JAY-BEE OIL & GAS, INC.

APPLICATION FOR CLASS I ADMINISTRATIVE UPDATE

Big Moses Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR CLASS I ADMINISTRATIVE UPDATE

Jay-Bee Oil & Gas, Inc.

Big Moses Compressor Station

Tyler County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Business Registration
- Attachment B Site Location Map
- Attachment C Construction Schedule
- Attachment D Regulatory Analysis
- Attachment E Site Layout Diagram
- Attachment F Process Flow Diagram
- Attachment G Process Description
- Attachment I Emissions Units Table
- Attachment J Emissions Points Data Summary Sheet
- Attachment L Emissions Units Data Sheets
- Attachment N Supporting Calculations
- Attachment O Monitoring, Record keeping, Reporting and Testing Plan

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.wvdep.org/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)					
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOW CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT						
	ision Guidance" in order to determine your Title V Revision options ty to operate with the changes requested in this Permit Application.					
Sectio	n I. General					
 Name of applicant (as registered with the WV Secretary of Jay-Bee Oil & Gas, Inc. 	 State's Office): 2. Federal Employer ID No. (FEIN): 55-0738862 					
3. Name of facility <i>(if different from above):</i> Big Moses	4. The applicant is the:					
5A. Applicant's mailing address: 3570 Shields Hill Road Cairo, WV 26337	5B. Facility's present physical address: None. Off of Big Moses Road near Alma, WV					
change amendments or other Business Registration Certi	n/Organization/Limited Partnership (one page) including any name ficate as Attachment A. hority of L.L.C./Registration (one page) including any name change					
7. If applicant is a subsidiary corporation, please provide the r	name of parent corporation: N/A					
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES □ NO If YES, please explain: Applicant has a lease agreement with the land owner for installation of the well pad and all equipment necessary to manage produced liquid and gas If NO, you are not eligible for a permit for this source. 						
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Well Pad and Production Facility 10. North American Industry Classification System (NAICS) code for the facility 211111 						
11A. DAQ Plant ID No. (for existing facilities only): IIB. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): IID No. 095-00027 R13-3225						
All of the required forms and additional information can be found	d under the Permitting Section of DAQ's website, or requested by phone.					

12A.

- For **Modifications**, Administrative Updates or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B.

From Clarksburg, take US Route 50 west approximately 25 miles to Route 18 north (West Union Exist). Turn right on to Route 18 (north) and travel approximately 20 miles to the community of Alma. Pass through Alma. Continue on Route 18 approximately 1 mile to the intersection with County Route 1/3 (Indian Creek Road). Turn right onto Indian Creek Road and travel 2.9 miles. Turn right onto Big Moses Road. Bear right in 400 feet to entrance to the pad access road.

12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:							
	Alma	Tyler							
	-	400 UTM Zanat 47							
12.E. UTM Northing (KM): 4364.529	12.E. UTM Northing (KM): 4364.529 12F. UTM Easting (KM): 518.180 12G. UTM Zone: 17								
13. Briefly describe the proposed change(s) at the facilit a gathering line owned by others.		natural gas to allow discharge into							
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, providence and the providence of the pr		14B. Date of anticipated Start-Up if a permit is granted: Upon Approval							
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit		units proposed in this permit							
15. Provide maximum projected Operating Schedule or Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:							
16. Is demolition or physical renovation at an existing fac	cility involved? 🗌 YES 🛛 🕅 NO								
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed							
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.							
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the							
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application							
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this							
information as Attachment D.									
Section II. Additional atta	achments and supporting d	ocuments.							
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and							
45CSR13).									
20. Include a Table of Contents as the first page of you	ir application package.								
21. Provide a Plot Plan , e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Re		rty on which the stationary							
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).							
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control							
23. Provide a Process Description as Attachment G.									
 Also describe and quantify to the extent possible and a state of the extent possible at the extent possible at	all changes made to the facility since the	e last permit review (if applicable).							
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.									
24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.									
 For chemical processes, provide a MSDS for each compound emitted to the air. 									
25. Fill out the Emission Units Table and provide it as	Attachment I.	25. Fill out the Emission Units Table and provide it as Attachment I.							

26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.								
27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.								
28. Check all applicable Emissions Unit Data Sheets listed below:								
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry						
Chemical Processes*	☐ Hot Mix Asphalt Plant ☐ Incinerator	Solid Materials Sizing, Handling and Storage Facilities						
Concrete Batch Plant	Natural Gas Compressors	⊠ Storage Tanks						
Grey Iron and Steel Foundry	M Natural Gas compressors							
Dehydration								
*Leak Source Data Sheet Only	eta Shaat(a) aa Attachmant I							
Fill out and provide the Emissions Unit Da 29. Check all applicable Air Pollution Co								
Absorption Systems	Baghouse	v.						
Adsorption Systems	Condenser	Hare Mechanical Collector						
Adsorption Systems	Electrostatic Precipitato							
Other Collectors, specify:								
Fill out and provide the Air Pollution Cont	trol Device Sheet(s) as Attachn	nent M.						
		r attach the calculations directly to the forms listed in						
31. Monitoring, Recordkeeping, Report	compliance with the proposed em	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit						
	y not be able to accept all measur	er or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.						
32. Public Notice. At the time that the a	pplication is submitted, place a C	lass I Legal Advertisement in a newspaper of general						
circulation in the area where the source	ce is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>						
Advertisement for details). Please st	ubmit the Affidavit of Publicatio	n as Attachment P immediately upon receipt.						
33. Business Confidentiality Claims. D	oes this application include confi	dential information (per 45CSR31)?						
	NO NO							
	ng the criteria under 45CSR§31-4	nitted as confidential and provide justification for each .1, and in accordance with the DAQ's "Precautionary instructions as Attachment Q.						
See	ction III. Certification o	f Information						
34. Authority/Delegation of Authority. Check applicable Authority Form bel		her than the responsible official signs the application.						
Authority of Corporation or Other Busin	iess Entity	Authority of Partnership						
Authority of Governmental Agency		Authority of Limited Partnership						
Submit completed and signed Authority Form as Attachment R.								

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

35A. **Certification of Information**. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned 🖾 **Responsible Official** / 🗋 **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please of	DATE: <u>5-13-2016</u> (Please use blue ink)					
35B. Printed name of signee: Shane Dowell	35C. Title: Office Manger					
35D. E-mail:	36E. Phone:	36F. FAX:				
sdowell@jaybeeoil.com	304/628-3119	304/628-3119				
36A. Printed name of contact person (if different	nt from above):	36B. Title:				
36C. E-mail:	36D. Phone:	36E. FAX:				

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	ED WITH THIS PERMIT APPLICATION:						
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information 						
	permit application with the signature(s) to the DAQ, Permitting Section, at the s application. Please DO NOT fax permit applications.						
address listed on the first page of this application. Please DO NOT fax permit applications. FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE: □ Forward 1 copy of the application to the Title V Permitting Group and: □ For Title V Administrative Amendments: □ NSR permit writer should notify Title V permit writer of draft permit,							
□ For Title V Minor Modifications:							

□ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

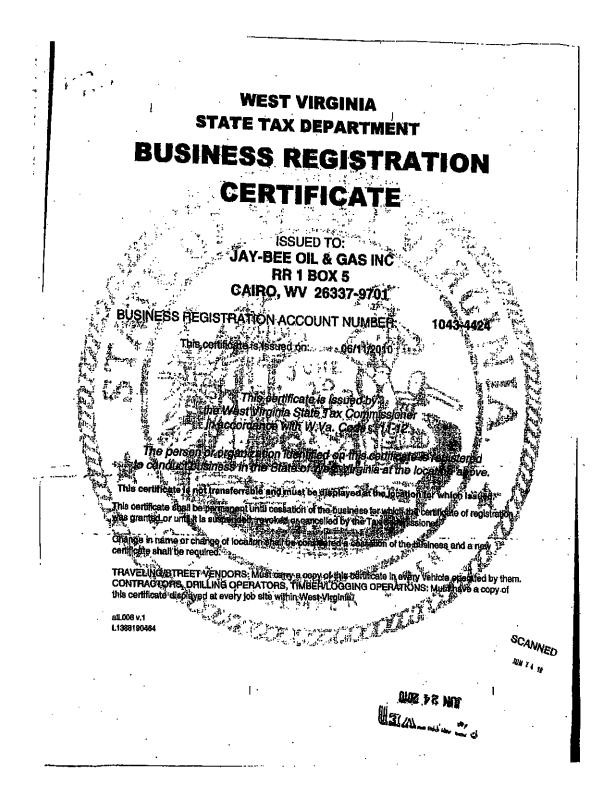
NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

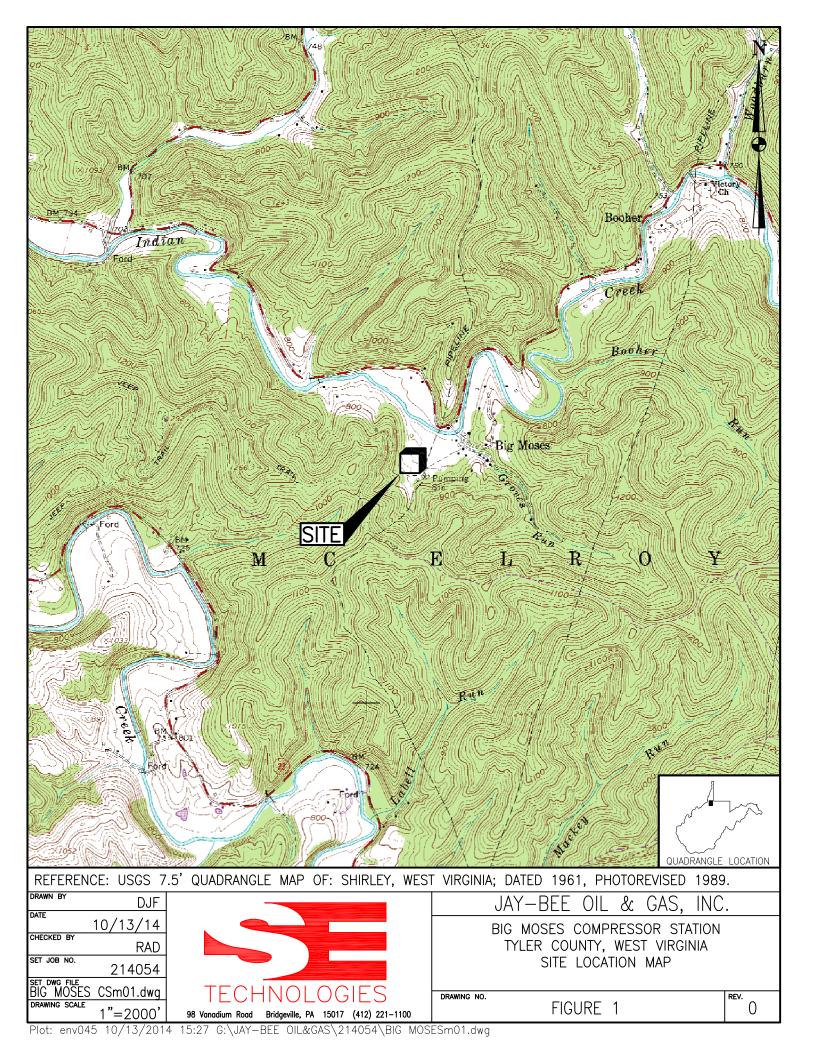
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

SECTION II


Attachments

ATTACHMENT A

Business Registration


Attachment A

Attached Current WV Business Certificate

ATTACHMENT B

Site Location Map

ATTACHMENT C

Construction Schedule

Jay-Bee Oil & Gas, Inc. Big Moses Compressor Station Attachment C – Construction Schedule

The requested Class I Administrative Update seeks approval for removal of one RICE engine from the permit and operational restrictions on a second RICE engine. Additionally, this application also seeks approval for operational restrictions on one of the three dehydration units. Accordingly, there is nothing to construct associated with this request. Hence, there is no construction schedule.

ATTACHMENT D

Regulatory Analysis

Big Moses Compressor Station Attachment D Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to the planned Big Moses Compressor Station. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

1.1 PSD and NSR

The facility will remain a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant with the voluntary restrictions (catalytic converters on engines).

The facility is within an area designated as non-attainment for fine particulates. Consequently, the facility is subject to the New Source Review (NSR) regulations. NOx and fine particulate emissions (PM2.5) will remain below the annual emission thresholds triggering NSR. Consequently, NSR requirements are not applicable to this project.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The facility will remain a minor source. Additionally, the NSPS regulating this facility does not trigger a Title V permit. Hence, a Title V permit will not be required for the Big Moses Compressor Station.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

• Whether the facilities are under common control,

• Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;

• Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,

• Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

The proposed reduction of operations at Big Moses will not impact the current aggregation analysis.

