West Virginia Dept. of Environmental Protection Division of Air Quality – Permitting Section 601 57th Street, SE Charleston, WV 25304

RE: Class II Administrative Update
Buffalo Run Production Facility
Triad Hunter, LLC
Wetzel County, West Virginia
Plant ID No. 103-00063
Permit No. R13-3068 & R13-3068A

To Whom It May Concern:

On behalf of our client, Triad Hunter Pipeline, LLC, we are pleased to submit one hard copy and two electronic copies of the Class II Administrative Update application for its Buffalo Run Production Facility in Wetzel County.

This update includes replacement of the permitted compressor unit engine with a Caterpillar G3306TA engine. This unit still falls under the same regulations as the permitted engine with no increase in total facility emissions. There are no other proposed modifications as part of this submittal.

An application fee in the amount of \$300 was determined to be applicable for a Class II administrative update application. A check, payable to WVDEP – Division of Air Quality has been included.

If there are any questions or concerns regarding this application, please contact me at 412/221-1100, Extension 202 or rdhonau@se-env.com and we will provide any needed clarification or additional information immediately.

Sincerely,

Roger A. Dhonau, PE, QEP

Principal

Enclosures

Cc: Triad Hunter, LLC – Mike Horan

CLASS II ADMINISTRATIVE UPDATE Triad Hunter, LLC

Buffalo Run Well Pad Compressor Station

Wetzel County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Business Registration
 - Attachment C Construction Schedule
 - Attachment D Regulatory Analysis
 - Attachment I Emission Unit Table
 - Attachment J Emission Points Data Summary Sheet
 - Attachment L Emission Unit Data Sheets
 - Attachment N Supporting Calculations
 - Attachment P Public Notice Affidavit

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

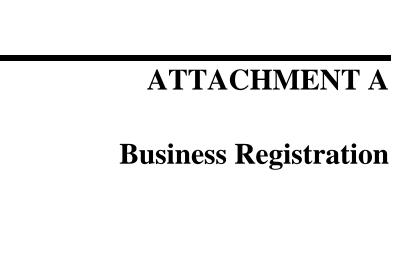
APPLICATION FOR NSR PERMIT

DIVISION OF AIR QUALITY 601 57th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		TLE V PE	AND RMIT REVISION TIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN	NOWN): PLEASE CHECK	TYPE OF 450	CSR30 (TITLE V) REVISION (IF ANY):			
CONSTRUCTION MODIFICATION RELOCATION	GIGNIFICANT		_			
☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY	—		ED, INCLUDE TITLE V REVISION			
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-F			NT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and						
Sec	ction I. General					
 Name of applicant (as registered with the WV Secreta Triad Hunter, LLC 	ry of State's Office):	2. Federal I	Employer ID No. <i>(FEIN):</i> 27-1355830			
3. Name of facility (if different from above):		4. The applic	cant is the:			
Buffalo Run Production Facility			□OPERATOR ⊠ BOTH			
5A. Applicant's mailing address: 125 Putnam Street Marietta, Ohio 45750	5B. Facility's prese 2610 Buffalo Run R Jacksonburg, West	Road				
6. West Virginia Business Registration. Is the applicant	t a resident of the State o	f West Virginia	a?			
 If YES, provide a copy of the Certificate of Incorpor change amendments or other Business Registration 	Certificate as Attachmen	nt A.				
 If NO, provide a copy of the Certificate of Authority, amendments or other Business Certificate as Attach 		istration (one	e page) including any name change			
${\it 7. \ If applicant is a subsidiary corporation, please provide}\\$	the name of parent corpo	oration: Magn	um Hunter Resources			
8. Does the applicant own, lease, have an option to buy \boldsymbol{c}	or otherwise have control	of the propos	ed site? XES			
- If YES, please explain: Applicant owns the pr	roperty for the subject f	acility.				
 If NO, you are not eligible for a permit for this source 						
9. Type of plant or facility (stationary source) to be constructed , modified , relocated , administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 10. North American Industry Classification System (NAICS) code for the facility:						
			486210			
11A. DAQ Plant ID No. (for existing facilities only): 103-00063		s process (for	CSR30 (Title V) permit numbers existing facilities only):			
All of the required forms and additional information can be	found under the Permitting	s Section of D	10's wobsite or requested by phone			

Page 1 of 4

12A.		
 For Modifications, Administrative Updates present location of the facility from the neare 		y, please provide directions to the
 For Construction or Relocation permits, please road. Include a MAP as Attachment B. 	lease provide directions to the proposed new	v site location from the nearest state
	miles to Jacksonburg and make a right or urn on to Buffalo Run Road and drive app	Main Street. Follow Main Street
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	Jacksonburg	Wetzel
12.E. UTM Northing (KM): 4372.7	12F. UTM Easting (KM): 531.33	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the	e facility:	
Compress produced natural gas to allow disch	narge into a gathering line owned by other	'S.
14A. Provide the date of anticipated installation of this is an After-The-Fact permit application, prochange did happen:		14B. Date of anticipated Start-Up if a permit is granted: Approx. 6/27/16
14C. Provide a Schedule of the planned Installat application as Attachment C (if more than o		e units proposed in this permit
15. Provide maximum projected Operating Sche Hours Per Day 24 Days Per We		cation:
16. Is demolition or physical renovation at an exis	iting facility involved? YES NO	
17. Risk Management Plans. If this facility is sub	oject to 112(r) of the 1990 CAAA, or will beco	me subject due to proposed
changes (for applicability help see www.epa.go	ov/ceppo), submit your Risk Management P l	lan (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and	State air pollution control regulations that you	u believe are applicable to the
proposed process (if known). A list of possible	applicable requirements is also included in A	ttachment S of this application
(Title V Permit Revision Information). Discuss a	applicability and proposed demonstration(s)	of compliance (if known). Provide this
information as Attachment D.		
Section II. Additiona	al attachments and supporting	documents.
19. Include a check payable to WVDEP – Division 45CSR13).		
20. Include a Table of Contents as the first page	of your application package	

- 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance) .
- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).
- 22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F.
- 23. Provide a Process Description as Attachment G.
 - Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).


