING (KM): 37-53-21	19A. UTM ZONE:					
81-17-44 4193.55911	474.01198	17					

1 ST ALTERNATE OPERATING SITE INFORMATION (G20-B, G40-C, G50-C only)						
11B. NAME OF PRIMARY OPERATING SITE:	12B. MAILING ADDRESS OF PRIMARY OPER	ATING SITE:				
13B. DOES THE APPLICANT OWN, LEASE, HAVE AN OPTION TO BUY, OR OTHERWISE HAVE CONTROL OF THE <i>PROPOSED SITE?</i> □ YES □ NO ▷ IF YES, PLEASE EXPLAIN:						
IF NO, YOU ARE NOT ELIGIBLE FOR A PE	ERMIT FOR THIS SOURCE.					
14B. ➡ FOR MODIFICATIONS or ADMINISTRA PRESENT LOCATION OF THE FACIL	ATIVE UPDATES, AT AN EXISTING FACILITY, P ITY FROM THE NEAREST STATE ROAD;	PLEASE PROVIDE DIRECTIONS TO THE				
INCLUDE A MAP AS ATTACHMENT F.						
15B. NEAREST CITY OR TOWN:	16B. COUNTY:					
17B. UTM NORTHING (KM):	18B. UTM EASTING (KM):	19B. UTM ZONE:				

2 ALTERNATE	OPERATING SITE INFORMATION (G20-D, G4	-c, 650-c omy				
11C. NAME OF PRIMARY OPERATING SITE:	12C. MAILING ADDRESS OF PRIMARY OPERATING SITE:					
	VE AN OPTION TO BUY, OR OTHERWISE HAVE	E CONTROL OF THE PROPOSED SITE?				
IF YES, PLEASE EXPLAIN:						
S IF NO, YOU ARE NOT ELIGIBLE FOR A PI	ERMIT FOR THIS SOURCE.					
14C.	ATIVE UPDATES, AT AN EXISTING FACILITY, F ITY FROM THE NEAREST STATE ROAD;	LEASE PROVIDE DIRECTIONS TO THE				
SPACE STATE ROAD STRUCTION OR RELOCATION OF RELOCATION	ON PERMITS, PLEASE PROVIDE DIRECTIONS	TO THE PROPOSED NEW SITE LOCATION				
		· · · · · · · · · · · · · · · · · · ·				
INCLUDE A MAP AS ATTACHMENT F.						
15C. NEAREST CITY OR TOWN:	16C. COUNTY:					
17C. UTM NORTHING (KM):	18C. UTM EASTING (KM):	19C. UTM ZONE:				
20. PROVIDE THE DATE OF ANTICIPATED INST		21. DATE OF ANTICIPATED START- UP IF REGISTRATION IS GRANTED:				
IF THIS IS AN AFTER-THE-FACT PERM THE DATE UPON WHICH THE PROPORTION	SED CHANGE DID HAPPEN://	- May 30, 2016				
22. PROVIDE MAXIMUM PROJECTED OPERATING SCHEDULE OF ACTIVITY/ ACTIVITIES OUTLINED IN THIS APPLICATION:						
HOURS PER DAY 24 DAYS PER WEEK 7 WEEKS PER YEAR 52 PERCENTAGE OF OPERATION 100%						

2ND ALTERNATE OPERATING SITE INFORMATION (G20-B, G40-C, G50-C only)

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: PREMIUM ENERGY LLC COUNTY RD 10-2 WHARNCLIFFE, WV 25651-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

1010-7200

This certificate is issued on: 06/24/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0826752128 **ATTACHMENT B**

PROCESS DESCRIPTION

Rock from adjacent overburden areas will be transferred to BS-01(PW) by front end loader @ TP-01(UD-PW); go to belt conveyor BC-01(NC) @ TP-02(TC-PE); and transfer to screen SS-01(PW) @ TP-03(TC-PW). The screen will discharge material by size to two separate stockpiles OS-01(SW-WS) and OS-02(SW-WS) via belt conveyors BC-02(NC) and BC-03(NC) @ TP-04(TC-FE) thru TP-08(TC-MDH). The screen will transfer to belt conveyor BC-04(NC) @ TP-10(TC-FE) and feed bin BS-02(PW) @ TP-11(TC-PW). From BS-02, material will transfer to BC-05(NC) @ TP-12(TC-PE) to the crusher CR-01(FE) @ TP-13(TC-FE). The material will be crushed and discharged to stockpiles OS-03(SW-WS), OS-04(SW-WS), OS-05(SW-WS) according to size via belt conveyors BC-06(NC), BC-07(NC), and BC-08(NC) @ TP-14(TC-FE) thru TP-21(LO-MDH). Material will be loaded to truck for distribution on mine site at TP-06(LO-MDH), TP-09(LO-MDH), TP-16(LO-MDH), TP-18(LO-MDH), and TP-22(LO-MDH).

Company officials have agreed to install a portable water spray system to control fugitive emissions as required by the General Permit Program.

Although the application contains a Certificate of Conformity, no emission calculations are available on which to base the conformity. Therefore, AP-42 emission calculations are to be used for the basis of permit requirements. ATTACHMENT C

DESCRIPTION OF FUGITIVE EMISSIONS

Potential sources of fugitive particulate emissions for this facility include emissions, which are not captured by pollution control equipment and emissions from open stockpiles and vehicular traffic on unpaved haulroads and work areas. The haulroads and work areas will be controlled by water truck. The water truck will be operated three times daily, and more as needed in dry periods.

An additive to prevent freezing will be utilized in the winter months when freezing conditions are present. New course gravel base material will be added to unpaved haulroads as needed. This document was too large to scan. If interested in viewing please contact: dep<u>foia@wv.gov</u> or West Virginia Department of Environmental Protection Public Information Office FOIA Request 601 57th St. S.E. Charleston, WV 25304.

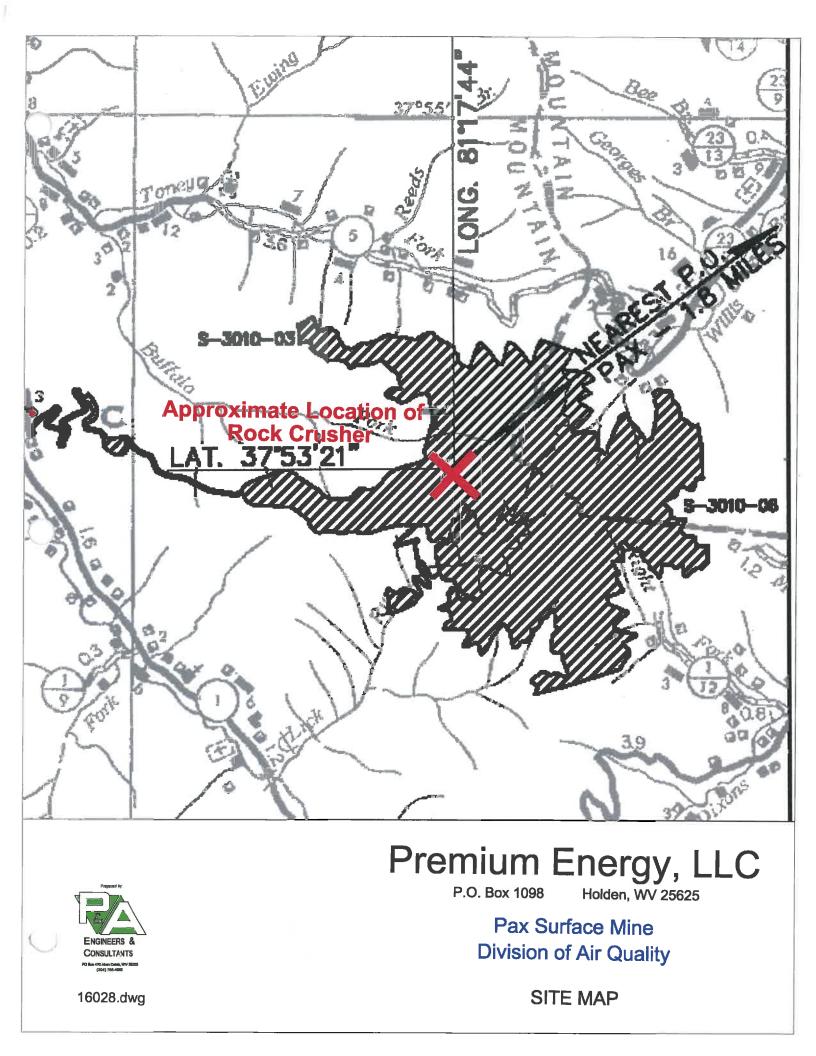
The fax number is 304-926-0447.

Thank you.

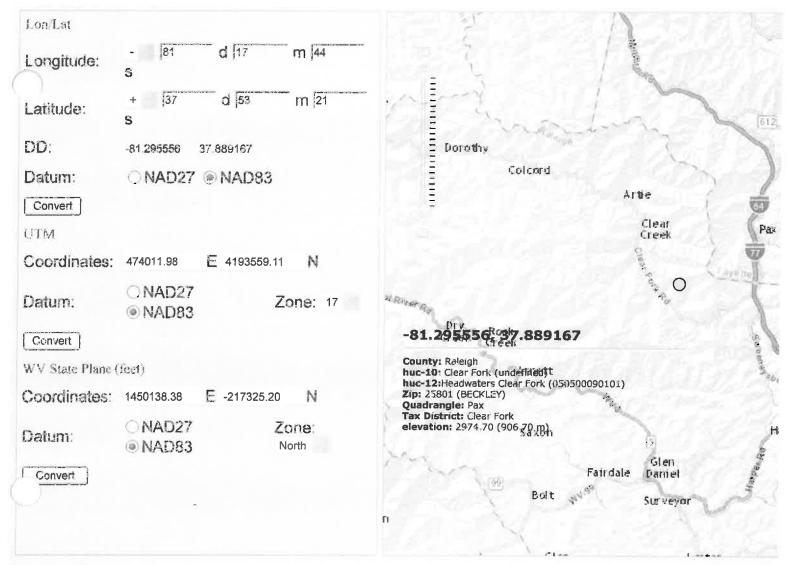
west virginia department of environmental protection

-	Prepared by:		No.	Date	Revision	By
			1			
	8		2			
-			3			
	PO Box 470 Alum Creek, W	CONSULTANTS V 25003 (304) 756-4066	4			
			5			
	Drawing Date: 03/24/16	Drawn By: G. Caudill		Pre	emium Energy, Ll	LC
	Computer No.:	Topo Contour Interval:		_	P.O. Box 1080	
	16035	na			Holden, WV 25625	
	Scale:	Sheet No.:	P	ax Cr	usher / Screen Sy	stem
	na	1 of 1				
		tal Date: 2016	Facility ID Number 777-00138 Division of Air Quality Material Flow Diagram			

This document was too large to scan. If interested in viewing please contact: dep<u>foia@wv.gov</u> or West Virginia Department of Environmental Protection Public Information Office FOIA Request 601 57th St. S.E. Charleston, WV 25304.


