May xx, 2016

West Virginia Dept. of Environmental Protection Division of Air Quality – Permitting Section 601 57th Street, SE Charleston, WV 25304

98 VANADIUM ROAD BUILDING D, 2nd FLOOR BRIDGEVILLE, PA 15017 (412) 221-1100 (412) 257-6103 (FAX) http://www.se-env.com

RE: Application for NSR Construction Permit Dopey Well Pad Production Facility Jay-Bee Oil & Gas, Inc. Tyler County, West Virginia

To Whom It May Concern:

On behalf of our client, Jay-Bee Oil & Gas, we are pleased to submit one hard copy and two electronic copies of the Application for an NSR Construction Permit for its Dopey Well Pad Production Facility in Tyler County. This application is being submitted as an individual permit application rather than a G70-B general permit registration as the facility will be contiguous and aggregated with the Icon Midstream Dopey Dehydration Facility (application being submitted separately). As such, the Dopey Well Pad Production Facility is not eligible for registration under the G70-B general permit.

A fee in the amount of \$2,000 (\$1,000 Permit Fee + \$1,000 NSPS Fee) was determined to be applicable. A check, payable to WVDEP – Division of Air Quality for this amount is included herein.

If there are any questions or concerns regarding this application, please contact me at 412/221-1100, x 202 or <u>rdhonau@se-env.com</u> and we will provide any needed clarification or additional information immediately.

Sincerely,

SE TECHNOLOGIES, LLC

Roger A. Dhonau, PE, QEP Principal

Enclosures Cc: Jay-Bee Oil & Gas, Inc. – Shane Dowell

JAY-BEE OIL & GAS, Inc.

APPLICATION FOR NSR CONSTRUCTION PERMIT

Dopey Well Pad Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR NSR (45CSR13) CONSTRUCTION PERMIT

Jay-Bee Oil & Gas, Inc.

Dopey Dehydration Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Business Certificate
 - Attachment B Area Map
 - Attachment C Installation and Start-Up Schedule
 - Attachment D Regulatory Discussion
 - Attachment E Plot Plan
 - Attachment F Process Flow Diagram
 - Attachment G Process Description
 - Attachment I Emission Units Table
 - Attachment J Emission Points Data Summary Sheet
 - Attachment K Fugitive Emissions Data Summary Sheet
 - Attachment L Emission Unit Data Sheets
 - Attachment M- Air Pollution Control Device Sheets
 - Attachment N Supporting Emissions Calculations
 - Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan
 - Attachment P Public Notice

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	Y APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)											
Section I. General												
 Name of applicant (as registered with the WV Secretar Jay-Bee Oil & Gas, Inc. 	ry of State's Office): 2. Federal Employer ID No. (FEIN): 55-073-8862											
3. Name of facility <i>(if different from above):</i> Dopey Well Pad Production Facility	4. The applicant is the:											
5A. Applicant's mailing address: 3570 Shields Hill Rd Cairo, WV 26337	5B. Facility's present physical address: Off Indian Creek Road Middlebourne in Tyler County											
change amendments or other Business Registration C	ation/Organization/Limited Partnership (one page) including any name Certificate as Attachment A. /Authority of L.L.C./Registration (one page) including any name change											
7. If applicant is a subsidiary corporation, please provide the	the name of parent corporation: N/A											
 8. Does the applicant own, lease, have an option to buy or If YES, please explain: Applicant has a lease a associated equipment. If NO, you are not eligible for a permit for this source. 	agreement with the land owner for installation of the Well Pad and t.											
 Type of plant or facility (stationary source) to be const administratively updated or temporarily permitted crusher, etc.): Natural Gas Well Pad Production Facility 	(e.g., coal preparation plant, primary Classification System											
11A. DAQ Plant ID No. (for existing facilities only): 1	11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):											
All of the required forms and additional information can be fo	found under the Permitting Section of DAQ's website, or requested by phone.											

12A.									
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the							
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	provide directions to the proposed new s	site location from the nearest state							
From Middlebourne, proceed southeast on State Route 18 with CR 1/3 (Indian Creek Road) on the left. From WV 1 miles. Turn right onto lease road, follow north for 0.2 mil	8 and Indian Creek (CR13) intersection,								
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:							
	Middlebourne	Tyler							
12.E. UTM Northing (KM): 4,365.41	12F. UTM Easting (KM): 519.57	12G. UTM Zone: 17							
13. Briefly describe the proposed change(s) at the facilit Natural gas production and separation of liquids.	-	·							
14A. Provide the date of anticipated installation or change: July 15 2016 14B. Date of anticipated Statistical Statiste Statistical Statistical Statistical Statisti									
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit							
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applicative Weeks Per Year 52	ation:							
16. Is demolition or physical renovation at an existing fa	cility involved? 🗌 YES 🛛 🕅 NO								
17. Risk Management Plans. If this facility is subject to	o 112(r) of the 1990 CAAA, or will becom	ne subject due to proposed							
changes (for applicability help see www.epa.gov/cep	oo), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the							
proposed process (if known). A list of possible application	able requirements is also included in Att	achment S of this application							
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this							
information as Attachment D.									
Section II. Additional att	achments and supporting d	ocuments.							
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	n fee (per 45CSR22 and							
45CSR13).									
20. Include a Table of Contents as the first page of you	ur application package.								
21. Provide a Plot Plan , e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (R		erty on which the stationary							
 Indicate the location of the nearest occupied structure 									
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	wing each proposed or modified emissio	ns unit, emission point and control							

23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Provide Material Safety Data Sheet	s (MSDS) for all materials proc	essed, used or produced as Attachment H.								
 For chemical processes, provide a MSDS for each compound emitted to the air. 										
25. Fill out the Emission Units Table an	d provide it as Attachment I.									
26. Fill out the Emission Points Data Second	ummary Sheet (Table 1 and 1	able 2) and provide it as Attachment J.								
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide	it as Attachment K.								
28. Check all applicable Emissions Unit	Data Sheets listed below:									
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry								
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage								
Concrete Batch Plant	Incinerator	Facilities								
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks								
General Emission Unit, specify										
Fill out and provide the Emissions Unit I										
29. Check all applicable Air Pollution C	ontrol Device Sheets listed be	elow:								
Absorption Systems	Baghouse	☐ Flare								
Adsorption Systems	Condenser	Mechanical Collector								
Afterburner	Electrostatic Precip									
Other Collectors, specify Enclosed Co	mbustion Device (Vapor Comb	ustion Unit)								
Fill out and provide the Air Pollution Cor										
30. Provide all Supporting Emissions C Items 28 through 31.	Calculations as Attachment N	, or attach the calculations directly to the forms listed in								
	compliance with the proposed	ch proposed monitoring, recordkeeping, reporting and emissions limits and operating parameters in this permit								
	ly not be able to accept all mea	ether or not the applicant chooses to propose such sures proposed by the applicant. If none of these plans slude them in the permit.								
32. Public Notice. At the time that the a	application is submitted, place	a Class I Legal Advertisement in a newspaper of general								
circulation in the area where the sour	ce is or will be located (See 45	CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>								
Advertisement for details). Please s	submit the Affidavit of Publica	tion as Attachment P immediately upon receipt.								
33. Business Confidentiality Claims.	Does this application include co	onfidential information (per 45CSR31)?								
	⊠ NO									
segment claimed confidential, includi Notice – Claims of Confidentiality'	ng the criteria under 45CSR§3 'guidance found in the Genera									
Se	ection III. Certification	of Information								
34. Authority/Delegation of Authority. Check applicable Authority Form be		other than the responsible official signs the application.								
Authority of Corporation or Other Busi	ness Entity	Authority of Partnership								
Authority of Governmental Agency	[Authority of Limited Partnership								
Submit completed and signed Authority	Form as Attachment R.									
		e Permitting Section of DAQ's website, or requested by phone.								

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

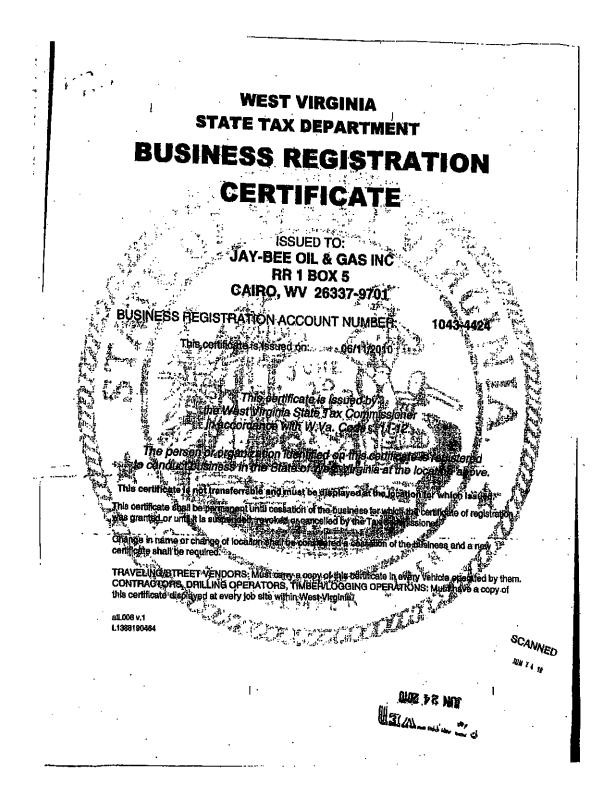
Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	use blue ink)	DATE: <u>5-13-2016</u> (Please use blue ink)
35B. Printed name of signee: Shane Dowell		35C. Title: Office Manager
35D. E-mail: sdowell@jaybeeoil.com	36E. Phone: 304/628-3111	36F. FAX:
36A. Printed name of contact person (if differe	nt from above):	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:										
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 										
	Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.										
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:											
Forward 1 copy of the application to the Title V Permitting	g Group and:										
For Title V Administrative Amendments:											
NSR permit writer should notify Title V permit write	ter of draft permit,										
For Title V Minor Modifications:											
	fication to EPA and affected states within 5 days of receipt,										
NSR permit writer should notify Title V permit writer											
For Title V Significant Modifications processed in parallel											
NSR permit writer should notify a Title V permit w											
Public notice should reference both 45CSR13 and Description:	i nue v permits,										
EPA has 45 day review period of a draft permit.											
All of the required forms and additional information can be f	ound under the Permitting Section of DAQ's website, or requested by phone.										

SECTION II


Attachments

ATTACHMENT A

Business Certificate


Attachment A

Attached Current WV Business Certificate

ATTACHMENT B

Area Map

Plot: env045 05/10/2016 11:04 G:\JAY-BEE OIL&GAS\214054\D0PEY0D0PEYm01.dwg

ATTACHMENT C

Installation and Start-Up Schedule

Jay-Bee Oil & Gas, Inc. Dopey Well Pad Production Facility Attachment C – Installation and Start-Up Schedule

The Facility is currently beginning top-hole drilling. It is anticipated that the equipment associated with this permit will be installed upon completion of drilling and prior to well completion. It is anticipated that this will be in July or August 2016.

ATTACHMENT D

Regulatory Discussion

Dopey Well Pad Production Facility Attachment D Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to the Dopey Well Pad Production Facility. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

1.1 PSD and NSR

The Facility is a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it does not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant with the voluntary restrictions (e.g., catalytic converter on the engine and control of tank emissions).

The Facility is within an area designated as attainment for all criteria pollutants. Consequently, the Facility is not subject to the New Source Review (NSR) regulations. Consequently, NSR requirements are not applicable to this project.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits. Maximum potential HAP and Criteria Pollutants from the proposed facility, alone and in conjunction with the aggregated Icon Midstream facility (see Section 1.3) are below thses thresholds. Additionally, none of the applicable NSPS mandate a Title V permit. Hence, such a permit is not required for this facility.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

This new Jay-Bee Oil & Gas facility will receive and manage raw natural gas and associated produced fluids from the on-site wells. After separation of the liquids, the gas will be routed to an adjoining Icon Midstream dehydration facility where water vapor is removed from the gas and it is injected into gathering lines for transportation.

The Dopey Well Pad Production Facility and the receiving Icon Midstream Dopey Dehydration Facility are under the same general SIC Code. While they are under separate ownership, they may, from time to time have a sharing of staff. The Icon Midstream Dopey Dehydration Facility supports operation of the Dopey Well Pad and only exists as a support for gas coming from this well pad. Therefore, emissions from the Dopey Dehydration Facility should be aggregated with Jay-Bee's Dopey Well Pad to determine major source status.

The closest Jay-Bee facility to the Dopey Well Pad Production Facility is its Doc Well Pad Production Facility. Again, this under the same SIC code and may, from time to time, have a sharing of staff. However, these two well pads are approximately 4100 feet (0.78 miles) apart. Additionally, they are not on contiguous or adjacent parcels. Lastly, there is no interconnection or interdependency between these two facilities. Gas from one well pad does not flow to the other. Accordingly, the operation of one well pad is not dependent upon the operation of the other. Thus, given the lack of dependency and the distance of separation, emissions from these two well pads should not be aggregated.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). Specific NSPS requirements potentially applicable to the Dopey Well Pad Production Facility are as follows:

- 40 CFR 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 <u>Subpart Dc</u>

This subpart limits SO2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations it to control SOx and PM emissions from coal and

oil-fired boilers and heaters, natural gas fired units are also covered under this rule. The Gas Processing Units have heat inputs that are well below the threshold of coverage for this rule (10 MMBTU/Hr). Thus, this rule does not apply.

1.4.2 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. The driver for the Vapor Recovery Unit is an SI ICE unit manufactured after this date. Accordingly, this rule applies to this engine. More specifically, 60.4233(d) stipulates that non-emergency natural gas-fired rich burn engines 25-100 HP must comply with the emission standards of 40 CFR 1048.101(c). According to this rule, only NOx and CO limitations are set for engines of this size and fueled by natural gas. Thus, NOx must be less than 3.8 g/kW-hr and CO must be less than 6.5 g/kW-hr. Given that 1 kW equals 1.341 HP, this is equivalent to 2.8 g/bhp-hr for NOx and 4.8 g/bhp-hr for CO. The controlled engine emissions will meet this standard.

1.4.3 Subpart OOOO

This subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at natural gas well pads. The potentially applicable sections of this rule sets restrictions, recordkeeping and reporting requirements on emissions from storage vessels with potential VOC emissions greater than 6 tpy, fugitive emissions, reciprocating compressors and pneumatic controllers. This rule applies to the Dopey Well Pad Production Facility.