All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

	•		essed, used or produced as Attachment H.			
	For chemical processes, provide a MSD	•	d to the air.			
	Fill out the Emission Units Table and		Falai O) and asside it as Attaches and I			
			Table 2) and provide it as Attachment J.			
	Fill out the Fugitive Emissions Data S		it as Attachment K.			
	Check all applicable Emissions Unit I					
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	Quarry			
	Chemical Processes*	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage Facilities			
	Concrete Batch Plant	☐ Incinerator	Ctorono Torriso			
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger				
M	General Emission Unit, specify: Natural	Gas Compressor				
Fill o	out and provide the Emissions Unit D a	ita Sheet(s) as Attachment I	L.			
29.	Check all applicable Air Pollution Cor	ntrol Device Sheets listed be	elow:			
	Absorption Systems	☐ Baghouse	☐ Flare			
	Adsorption Systems	☐ Condenser	☐ Mechanical Collector			
	Afterburner	☐ Electrostatic Precipi	itator			
\boxtimes (Other Collectors, specify: NSCR Cataly	/st – See manufacturer's sh	neet (Attachment N).			
Fill o	out and provide the Air Pollution Cont	rol Device Sheet(s) as Attac	chment M.			
	Provide all Supporting Emissions Ca Items 28 through 31.	lculations as Attachment N	I, or attach the calculations directly to the forms listed in	1		
		ompliance with the proposed	ch proposed monitoring, recordkeeping, reporting and emissions limits and operating parameters in this perm	nit		
		not be able to accept all mea	ether or not the applicant chooses to propose such asures proposed by the applicant. If none of these plan clude them in the permit.	ıs		
32.	Public Notice. At the time that the ap	pplication is submitted, place a	a Class I Legal Advertisement in a newspaper of gen	eral		
	circulation in the area where the source	e is or will be located (See 45	CSR§13-8.3 through 45CSR§13-8.5 and Example Le	gal		
	Advertisement for details). Please su	bmit the Affidavit of Publica	ation as Attachment P immediately upon receipt.			
33.	Business Confidentiality Claims. Do ☐ YES	oes this application include co	onfidential information (per 45CSR31)?			
	If YES , identify each segment of inform	nation on each page that is suggether that is suggested in the suggestion of the sug	ubmitted as confidential and provide justification for each 1-4.1, and in accordance with the DAQ's "Precautional Instructions as Attachment Q.			
	Sec	tion III. Certification	of Information			
	Authority/Delegation of Authority. Check applicable Authority Form belo		other than the responsible official signs the application	l.		
	Authority of Corporation or Other Busine	ess Entity [☐ Authority of Partnership			
	Authority of Governmental Agency	Γ	. ☐ Authority of Limited Partnership			
	Submit completed and signed Authority Form as Attachment R. All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					
			• • • • • • • • • • • • • • • • • • • •			

35A. Certification of Information. To certi 2.28) or Authorized Representative shall che			e Official (per 45CSR§13-2.22 and 45CSR§30-
Certification of Truth, Accuracy, and Com	pleteness		
application and any supporting documents a reasonable inquiry I further agree to assume stationary source described herein in accord Environmental Protection, Division of Air Quand regulations of the West Virginia Division	opended heret responsibility ance with this ality permit isso of Air Quality Official or Aut	to, is true, accurate, and of for the construction, mod application and any ame ued in accordance with the and W.Va. Code § 22-5-	by certify that all information contained in this complete based on information and belief after lification and/or relocation and operation of the ndments thereto, as well as the Department of his application, along with all applicable rules 1 et seq. (State Air Pollution Control Act). If the the Director of the Division of Air Quality will be
Compliance Certification			
			not achieved, I, the undersigned hereby certify inant sources identified in this application are in
SIGNATURE // / / / / / / / / / / / / / / / / /	e use blue ink)		DATE: 4/27/16
35B. Printed name of signee: Mike Horan	e ase blue llikj		35C. Title: Vice President of Appalachian Production
35D. E-mail: mhoran@triadhunter.com	36E. Phone	e: 740-868-1324	36F. FAX:
36A. Printed name of contact person (if differ	ent from abov	/e):	36B. Title:
36C. E-mail:	36D. Phone	e:	36E. FAX:
PLEASE CHECK ALL APPLICABLE ATTACHME Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Sci Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagr Attachment G: Process Description Attachment H: Material Safety Data Sheets Attachment I: Emission Units Table Attachment J: Emission Points Data Summ Please mail an original and three (3) copies of	nedule am(s) (MSDS) ary Sheet	☐ Attachment K: Fug	pitive Emissions Data Summary Sheet ssions Unit Data Sheet(s) Pollution Control Device Sheet(s) porting Emissions Calculations intoring/Recordkeeping/Reporting/Testing Plans olic Notice siness Confidential Claims
			OT fax permit applications.
FOR AGENCY USE ONLY – IF THIS IS A TITLE Forward 1 copy of the application to the Ti For Title V Administrative Amendments: NSR permit writer should notify Titl For Title V Minor Modifications: Title V permit writer should send ap NSR permit writer should notify Titl For Title V Significant Modifications proces NSR permit writer should notify a Titl Public notice should reference both EPA has 45 day review period of a comparison.	tie V Permitting e V permit write propriate notifi e V permit write sed in parallel itle V permit wr 45CSR13 and lraft permit.	er of draft permit, ication to EPA and affecte er of draft permit. with NSR Permit revision: riter of draft permit, Title V permits,	

SECTION II

Attachments

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Triad Hunter, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of January 29, 2010

Natolil Edermant

Construction Schedule

Triad Hunter, LLC Buffalo Run Production Facility Attachment C – Construction Schedule

Triad Hunter, LLC seeks to install one compressor engine at its existing facility. The permitted Caterpillar G342NA HCR compressor engine will be replaced with a Caterpillar G3306TA compressor engine. The anticipated start-up date is approximately 6/27/2016. All previously permitted equipment is currently functioning at this existing well pad.

Regulatory Analysis

Triad Hunter, LLC Buffalo Run Production Facility Attachment D - Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to Triad Hunter, LLC's (Triad) Buffalo Run Production Facility near the community of Jacksonburg in Wetzel County, West Virginia. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state.

The following is a summary of relevant and applicable regulations governing air emissions from this facility. The planned modification to the Facility does not trigger the applicability of any additional regulations.

1.1 PSD and NSR

The Facility is a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it does not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant.

The Facility is within an area designated as attainment for all criteria pollutants. Consequently, the Facility is not subject to the New Source Review (NSR) regulations. Additionally, potential emissions are below the annual emission thresholds triggering PSD. Consequently, neither PSD nor NSR requirements are applicable to this project.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Potential emissions at this facility are below both of these thresholds. In addition to this annual potential emissions threshold, any facility operating under certain federal New Source Performance Standards also fall under the Title V program. While the Facility is indeed regulated under certain New Source Performance Standards, none of these require participation in the Title V Operating Permit Program. Thus, a Title V operating permit is not required.