The fax number is 304-926-0447.

Thank you.



west virginia department of environmental protection

Descend has	_	No.	Date	Revision	Ву
Prepared by:			I		
rrepared by:		1	ļ		
		1			
		-			
ENGINEERS &	CONSULTANTS W 25003 (304) 756-4086	2 3 4			
ENGINEERS & PO Box 470 Alum Creek, V	W 25003 (304) 756–4066	2			
ENGINEERS &	CONSULTANTS V 25003 (304) 756-4066 Drawn By: G. Caudill	2 3 4	Pro	emium Energy, I	
ENGINEERS & PO Box 470 Alum Creek, V Drawing Date: 03/24/16 Computer No.:	V 25003 (304) 756-4066 Drawn By: G. Caudill Topo Contour Interval:	2 3 4	Pro	P.O. Box 1080 Holden, WV 25625	
ENGINEERS & PO Box 470 Alum Creek, V Drawing Date: 03/24/16 Computer No.: 16036	V 25003 (304) 756-4066 Drawn By: G. Caudill Topo Contour Interval: NA	2 3 4 5		P.O. Box 1080 Holden, WV 25625	
ENGINEERS & PO Box 470 Alum Creek, V Drawing Date: 03/24/16 Computer No.:	V 25003 (304) 756-4066 Drawn By: G. Caudill Topo Contour Interval:	2 3 4 5	ax Cr	P.O. Box 1080	System

LON/LAT UTM converter

clear markers] @ street map () image () topo

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Identification Number ¹		CR-01			
Type of Crusher or Screen ²		DR	1		
Date of	Manufacture ³	2011			
Maximum	tons/hour	400			
Throughput ⁴	tons/year	3,504,000			
Material	sized from/to:5	6 x 0			
Average Moi	sture Content (%) ⁶	3			<u> </u>
Control De	vice ID Number ⁷	PW			
	height (ft)	N/A			
	diameter (ft)				
	volume (ACFM)				
Baghouse Stack	exit temp (°F)				
Parameters ⁸	UTM Coordinates				
	hours/day	24			
Maximum Operating	days/year	365			
Operating Schedule ⁹	hours/year	8760			
	January-March	25			
	April-June	25			
Percentage of	July-September	25			
Operation ¹⁰	Oct-December	25			

Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation 1. which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

Describe types of crushers and screens using the following codes: 2.

- HM Hammermill
- DR **Double Roll Crusher**
- BM Ball Mill
- RB **Rotary Breaker**
- JC Jaw Crusher
- GC **Gyratory Crusher**
- OT Other - Quadroll

3. Enter the date that each crusher and screen was manufactured.

- Enter the maximum throughput for each crusher and screen in tons per hour and tons per year. 4.
- 5.
- Describe the nominal material size reduction (e.g. +2"/-_"). Enter the average percent moisture content of the material processed. 6.
- 7. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 8. Enter the appropriate stack parameters if a baghouse control device is used.
- 9. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.
- 10. Enter the estimated percentage of operation throughout the year for each crusher and screen.

- SS Stationary Screen
- SD Single Deck Screen
- DD Double-Deck Screen
- TD Triple Deck Screen
- Other OT

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Identification Number ¹		SS-01			
Type of Crusher or Screen ²		DD			1
Date of	Manufacture ³	2011			
Maximum	tons/hour	400			
Throughput ⁴	tons/year	3,504,000			
Material	sized from/to:5	6 x 0			
Average Moi	sture Content (%) ⁶	3			
Control De	vice ID Number ⁷	PW			
	height (ft)	N/A			
	diameter (ft)				
	volume (ACFM)				
Baghouse Stack	exit temp (°F)				
Parameters ⁸	UTM Coordinates				
	hours/day	24			
Maximum Operating	days/year	365			
Operating Schedule ⁹	hours/year	8760			
	January-March	25			
	April-June	25			
Percentage of	July-September	25			
Operation ¹⁰	Oct-December	25			

Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation 1. which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.

Describe types of crushers and screens using the following codes: 2.

- HM Hammermill
- DR **Double Roll Crusher**
- Ball Mill BM

3.

- **Rotary Breaker** RB
- JC Jaw Crusher
- GC Gyratory Crusher
- Other Quadroll OT

Enter the date that each crusher and screen was manufactured.

- Enter the maximum throughput for each crusher and screen in tons per hour and tons per year. 4.
- 5.
- Describe the nominal material size reduction (e.g. +2"/-"). Enter the average percent moisture content of the material processed. 6.
- 7. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 8. Enter the appropriate stack parameters if a baghouse control device is used.
- 9. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.
- 10. Enter the estimated percentage of operation throughout the year for each crusher and screen.

- SS Stationary Screen
- SD Single Deck Screen
- DD Double-Deck Screen TD
 - **Triple Deck Screen**
- OT Other

CONVEYING AFFECTED SOURCE SHEET

Source	Type of Date of Material		Size of	Maximum Material Transfer Rate⁵		Average Moisture	_	
ldentification Number ¹	Manufacture ²	Handled ³	Material Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Control Device ⁷	
BC-01	2011	Rock	6x0	400	3,504,000	3	None	
BC-02	2011	Rock	-2x0	400	3,504,000	3	None	
BC-03	2011	Rock	2x0	400	3,504,000	3	None	
BC-04	2011	Rock	+3	400	3,504,000	3	None	
BC05	2011	Rock	+3	400	3,504,000	3	None	
BC-06	2011	Rock	-2x0	400	3,504,000	3	None	
BC-07	2011	Rock	2x0	400	3,504,000	3	None	
BC-08	2011	Rock	3x0	400	3,504,000	3	None	
					-			
				· · · · · · · · · · · · · · · · · · ·				
						-		

Page ____ of ____

STORAGE ACTIVITY AFFECTED SOURCE SHEET

			1	
Source Identification Number ¹	BS-01	BS-02		
Type of Material Stored ²	Rock	Rock		
Average Moisture Content (%) ³	3	3		
Maximum Yearly Storage Throughput (tons) ⁴	3,504,000	3,504,000		
Maximum Storage Capacity (tons) ⁵	10	10		
Maximum Base Area (ft ²) ⁶				
Maximum Pile Height (ft) ⁷				
Method of Material Load-in ⁸	Endioader	Endloader		
Load-in Control Device Identification Number ⁹	UD-PW	UD-PW		
Storage Control Device Identification Number ⁹	PW	PW		
Method of Material Load-out ⁸	SS	SS		
Load-out Control Device Identification Number ⁹	TC-PE	TC-PE		

Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three 1. storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

- Bin or Storage Silo (full enclosure) BS
- os Open Stockpile
- SF Stockpiles with wind fences

- E3 Enclosure (three sided enclosure)
- SB Storage Building (full enclosure)
- Other OT

2. Describe the type of material stored or stockpiled (e.g. clean coal, raw coal, refuse, etc).

- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell
 - FC **Fixed Height Chute from Bins**
 - FE Front Endloader
 - MC Mobile Conveyor/Stacker
 - Under-pile or Under-Bin Reclaim Conveyor UC
 - RC Rake or Bucket Reclaim Conveyor

- Stationary Conveyor/Stacker SS
 - ST Stacking Tube
 - Telescoping Chute from Bins TC
 - TD Truck Dump
 - PC Pneumatic Conveyor/Stacker
 - OT Other

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	OS-1	OS-2	OS-3	OS-4	OS-5
Type of Material Stored ²	Rock	Rock	Rock	Rock	Rock
Average Moisture Content (%) ³	3	3	3	3	3
Maximum Yearly Storage Throughput (tons) ⁴	3,504,000	3,504,000	3,504,000	3,504,000	3,504,000
Maximum Storage Capacity (tons) ⁵	5,000	5,000	5,000	5,000	5,000
Maximum Base Area (ft ²) ⁶	8,869	8,869	8,869	8,869	8,869
Maximum Pile Height (ft) ⁷	25'	25'	25'	25'	25'
Method of Material Load-in ⁸	SS	SS	SS	SS	SS
Load-in Control Device Identification Number ⁹	TC-MDH	TC-MDH	TC-MDH	TC-MDH	TC-MDH
Storage Control Device Identification Number ⁹	sw-ws	SW-WS	SW-WS	SW-WS	sw-ws
Method of Material Load-out ⁸	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	LO-MDH	LO-MDH	LO-MDH	LO-MDH	LO-MDH

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

Bin or Storage Silo (full enclosure) BS

OS Open Stockpile

Stockpiles with wind fences SF

E3 Enclosure (three sided enclosure)

SB Storage Building (full enclosure) OT Other

Describe the type of material stored or stockpiled (e.g. clean coal, raw coal, refuse, etc). 2.

3. Enter the average percent moisture content of the stored material.

4. Enter the maximum yearly storage throughput for each storage activity.

Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.) 5.