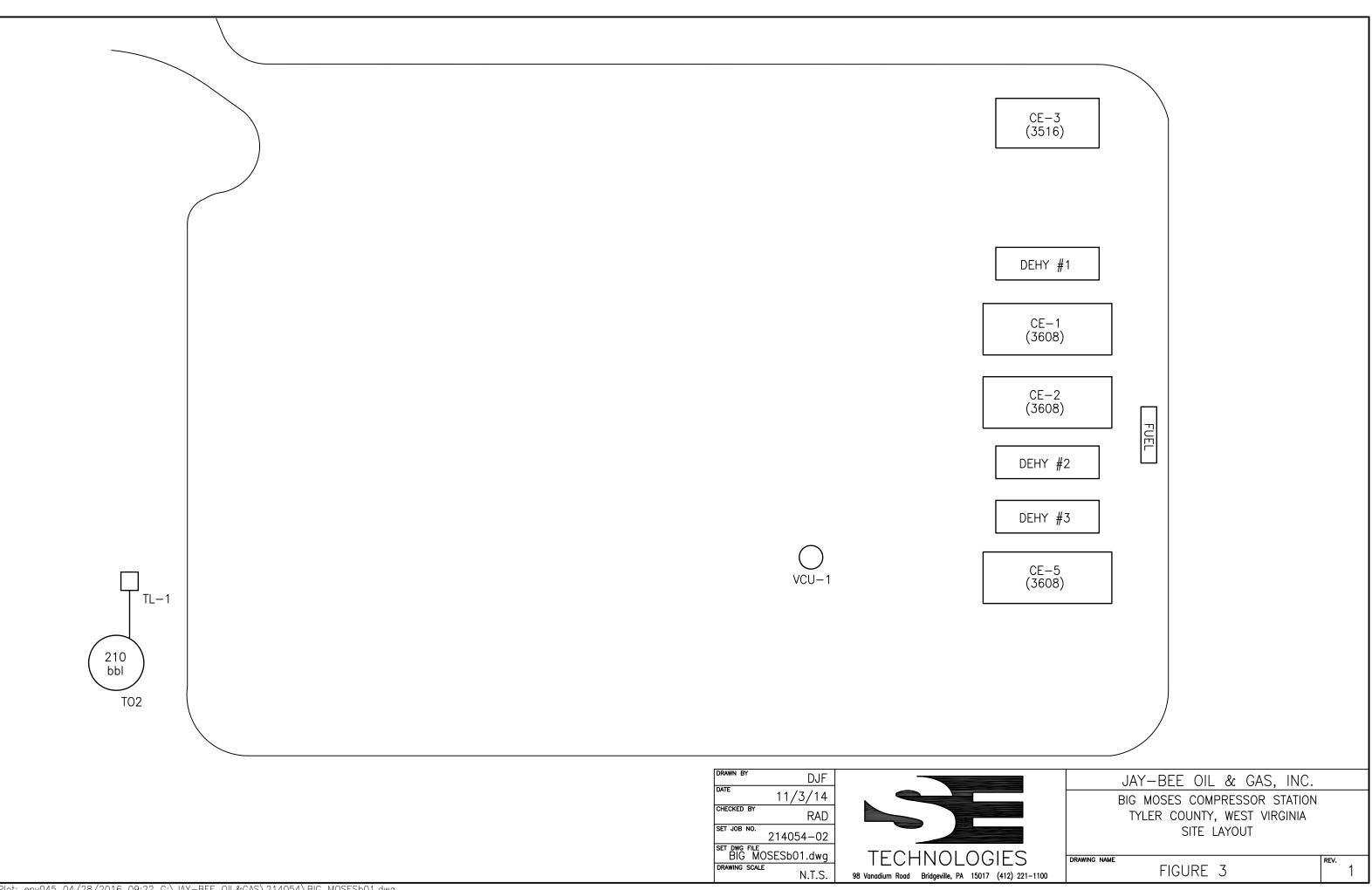
1.4 New Source Performance Standards

The proposed equipment removal and restrictions will not impact its current standing with respect to any New Source Performance Standards.

1.5 National Emission Standards for Hazardous Air Pollutants

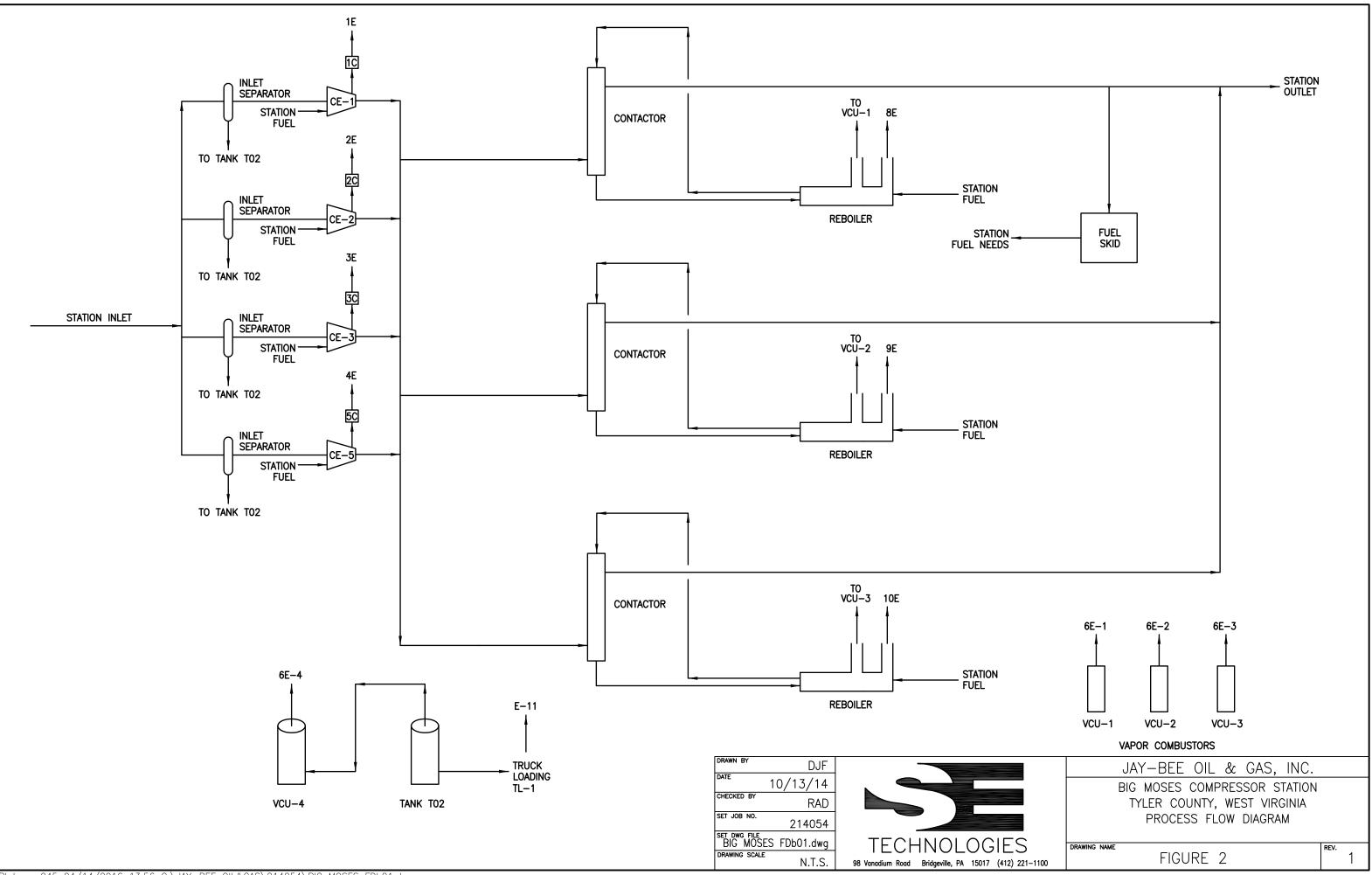
The proposed equipment removal and restrictions will not impact its current standing with respect to any National Emission Standards for Hazardous Air Pollutants.

1.6 Chemical Accident Prevention


Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The Big Moses Compressor Station will still have the potential to store more than 10,000 lbs of a flammable mixture containing several of the substances listed in Table 3 in 40 CFR 68.130. However, an RMP is not required as this facility qualifies for the exclusion provided for remote oil and gas production facilities (40 CFR 68.115).

1.7 West Virginia State Requirements

The proposed equipment removal and restrictions will not impact its current standing with respect to any West Virginia regulatory requirements.


ATTACHMENT E

Site Layout Diagram

ATTACHMENT F

Process Flow Diagram

Plot: env045 04/14/2016 13:56 G:\JAY-BEE 0IL&GAS\214054\BIG MOSES FDb01.dwg

ATTACHMENT G

Process Description

Jay-Bee Oil & Gas, Inc. Big Moses Compressor Station Process Description

Jay-Bee Oil & Gas, Inc. currently operates the Big Moses Compressor Station under Permit No. R13-3225. This station receives, compresses and dehydrates natural gas from area Jay-Bee well pads prior to injection into a gathering line owned and operated by others. This facility is contiguous with the planned Icon Midstream Big Moses Liquids Management Facility and it has been determined that the two facilities must be aggregated for evaluation of major source status. As part of the application for the Icon Midstream facility, it was stated that several reductions would be made at the contiguous Jay-Bee station in order to ensure that potential emissions of the combined facilities would not exceed major source thresholds.

At this time Jay-Bee is seeking approval for the removal of certain equipment from its permit and the placement of restrictions on other equipment. More specifically, Jay-Bee is seeking the following modifications to its permit:

- Removal of one inlet gas compressor and Caterpillar 3608LE driver (Emission Unit CE-6)
- Placement of restrictions on one inlet gas compressor and Caterpillar 3608LE driver (Emission Unit CE-5)
- Placement of restrictions on one dehydration unit (Emission Units RSV-3 and RBV-3)
- Associated reduction of blowdown and fugitive emissions from fittings.

Compressor driver engine CE-5 will be restricted to 1000 hours per year. Dehydration Unit #3 (Emission Units RSV-3 and RBV-3 will be restricted to 1750 hours per year.

<u>No new equipment will be installed as part of this Class I Administrative Update.</u> Additionally, there are no other operational changes other than the limitations noted above.

Upon completion of this Class I Administrative Update, emission sources at this facility will include the following:

- Four Inlet Gas Compressor Driver Engines (one with restriction to 1000 hrs per year)
- Three 1.0 MMBTU/Hr TEG Re-boilers (one restricted to 1750 Hrs per year)
- Three Dehydration units (one restricted to 1750 Hrs per year)
- Four Enclosed Combustors managing low pressure vapors from the produced fluids storage tank, truck loading and dehydration still vents.
- Engine Blowdowns
- One 210 BBL Produce Fluids Tank
- Truck Loading of Produced Fluids
- Fugitive Emissions Facility Roadways
- Fugitive Emissions Component Leaks

ATTACHMENT I

Emission Unit Table

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1	1E	Residue Gas Compressor Engine (Caterpillar 3608 LE)	2014	2370 Нр	EXIST	1C (SCR)
CE-2	2E	Residue Gas Compressor Engine (Caterpillar 3608 LE)	2014	2370 Нр	EXIST	2C (SCR)
CE-3	3E	Residue Gas Compressor Engine (Caterpillar 3516 LE)	2014	1380 Hp	EXIST	3C (SCR)
CE-5	4E	Residue Gas Compressor Engine (Caterpillar 3608 LE)	2014	2370 Нр	MOD	5C (SCR)
CE-6	5E	Residue Gas Compressor Engine (Caterpillar 3608 LE)	2014	2370 Нр	REM	6C (SCR)
RSV-1	6E-1	Dehy Still and Flash Tank	2014	60 MMSCFD	EXIST	VCU-1
RSV-2	6E-2	Dehy Still and Flash Tank	2014	60 MMSCFD	EXIST	VCU-2
RSV-3	6E-3	Dehy Still and Flash Tank	2014	60 MMSCFD	MOD	VCU-3
T02	6E-4	Produced Fluids Tank	2014	210 BBL	EXIST	VCU-4
RBV-1	8E	Dehydration Unit Re-Boiler	2014	1.0 MMBTU/Hr	EXIST	None
RBV-2	9E	Dehydration Unit Re-Boiler	2014	1.0 MMBTU/Hr	EXIST	None
RBV-3	10E	Dehydration Unit Re-Boiler	2014	1.0 MMBTU/Hr	MOD	None
TL-1	11E	Truck Loading	2014	384,000 Gallons/Yr.	EXIST	None
		Fugitive VOC Emissions – Fittings and Connections	2014	N/A	EXIST	None
		Haul Roads	2014	1 Trucks per day max.	EXIST	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Page ____1__ of __1____