1.3 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available

Control Technology (BACT). Specific NSPS requirements *potentially* applicable to the Facility are as follows:

- 40 CFR 60, Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- 40 CFR 60, Subpart KKK Equipment Leaks of VOC from Onshore Natural Gas Processing Stations
- 40 CFR 60, Subpart LLL Onshore Natural Gas Processing Stations: SO₂ Emissions
- 40 CFR 60, Subpart III Stationary Compression Ignition Internal Combustion Engines
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.3.1 Subpart K/Ka/Kb

These three subparts apply to volatile organic liquid storage tanks of specific sizes constructed in certain timeframes. Subpart K applies to tanks constructed or modified between 1973 and 1978 while Subpart Ka applies to tanks constructed between 1978 and 1984. Subpart Kb applies to storage tanks constructed or modified after 1984. The Condensate Tanks are potentially subject to one or more of these rules, depending upon its date of manufacture. However, the capacity of these tanks (13,020 gallons each) is below the threshold for Subpart K and Ka (40,000 gallons), excluding it from these rules. As the expected tanks will have been manufactured after this date, they are potentially regulated under Subpart Kb. However, again, the capacities of these tanks are below the threshold for regulation under this rule (19,800 gallons or 75 cubic meters).

1.3.2 Subpart KKK

This subpart regulates VOC emissions from equipment and piping connection leaks at natural gas processing plants, including fractionation facilities. The Buffalo Run Production Facility is not a gas processing or fractionation plant. Hence, this rule does not apply.

1.3.3 Subpart LLL

This set of regulations governs emissions from processes used to remove sulfur gases from the field gas stream (sweetening unit) and subsequent sulfur recovery operations. The operations do not include any sulfur removal processes.

1.3.4 Subpart IIII

This subpart governs emissions from new compression ignition internal combustion engines (CI ICE) manufactured after July 11, 2005. There are no compression ignition engines (e.g. dieselfired emergency generator) at this station. Hence, this rule does not apply.

1.3.5 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. The proposed replacement engine (Caterpillar G3306TA) was manufactured February 6, 2007. Hence, the rule does not apply.

1.3.6 Subpart OOOO

The potentially applicable sections of this rule sets restrictions on any pneumatic controllers present at the Buffalo Run Production Facility; establishes maintenance requirements for the compressor engine and sets requirements for storage vessels with potential VOC emissions greater than 6 tons per year. These portions of Subpart OOOO potentially apply to the Facility. Those sections addressing gas wells, centrifugal compressors and leaks at natural gas processing plants do not apply.

One of the key components to this rule [40 CFR 60.5390(b)] is the requirement that all pneumatic controllers located between the well head and a processing plant must have a bleed rate of less than 6 scfh. All pneumatic controllers installed at the Facility must meet this criterion. All pneumatic controllers are of an intermittent bleed design. Thus, this aspect of the rule does not apply.

This rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The condensate tanks have a control system that captures all vapors and combusts them using a vapor combustion unit. Hence, Triad Hunter complies with the requirements of 40 CFR 60.5395. Thus, no action is required to comply with this element of Subpart OOOO.

1.4 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standard is potentially applicable to the Facility:

• 40 CFR 63, Subpart ZZZZ – NESHAP from Stationary Reciprocating Internal Combustion Engines

1.4.1 Subpart ZZZZ

This Subpart governs emissions from a stationary Reciprocating Internal Combustion Engine (RICE) located both at major and area source of HAPs. The current engine (Caterpillar G3306TA) was manufactured February 6, 2007 and is considered a ZZZZ applicable engine. Hence, this rule applies to the current engine installed at the existing well pad.

1.5 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. However, in accordance with 68.115(c(ii), flammable naturally occurring mixtures at a location prior to entering a gas processing plant need not be considered when determining if the threshold quantity has been exceeded. Hence, an RMP is not required for this facility.

1.6 West Virginia State Requirements

1.6.1 <u>45 CSR 2</u>

The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

1.6.2 45 CSR 4

This regulation prohibits the emission of objectionable odors. Triad Hunter is obligated to run the station in a manner that does not produce objectionable odors.

1.6.3 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the inlet liquid contains no measurable sulfur, anticipated emissions of sulfur oxides is negligible. Thus, while parts of this rule may be applicable to the Facility, no actions are required on the part of Triad Hunter to attain compliance.

1.6.4 <u>45 CSR 13</u>

The state regulations applicable are in Title 45 Series 13 of the Code of State Regulations. The Facility has the potential to emit NOx, CO and VOCs in excess of the thresholds that define a stationary source. Additionally, as the facility is regulated under a federal New Source Performance Standard, it is required to have a permit.

It is important to note that the Facility's potential to emit is less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

1.6.5 <u>45 CSR 16</u>

This series of regulations is incorporated, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the Facility is subject to the emission limitations, monitoring, testing and recordkeeping of several NSPS Subparts.

1.6.6 45 CSR 30

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The Facility, as noted above, does not have the potential to emit any regulated pollutant above the threshold that would define it as a major facility. Although the Facility is subject to a New Source Performance Standard, it is not obligated to obtain a Title V permit under this Standard. This federal exclusion has been adopted by WVDEP.

1.6.7 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. This topic has been addressed above.

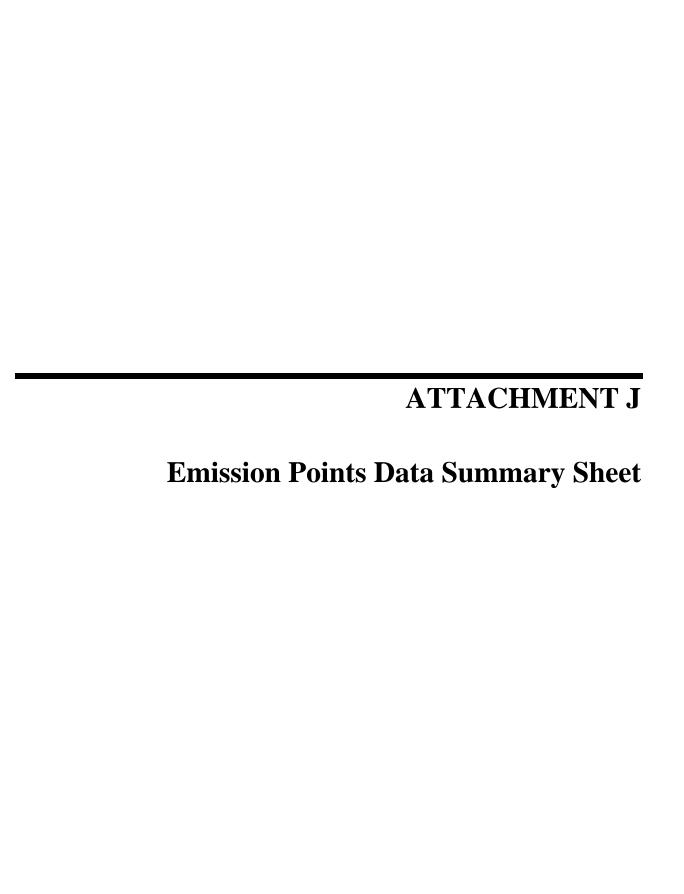
ATACHMENT I Emission Unit Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
1S	1E	Caterpillar G3306TA	2016	203 Hp	New	1C
1S	1E	Caterpillar G 342 NA HCR	2011	225 Hp	Removal	1C
T01	2 E	Produced Fluids Tank	2011	400 bbl	Existing	2C
T02	2E	Produced Fluids Tank	2011	400 bbl	Existing	2C
Т03	2E	Produced Fluids Tank	2011	400 bbl	Existing	2C
T04	2E	Produced Fluids Tank	2011	400 bbl	Existing	2C
T05	2E	Produced Fluids Tank	2011	400 bbl	Existing	2C
T06	2E	Produced Fluids Tank	2011	400 bbl	Existing	2C
1C		Miratech NSCR Catalyst	2011	18,732 scfh	Existing	
2C		HYBON Vapor Combustor Unit	2013	2.39 MMBtu/Hr	Existing	
3S	3E	(3) Heated Separators	2011	1 MMBtu/hr	Existing	
T07	4 E	Produced Water Tank	2011	210 bbl	Existing	
T08	4 E	Produced Water Tank	2011	210 bbl	Existing	
4 S	5E	Line Heater	2011	0.15 MMBtu/HR	Existing	


¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

Page	1	of	1	

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For <u>Control Devices</u> use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J EMISSION POINTS DATA SUMMARY SHEET

								: Emissions Dat							
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Emissio Ven Through 1 (Must Emissio Table & F	ted Γhis Point <i>match</i> on Units	De (Must Emission	on Control vice match Units Table t Plan)	Emissi (chemical	ime for on Unit processes oly)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential ntrolled sions ⁴	Cor	m Potential atrolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	` ^ & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOx	7.23	31.66	0.58	2.53	Gas	EE	
								СО	7.23	31.66	0.65	2.85	Gas	EE	
	Upward							VOC	0.05	0.24	0.01	0.04	Gas	EE	
1E	Vertical	1E	1S	1C	Catalyst	C	8760	SO2	0.001	0.0047	0.001	0.0047	Gas	EE	
1L	Stack							PM/PM10	0.018	0.0794	0.018	0.0794	Gas	EE	
								Formaldehyde	0.1119	0.4901	0.009	0.0392	Gas	EE	
								CO2	201	880.38	201	880.38	Gas	EE	
								VOC	0.53	0.12	0.01	0.02	Gas	EE	
								NOx	0.09	0.37	0.09	0.37	Gas	EE	
	Upward Vertical	2E	T01 –	2C	VCU	С	8760	СО	0.07	00.31	0.07	00.31	Gas	EE	
2E	Stack	212	T06	20	VCO		8700	PM	0.01	0.03	0.01	0.03	Gas	EE	
								SO2	0.001	0.002	0.001	0.002	Gas	EE	
								HAPs	0.25	1.1	0.0108	0.0025	Gas	EE	
								NOx	0.29	1.29	0.29	1.29	Gas	EE	
	Upward							СО	0.25	1.08	0.25	1.08	Gas	EE	
3E	Vertical	3E	3S	N/A	N/A	C	8760	VOC	0.02	0.07	0.02	0.07	Gas	EE	
	Stack							SO2	0.002	0.008	0.002	0.008	Gas	EE	
								PM	0.022	0.10	0.022	0.10	Gas	EE	
								NOx	0.015	0.065	0.015	0.065	Gas	EE	
	Upward							СО	0.012	0.054	0.012	0.054	Gas	EE	
5E	Vertical	5E	4S	N/A	N/A	C	8760	VOC	0.001	0.004	0.001	0.004	Gas	EE	
	Stack							SO2	0.0001	0.0004	0.0001	0.0004	Gas	EE	
								PM	0.001	0.005	0.001	0.005	Gas	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for

fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₃, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	ter Data			
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)	
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
1E	0.83	1170	88	161.84		10		
2 E	1.73	100	14.20	0.1008		12		
3E	0.16	800				4		
5E	0.16	800				4		

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Emission Unit Data Sheets

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identification Number ¹			S1	S	1		
Engine Man	Caterpillar G 342 NA HCR		Caterpillar	Caterpillar G3306TA			
Manufactui	rer's Rated bhp/rpm	225 bhp/	1,200 rpm	203 bhp/	1,800 rpm		
Sor	urce Status ²	F	RS	N	IS		
Date Installed	d/Modified/Removed ³	20	011	20	16		
	ured/Reconstruction Date ⁴	Pre June	2006	February	y 6, 2007		
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No	N	lo		
	Engine Type ⁶	RI	B4S	RE	34S		
	APCD Type ⁷	NS	SCR	NS	CR		
Engine	Fuel Type ⁸	F	RG	R	G		
Engine, Fuel and	H ₂ S (gr/100 scf)	<	< 1	<	1		
Combustion Data	Operating bhp/rpm	225 bhp/1,200 rpm		203 bhp/1,800 rpm			
Data	BSFC (Btu/bhp-hr)	9,630		9,006			
	Fuel throughput (ft ³ /hr)	2,	124	1,584			
	Fuel throughput (MMft ³ /yr)	18	.609	13	.88		
	Operation (hrs/yr)	87	760	87	760		
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO_X	0.64	2.80	0.58	2.53		
MD	CO	0.68	2.98	0.65	2.85		
MD	VOC	0.01	0.04	0.01	0.04		
AP	SO ₂	0.0013	0.0056	0.001	0.005		
AP	PM ₁₀	0.0215	0.0940	0.018	0.079		
MD	Formaldehyde	0.009	0.04	0.009	0.04		
AP	Total HAPs	0.0679	0.2974	0.0679	0.2974		
	ı		1	I			i .

^{1.} Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

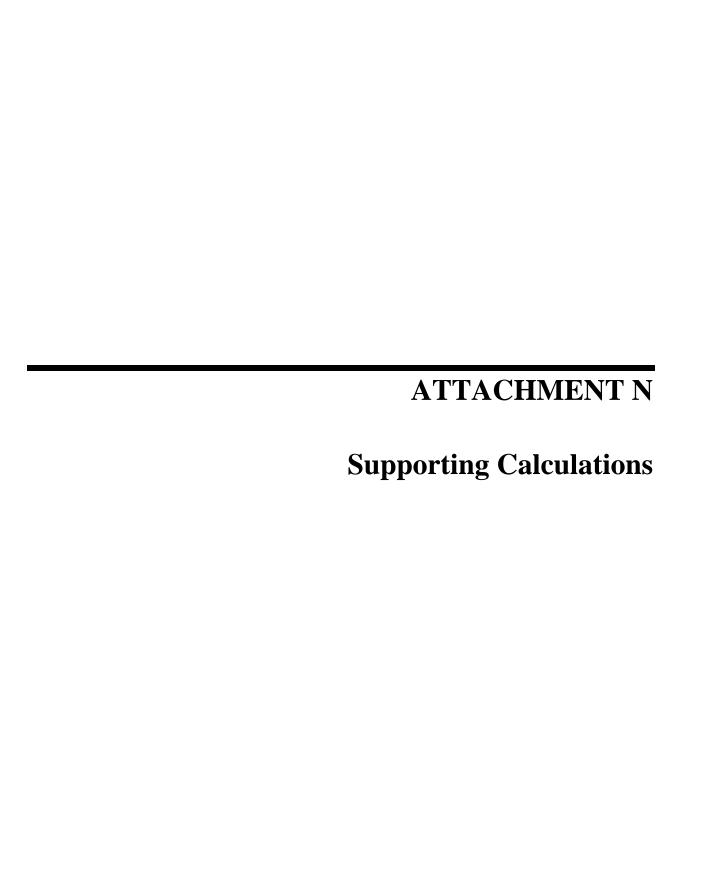
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6.	Enter the E	Engine Type designation(s) using the following	owing codes:	
	LB2S	Lean Burn Two Stroke	RB4S	Rich Burn Four Stroke
	LB4S	Lean Burn Four Stroke		

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F	Air/Fuel Ratio	IR	Ignition Retard
HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
PSC	Prestratified Charge	LEC	Low Emission Combustion
NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction


8. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Buffalo Run Station Wetzel County

Source	Description	NOx lb/hr	CO lb/hr	CO2 lb/hr	VOC lb/hr	SO2 lb/hr	H2S lb/hr	PM lb/hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
1S	Compressor Engine #1	0.58	0.65	201.00	0.01	0.001	0.00	0.018	0.0029	0.0090	0.0679
	Blowdowns				N/A						
2S	Condensate Tanks ¹				0.53						0.0108
	Vapor Combustor Unit	0.08	0.07	278.77	0.005	0.001		0.006			
3S - HTR1	Heated Separators	0.29	0.25	343.05	0.02	0.002		0.022			
4S - HTR 2	Line Heater	0.015	0.012	17.17	0.001	0.0001		0.001			
	Truck Loading				1.19						
	Fugitive				0.17						
Total		0.97	0.98	840	1.92	0.00	0.00	0.05	0.00	0.01	0.08

Source		NOx tpy	CO tpy	CO2 tpy	VOC tpy	SO2 tpy	H2S tpy	PM tpy	benzene tpy	formaldehyde tpy	Total HAPs tpy
1S	Compressor Engine #1	2.53	2.85	880	0.04	0.005	0.00	0.16	0.01	0.04	0.297
	Blowdowns ¹				0.15						
2S	Condensate Tanks ²				0.12						0.0025
	Vapor Combustion Unit	0.37	0.31	1221.05	0.02	0.002		0.03			
3S - HTR1	Heated Separators	1.29	1.08	1502.61	0.07	0.008		0.10			
4S - HTR 2	Line Heater	0.065	0.054	75.23	0.004	0.0004		0.005			
	Truck Loading				0.37						
	Fugitive				0.76						
Total		4.25	4.29	3,679	1.54	0.02	0.00	0.29	0.01	0.04	0.30

¹ Condensate tanks equipped with Vapor Combustor Unit (VCU) with 99% Destruction Efficiency.

Triad Hunter, LLC ENGINE EMISSIONS

Buffalo Run Station Wetzel County

Proposed Emission Rates Uncontrolled Emissions

Source 1S Engine 1

Liigino						
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CATERPIL G3306TA Rich-Burn Natural	LAR				
Manufacturer Rating Speed at Above Rating Number of Cylinders Fuel Consumption Fuel Throughput	203 1,800 4 9,006 13.88	hp rpm Btu/bhp-hr MMcf/yr				AP-42
						4strokeRich
Emission Rates: Oxides of Nitrogen, NOx	g/bhp-hr 16.15	lb/hr 7.23	tons/year 31.66	g/hr 3,278	173.47	lb/mmbtu Comment
Carbon Monoxide CO	16.15	7.23 7.23	31.66	3,278	173.47	453.59 grams = 1 pound
VOC (NMNEHC)	0.12	0.05	0.24	24	1.29	2,000 pounds = 1 ton
CO2		201.00	880.38		4824.00	
Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) acrolein acetaldehyde formaldehyde benzene toluene ethylbenzene xylene methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature	8,760 0.2500 1,080	0.0011 0.0174 0.0181 0.0048 0.0051 0.1119 0.0029 0.001 5E-05 0.0004 0.0056 0.1317	0.0047 0.0761 0.0794 0.0211 0.0223 0.4901 0.0127 0.0045 0.0002 0.0016 0.0245 0.5768			0.000588 0.00991 0.00263 0.00279 0.0611988 Mfg. Spec Used 0.00158 0.000558 0.0000248 0.000195 0.00306 0.0720366
Exhaust Gas Flow Rate Total Exhaust Gas Volume Flow, wet	984 984	acfm				
Total Exhaust Gas Volume Flow, wet	16.4	acf per sec				
Exhaust Stack Height	96 8.00	inches feet				
Exhaust Stack Inside Diameter	6 0.500	inches feet				
Exhaust Stack Velocity	83.5	ft/sec	_		4	x acfm
	E 044 E	£4./!		0.4.446	· · ·	/ -tl

5,011.5

ft/min

3.1416 x (stack diameter)^2

Triad Hunter, LLC

Buffalo Run Station Wetzel County

Proposed Emission Rates Controlled Emissions

Source 1S
Engine 1

Engine 1							
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CATERPIL G3306TA Rich-Burn Natural	LLAR					
Manufacturer Rating Speed at Above Rating Number of Cylinders Fuel Consumption Fuel Throughput	203 1,800 4 9,006 13.88	hp rpm Btu/bhp-hr MMcf/yr				AP-42 4strokeRich	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	lb/mmbtu	
Oxides of Nitrogen, NOx	1.29	0.58	2.53	262	13.88		Comment
Carbon Monoxide CO	1.45	0.65	2.85	295	15.61		453.59 grams = 1 pound
VOC (NMNEHC) CO2	0.02	0.01 201.00	0.04 880.38	4	0.23 4824.00		2,000 pounds = 1 ton
Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) acrolein acetaldehyde formaldehyde benzene toluene ethylbenzene xylene methanol total HAPs	8,760 0.0200	0.0011 0.0174 0.0181 0.0048 0.0051 0.009 0.0029 0.001 5E-05 0.0004 0.0056 0.0679	0.0047 0.0761 0.0794 0.0211 0.0223 0.0392 0.0127 0.0045 0.0002 0.0016 0.0245 0.2974			0.000588 0.0095 0.00991 0.00263 0.00279	Mfg. Spec Used
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	1,080 984	deg. F acfm					
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	984 16.4	acfm acf per sec	;				
Exhaust Stack Height	96 8.00	inches feet					
Exhaust Stack Inside Diameter	6 0.500	inches feet					
Exhaust Stack Velocity	83.5 5,011.5	ft/sec ft/min	_	3.1416	4 6 x	x acfm (stack diam	eter)^2