6. For stockpiles, enter the maximum stockpile base area.

7. For stockpiles, enter the maximum stockpile height.

Enter the method of load-in or load-out to/from stockpiles or bins using the following codes: 8.

- Clamshell CS
- FC Fixed Height Chute from Bins FE Front Endloader
- MC Mobile Conveyor/Stacker
- Under-pile or Under-Bin Reclaim Conveyor UC
- RC Rake or Bucket Reclaim Conveyor
- Stationary Conveyor/Stacker SS ST
 - Stacking Tube
 - Telescoping Chute from Bins TC TD
 - Truck Dump
 - PC Pneumatic Conveyor/Stacker
- OT Other

ATTACHMENT H

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET Not applicable for this facility

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

- 1. Baghouse Control Device Identification Number:
- 2. Manufacturer's name and model identification:
- 3. Number of compartments in baghouse:
- 4. Number of compartments online during normal operation and conditions:
- 5. Gas flow rate into baghouse: _____ ACFM @ _____ °F and _____ PSIA
- 6. Total cloth area: _____ ft²
- 7. Operating air to cloth ratio: _____ ft/min

Filter media type:

- 9. Stabilized static pressure drop across baghouse: ______ inches H₂O
- 10. Baghouse operation is:

8.

- Continuous
 Automatic
 Intermittent
- Method used to clean bags:
 - □ Shaker □ Pulse jet □ Reverse jet □ Other
- 12. Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:

Entering baghouse: _____ lb/hr and _____ grains/ACF

Exiting baghouse: _____ lb/hr and _____ grains/ACF

- 13. Guaranteed minimum baghouse collection efficiency: _____ %
- 14. Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:

15. Describe the method of disposal for the collected material:

	on for each emission source and ed in the permit application.		Name of a Name of pl		Premium Rock Cr Apr-16	Energy usher	Page 1
	OSCREENING (including all primary an	d secondary cri	ishers and s	creens)			
Primary Crusher ID Number	Description		m Material ng Capacity TPY	Control Device ID Number	Control Efficiency %		
CR-01	CRUSHER	400	3,504,000	FE	80		
1b. SECO	NDARY AND TERTIARY CRUSHING	Mavimi	m Material	Control	Control		
& Tertiary Crusher ID	Description		ng Capacity	Device ID Number	Efficiency %		
	<u> </u>						
1c. SCREE Secondary & Tertiary	Description		n Material Ig Capacity	Control Device	Control Efficiency		
Crusher ID		ТРН	TPY	ID Number	%		
SS-01	Power Screen	400	3,504,000	PW	80		

2.	TRANSFER POINTS (including all conveyor transfer points	, equipment transfer points etc.)	
			-

Page 2

k =	Particle Size Multiplier (dimensionless)	· · · · · · ·	PM 0.0029	PM-10	1
U =	Mean Wind Speed (mph)	,		7		LI
	The second secon			_ <u></u>	1	
Transfer	Transfer Point Description	Material	1	Maximum	Control	Control
Point	Include ID Numbers of all conveyors,	Moisture		ansfer Rate	Device	
ID No.	crushers, screens, stockpiles, etc. involved		ТРН		-	Efficiency
10 110.	citaliers, acieens, stockpiles, etc. involved	Content %	IPH	TPY	ID Number	%
FP-01	Overburden Area to BS-01	3	400	3,504,000	UD-MDH	0
TP-02	BS-01 to BC-01	3	400	3,504,000	TC-PE	50
TP-03	BC-01 to SS-01	3	400	3,504,000	TC-PW	80
TP-04	SS-01 to BC-02	3	400	3,504,000	TC-FE	80
TP-05	BC-02 to OS-01	3	400	3,504,000	TC-MDH	0
TP-06	OS-01 to Truck	3	400	3,504,000	LO-MDH	0
TP-07	SS-01 to BC-03	3	400	3,504,000		-
TP-08	BC-03 to OS-02	3			TC-FE	80
TP-09	OS-02 to Truck		400	3,504,000	TC-MDH	0
TP-10	SS-01 to BC-04	3	400	3,504,000	LO-MDH	0
TP-10		3	400	3,504,000	TC-FE	80
	BC-04 to BS-02	3	400	3,504,000	TC-PW	80
TP-12	BS-02 to BC-05	3	400	3,504,000	TC-PE	50
TP-13	BC-05 to CR-01	3	400	3,504,000	TC-FE	80
FP-14	CR-01 to BC-06	3	400	3,504,000	TC-FE	80
	BC-06 to OS-03	3	400	3,504,000	TC-MDH	0
ГР-16	OS-03 to Truck	3	400	3,504,000	LO-MDH	0
	CR-01 to BC-07	3	400	3,504,000	TC-FE	80
	BC-07 to OS-04	3	400	3,504,000	TC-MDH	0
	OS-04 to Truck	3	400	3,504,000	LO-MDH	0
TP-20	CR-01 to BC-08	Э	400	3,504,000	TC-FE	80
TP-21	BC-08 to OS-05	3	400	3,504,000	TC-MDH	0
"P-22	OS-05 to Truck	3	400	3,504,000	LO-MDH	0
						_
					├ ──	
					┞──┤	
					┝───┦	[
					└	
					├──-╂	
					\vdash	
						[
		1	1			

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

p =	number of days per year with precipitation >0.01 inch	157
f =	percentage of time that the unobstructed wind speed	20
	exceeds 12 mph at the mean pile height	·

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-01	1" stone	10	8,869	SW-WS	75
OS-02	2" Stone	10	8,869	SW-WS	75
OS-03	1" stone	10	8,869	SW-WS	75
OS-04	2" Stone	10	8,869	SW-WS	75
_OS-05	3" stone	10	8,869	SW-WS	75

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)	10
p =	number of days per year with precipitation >0.01 inch	157
M _{diy} =	surface material moisture content (%) - dry conditions	0.2

Item Number	Description	Number of wheels	Mean Vehicle Weight(tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips Per Hour	Trips Per	Control Device ID Number	Control Efficiency %
1									
2	Rock Out 3,504,000	10	25	15	1	16	140,160	HR-WS	75
3	Endloader 3,504,000	4	20	5	0.01	20	175,200	HR-WS	75
4				_					
5									
6									
7									
8									

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL=	road surface silt loading, (g/m^2)	70	1
P=	number of days per year with precipitation >0.01 inch	157	1

Item	Description	Mean Vehicle	Miles per	Maximum Trips Per	Maximum Trips Per	Control Device	Control Efficiency
Number	Description	Weight (tons)	Trip	Hour	Year	ID Number	-
1						[· · · ·]	
2							
3							
4							
5							
6							
7							
8							

Page 3

EMISSIONS	SUMMARY
-----------	---------

Name of applicant: Name of plant: Premium Energy Rock Crusher

	Uncontr	olled PM	Contro	lled PM
	lb/hr	TPY	lb/hr	TPY
	FUGITIVI	E EMISSIONS		
Stockpile Emissions	0.57	2.48	0.14	0.62
Unpaved Haulroad Emissions	230.03	1,007.53	57.51	251.88
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	230.60	1,010.01	57.65	252.50
	POINT SOL	JRCE EMISSIONS	<u> </u>	
Equipment Emissions	12.88	56.41	2.58	11.28
Transfer Point Emissions	0.07	0.31	0.04	0.20
Point Source Emissions Total*	12.05	50.70	0.00	
	12.95	56.73	2.62	11.48
ote: Point Source Total Controlled PM TPY em	Issions is used for 4505R14	Major Source determination (a		· · · · · · · · · · · · · · · · · · ·
Facility Emissions Total	243.55	1,066.74	60.27	263.98
Facility Potential to Emit (I	, ,	ine Emissions)	= ENTER ON LINE 26 OF	11 APPLICATION
Facility Potential to Emit (I	emissions from above) or PM-10 (for 45CSI	R30 Major Source Det	ENTER ON LINE 26 OF ermination)	APPLICATION
Facility Potential to Emit (I	emissions from above) or PM-10 (for 45CSI	R30 Major Source Det	ENTER ON LINE 26 OF	APPLICATION
Facility Potential to Emit (I	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr	R30 Major Source Det	ENTER ON LINE 26 OF ermination)	APPLICATION
Facility Potential to Emit (I Based on Point Source Total controlled PM TPY articulate Matter under 10 microns,	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17	ENTER ON LINE 26 OF ermination)	APPLICATION
Facility Potential to Emit (I Based on Point Source Total controlled PM TPY articulate Matter under 10 microns,	emissions from above) or PM-10 (for 45CSI Uncontro Ib/hr FUGITIVE	R30 Major Source Det lled PM-10 TPY	ENTER ON LINE 26 OF ermination) Controll Ib/hr	APPLICATION
Facility Potential to Emit (I Based on Point Source Total controlled PM TPY articulate Matter under 10 microns,	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17	ENTER ON LINE 26 OF ermination) Controll Ib/hr	APPLICATION ed PM-10 TPY 0.29
Facility Potential to Emit (I lated on Point Source Total controlled PM TPY articulate Matter under 10 microns,	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27 48.39	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17 211.96	ENTER ON LINE 26 OF ermination) Controll Ib/hr 0.07 12.10	APPLICATION ed PM-10 TPY 0.29 52.99
Facility Potential to Emit (I laied on Point Source Total controlled PM TPY articulate Matter under 10 microns, <i>Stockpile Emissions</i> <i>Unpaved Haulroad Emissions</i> Paved Haulroad Emissions	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27 48.39 0.00 48.66	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17 211.96 0.00	ENTER ON LINE 26 OF ermination) Controll Ib/hr 0.07 12.10 0.00	APPLICATION ed PM-10 TPY 0.29 52.99 0.00
Facility Potential to Emit (I laied on Point Source Total controlled PM TPY articulate Matter under 10 microns, <i>Stockpile Emissions</i> <i>Unpaved Haulroad Emissions</i> Paved Haulroad Emissions	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27 48.39 0.00 48.66	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17 211.96 0.00 213.13	ENTER ON LINE 26 OF ermination) Controll Ib/hr 0.07 12.10 0.00	APPLICATION ed PM-10 TPY 0.29 52.99 0.00
Facility Potential to Emit (I Based on Point Source Total controlled PM TPY articulate Matter under 10 microns, <i>Stockpile Emissions</i> <i>Unpaved Haulroad Emissions</i> Paved Haulroad Emissions ugitive Emissions Total	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27 48.39 0.00 48.66 POINT SOU	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17 211.96 0.00 213.13 RCE EMISSIONS	ENTER ON LINE 26 OF ermination) Controll Ib/hr 0.07 12.10 0.00	APPLICATION ed PM-10 TPY 0.29 52.99 0.00 53.28
Facility Potential to Emit (I Pased on Point Source Total controlled PM TPY articulate Matter under 10 microns, <i>Stockpile Emissions</i> <i>Inpaved Haulroad Emissions</i> Paved Haulroad Emissions Faved Haulroad Emissions Faved Haulroad Emissions Fault Emissions Total	emissions from above) or PM-10 (for 45CSI Uncontrol Ib/hr FUGITIVE 0.27 48.39 0.00 48.66 POINT SOU 6.13	R30 Major Source Det lled PM-10 TPY EMISSIONS 1.17 211.96 0.00 213.13 RCE EMISSIONS 26.86	ENTER ON LINE 26 OF ermination) Controll Ib/hr 0.07 12.10 0.00 12.16 1.23	APPLICATION ed PM-10 TPY 0.29 52.99 0.00 53.28