03/2007

³New, modification, removal ⁴For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

ATTACHMENT J

Emission Points Data Summary Sheets

EMISSIONS SUMMARY SHEET

Emission Point ID No.	Emission Point Type ¹	Emissio Ven Throug Po	ted h This		ition Control evice	Pollutants - Chemical Name/CAS ² Emissions ³		ential ntrolled	Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)	
						NOx	2.87	12.59	2.87	12.59	Gas	EE
						CO	14.37	62.93	1.11	4.85	Gas	EE
	Upward					VOC	6.79	29.75	2.87	12.59	Gas	EE
1E	Vertical	CE-1	Engine	1C	SCR	PM	0.18	0.80	0.18	0.80	Solid	EE
	Stack					HCOH	1.41	1.26	0.29	1.26	Gas	EE
						Total HAPs	1.74	7.64	0.62	2.72	Gas	EE
						CO2e	2820	12,352	2820	12,352	Gas	EE
						NOx	2.87	12.59	2.87	12.59	Gas	EE
						CO	14.37	62.93	1.11	4.85	Gas	EE
	Upward					VOC	6.79	29.75	2.87	12.59	Gas	EE
2E	Vertical	CE-2	Engine	2C	SCR	PM	0.18	0.80	0.18	0.80	Solid	EE
	Stack					HCOH	1.41	1.26	0.29	1.26	Gas	EE
						Total HAPs	1.74	7.64	0.62	2.72	Gas	EE
						CO2e	2820	12,352	2820	12,352	Gas	EE
						NOx	2.87	1.44	2.87	1.44	Gas	EE
						CO	14.37	0.55	1.11	0.55	Gas	EE
	Upward					VOC	6.79	1.44	2.87	1.44	Gas	EE
4E	Vertical	CE-5	Engine	5C	SCR	PM	0.18	0.09	0.18	0.09	Solid	EE
	Stack					HCOH	1.41	0.14	0.29	0.14	Gas	EE
						Total HAPs	1.74	0.31	0.62	0.31	Gas	EE
						CO2e	2820	1,410	2820	1,410	Gas	EE
						NOx			1.52	6.66	Gas	EE
						СО			0.61	2.67	Gas	EE
	Upward					VOC			0.88	3.68	Gas	EE
3E	Vertical	CE-3	Engine	3C	SCR	PM			0.11	0.50	Solid	EE
	Stack				_	HCOH			0.30	1.33	Gas	EE
						Total HAPs			0.51	2.24	Gas	EE
						CO2e			1749	7662	Gas	EE

						NOx	< 0.01	< 0.01	0.03	0.11	Gas	EE
						CO		<0.01	0.03	0.11	Gas	EE
						VOC	< 0.01					
	Upward		Still		Enclosed		85.68	375.3	1.71	7.51	Gas	EE
6E-1	Vertical Stack	RSV-1	Vent	VCU-1	Combustor	PM	< 0.01	< 0.01	< 0.01	0.01	Solid	EE
	Stack		vent		Comoustor	Benzene	0.77	3.39	< 0.01	0.07	Gas	EE
						Total HAPs	9.37	41.1	0.19	0.82	Gas	EE EE
						CO2e	<1	<1	99	136	Gas	
						NOx	< 0.01	< 0.01	0.03	0.11	Gas	EE
						CO	< 0.01	< 0.01	0.02	0.09	Gas	EE
	Upward					VOC	85.68	375.3	1.71	7.51	Gas	EE
6E-2	Vertical	RSV-2	Still	VCU-2	Enclosed Combustor	PM	< 0.01	< 0.01	< 0.01	0.01	Solid	EE
-	Stack		Vent		Combustor	НСОН	0.77	3.39	< 0.01	0.07	Gas	EE
						Total HAPs	9.37	41.1	0.19	0.82	Gas	EE
						CO2e	<1	<1	99	136	Gas	EE
						NOx	< 0.01	< 0.01	0.03	0.02	Gas	EE
						CO	< 0.01	< 0.01	0.02	0.02	Gas	EE
	Upward					VOC	85.68	74.97	1.71	1.50	Gas	EE
6E-3	Vertical	RSV-3	Still	VCU-3	Enclosed	PM	< 0.01	< 0.01	< 0.01	< 0.01	Solid	EE
OL 5	Stack	100 1 5	Vent	100 5	Combustor	НСОН	0.77	0.68	< 0.01	< 0.01	Gas	EE
						Total HAPs	9.37	8.21	0.19	0.16	Gas	EE
						CO2e	<1	<1	99	27	Gas	EE
						NOx	< 0.01	< 0.01	0.08	0.35	Gas	EE
						СО	< 0.01	< 0.01	0.44	1.93	Gas	EE
	Upward					VOC	36.03	157.8	0.72	3.16	Gas	EE
6E-4	Vertical	T02	Tank	VCU-4	Enclosed	PM	< 0.01	< 0.01	< 0.01	0.01	Solid	EE
012-4	Stack	102	Vent	VCU-4	Combustor							
						Total HAPs	1.17	5.11	0.01	0.10	Gas	EE
						CO2e	<1	<1	139	609	Gas	EE
						NOx	0.10	0.44	0.10	0.44	Gas	EE
						CO	0.08	0.37	0.10	0.37	Gas	EE
						VOC	< 0.03	0.02	<0.03	0.02	Gas	EE
07	Upward Vertical		Dehy #1 Reboiler			PM	<0.01	<0.02	<0.01	< 0.02	Solid	EE
8E	Stack	RBV-1	Vent		None	1 141	\0.01	\0.01	~0.01	\0.01	5010	DD
						Total HAPs	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
						CO2e	<0.01 121	<0.01 529	<0.01	<0.01 529	Gas	EE
1						0.020	121	529	121	529	Gas	22

					NOx	0.10	0.44	0.10	0.44	Gas	EE
					СО	0.08	0.37	0.08	0.37	Gas	EE
	Upward		Dehy #2		VOC	< 0.01	0.02	< 0.01	0.02	Gas	EE
9E	Vertical	RBV-2	Reboiler	None	PM	< 0.01	< 0.01	< 0.01	< 0.01	Solid	EE
72	Stack	112 / 2	Vent	1,0110	НСОН						
					Total HAPs	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
					CO2e	121	529	121	529	Gas	EE
					NOx	0.10	0.09	0.10	0.09	Gas	EE
					CO	0.08	0.07	0.08	0.07	Gas	EE
	Upward		Dahr #2		VOC	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
10E	Vertical	RBV-3	Dehy #3 Reboiler	None	PM	< 0.01	< 0.01	< 0.01	< 0.01	Solid	EE
	Stack		Vent		НСОН						
					Total HAPs	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE
					CO2e	121	106	121	106	Gas	EE
11E	Fugitive	TL-1	Truck Loading	None	VOC	7.46	1.19	7.46	1.19	Gas	EE

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).4C

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

ATTACHMENT L

Emission Unit Data Sheets

Source Ide	entification Number ¹	C	E-1	C	E-2	CE-5		
Engine Mar	nufacturer and Model	CAT G	3608 LE	CAT G	3608 LE	CAT G	CAT G3608 LE	
Manufactu	rer's Rated bhp/rpm	2370	@ 1000	2370	@ 1000	2370 @ 1000		
So	purce Status ²]	ES	I	ES	Ν	AS	
Date Installe	d/Modified/Removed ³	Sept	. 2013	Sept	2013	Upon Rece	Upon Receipt of Permit	
Engine Manufact	tured/Reconstruction Date ⁴	7/20)/2013	7/20	/2013	After Ja	an 1 2013	
	I Stationary Spark Ignition to 40CFR60 Subpart JJJJ?]	No	ז	ło	ז	No	
	Engine Type ⁶	L	B4S	LI	34S	LI	B4S	
Engine, Fuel and	APCD Type ⁷	S	CR	S	CR	S	CR	
	Fuel Type ⁸	I	RG	F	G	F	RG	
	H ₂ S (gr/100 scf)		<1	<	<1	<1		
Combustion Data	Operating bhp/rpm	2370	@ 1000	2370	2370 @ 1000		2370 @ 1000	
Dutu	BSFC (Btu/bhp-hr)	7	675	70	575	7675		
	Fuel throughput (ft ³ /hr)	14	,480	14	480	14	,480	
	Fuel throughput (MMft ³ /yr)	12	26.8	12	6.8	126.8 1000		
	Operation (hrs/yr)	8	760	87	760			
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
AP	NO _X	2.87	12.59	2.87	12.59	2.87	1.44	
AP	СО	1.11	4.85	1.11	4.85	1.11	0.55	
AP	VOC	2.87	12.59	2.87	12.59	2.87	1.44	
AP	SO ₂	0.011	0.048	0.011	0.048	0.011	< 0.01	
AP	PM 10	0.182	0.80	0.182	0.80	0.182	0.09	
AP	Formaldehyde	0.287	1.26	0.287	1.26	0.287	0.14	
AP	Total HAPs	0.621	2.72	0.621	2.72	0.621	0.31	
AP	CO2e	2820	12,352	2820	12,352	2820	1,410	
							 	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ide	ntification Number ¹	C	E-6	Cl	E-3		
Engine Mar	ufacturer and Model	CAT G	3608 LE	CAT G	3516 LE		
Manufactu	rer's Rated bhp/rpm	2370	@ 1000	1380	@1400		
So	urce Status ²	I	RS	E	ES		
Date Installe	d/Modified/Removed ³	Not I	nstalled	Januar	y 2014		
Engine Manufact	ured/Reconstruction Date4	After Ja	an 1 2013	After Janu	ary 1, 2010		
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No	Ν	ło		
	Engine Type ⁶	Ll	B4S	LF	34S		
	APCD Type ⁷	S	CR	S	CR		
г ·	Fuel Type ⁸	F	RG	R	G		
Engine, Fuel and Combustion Data	H ₂ S (gr/100 scf)		<1	<	<1		
	Operating bhp/rpm	2370	@ 1000	13800	@1400		
Dutu	BSFC (Btu/bhp-hr)	7	674	82	210		
	Fuel throughput (ft ³ /hr)	14	,480	96	560		
	Fuel throughput (MMft ³ /yr)	12	26.8	82	2.5		
	Operation (hrs/yr)	8760		87	760		
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AP	NO _X	2.87	12.59	1.52	6.66		
AP	СО	1.11	4.85	0.61	2.67		
AP	VOC	2.87	12.59	0.88	3.86		
AP	SO ₂	0.011	0.048	0.007	0.029		
AP	PM ₁₀	0.182	0.80	0.113	0.496		
AP	Formaldehyde	0.287	1.26	0.31	1.34		
AP	Total HAPs	0.621 2.72					
AP	CO2e	2820	12,352	1750	7665		

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) MS Modification of Existing Source ES Existing Source RS Removal of Source

ource RS

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 LB2S Lean Burn Two Stroke
 LB4S Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio	IR	Ignition Retard						
	HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers						
	PSC	Prestratified Charge	LEC	Low Emission Combustion						
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction						
8.	Enter the F	Fuel Type using the following codes:								
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas						
9.	9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this									
	Compressor/Generator Data Sheet(s).									