One of the key components to this rule [40 CFR 60.5390(b)] applicable to the Dopey Well Pad Production Facility is the requirement that all pneumatic controllers located between the well head and a processing plant must have a bleed rate of less than 6 scfh. All pneumatic controllers installed at Dopey Well Pad Production Facility meet these criteria.

Lastly, this rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The condensate tanks at Dopey have an estimated *uncontrolled* VOC emission rate well in excess of this threshold. As described in 40 CFR 60.5365(e), *the determination may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a Federal, State, local or tribal authority. The control systems proposed in this application will reduce VOC emissions from the tanks described above to rates below the 6 tpy limit per tank and operation of these controls will become part of the permit. Thus, the tanks at this facility will not be regulated under 40 CFR 60, Subpart OOOO.*

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial

processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned Dopey Well Pad Production Facility:

- 40 CFR 63, Subpart ZZZZ NESHAP from Stationary Reciprocating Internal Combustion Engines
- 40 CFR 63, Subpart JJJJJJ NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters

1.5.1 Subpart ZZZZ

This Subpart governs emissions from a stationary reciprocating internal combustion engine (RICE) located both at major and area source of HAPs. The Facility is not a major source of HAPs, but is considered an area source of HAPs. Hence, this rule is potentially applicable to the Facility. In accordance with 40 CFR 63.6590(a)(2)(iii), the single engine at the Dopey Well Pad Production Facility is not considered an Existing Stationary RICE. Rather, it is considered a "new" engine. Thus, the engine meets the requirements of this rule by meeting the requirements of NSPS, Subpart JJJJ.

1.5.2 Subpart JJJJJJJ

This Subpart applies to industrial, commercial, or institutional boilers located at an area source of HAPs. This Facility contains natural gas-fired line heaters; therefore it is not subject to this Subpart per 40 CFR 63.11195(e).

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The Dopey Well Pad Production Facility potentially stores more than 10,000 lbs of a flammable mixture containing several of the substances listed in Table 3 in 40 CFR 68.130. However, an RMP is not required as this facility qualifies for the exclusion provided for remote oil and gas production facilities (40 CFR 68.115).

1.7 West Virginia State Requirements

1.7.1 <u>45 CSR 2</u>

The purpose of 45CSR2 is to control smoke and particulate matter emissions from fuel burning units. The Facility is subject to the opacity requirement of 45 CSR 2. Emissions from the Facility cannot exceed 10% over any six minute period.

1.7.2 <u>45 CSR 4</u>

This regulation prohibits the emission of objectionable odors. Jay-Bee Oil & Gas is obligated to run the station in a manner that does not produce objectionable odors.

1.7.3 <u>45 CSR 6</u>

This rule establishes emission standards for particulate matter and other requirements for incineration of refuse not subject to or specifically exempted from federal regulation. The Enclosed Combustor falls under Section 4.1 of this rule. PM emissions from the Enclosed Combustor must remain below the allowable limit calculated under this rule.

The Enclosed Combustor must also meet the visible emissions requirements of this rule limiting visible emissions to 20% opacity.

1.7.4 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the Facility, no actions are required on the part of Jay-Bee Oil & Gas to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

1.7.5 <u>45 CSR 13</u>

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed Dopey Well Pad Production Facility has the potential to emit several regulated pollutants in excess of the thresholds that define a Stationary Source.

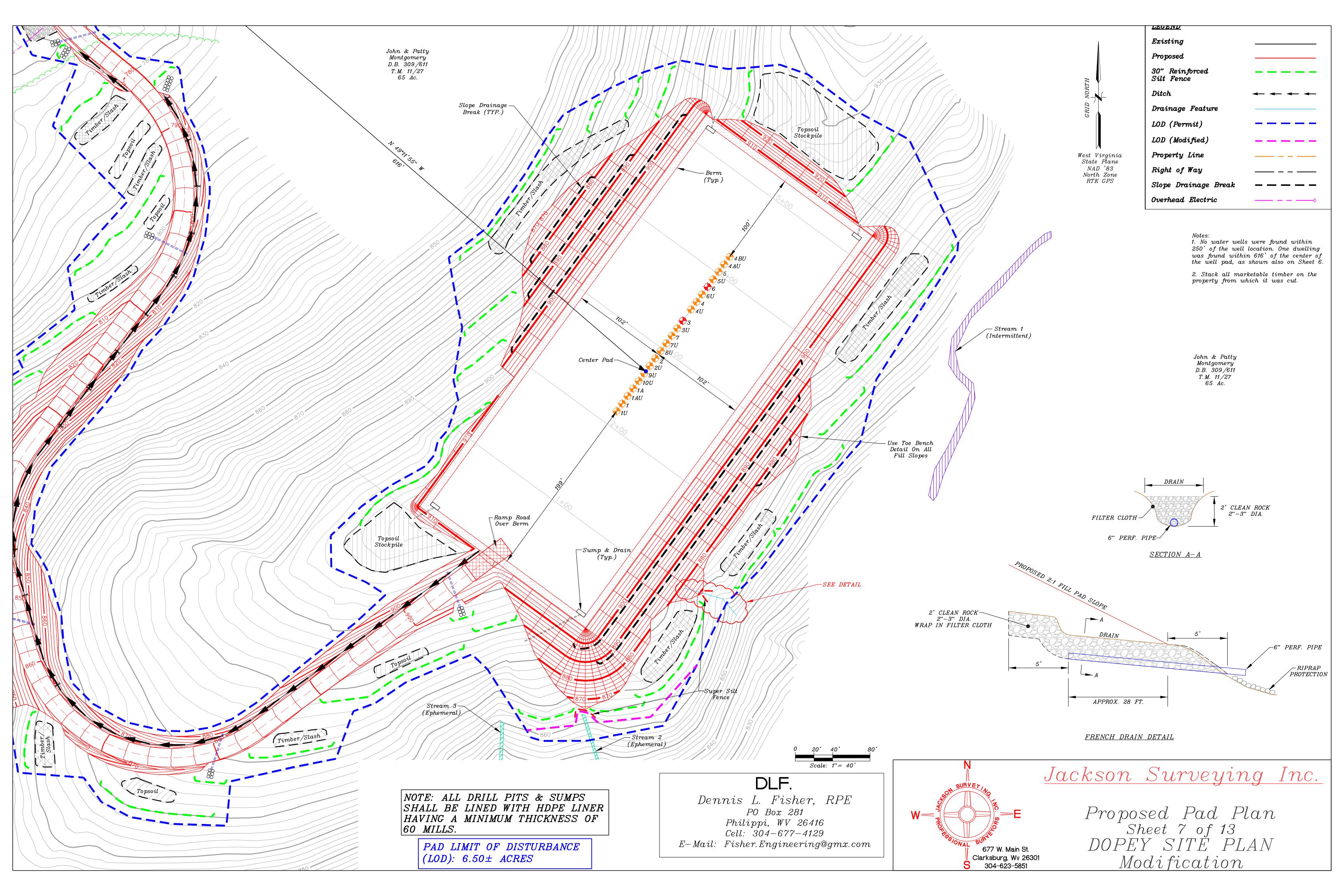
When taking into consideration the voluntary limit to operate the engines equipped with catalysts only when the catalytic converters are properly functioning, the Facility's potential to emit is less than the thresholds that would classify the Facility as a major source under 45 CSR 14.

1.7.6 <u>45 CSR 16</u>

This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the Dopey Well Pad Production Facility is subject to the emission limitations, monitoring, testing and recordkeeping of Subpart JJJJ. The Facility is also subject to Subpart OOOO.

1.7.7 <u>45 CSR 30</u>

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The Dopey Well Pad Production Facility, as noted above, does not have the potential to emit any regulated pollutant above the threshold that would define it as a major source. Additionally, although the Facility is subject to certain New Source Performance Standards, the NSPS applicable to this


facility do not trigger the need to submit a Title V application and obtain a Title V permit. Hence this rule is not applicable.

1.7.8 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. Both of these topics have been addressed above.


ATTACHMENT E

Plot Plan

ATTACHMENT F

Process Flow Diagram

ATTACHMENT G

Process Description

Jay-Bee Oil & Gas, Incorporated Dopey Well Pad Production Facility Attachment G Process Description

At this facility, Natural gas and Produced Fluids (condensate and water) will be received from three wells and passed through Gas Processing Units (one per well) to avoid ice formation during subsequent pressure drops. These materials will then pass through a three-way separator where gas, condensate and water are separated. The gas will be routed to the adjacent Icon Midstream Big Moses Dehydration Facility (proposed separately) and then injected into a gathering pipeline owned and operated by others.

Both Condensate and Produced Water will be accumulated in six 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate will be transported to a regional processing facility and the Produced Water a regional disposal facility. Flash, working and breathing losses from these tanks will be routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor will be utilized as a backup control device for times when the VRU is not available (estimated max of 200 hours per year) and if a large slug of condensate production generates flash gas in excess of the capacity of the VRU.

A capture and control efficiency of 95% is being claimed for the VRU and 98% for the combustor.

A Process Flow Diagram depicting these features is provided in Attachment D.

Lastly, Jay-Bee is seeking approval for installation of a Thermo-electric generator to meet the minor electric demands for various monitoring and data tracking equipment.

There are no gas-fired compressor engines, other than a single engine for the vapor recovery unit (VRU). Additionally, no dehydration units are proposed for this facility at this time.

All gas fired equipment (GPUs) use natural gas produced at the site as fuel.

40 CFR 60, Subpart OOOO requires that VOC emissions from each "storage vessel affected facility" installed after April 12, 2013 (GROUP 2) must be controlled by at least 95% by April 15, 2014 when the VOC uncontrolled emissions exceed 6 tpy. As described in 40 CFR 60.5365(e), *the determination may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a Federal, State, local or tribal authority.* The control systems proposed in this application will reduce VOC emissions from the tanks described above to rates below the 6 tpy limit per tank and operation of these controls will become part of the permit. Thus, the tanks at this facility will not be regulated under 40 CFR 60, Subpart OOOO.

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
HTR-1	1E	Gas Processing Unit	Upon Receipt of Permit	1.5 MMBTU/Hr	NEW	None
HTR-2	2E	Gas Processing Unit	Upon Receipt of Permit	1.5 MMBTU/Hr	NEW	None
HTR-3	3E	Gas Processing Unit	Upon Receipt of Permit	2.0 MMBTU/Hr	NEW	None
T01	4E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T02	4E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T03	4E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T04	4E	Produce Water Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T05	4E	Produced Water Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T06	4E	Produced Water Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
TL-1	5E	Condensate Truck Loading	Upon Receipt of Permit	30,000 BBL/vr	NEW	None
TL-2	6E	Produced Water Truck Loading	Upon Receipt of Permit	63,600 BBL/yr	NEW	None
CE-1	7E	VRU Driver	Upon Receipt of Permit	84 Hp	NEW	1C
TEG-1	8E	Thermoelectric Generator	Upon Receipt of Permit	4.4 KW/Hr	NEW	None
EC-1	9E	Enclosed Combustor	Upon Receipt of Permit	10.0 MMBTU/Hr	NEW	N/A
HTR-4	10-E	Line Heater	Upon Receipt of Permit	0.5 MMBTU/Hr	NEW	None

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

ATTACHMENT J Emission Points Data Summary Sheet <u>New Equipment Only</u>

						Ta	able 1:	Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/in)
			Gas Processing Unit					NO _x	0.15	0.66	0.15	0.66	Gas	EE	
								СО	0.13	0.55	0.13	0.55	Gas	EE	
	Upward				None	С	8760	VOC	0.01	0.04	0.01	0.04	Gas	EE	
1 E	Vertical Stack	HTR-1						SO_2	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	Stack							PM/PM10	0.011	0.05	0.011	0.05	Solid	EE	
								Formaldehyde	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	181.2	794	181.2	794	Gas	EE	
								NO _x	0.15	0.66	0.15	0.66	Gas	EE	
								СО	0.13	0.55	0.13	0.55	Gas	EE	
	Unword		Gas					VOC	0.01	0.04	0.01	0.04	Gas	EE	
2 E	Upward Vertical Stack	HTR-2	Processing Unit		None	С	8760	SO_2	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	STACK		Ullit					PM/PM10	0.011	0.05	0.011	0.05	Solid	EE	
								Formaldehyde	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	181.2	794	181.2	794	Gas	EE	

Emission Units Table	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or
Units Table & Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term 2	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		mg/m ⁴)
			Gas Processing Unit					NO _x	0.20	0.88	0.20	0.88	Gas	EE	
								СО	0.17	0.74	0.17	0.74	Gas	EE	
	Upward				None	С	8760 -	VOC	0.01	0.05	0.01	0.05	Gas	EE	
3E	Vertical Vent	HTR-3						SO_2	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	vent							PM/PM10	0.015	0.07	0.015	0.07	Solid	EE	
								Formaldehyde	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	241.6	1,058	241.6	1,058	Gas	EE	
								NO _x			0.03	0.09	Gas	EE	
							F	СО			1.61	0.34	Gas	EE	
	Upward	T01 T02	Cond. Tanks +	VRU-1	Vapor			VOC			2.92	0.58	Gas	EE	
4 E	Vertical Vent	T03 T04	Water Tank Un-	(4E) EC-1	Recovery Unit / Enclosed	С	8760	SO_2			< 0.01	< 0.01	Gas	EE	
	V CIIL	T05 T06	captured emissions	(9E)	Combustor			PM/PM10			0.02	0.01	Solid	EE	
								Formaldehyde			< 0.01	< 0.01	Gas	EE	
								CO2e			559.4	144	Gas	EE	

Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		mg/m)
		TL-1 TL-2						NO _x					Gas	EE	
								СО					Gas	EE	
	Unword		Cond. Tanks +				1360	VOC	27.90	2.31	27.90	2.31	Gas	EE	
5E + 6E	Upward Vertical Vent		Water Tank Truck Loading		None	S	(4 hr per day, 340 days per year)	SO ₂					Gas	EE	
	vent							PM/PM10					Solid	EE	
								Formaldehyde					Gas	EE	
								CO2e					Gas	EE	
								NO _x	2.11	9	0.19	0.81	Gas	EE	
								СО	2.64	11.57	0.37	1.62	Gas	EE	
	Unword							VOC	0.05	0.21	0.04	0.18	Gas	EE	
7 E	Upward Vertical Vent	CE-1		1C	NSCR	С	8760	SO_2	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	V CIIL							PM/PM10	0.013	0.06	0.013	0.06	Solid	EE	
								Formaldehyde	0.017	0.07	0.015	0.07	Gas	EE	
								CO2e	89.4	391	89.4	391	Gas	EE	

Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/in)
								NO _x	< 0.01	0.01	< 0.01	0.01	Gas	EE	
		TEG-1						СО	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	T		Thermo- Electric Generator					VOC	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
8E	Upward Vertical Vent				None	С	8760	SO ₂	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	vent							PM/PM10	< 0.01	< 0.01	< 0.01	< 0.01	Solid	EE	
								Formaldehyde	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	1.6	7	1.6	7	Gas	EE	
								NO _x	0.05	0.22	0.05	0.22	Gas	EE	
						С		СО	0.04	0.18	0.04	0.18	Gas	EE	
	Unword							VOC	< 0.01	0.01	< 0.01	0.01	Gas	EE	
10E	Upward Vertical Vent	HTR-4	Line Heater		N/A		8760	SO_2	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
	v ciit							PM/PM10	< 0.01	0.02	< 0.01	0.02	Solid	EE	
								Formaldehyde	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	60.4	265	60.4	265	Gas	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that un-captured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g., un-captured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1. Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2. Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).

5. Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).

6. Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT J

Emission Points Data Summary Sheet New Equipment

	Table 2: Release Parameter Data							
Emission		Exit Gas			Emission Poin	nt Elevation (ft)	UTM Coordinates (km)	
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating</i> <i>conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
1E	0.5	1050	Est 200	Est 10	750	8		
2E	0.5	1050	Est 200	Est 10	750	8		
3E	0.25	1050	Est 200	Est 10	750	8		
4E								
5E	0.33	Ambient	Est 300	Est 10	750	12		
6E	0.33	Ambient	Est. 300	Est 10	750	12		
7E	0.5	1050	Est. 300	Est 15	750	12		
8E	0.2	800	Est. 10	Est 5	750	6		
9E	0.5	1100	Est. 400	Est 20	750	10		

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Jay-Bee Oil & Gas, Inc. Dopey Well Pad Production Facility Attachment K Fugitive Emissions Data

Equipment Fugitive Emissions

As noted in the process description, Jay Bee plans to install various equipment at its Dopey Well Pad Production Facility. This equipment will contain a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. A potential emission rate of 0.76 tpy of VOCs and 23.1 tpy CO₂e has been estimated.

Estimates of these emissions are included in the calculations (Attachment N) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Pigging Emission Estimates

There will be no pigging operations in association with this planned facility.

Facility Blowdown Emission Estimates

There will be one gas compressor at this facility, utilized as a Vapor Recovery Unit (VRU). This device will require blowdowns to allow for routine maintenance. The volume of natural gas released per blowdown event from this unit and associated inlet separator and piping is estimated at 64.4 cubic feet at STP (see attached calculations from vendor). There will be a maximum of 16 blow downs per year for this VRU. Thus, there is a potential for 1030 cubic feet of gas emitted from blowdowns per year.

The blowdown gas composition is best represented by the condensate flash gas, its primary constituent. The specific gravity of this gas at STP is 1.387 (see the Hydrocarbon Liquid Flashed Report in the calculations). With the density of air at STP being 0.0806 pounds per cubic foot, the mass of gas released per year is 115 pounds (1030 cf x 0.0806 x 1.387). As the percentage of VOCs in the gas (by weight) is 70.17 percent (again see the Hydrocarbon Liquid Flashed Report in the calculations), the VOC (non-methane/non-ethane) emissions from blowdown operations are estimated at approximately 80.8 lbs or 0.04 tons per year. HAPs (almost exclusively n-hexane) are estimated to be 2.30 percent of the mass of the blowdown emissions or 2.6 lb/yr (115 x 0.023) or <0.01 tpy. The methane concentration in this gas is 9.93% (by weight). Therefore, methane emissions will be 11.4 pounds per year. Using a GHG factor of 25, methane emissions from blowdowns in CO_{2e} will be 0.14 tons CO₂e (11.4 x 25[GHG factor] /2000).

Storage Tank and Haul Road Fugitive Emissions

Produced Fluids (water and condensate) received by this facility will be accumulated in six 400-BBL tanks (three condensate and three water) prior to off-site shipment. Emissions from these tanks were determined by using flash gas measurements from pressurized condensate produced at an area Jay-Bee well pad and working/breathing losses via AP-42 methods using condensate vapor data from this same condensate. Uncontrolled emission from these tanks were determined to be 640.2 tons per year of VOCs. These vapors are routed to the VRU a minimum efficiency of 95%. Emission calculations, including times when the VRU is not available are presented in Attachment I.

Emissions from these sources are summarized in the following fugitive emissions form and the calculations are included in the emissions summary in Attachment N.

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
-	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum Po Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	РМ	16.53	3.43	16.53	3.43	EE
Loading/Unloading Operations	VOCs	27.9	2.31	27.9	2.31	EE
	Total HAPs	1.37	0.11	1.37	0.11	EE
Equipment Leaks	VOCs	Does Not Apply	0.76	Does Not Apply	0.76	EE
	CO2e	Does Not Apply	23.1	Does Not Apply	23.1	EE
Blowdowns	VOCs	N/A	0.04	N/A	0.04	EE
	Total HAPs	N/A	<0.01	N/A	<0.01	EE
Other:						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ENTER the following Values:	Suction Pressure, psig	1	Suction Temperature, F	80				
	Discharge Pressure, psig	300	Discharge Temperature, F	130				
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles
1st Stage Cylinder	6.50	3.00	1.125	0.00	97	539	100	0.001
2nd Stage Cylinder	2.25	3.00	1.125	0.00	9	739	199	0.000
3rd Stage Cylinder	4.00	3.00	1.125	0.00	35	739	300	0.001
Scrubbers/Suction & Discharge Drums	OD, in	Height, in	Total Scrubber Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles
1st Stage Scrubber	12.00	60.00	6786			539	1	0.011
2nd Stage Scrubber	8.00	48.00	2413			589	100	0.025
3rd Stage Scrubber	8.00	48.00	2413			589	199	0.047
Cooler Section	No. of Tubes	OD, in	Length, in	Total Tube Volume, in ³		Temperature, R	Pressure, psig	Calculated Moles
1st Stage Cooler Section	23	0.63	96	677		739	100	0.006
2nd Stage Cooler Section	20	0.63	96	589		739	199	0.009
3rd Stage Cooler Section	24	0.63	96	707		739	300	0.016
Piping	OD, in	Length, in	Total Piping Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles
1st Stage Piping	4.00	200	2513			739	100	0.021
2nd Stage Piping	3.00	57	403			739	199	0.006
3rd Stage Piping	2.00	330	1037			739	300	0.024
Bypass	0.00	0	0			589	300	0.000
				Т	otal Estimated Moles of Gas Di	scharged to Atmosph	ere per Blowdown =	= 0.17
				Total F	Estimated Volume of Blowdo	own Gas, ft ³ @ STP	(68F, 14.7 psia) =	64.4

ATTACHMENT L

Emissions Unit Data Sheets

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at this facility:				
047-095-02239				
047-095-02240				
047-095-02311				

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Source ID # ¹	Status ²	Design Heat Input (mmBtu/hr) ³	Hours of Operation (hrs/yr) ⁴	Fuel Heating Value (Btu/scf) ⁵		
GPU-1	NEW	1.5 MMBTU/Hr	8760	1263 BTU/scf (HHV)		
GPU-2	NEW	1.5 MMBTU/Hr	8760	1263 BTU/scf (HHV)		
GPU-3	NEW	2.0 MMBTU/Hr	8760	1263 BTU/scf (HHV)		
Line Heater	NEW	0.5 MMBTU/Hr	8760	1263 BTU/scf (HHV)		

NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

2. Enter the Status for each boiler or line heater using the following:

EXIST Existing Equipment

REM Equipment Removed

3. Enter boiler or line heater design heat input in mmBtu/hr. Enter the annual hours of operation in hours/year for each boiler or line heater. 4.

5. Enter the fuel heating value in Btu/standard cubic foot.

Source ID # ¹	Status ²	Content ³	Volume ⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸
T01	NEW	Condensate	210 BBL	10.0	453,600 gallons/yr	VERT	10 feet
T02	NEW	Condensate	210 BBL	10.0	453,600 gallons/yr	VERT	10 feet
T03	NEW	Condensate	210 BBL	10.0	453,600 gallons/yr	VERT	10 feet
T04	NEW	Produced Water	210 BBL	10.0	924,000 gallons/yr	VERT	10 feet
T05	NEW	Produced Water	210 BBL	10.0	924,000 gallons/yr	VERT	10 feet
T05	NEW	Produced Water	210 BBL	10.0	924,000 gallons/yr	VERT	10 feet

STORAGE TANK DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

Installation of New Equipment NEW

NEW Installation of New Equipment

EXIST Existing Equipment REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.

Enter storage tank volume in gallons. 4.

5. Enter storage tank diameter in feet.

Enter storage tank throughput in gallons per year. 6.

Enter storage tank orientation using the following: 7.

VERT Vertical Tank

8. Enter storage tank average liquid height in feet.

HORZ Horizontal Tank

Source Identification Number ¹		CE-1					
Engine Manufacturer and Model		Cummins G5.9					
Manufactu	rer's Rated bhp/rpm	84 @	2 1800				
So	purce Status ²	Ν	NS				
Date Installe	d/Modified/Removed ³	Upon Rece	ipt of Permit				
Engine Manufact	cured/Reconstruction Date ⁴	After 3	3/1/2013				
Is this a Certified Engine according (Yes or No) ⁵	l Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Ν	Vo				
	Engine Type ⁶	RI	34S				
	APCD Type ⁷	NS	SCR				
Encire	Fuel Type ⁸	R	RG				
Engine, Fuel and	H ₂ S (gr/100 scf)	<	<1				
Combustion Data	Operating bhp/rpm	84 @	2 1800				
Dutu	BSFC (Btu/bhp-hr)	7914					
	Fuel throughput (ft ³ /hr)	526.4					
	Fuel throughput (MMft ³ /yr)	4.62					
	Operation (hrs/yr)	8760					
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AP	NO _X	0.19	0.81				
AP	СО	0.37	1.62				
AP	VOC	0.04	0.18				
AP	SO ₂	< 0.001	< 0.01				
AP	PM ₁₀	0.013	0.06				
AP	Formaldehyde	0.015	0.06				
AP	Total HAPs	0.022	0.10				
AP	CO2e	89	391				

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation)

MS Modification of Existing Source

ES Existing Source

RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 - LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke
 - LB4S Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	PSC	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction	LEC	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Lean Burn & Selective Catalytic Reduction
8.	Enter the F	uel Type using the following codes:		
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas
9	Enter the	Potential Emissions Data Reference designation usin	g the fo	llowing codes. Attach all referenced data to a

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Dopey Tank Farm	T01-T03				
3. Emission Unit ID number	4. Emission Point ID number				
N/A Vapors to combustors, emission point 4E	4E				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
Pending Permit Approval	\square New construction \square New stored material \square Other				
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
🗌 Yes 🛛 No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)					
A maximum of 32,400 BBL per year throughput for Tanks T01 through T03 combined.					

II. TANK INFORMATION (required)

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal cross-sectional area multiplied by internal height.				
210 BBL				
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15			
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8			
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7			
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 190 BBL			
13A. Maximum annual throughput (gal/yr) 453,600 (each)	13B. Maximum daily throughput (gal/day) 1500			
14. Number of tank turnovers per year 57 (max)	15. Maximum tank fill rate (gal/min) 30			
16. Tank fill method 🗌 Submerged 🗌 Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? Yes	🛛 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per y	/ear?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof $X_$ vertical \square horizontal Πa	t roof cone roof dome roof other (describe)			
 External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground 				
Other (describe)				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

 Refer to enclosed TANKS Summary Sheets

 Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TAN		•										
Refer to the responses t	to items 3	34 – 39 in	section V	П								
VI. EMISSIONS AND	CONT	ROL DE	EVICE D	ATA (re	quired)	1						
40. Emission Control Devi	ces (cheo	ck as man	y as apply):								
Does Not Apply	Does Not Apply 🗌 Rupture Disc (psig)											
\Box Carbon Adsorption ¹						ket of						
Vent to Vapor Combus	tion Dev	ice ¹ (vapo	or combust			-						
Condenser ¹						Vent (psig						
\Box Other ¹ (describe)					n Setting		ssure Sett	ing				
					gency Re	elief Valve	(psig)					
¹ Complete appropriate Air												
41. Expected Emission Rat								tion).	1			
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹			
CAS No.							Emissions Loss					
				1			lb/hr tpy					
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		tpy				
VOCs	lb/hr 67.97	tpy 297.7	lb/hr 0.05	tpy 0.22	lb/hr 0.19	tpy 0.85	lb/hr 68.21	tpy 298.8	Flash Measurements			
VOCs (Un-controlled)		10							+EPA Tanks For			
		10										
		10							+EPA Tanks For			
		10							+EPA Tanks For W+B			
		10							+EPA Tanks For			
		10							+EPA Tanks For W+B			
		10							+EPA Tanks For W+B Tank Emissions			
		10							+EPA Tanks For W+B Tank Emissions			
		10							+EPA Tanks For W+B Tank Emissions			
		10							+EPA Tanks For W+B Tank Emissions			
		10							+EPA Tanks For W+B Tank Emissions			
		10							+EPA Tanks For W+B Tank Emissions			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION									
19. Tank Shell Construction:	19. Tank Shell Construction:								
Riveted Gunite lined Epoxy-coated rivets Other (describe)									
20A. Shell Color: Blue	20B. Roof Color: Blue	20C. Year Last Painted: 2015							
21. Shell Condition (if metal and unlined):									
No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable								
22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig): Less than	1 0.3 psig								
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)							
Yes No	N/A	N/A							
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply \boxtimes								
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal									
Vapor mounted resilient seal Other (describe):									
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes 🗌 No								

25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):							
25E. Is the floating roof equipped with a weather shield? Yes No							
25F. Describe deck fittings:							
26. Complete the following section for Internal Floating Roof Tanks Does not apply							
26A. Deck Type: Deck Type: V	Velded	26B. I	For bolted decks,	provide dec	k construction:		
26C. Deck seam. Continuous sheet construction \Box 5 ft wide \Box 7 ft wide	·	. .	n 12 ft unida	□ other (desceribe)		
5 ft. wide 6 ft. wide 7 ft. wide 26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):		For column suppo		26G. For column supported		
20D. Deck seam length (It.): 20E. Area	of deck (it):		# of columns:	oned	tanks, diameter of column:		
SITE INFORMATION:		taiks,	# of columns.		tanks, thaneter of column.		
27. Provide the city and state on which the data	in this section are based:						
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	mum Tempe	rature (°F):		
30. Annual Avg. Minimum Temperature (°F):		31. Av	vg. Wind Speed ((mph):			
32. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	33. At	mospheric Press	ure (psia):			
LIQUID INFORMATION:							
34. Avg. daily temperature range of bulk	34A. Minimum (°F): 5	0		34B. Max	mum (°F): 70		
liquid (°F): 60							
35. Avg. operating pressure range of tank	35A. Minimum (psig):			35B. Max	mum (psig):		
(psig):	0 psig	0.3 psig		0.3 psig			
0-0.3 psig							
36A. Minimum liquid surface temperature (°F):			Corresponding va	1 1	A A		
37A. Avg. liquid surface temperature (°F):			Corresponding va		· ·		
38A. Maximum liquid surface temperature (°F)			Corresponding va		(psia):		
39. Provide the following for each liquid or gas		Add add	litional pages if r	necessary.			
39A. Material name and composition:39B. CAS number:	Condensate						
39B. CAS number: 39C. Liquid density (lb/gal):	N/A 6.20						
39D. Liquid density (lb/gal):	81.3						
39E. Vapor molecular weight (lb/lb-mole):	39.56						
39F. Maximum true vapor pressure (psia):	57.50						
39G. Maxim Reid vapor pressure (psia):	5.28						
39H. Months Storage per year. From:	Continuous						
To:							

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Dopey Tank Farm	T04-T06				
3. Emission Unit ID number	4. Emission Point ID number				
N/A Vapors to combustors, emission point 4E	4E				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
Pending Permit Approval	\Box New construction \Box New stored material \boxtimes Other				
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Provide any limitations on source operation affecting emissi	ons. (production variation, etc.)				
A maximum of 43,200 BBL per year throughput for Tanks T	'03 and T04 combined.				