1. Emissions From CRUSHING AND SCREENING

Page 1

Primary		P	М			PŇ	-10	
Crusher	Uncor	trolled	Cont	rolled	Uncor	trolled	Cont	rolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
·								
CR-01	0.28	1.23	0.06	0.25	0.13	0.58	0.03	0.12
0	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
0	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.28	1.23	0.06	0.25	0.13	0.58	0.03	0.12

1b. Secondary and Tertiary Crushing

Secondary		P	M			PM-10				
& Tertiary	Uncor	ntrolled	Cont	rolled	Uncor	ntrolled	Cont	rolled		
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00		
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
TOTAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

1c. Screening

		F	PM			PN	1-10	
Screen	Unco	ntrolled	Con	rolled	Unco	ntrolled	Cont	trolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TP
SS-01	12.60	55.19	2.52	11.04	6.00	26.28	1.20	5.2
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
TOTAL	12.60	55.19	2.52	11.04	6.00	26.28	1.20	5.20
Crushing	1	P	M			PM	-10	
and	Uncor	ntrolled	Cont	rolled	Uncor	trolled	Cont	rolled
Screening	lb/hr	TPY	ib/hr	TPY	lb/hr	TPY	lb/hr	TP۱
	T							
TOTAL	12.88	56.41	2.58	11.28	6.13	26.86	1.23	5,37

Œ

_

EMISSION FACTORS

source: AP42, Fifth Edition, Revised 01/95 (lb/ton of material throughput)

PM	
Primary Crushing	0.0007
Tertiary Crushing	0.00504
Screening	0.0315

PM-10	
Primary Crushing	0.000333
Tertiary Crushing	0.0024
Screening	0.015

Transfer			PM		PM-10				
Point	Unc	ontrolled	Cor	ntrolled	Unco	ontrolled	Con	trolled	
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	íb/hr	TPY	
TP-01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
TP-02	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
TP-03	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-04	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-05	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
TP-06	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
TP-07	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-08	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
TP-09	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
TP-10	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-11	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-12	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
TP-13	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-14	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
TP-15	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
TP-16	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
ГР-17	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
FP-18	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
FP-19	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
ГР-20	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	
P-21	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
P-22	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	. 0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ő	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

2. Emissions From TRANSFER POINTS

2. Emissions From TRANSFER POINTS (continued)

Transfer		P	M		PM-10				
Point	Uncor	ntrolled	Cont	rolled	Uncon	itrolled	Cont	rolled	
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	0.07	0.31	0.04	0.20	0.03	0.15	0.02	0.10	

Source:

AP-42 Fifth Edition

13.2.4 Aggregate Handling and Storage Piles

Emissions From Batch Drop

 $E = k^{(0.0032)} [(U/5)^{1.3}]/[(M/2)^{1.4}] = pounds/ton$

Where:		PM	PM-10
k =	Particle Size Multiplier (dimensionless)	0.0029	0.0014
U =	Mean Wind Speed (mph)		
M =	Material Moisture Content (%)		

Assumptions:

k - Particle size multiplier For PM (< or equal to 30um) k = 0.0029 For PM-10 (< or equal to 10 μ m) k = 0.0014

For	PM	E(M) =	1.437E-05	*[1/((M/2)^1.4)] = pounds/ton

For PM-10

E(M) = 6.938E-06 *[1/((M/2)^1.4)] = pounds/ton

[lb/ton]*[ton/hr] = [lb/hr] For ib/hr

For Tons/year $[lb/ton]^{ton/yr}[ton/2000lb] = [ton/yr]$

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile		Р	M			PM	-10		
ID No.	ID No. Uncontrolled		Cont	rolled	Unco	ntrolled	d Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
				-					
OS-01	0.11	0.50	0.03	0.12	0.05	0.23	0.01	0.06	
OS-02	0.11	0.50	0.03	0.12	0.05	0.23	0.01	0.06	
OS-03	0.11	0.50	0.03	0.12	0.05	0.23	0.01	0.06	
OS-04	0.11	0.50	0.03	0.12	0.05	0.23	0.01	0.06	
OS-05	0.11	0.50	0.03	0.12	0.05	0.23	0.01	0.06	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	0.57	2.48	0.14	0.62	0.27	1.17	0.07	0.29	

Source: Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

For PM E(s)= 1.3374941 * s = lb/day/acre For PM-10 E(s)= 0.6286222 * s = lb/day/acre	s = p = f =	number of percentage	e of time that	.01 inch of precipitation per year the unobstructed wind speed mean pile height			
		n		•			
For lb/hr[lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hrFor Ton/yr[lb/day/acre]*[365day/yr]*[Ton/2000lb]*[base area of pile (acres)] = Ton/yr	For Ib/hr [Ib/day/acre		[lb/day/acre]	e]*[day/24hr]*[base area of pile (acres)] = Ib/hr			

4. Emissions From UNPAVED HAULROADS

Item		F	PM			PM	-10	
No.	Uncol	trolled	Cont	rolled	Unco	ntrolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	227.49	996.39	56.87	249.10	47.85	209.57	0.00	0.00
3	2.54	11.14	0.64	2.78	0.55	2.40	0.14	0.60
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				I				
OTALS	230.03	1007.53	57.51	251.88	48.39	211.96	12.10	52.99

Source: AP-42 9/98 Edition 13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

 $E = [(k^{*}(s/12)^{a} * (W/3)^{b}) / ((M_{dny}/0.2)^{c})] * [(365-p)/365)] = lb / Vehicle Mile Traveled (VMT)$

Where:

		PM	PM-10
k =	particle size multiplier	10.00	2.60
<u>a</u> =	empirical constant	0.8	0.8
b =	empirical constant	0.5	0.4
c =	empirical constant	0.4	0.3
M _{dry} =	surface material moisture content (%) - dry conditions	0.2	
p =	number of days with at least 0.01 inches of precipitation	157	
s =	silt content of road surface material (%)	10	1
W =	Mean vehicle weight (tons)		2

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item	PM				PM-10			
No.	Uncon	trolled	Cont	rolled	Uncon	Uncontrolled		trolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source: AP-42 10/01 Edition 13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

E = k * [sL/2]^0.65 * [W/3]^1.5 * [1 - (P / (2*N)] = lb / Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	particle size multiplier	0.082	0.016
sL =	road surface silt loading, (g/m^2)	70	
P=	number of days per year with precipitation >0.01 inch	157	
N =	number of days in averaging period	365	
W =	average vehicle weight, (ton)		2

PREMIUM ENERGY, LLC Rock Crusher - Scania DC09 Engine

Lee Martin, Reviewer ID: 777-00138

TERIA POLLUTANTS

AP-42 5th Edition Section 3.3 Gasoline and Diesel Industrial Engines (10/96) - Table 3.3-1 for Diesel Fuel

	202	kW	
Diesel Fuel Engine	275	hp	
Max. Hours of Operation (8 hrs/day, 5 days/week, 26 weeks/year)	1040	hrs/year	
Heating Value for diesel	128700	Btu/gal	

E (hourly) = Emission Factor (lb/hp-hr) * Horse Power (hp) E (annual) = Emission Factor (lb/hp-hr) * Horse Power (hp) * Maximum Hours of Operation * 1 ton per 2000 lb

Pollutant		Emission Factor (lb/hp-hr)	Emission Factor (Ib/MMBtu)	Rating	lb/hour	ТРҮ
NOx	AP42	0.03100	4.41	D	8.5250	4.433
CO	AP42	0.00668	0.95	D	1.8370	0.955
SOx	AP42	0.00205	0.29	D	0.5638	0.293
PM/PM10	AP42	0.00220	0.31	D	0.6050	0.315
тос	AP42	0.00247	0.35	D	0.6793	0.353

HAZARDOUS AIR POLLUTANTS

42 5th Edition Section 3.3 Gasoline and Diesel Industrial Engines (10/96) - Table 3.3-2 45CSR30 Table 45-30A Hazardous Air Pollutants

Diesel Fuel Engine 275 hp		
aximum Hours of Operation (8 hrs/day, 5 days/week, 26 weeks/y		hours/year
cation, based on EPA WebFIRE/AP-42 3.4-1 assumptions on di	esei 19000	Btu/lb
	7.1	lb/gal
Heating Value for die	esel 134900	BTU/US gal
Maximum diesel usage at 1800	rpm 13.9	gal/hour