MD	Manufacturer's Data	ΔP	AP-42	
MD		7 11	111 72	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

General Glycol Dehydration Unit Data		Manufacturer and Model		Cameron 5GR-1000-450/210		
		Max Dry Gas Flow Rate (mmscf/day)		60 MMSCFD		
		Design Heat Input (mmBtu/hr)		1.0 MMBTU/Hr (re-boiler)		
		Design Type (DEG or TEG)		TEG		
		Source Status ²		MS		
		Date Installed/Modified/Removed ³		January 2014		
		Regenerator Still Vent APCD ⁴		CC		
		Control Device ID ⁴		VCU-1		
		Fuel HV (Btu/scf)		1256 (HHV)		
		H ₂ S Content (gr/100 scf)		<0.001%		
		Operation (hrs/yr)		1750		
Emission Unit ID/ Emission	Vent					
Point ID ¹		Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
	Reconce	AP-42	NO _X	0.100	0.088	
RBV-3/		AP-42	СО	0.0840	0.074	
кы v-3/ 6Е-3		AP-42	VOC	0.0055	0.005	
		AP-42	SO ₂	< 0.0001	< 0.001	
		AP-42	PM ₁₀	0.0076	0.007	
	0	GRI-GLYCalc TM	VOC	1.7136	1.4994	
		GRI-GLYCalc [™]	Benzene	0.0155	0.0135	
RSV-3/		GRI-GLYCalc [™]	Ethylbenzene	ND	ND	
VCU-3	Still Vent	GRI-GLYCalc TM	Toluene	0.0465	0.0407	
		GRI-GLYCalc TM	Xylenes	0.0877	0.0767	
		GRI-GLYCalc [™]	n-Hexane	0.0378	0.0331	

GLYCOL DEHYDRATION EMISSION UNIT DATA SHEET

1. Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Emission Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes and the control device ID number:
 - NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal Onidian
 - TO Thermal Oxidizer
- 5. Enter the Potential Emissions Data Reference designation using the following codes:

	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Emission Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

ATTACHMENT N

Supporting Calculations

Big Moses Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane Ib/Hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
CE-1	Compressor Engine #1	2.87	1.11	2819.98	2.87	0.011	0.182	0.020	0.008	0.287	0.621
CE-2	Compressor Engine #2	2.87	1.11	2819.98	2.87	0.011	0.182	0.020	0.008	0.287	0.621
CE-3	Compressor Engine #3	1.52	0.61	1749.31	0.61	0.007	0.113	0.013	0.005	0.304	0.511
CE-4	Compressor Engine #4 (Previously Removed)	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000
CE-5	Compressor Engine #5 (To Be Restricted to 1000 Hours per year)	2.87	1.11	2819.98	2.87	0.011	0.182	0.020	0.008	0.287	0.621
CE-6	Compressor Engine #6 (To Be Removed from Permit)	0.00	0.00	0.00	0.00	0.000	0.000			0.000	0.000
RBV-1	1.0 MMBTU/Hr Reboiler	0.10	0.08	120.79	0.01	0.001	0.008	0.002	0.002	0.000	0.002
RBV-2	1.0 MMBTU/Hr Reboiler	0.10	0.08	120.79	0.01	0.001	0.008	0.002	0.000	0.000	0.002
	Dehy Still Vent (controlled and Restricted to 1750 Hours per										
RBV-3 RSV-1	vear) Dehy Still Vent (controlled)	0.10	0.08 0.02	<u>120.79</u> 98.99	<u>0.01</u> 1.71	<u>0.001</u> 0.000	0.008	0.002	<u>0.000</u> 0.016	0.000	0.002 0.188
RSV-2	Dehy Still Vent (controlled)	0.03	0.02	98.99	1.71	0.000	0.002	0.038	0.010		0.188
RSV-3	Dehy Still Vent (controlled)	0.03	0.02	98.99	1.71	0.000	0.002		0.016		0.188
	Blowdowns ¹			N/A	N/A						N/A
T02	Produced Fluids Tank controlled)	0.08	0.44	139.09	0.72		0.004				0.011
TL-1	Truck Loading				7.46						0.510
	Truck Traffic ²						6.33				
	Fittings Fugitive Emissions			21.32	0.35						0.006
Total		10.60	4.68	11,029	22.90	0.04	7.02	0.19	0.08	1.16	3.47

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
CE-1	Compressor Engine #1	12.59	4.85	12,352	12.59	0.048	0.80	0.09	0.04	1.26	2.722
CE-2	Compressor Engine #2	12.59	4.85	12,352	12.59	0.048	0.80	0.09	0.04	1.26	2.722
CE-3	Compressor Engine #3	6.66	2.67	7,662	3.86	0.030	0.50	0.06	0.02	1.33	2.238
	Compressor Engine #4										
CE-4	(Previously Removed) Compressor Engine #5 (To Be	0.00	0.00	0	0.00	0.000	0.00	0.00	0.00	0.00	0.000
	Restricted to 1000 Hours per										
CE-5	year)	1.44	0.55	1,410	1.44	0.005	0.09	0.01	0.00	0.14	0.311
	Compressor Engine #6 (To Be										
CE-6	Removed from Permit)	0.00	0.00	0	0.00	0.000	0.00	0.00	0.00	0.00	0.000
RBV-1	1.0 MMBTU/Hr Reboiler	0.44	0.37	529	0.02	0.003	0.03	0.01	0.00	0.00	0.008
RBV-2	1.0 MMBTU/Hr Reboiler	0.44	0.37	529	0.02	0.003	0.03	0.01	0.00	0.00	0.008
	1.0 MMBTU/Hr Reboiler (To Be										
	Restricted to 1750 Hours per										
RBV-3	vear)	0.09	0.07	106	0.00	0.001	0.01	0.00		0.00	0.002
RSV-1	Dehy Still Vent (controlled)	0.11	0.09	136	7.51	0.001	0.01	0.17	0.07		0.821
RSV-2	Dehy Still Vent (controlled)	0.11	0.09	136	7.51	0.001	0.01	0.17	0.07		0.821
	Dehy Still Vent (controlled and										
RSV-3	Restricted to 1750 Hours per vear)	0.02	0.02	27.28	1.50	0.00	0.00	0.03	0.01	0.00	0.16
	Blowdowns ¹	0.02	0.02	248	3.19	0.00	0.00	0.00	0.01		0.190
T02	Produced Fluids Tank (controlled)	0.35	1.93	609	3.16		0.02				0.100
TL-1	Truck Loading				1.19						0.080
	Truck Traffic ²						0.65				
	Fittings Fugitive Emissions			93	1.52						0.026
Total		34.84	15.85	36,189	56.10	0.14	2.94	0.62	0.25	3.99	10.21
	Current Permit	59.02	25.36	60,015	85.86	0.23	4.47	0.93	0.37	6.36	16.01
	Change	-24.18	-9.51	-23826	-29.76	-0.09	-1.53	-0.31	-0.12	-2.37	-5.80

¹ See Attachment C for Blowdown Calculations

⁴ This represents fugitive dust emissions from tank truck removing accumulated produced water/condensate from the facility.