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.			
210 BBL				
9A. Tank Internal Diameter (ft.) 109B. Tank Internal Height (ft.)15				
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8			
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7			
12. Nominal Capacity (specify barrels or gallons). This is also a	known as "working volume. 190 BBL			
13A. Maximum annual throughput (gal/yr) 924,000 (each)	13B. Maximum daily throughput (gal/day) 5,000 (each)			
14. Number of tank turnovers per year 116 (max)	15. Maximum tank fill rate (gal/min) 50			
16. Tank fill method 🗌 Submerged 🗌 Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? Yes	🔀 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per y	year?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof $_X_$ vertical $_$ horizontal $_$ fla	t roof cone roof dome roof other (describe)			
 External Floating Roofpontoon roofdoub Domed External (or Covered) Floating Roof Internal Floating Roofvertical column support Variable Vapor Space lifter roofdiaphrag Pressurizedsphericalcylindrication Underground Other (describe) 	self-supporting			

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

	Refer to enclosed TANKS Summary Sheets
\boxtimes	Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TAN	KS Sum	mary She	ets						
Refer to the responses	to items :	34 – 39 in	section V	/II					
VI. EMISSIONS AND	O CONT	ROL DI	EVICE I	DATA (re	equired)			
40. Emission Control Devices (check as many as apply):									
Does Not Apply	Rupture Disc (psig)								
\Box Carbon Adsorption ¹						ket of			
Vent to Vapor Combus	stion Dev	vice ¹ (vapo	or combus	stors, flares	, therma	l oxidizers)			
Condenser ¹				Conse	ervation	Vent (psig			
\Box Other ¹ (describe)				Vacuu	m Setting	g Pre	essure Set	ting	
					gency Re	elief Valve	(psig)		
¹ Complete appropriate Air									
41. Expected Emission Ra	te (subm	it Test Da	ta or Calc	ulations he	ere or els	ewhere in t	he applica	tion).	
Material Name and	Flashi	ng Loss	Breath	ing Loss	Work	ing Loss	Total		Estimation Method ¹
C + C = -	Emissions Loss								
CAS No.							Emissi	ons Loss	
CAS No.	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissie lb/hr	ons Loss tpy	-
CAS No. VOCs	lb/hr 2.92	tpy 12.77	lb/hr N/A	tpy N/A	lb/hr N/A	tpy N/A			W&B losses from
							lb/hr	tpy	W&B losses from Water tanks is
VOCs							lb/hr	tpy	
VOCs							lb/hr	tpy	Water tanks is
VOCs							lb/hr	tpy	Water tanks is
VOCs							lb/hr	tpy	Water tanks is
VOCs (Un-controlled)							lb/hr	tpy	Water tanks is negligible.
VOCs (Un-controlled) Tanks T04-T06 Combined							lb/hr	tpy	Water tanks is negligible. Tanks Emissions
VOCs (Un-controlled) Tanks T04-T06 Combined							lb/hr	tpy	Water tanks is negligible. Tanks Emissions
VOCs (Un-controlled) Tanks T04-T06 Combined							lb/hr	tpy	Water tanks is negligible. Tanks Emissions
VOCs (Un-controlled) Tanks T04-T06 Combined							lb/hr	tpy	Water tanks is negligible. Tanks Emissions
VOCs (Un-controlled) Tanks T04-T06 Combined							lb/hr	tpy	Water tanks is negligible. Tanks Emissions

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION								
19. Tank Shell Construction:	19. Tank Shell Construction:							
Riveted Gunite lined Epoxy-coated rivets Other (describe)								
20A. Shell Color: Blue	20A. Shell Color: Blue20B. Roof Color: Blue20C. Year Last Painted: 2016							
21. Shell Condition (if metal and unlined):								
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable							
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig): Less than	n 0.3 psig							
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)						
Yes No	N/A	N/A						
25. Complete item 25 for Floating Roof Tanks	Does not apply							
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal								
□ Vapor mounted resilient seal □ Other (describe):								
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No							
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box O	ther (describe):						

25E. Is the floating roof equipped with a weather shield? Yes No								
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks	_	Does not appl	-				
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:								
26C. Deck seam. Continuous sheet construction		_		_				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wi								
26D. Deck seam length (ft.): 26E. Area	t of deck (ft^2):		For column supp	orted	26G. For column supported			
		tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION: Items 27-33 N/A for								
27. Provide the city and state on which the data	in this section are based							
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	1	erature (°F):			
30. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed					
32. Annual Avg. Solar Insulation Factor (BTU/	(ft ² -day):	33. At	mospheric Press	ure (psia):				
LIQUID INFORMATION:				r				
34. Avg. daily temperature range of bulk	34A. Minimum (°F):	34B. Maximum (°F):						
liquid (°F): 60	50	70						
35. Avg. operating pressure range of tank	35A. Minimum (psig)	:	35B. Maximum (psig):					
(psig):	0 psig	0.3 psig						
0-0.3 psig		2.00	~ **					
36A. Minimum liquid surface temperature (°F)	:	36B. Corresponding vapor pressure (psia):						
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia): 38B. Corresponding vapor pressure (psia):						
38A. Maximum liquid surface temperature (°F)					e (psia):			
39. Provide the following for each liquid or gas		Add add	litional pages if i	necessary.				
39A. Material name and composition:	Produced Water							
39B. CAS number:	N/A							
39C. Liquid density (lb/gal):	8.347							
39D. Liquid molecular weight (lb/lb-mole):	18.04							
39E. Vapor molecular weight (lb/lb-mole):	30.68							
39F. Maximum true vapor pressure (psia):								
39G. Maxim Reid vapor pressure (psia):								
39H. Months Storage per year. From:	Continuous							
To:								

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Nu	mber (as assigned	d on E	quipr	nent Li	st Fo	orm):			
1. Loading Area	Name: Tank Un-I	loadin	g Are	ea					
	2. Type of cargo vessels accommodated at this rack or transfer point (check as many								
as apply): □ Drums □ Marine Vessels □Rail Tank Cars ⊠ Tank Trucks									
3. Loading Rack or Transfer Point Data:									
Number of pu		Data.	1 (0	n truck)					
· · · ·	Number of pumps 1 (on truck) Number of liquids loaded 2								
	nber of marine		1						
	trucks, tank cars,		1						
	loading at one tim	е							
	ng of marine vess		cur at	t this lo	adin	a area	?		
□ Yes	□ No					ot appl			
5. Describe clea	aning location, con	npoun	ds ar	nd proc	edu	re for c	argo v	essels us	sing this
transfer point: No			<u> </u>						
6. Are cargo ves	ssels pressure tes □ Yes	ted for	r leak	s at thi⊠ ⊠ No	s or	any ot	her loc	ation?	
If YES, describe	_								
7. Projected Ma	ximum Operating	Scheo	dule (for rac	k or	transfe	r point	as a wh	ole):
Maximum	Jan Mar.	Ар	r Ju	ine	J	luly - Se	ept.	Oct	· Dec.
hours/day	3		3			3			3
8. Bulk Liquid D	ata <i>(add pages as</i>	s nece	ssary	<i>י):</i>					
Pump ID No.		N/A	A	N/A					
Liquid Name		Cond	ensate	Produce Water	d				
Max. daily through	put (1000 gal/day)	8.4		7.5					
Max. annual throu	ghput (1000 gal/yr)	1,3	60.8	2,772					
Max. Fill Rate (gal	/min)	190)	120					
Average Fill Time	(min/loading)	45		45					
Max. Bulk Liquid 1	emperature (°F)	70		70					
True Vapor Press	ure ²	3.1	psia	N/A					
Cargo Vessel Cor	ndition ³	U		U					
Control Equipmen	t or Method ⁴	Nor	ne	None					
Minimum control e	Minimum control efficiency (%) N/A N/A								

Maximum	Loading (lb/hr) VOC	27.8	0.11					
Emission Rate	Annual (lb/yr) VOC	4,505	112					
Estimation Me	ethod ⁵	AP-42	N/A					
1 BF = Bottom	Fill SP = Splash Fill	SUB :	= Subme	rged Fill				
² At maximum	bulk liquid temperature							
		= Unclear	ned (dedi	cated servi	ce), O =	other (de	escribe)	
 ³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe) ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe) 								
MB = Materi TM = Test M	 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe) 							
9. Proposed	d Monitoring, Recordke	eping, Re	porting,	and Test	ing			
Please propos	e monitoring, recordkeepi	ng, and re	porting ir	n order to o	demonsti	rate com	pliance	
with the prope	osed operating parameters	. Please	propose	testing in a	order to	demonsti	rate	
compliance wi	th the proposed emissions	s limits.						
MONITORING	G	F	RECORD	KEEPING				
Truck load-outs liquid removed	s per month and volume of each load-out			-outs per mo		volume of		
REPORTING		Т	ESTING					
Truck load-outs liquid removed	per month and volume of each load-out	Ν	lone					
MONITORING	. PLEASE LIST AND DESCRIE	BE THE PRO	CESS PAF	RAMETERS A	ND RANGI	ES THAT A	ARE	
PROPOSED TO I	BE MONITORED IN ORDER TO	DEMONST	RATE COM	PLIANCE WIT	'H THE OF	PERATION	OF THIS	
PROCESS EQUIF	PMENT OPERATION/AIR POLLU	ITION CONT	ROL DEVIC	CE.				
RECORDKEE	PING. PLEASE DESCRIBE T	HE PROPOS	SED RECO	RDKEEPING	THAT WIL	L ACCOMF	PANY	
THE MONITORIN	G.							
REPORTING.	PLEASE DESCRIBE THE PRO	OPOSED FR	EQUENCY	OF REPORTI	NG OF TH	ΗE		
RECORDKEEPING	Э.							
TESTING. PL POLLUTION CON	EASE DESCRIBE ANY PROPO ITROL DEVICE.	SED EMISSI	ONS TEST	ING FOR THI	S PROCE	SS EQUIPN	MENT/AIR	
10. Describe	e all operating ranges a	nd mainte	enance p	procedures	require	ed by		
Manufacturer	to maintain warranty ${f N}$	[/A						

ATTACHMENT M Air Pollution Control Device Sheets

MIRATECH Emissions Control Equipment Specification Summary

			Proposal Number:	TJ-14-0081 Rev(1)
Engine Data				
Number of Engines:	1			
Application:	Gas Cor	npression		
Engine Manufacturer:	Cummin	S		
Model Number:	G 5.9			
Power Output:	84 bhp			
Lubrication Oil:	0.6 wt%	sulfated ash or less		
Type of Fuel:	Natural (Gas		
Exhaust Flow Rate:	430 acfn	n (cfm)		
Exhaust Temperature:	1,078°F			
System Details				
Housing Model Number:	VXC-140)8-04-HSG		
Element Model Number:	VX-RE-0	08XC		
Number of Catalyst Layers:	1			
Number of Spare Catalyst L	-			
System Pressure Loss:		es of WC (Fresh)		
Sound Attenuation:		3A insertion loss		
Exhaust Temperature Limits	s: 750 – 12	50°F (catalyst inlet); 1350°	F (catalyst outlet)	
NSCR Housing & Cata	lyst Details			
Model Number:	VXC-140)8-04-XC1		
Material:	Carbon	Steel		
Approximate Diameter:	14 inche	-		
Inlet Pipe Size & Connection		Flange, 150# ANSI stand	•	
Outlet Pipe Size & Connecti		Flange, 150# ANSI stand	ard bolt pattern	
Overall Length:	53 inche	S		
Weight Without Catalyst:	152 lbs			
Weight Including Catalyst:	162 lbs			
Instrumentation Ports:	1 inlet/1	outlet (1/2" NPT)		
Emission Requiremen	ts			
	Engine Outpute		Warranted	Requested
Exhaust Gases	Engine Outputs	Poduction (%)	Converter Outputs	Emissions Targets
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	

	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOx	11.41	91%	1.00	1.00 g/bhp-hr
CO	14.64	86%	2.00	2.00 g/bhp-hr
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr
CH2O	0.08	0%	1.00	1.00 g/bhp-hr
Oxygen	0.5%			

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

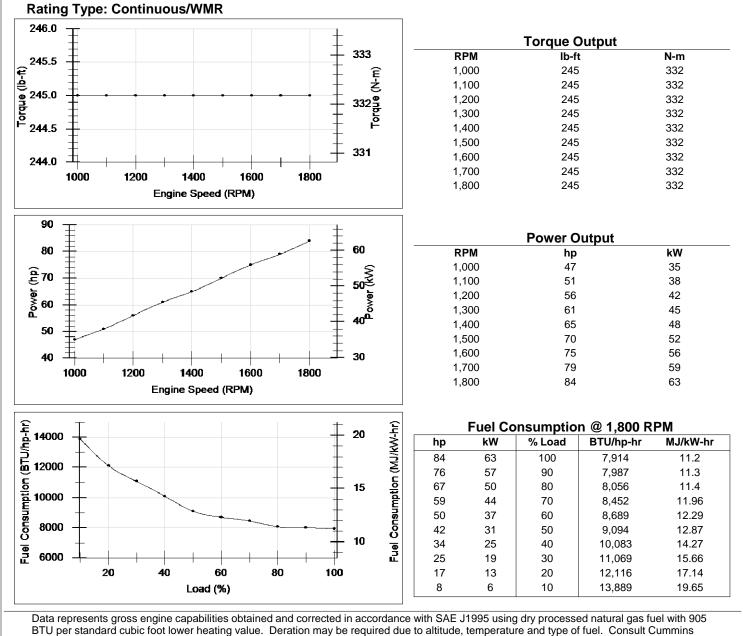
Unit Information Sheet

Date: May 27, 2014 Unit #: 6041 Customer: To Be Determined

Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Pack	Package Information					
Compressor Manufacturer:	Arrow					
Compressor Model:	VRC2					
Compressor Serial Number:	12095					
Compressor Cylinders:	6.5" x 4.0" x 2.25"					
Driver Manufacturer:	Cummins					
Driver Model:	G5.9					
Rated HP & Speed	84 HP @ 1800 RPM					
Driver Type:	4-stroke Rich Burn					
Engine Serial Number:	73364060					
Engine Manufacturing Date:	3/19/2012					
Engine Catalyst Model:	VXC-1408-04-HSG					
Engine Catalyst Element:	VX-RE-08XC					
Engine AFR Model:	AFR-1RD-10-TK2					
Engine Stack Height:	9' 5"					
Engine Stack Diameter:	4"					
Oper	ating Information					
Suction Pressure:	N/A psig					
Discharge Pressure:	N/A psig					
Design Capacity:	N/A MSCFD					
Gas Specific Gravity:	N/A					


Emission Output informtion included in the attached catalyst specification sheet.