E (hourly) = Emission Factor (lb/hp-hr) * Horse Power (hp) E (annual) = Emission Factor (lb/hp-hr) * Horse Power (hp) * Maximum Hours of Operation * 1 ton per 2000 lb

		Emission			
		Factor			
CAS NO	•	(lb/MMBtu)	Rating	lb/hour	TPY
71-43-2	Benzene	0.000933	Е	0.00175	0.00091
108-88-3	Toluene	0.000409	E	0.00077	0.000399
	Xylenes	0.000285	E	0.00053	0.000278
	1,3-Butadiene	0.0000391	E	7.3E-05	3.81E-05
50-00-0	Formaldehyde	0.00118	E	0.00221	0.001151
()	Acetaldehyde	0.000767	E	0.00144	0.000748
	Acrolein	0.0000925	E	0.00017	9.02E-05
91-20-3	Naphthalene	0.0000848	E	0.00016	8.27E-05
	Burning diesel fuel:		Total HAPs	0.00711	0.003696

lb/hour TPY

		GINE DA	ATA SHE			 	
Source Ide	entification Number ¹		E-1				
Engine Ma	S	cania					
Manufactu	1	800				_	
So	ource Status ²		NS				
	ed/Modified/Removed Ionth/Year) ³	Apr	il 2011				
Engine Manufact	ured/Reconstruction Date ⁴	Apr	il 2011				
Engine according (Yes or No) ⁵	Stationary Spark Ignition to 40CFR60 Subpart IIII? Stationary Spark Ignition		Yes				
Engine according (Yes or No) ⁶	to 40CFR60 Subpart JJJJ?		No				
	Engine Type	4 5	Stroke				
	APCD Type ⁸	s	SCR				
Engine, Fuel and	Fuel Type ⁹	Diesel					
	H ₂ S (gr/100 scf)	N/A					
Combustion Data	Operating bhp/rpm	N/A					
Duit	BSFC (Btu/bhp-hr)	N/A					
	Fuel throughput (ft ³ /hr)	13.9 GPH					
	Fuel throughput (MMft ³ /yr)	14,456 GPY		<u> </u>		 	
	Operation (hrs/yr)	1040					
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr				
	NO _X	8.5250	4.433				
	СО	1.8370	0.955				
	VOC	0.6793	0.353				
	SO ₂	0.5638	0.293		_		
	PM ₁₀	0.6050	0.315			 	
	Formaldehyde	0.00221	0.001151			 	
				L		 	

ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

- NS Construction of New Source (installation)
- ES Existing Source

- MS Modification of Existing Source RS
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained in accordance with the manufacturer's emission-related testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Removal of Source

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 7. Enter the Engine Type designation(s) using the following codes:
 - LB2SLean Burn Two StrokeRB4SRich Burn Four StrokeLB4SLean Burn Four Stroke
- 8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F HEIS PSC NSCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction	LEC	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Lean Burn & Selective Catalytic Reduction
9.	Enter the I PQ 2FO	Fuel Type using the following codes: Pipeline Quality Natural Gas #2 Fuel Oil	RG LPG	Raw Natural Gas Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this

Compressor/Generator Dat	a Sheet(s).
--------------------------	-------------

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc [™]	OT	Other	(please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Source ID # ¹	Status ²	Content ³	Volume⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸	
T1	Exist Diesel		1,000	4	8,000	HORZ		
			<u></u>					
				┼╌──┼				

STORAGE TANK DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the facility. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

EXIST Existing Equipment REM Equipment Removed

NEW Installation of New Equipment

HORZ Horizontal Tank

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.

4. Enter storage tank volume in gallons.

5. Enter storage tank diameter in feet.

6. Enter storage tank throughput in gallons per year.

7. Enter storage tank orientation using the following:

VERT Vertical Tank

8. Enter storage tank average liquid height in feet.

						Γ	Τ	Τ						
		Registration Number (Agenty Une) Pending Potential Emissions (tons/yr)	PM ₁₀	0.315							0.315			
	vw Pending		SO ₂	0.293							0.293			
<u>rants</u>	1 Number (Agenc		VOC	0.353							0.353			
EMISSION SUMMARY SHEET FOR CRITERIA POLLUTANTS	Registration	Potenti	co	0.955							0.955			
RITERI			NOX	4.433							4.433			
T FOR C			PM_{10}	0.6050							0.6050			
RY SHE		Potential Emissions (lbs/hr)	s (lbs/hr)	s (lbs/hr)	SO ₂	0.5638							0.5638	
SUMMA			VOC	0.6793							0.6793			
NOISSII			Potentis	Potenti	Potenti	Potent	co	1.8370						
EN	()		NOx	8.5250							8.5250			
			Source ID No.	Scania DC09							Total Uncontrolled			

4 of 5

G1~ T C reparation and Processing Plants and Coal Handling Operations

	1		 T	 -	—	T-	T
Formalde- hyde	0.001151						0.001151
Xylenes	0.000278						0.000278
Toluene	0.000399						0.000399
Acetaldehyd c	0.000748						0.000748
Benzene	0.0001						16000.0
Formalde- hyde	0.00221						0.00221
Xylenes	0.00053						0.00053
Toluene	0.00077						0.00077
Acetaldeh ydc	0.00144						0.00144
Benzene	0.00175						0.00175
Source ID No.	Scania DC09						Total

HAP TOTALS: 0.00711 lb/hour 0.003696 TPY

Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Premium Energy, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit Relocation for a rock crushing/screening facility to be located on the Pax Branch Surface Mine, located near Pax, Raleigh County, WV. The facility coordinates are as follows: latitude 37.889167 and longitude -81.295556.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be 11 tons of particulate matter baseline emissions per year, 5 tons of point source emissions particulate matter less than 10 microns total per year, and 264 tons of the controlled facility emission total per year. The potential to emit criteria pollutants for the engine is estimated to be: NOX 4.433 tons per year, CO 0.955 ton per year, VOC 0.353 tons per year, SOX 0.293 tons per year and PM10 0.315 tons per year. The potential to emit hazardous pollutants from the engine is estimated to be: Benzene 0.00091 tons per year, Toluene 0.000399 tons per year, Xylene 0.000278 tons per year, Acetaldehyde 0.000748 tons per year, and Formaldehyde 0.001151 tons per year.

Startup of operation is planned to begin upon permit approval. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 29th day of March 2016

By: Premium Energy, LLC Michael G. Smith Authorized Agent PO Box 1098 Holden, WV 25625 ATTACHMENT K

ELECTRONIC SUBMITTAL

LOCATED IN ORIGINAL COPY OF REGISTRATION APPLICATION

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

FOR A CORPORATION (domestic or foreign)

G I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation

FOR A PARTNERSHIP

G I certify that I am a General Partner

FOR A LIMITED LIABILITY COMPANY

I certify that I am a General Partner or General Manager

FOR AN ASSOCIATION

G I certify that I am the President or a member of the Board of Directors

FOR A JOINT VENTURE

G I certify that I am the President, General Partner or General Manager

FOR A SOLE PROPRIETORSHIP

G I certify that I am the Owner and Proprietor

is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Chief of the Office of Air Quality immediately, and/or,

I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible

Signature (please use blue lnk) Responsible Official	Date
Name & Title MICHAEL G. SMITH, AUTHORIZED REPRESENTATIV	<u>E</u>
Signature Authorized Representative (if applicable)	3/25/16 Date
Applicant's Name: PREMIUM ENERGY, LLC	
Phone 304-239-2300	
Email: msmith@alphanr.com	

G

PREMIUM ENERGY, LLC

TO

MICHAEL G. SMITH

APPOINTMENT OF AUTHORIZED AGENT

KNOW ALL MEN BY THESE PRESENTS, that Premium Energy, LLC, a limited liability company duly organized and existing under the laws of the State of Delaware ("Company"), has made, constituted and appointed, and by these presents hereby makes, constitutes and appoints Michael G. Smith ("Appointee") of the Town of Turkey Creek, Pike County, in the Commonwealth of Kentucky, to be its true and lawful Authorized Agent, who may act for it and in its name, and as and for its act and deed, (i) to sign. acknowledge for record, execute and deliver, in the ordinary and regular course of the Company's business, applications, revisions, amendments, reports, information and data certifications, performance bonds (including, but not limited to, reclamation bonds), notices, stipulations and other documents and instruments with respect to the acquisition, maintenance and administration of coal mining permits, licenses, authorizations and certifications, environmental permits, licenses, authorizations and certifications, and other permits, licenses, authorizations and certifications, issued or to be issued by state and federal regulatory agencies, including, but not limited to, the United States Army Corps of Engineers, the United States Environmental Protection Agency, the Mine Safety and Health Administration of the United States Department of Labor, the Office of Surface Mining Reclamation and Enforcement of the United States Department of the Interior, the West Virginia Department of Environmental Protection, and the West Virginia Office of Miners' Health, Safety and Training; and (ii) to do and perform any and all other proper acts and

things necessary to carry out the purposes relative thereto, including to sign, execute and deliver other similar instruments relating to or required in connection with the Company's lands, operations and permits, including reporting requirements regarding greenhouse gas (GHG) emissions associated with facilities and mines. This authority shall become effective on the 1st day of October, 2013 (the "*Effective Date*"), and shall expire on the 30th day of September, 2016, unless sooner revoked and shall automatically terminate if Appointee at any time during the term hereof becomes no longer employed by the Company or one of its affiliates. As of the Effective Date, any prior authorized agent or power of attorney appointment by Company to Appointee hereupon shall be null, void and of no further force and effect with respect to actions taken on or after the Effective Date, but authorized agent or power of attorney appointment shall not be affected.

IN TESTIMONY WHEREOF, Premium Energy, LLC, has caused these presents to be signed and acknowledged by its respective officer thereunto duly authorized, all as of the 1st day of October, 2013.