Big Moses Tyler County, WV

Controlled Emission Rates

Engine Nature Engine Model Spright Manufacturer Engine Model Washerstein (Natural or Turbocharged) Natural CAT 3088 LE 3088 LE	Sources CE-1 and CE-2 CE-2	2						
Engine Manufacturer Engine Ma								
Enjore Model 3008 LE 1990 Second 2007 Seco	Engine Data:							
Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharges) Natural Appriction (Natural or Turbocharges) Natural Manufacturer Rating Gonfigeration (In-line or Vee) In-Line Number of Cylinders 8 Engine Bore 11.800 Engine Bore 11.800 Engine Displacement 10.323 Existion Rates: gbhp-hr Duffer State 2.87 Turbo Color 2.87 Color 2.87 Color 2.87 Color 2.87 Turbo Color 3.70 433.3 2.16.9 Color 3.70 Val (Condensable+ Filterable) 3.70 Alta State 0.0119 Outrog of No 0.035 Color 0.0055 Outrog of No 0.0478 Outrog of No 0.0478 Outrog of No 0.0478 Outrog of Operation 3.70 Alta Nuel Hours of Operation 8.760 SO2 0.055 Outrog of No 0.0478 Outrog of No 0.0478	5							
Aspiration (Natural of Turbocharged) Natural Turbocharge Cooler Temperature Manufacture Raing NA deg, F Speed at Above Raing 1,000 rpm Configeration (In-line or Vee) In-line 8 Engine Bore 11,800 inches Engine Bore 11,800 inches Engine Strike g/brop-hr b/brit toss Engine Strike g/brop-hr 11,41 485 68,97 Colards Minoigen, NOx 0,55 2,87 12,59 1,304 68,97 Colards Minoigen, NOx 0,57 2,800 0,0000 2,000 pounds = 1 on Colard Annual Hours of Operation 3,70 483,3 2,116,3 Minoin Nox, CO a So Colo 0,00			sions					
N/A deg. F A Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinderss In-Line Engine Bore Engine Bore Engine Bore Engine Bore Engine Bore Engine Bore Engine Bore Engine Bore Engine Displacement Fuel Heat Content (HHV) 1,266 BTU/Jscf Emission Rates: Double of Cylinderss g/hp-hr Ib/hp-hr Ib/hp-hr Emission Rates: Content (HHV) 1,265 BTU/Jscf Editation Market Statuber of Cylinders Comments Emission Rates: Content Manual Acute g/hp-hr Ib/hp-hr Ib/hr tons/year g/hr Ib/day Market Comments Color 2,27 12,59 1,304 68.97 Comments Comments Color 2,87 12,59 1,304 68.97 Color Color 2.87 12,59 1,304 68.97 Color Color Long Kore Nox, Color CO2 477 2,356 1,324 69,593,37 Emission factors Mg. Spec Lead CO2 477 2,356 0,0025 0,0005 0,0005 0,0005 Color 0,1817			SIONS					
Manufacurar Rating 2.370 hp Special Above Rating 10.00 rpm Configeration (In-line or Vee) In-Line Engine Bore 11.800 inches Engine Daylacement 10.323 cu. in. Fuel Heat 10.023 cu. in. Fuel Consumption (HHV) 7.674 Btu/bhp-hr Emission Rates: gbhp-hr Ibhr tons/year ghr Comments Cothon Monxoki CO 0.25 2.87 12.55 1.304 68.97 Comments Cothon Monxoki CO 0.152 1.211 4.8330 1.0600 from VOC, CO a SO2 0.1617 0.7658 0.0006 0.0007 PG Condensable + Filterable 0.1127 0.7658 0.0006 0.00074 SO2 0.0190 0.0478 0.00051 0.00051	Aspiration (Natural of Furbocharged)	Naturai						
Speed at Above Raing 1.000 rpm Configeration (In-line or Vee) In-Line 8 Engine Bore 11.800 inches Engine Bore 11.800 inches Engine Bore 11.800 inches Engine Bore 11.800 inches Engine Bore 10.232 cu, in Fuel Consumption (H+V) 7,674 Blubhp-hr KP-42 4strokelean 4strokelean Carbon Monoxide CO 0.21 1.11 4.85 502 26.55 Coldes of Nitrogen, NOx 0.55 2.87 1.059.390 56053.37 Uses Stroke CO2 447 2.236 10.29.74 1.059.390 56053.37 MFG Spec +0% Used for NOx, CO a CO2 447 2.336 10.29.74 1.059.390 56053.37 MFG Spec Used NO as CO2 0.119 0.478 0.0005 0.00051 0.00051 CO2 0.417 0.259.30 0.00054 0.00054 0.00054 Soc 0.0005	Turbocharge Cooler Temperature		-					
Configeration (In-line or Vee) In-Line Engine Bore Engine Engine Bore Engine B			•					
Number of Cylinders 8 Engine Bore 11.800 inches Engine Stroke 11.800 inches Engine Stroke 11.800 inches Engine Stroke 11.800 inches Engine Stroke 11.800 inches Engine Displacement 10.323 cu.in. Fuel Consumption (HHV) 7,674 Burbhp-hr Affectore often in the instructure 68.97 Carbon Monoxids CO 0.21 1.11 4.85 502 26.55 Colds of Mirogen, Nox 0.55 2.87 1.530 68.97 2.000 pounds = 1 ton Co2e 447 2.336 10,229.74 1,059,390 56053.37 Envision factors SC2 0.0109 0.0478 0.0006 0.0002 Factors N(Condensable+ Filterable) 0.11276 4.9330 0.0002 Factors N(Oa scOage 0.0549 0.00035 0.00046 0.000214 Grandelbyde 0.0549 0.000416 0.000214 Mg. Spec Us		-	ipin					
Engine Stroke 11.800 inches Figel Hot Content (HHV) 1256 BTUser Figel Consumption (HHV) 7,874 Btu/bi-hr Figel Consumption (HHV) 7,874 Btu/bi-hr Enlision Rates: 0 ouides of Nitrogen, Nox 0.55 2.87 12.59 1.304 68.97 Comments Comments 0.221 2.11 4.85 502 26.55 4.300 grams = 1 pound 2.000 pounds = 1 pound 2.000 p	Number of Cylinders							
Fuel Heat Content (HHV) 1,256 BTU/sef Engine Displayer Servicement 10,33 ou in. Fuel Consumption (HHV) 7,674 Btu/bhp-hr Emission Rates: g/bhp-hr hort Oxides of Nitrogen, NOx 0.55 2.87 12.59 1,304 66.87 Carbon Monoxide CO 0.21 1.11 4.85 502 26.55 453.59 grams = 1 pound CO2 2.20 12.21 1.11 4.85 502 26.55 453.59 grams = 1 pound CO2 2.20 12.251.53 5.3 Emission factors 2.000 pounds = 1 ton MFG Spec +10% Used for NOx, CO a 0.217 0.0006 0.00095 0.00096 CO2 447 23.30 0.0005 0.00095 0.00095 SO2 0.0109 0.0478 0.0006 0.0002 Factor From 40 CFR 98, Table C-2 SO2 0.035 0.4935 0.00051 0.00024 Mg. Spec t 10% Used for NOx, CO a So2 0.035 0.0495 0.00024 Factor From 40 CFR 98, Table C-2 0.00351 0.00024 Ng as CO2_a 0.0529	Engine Bore		inches					
Engine Displacement Fuel Consumption (HHV) 7674 Bubbp-hr 7674 Bubbp-hr 1023 Column 10,233 Column 12,59 1,004 687 Comments Comments Contracts Column 11 1 48,5 502 26,55 48,7 453,59 grams = 1 pound 2,000 pounds = 1 to M Column 10,00 0,05 2,287 12,59 1,004 68,97 Comments Column 10,00 0,05 2,287 12,59 1,004 68,97 Comments Column 10,000 0,007 2020 12,20 12,31,53 Column 10,000 0,007 0,003 0,000 0,000 Column 10,000 0,007 0,003 0,000 0,000 Column 11,276 49,9390 0,000 0,000 Column 11,276 49,9390 Column 11,276 49,939 Column 11,276 Column 11,27 Column 11,276 Column 11,27 Column 11,276 Column 11,27	Engine Stroke							
Fuel Consumption (HHV) 7,674 Btu/bhp-hr Emission Rates: gbhp-hr Ib/hr tons/year ghr Ib/distriction Oxides of Nitrogen, NOx 0.55 2.87 12.59 1,304 68.97 Comments Carbon Monoxide CO 0.21 1.11 4.85 502 26.55 453.55 grams = 1 pound CO2 0.21 1.11 4.85 502 26.55 453.55 grams = 1 pound CO2 2820 12.351.53 Emission factors 2.000 pounds = 1 ton MFG Spec +10% Used for NOx, CO a CO2 447 2336 0.029.74 1.059.390 56053.37 Emission factors Total Annual Hours of Operation 8,760 0.0109 0.0478 0.0006 0.0006 NO (condensable+ Filterable) 0.01817 0.7958 0.0006 0.00016 0.00016 NO as CO2 0.035 0.4095 0.00016 0.000216 Budphyle 0.0032 0.00216 Condensable+ Filterable) 0.0549 0.2868 1.2564 0.000216 Mg. Spec + 10% Used Mg. Spec + 10% Used Condensable+ Gamad Barge <								
Emission Rates: g/bbp-hr Ib/tr onsyvear g/hr Ib/day (Brokelearn blownbub) Carbon Monoxide CO 0.25 2.87 12.59 1,304 68.97 Commants Carbon Monoxide CO 0.21 1.11 4.85 502 22.65.5 453.59 grams = 1 pound 2.000 pounds = 1 ton CO2e								
Emission Rates: phthp-hr lb/hr tons/year g/hr lb/day lb/monbul 083 Oxides of Nitrogen, NOx 0.55 2.87 12.59 1,304 68.97 Comments Control Monoxide CO 0.21 1.11 4.85 502 2.655 453.59 grams = 1 pound CO2 0.25 2.87 12.59 1,304 68.97 Comments CO2 447 2336 10.229,74 1,059,390 56053.37 Emission factors Total Annual Hours of Operation 8,760 SC 0.0109 0.0478 0.0006 0.0002 Emission factors SQ2 0.117 0.7958 0.0006 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.00036 0.00014 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0002 Factor From 40 CFR 98, Table C-2 0.00024 0.00024 0.00024 0.00024 0.00024 0.00024 0.00025 0.00024 <		7,074	Bla/blip III					
Oxides of Nitrogen NOx 0.55 2.87 12.59 1.304 68.97 Comments Carbon Monoxide CO 0.21 1.11 4.85 502 26.55 28.97 12.59 1.304 68.97 2.000 pounds = 1 ton CO2e 2.280 12.351.53 2.87 12.59 1.304 68.97 2.000 pounds = 1 ton CO2 447 2.336 10.229.74 1.059.390 56053.37 Emission factors Total Annual Hours of Operation 8.760 0.0109 0.478 0.0006 0.00099 SO2 0.1817 0.7958 0.0006 0.0002 Factor From 40 CFR 98, Table C-2 SO2 0.754 0.935 0.4999 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0549 0.2866 0.00314 0.00034 0.000212 acrolein 0.0025 0.0032 0.375-05 0.00044 0.000212 acrolein 0.0030 0.0169 0.000212 0.0025 0.0025 formaldehyde 0.	Emission Potos:	a/bbp.br	lb/br	tonswoor	a/br	lb/dov		
Carbon Monoxide CO 0.21 1.11 4.85 502 26.55 452.59 1.20.00 pounds 2.000 pounds 1.00 MFG Spec +10% Used for NOx, CO a Emission factors CO2 447 2.336 10.229.74 1.059.390 56053.37 Emission factors Total Annual Hours of Operation 8,760 0.0109 0.0478 0.0006 0.0002 SO2 0.119 0.0478 0.00006 0.0002 Factors Emission factors MC condensable+ Filterable) 0.119 0.0478 0.00006 0.0002 Factor From 40 CFR 98, Table C-2 Acrolain 0.0549 0.2868 1.2564 0.00021 0.000214 formaldehyde 0.0549 0.2868 1.2564 0.000214 0.000214 formaldehyde 0.0074 0.0325 0.00048 0.000214 0.000214 formaldehyde 0.0074 0.0325 0.00048 0.0011 0.00048 formaldehyde 0.0214 2.7216 0.00131 0.00025 0.0025 <t< td=""><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		U						
VOC (MNNEHC) CO2e 0.55 2.87 12.59 1,304 68.97 2.000 pounds = 1 ton MFG Spec +10% Used for NOx, CO a CO2 447 2336 10.29,74 1,059,390 56053.37 Emission factors Total Annual Hours of Operation SO2 8,760 0.0109 0.0478 0.0006 0.0009 PM (Condensable+ Filterable) 0.1817 0.7958 0.0009 0.002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.4095 0.0005 0.0005 0.002 acroleinvide 0.0549 0.2868 1.2564 0.00024 0.0022 formaldehyde 0.059 0.0331 0.00024 0.0024 0.0024 formaldehyde 0.0039 0.0169 0.00024 0.0024 0.0024 formaldehyde 0.0074 0.0325 0.00044 0.0024 0.0024 formaldehyde 0.0027 0.0025 0.00011 0.00044 0.0025 formaldehyde 0.0026 0.0031 0.00114 0.00114 0.0025 formetionol	Carbon Monoxide CO							= 1 pound
CO2 447 2336 10,229.74 1,059,390 56053.37 Emission factors Total Annual Hours of Operation SO2 8,760 0.0109 0.0478 0.0006 0.00099 CM_accore NO, O as CO ₂ 3.70 483.3 2116.9 Mg. Spec Used NO as CO ₂ 1.1276 4.9390 0.00021 Factor From 40 CFR 98, Table C-2 acrotein acctaldehyde 0.0549 0.2868 1.2564 0.00031 0.000214 formaldehyde 0.0549 0.2868 1.2564 0.000214 0.000214 betraene 0.0074 0.0325 0.0000214 0.000214 0.000214 boluene 0.0074 0.0325 0.000014 0.00014 0.00014 boluene 0.0074 0.0325 0.0000184 0.00111 0.000184 boluene 0.0074 0.0325 0.000184 0.00184 0.00184 boluene 0.0020 0.0084 0.00184 0.00184 0.00184 boluene 0.02020 0.0884 0.0018394 0.	VOC (NMNEHC)							
Total Annual Hours of Operation SO2 8,760 0.0109 0.0478 0.0006 PM (Conclensable+ Filterable) 0.1817 0.7958 0.0002 0.0002 CH _{4 as CO20} 3.70 483.3 2116.9 Mfg. Spec Used 0.0002 N ₂ O as CO _{2a} 1.1276 4.9390 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.0085 0.00836 0.00836 0.0002 formaldehyde 0.0549 0.2868 1.2564 0.00021 0.00021 benzene 0.008 0.0351 0.00044 0.00021 0.00014 benzene 0.0007 0.0322 0.397E-05 0.00014 0.0025 vilybenzene 0.0007 0.0322 0.9884 0.00111 0.0025 vilybenzene 0.0202 0.0884 0.00111 0.018394 EXhaust Gas Volume Flow, wet 9.216 acfm total HAPs 0.6214 2.7216 0.018394 EXhaust Gas Volume Flow, wet 9.216 acfm Total Exhaust Gas Volume Flow, wet 9.	CO2e							for NOx, CO a
SO2 0.0109 0.0478 0.0006 PM (Condensable+ Filterable) 0.1817 0.7958 0.00099 N2 O as CO2a 1.1276 4.9330 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.00031 0.00021 Factor From 40 CFR 98, Table C-2 acrolein 0.0549 0.2868 1.2564 0.00336 formaldehyde 0.0549 0.2868 1.2564 0.00021 benzene 0.0039 0.0169 0.00212 benzene 0.0007 0.0032 3.97E-05 sylene 0.0007 0.0032 3.97E-05 sylene 0.0022 0.0884 0.00111 nethanol 0.6214 2.7216 0.0184 btoluene 922 deg, F 0.0184 0.0184 ctal HAPs 0.6214 2.7216 0.0184 0.0184 total HAPs 0.6214 2.7216 0.0184 0.0184 total HAPs 0.6214 2.7216 0.018394 0.018394	CO2	447	2336	10,229.74	1,059,390	56053.37	Emission factors	
SO2 0.0109 0.0478 0.0006 PM (Condensable+ Filterable) 0.1817 0.7958 0.00099 N2 O as CO2a 1.1276 4.9330 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.00031 0.00021 Factor From 40 CFR 98, Table C-2 acrolein 0.0549 0.2868 1.2564 0.00336 formaldehyde 0.0549 0.2868 1.2564 0.00021 benzene 0.0039 0.0169 0.00212 benzene 0.0007 0.0032 3.97E-05 sylene 0.0007 0.0032 3.97E-05 sylene 0.0022 0.0884 0.00111 nethanol 0.6214 2.7216 0.0184 btoluene 922 deg, F 0.0184 0.0184 ctal HAPs 0.6214 2.7216 0.0184 0.0184 total HAPs 0.6214 2.7216 0.0184 0.0184 total HAPs 0.6214 2.7216 0.018394 0.018394	Total Annual House of Onesation	9 760						
PM (Condensable+ Filterable) 0.1817 0.7958 0.00999 CH4 ss CO2e 3.70 483.3 2116.9 Mfg. Spec Used N20 as CO2e 1.1276 4.9390 0.0002 Factor From 40 CFR 98, Table C-2 acorolein 0.0355 0.4095 0.00514 acetaldehyde 0.152 0.6660 0.00836 formaldehyde 0.0549 0.2868 1.2564 Mfg. Spec + 10% Used biphenyl 0.0039 0.0169 0.000212 Mfg. Spec + 10% Used benzene 0.0074 0.0325 0.00044 0.00212 benzene 0.0077 0.032 3.97E-05 0.00044 boluene 0.0077 0.032 3.97E-05 0.00214 benzene 0.0007 0.0032 0.9844 0.00111 methanol 0.0455 0.1992 0.0025 0.0111 botal HAPs 0.6214 2.7216 0.018394 0.0111 botal HAPs 0.6214 2.7216 0.018394 0.0111 botal HAPs 0.6214 2.7216 0.018394 0.0111 bot		0,700	0 0109	0 0478			0.0006	
CH4 as CO2e 3.70 483.3 2116.9 Mfg. Spec Used NgO as CO2e 1.1276 4.9390 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.4095 0.00514 acrolein/actor 0.0549 0.2660 0.000212 formaldehyde 0.0549 0.2688 1.2564 Mfg. Spec + 10% Used biphenyl 0.0039 0.0169 0.000212 0.00044 biphenyl 0.0074 0.0325 0.000408 vylene 0.0033 0.0147 0.000184 nethanol 0.0455 0.1992 0.00212 nethanol 0.0220 0.0884 0.00111 otal HAPs 0.6214 2.7216 0.018394 Exhaust Gas Volume Flow, wet 9216 acfm acfm Total Exhaust Gas Volume Flow, wet 9216 acfm acfp resec Exhaust Stack Height 20 inches 1.667 feet Exhaust Stack Luside Diameter 20 inches 1.667 feet								
N2 0 as CO220 1.1276 4.9390 0.0002 Factor From 40 CFR 98, Table C-2 acrolein 0.0935 0.4095 0.00514 0.00514 acroleidehyde 0.0549 0.2868 1.2564 Mfg. Spec + 10% Used biphenyl 0.0039 0.0169 0.000408 0.000408 bounder 0.0074 0.0325 0.000408 toluene 0.0077 0.0325 0.000184 ethylbenzene 0.0033 0.1147 0.000184 oncolein 0.0455 0.1992 0.00111 otal LAPs 0.6214 2.7216 0.013394 Exhaust Gas Temperature 992 deg. F 0.01394 Exhaust Gas Volume Flow, wet 9.216 acfm 21.67 Total Exhaust Gas Volume Flow, wet 9.216 acfm 21.67 Exhaust Gas Volume Flow, wet 9.216 acfm 21.67 Exhaust Gas Volume Flow, wet 9.216 acfm 21.67 feet 21.67 feet 21.67 ifeet		3.70	483.3	2116.9				
acrolein 0.0935 0.4095 0.00514 acetaldehyde 0.152 0.6660 0.0036 biphenyl 0.0039 0.0169 0.000212 benzene 0.0074 0.0325 0.00044 benzene 0.0074 0.032 0.972-05 wylene 0.0075 0.0022 0.000184 methanol 0.0212 0.000184 n-hexane 0.007 0.032 3.97E-05 wylene 0.0022 0.0884 0.00111 total HAPs 0.6214 2.7216 0.01839 Exhaust Gas Temperature 992 deg. F 0.0118394 Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 21.67 Exhaust Stack Height 260 inches 21.67 feet Exhaust Stack Height 20 inches 21.67 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	N ₂ O as CO _{2e}		1.1276	4.9390			0.0002 Factor From 40 CFR 98	3, Table C-2
formaldehyde 0.0549 0.2868 1.2564 Mfg. Spec + 10% Used biphenyl 0.0039 0.0169 0.00212 benzene 0.0074 0.0325 0.00044 obulene 0.0077 0.032 3.97E-05 within the thanol 0.0455 0.000184 n-hexane 0.0202 0.0884 0.00111 otal HAPs 0.6214 2.7216 0.0184 Exhaust Gas Temperature 992 deg. F acfm Total Exhaust Gas Volume Flow, wet 9.216 acfm acfm Total Exhaust Gas Volume Flow, wet 9.216 acfper sec sec per sec Exhaust Stack Height 260 inches feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	acrolein		0.0935	0.4095			0.00514	
biphenyl 0.0039 0.0169 0.000212 benzene 0.008 0.0351 0.00044 toluene 0.0074 0.0325 0.000408 toluene 0.0070 0.0322 3.97E-05 xylene 0.0033 0.0147 0.000184 methanol 0.0455 0.1992 0.0025 n-hexane 0.02020 0.884 0.00111 total HAPs 0.6214 2.7216 0.018394 Exhaust Gas Temperature 992 deg. F acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm acfm Total Exhaust Gas Volume Flow, wet 153.6 acfm acfm Exhaust Stack Height 260 inches 21.67 feet Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	acetaldehyde							
benzene 0.008 0.0351 0.00044 boluene 0.0074 0.0325 0.000408 ethylbenzene 0.0007 0.0032 3.97E-05 xylene 0.0033 0.0147 0.000184 methanol 0.0455 0.1992 0.0025 n-hexane 0.0202 0.0884 0.00111 total HAPs 0.6214 2.7216 0.018394 Exhaust Gas Temperature 992 deg. F szm Exhaust Gas Volume Flow, wet 9,216 acfm acfm Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 Exhaust Stack Height 200 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm		0.0549					• •••	
toluene 0.0074 0.0325 0.000408 ethylbenzene 0.0007 0.0032 3.97E-05 xylene 0.0033 0.0147 0.000184 methanol 0.0455 0.1992 0.0025 n-hexane 0.0202 0.0884 0.00111 total HAPs 0.6214 2.7216 0.018394 Exhaust Gas Temperature 992 deg. F 0.0216 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 0.0147 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 0.018394 Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 0.018394 Exhaust Stack Height 260 inches 1.677 feet Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm								
ethylbenzene 0.0007 0.0032 3.97E-05 xylene 0.0033 0.0147 0.000184 methanol 0.0455 0.1992 0.0025 n-hexane 0.0202 0.0884 0.00111 total HAPs 0.6214 2.7216 0.018394 Exhaust Cas Temperature 992 deg. F 0.018394 Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 Total Exhaust Gas Volume Flow, wet 9.216 acfm 0.018394 Exhaust Stack Height 260 inches 153.6 acfper sec Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm								
methanol0.04550.19920.0025n-hexane0.02020.08840.00111total HAPs0.62142.72160.018394Exhaust Parameters:exhaust Gas Temperature992deg. FExhaust Gas Flow Rate9216acfmTotal Exhaust Gas Volume Flow, wet9.216acfmTotal Exhaust Gas Volume Flow, wet9.216acfmTotal Exhaust Gas Volume Flow, wet9.216acfmExhaust Stack Height260inches21.67feetExhaust Stack Inside Diameter20inches1.667feetExhaust Stack Velocity70.4ft/sec4xacfm	ethylbenzene							
n-hexane 0.0202 0.0884 0.00111 total HAPs 0.6214 2.7216 0.018394 Exhaust Gas Temperature 992 deg. F Exhaust Gas Volume Flow, wet 9216 acfm Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 c1.667 feet Exhaust Stack Inside Diameter 20 c1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	xylene							
total HAPs0.62142.72160.018394Exhaust Gas Temperature Exhaust Gas Volume Flow, wet992 9216deg. F acfmTotal Exhaust Gas Volume Flow, wet9.216 153.6acfmTotal Exhaust Gas Volume Flow, wet9.216 153.6acfmExhaust Stack Height260 21.67inches feetExhaust Stack Inside Diameter20 1.667inches feetExhaust Stack Velocity70.4ft/sec4 4 4 4 4	methanol							
Exhaust Parameters: 992 deg. F Exhaust Gas Temperature 9216 acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 inches 21.67 feet Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm								
Exhaust Gas Temperature992deg. FExhaust Gas Flow Rate9216acfmTotal Exhaust Gas Volume Flow, wet9,216acfmTotal Exhaust Gas Volume Flow, wet9,216acfmExhaust Gas Volume Flow, wet153.6acf per secExhaust Stack Height260inchesExhaust Stack Inside Diameter20inchesExhaust Stack Velocity70.4ft/sec4Xacfm			0.0214	2.7210			0.010394	
Exhaust Gas Flow Rate 9216 acfm Total Exhaust Gas Volume Flow, wet 9,216 acfm Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 inches 21.67 feet Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Exhaust Parameters:	0.5.5						
Total Exhaust Gas Volume Flow, wet9,216 153.6acfm acf per secExhaust Gas Volume Flow, wet153.6acf per secExhaust Stack Height260 21.67inches feetExhaust Stack Inside Diameter20 1.667inches feetExhaust Stack Velocity70.4ft/sec4	•							
Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 21.67 inches feet Exhaust Stack Inside Diameter 20 1.667 inches feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Exhaust Gas Flow Rate	9216	acim					
Total Exhaust Gas Volume Flow, wet 153.6 acf per sec Exhaust Stack Height 260 21.67 inches feet Exhaust Stack Inside Diameter 20 1.667 inches feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Total Exhaust Gas Volume Flow, wet	9,216	acfm					
21.67 feet Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Total Exhaust Gas Volume Flow, wet			C				
Exhaust Stack Inside Diameter 20 inches 1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Exhaust Stack Height							
1.667 feet Exhaust Stack Velocity 70.4 ft/sec 4 x acfm		21.67	teet					
Exhaust Stack Velocity 70.4 ft/sec 4 x acfm	Exhaust Stack Inside Diameter							
		1.667	reet					
4,224.3 ft/min 3.1416 x (stack diameter)^2	Exhaust Stack Velocity							
		4,224.3	ft/min		3.14	16 x (stack diameter)^2	