To:

.unminins	•	Performance Data	Industrial G5.9			P (63 kW) @ 18 (332 N-m) @ 1	
Cu.		us, Indiana 47202-3005 /www.cummins.com	FR 9961		nfiguration 1010CX02	CPL Code 8655	Revision 12-May-2011
Compression Ratio: 10.5:1 Fuel System: Field Gas, Dry Processed Na		Nat Gas	Displacement: Aspiration:	359 in3 (Naturally	5.9 L) Aspirated		

Emission Certification: Non-certified

All data is based on the engine operating with fuel system, water pump, and 7 in H2O (1.74 kPa) inlet air restriction with 3.5 in (89 mm) inner diameter, and with 1 in Hg (3 kPa) exhaust restriction with 3 in (76 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.

Customer Engineering for operation above this altitude.

STATUS FOR CURVES AND DATA: Limited-(measured data) TOLERANCE: Within +/- 5 % CHIEF ENGINEER: Alfred S Weber

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

68 N-m

Intake Air System Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally				
Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)	15	delta deg F	8.3	delta deg C
Cooling System				
Maximum coolant temperature for engine protection controls	215	deg F	102	deg C
Maximum coolant operating temperature at engine outlet (max. top tank temp):	212	deg F	100	deg C
Exhaust System				
Maximum exhaust back pressure:	2	in-Hg	7	kPa
Recommended exhaust piping size (inner diameter):	3	in	76	mm
Lubrication System				
Nominal operating oil pressure				
@ minimum low idle	10	psi	69	kPa
@ maximum rated speed	50	psi	345	kPa
Minimum engine oil pressure for engine protection devices				
@ minimum low idle	10	psi	69	kPa
Fuel System				
Maximum fuel inlet pressure:	1	psi	5	kPa
Performance Data				
Engine low idle speed:	900	RPM		
Maximum low idle speed:	1,800	RPM		
Minimum low idle speed:	800	RPM		
Engine high idle speed	1,800	RPM		
Governor break speed:				

Maximum torque available at closed throttle low idle speed:

		100% Load			75% I	Load			50% l	oad	
Engine Speed	1,800 RPM			1,800	RPM			1,800	RPM		
Output Power	84 hp	63	kW	63	hp	47	kW	42	hp	31	kW
Torque	245 lb-ft	332	N-m	184	lb-ft	249	N-m	123	lb-ft	167	N-m
Intake Manifold Pressure	-1 in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
Inlet Air Flow	121 ft3/mir	n 57 l	L/s	101	ft3/min	48	L/s	82	ft3/min	39	L/s
Exhaust Gas Flow	430 ft3/mir	n 203 l	L/s	360	ft3/min	170	L/s	292	ft3/min	138	L/s
Exhaust Gas Temperature	1,078 deg F	581 0	deg C	999	deg F	537	deg C	902	deg F	483	deg C
Heat Rejection to Coolant	3,824 BTU/r	nin 67 l	kW	3,244	BTU/min	57	kW	2,596	BTU/min	46	kW
Heat Rejection to Ambient	1,194 BTU/r	nin 21 l	kW	784	BTU/min	14	kW	613	BTU/min	11	kW
Heat Rejection to Exhaust	2,523 BTU/r	nin 44 l	kW	1,916	BTU/min	34	kW	1,371	BTU/min	24	kW
Fuel Consumption	7,914 BTU/h		MJ/kW-hr	- /	BTU/hp-hr	12	MJ/kW-hr		BTU/hp-hr	13	MJ/kW-hr
Air Fuel Ratio (dry)	16.52 vol/vo				vol/vol				vol/vol		.
Ignition timing (BTDC)	26 deg	26 (deg		deg	26	deg		deg	26	deg
Total Hydrocarbons VOC ppm w/o Catalyst	1.48 g/hp-h	r		1.3	g/hp-hr			1.62	g/hp-hr		
VOC ppm with Catalyst											
NOx	11.41 g/hp-h	r 15.3 (g/kW-hr	13.7	g/hp-hr	18.37	g/kW-hr	12.85	g/hp-hr	17.23	g/kW-hr
NOx ppm w/o Catalyst			0		0		0		0 1		Ŭ
NOx ppm with Catalyst											
CO	14.64 g/hp-h	r 19.63 g	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
CO ppm w/o Catalyst											
CO ppm with Catalyst CO2	449 g/hp-h	r 602 /	g/kW-hr	180	g/hp-hr	656	g/kW-hr	540	g/hp-hr	724	g/kW-hr
02	0.45 %	002 9	9/1.11	1.66		050	9/11/	3.67		724	9/1.1/

50 lb-ft

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Cranking System (Cold Starting Capability)

Unaided Cold Start:

Minimum cranking speed Cold starting aids available Maximum parasitic load at 10 deg F @

Noise Emissions

Тор	89.9 dBa
Right Side	90.1 dBa
Left Side	89.8 dBa
Front	90.5 dBa
Exhaust noise emissions	103.1 dBa
ed Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Spe	ed

Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Sp (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)

Aftercooler Heat Rejection - Heat Load on Aftercooler

250 RPM

Block Heater, Oil Pan Heater

BTU/min (kW)

			Ambient Temp	deg F (deg C)		
	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
0 (0)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
1000 (305)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
2000 (610)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
3000 (914)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
4000 (1219)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
5000 (1524)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
6000 (1829)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)
10000 (3048)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)

Altitude ft (m)

End of Report

Bold entries revised after 1-Mar-2010

Gas/Site Analysis & Engin Selection/Derate Cummins Stationary Natural Gas Engines Date: 4/10/2014	e	Industrial G5.9 Available FR Number(s) From Selection: FR9936, FR9961	NG 84 HP (63 kW) @1800 RPM & 10.5:1 Compression Ratio Catalyst Fuel Rating Industrial Continuous
Engine (as entered by user)			
Application: Fuel Type: Engine: Fuel Rating: Compression Ratio: RPM: HP (Natural Gas): HP (Propane):	Industria NG G5.9 Catalyst 10.5:1 1800 84 HP (6 NA HP (53 kW)	
Site (as entered by user)		,	
Ambient Air Temperature: Relative Humidity: Altitude: Cooling Fan Load: Generator Efficiency: Vapor Pressure (Calculated from Site Conditions Entered): Dew Point (Calculated from Site Conditions Entered): Dry Barometer (Calculated from Site Conditions Entered):	90° F 30% 1200 ft 8 HP 93% 0.427 inl 54.4° F 28.22 inl	с -	
Derate (Natural Gas)	_	5	
Advertised NG Rating: Engine Derate Due to Site Altitude and Temperature: Engine Derate Due to Gas Composition: Derate Due to Low BTU Fuel: Derate Due to Methane Number: Total Power Available (%) After All Applicable Derates: Total Site Derate due to Altitude, Temperature, and Gas Composition: Total Available Horsepower from Selected Engine Running on Specified Fuel Composition at Specified Site (includes 8 HP reduction for for cooling fan load):	84 HP (6 2% 0% 98% of r 2 HP (1 74 HP (5	ated kW) a	The sample percentage for "Name Sample" is 99.991%. Results re based on the input sample formalized to 100%.
Derate (Propane)			
Advertised Propane Rating: Engine Derate Due to Site Altitude and Temperature: Total Power Available (%) After All Applicable Derates: Total Site Derate due to Altitude and Temperature: Total Available Horsepower from Selected Engine Running on Propane at Specified Site (includes 8 HP reduction for for cooling fan load):	NA HP (NA% NA% of NA HP (NA HP (rated NA kW)	
Intake Manifold Requirements for Turbocharged Engines	1		
Maximum Allowed Intake Manifold Temperature for Selected Engine is na °F v based on FR9936	with a Maximum	Aftercooler Water Inlet (CA	C air inlet) of na °F
Factory Set Points	Factory	Supplied	Recommended
Engine Speed Target: Spark Plug Gap: Excess Oxygen Target-PV: Propane Engine Timing Target: Propane Gas over air Press at Carb Low: Propane Gas Press at Sec Reg Target: Excess Oxygen Target-NG:	1800 rpr 0.020 in na %O2 na °BTD na inH20 na inH20 0.45% C	n IC F D D	NOTICE: A Change to Ignition Timing Is Recommended Due to Methane Number of
Natural Gas Engine Timing Target:		· 26 °BTDC	Recommended Timing: 25 ° 3TDC
Natural Gas over air Press at Carb Target: Natural Gas Press at Sec Reg Target:	5 inH2O 15 inH20		
FR9936 Created/Revised On: 4/30/2013. Data Files Updated On: 12/12/2	013		

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:		0.26	0.91
n-Hexane:		0.15	0.62
n-Heptane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonane:		0	0
n-Decane:		0	0.02
Hydrogen:		0	0
Hydrogen Sulfide (H ₂ S):		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Carbon Monoxide:		0	0
Nitrogen:		0.39	0.53
Oxygen:		0	0
,,,	centage: 99.991%)	Normalized Percentage: 100%	, , , , , , , , , , , , , , , , , , ,
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/scf	42.5 MJ/scm
Standard Conditions (60F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Higher Heating Value (HHV): Standard Conditions (60F/14.696psia)	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:	• •	56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
Webbe Index :	LHV/√ SG	1345 Btu/scf	50.11 MJ/scm
Wobbe Index :	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1.253
Ideal Gas Density:		0.0549 lbm/ft3	0.8788 kg/m3 std
H/C Ratio:		3.492	3.492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-°R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
uel Flow Data			I
BTU/HP-HR:		7914	
Maximum Fuel Flow (SCFH):		583	
Maximum Fuel Flow Calculation is Bas	sed on 100% Continuous	Rating of 84 HP at 1800 RPM and	10.5:1 Compression Ratio from FR9936
Bas Regulator Details	-		
The Industrial G5.9 uses a Maxitrol Requ	lator		Notes:

FR Differences for Selected Engine			
Description of FR Differences for Selected Engine			
	FR9936	FR9961	
Exhaust Manifold	FR9936 Dry	FR9961 Wet	
Exhaust Manifold Exhaust Stack Temp High			

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

	ins
cum	

Can Analysia Taal

Gas Analysis Tool References & Standar			Date:	4/10/2014
				Tool Revision Date: 3/27/2014
Performance Parameters:		Reference Standard or Docum	ent	
		Standard Units		Metric Units
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.6		ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	i96psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6	96psia	ASTM D 3588-91 @ 0C/101.3kPa
Higher Heating Value (HHV):	by volume	ASTM D 3588-91 @ 60F/14.6		ASTM D 3588-91 @ 15.5C/101.3kPa
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	i96psia	ASTM D 3588-91 @ 15.5C/101.3kPa
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6	i96psia	ASTM D 3588-91 @ 0C/101.3kPa
Methane Number:		Cummins Methane Number		Cummins Methane Number
Specific Gravity (SG) (Ideal Rel. D		-		-
Wobbe Index :	LHV/√ SG	Ideal gas @ 60F/14.696psia		Ideal gas @ 15.5C/101.3kPa
Malagular Waight	HV/√ SG	Ideal gas @ 60F/14.696psia		ldeal gas @ 15.5C/101.3kPa
Molecular Weight: Specific Heat (Cp):		 @ 60F/14.696psia		
Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia		@ 15.5C/101.3kPa
Ideal Gas Density:		ASTM D 3588-91 @ 60F/14.6	96psia	ASTM D 3588-91 @ 15.5C/101.3kPa
H/C Ratio:		-		-
Gas Constant (R _{GAS}):		@ 60F/14.696psia		@ 15.5C/101.3kPa
Stoich Air Fuel Ratio (Dry):		-		-
Conversion Factors		Standard Units		Metric Units
Notes				

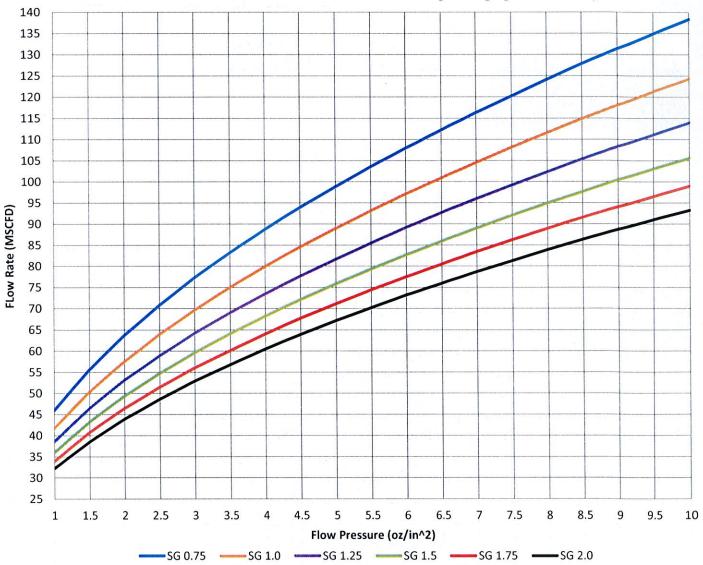
©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential

Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the **CH10.0** enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

	GENERAL PROPERTIES								
	ТҮРЕ	Enclosed Tank Battery Flare							
an and A	AMBIENT TEMPERATURE	-20 °F to +100 °F							
	PILOT FUEL REQUIREMENTS	Propane or Site Gas @5psi of natural gas = 13.3 SCFM @5psi of propane = 12.5 SCFM							
1 C - 22 -	BURNER SIZE	10.0 million BTU/hr							
	INLET PRESSURE REQUIRMENTS	Minimum 0.5 oz/in ² (~1.0 inches w.c.)							
	TURN DOWN RATIO	5:1							
	DESTRUCTION EFFICIENCY	99.99% DRE							
	MECHANICAL PROPERTIES								
	DESIGN WIND SPEED	100 MPH							
13	AMBIENT TEMPERATURE	-20 °F to +120 °F							
	ELECTRICAL AREA CLASSIFICATION	General Area Classification (Non- Hazardous)							
	ELEVATION	up to 3,000ft ASL							
	PROCESS PROPERTIES								
	SMOKELESS CAPACITY OPERATING TEMPERATURE	100% 800 °F to 2000 °F (1500 °F Nominal)							
	UTILITIES	(Nommal)							
	PILOT GAS	Process Gas							
	ELECTRICITY	1 Phase, 60 Hz, 120V/10A							
nb Drive	SOLAR PANEL OPTION AVAILABLE	YES							


- EPA 40 CFR 60, Quad O Compliant
- Completely Enclosed Combustion
- > 99.99% Destruction Efficiency
- Fully Automated System
- Output Operational Data via Thumb Drive
- Capable of SCADA Integration

Revision #3: 09/04/2015

2404 Commerce Dr. Midland, TX 79703 432-697-2292 <u>hy-bon.com</u>

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015

Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical

Adjustment:

6.7V	up to 11 Volts
12 V	12 -18 Volts
24 V	24 - 30 Volts
48 V	48 - 60 Volts

Reverse current protection included.

Standard Features

- Automatic Spark Ignition (SI)
- Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- Volt & Amp Meter

Optional Features

- · Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- Corrosive Environmental Fuel System
- · Flame Arrestor

Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

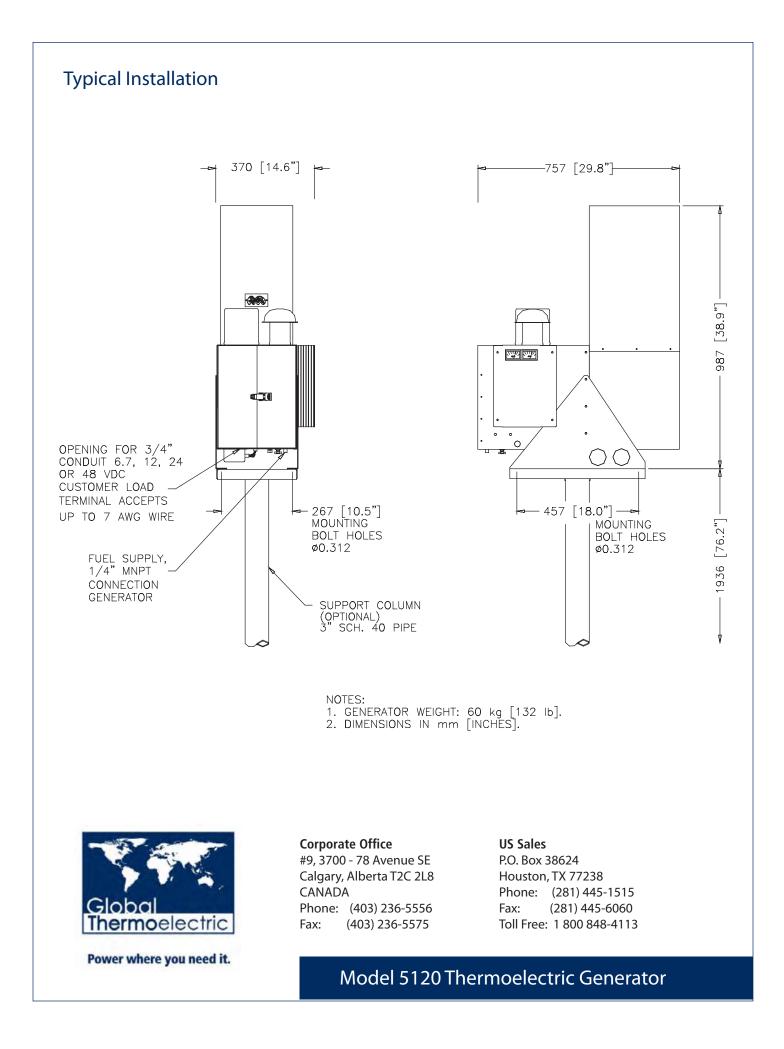
Power where you need it.

Output: Terminal block which accepts up to 8 AWG wire. Opening for 3/4" conduit in the base of the cabinet.

Fuel

Natural Gas:

Propane: Max. Supply Pressure: Min. Supply Pressure: Fuel Connection:


8.8 m3/day (311 ft3/day) of Std. 1000 BTU/SCF (37.7 MJ/SM³) gas 11.4 l/day (3.0 US gal/day) 1724 kPa (250 psi) 103 kPa (15 psi) 1/4" MNPT

Environmental

Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

Materials of Construction

Cabinet:	304 SS
Cooling Type:	Natural Convection
Thermopile:	Hermetically Sealed Lead Tin-Telluride (PbSnTe)
Burner:	Meeker Type/Inconel 600
Fuel System:	Brass, Aluminum & SS

ATTACHMENT N

Supporting Emissions Calculations

Jay-Bee Oil & Gas, Inc.

Dopey Well Pad Production Facility Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane lb/hr	Toluene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
CE-1	VRU Compressor ⁴	0.19	0.37	89.4	0.04	0.000	0.013	0.000		0.015	0.022
HTR-1	GPU #1	0.15	0.13	181.2	0.01	0.001	0.011	0.003		0.000	0.003
HTR-2	GPU #2	0.15	0.13	181.2	0.01	0.001	0.011	0.003		0.000	0.003
HTR-3	GPU #3	0.20	0.17	241.6	0.01	0.001	0.015	0.004		0.000	0.004
HTR-4	Line Heater	0.05	0.04	60.4	0.00	0.000	0.004	0.001		0.000	0.001
TEG-1	Thermoelectric Generator	0.00	0.00	1.6	0.00	0.000	0.000	0.000		0.000	0.000
	Blowdowns ¹			N/A	N/A						
T01-T06	Condensate Tanks + Water Tanks ²			30.5	7.31			0.21	0.010		0.24
EC-1	Condensate Tanks + Water Tanks ⁴	0.30	1.61	528.9	2.92	0.000	0.015			0.000	0.00
TL-1 + TL-2	Truck Loading ³				27.90						1.37
	Truck Traffic Fugitive Dust						16.53				
	Fittings Fugitive Emissions			5.3	0.17						
Total		1.04	2.45	1,320	38.38	0.00	16.60	0.22	0.01	0.02	1.65

		NOx	со	CO2e	VOC	SO2	PM	n-Hexane	Toluene	formaldehyde	Total HAPs
Source		tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
CE-1	VRU Compressor	0.81	1.62	391	0.18	0.002	0.06	0.00		0.065	0.10
HTR-1	GPU #1	0.66	0.55	794	0.04	0.004	0.05	0.01		0.000	0.01
HTR-2	GPU #2	0.66	0.55	794	0.04	0.004	0.05	0.01		0.000	0.01
HTR-3	GPU #3	0.88	0.74	1,058	0.05	0.005	0.07	0.02		0.001	0.02
HTR-4	Line Heater	0.22	0.18	265	0.01	0.001	0.02	0.00		0.000	0.00
TEG-1	Thermoelectric Generator	0.01	0.00	7	0.00	0.000	0.00	0.00		0.000	0.00
	Blowdowns ¹			0.1	0.04						0.01
T01-T06	Condensate Tanks + Water Tanks ²			131	31.27			0.88	0.04		1.05
EC-1	Condensate Tanks + Water Tanks ⁴	0.09	0.34	144	0.58	0.00	0.01	0.00	0.000	0.000	0.00
TL-1 + TL-2	Truck Loading3				2.31						0.11
	Truck Traffic Fugitive Dust						3.47				
	Fittings Fugitive Emissions			23	0.76						
Total		3.32	3.99	3,605	35.27	0.02	3.72	0.92	0.040	0.07	1.31

Contiguous Icon Midstream, LLC Dopey Dehydration

auguous reon sinustream, EEC Dopey Denyuration										
Facility Emissions (tpy)	1.11	5.04	1,933	8.89	0.00	0.15	0.20	0.92	0.00	2.20
Aggregated Emissons (tpy)	4.43	9.04	5,538	44.16	0.02	3.87	1.12	0.96	0.07	3.51

¹ Blowdown Calculations in Fugitive Emissions (Attachment K).

² Condensate and water tank emissions are currently controlled by a VRU at 95% with a Combustor as backup, controlling at 98%. This line represents the 5% Un-captured/Control associated with the VRU

³ Truck loading is un-controlled.

⁴ Condensate and water tank emissions are alternately controlled by an Enclosed Combustor at 98%. The entries for VOC, n-hexane, HAPs and CO2e represents emissions of organics based on a 98% capture and control efficiency.

Jay-Bee Oil &Gas ,LLC ENGINE EMISSIONS

Dopey Well Pad Production Facility Tyler County, WV

Controlled Emission Rates

Source CE-1 Flash Gas Compressor							
Engine Data:							
Engine Manufacturer	Cummins						
Engine Model	G5.9						
Type (Rich-burn or Low Emission)	Rich Burn						
Aspiration (Natural or Turbocharged)	Natural						
Manufacturer Rating	84	hp					
Speed at Above Rating	1,800	rpm					
Configeration (In-line or Vee)	In-line						
Number of Cylinders	6						
Engine Bore	4.020	inches					
Engine Stroke	4.720	inches					
Engine Displacement Engine BMEP	359 103	cu. in. psi					
Fuel Consumption (HHV)	7,914	psi Btu/bhp-l	or.				
	7,314	Blu/brip-i				AP-42	
						4strokerich	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/dav	lb/mmbtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44		Comment
Carbon Monoxide CO	2.000	0.13	1.62	168	8.89		453.59 grams = 1 pound
VOC (NMNEHC)	0.220	0.04	0.18	18	0.03		2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996		2,000 pounds = 1 ton
CO2e	445	89	391	57,710	1,330		
Total Annual Hours of Operation	8,760						
SO2	0,100	0.0004	0.0017			0.0006	
PM2.5		0.0063	0.0277			0.0095	
PM (Condensable)		0.0066	0.0289			0.00991	
CH ₄		0.1262	0.5529				Factor From 40 CFR 98, Table C-
N ₂ O		0.0115	0.0503				Factor From 40 CFR 98, Table C-
acrolein		0.0017	0.0077			0.00263	
acetaldehyde		0.0019	0.0081			0.00279	
formaldehyde	0.080	0.0148	0.0649				Per Mfg.
benzene		0.0011	0.0046			0.00158	
toluene		0.0004	0.0016			0.000558	
ethylbenzene		2E-05	0.0001			2.48E-05	
xylene s		0.0001	0.0006			0.000195	
methanol		0.002	0.0089			0.00306	
total HAPs		0.022	0.0964				
Exhaust Parameters:							
Exhaust Gas Temperature	1,078	deg. F					
Exhaust Gas Mass Flow Rate		lb/hr					
Exhaust Gas Mass Flow Rate	430	acfm					
Exhaust Stack Height	96	inches					
	90 8.00	feet					
Exhaust Stack Inside Diameter	4	inches					
	0.333	feet					
	82.1	ft/sec					
Exhaust Stack Velocity		n/sec					
Exhaust Stack Velocity	82.1 4,927.4	ft/min					

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,086.0 scfd 0.000 Mole % 8760

NOx	0.1501	lbs/hr	0.657	TPY
СО	0.1261	lbs/hr	0.552	TPY
CO2	180.1	lbs/hr	788.7	TPY
CO2e	181	lbs/hr	794	tpy
VOC	0.0083	lbs/hr	0.036	TPY
SO2	0.0009	lbs/hr	0.004	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0114	lbs/hr	0.050	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0027	lbs/hr	0.012	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0028	lbs/hr	0.012	TPY

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-2

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,086.0 scfd 0.000 Mole % 8760

NOx	0.1501	lbs/hr	0.657	TPY
СО	0.1261	lbs/hr	0.552	TPY
CO2	180.1	lbs/hr	788.7	TPY
CO2e	181	lbs/hr	794	tpy
VOC	0.0083	lbs/hr	0.036	TPY
SO2	0.0009	lbs/hr	0.004	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0114	lbs/hr	0.050	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0027	lbs/hr	0.012	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0028	lbs/hr	0.012	TPY

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-3

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 2,000.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 38,781.3 scfd 0.000 Mole % 8760

NOx	0.2001	lbs/hr	0.876	TPY
СО	0.1681	lbs/hr	0.736	TPY
CO2	240.1	lbs/hr	1051.6	TPY
CO2e	242	lbs/hr	1,058	tpy
VOC	0.0110	lbs/hr	0.048	TPY
SO2	0.0012	lbs/hr	0.005	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0152	lbs/hr	0.067	TPY
СНОН	0.0002	lbs/hr	0.001	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0036	lbs/hr	0.016	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0038	lbs/hr	0.016	TPY

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-4 (Line Heater)

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 9,695.3 scfd 0.000 Mole % 8760

NOx	0.0500	lbs/hr	0.219	TPY
СО	0.0420	lbs/hr	0.184	TPY
CO2	60.0	lbs/hr	262.9	TPY
CO2e	60	lbs/hr	265	tpy
VOC	0.0028	lbs/hr	0.012	TPY
SO2	0.0003	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0038	lbs/hr	0.017	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0009	lbs/hr	0.004	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0009	lbs/hr	0.004	TPY

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

Source TEG-1

NOx	0.0013	lbs/hr	0.006	TPY
СО	0.0011	lbs/hr	0.005	TPY
CO2	1.6	lbs/hr	6.8	TPY
CO2e	2	lbs/hr	7	tpy
VOC	0.0001	lbs/hr	0.000	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0001	lbs/hr	0.000	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0000	lbs/hr	0.000	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0000	lbs/hr	0.000	TPY

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Dopey Well Pad Production Facility Tyler County, WV

otential Emission Rate

Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 80.0 Mbtu/hr 99.0 % 1263.0 Btu/scf 1535.6 scfd 0.000 Mole % 8760

NOx	0.0079	lbs/hr	0.035	TPY
CO	0.0067	lbs/hr	0.029	TPY
CO2	9.5	lbs/hr	41.6	TPY
CO2e	10	lbs/hr	42	TPY
VOC	0.0004	lbs/hr	0.002	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0006	lbs/hr	0.003	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0001	lbs/hr	0.001	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0001	lbs/hr	0.001	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100	Lbs/MMCF
СО	84	Lbs/MMCF
CO ₂	120,000	Lbs/MMCF
VOC	5.5	Lbs/MMCF
PM	7.6	Lbs/MMCF
SO ₂	0.6	Lbs/MMCF
CH ₄	2.3	Lbs/MMCF
N_2O	2.2	Lbs/MMCF
нсон	0.075	Lbs/MMCF
Benzene	0.0021	Lbs/MMCF
n-Hexane	1.8	Lbs/MMCF
Toluene	0.0034	Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =298

Dopey Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1

Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 2276.6 Btu/scf 0.046 MMSCFD 4.345 MMBTU/Hr

0.746 MMCF/Yr 1,698 MMBTU/Yr

NOx	0.30	lbs/hr	0.06	tpy
CO	1.61	lbs/hr	0.31	tpy
CO2	507.83	lbs/hr	99.3	tpy
CO2e	519.29	lb/hr	101.9	tpy
VOC	2.92	lb/hr	0.58	tpy
CH4	0.49	lbs/hr	0.1000	tpy
N2O	0.0010	lbs/hr	0.0002	tpy
PM	0.0145	lb/hr	0.0028	tpy
СНОН	0.0001	lb/hr	0.0000	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0034	lb/hr	0.0007	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0036	lb/hr	0.0007	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions sheet in the Calculations Section.