PREMIUM ENERGY, LLC

Vaughn R. Groyes, Vice President & Secretary

STATE OF VIRGINIA

CITY OF BRISTOL, to-wit:

I, <u>LisA D.Cook</u>, a Notary Public in and for the State and City aforesaid, do hereby certify that Vaughn R. Groves, Vice President and Secretary of **PREMIUM ENERGY, LLC**, whose name as such is signed to the foregoing writing bearing date the 1st day of October, 2013, has this day, before me, in my said City, acknowledged the said writing.

> Given under my hand and notatial seal this the <u>31st</u> day of <u>October</u>, 2013. My commission expires <u>May 31</u>, <u>2011</u>.

LISA D. COOK Notary Public Commonwealth of Virginia 347819 My Commission Expires May 31, 2016

Gui Cook NOTARY PUBLIC

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

PLEASE CHECK ALL ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:

Please See the appropriate reference document for an explanation of the attachments listed below.

ATTACHMENT A : CURRENT BUSINESS CERTIFICATE

ATTACHMENT B: PROCESS DESCRIPTION

ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS

ATTACHMENT D: PROCESS FLOW DIAGRAM

ATTACHMENT E: PLOT PLAN

ATTACHMENT F: AREA MAP

ATTACHMENT G: AFFECTED SOURCE SHEETS

ATTACHMENT H: BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET

ATTACHMENT I: EMISSIONS CALCULATIONS

ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT K: ELECTRONIC SUBMITTAL DISKETTE

CERTIFICATION OF INFORMATION

ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE

□ ATTACHMENT M: SITING CRITERIA WAIVER

PLEASE MAIL AN ORIGINAL AND TWO COPIES OF THE COMPLETE GENERAL PERMIT REGISTRATION APPLICATION WITH THE SIGNATURE(S) TO THE DAQ PERMITTING SECTION AT THE ADDRESS SHOWN ON THE FRONT PAGE. PLEASE DO NOT FAX PERMIT APPLICATIONS. FOR QUESTIONS REGARDING APPLICATIONS OR WEST VIRGINIA AIR POLLUTION RULES AND REGULATIONS PLEASE CALL (304) 926-0475.

California Environmental Protection Agency

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engine and emission control system produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)			
2012	CY9XL12.7CAA	12.7, 9.3	Diesel	8000			
	FEATURES & EMISSION		TYPICAL EQUIPMENT APPLICATION				
Selective C	c Direct Injection, Turbo Engine Control Module, Catalytic Reduction-Urea Catalyst	charger, Charge Air Smoke Puff Limiter, I, Ammonia Oxidation	Crane, Loader, Tractor, Dozer, Pump				

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for hydrocarbon (HC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED	EMISSION			E	OPACITY (%)					
POWER CLASS	STANDARD CATEGORY		NMHC	NOx	NMHC+NOx	CO	PM	ACCEL	LUG	PEAK
130 <u>≤</u> KW <u>≤</u> 560	Interim Tier 4/ ALT NOx	STD	0.19	2.0	N/A	3.5	0.02	N/A	N/A	N/A
		CERT	0.02	1.9		0.7	0.02			

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this

day of February 2012.

Annette Hebert, Chief Mobile Source Operations Division

ATTAGIMENTIOFI

Engine Model Summary Template

U-R-024-0013 1/1012012

Engine Family	1.Engine Code	2.Engine Model	3.BHP@RPM (SAE Gross)	4.Fuel Rate; mm/stroke @ peak HP (for diaset only)	5.Fuel Rate: (Ibs/hr) @ peak HP (for diasels only)	6.Torque @ RPM (SEA Gross)_	7.Fuel Rate: mm/stroke@peak torque	8.Fuel Rate: (lbs/hr)@peak torquer	9.Emission Control Device Per SAE J1930	
CY9XL12.7CAA	DC13 070A	1920593	394	162	135	1591	240		TC SCR-U.GA	Amoxica
CY9XL12.7CAA	DC13 070A	1920594	444	181	150.8	1663	246	126.9	SCR	alech
CY9XL12.7CAA	DC13 070A	1920595	493	204	170	1750	259	133.6	SCR	Lance Cr .
CY9XL12.7CAA	DC13 070A	1941160	543	224	185.8	1887	284	157.8	SCR	
CY9XL12.7CAA	DC09 070A	1948968	311	165.2	114.5	1235	232	147	SCR	
CY9XL12.7CAA	DC09 070A	1948969	326	171.6	118.9	1291	237.35	94.35	SCR	
CY9XL12.7CAA	DC09 070A	1920590	345	179.7	124.54	1328	247.28	98.3	SCR	1
CY9XL12.7CAA	DC09 070A	1948970	370	191.2	132.25	1381	257.92	102.53	SCR	
CY9XL12.7CAA	DC09 070A	1920591	394	201.9	140	1451	261.6	104	SCR	
CY9XL12.7CAA	DC09 080A	2096408	271	146,2	101.3	1145	217.3	86.1	SCR	
CY9XL12.7CAA	DC09 080A	2098411	271	151,7	101.3	1145	217.3	86.1	SCR	
CY9XL12.7CAA	DC09 080A	2096412	271	151,7	101.3	1145	217.30	86,1	SCR	
CY9XL12.7CAA	DC13 080A	2096417	354	161.2	115.7	1122	164.4	72,4	SCR	
CY9XL12.7CAA	DC13 080A	2096418	354	161.2	115.7	1122	164.4	72.4	SCR	
CY9XL12.7CAA	DC13 082A	2096419	345	138.0	115.0	1438	203.7	96.9	SCR	
CY9XL12.7CAA	DC13 082A	2096420	380	166.5	118.9	1288	182.2	101.2	SCR	
CY9XL12.7CAA	DC13 083A	2112298	394	162	135	1591	240	114.3	SCR	
CY9XL12.7CAA	DC13 083A	2112299	444	181	150.8	1663	246	126.9	SCR	
CY9XL12.7CAA	DC13 083A	2112300	493	204	170	1750	259	133.6	SCR	
CY9XL12.7CAA	DC13 083A	2112301	543	224	185.8	1687	284	157.8	SCR	
CY9XL12.7CAA	DC09 083A	2112293	311	165.2	114.5	1235	232	147	SCR	
CY9XL12.7CAA	DC09 083A	2112294	326	171.6	118.9	1291	237.35	94.35	SCR	
CY9XL12.7CAA	DC09 083A	2112295	345	179.7	124.54	1328	247.28	98.3	SCR	
CY9XL12.7CAA	DC09 083A	2112296	370	191.2	132,25	1381	257.92	102.53	SCR	
CY9XL12.7CAA	DC09 083A	2112297	394	201.9	140	1451	261.6	104	V SCR V	·

2

Joe R. Dotson

From: Sent: To: Cc: Subject: Samual Daniels Friday, September 11, 2015 7:45 AM Joe R. Dotson Ray Daugherty info for crusher

MAKE-POWERSCREEN MODEL XR400S YEAR 2011 MASS 44,700kg PIDXR40SJ0MB42649

ENGINE SCANIA ENGINE CV AB ENGINE FAMILY-BY9XL127CAA 9.3L DISPLACEMENT YEAR 04/2011 EMISSION CONTROL-SCR

Sam Daniels Purchasing Clerk Superior Surface Fax:276-739-8442 Phone:304-946-2334

Specification and Plant Information

Crusher Capacity

.

 In order to obtain the optimum output from the crusher, it's feed should be continuous and regulated. Additionally, all feed should be of a size that will readily enter the crusher chamber and, in order to avoid packing of the discharge opening and excessive wear of the plant jaws, under size material should be removed from the feed prior to entry to the crusher.

- The discharge rates given are based on crushing clean, dry limestone weighing approximately 1600kg/m³ (100lbs/ft³) loose and having a specific gravily of 2.6. Wet feed material reduces the crusher discharge rate.
- Closed jaw settings A* and B* are for re-cycling operations only. The crusher must not be operated at a discharge opening less than 75mm (3 inches) for quarry applications without prior consultation with Powerscreen®.
- The only exception to this being for crushing bricks and demolition materials. Operating the crusher below this setting may result in extensive damage.

Setting Range + Typical Output												
A*: (2in* · · · · · · · · · · · · · · 160 US tons/hour)												
B* : (2.5in* · · · · · · · · 180 US tons/hour)												
C: (3in · · · · · · · · · · · · · · · 210 US tons/hour)												
D: $(4in \cdot \cdot \cdot \cdot h \cdot h \cdot h \cdot h \cdot h \cdot 245$ US tons/hour)												
E: (5in · · · · · · · · · · · · · · · · 280 US tons/hour)												
Setting Range + Typical Output												
A* : 50mm* - · 3 · · · · · · · 140 tonnes/hour												
B* : 63mm* · · · · · · · · · · 160 tonnes/hour												
C: 75mm · · · · · · · · · 185 tonnes/hour												
D: 100mm · · · · · · · · · · · 220 tonnes/hour												
E: 125mm · · · · · · · · · · 250 tonnes/hour												
(2)(3)												
+												

NOTICES

A* - B* - C - D - E

....

37.6

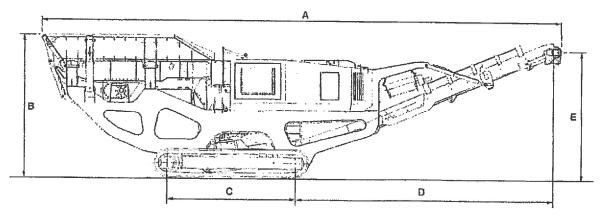
On the XR model, DO NOT feed non crushable material larger than 200mm (8 inches) into the Hydraulic Release Jaw Crusher as serious damage may result.

LIBA HAT

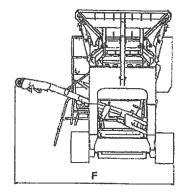
Specification and Plant Information

Dimensions

Working Dimensions


All dimensions are in millimetres.

Feed Hopper Raised

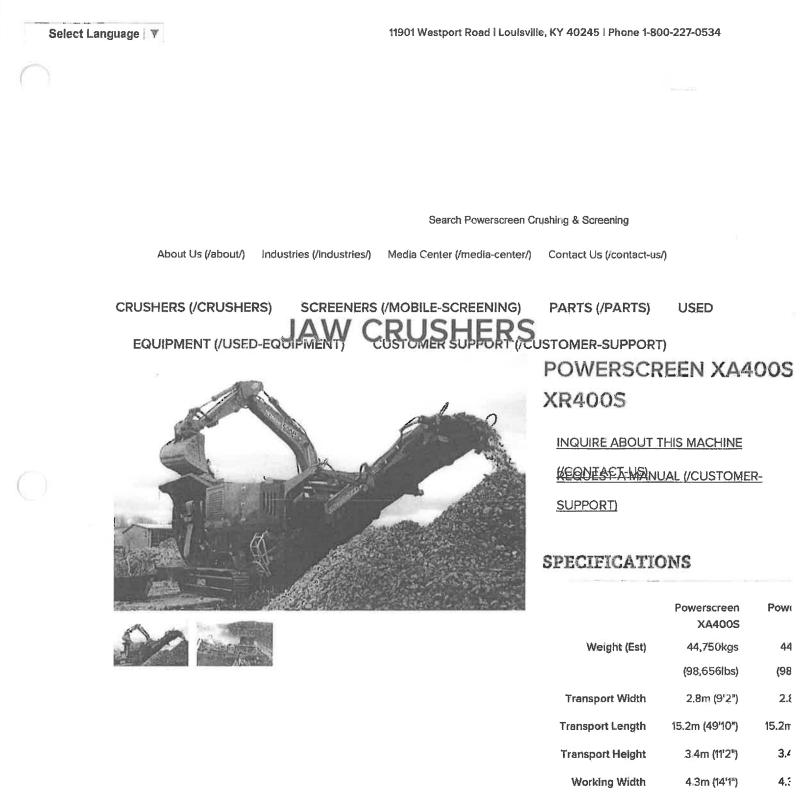

(Approximate dimensions in Feet - Inches)

1001 100 - ---- \$25 F

Product Conveyor Fully Raised

A 14935mm	A (49ft)
B 4133mm	B (13ft-7in)
C 3715mm	C (12ft-2in)
D 7430mm	D (24ft-5in)
E 3725mm	E (12ft-3in)
F 4420mm	F (14ft-6in)

Transport Dimensions


Overall Length - 15000mm with product conveyor lowered

Overall Width - 2800mm with dirt conveyor folded

- Overall Height [Excluding Transport Trailer] 3440mm with feed hopper, feed chute grid and product convevor all lowered.
- Transport Dimensions
- Overall Length (49ft-2in) with product conveyor lowered

Overall Width - (9ft-2in) with dirt conveyor folded

Overall Height [Excluding Transport Trailer] (11ft-4in) with feed hopper, feed chute grid and product conveyor all lowered.

INTRODUCTION

The Powerscreen® X400S range of high performance primary jaw crushing plants are designed for medium scale operators in quarrying, demolition, recycling and mining applications.

Working Length

Working Height

15

4.1

15m (49'3")

4.1m (13'5")

Powerscreen XA400S - XR400S - X400S Jaw Crushers | Powerscreen Crushing & Screening

The range includes the XA400S with hydraulic adjust and the XR400S with hydraulic release. User benefits incluc mobility for a quick set-up time (typically under 30 minutes), hydraulic crusher setting adjustment for total control c product size and crusher overload protection to prevent damage by uncrushable objects.

FEATURES & BENEFITS

- Output Potential: up to 400tph (441 US tph)
- Excellent reduction capability
- Hydraulic folding feed hopper with boltless fixing system
- Excellent under crusher access with a hydraulic tilting conveyor system
- · Economical to operate with a highly efficient direct drive system
- · Forceful crushing action with high swing Jaw
- Height adjustable product conveyor
- Extended hopper hydraulically folding

OPTIONS

- · Deflector plate under crusher
- Dirt conveyor
- Single pole/ twin pole magnet
- Radio remote control
- Belt weigher
- · Engine fire extinguisher system
- Electric refuelling pump
- Hydraulic water pump
- Underscreen wire mesh: 10, 20, 30, 40 or 50mm

<u>Click here (http://www.youtube.com/user/Powerscreens/videos)</u> to watch our machines action.

Crushers (/crushers/)

Jaw Crushers (/crushers/jawcrushers/) Powerscreen XA400S - XR400S - X400S Jaw Crushers | Powerscreen Crushing & Screening

Impact Crushers (/crushers/impact-crushers/) Cone Crushers (/crushers/cone-crushers/)

<u>Screeners (/mobile-</u> screening/)

Parts (/parts/)

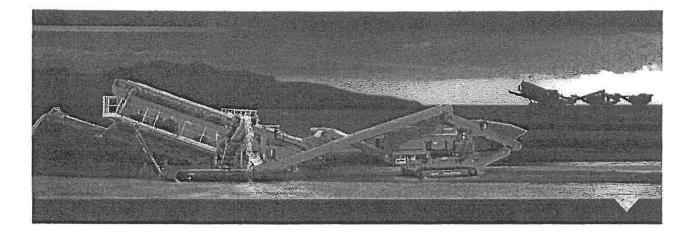
<u>Used Equipment</u> (/used-equipment/)

(HTTP://GTRANSLATE.NET/?XYZ=1108)

© 2015 Powerscreen Crushing & Screening

Site by

(http://www.scaniausa.com/)



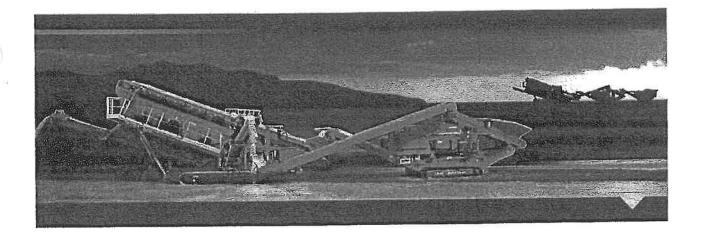
Malec In America

(http://www.matecamerica.com/en/index.php)

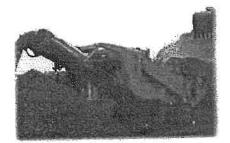
(http://www.terex.com/washing-systems/en/index.htm)

Tier 4i Scania DC9 & DC13

Powerscreen Jaw & Impact Crusher Average Fuel Consumption Comparisons


5. inches gallons XA400S - Scanla DC9 Tier 4i 202kW Medium Hard Limestone Site, Gloucester, UK Serial # PIDXA40SCOMA40017 3.5" — CSS: 90mm 244" — Feed Material: -600mm Conglomerate (See page 4 for details) 5" — End Product: -120mm Production: 180 TPH (Average) Engine Load: 64% (Average) Engine Load: 64% (Average) Urea consumption: 16.65 Litres Per Hour Average (LPH Av.)

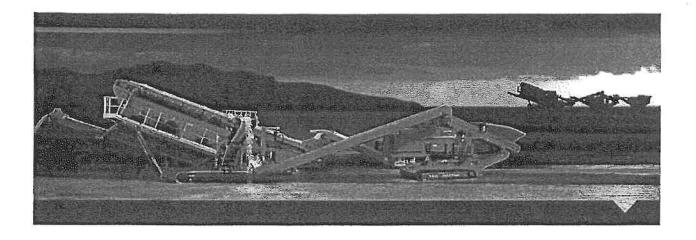
0.4 gch - Urea consumption; 1.6 LPH Av.


5.89ph -

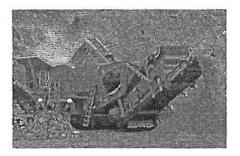
XA400S - Tier 3 CAT powered in a similar application CSS: 90mm Feed Material: -600mm Conglomerate (See page 4 for details) End Product: -120mm Production: 180 TPH (Average) Engine Load: 64% (Average) Diesel consumption: 22 LPH Av.

Conclusion: Average Fuel Savings = 25%

<u>XH320 - Scania DC9 Tier 41 202kW</u> Hard Limestone Site, Enniskillen, Northern Ireland Serial # AX899-P2U 6" — Top Apron: 150mm 3" — Bottom Apron: 75mm 20¹¹ - Feed Material: -500mm Medium Limestone 5 "End Product: -120mm Production: 300 – 350 TPH Average Engine Load: 75% Approx. 9.4 gph — Diesel Consumption: 35.5 LPH 0.5 gph — Urea Consumption: 1.76 LPH



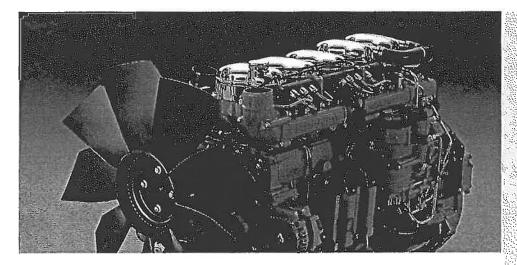
XH320 - Tier 3 CAT powered in a similar applicationTop Apron: 150mmBottom Apron: 75mmFeed Material: -500mm Medium LimestoneEnd Product: -120mmProduction: 300 - 350 TPH AverageEngine Load: 75% Approx.Diesel Consumption: 42 LPH Av.


Conclusion: Average Fuel Saving = 15%

11gph -

XH500SR - Scania DC13 Tier 4i 331kw
Medium Hard Limestone, Scotland
Serial # 2200002 (P2)10"Top Apron: 250mm4"Bottom Apron: 100mm20"Feed Material: -500mm Limestone5"End Product: -120mm
Production: 180 TPH Approx
Engine Load: 50% Approx8.75 gph —Diesel Consumption: 33.05 LPH Av.0.4 gph —Urea Consumption: 1.5 LPH Av.

10" XH500 - Tier 3 CAT powered in a similar application Top Apron: 250mm Bottom Apron: 100mm Feed Material: -500mm Limestone End Product: -120mm Production: 180 TPH Approx Engine Load: 50% Approx Diesel Consumption: 39.2 LPH Av.