Big Moses Tyler County, WV

Controlled Emission Rates

Source CE-5							
Engine Data: Engine Manufacturer	CAT						
Engine Model	3608 LE						
Type (Rich-burn or Low Emission)	Low Emis	sions					
Aspiration (Natural or Turbocharged)	Natural						
Turbocharge Cooler Temperature	N/A	deg. F					
Manufacturer Rating Speed at Above Rating	2,370 1,000	hp rpm					
Configeration (In-line or Vee)	In-Line	ipin					
Number of Cylinders	8						
Engine Bore	11.800 11.800	inches					
Engine Stroke Fuel Heat Content (HHV)	1,256	inches BTU/scf					
Engine Displacement	10,323	cu. in.					
Fuel Consumption (HHV)	7,674	Btu/bhp-hr					
						AP-42 4strokelean	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/dav	4strokelean lb/mmbtu	
Oxides of Nitrogen, NOx	0.55	2.87	1.44	1,304	68.97		Comments
Carbon Monoxide CO	0.21	1.11	0.55	502	26.55		453.59 grams = 1 pound
VOC (NMNEHC)	0.55	2.87	1.44	1,304	68.97		2,000 pounds = 1 ton
CO2e CO2	447	2820 2336	1,409.99	1,059,390	56053.37		MFG Spec +10% Used for NOx, CO a Emission factors
002	,	2000	1,107.70	1,000,000	00000.07	I	
Total Annual Hours of Operation	1,000						
SO2	·	0.0109	0.0055			0.0006	
PM (Condensable+ Filterable)		0.1817	0.0908			0.00999	
CH _{4 as CO2e}	3.70	483.3	241.7				Mfg. Spec Used
N ₂ O as CO _{2e}		1.1276	0.5638				Factor From 40 CFR 98, Table C-2
acrolein acetaldehyde		0.0935 0.152	0.0467 0.0760			0.00514 0.00836	
formaldehyde	0.0549	0.2868	0.1434				Mfg. Spec + 10% Used
biphenyl		0.0039	0.0019			0.000212	C .
benzene		0.008	0.0040			0.00044	
toluene ethylbenzene		0.0074 0.0007	0.0037 0.0004			0.000408 3.97E-05	
xylene		0.0033	0.0004			0.000184	
methanol		0.0455	0.0227			0.0025	
n-hexane		0.0202	0.0101			0.00111	
total HAPs		0.6214	0.3107			0.018394	
Exhaust Parameters:	992	dor F					
Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm					
Total Exhaust Gas Volume Flow, wet	9,216	acfm					
Total Exhaust Gas Volume Flow, wet	153.6	acf per sec	:				
Exhaust Stack Height	260	inches					
	21.67	feet					
Exhaust Stack Inside Diameter	20	inches					
	1.667	feet					
Exhaust Stack Velocity	70.4	ft/sec				x acfm	
	4,224.3	ft/min		3.14	16 x	(stack diame	eter)^2

Stewart Winland Tyler County, WV

Proposed Emission Rates

Source CE-	3					
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	CAT 3516B Low Emiss Natural	sions				
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption	130 1,380 1,400 V-16 16 6.700 7.500 1,018 4,231 8,231	deg. F hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr			AP-42	
Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO VOC (NMNEHC) CO2e CO2	g/bhp-hr 0.50 0.20 0.29 483	lb/hr 1.52 0.61 0.88 1749 1469	tons/year 6.66 2.67 3.86 7661.97 6436.28	g/hr 690 276 400 666,540	4strokelear Ib/mmbtu	Comment 453.59 grams = 1 pound 2,000 pounds = 1 ton
Total Annual Hours of Operation SO2 PM (Condensable+ Filterable)	8,760	0.0068 0.1135	0.0299 0.4970		0.0006 0.00999	
CH _{4 as CO2e} N ₂ O as CO _{2e} acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol n-hexane total HAPs	3.67 0.1000	279.13 0.7042 0.0584 0.095 0.3042 0.0002 0.005 0.0046 0.0005 0.0021 0.0284 0.0126 0.511	$\begin{array}{c} 1222.6\\ 3.0846\\ 0.2557\\ 0.4159\\ 1.3325\\ 0.0010\\ 0.0219\\ 0.0203\\ 0.0020\\ 0.0092\\ 0.1244\\ 0.0552\\ 2.2381 \end{array}$		0.0002 0.00514 0.00836	
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	992 9216	deg. F acfm				
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	:			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667	inches feet				
Exhaust Stack Velocity	70.4 4,224.3	ft/sec ft/min	-	3.141	x acfm stack diam	eter)^2

Big Moses Tyler County, WV

Dehy Stil Vent Emissions

SOURCES RSV-1 and RSV-2

Controlled Still Vent Emissions (98% VOC Control)

Dry Gas Rate Glycol Circulation Ratio Treating Temperature Treating Pressure 60,000 MCFD 3.0 Gal/lb H2O 115 Deg F 950 psi

Data From GLYCalc:

Total HC	5.6069	lbs/hr	24.558	TPY
Methane	2.7279	lbs/hr	5.970	TPY
Total VOC	1.7136	lbs/hr	7.506	TPY
Total HAP	0.1875	lbs/hr	0.821	TPY
benzene	0.0155	lbs/hr	0.068	TPY
toluene	0.0465	lbs/hr	0.204	TPY
ethyl benzene	0.0000	lbs/hr	0.000	TPY
xylene	0.0877	lbs/hr	0.384	TPY
n-hexane	0.0378	lbs/hr	0.166	TPY