Factors Used		
AP-42 Table 13.5-1	NOx	0.068 Lbs/MMBTU
AP-42 Table 13.5-1	СО	0.37 Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89 Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022 Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022 Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF

Dopey Well Pad Production Facility Tyler County, WV

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.032	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.093	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	21.006	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	26.977	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	25.650	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	5.272	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	11.899	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.281	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.198	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	1.776	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	0.816	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	100.000	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

Gas Density (STP) = 0.111

Ideal Gross (HHV)	2,283.4
Ideal Gross (sat'd)	2,244.3
GPM	-
Real Gross (HHV)	2,313.1
Real Net (LHV)	2,124.9

Dopey Well Pad Production Facility Tyler County, WV

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

Gas Density (STP) = 0.069

1,424.0
1,399.9
-
1,430.5
1,302.3

Dopey Well Pad Production Facility Tyler County, WV

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.350	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.406	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.158	0.136	0.005	0.654	7.0	7.5	0.072	0.654	0.0016	0.065
Heptane	0.064	0.064	0.002	0.308	3.3	3.5	0.034	0.308	0.0006	0.029
	100.000	20.836	0.719		1,140.7	1,257.6	11.875	18.396	0.9958	6.172

Gas Density (STP) = 0.058

Ideal Gross (HHV)	1,257.6
Ideal Gross (sat'd)	1,236.5
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Jay-Bee Oil & Gas, Inc. FUGITIVE EMISSIONS

Dopey Well Pad Production Facility Tyler County, WV

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	18.40	weight percent
Methane from gas analysis:	59.35	weight percent
Carbon Dioxide from gas analysis:	0.32	weight percent
Gas Density	0.0580	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:										
Gas/Vapor:	16	0.02700 scf/hr	18.4	0.005	0.020	0.000	0.000	0.015	0.0651	1.628
Light Liquid:	36	0.05000 scf/hr	100.0	0.104	0.457					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.000
Low Bleed Pneumatic	3	1.39000 scf/hr	18.4	0.044	0.195	0.144	0.629	0.144	0.6285	16.342
Relief Valves:	18	0.04000 scf/hr	18.4	0.008	0.034	0.000	0.001	0.025	0.1085	2.714
Open-ended Lines, gas:	3	0.06100 sfc/hr	18.4	0.002	0.009					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										
Gas:	-	0.00529 lb/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.00
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.001	0.0029	0.073
Connectors:										
Gas:	16	0.00300 scf/hr	18.4	0.001	0.002	0.000	0.000	0.002	0.0072	0.18
Light Liquid:	6	0.00700 scf/hr	100.0	0.042	0.184					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Flanges:										
Gas:	38	0.00086 lb/hr	18.4	0.006	0.026	0.000	0.000	0.019	0.0850	2.124
Light Liquid:	18	0.00300 scf/hr	100.0	0.003	0.014					0.00
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					0.000

Fuş	gitive Calculatio	ns:
	lb/hr	t/y
VOC	0.174	0.761
CH4	0.061	0.269
CO2	0.000	0.002
CO2e	5.265	23.06

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,28.963One mole of gas occupies, @ 14.696 psia & 32 -I359.2 cu ft. per lb-moleOne mole of gas occupies, @ 14.696 psia & 60 -I379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162		2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

Jay-Bee Oil & Gas - Dopey

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data					
Gas-Water-ratio	=	5 scf/bbl Using GOW from comparable well pad			
Throughput	=	66,000 bbl/yr			
Stock tank gas molecular weight	=	39.56 g/mole			

Conversions						
1 lb	=	453.6 g				
1 mole	=	22.4 L				
1 scf	=	28.32 L				
1 ton	=	2000 lb				

Equations

$E_{} = O \frac{(b)}{(b)}$	$(bl) \times R$	$(scf)_{\times}$	28.32(L)	$\frac{1(mole)}{\times MW}$	(g) ×	1(lb)	$\times \frac{1(ton)}{1}$
-101 z	yr)		1(scf)				2000(<i>lb</i>)

 E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ]
Total	18.1933	
VOC	12.7661	
Nitrogen	4.55E-03	
Carbon Dioxide	2.86E-02	
Methane	1.81E+00	
Ethane	3.59E+00	
Propane	4.72E+00	
Isobutane	1.28E+00	
n-Butane	2.93E+00	
2,2 Dimethylpropane	3.58E-02	
Isopentane	1.00E+00	
n-Pentane	1.05E+00	
2,2 Dimethylbutane	3.80E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	5.51E-02	
2 Methylpentane	2.93E-01	
3 Methylpentane	1.75E-01	
n-Hexane	3.82E-01	HAP
Methylcyclopentane	2.78E-02	
Benzene	6.55E-03	HAP
Cyclohexane	3.95E-02	
2-Methylhexane	8.48E-02	
3-Methylhexane	8.33E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	7.93E-02	
n-Heptane	1.23E-01	
Methylcyclohexane	7.62E-02	
Toluene	1.49E-02	HAP
Other C8's	1.25E-01	
n-Octane	4.15E-02	
Ethylbenzene	9.10E-04	HAP
M & P Xylenes	1.07E-02	HAP
O-Xylene	1.46E-03	HAP
Other C9's	5.17E-02	
n-Nonane	1.24E-02	
Other C10's	1.95E-02	
n-Decane	2.55E-03	
Undecanes (11)	2.73E-03	

 $\mathsf{E}_{\mathsf{TOT}}$

Sum of C3+

Jay-Bee Oil & Gas, Incorporated Dopey Well Pad Production Facility VRU Un-Captured/Un-Controlled Emissions and Loading to Combustor

As noted in the Project Overview, vapors released during the drop in pressure on the condensate and produced water as they are routed to the atmospheric pressure storage tanks (flash gas) and subsequent working and breathing losses during storage of condensate in these tanks will controlled a Vapor Recover Unit (VRU), with an Enclosed Combustor as backup for times when the VRU is down for repair or maintenance or if there is a slug of condensate generating more flash gas than the VRU can handle.

Based on actual flash liberation tests on both condensate tanks and produced water tanks at nearby well pads and working/breathing losses modeled by EPA's TANKS 4.0, loading to the VRU or combustor (when the VRU is down) is projected as follows:

- •	Total	914.5	tpy	208.79 lb/hr
Working/Breathing	Losses	3.2	tpy	0.73 lb/hr
Produced Water Fla	sh Gas	18.2	tpy	4.16 lb/hr
Condensate Flash G	as	893.1	tpy	203.90 lb/hr

All waste gases are hard piped to the combustor or VRU. Additionally, the combustor is warranted by the manufacturer to have 99%+ destruction efficiency. However, for permitting purposes, an overall 98% reduction in VOC emissions from un-controlled emissions is claimed when routed to the combustor and 95% control when routed to the VRU.

<u>VRU</u>

As discussed below, it is assumed that the VRU will be down 200 hours per year. Thus, uncaptured/controlled emissions from gases managed through the VRU will be 5% of the hourly loading over 8560 hours per year. As VOCs represents approximately 70% of the total mass loading, VOC emissions are estimated at 7.31 lb/Hr [208.79 x 70% x 0.05] or 31.27 tpy.

HAPs represent approximately 3.4% of the mass loading to the VRU. Thus, uncaptured/controlled HAP emissions from the VRU are estimated at 0.24 lb/hr [208.79 x 2.3% x 0.05] or 1.03 tpy.

n-Hexane is the largest component of the total HAPs, representing approximately 85.6% of the total HAP loading to the VRU. Thus, potential uncaptured/controlled n-Hexane emissions are

estimated at 0.21 lb/Hr [0.24 x .856] or or 0.88 tpy. The next largest HAP constituent is Toluene which as potential emissions of 0.008 lb/hr or 0.04 tpy. No other HAP has potential emissions greater than 0.01 tpy.

Methane comprises approximately 11.7% of the maximum loading (weight) of the combined gas stream to the VRU or 24.43 lb/Hr. At a 5% uncaptured/controlled, methane emissions from the VRU control system is potentially 1.22 lb/hr or 5.22 tpy. With a GHG factor of 25, this equates to CO2e emissions of 30.5 lb/hr and 130.5 tpy.

Combustor

As shown in the emissions calculation spreadsheet, the density and heat content of the produced water flash gas and the condensate flash gas are as follows. It is assumed that working/breathing losses from the condensate tanks is the same as the flash gas from these tanks.

Condensate Flash Gas	Gas Density: 0.110 lb/scf	HHV: 2290 BTU/scf
Produced Water Flash Gas	Gas Density: 0.085 lb/scf	HHV: 1747 BTU/scf

Using this data, the heat loading to the combustor is determined as follows:

Condensate Flash Gas and Working Breathing Losses: 204.63 lb/hr÷0.11 lb/scf = 1860 scf/hr and 4.26 MMBTU/Hr

Produced Water Flash Gas: 4.16 lb/hr÷0.085 lb/scf = 49 scf/hr and 0.086 MMBTU/Hr

The total heat loading to the combustor (4.35 MMBTU/Hr) is well within the 10.0 MMBTU/Hr capacity of the combustor and capable of managing flash gas from any slugs of condensate that may enter the system.

The overall flow to the combustor is 1909 scf/hr (45,816 scf/day) at 2277 BTU/scf. Mass loading to the combustor is 208.8 Lb/Hr.

As noted in the Project Overview, it is anticipated that the VRU will be un-available for a maximum of 200 hours per year. Thus, annual flow to the combustor (excluding any loading due to condensate slugs generating un-anticipated excess flash gas) is 0.382 MMSCF/yr. To accommodate any overloads to the VRU, this number has been doubled to 0.764 MMSCF/yr within this application.

VOC Emissions

VOC content of this combined vapor stream is approximately 70%. With a 98% capture and control efficiency of all VOCs going to the combustor, hourly VOC emissions are 2.92 lb/hr [208.81 lb/Hr x 0.70 x 0.02] or 0.58 tpy (based on a doubling of the anticipated 200 hours per year as described above). This hourly and annual VOC emission rate has been entered into the preceding emissions spreadsheet.

HAP Emissions

As noted above, HAPs represent approximately 2.3% of the VOC in gas going to the combustor. Thus, based on the VOC emissions calculated above, anticipated HAP emissions are 0.10 lb/hr [208.81 Lb/Hr x 0.023 x 0.02] and 0.02 tpy. Again, this hourly and annual VOC emission rate has been entered into the preceding emissions spreadsheet

GHG Emissions

As noted above, the maximum loading to the combustor is estimated at 208.81 lb/hr. Methane represents approximately 11.7% (weight) of the combined gas stream to the combustor or 24.43 lb/Hr. At a 2% incomplete combustion, non-combusted methane is 0.49 lb/hr or 0.10 tpy. These amounts are presented in the combustor calculation sheet in lieu of the AP-42 emission factors which are not appropriate for a gas stream of this composition.

Jay-Bee Oil & Gas - Dop

Flash Emission Calculations

Using Gas-Oil Ratio Method

Un-Controlled

Gas-Oil-r	atio =	500 scf/bbl Using Actual GOR from RPT-8
Through	nput =	32,400 bbl/yr
Stock tank gas molecular we	eight =	39.56 g/mole

Conversions						
1 lb	=	453.6 g				
1 mole	=	22.4 L				
1 scf	=	28.32 L				
1 ton	=	2000 lb				

Equations

[$E_{} = 0$	$\frac{(bbl)}{2} \times K$	$\frac{(scf)}{\times}$	28.32(L)	$\times \frac{1(mole)}{MW}$	(g) ×	1(<i>lb</i>)	$\times \frac{1(ton)}{1}$
-	-101 £	(yr)	(bbl)	1(scf)	22.4(<i>L</i>)	(mole)	453.6(<i>g</i>)'	2000(<i>lb</i>)

 E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	893.1276	
VOC	626.6987	
Nitrogen	2.23E-01	
Carbon Dioxide	1.40E+00	
Methane	8.87E+01	
Ethane	1.76E+02	
Propane	2.31E+02	
Isobutane	6.26E+01	
n-Butane	1.44E+02	
2,2 Dimethylpropane	1.76E+00	
Isopentane	4.93E+01	
n-Pentane	5.17E+01	
2,2 Dimethylbutane	1.87E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	2.71E+00	
2 Methylpentane	1.44E+01	
3 Methylpentane	8.58E+00	
n-Hexane	1.88E+01	HAP
Methylcyclopentane	1.37E+00	
Benzene	3.22E-01	HAP
Cyclohexane	1.94E+00	
2-Methylhexane	4.16E+00	
3-Methylhexane	4.09E+00	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	3.89E+00	
n-Heptane	6.02E+00	
Methylcyclohexane	3.74E+00	
Toluene	7.32E-01	HAP
Other C8's	6.12E+00	
n-Octane	2.04E+00	
Ethylbenzene	4.47E-02	HAP
M & P Xylenes	5.27E-01	HAP
O-Xylene	7.15E-02	HAP
Other C9's	2.54E+00	
n-Nonane	6.07E-01	
Other C10's	9.56E-01	
n-Decane	1.25E-01	
Undecanes (11)	1.34E-01	

E_{TOT}

Sum of C3+

ŝ

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERATION OF HYDROCARBON LIQUID								
Separator HC Liquid Stock Tank								
Pressure, psig	340	0						
Temperature, °F	65	70						
Gas Oil Ratio (1)		500						
Gas Specific Gravity (2)		1.387						
Separator Volume Factor (3)	1.2987	1.000						

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

Quality Control Check										
	Test Samples									
Cylinder No.		W-2408*	W-2423							
Pressure, psig	340	299	297							
Temperature, °F	65	66	66							

(1) - Scf of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst: M. G.