Triad Hunter, LLC VAPOR COMBUSTION UNIT EMISSIONS

Buffalo Run Station Wetzel County

Proposed Emission Rates

Source 2C Vapor Combustor Unit

Destruction Efficiency 99 %
Fuel Burner Rate 2.39 MMBtu/hr
Total Gas Consumption 7.30 MMcf/year

NOx	0.083	lbs/hr	0.37	tpy
со	0.070	lbs/hr	0.31	tpy
VOC	0.005	lbs/hr	0.02	tpy
SO2	0.001	lbs/hr	0.00	tpy
PM	0.006	lbs/hr	0.03	tpy
CO2	278.77	lbs/hr	1221.05	tpy

AP-42 Emission Factors

 NOx
 100 lbs/MMcf

 CO
 84 lbs/MMcf

 VOC
 5.5 lbs/MMcf

 SO2
 0.6 lbs/MMcf

 PM
 7.6 lbs/MMcf

 CO2
 53.02 kg/MMBtu

Buffalo Run Station Wetzel County

Proposed Emission Rates

Source 3S - HTR1
(3) Heated Separators

Fuel Rating 1 MMBtu/hr Total Gas Consumption 25.764 MMcf/year

NOx	0.294	lbs/hr	1.288	tpy
CO	0.247	lbs/hr	1.082	tpy
VOC	0.016	lbs/hr	0.071	tpy
SO2	0.002	lbs/hr	0.008	tpy
PM	0.022	lbs/hr	0.098	tpy
CO2	343.05	lbs/hr	1502.61	tpy

AP-42 Emission Factors

 NOx
 100 lbs/MMcf

 CO
 84 lbs/MMcf

 VOC
 5.5 lbs/MMcf

 SO2
 0.6 lbs/MMcf

 PM
 7.6 lbs/MMcf

 CO2
 53.02 kg/MMBtu

Buffalo Run Station Wetzel County

Proposed Emission Rates

Source 4S - HTR2 Line Heater

Fuel Rating 0.15 MMBtu/hr Total Gas Consumption 1.290 MMcf/year

NOx	0.015	lbs/hr	0.065	tpy
CO	0.012	lbs/hr	0.054	tpy
VOC	0.001	lbs/hr	0.004	tpy
SO2	0.0001	lbs/hr	0.0004	tpy
PM	0.001	lbs/hr	0.005	tpy
CO2	17.17	lbs/hr	75.23	tpy

AP-42 Emission Factors

 NOx
 100 lbs/MMcf

 CO
 84 lbs/MMcf

 VOC
 5.5 lbs/MMcf

 SO2
 0.6 lbs/MMcf

 PM
 7.6 lbs/MMcf

 CO2
 53.02 kg/MMBtu

Triad Hunter, LLC BLOWDOWN EMISSIONS

Buffalo Run Station Wetzel County

Proposed Emission Rates

Blowdowns

Number of Blowdown Events Amount of Natural Gas per Blowdown Total amount of Natural Gas during Blowdowns 10 Events 250.0 cf 2,500.0 cf/year

VOC 300.0 lb/hr 0.15 tpy

Emission Factor VOC 0.12 lb/cf

Triad Hunter, LLC TANK EMISSIONS

Buffalo Run Station Wetzel County

Proposed Emission Rates

Tanks

Measured VOC Emissions (HY-BON) Measured HAPs Emissions (HY-BON) Destruction Efficiency (Vapor Combustor Unit) Control Device 52.63 tons per year (prior to control device)
1.1 tons per year (prior to control device)
99.0 %

VOC	0.526	lb/hr	0.12	tpy
HAPs	0.0108	lb/hr	0.0025	tpy

Buffalo Run Station Wetzel County

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis: Hydrogen Sulfide in Gas Stream

13.35 weight percent 0.00 ppm by volume

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	H2S, wt. %	H2S, lb/hr
Valves:						
Gas/Vapor:	35	0.00992 lb/hr	13.4	0.046	0.000	0.0000
Light Liquid:	6	0.00550 lb/hr	100.0	0.033		
Heavy Liquid (Oil):	-	0.00002 lb/hr	100.0	0.000		
Relief Valves:	3	0.01940 lb/hr	13.4	0.008	0.000	0.0000
Open-ended Lines, gas:		0.00441 lb/hr	13.4	0.000	0.000	0.0000
Open-ended Lines, liquid:	-	0.00031 lb/hr	100.0	0.000		
Pump Seals:						
Gas:	-	0.00529 lb/hr	100.0	0.000	0.000	0.0000
Light Liquid:	2	0.02866 lb/hr	100.0	0.057		
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000		
Compressor Seals, Gas:	6	0.01940 lb/hr	13.4	0.016	0.000	0.0000
Connectors:						
Gas:	15	0.00044 lb/hr	13.4	0.001	0.000	0.0000
Light Liquid:	18	0.00046 lb/hr	100.0	0.008		
Heavy Liquid (Oil):	-	0.00002 lb/hr	100.0	0.000		
Flanges:						
Gas:	38	0.00086 lb/hr	13.4	0.004	0.000	0.0000
Light Liquid:	3	0.00024 lb/hr	100.0	0.001		
Heavy Liquid:	0	0.00000086 lb/hr	100.0	0.000		

•	• . •	~ 1			
HI	gitive	Cal	CIL	สนาก	ns:

	lb/hr	t/y
VOC	0.174	0.763
H2S	0.000	0.000

Notes: * TNRCC approved numbers per their interoffice memorandum dated November 29, 1995

Triad Hunter, LLC

Buffalo Run Station Wetzel County

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.359	0.101	0.003	0.513			ı		0.0036	
Carbon Dioxide, CO2	0.172	0.076	0.003	0.386			-		0.0017	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	1	-	-			ı		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	82.899	13.299	0.459	67.892	753.9	837.3	7.900		0.8273	
Ethane, C2H6	11.632	3.498	0.121	17.855	188.3	205.8	1.940		0.1154	3.094
Propane	3.046	1.343	0.046	6.857	70.5	76.6	0.726	6.857	0.0299	0.835
Iso-Butane	0.430	0.250	0.009	1.276	12.9	14.0	0.133	1.276	0.0042	0.140
Normal Butane	0.679	0.395	0.014	2.015	20.4	22.2	0.210	2.015	0.0066	0.213
Iso Pentane	0.190	0.137	0.005	0.700	7.0	7.6	0.072	0.700	0.0019	0.069
Normal Pentane	0.144	0.104	0.004	0.530	5.3	5.8	0.055	0.530	0.0014	0.052
Hexane	0.449	0.387	0.013	1.975	19.8	21.4	0.203	1.975	0.0044	0.193
Heptane	-	-	-	-			-	-	-	-
	100.000	19.589	0.676		1,078.2	1,190.6	11.240	13.353	0.9965	4.595

 Ideal Gross (HHV)
 1,190.6

 Ideal Gross (sat'd)
 1,170.7

 GPM

 Real Gross (HHV)
 1,194.9

 Real Net (LHV)
 1,082.0

	Un	it 1859 Caterp	oillar G3	306TA Engine	Emissions			
Date of Manufacture Fe	ebruary 6, 2007	Engine Serial Nui	mber	G6X02948	Date Modified/	'Reconstructed	N,	
Driver Rated HP	203	Rated Speed in R	RPM	1800	Combustion Ty	ре	Spark Ignited 4 Strok	
Number of Cylinders	6	Compression Rat	tio	10.5:1	Combustion Setting		Rich Bui	
Displacement, in ³	640	Fuel Delivery Me	ethod	Carburetor	Combustion Air	Treatment	T.C/ Aftercooled	
Raw Engine Emissions								
•	144 LHV BTU/bhp-hr	or 90	006 HHVB	TU/bhp-hr				
	200 ft 90 F							
		g/bhp-h	nr ¹	lb/MMBTU ²	lb/hr	TPY		
Nitrogen Oxides (NOx)		16.15	5		7.228	31.657	•	
Carbon Monoxide (CO)		16.15	5		7.228	31.657		
Volatile Organic Compounds (VOC or	NMNEHC)	0.12			0.054	0.235		
Formaldehyde (CH2O)	b.l.	0.25			0.112	0.490		
Particulate Matter (PM) Filterable+Condens	sable			1.94E-02	0.035	0.155		
Sulfur Dioxide (SO2)				5.88E-04	0.001	0.005		
		g/bhp-h	nr ¹	lb/MMBTU ²	lb/hr	Metric Tonne/yr		
Carbon Dioxide (CO2)		537		110.0	201	799		
Methane (CH4)		0.8		0.23	0.420	1.671		
¹ g/bhp-hr are based on Caterpillar Sp It is recommended to add a safety ma ² Emission Factor obtained from EPA' Gas-Fired Reciprocating Engines, Tab Catalytic Converter Emissions	argin to emissions to a	allow for operational	l flexibility a	nd fuel gas composit	ion variability.	! Natural		
Catalytic Converter Make amd Model	l: Mirat	ech, Model RCS-1816	6-06					
Element Type:	3-Way	/						
Number of Elements in Housing:	1							
Air/Fuel Ratio Control	Comp	liance Controls, AFR-	.9					
Nitrogon Ovidos (NOV)		% Reduct	tion		lb/hr	TPY		
Nitrogen Oxides (NOx) Carbon Monoxide (CO)		92 91.0			0.58 0.65	2.53 2.85		
Volatile Organic Compounds (VOC or	· NMNFHC)	91.0 82			0.65	2.85 0.04		
Formaldehyde (CH2O)	· · · · · · · · · · · · · · · · · · ·	92			0.01	0.04		
Particulate Matter (PM)		0			3.55E-02	1.55E-01		
Sulfur Dioxide (SO2)		0			1.07E-03	4.71E-03		
		% Reduct	tion		lb/hr	Metric Tonne/yr		
Carbon Dioxide (CO2)		0			201	799 1.67		

0

0.42

1.67

Methane (CH4)

ICE Catalyst Sizing Program

ENGINE INPUT (Manufacturer, Model, Type) - Caterpillar G3306TA G3306TA - 203bhp -1800RPM - EXPERT MODE

wt Mass Flow Date	(Manadan	, , ,			00171 <u>2</u> 00011p			
put Mass Flow Rate	lbs/hr	"scfm"	"scfh"	"acfm"	"acfh"	Estimate	ed Exhaust Gas Com	nosition
lb/hr(Estimated):	1,470	332	19,936	984	59,040	N2	74.5	vol%
Brake Horse Power:	203	332	19,930	304	39,040	O2	0.3	vol%
Brake Horse Fower.	200		Maximum Pre	essure Drop (in)	27	H2O	10	vol%
Molecular weight:	28.50		0.025	. , ,	nsity (lbs/ft3)	CO2	10	vol%
o.cod.a. no.g	20.00		0.020	Zmaat Bo	nong (ibarrio)	002		10170
let Temperature		Enter permitted gra	ms per brake hors	e power hour (g/bhp	-hr)			
rocess Temperature (F):	1080	NOx**	'	CO**	,	VOC(NMNE)**		H2CO*
		1.292		1.45		.054		.02
atalyst Type		Catalyst Module De	etails					
		Module	Shape		Module/Layer	1	Layers	1
atural Gas (Stoichiometric)		Rou	und	Diam (inch)	14.5		cpsi	300s
							Depth	3.0
Open area for gas flow (ft2):	1.15	0.1.1.10		00.500		0 ()) ()		
Linear Velocity(ft/min):	858 0.002	Calculated Sp	ace velocity:	69,539		Safety Value	2	
Foil thickness (inches): ressure Drop	0.002	Inlet Pollutants						
100	0.42	Illiet Foliatants	g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
174	0.41	NOx	16.15	7.23	31.66	2,992.00	856.93	
200/230	0.57	CO	16.15	7.23	31.66	2,992.00	856.93	
260	0.90	voc	0.30	0.13	0.59	55.58	15.92	
300	1.22	H2CO	0.25	0.11	0.49	46.32	13.27	
400	1.55							
arget Conversions		Required Output Po	ollutants					
			g/bhp-hr	lb/hr	tons/year	ppmv	ppmvd%O2*	
NOx	92.0%	NOx	1.292	0.58	2.53	239.36	68.55	
со	91.0%	CO	1.45	0.65	2.84	268.63	76.94	
	82.0%	VOC	.054	0.02	0.11	10.00	2.87	
VOC(NMNE) H2CO	92.0%	H2CO	.02	0.01	0.04	3.71	1.06	

Customer:	USA Compression			Project:	UNIT 1859
Sales Person:	Josh Martin	Date:	04/7/2016	Contact:	Chris Magee

^{*} Calculated ppm at 15% Oxygen. Estimated with O2 value provided in "Estimated Exhaust Gas Composition". For accurate value insert actual engine O2.

cpsi\$\$: For stoichiometric engine, must select 300ST.

##: Must be greater than 2.0 inches.

Safety Value: 4 = no risk; 1 = high risk; 2 = default

^{**} Insert required conversion rates.