Combustor Combustion Exhaust Gases

Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration 98.0 % 696.5 Btu/scf 9020.0 scfd 0.000 Mole %

3.29 MMscf/yr

From Gri GlyCalc 4.0

NOx	0.0257	lbs/hr	0.112	TPY
CO	0.0216	lbs/hr	0.094	TPY
SO2	0.0002	lbs/hr	0.001	TPY

Big Moses Tyler County, WV

Dehy Stil Vent Emissions

SOURCE RSV-3

Controlled Still Vent Emissions (98% VOC Control)

Dry Gas Rate Glycol Circulation Ratio Treating Temperature Treating Pressure **Hours of Operation** 60,000 MCFD 3.0 Gal/lb H2O 115 Deg F 950 psi **1000**

Data From GLYCalc:

Total HC	5.6069	lbs/hr	4.906	TPY
Methane	2.7279	lbs/hr	1.499	TPY
Total VOC	1.7136	lbs/hr	1.499	TPY
Total HAP	0.1875	lbs/hr	0.164	TPY
benzene	0.0155	lbs/hr	0.014	TPY
toluene	0.0465	lbs/hr	0.041	TPY
ethyl benzene	0.0000	lbs/hr	0.000	TPY
xylene	0.0877	lbs/hr	0.077	TPY
n-hexane	0.0378	lbs/hr	0.033	TPY

Combustor Combustion Exhaust Gases

Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration 98.0 % 696.5 Btu/scf 9020.0 scfd 0.000 Mole %

0.66 MMscf/yr

From Gri GlyCalc 4.0

NOx	0.0257	lbs/hr	0.022	TPY
СО	0.0216	lbs/hr	0.019	TPY
SO2	0.0002	lbs/hr	0.000	TPY

Big Moses

Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1000.0 Mbtu/hr 98.0 % 1256.0 Btu/scf 19497.9 scfd 0.000 Mole % 8760

Source RBV-1

NOx	0.1000	lbs/hr	0.438	TPY
СО	0.0840	lbs/hr	0.368	TPY
CO2	120.0	lbs/hr	525.8	TPY
CO2e	121	lbs/hr	529	tpy
VOC	0.0055	lbs/hr	0.024	TPY
SO2	0.0006	lbs/hr	0.003	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0076	lbs/hr	0.033	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0018	lbs/hr	0.008	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0019	lbs/hr	0.008	TPY

AP-42 Factors Used

100 Lbs/MMCF	
84 Lbs/MMCF	
120,000 Lbs/MMCF	Global Warming Potential = 1
5.5 Lbs/MMCF	
7.6 Lbs/MMCF	
0.6 Lbs/MMCF	
2.3 Lbs/MMCF	Global Warming Potential = 25
2.2 Lbs/MMCF	Global Warming Potential =310
0.075 Lbs/MMCF	
0.0021 Lbs/MMCF	
1.8 Lbs/MMCF	
0.0034 Lbs/MMCF	
	84 Lbs/MMCF 120,000 Lbs/MMCF 5.5 Lbs/MMCF 7.6 Lbs/MMCF 0.6 Lbs/MMCF 2.3 Lbs/MMCF 2.2 Lbs/MMCF 0.075 Lbs/MMCF 0.0021 Lbs/MMCF 1.8 Lbs/MMCF

Big Moses

Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1000.0 Mbtu/hr 98.0 % 1256.0 Btu/scf 19497.9 scfd 0.000 Mole % 8760

Source RBV-2

NOx	0.1000	lbs/hr	0.438	TPY
СО	0.0840	lbs/hr	0.368	TPY
CO2	120.0	lbs/hr	525.8	TPY
CO2e	121	lbs/hr	529	tpy
VOC	0.0055	lbs/hr	0.024	TPY
SO2	0.0006	lbs/hr	0.003	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0076	lbs/hr	0.033	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0018	lbs/hr	0.008	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0019	lbs/hr	0.008	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Big Moses

Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1000.0 Mbtu/hr 98.0 % 1256.0 Btu/scf 19497.9 scfd 0.000 Mole % **1750**

Source RBV-3

NOx	0.1000	lbs/hr	0.088	TPY
СО	0.0840	lbs/hr	0.074	TPY
CO2	120.0	lbs/hr	105.0	TPY
CO2e	121	lbs/hr	106	tpy
VOC	0.0055	lbs/hr	0.0048	TPY
SO2	0.0006	lbs/hr	0.0005	TPY
H2S	0.0000	lbs/hr	0.0000	TPY
PM10	0.0076	lbs/hr	0.0067	TPY
СНОН	0.0001	lbs/hr	0.0001	TPY
Benzene	0.0000	lbs/hr	0.0000	TPY
N-Hexane	0.0018	lbs/hr	0.0016	TPY
Toluene	0.0000	lbs/hr	0.0000	TPY
Total HAPs	0.0019	lbs/hr	0.0016	TPY

AP-42 Factors Used

100 Lbs/MMCF	
84 Lbs/MMCF	
120,000 Lbs/MMCF	Global Warming Potential = 1
5.5 Lbs/MMCF	
7.6 Lbs/MMCF	
0.6 Lbs/MMCF	
2.3 Lbs/MMCF	Global Warming Potential = 25
2.2 Lbs/MMCF	Global Warming Potential =310
0.075 Lbs/MMCF	
0.0021 Lbs/MMCF	
1.8 Lbs/MMCF	
0.0034 Lbs/MMCF	
	84 Lbs/MMCF 120,000 Lbs/MMCF 5.5 Lbs/MMCF 7.6 Lbs/MMCF 0.6 Lbs/MMCF 2.3 Lbs/MMCF 2.2 Lbs/MMCF 0.075 Lbs/MMCF 0.0021 Lbs/MMCF 1.8 Lbs/MMCF

Big Moses Tyler County, WV

Potential Emission Rates

Source VCU-4

Enclosed Combustor for Tank T02

Destruction Efficiency Gas Heat Content (HHV) Max Flow to Combustor Max BTUs to Flare 98.0 % 2282.0 Btu/scf¹ 12,500 scf/day² 1.189 MMBTU/Hr

4.5625 MMCF/Yr 10,411.63 MMBTU/Yr

NOx	0.08	lbs/hr	0.35	tpy
СО	0.44	lbs/hr	1.93	tpy
CO2	138.93	lbs/hr	608.51	tpy
CO2e	139.09	lb/hr	609.22	tpy
VOC	0.72	lb/hr	3.1600	tpy
РМ	0.00	lb/hr	0.02	tpy
Benzene	0.0000	lb/hr	0.00	tpy
Toluene	0.0000	lb/hr	0.00	tpy
Hexane	0.0009	lb/hr	0.00	tpy
Formaldehyde	0.0000	lb/hr	0.00	tpy
CH4	0.00	lbs/hr	0.0115	tpy
N2O	0.0003	lbs/hr	0.0011	tpy

¹BTU content of gas is tanken from measurements at one of Bee-Gee's tanks at an area well pad.

² Daily tank flash plus working/breathing losses from measurements at one of Bee-Gee's tanks at an area well pad.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068	Lbs/MMBTU
AP-42 Table 13.5-1	со	0.37	Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89	Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022	Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022	Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6	lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021	lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034	lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8	lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075	lb/MMSCF
VOC emissions equals non-combust	ted NMNEHC		

Stewart Winland

Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Total HAPs from Inlet Gas Analysis Total HAP from Condensate Analysis Carbon Dioxide from gas analysis: Gas Density

17.86 55.30 0.104 10.080 0.364 0.0593 weight percent weight percent weight percent weight percent lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	HAP, lb/Hr	HAP TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	СН4 ТРҮ	CO2e
Valves:												
Gas/Vapor:	46	0.02700 scf/hr	17.9	0.013	0.058	0.0001	0.000	0.000	0.001	0.041	0.1784	4.461
Light Liquid:	15	0.05000 scf/hr	100.0	0.044	0.195	0.0045	0.020					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000							0.000
Low Bleed Pneumatic	15	1.39000 scf/hr	17.9	0.221	0.967	0.0013	0.006	0.684	2.994	0.684	2.9945	77.856
Relief Valves:	25	0.04000 scf/hr	17.9	0.011	0.046	0.0001	0.000	0.000	0.001	0.033	0.1436	3.591
Open-ended Lines, gas:	9	0.06100 sfc/hr	17.9	0.006	0.025	0.0000	0.000					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000							0.000
Pump Seals:												0.000
Gas:	-	0.00529 lb/hr	17.9	0.000	0.000			0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000							0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000							0.000
Compressor Seals, Gas:	10	0.01940 lb/hr	17.9	0.035	0.152	0.0000	0.000	0.001	0.003	0.006	0.0279	0.700
Connectors:												0.000
Gas:	142	0.00300 scf/hr	17.9	0.005	0.020	0.0000	0.000	0.000	0.000	0.014	0.0612	1.530
Light Liquid:	30	0.00700 scf/hr	100.0	0.210	0.920	0.0000	0.000					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000							0.000
Flanges:												0.000
Gas:	101	0.00086 lb/hr	17.9	0.016	0.068	0.0000	0.000	0.000	0.001	0.048	0.2104	5.261
Light Liquid:	44	0.00300 scf/hr	100.0	0.008	0.034	0.0000	0.000					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000							0.000

Fug	itive Calculatio	ns:
	lb/hr	t/v
VOC	0.347	1.518
HAP	0.006	0.026
CH4	0.142	0.621
CO2	0.002	0.007
CO2e	21.324	93.40

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Big Moses Compressor Station Tyler County, WV

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.4320	0.121	0.004	0.568			-		0.0043	
Carbon Dioxide, CO2	0.1760	0.077	0.003	0.364			-		0.0018	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Helium, He		-	-	-			-		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	73.4440	11.783	0.407	55.302	667.9	741.8	6.999		0.7330	
Ethane, C2H6	18.3570	5.520	0.191	25.908	297.1	324.8	3.062		0.1821	4.883
Propane	5.3460	2.357	0.081	11.065	123.8	134.5	1.273	11.065	0.0525	1.465
Iso-Butane	0.5700	0.331	0.011	1.555	17.1	18.5	0.177	1.555	0.0055	0.185
Normal Butane	1.0070	0.585	0.020	2.747	30.3	32.9	0.312	2.747	0.0097	0.316
Iso Pentane	0.2140	0.154	0.005	0.725	7.9	8.6	0.082	0.725	0.0021	0.078
Normal Pentane	0.2020	0.146	0.005	0.684	7.5	8.1	0.077	0.684	0.0020	0.073
Hexane	0.1560	0.134	0.005	0.631	6.9	7.4	0.071	0.631	0.0015	0.064
Heptane+	0.0960	0.096	0.003	0.452	4.9	5.3	0.050	0.452	0.0010	0.044
	100.000	21.306	0.736		1,163.4	1,281.9	12.102	17.858	0.9956	7.108

Gas Density (STP) = 0.059

ldeal Gross (HHV) Ideal Gross (sat'd)	1,281.9 1,260.3
GPM	-
Real Gross (HHV)	1,287.6
Real Net (LHV)	1,168.6

Big Moses Compressor Station Tyler County, WV

Engine Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.392	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.154	0.068	0.002	0.327			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	78.367	12.572	0.434	60.697	712.7	791.5	7.468		0.7821	
Ethane, C2H6	13.883	4.175	0.144	20.154	224.7	245.7	2.316		0.1377	3.693
Propane	4.458	1.966	0.068	9.491	103.2	112.2	1.062	9.491	0.0438	1.222
Iso-Butane	0.582	0.338	0.012	1.633	17.5	18.9	0.180	1.633	0.0057	0.189
Normal Butane	1.145	0.666	0.023	3.213	34.5	37.4	0.355	3.213	0.0111	0.359
Iso Pentane	0.297	0.214	0.007	1.035	11.0	11.9	0.113	1.035	0.0030	0.108
Normal Pentane	0.296	0.214	0.007	1.031	11.0	11.9	0.113	1.031	0.0030	0.107
Hexane	0.255	0.220	0.008	1.061	11.2	12.1	0.115	1.061	0.0025	0.104
Heptane+	0.171	0.171	0.006	0.827	8.7	9.4	0.090	0.827	0.0017	0.078
	100.000	20.713	0.715		1,134.4	1,250.9	11.812	18.291	0.9959	5.861

Gas Density (STP) = 0.058

ldeal Gross (HHV) Ideal Gross (sat'd)	1,250.9 1,229.9
GPM	-
Real Gross (HHV)	1,256.0
Real Net (LHV)	1,139.1

Big Moses Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.1800	0.050	0.002	0.244			-		0.0018	
Carbon Dioxide, CO2	0.1390	0.061	0.002	0.296			-		0.0014	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	50.0000	9.000	0.311	43.520			-		0.5003	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	35.8000	5.743	0.198	27.772	325.6	361.6	3.412		0.3573	
Ethane, C2H6	8.1500	2.451	0.085	11.850	131.9	144.2	1.359		0.0808	2.168
Propane	3.0000	1.323	0.046	6.397	69.4	75.5	0.715	6.397	0.0295	0.822
Iso-Butane	0.4220	0.245	0.008	1.186	12.7	13.7	0.131	1.186	0.0041	0.137
Normal Butane	0.8440	0.491	0.017	2.372	25.4	27.5	0.261	2.372	0.0082	0.265
Iso Pentane	0.2010	0.145	0.005	0.701	7.4	8.0	0.077	0.701	0.0020	0.073
Normal Pentane	0.2130	0.154	0.005	0.743	7.9	8.5	0.081	0.743	0.0021	0.077
Hexane	0.2604	0.224	0.008	1.085	11.5	12.4	0.118	1.085	0.0026	0.106
Heptane	0.7910	0.793	0.027	3.833	40.3	43.5	0.415	3.833	0.0079	0.363
	100.000	20.680	0.714		632.1	695.0	6.568	16.318	0.9979	4.012

Gas Density (STP) = 0.058

ldeal Gross (HHV) Ideal Gross (sat'd)	695.0 683.7
GPM	-
Real Gross (HHV)	696.5
Real Net (LHV)	633.5

Big Moses Tyler County, WV

Gas to Combustor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.048	0.013	0.000	0.039			-		0.0005	
Carbon Dioxide, CO2	0.102	0.045	0.002	0.129			-		0.0010	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Water	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	30.137	4.835	0.167	13.851	274.1	304.4	2.872		0.3008	
Ethane, C2H6	29.973	9.013	0.311	25.821	485.2	530.4	5.000		0.2973	7.973
Propane	22.888	10.093	0.348	28.915	529.8	575.9	5.452	28.915	0.2249	6.273
Iso-Butane	3.703	2.152	0.074	6.165	111.1	120.4	1.147	6.165	0.0360	1.205
Normal Butane	7.902	4.593	0.159	13.158	237.9	257.8	2.447	13.158	0.0764	2.478
Iso Pentane	1.818	1.312	0.045	3.759	67.3	72.8	0.693	3.759	0.0182	0.662
Normal Pentane	1.744	1.258	0.043	3.604	64.6	69.9	0.665	3.604	0.0174	0.628
Hexane	0.685	0.590	0.020	1.691	30.2	32.6	0.310	1.691	0.0068	0.280
Heptane	0.999	1.001	0.035	2.868	50.9	55.0	0.524	2.868	0.0099	0.458
•	100.000	34.906	1.205		1,851.1	2,019.1	19.109	60.160	0.9891	19.958

Gas Density (S	STP) =	0.097
	,,,	01007

2,019.1 1,984.6
-
2,041.3
1,871.5

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	<u>0.00000</u> mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468 GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay-Bee - Big Moses File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Big Moses\Class I Update April 2016\60 MMSCFD Controlled Restricted Hours.ddf Date: April 13, 2016

DESCRIPTION:

Description: 60 MMSCFD Still Vent Controlled 98% No Flash Tank TEG REcirc Rate of 3.0 gal/lb H2O

Annual Hours of Operation: 1750.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2,7279	65.469	2.3869
Ethane	1.1654	27.969	1.0197
Propane	0.6294	15.106	0.5508
Isobutane	0.1168	2.802	0.1022
n-Butane	0.2333	5.600	0.2042
Isopentane	0.0690	1.656	0.0604
n-Pentane	0.0730	1.751	0.0638
n-Hexane	0.0378	0.908	0.0331
Cyclohexane	0.0116	0.279	0.0102
Other Hexanes	0.0570	1.368	0.0499
Heptanes	0.0550	1.320	0.0481
Benzene	0.0155	0.372	0.0135
Toluene	0.0465	1.116	0.0407
Xylenes	0.0877	2.104	0.0767
C8+ Heavies	0.2810	6.745	0.2459
Total Emissions	5.6069	134.565	4.9060
Total Hydrocarbon Emissions	5.6069	134.565	4.9060
Total VOC Emissions	1.7136	41.127	1.4994
Total HAP Emissions	0.1875	4.499	0.1640
Total BTEX Emissions	0.1496	3.592	0,1309

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	136.3932	3273.436	119.3440
Ethane	58,2677	1398.425	50,9843
Propane	31.4718	755.324	27.5378
Isobutane	5.8375	140.101	5.1078
n-Butane	11.6675	280.019	10.2090
Isopentane	3.4497	82.792	3,0185
n-Pentane	3.6480	87.552	3.1920
n-Hexane	1.8910	45.384	1.6546
Cyclohexane	0.5815	13.955	0,5088
Other Hexanes	2.8506	68.413	2.4942
Heptanes	2.7502	66.004	2.4064

Benzene Toluene Xylenes C8+ Heavies	0.7740 2.3249 4.3835 14.0521	18.576 55.797 105.204 337.250	Page: 2 0.6772 2.0343 3.8355 12.2956
Total Emissions	280.3430	6728.233	245.3002
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	280.3430 85.6821 9.3733 7.4823	6728.233 2056.371 224.960 179.576	245.3002 74.9719 8.2017 6.5471

EQUIPMENT REPORTS:

COMBUSTION DEVICE

____**_____________**

Ambient Temperat	ure: 60.00 /gen: 2.00	
Combustion Efficie		
Supplemental Fuel Requirem	nent: 1.320+000	J MM BTU/nr
Component	Emitted	Destroyed
Məthane	2,00%	98,00%
Ethane	2.00%	98,00%
Propane		
Isobutane		
n-Butane		
n-Du buik	2 2.00%	20.00%
Isopentane	∋ 2,00%	98.00%
n-Pentane	e 2.00%	98,00%
n-Hexand	∋ 2,00%,	98.00%
Cyclohexane		
Other Hexanes		98,00%
Heptanes	s 2.00%	98.00%
Benzene		98,00%
Toluene		
Xylene		
C8+ Heavier		
COL HOUVIO,		20.00%

ABSORBER

Calculated Absorber Stages: 1.26 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 115.0 deg. F Pressure: 950.0 psig Dry Gas Flow Rate: 60.0000 MMSCF/day Glycol Losses with Dry Gas: 2.3869 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 92.37 lbs. H2O/MMSCF Specified Lean Glycol Recirc. Ratio: 3.00 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.56%	92.44%
Carbon Dioxide	99.79%	0.21%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.95%	0.05%

Page: 3

,

.

-

Propane	99.92%	0.08%
Isobutane	99.91%	0.09%
n-Butane	99.88%	0.12%
Isopentane	99.89%	0.11%
n-Pentane	99.86%	0.14%
n-Həxanə	99,80%	0.20%
Cyclohəxanə	99,10%	0.90%
Othər Həxanəs	99,84%	0.16%
Həptanəs	99,67%	0.33%
Bənzənə	92,63%	7.37%
Toluene	90.58%	9.42%
Xylenes	84.48%	15.52%
C8+ Heavies	99.01%	0.99%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	29.60%	70.40%
Carbon Dioxide	0.00%	100,00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0 00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.21%	99.79%
n-Pentane	0.24%	99.76%
n-Нехале	0.29%	99.71%
Cyclohexane	2.76%	97.24%
Other Hexanes	0.52%	99.48%
Heptanes	0.35%	99.65%
Benzene	4.91%	95.09%
Toluene	7.79%	92.21%
Xylenes	12.83%	87.17%
C8+ Heavies	10.63%	89.37%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	115.00 deg. F 964.70 psia 2.51e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	1.950-001 1.380-001 3.810-001 7.700+001 1.470+001	4.00e+002 7.05e+002 8.16e+004

Page: 4

Isobutane n-Butane Isopentane	4.820+000 6.260-001 1.130+000 2.780-001 2.650-001	2.40e+003 4.33e+003 1.33e+003
Cyclohexane Other Hexanes Heptanes		5.55e+001 9.26e+002 5.75e+002
		2.800+001

DRY GAS STREAM

 GAS SIREAM			
Temperature:	115.00 deg. F		
Pressure:	964.70 psia		
Flow Rate:	2.500+006 scfh		
	Component	Conc.	Loading
	-	(vol%)	(lb∕hr)́
	Water	1.470-002	1 75e+001
	Carbon Dioxide		
		3,820-001	
	Methane	7.72e+001	8.150+004
		1.470+001	
	Propane	4.83e+000	1.400+004
		6.268-001	
	n-Bu tane	1.130+000	4.330+003
	Isopentane		
	n-Pentane	2.660-001	1.260+003
	n-Hexane	9.486-002	5.386+002
	Cyclohexane	9.91e-003	5.50e+001
	Other Hexanes	1.630-001	9.240+002
	Heptanes	8.670-002	5.73e+002
	Benzene	1.850-003	9.540+000
	Toluene	3.620-003	2.200+001
	Xylenes	3.38e-003	2.369+001
	C8+ Heavies	1.090-001	1.220+003
	Total Components	100.00	 1.39ө+005

LEAN GLYCOL STREAM

Temperature: 115.00 deg. F Flow Rate: 1.07e+001 gpm		
Component		Loading (lb/hr)
	9.85e+001	
Water Carbon Dioxide	1,500+000 1,430-012	
	2.49e-013 8.46e-018	

Isobutane	7.180-009 1.130-009 2.160-009 1.240-004	6,80e-008 1,30e-007
n-Hexane Cyclohexane Other Hexanes		5.47e-003 1.65e-002 1.49e-002
Toluene		1.968-001 6.458-001 1.678+000

RICH GLYCOL AND PUMP GAS STREAM

Temperature:	115.00 deg. F
Pressure:	964.70 psia
Flow Rate:	1.170+001 gpm
	has more than one phase,

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.09e+001 4.68e+000 2.24e-002 1.84e-002 2.10e+000	3.04e+002 1.46e+000 1.20e+000
Propane Isobutane	8.96e-001 4.84e-001 8.98e-002 1.80e-001 5.32e-002	3.150+001 5.840+000 1.170+001
n-Hexane Cyclohexane Other Hexanes		1,900+000 5,980-001 2,870+000
Toluene		2,52e+000 5,03e+000

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. F 14.70 psia 9.020+003 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	5.000+001 1.390-001 1.800-001 3.580+001 8.150+000	1.46e+000 1.20e+000 1.36e+002

Page: 5

-

.

.

Page: 6

.

Isobutane n-Butane Isopentane	3.00e+000 4.22e-001 8.44e-001 2.01e-001 2.13e-001	5.840+000 1.170+001 3.450+000
Cyclohexane Other Hexanes Heptanes		5.81e-001 2.85e+000 2.75e+000
		4.380+000 1.410+001

COMBUSTION DEVICE OFF GAS STREAM

1000.00 deg. F 14.70 psia 8.960+001 scfh		
Component		Loading (lb/hr)
 Methane	7.200+001	2.73e+000
Ethane	1.640+001	1.17e+000
Propane	6.050+000	6.29e-001
Isobutane	8.51e-001	1.170-001
n-Butane	1.700+000	2.330-001
Isopentane	4.05e-001	6.900-002
n-Pentane	4.280-001	7.30e-002
	1.860-001	
Cyclohexane	5.850-002	1.16e-002
Other Hexanes	2.800-001	5.700-002
Heptanes	2.33e-001	5.500-002
Benzene	8.408-002	1.550-002
Toluene	2.14e-001	4.65e-002
Xylenes	3.50e-001	8.778-002
C8+ Heavies	6.998-001	2.810-001
 Total Components	100.00	5.610+000

Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan

ATTACHMENT O

JAY-BEE OIL & GAS, Inc.

Big Moses Site

Monitoring, Recordkeeping, Reporting and Testing Plan

I. Monitoring

The planned removal of a compressor and associated driver engine from the permit and placement of a restriction on the run hours on a second driver engine and one of the three dehydration units will not impact monitoring requirements for any other equipment.

II. Recordkeeping

The planned removal of a compressor and associated driver engine from the permit and placement of a restriction on the run hours on a second driver engine and one of the three dehydration units will not impact recordkeeping requirements for any other equipment.

All records will be kept either on site or at the nearest office location for a period of at least five (5) years.

III. Testing

The planned removal of a compressor and associated driver engine from the permit will not impact testing requirements for any other equipment

IV. Reporting

The planned removal of a compressor and associated driver engine from the permit will not impact reporting requirements for any other equipment.