> Conclusion: Average Fuel Saving = 18%

DC09 070A. 202 kW (275 hp)

US Tier 4i, EU Stage IIIB

The industrial engines from Scania are based on a robust design with a strength optimised cylinder block containing wet cylinder liners that can easily be exchanged. Individual cylinder heads with 4 valves per cylinder promotes repairability and fuel economy.

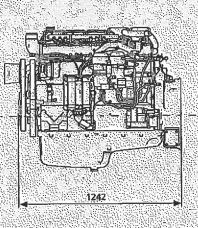
The engine is equipped with a Scania developed Engine Management System, EMS, in order to ensure the control of all aspects related to engine performance. The Injection system is Scania's XPI (Extra High Pressure Injection), a common rail system that in combination with SCR (Selective Catalytic Reduction) gives low exhaust emissions with good fuel economy and a high torque. The engine can be fitted with many accessories such as air cleaners, silencers, PTO:s and flywheels in order to suit a variety of installations.

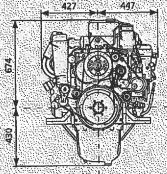
	Rating	Engine s	Engine speed (rpm)					
		1200	1500	1800	2100			
Gross power (kW)	ICFN	195	202	202	202			
Gross power (hp)	ICFN	265	275	275	275			
Gross torque (Nm)	ICFN	1552	1286	1072	919			
Spec fuel consumption. Full load (g/kWh)		193	194	204	223			
Spec fuel consumption. 3/4 load (g/kWh)		193	197	209	234			
Spec fuel consumption. 1/2 load (g/kWh)		198	205	223	257			
Reductant consumption. Full load (g/kWh)		31	25	21	12			
Heat rejection to cooling water (kW)		85	81	87	98			

iCFN - Continous service: Rated output available 1/1 h. Unlimited h/year service time at a load factor of 100%

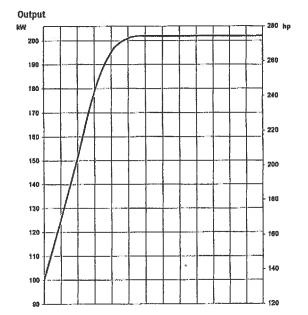
Standard equipment

- Scania Engine Management System, EMS
- Extra high pressure fuel injection system, XPI
- Turbo charger
- Fuel filter and extra pre-filter with water
- separator
- Fuel heater
- Oil filter, full flow
- Centrifugal oil cleaner
- Oil cooler, integrated in block
- Oil filler, in valve cover
- Deep front oll sump
- Oil dipstick, in block
- Magnetic drain plug for oil draining
- Starter, 1-pole 5,5 kW
- Alternator, 1-pole 100A
- Flywheel, for use with friction clutch
- Silumin flywheel housing, SAE1 flange
- Front mounted engine brackets
- SCR system
- Open crankcase ventilation
- Operator's manual


Optional equipment


- Cooling package
- Puller and pusher fans
- Fan ring with sealing
- Hydraulic pump
- Air compressor
- AC compressor
- Side mounted PTO
- Front mounted PTO
- Exhaust connections
- Electrical base system
- Control and Instrument panels
- Accelerator position sensor
- Engine heater
- Flywheels: SAE11.5", SAE14", DANA15/16",
- DANA17" flexplate, ZFWG260
- Stiff rubber engine suspension
- Air cleaner
- Closed crankcase ventilation
- Studs in flywheel housing
- External thermostal for extra oil cooler
- Low coolant level reaction
- Variable idle speed setting
 Low oil sump
- Lon on some
- Oil level sensor

DC09 070A. 202 kW (275 hp) US Tier 4I, EU Stage IIIB

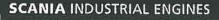

Engine description

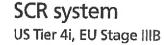
No of cylinders	5 In-line
Working principle	4-stroke
Firing order	1-2-4-5-3
Displacement	9.3 litres
Eore x stroke	-130 x 140 mm
Compression ratio	16:1
Weight	950 kg (excl oil and coolant)
Piston speed at 1500 rpm	7.0 m/s
Piston speed at 1800 rpm	8.4 m/s
Camshaft	High position alloy steel
Plstons	Aluminium pistons
Connection rods	i-section press forgings of alloy steel
Grankshaft	Alloy steel with hardened and pollshed bearing surfaces
Oil capacity	32-38 dm ³
Electrical system	1-pole 24V
the second se	

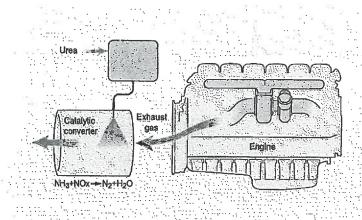
Edition 01 © Scania CV AB, SE-151 87 Sodertalje, Sweden

Torque

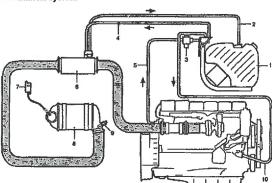
Nm 1580	F	-							- 160 kpm
1480	\square	<u>A</u>				— -			150
1380	А			X			_		140
1280	1		+	$-\Gamma$					130
1180	┼──┼	-+	+		\rightarrow			+	120
1080 -	$\left \right $		┉┟┉╼╍╼╾┥				+		110
980	<u> </u>		+			$\left \right $			100
880									1 90


Spec fuel and reductant consumption


niwin 23 Jusi 22								- 100 gikWh . 90 Reductan
22	20	$\left \right $				$\left\{ -\right\}$	A	- 80
21					·			70
21		- Fuel -						- 60
	50 <u> </u>		+					- 50
	95	l =						- 40
	90					Reduct	ant	- 30
	50 							- 20
	75		╁─┼──┤					- 10
17	70 800	1000	1200	1400	1600	1600	2000	ព្រញា

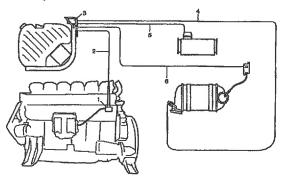

Test conditions Air temporature +25°C. Barometric pressure 100 kPa (750 mm/kg). Numikity 30 %. Diesel foel acc. to ECE R 24 Annex 6. Dersity of fuel 0.840 kg/dm?. Viscosity of fuel 3.0 cSL or 40°C. Energy value 42700 kJRg. Power test code ISO 3046. Power and fuel values +/-3%.

SE 151 87 Södertälje, Sweden Telephone +46 8 553 810 00 Telefax +46 8 553 829 93 www.scania.com engines@scania.com



The principle for Scania SCR system

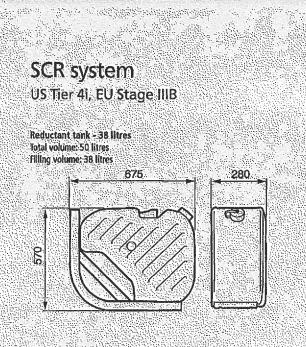
Mechanical system

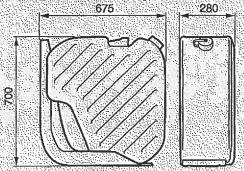


	Mechanical system	Standard	Optional
1	Reductant tank and pump module	38	60
2	Reductant fluid return line	2 m	3.5 m
3	Coolant valve	×	-
4	Reductant pressure line	2 m	3.5 m
5	Coolant hose for tank and pump heating	-	-
6	Hydrolysis catalyst with reductant doser	~	-
7	NO _x sensor with control unit	1	_
8	SCR catalyst	1	-
9	Temperature sensor	1	-
10	Coolant hose, return from tank and pump heating	-	1

SCR (Selective Catalytic Reduction) technology is used on Scania's engines for Stage IIIB and Tier 4i to reduce the NO, content in the exhaust gases. A chemical process is started by injecting reductant, a unea and water mixture, into the exhaust gas stream. During injection the water evaporates and the unea breaks down to form ammonia. The ammonia then reacts with the nitrogen gases in the catalytic converter and forms harmless products such as nitrogen gas and water. Through the use of SCR the exhaust gases are purged of poisonous levels of NO, in the best possible way. Scania is making use of a system that is carefully developed and tested in our own laboratory.

The reductant tank holds 38 or 60 litres and is heated by the engine's cooling system in order to avoid freezing of the use solution, use freezes at +11°C. The reductant tank and a pump module are delivered as a unit which is fitted to brackets for an easy installation. The Scania system contains all mechanical and electrical parts needed except from the exhaust piping which is to be adapted according to the customers installation.


Electric system

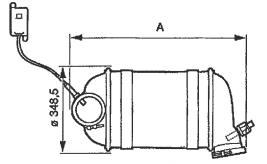

	Electric system	Standard	Optional
1	Customer interface, SCR system	1	-
2	Pipe network between engine and SCR control unit	3 m	6 m
3	Electrical interface, SCR system	1	-
4	Temperature sensor electrical cable	3 m	6 m
5	Reductant doser electrical cable	3 m	бm
6	NO _x sensor electrical cable	Зm	бт

This specification may be revised without notice.

SCANIA INDUSTRIAL ENGINES

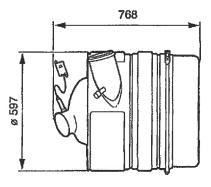
Reductant tank - 60 litres Total volume: 70 litres Filling volume: 60 litres

ø 190


Hydrolysis catalyst with reductant doser 450

Edition 01 © Scania CV AB, SE-151 87 Sodertalje, Sweden

This specification may be revised without notice,


SCR catalyst

\\\\ \\\\

Engine	Power (kw)	Volume (litres)	Measure A (mm)
DC09	202-294	24	765
DC13	257-405	33	857
DC16	405-515	48	1060

SCR catalyst with silencer

Engine	Power (kw)	Volume (litres)	
DC09	202-294	33	
DC13	257-405	33	
DC16	Not available		

SE 151 87 Södertälje, Sweden Telephone +46 8 553 810 00 Telefax +46 8 553 829 93 www.scania.com engines@scania.com