G3306

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA JayBee Oil & Gas "Buffalo Run" CS 4/7/16

ENGINE SPEED (rpm):
COMPRESSION RATIO:
AFTERCOOLER TYPE:
AFTERCOOLER WATER INLET (°F):
JACKET WATER OUTLET (°F):
ASPIRATION:
COOLING SYSTEM:
CONTROL SYSTEM:

EXHAUST MANIFOLD:

SET POINT TIMING:

EXHAUST OXYGEN (% O2):

COMBUSTION:

1800 8 SCAC 130 210 TA JW+OC, AC

CATALYST SETTING

MAG

WC

0.5

30

COOLING SYSTEM SIZING CRITERIA

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

RATING STRATEGY:
RATING LEVEL:
FUEL SYSTEM:
SITE CONDITIONS:

FUEL:
FUEL PRESSURE RANGE(psig):
FUEL METHANE NUMBER:
FUEL LHV (Btu/scf):

ALTITUDE(ft):
MAXIMUM INLET AIR TEMPERATURE(°F):
STANDARD RATED POWER:

WITH CUSTOMER SUPPLIED AIR FUEL RATIO CONTROL

Gas Analysis
12.0-24.9

66.7

1043

1200

STANDARD

HPG IMPCO

CONTINUOUS

90 203 bhp@1800rpm

				MAXIMUM RATING		TING AT M	
RATING		NOTES	LOAD	100%	100%	75%	51%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	203	201	150	101
INLET AIR TEMPERATURE			°F	83	90	90	90
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(2)	Btu/bhp-hr	8144	8160	8514	9247
FUEL CONSUMPTION (HHV)		(2)	Btu/bhp-hr	9006	9024	9415	10226
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(3)(4)	ft3/min	312	313	250	184
AIR FLOW	(WET)	(3)(4)	lb/hr	1367	1355	1082	798
FUEL FLOW (60°F, 14.7 psia)			scfm	26	26	20	15
INLET MANIFOLD PRESSURE		(5)	in Hg(abs)	38.1	37.9	31.8	24.7
EXHAUST TEMPERATURE - ENGINE OUTLET		(6)	°F	1080	1078	1044	1003
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(7)(4)	ft3/min	984	974	759	544
EXHAUST GAS MASS FLOW	(WET)	(7)(4)	lb/hr	1445	1432	1143	842
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(8)(9)	g/bhp-hr	16.15	16.12	15.77	13.43
co		(8)(9)	g/bhp-hr	16.15	16.12	15.77	13.43
THC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	1.10	1.11	1.28	1.53
NMHC (mol. wt. of 15.84)		(8)(9)	g/bhp-hr	0.30	0.30	0.35	0.42
NMNEHC (VOCs) (mol. wt. of 15.84)		(8)(9)(10)	g/bhp-hr	0.12	0.12	0.14	0.16
HCHO (Formaldehyde)		(8)(9)	g/bhp-hr	0.25	0.25	0.25	0.25
CO2		(8)(9)	g/bhp-hr	537	539	578	639
EXHAUST OXYGEN		(8)(11)	% DRY	0.5	0.5	0.5	0.5
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(12)	Btu/min	9044	8989	7510	6045
HEAT REJ. TO ATMOSPHERE		(12)	Btu/min	1102	1091	854	625
I			I	I	I		'

CONDITIONS AND DEFINITIONS

HEAT REJ. TO LUBE OIL (OC)

HEAT REJ. TO AFTERCOOLER (AC)

TOTAL JACKET WATER CIRCUIT (JW+OC)

TOTAL AFTERCOOLER CIRCUIT (AC)

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

(12)

(12)(13)

(13)

(13)(14)

Btu/min

Rtu/min

Btu/min

Btu/min

1430

681

11664

715

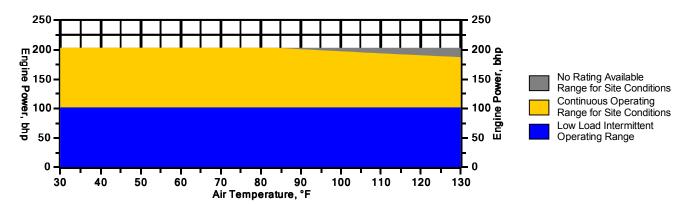
1421

681

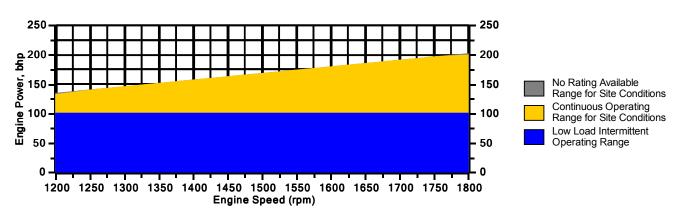
1187

265

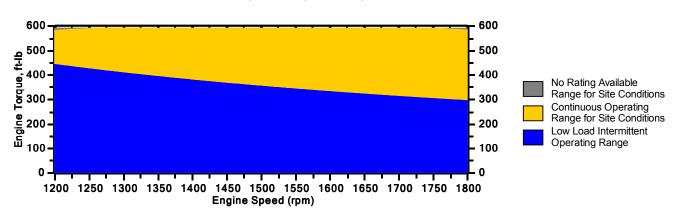
956


40

For notes information consult page three.


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1800 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1200 ft and 90 °F

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1210 rpm. The minimum speed for loading at these conditions is 1200 rpm.

G3306

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA JayBee Oil & Gas "Buffalo Run" CS 4/7/16

NOTES

- 1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 2. Fuel consumption tolerance is ± 5.0% of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.
- 9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part Load data requires customer supplied air fuel ratio control.
- 10. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 11. Exhaust Oxygen tolerance is ± 0.2.
- 12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit
- 13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	86.0980	86.0971	Fuel Makeup:	Gas Analysis
Ethane	C2H6	9.9680	9.9679	Unit of Measure:	English
Propane	C3H8	2.5360	2.5360		_
Isobutane	iso-C4H1O	0.3180	0.3180	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.4690	0.4690	•	66.7
Isopentane	iso-C5H12	0.1220	0.1220	Caterpillar Methane Number:	66.7
Norpentane	nor-C5H12	0.0940	0.0940		
Hexane	C6H14	0.1270	0.1270	Lower Heating Value (Btu/scf):	1043
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1153
Nitrogen	N2	0.0000	0.0000	WOBBE Index (Btu/scf):	1296
Carbon Dioxide	CO2	0.2690	0.2690	,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	370.75
Carbon Monoxide	CO	0.0000	0.0000		0.27%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	10.85
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.75
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.648
Propylene	C3H6	0.0000	0.0000	,	1.294
TOTAL (Volume %)		100.0010	100.0000	Specific Heat Constant (K):	1.294

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Public Notice Affidavit

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Triad Hunter, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update for its Buffalo Run Production Facility off of 2610 Buffalo Road near Jacksonburg in Wetzel County, West Virginia. (Lat. 39.50364, Long. -80.63578)

The applicant estimates the following potential <u>decreases</u> to discharge for following Regulated Air Pollutants will be:

0.27 tons of Nitrogen Oxides per year0.13 tons of Carbon Monoxide per year226 tons of Green House Gases per year0.02 tons of Particulate Matter per year

The Facility is currently operational. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Mike Horan, Vice President of Appalachian Production Triad Hunter, LLC 125 Putnam Road Marietta, Ohio 45750