* Sample used for flash study Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

ŝ

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23.253	6.457
lsobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.378	0.988
Heptanes Plus	<u>1.701</u>	<u>0.761</u>
Totals	100.000	22.579

Computed Real Characteristics Of Heptanes Plus	Computed Real	Characteristics	Of Heptanes	Plus:
---	----------------------	-----------------	-------------	-------

-	•	
Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	. ,
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

1.387	(Air=1)
0.9850	v)
39.56	
2321	BTU/CF
2282	BTU/CF
	39.56 2321

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <a>

 <a>

 (GPA 2377)

 Results:
 <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %</td>

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

ŝ

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	1A/T 0/
Hydrogen Sulfide*	< 0.001	Grivi	WT % < 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.025
Methane	24.485		9.930
Ethane	25.943	6.993	9.930 19.719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1.116	5.521
n-Pentane	3.175	1.160	5.521 5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.209
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.000
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane		0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	• •
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification Dopey Condensate User Identification: City: Huntington State: West Virginia Jay-Bee Oil & Gas Company: Vertical Fixed Roof Tank Type of Tank: 210 BBL Condensate Tanks - Emissions from a Single Tank Description: **Tank Dimensions** 15.00 Shell Height (ft): 10.00 Diameter (ft): 14.00 Liquid Height (ft) : 10.00 Avg. Liquid Height (ft): 8,225.29 Volume (gallons): 51.06 Turnovers: 453,600.00 Net Throughput(gal/yr): Ν Is Tank Heated (y/n): **Paint Characteristics** Gray/Light Shell Color/Shade: Good Shell Condition Gray/Light Roof Color/Shade: Good Roof Condition: **Roof Characteristics** Type: Cone 0.25 Height (ft) 0.04 Slope (ft/ft) (Cone Roof) **Breather Vent Settings** -0.03 Vacuum Settings (psig): 0.03 Pressure Settings (psig)

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Dopey Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

<u></u>			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Dopey Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	451,6638
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1508
Vented Vapor Saturation Factor:	0.5512
veneu vapor Saturation Pacion.	0.0012
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft);	10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0400
Shell Radius (ft):	5.0000
Vapor Density	0.0373
Vapor Density (lb/cu ft):	69.0000
Vapor Molecular Weight (Ib/Ib-mole):	69.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	3,0220
Daily Avg. Liquid Surface Temp. (deg. R):	521,0866
Daily Average Ambient Temp. (deg. F):	54,8458
Ideal Gas Constant R	04.0400
(psia cuft / (lb-mol-deg R)):	10,731
Liquid Bulk Temperature (deg. R):	516,7558
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	4.2 .22
Factor (Btu/sqft day):	1.246.2101
	(12/2/2/2/
Vapor Space Expansion Factor	0.4500
Vapor Space Expansion Factor:	0.1508 33.2847
Daily Vapor Temperature Range (deg. R):	
Daily Vapor Pressure Range (psia):	1,0425 0,0600
Breather Vent Press, Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	3.0220
Surface Temperature (psia):	3.0220
Vapor Pressure at Daily Minimum Liquid	2.5373
Surface Temperature (psia):	2.5575
Vapor Pressure at Daily Maximum Liquid	3.5797
Surface Temperature (psia):	521.0866
Daily Avg. Liquid Surface Temp. (deg R):	512.7654
Daily Min, Liquid Surface Temp. (deg R): Daily Max, Liquid Surface Temp. (deg R):	529,4077
Daily Max, Liquid Surrace Temp, (deg R). Daily Ambient Temp, Range (deg, R):	20.0583
Daily Ambient Femp, Range (deg. R).	20.0000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5512
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.0220
Vapor Space Outage (ft):	5.0833

Working Losses (lb):	1,698.4482
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	69.0000
Surface Temperature (psia):	3.0220
Annual Net Throughput (gal/yr.):	453,600.0000
Annual Turnovers:	51.0620
Turnover Factor:	0.7542 8.225,2880
Maximum Liquid Volume (gal): Maximum Liquid Height (ft):	14 0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	2,150.1120

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Dopey Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

		Losses(lbs)			. /	
Components	Working Loss	Breathing Loss	Total Emissions	/ -	- 6450 lb	/yr or 3.23 they
Gasoline (RVP 6)	1,698.45	451.66	2,150.11	X 3 Jacks	2 0 1	/

1

Jay-Bee Oil & Gas - Dopey

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data			
Gas-Water-ratio	=	5 scf/bbl Using GOW from comparable well pad	
Throughput	=	66,000 bbl/yr	
Stock tank gas molecular weight	=	39.56 g/mole	

		Conversions	
1 lb	=	453.6 g	
1 mole	=	22.4 L	
1 scf	=	28.32 L	
1 ton	=	2000 lb	

Equations

$E_{TOT} = Q$	$\frac{(bbl)}{\times}$	$R\frac{(scf)}{x}$	28.32(L)	$\times \frac{1(mole)}{MW}$	(g)	1(lb)	$\times \frac{1(ton)}{1}$
$L_{TOT} - Q$	(yr)	ີ (bbl) ົ	l(scf)	22.4(L)	(mole)	453.6(g)	2000(<i>lb</i>)

E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	18.1933	
VOC	12.7661	
Nitrogen	4.55E-03	
Carbon Dioxide	2.86E-02	
Methane	1.81E+00	
Ethane	3.59E+00	
Propane	4.72E+00	
Isobutane	1.28E+00	
n-Butane	2.93E+00	
2,2 Dimethylpropane	3.58E-02	
Isopentane	1.00E+00	1
n-Pentane	1.05E+00	1
2,2 Dimethylbutane	3.80E-02	1
Cyclopentane	0.00E+00	1
2,3 Dimethylbutane	5.51E-02	1
2 Methylpentane	2.93E-01	1
3 Methylpentane	1.75E-01	1
n-Hexane	3.82E-01	HAP
Methylcyclopentane	2.78E-02	
Benzene	6.55E-03	HAP
Cyclohexane	3.95E-02	
2-Methylhexane	8.48E-02	
3-Methylhexane	8.33E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	7.93E-02	
n-Heptane	1.23E-01	
Methylcyclohexane	7.62E-02	
Toluene	1.49E-02	HAP
Other C8's	1.25E-01	
n-Octane	4.15E-02	
Ethylbenzene	9.10E-04	HAP
M & P Xylenes	1.07E-02	HAP
O-Xylene	1.46E-03	HAP
Other C9's	5.17E-02	
n-Nonane	1.24E-02	
Other C10's	1.95E-02	
n-Decane	2.55E-03	
Undecanes (11)	2.73E-03	

E_{TOT}

Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number:

FLASH LIBERATION OF SEPARATOR WATER			
	Separator	Stock Tank	
Pressure, psig	540	0	
Temperature, °F	78	70	
Gas Water Ratio (1)		4.06	
Gas Specific Gravity (2)		1.069	

(1) - Scf of water saturated vapor per barrel of stock tank water
(2) - Air = 1.000
(3) - Separator volume / Stock tank volume
Analyst: T.G.

Piston No. : WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: **FESCO**, Ltd. Alice, Texas de t E.S

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dioxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)	
Compressibility (Z)	0.9914	. ,	
Molecular Weight	30.68		
Gross Heating Value			
Dry Basis	1741	BTU/CF	
Saturated Basis	1712	BTU/CF	
irogen Culfide tested in Johanstein, hur O			

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: Results: CPA 2377) Results: CPA 2377)

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez Analyst: MR Processor: OA Cylinder ID: WF# 10S

Certified: EESCO, Ltd. Alice, Texas and

David Dannhaus 361-661-7015

•

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	OT M	< 0.001
Nitrogen	1.821		1,663
Carbon Dioxide	1.049		1.505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0,002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

Condensate Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_{L} = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded: 3.6 psia (per AP-42 conversion of RVP to TVP) M= Molecular weight of vapor in lb/lb-mole 64.35 (see attached breathing vapor analysis report) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 3.6 \text{ x } 64.35]/[460+60]$ $L_L = 3.33 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 99.4% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 200 BBL (8,400 gallons) a day, uncontrolled VOC emissions are estimated at 27.8 lb of VOC per day [8,4 x 3.33×0.994]. With all daily loading taking place within 1 hour, the average hourly un-controlled emission rate is therefore also estimated at 27.8 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 1,360,800 gallons (32,400 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 4505 pounds per year [1361 x $3.33 \times .994$] or 2.25 tons per year.

Based on the attached analysis of a representative tank's breathing emissions, HAPs represent 4.9 percent of the emissions. Thus, daily HAPs emissions equal 1.37 lb/hr [$8.40 \times 3.33 \times 0.049$]. Annual maximum HAPs emissions are estimated at 222.1 lb/yr [$1361 \times 3.33 \times 0.049$] or 0.11 tpy.

Produced Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_L = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P= true vapor pressure of liquid loaded: 0.3 psia (water at 60 Deg. F) M= Molecular weight of vapor in lb/lb-mole 24.78 (flash gas of comparable water sample) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 0.3 \text{ x } 24.78]/[460+60]$ $L_L = 0.11 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 36.59% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 240 BBL (10,080 gallons) a day, uncontrolled VOC emissions are estimated at 0.42 lb of VOC per day [10.08 x 0.11 x .366]. With all daily loading taking place within 4 hours, the average hourly un-controlled emission rate is estimated at 0.11 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 2,772,000 gallons (66,000 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 111.6 pounds per year [2,772 x 0.11 x .366] or 0.06 tons per year.

Attachment N FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_		- 1- 1			····, ···	PM		PM-1	0	
k =	Particle size multiplier	0.80		0.36						
s =	Silt content of road surface ma	aterial (%)			10			3		
p =	Number of days per year with	157			157					
Item Numbe	Item Number Description Description Number of Wheels Weight (tons) (mph) Miles per Hour Hour							um Control Device ID r Number	Control Efficiency (%)	
1	Produced Water Tanker Truck	18	27	10	0.78	1	550	None	0	
2	Condensate Tanker Truck	18	27	10	0.78	1	162	2 None	0	
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncontrolled Co			rolled	Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	11.02	3.03	11.02	3.03	1.49	0.41	1.49	0.41
2	5.51	0.44	5.51	0.44	0.74	0.06	0.74	0.06
3								
4								
5								
6								
7								
8								
TOTALS	16.53	3.47	16.53	3.47	1.56	0.47	1.56	0.47

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor						
n = Number of traffic lanes							
s =	Surface material silt content (
L = Surface dust loading (lb/mile)							
Item Description Mean Vehicle Miles per Trip					Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

None

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

1

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncon	trolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

ATTACHMENT O

Monitoring, Recordkeeping, Reporting and Testing Plan

ATTACHMENT O

JAY-BEE OIL & GAS, Inc.

Dopey Well Pad Production Facility

Monitoring, Recordkeeping, Reporting and Testing Plan

I. Monitoring

Engines

Jay-Bee Oil & Gas (Jay-Bee) will monitor and record engine hours of operation on a daily basis. Additionally, Jay-Bee will monitor the amount of gas managed by the facility on a daily basis as well as gas consumed in operating the VRU compressor engine on a monthly basis. Together, this information will allow the company to determine emissions for the engine, utilizing the catalyst manufacturer's warranted emission factors.

The air to fuel ratio will be monitored on a monthly basis to ensure proper operation of the catalytic converters. Additionally, the catalytic converters will be inspected and maintained in accordance with the manufacturer's specifications.

Condensate and Produced Water Tanks

Jay-Bee will monitor and record the volume of produced water and condensate being loading out on a monthly basis.

Heaters

Lastly, gas consumption to the GPUs and line heater will be monitored and recorded on a monthly basis.

II. Recordkeeping

Jay-Bee will maintain accurate operating records of the VRU, combustor and tanks for each calendar year. Records will include monthly fuel consumption (facility-wide), hours of operation for the engine and the amount of gas managed by the facility. These records will be signed and dated by an authorized representative.

All inspections, preventive maintenance, failures, duration of failure events, replacements and/or repair of catalytic converters will be recorded, signed and dated by an authorized representative.

All inspections, maintenance, failures, replacements and/or repair of valves and non-welded connections will be recorded, signed and dated by an authorized representative.

All records will be kept either on site or at the nearest office location for a period of at least five (5) years.

III. Testing

No testing is planned for this facility, unless specifically requested by the Department. The sole compressor engine is rated at 84 Hp and does not require testing under Subpart JJJJ [40 CFR 60.4243 (a)(2)(i)].

IV. Reporting

Jay-Bee will submit certified emission statements on an annual basis in accordance with WVDEP, Division of Air Quality requirements.

ATTACHMENT P

Public Notice

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for an NSR Construction Permit for its Dopey Well Pad Production Facility located off of Indian Creek Road near Alma, WV in Tyler County., West Virginia. The latitude and longitude coordinates are: Lat.39.43806, Long. - 80.77255.

The applicant estimates the potential to discharge the following regulated air pollutants:

3.32 tons of Nitrogen Oxides per year
3.99 tons of Carbon Monoxide per year
35.27 tons of Volatile Organics per year
0.02 tons of Sulfur Dioxide per year
3.72 tons of Particulate Matter per year
0.92 tons of n-Hexane
0.04 tons of Toluene
0.07 tons of Formaldehyde
3,605 tons of CO_{2e} per year

Startup of the facility is anticipated to take place on or about the 15th day of July, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc.