625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eot.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

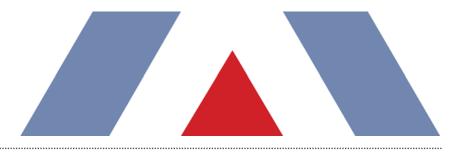
April 26, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6116

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70B Permit Application EQT Production Company WEU-2 Natural Gas Production Site Facility ID No. 017-00050

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed application for a G70-B General Air Permit for the WEU-2 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A170). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production WEU-2 Pad

G70-B Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

March 2016

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	5
1.3. G70-B APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	9
3.3.3. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.5. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	10
3.3.6. Non-Applicability of All Other NSPS	11
3.4. National Emission Standards for Hazardous Air Pollutants	11
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	11
3.4.3. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	12
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	12
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contrib to an Objectionable Odor	utes 12
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	12
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparat Storage and Other Sources of Fugitive Particulate Matter	ion, 12
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	13
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	13
3.5.8. Non-Applicability of Other SIP Rules	13
4. G70-B APPLICATION FORMS	14
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	

ATTACHMENT D: PROCESS FLOW DIAGRAM

ATTACHMENT E: PROCESS DESCRIPTION

- ATTACHMENT F: PLOT PLAN
- ATTACHMENT G: AREA MAP
- ATTACHMENT H: APPLICABILITY FORM
- ATTACHMENT I: EMISSION UNITS TABLE
- ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K: GAS WELL DATA SHEET
- ATTACHMENT L: STORAGE VESSEL DATA SHEET
- ATTACHMENT M: HEATERS DATA SHEET
- ATTACHMENT N: ENGINES DATA SHEET
- ATTACHMENT O: TRUCK LOADING DATA SHEET
- ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)
- ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)
- ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET
- ATTACHMENT S: EMISSION CALCULATIONS
- ATTACHMENT T: EMISSION SUMMARY SHEET
- ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-B) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an existing natural gas production well pad, WEU-2, located in Doddridge County, West Virginia. The WEU-2 pad is currently operating under G70-A permit number G70-A170.

1.1. FACILITY AND PROJECT DESCRIPTION

The WEU-2 pad is a natural gas production facility that consists of eleven (11) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The WEU-2 pad currently consists of the following equipment:

- > Twelve (12) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by two (2) existing combustors rated at 11.66 MMBtu/hr each;
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator (vapors from this tank may be controlled by combustors but are not represented as controlled in this application);
- > Five (5) line heaters rated at 1.54 MMBtu/hr (heat input);
- > Five (5) line heaters rated at 0.77 MMBtu/hr (heat input);
- > One (1) line heater rated at 1.15 MMBtu/hr (heat input);
- > Three (3) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr (heat input);
- > Produced fluid truck loading; and
- > Associated piping and components.

This application seeks to permit the following equipment at the WEU-2 pad:

- > One low pressure separator and associated 1.15 MMbtu/hr line heater; and
- > One vapor recovery unit (VRU) powered by a natural gas fired 110 horsepower (hp) engine.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-B emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-B permit, fugitive emissions are not considered in determining eligibility of the permit for non-HAP pollutants.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-B Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	16.91	50
Carbon Monoxide	15.44	80
Volatile Organic Compounds	13.35	80
Particulate Matter – 10/2.5	1.27	20
Sulfur Dioxide	0.10	20
Highest Single HAP (n-hexane) ¹	1.76	8
Total HAPs ¹	2.88	20

Table 1 - Comparison of Wellpad Potential Emissions to G70-B Permit Emission Limits

¹ Emissions include fugitives.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the WEU-2 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

WVDEP determined that the WEU-2 pad is a separate stationary source when the current permit was issued. There are no Marcellus facilities within a quarter-mile radius of the WEU-2 Pad. The nearest wellpad, WEU-1, is located approximately 3,200 feet southwest of WEU-2. Therefore, the WEU-2 pad should continue to be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-B APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-B permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- Section 3: Regulatory Discussion;
- > Section 4: G70-B Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment 0: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- > Attachment S: Emission Calculations;
- > Attachment T: Emission Summary Sheet;
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- VRU Engine: Potential emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) are calculated using vendor emission factors. Remaining criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas fired engines.³ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.⁴
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.⁵ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 95%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the WEU-2 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of ~13. Note that production data was based on the production of seven (7) wells, so throughput was scaled up based on the total numbers of wells at the pad. The composition for the analysis was from a sample taken at WEU-6. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} * \frac{11 \text{ total wells}}{7 \text{ existing wells}} * 13$$

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, Natural Gas-fired Reciprocating Engines, Supplement D, August 2000.

⁴ 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

⁵ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁶
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁷

⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008. ⁷ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants.⁸ The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions.

⁸ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed engine (VRU engine) at the well pad is a 4-stroke rich burn, spark ignition engine manufactured after July 1, 2008, and is subject to this subpart. EQT will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243(b)(2) (maintenance plan/records and performance testing frequency) for noncertified affected SI ICE at the facility or by purchasing a certified engine. At this time, EQT intends to purchase a certified engine

3.3.4. NSPS Subpart OOOO - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. Although there are sources proposed to be installed that could potentially be subject to this regulation, due to the anticipated installation dates, they will not be subject to the rule. This is due to the most recent proposed developments related to the rule, which are the inclusion of an end date for applicability to Subpart OOOO

(September 18, 2015) and the promulgation of 40 CFR 60 Subpart 0000a.⁹ The potential applicability of Subpart 0000a is discussed in the following section.

3.3.5. NSPS Subpart OOOOa-Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. This regulation has yet to be finalized. The currently proposed version of the rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the current version of the proposed rule, the following paragraphs describe the potential applicability of the facilities to be located at the proposed facility.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365a, compressors located at well sites are not affected facilities under Subpart 0000a.

There are twelve (12) produced fluid storage vessels and one (1) sand separator storage vessel at the wellpad. The storage vessels at the facility each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-B permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. EQT must also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a semi-annual basis. EQT is also subject to the applicable recordkeeping and reporting requirements of the rule.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed

⁹ September 18, 2015 publication in Federal Register: https://www.federalregister.gov/articles/2015/09/18/2015-21023/oil-and-natural-gas-sector-emission-standards-for-new-and-modified-sources

rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. 40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The WEU-2 well pad is a minor (area) source of hazardous air pollutants and the VRU engine is considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The proposed line heater will be natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-B application forms including the required attachments.

G70-B GENERAL PH	ERMIT RE	GISTRATION A	PPLICATION
	ADMINISTRATIV	REGARD TO THE CONSTR 'E UPDATE AND OPERATIO ITIES LOCATED AT THE W	N OF
□CONSTRUCTION ⊠MODIFICATION □RELOCATION		□CLASS I ADMINISTRATI □CLASS II ADMINISTRATI	
SE	ECTION I. GENER	RAL INFORMATION	
Name of Applicant (as registered with the	WV Secretary of S	ate's Office) EQT Production	n Company
Federal Employer ID No. (FEIN) 25-0724	685		
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 17	00	
City: Pittsburgh	State: PA		ZIP Code: 15222
Facility Name: WEU-2 Pad			
Operating Site Physical Address: Bulldog If none available, list road, city or town an		ı, WV	
City: West Union	Zip Code 26456	6	County Doddridge
Latitude & Longitude Coordinates (NAD83 Latitude: 39.27255 N Longitude: -80.77145 W	8, Decimal Degrees	to 5 digits)	
SIC Code: 1311		DAQ Facility ID No. (For exis	sting facilities) 017-00050
NAICS Code: 211111			
(CERTIFICATION	DF INFORMATION	
This G70-B General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on busines authority to bind the Corporation, Pa Proprietorship. Required records of da compliance certifications and all requi Representative. If a business wishes to cert off and the appropriate names and sigr unsigned G70-B Registration Application utilized, the application will b	cretary, Treasurer, s structure. A busin artnership, Limited ily throughput, hou ired notifications m tify an Authorized J natures entered. An a will be returned	General Partner, General Manag ness may certify an Authorized Liability Company, Association rs of operation and maintenance ust be signed by a Responsible Representative, the official agre y administratively incomplete	er, a member of the Board of Representative who shall have h, Joint Venture or Sole , general correspondence, Official or an Authorized ement below shall be checked or improperly signed or e, if the G70-B forms are not
I hereby certify that <u>Kenneth Kirk</u> of the business (e.g., Corporation, Partners Proprietorship) and may obligate and legal Responsible Official shall notify the Direct I hereby certify that all information contair documents appended hereto is, to the best of have been made to provide the most compre-	hip, Limited Liabil ly bind the busines: tor of the Division ned in this G70-B C of my knowledge, t	ity Company, Association Joint s. If the business changes its Au of Air Quality immediately. General Permit Registration App rue, accurate and complete, and	Venture or Sole thorized Representative, a lication and any supporting
	VOY	12	
Responsible Official Signature. Name and Title: Kenneth Kirk, Executive V Email: KKirk@eqt com	vice President Date	Phone	Fax:
If applicable: Authorized Representative Signature: Name and Title: Email.	Date	Phone	Fax
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Environm Email: ABosiljevac@eqt.com	nental Coordinator Date	Phone: 412-395-3699	Fax: 412-395-7027

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility:

General permit application for an existing natural gas production well pad.

Directions to the facility:

From I-79, take exit 119 to Clarksburg and travel West on US Route 50 for 27.8 miles. Take a left at Doddridge County High School onto Bulldog Drive. After 0.3 miles, take the first left and stay left at the first fork. The pad will be 0.8 miles at the end of the road.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac,

abosiljevac@eqt.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹

 \Box \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH 2

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed in its entirety) – Attachment A

□ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C

Image: Process Flow Diagram - Attachment DImage: Process Description - Attachment E

⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G

☐ G70-B Section Applicability Form – Attachment H ☐ Emission Units/ERD Table – Attachment I

⊠ Fugitive Emissions Summary Sheet – Attachment J

🖾 Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

Intersection Inter

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

Pneumatic Controllers Data Sheet – Attachment Q

🖾 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R

🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S

⊠ Facility-wide Emission Summary Sheet(s) – Attachment T

🖾 Class I Legal Advertisement – Attachment U

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

indicate the SiC code, permit number (if appreable), and the distance between facilities in question (on the map.	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. WEU-1 wellpad is owned by EQT Production Company.	Yes 🗵	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □ N/A	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes □ N/A	No 🗆
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🖂	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🛛	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🗵	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🖂
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities?	Yes □ N/A	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🖂
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🛛
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🖂
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🛛

WEU-2 Wellpad WEU-1 Wellpad SIC Code: 1311 Distance to WEU-2: 0.6 miles ∧ N

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-B General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby Print Name ______ hereby acknowledge and agree that ______ will General Permit Applicant's Name

construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Da
Signature	Dat
Taken, subscribed and sworn before me this day	of
Taken, subscribed and sworn before me this day , 20	of
, 20	

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

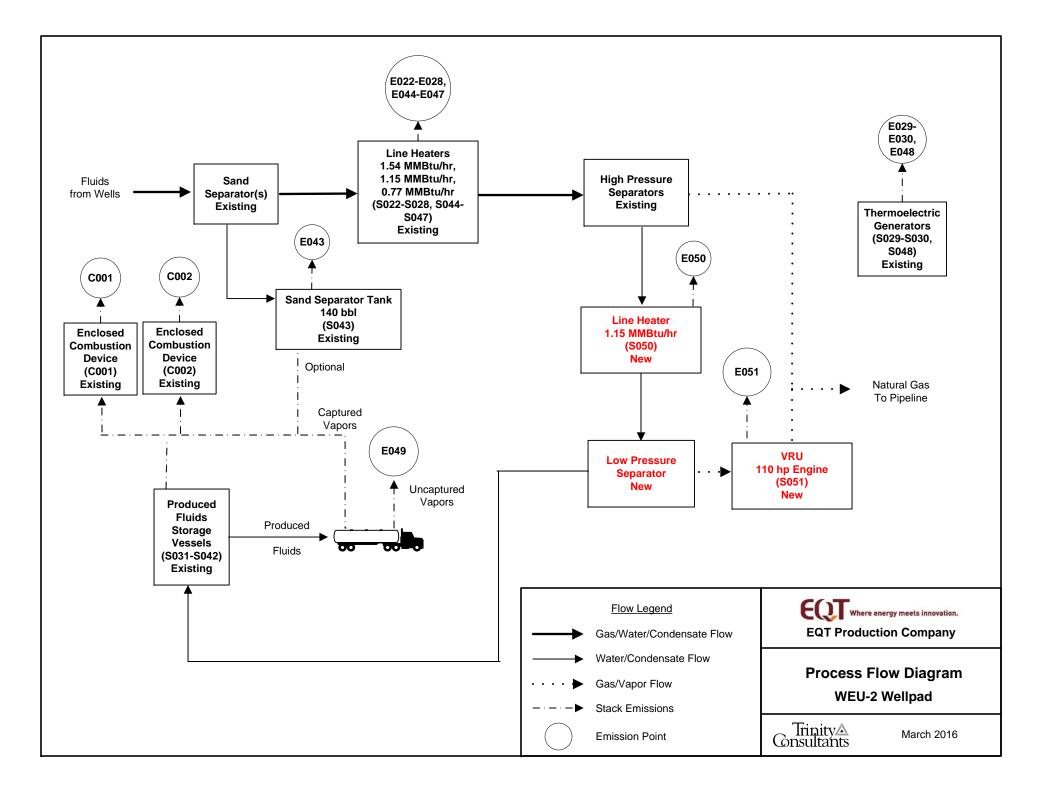
1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

This G70-B Permit Application involves the permitting of a low pressure tower and associated heater (S050) and a vapor recovery unit (S051) at an existing natural gas production wellpad (WEU-2). The wellpad consists of eleven (11) wells, each with the same basic operation.


The incoming gas/liquid stream from the underground well will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank (S043). The gas stream will then pass through a line heater (S022-S028, S044-S047) to raise/maintain temperature. The stream will then pass through a high pressure separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The liquids stream will then pass through a low pressure separator, where it is heated (S050) to volatilize (flash off) lighter hydrocarbons and separate condensate from water in the combined liquid stream. The flash gas from the condensate stream is recovered by the vapor recovery unit (S051), which utilizes a natural gas-fired engine driven compressor to raise the pressure of the flash gas and route it back into the natural gas pipeline. The condensate is then transferred to the produced fluid storage vessels (S031-S042).

Emissions from the storage vessels are controlled by an enclosed combustor (C001-C002). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S049) are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided by thermoelectric generators (S029-S30, S048).

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

 UTM Northing (KM):
 4,347.047

 UTM Easting (KM):
 519.715

 Elevation:
 ~1,180 ft

ATTACHMENT H

Applicability Form

ATTACHMENT H – G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	ENERAL PERMIT G70-B APPLICABLE SECTIONS
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
□ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
Section 14.0	Tanker Truck Loading ³
□ Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S022	E022	Line Heater	2011	2011	1.54 MMBtu/hr	Existing; No change	None	
S023	E023	Line Heater	2011	2011	1.15 MMBtu/hr	Existing; No change	None	
S024	E024	Line Heater	2011	2011	0.77 MMBtu/hr	Existing; No change	None	
S025	E025	Line Heater	2011	2011	0.77 MMBtu/hr	Existing; No change	None	
S026	E026	Line Heater	2011	2011	0.77 MMBtu/hr	Existing; No change	None	
S027	E027	Line Heater	2011	2011	0.77 MMBtu/hr	Existing; No change	None	
S028	E028	Line Heater	2011	2011	0.77 MMBtu/hr	Existing; No change	None	
S029	E029	Thermoelectric Generator	2011	2011	0.013 MMBtu/hr	Existing; No change	None	
S030	E030	Thermoelectric Generator	2011	2011	0.013 MMBtu/hr	Existing; No change	None	
S031	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 - C002	
S032	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S033	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 - C002	
S034	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S035	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	

S036	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S037	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 - C002	
S038	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S039	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S040	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S041	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S042	C001 – C002	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C001 – C002	
S043	E043	Sand Separator Storage Tank	2015	2015	140 bbl	Existing; No change	C001 – C002 (Optional)	
S044	E044	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S045	E045	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S046	E046	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S047	E047	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S048	E048	Thermoelectric Generator	2015	2015	0.013 MMBtu/hr	Existing; No change	None	
S049	E049 (Uncaptured) C001–C002 (Controlled, Captured)	Liquid Loading	2011	2011	51,678,693 gal/yr	Modified; Increase throughput	C001 – C002	
S050	E050	Line Heater	TBD	TBD	1.15 MMBtu/hr	New	None	
S051	E051	VRU Engine	TBD	TBD	110 hp	New	None	

C001	C001	Tank Combustor	2011	2011	11.66 MMBtu/hr	Existing; No change	NA	
C002	C002	Tank Combustor	2015	2015	11.66 MMBtu/hr	Existing; No change	NA	
 ¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S, or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, or other appropriate designation. ³ When required by rule ⁴ New, modification, removal, existing ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation. ⁶ For ERDs use the following numbering system: 1D, 2D, 3D, or other appropriate designation. 								

ATTACHMENT J

Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMN	ARY SHEET	ſ		
		Sources	of fugitive emissions may Use extra pages	y include loading operations for each associated sour	· · ·			etc.	
	Source/Equipm	ent: Fugit	ive Emissions						
	Leak Detection Method UsedImage: Audible, visual, and olfactory (AVO) inspectionsImage: Image: Image: Audible, visual, and olfactory (FLIR) camerasImage: Image: Image: Image: Image: Audible, visual, and 							□ None require	
Componer	Closed		Source of	Leak Factors	Stream type	Es	stimated Emissions	(tpy)	
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)	
Pumps	□ Yes ⊠ No	20	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas ⊠ Liquid □ Both	3.75	0.16	0.73	
Valves	□ Yes ⊠ No	597	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			0.20	60.25	
Safety Relie Valves	ef □ Yes ⊠ No	43	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			0.25	6.35	
Open Endec Lines	d □ Yes ⊠ No	42	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			<0.01	9.58	
Sampling Connection	s S Yes	0	1	N/A					
Connection (Not samplin		2,636	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		6.64	0.28	29.55	
Compressor	rs □ Yes ⊠ No	1	(included in other component counts)		⊠ Gas □ Liquid □ Both	0.31	0.01	15.59	
Flanges	□ Yes □ No		(included ir	(included in connections)					
Other ¹	□ Yes ⊠ No	55	40 CFR 98	40 CFR 98 Subpart W			0.34	925.08	

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources

as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
047-017-05912	June 2011	June 2011	Green
047-017-05913	June 2011	June 2011	Green
047-017-05917	June 2011	June 2011	Green
047-017-05914	May 2011	May 2011	Green
047-017-05915	June 2011	June 2011	Green
047-017-05916	June 2011	June 2011	Green
047-017-05957	May 2011	May 2011	Green
PLANNED	PLANNED 2016	PLANNED 2016	Green
PLANNED	PLANNED 2016	PLANNED 2016	Green
PLANNED	PLANNED 2016	PLANNED 2016	Green
PLANNED	PLANNED 2016	PLANNED 2016	Green

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where

marc,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
WEU-2 Pad	Produced Fluid Tanks (water and condensate)				
3. Emission Unit ID number	4. Emission Point ID number				
S031-S042	C001-C002				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change: N/A				
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material				
\boxtimes Yes \Box No	\Box Other (Low Pressure Tower) \Box Relocation				
7A. Description of Tank Modification (if applicable) N/A					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the inte 400 bbls	rnal cross-sectional area multiplied by internal height.					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20					
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10					
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10					
12. Nominal Capacity (specify barrels or gallons). This is all	so known as "working volume". 400 bbls					
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached					
emissions calculations for all throughput values	emissions calculations for all throughput values					
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions					
emissions calculations for all throughput values	calculations for all throughput values					
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Y	es 🖂 No					
If yes, (A) What is the volume expansion capacity of the syst	em (gal)?					
(B) What are the number of transfers into the system p	er year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat r	oof \boxtimes cone roof \square dome roof \square other (describe)					
External Floating Roof pontoon roof dou	ble deck roof					
□ Domed External (or Covered) Floating Roof	Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting					
\Box Variable Vapor Space \Box lifter roof \Box diaphrag	ym					
□ Pressurized □ spherical □ cylindric	cal					
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:								
\Box Does Not Apply	\Box Rupture Disc (psig)								
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹								
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)									
🛛 Conservation Vent (psi	g)			□ Conde	\Box Condenser ¹				
0.5 oz Vacuum Setting 14.4 oz Pressure Setting									
Emergency Relief Valv	e (psig)								
Vacuum Setting	14.4 oz	z Pressur	e Setting						
□ Thief Hatch Weighted	□ Yes 🛛	⊠ No – Ca	ashco Loc	kdown Ha	ıtch				
¹ Complete appropriate Air	Pollutio	n Control	Device S	heet					
20. Expected Emission Ra	te (submi	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).	
1							11	,	
Material Name		ng Loss		ing Loss		ng Loss	Total	,	Estimation Method ¹
-							Total	ons Loss	Estimation Method ¹
-							Total		Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss tpy	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss tpy	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss tpy	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss tpy	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss tpy	Total Emissio lb/hr	ons Loss	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:						
	w append rivers 🛛 🕅 Or	thar (dagariha) Walda	l on nivotod			
21A. Shell Color: Green	21B. Roof Color: Gree	en	21C. Year	Last Painted: New		
22. Shell Condition (if metal and unlined):						
\square No Rust \square Light Rust \square Dense						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If yes	, how is heat provided to tank?		
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs with 24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome i		24D If you	, for cone roof, provide slop (ft/ft):		
	24A. If yes, for dome i	tool provide radius (II):	24B. II yes 0.06	, for cone root, provide stop (1711).		
⊠ Yes □ No			0.00			
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	ounted resilie	ent seal		
	or mounted resilient s	eal 🛛 Other (dea	scribe):			
25C. Is the Floating Roof equipped with a second			,			
0 111			1 (1 1	>		
25D. If yes, how is the secondary seal mounted			her (describe	e):		
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	☑ Does not appl	У			
26A. Deck Type: 🗆 Bolted 🗆 W	/elded	26B. For bolted decks	, provide deck	construction:		
26C. Deck seam. Continuous sheet construction	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	☐ other (des	scribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported		
		tanks, # of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? Yes	⊠ No					
28. Closed Vent System with Enclosed Combus	stor? 🛛 Yes 🗌 No					
SITE INFORMATION - Not Applicable:		rformed using ProM	lay coftwar	0		
29. Provide the city and state on which the data						
30. Daily Avg. Ambient Temperature (°F):	in this section are based.		imum Temper	ature (°F):		
32. Annual Avg. Minimum Temperature (°F):		31. Annual Avg. Maximum Temperature (°F): 33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. Atmospheric Pressure (psia):				
LIQUID INFORMATION - Not Applicable		-	-	are		
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	r · · · · · · · ·	36B. Maxi			
liquid (°F):						
37. Avg. operating pressure range of tank	37A. Minimum (psig):		37B. Maxi	mum (psig):		
(psig):						
38A. Minimum liquid surface temperature (°F)		38B. Corresponding v	apor pressure	(psia):		
39A. Avg. liquid surface temperature (°F):		39B. Corresponding v	apor pressure	(psia):		
40A. Maximum liquid surface temperature (°F)	:	40B. Corresponding v	apor pressure	(psia):		
41. Provide the following for each liquid or gas	to be stored in the tank.	Add additional pages if	necessary.			
41A. Material name and composition:						
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.						
From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
WEU-2 Pad	Sand Separator Tank				
3. Emission Unit ID number	4. Emission Point ID number				
S043	E043				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
Was the tank manufactured after August 23, 2011?	\boxtimes New construction \square New stored material				
🖾 Yes 🛛 No	\Box Other (Low Pressure Tower) \Box Relocation				
7A. Description of Tank Modification (<i>if applicable</i>) N/A					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internative bals	d cross-sectional area multiplied by internal height.		
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10		
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5		
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5		
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 140 bbls		
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached		
emissions calculations for all throughput values	emissions calculations for all throughput values		
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions		
emissions calculations for all throughput values	calculations for all throughput values		
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading		
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per	year?		
18. Type of tank (check all that apply):			
\boxtimes Fixed Roof \square vertical \boxtimes horizontal \square flat root	f \Box cone roof \Box dome roof \Box other (describe)		
\Box External Floating Roof \Box pontoon roof \Box double	deck roof		
Domed External (or Covered) Floating Roof			
□ Internal Floating Roof □ vertical column support	□ self-supporting		
\Box Variable Vapor Space \Box lifter roof \Box diaphragm			
\Box Pressurized \Box spherical \Box cylindrical			

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
\boxtimes Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\Box Thief Hatch Weighted \Box Yes \Box No	

¹ Complete appropriate 20. Expected Emission					ere or elsev	where in t	he applicat	tion).	
Material Name Flashing Loss Breathing Loss Working Loss Total Emissions Loss Estim					Estimation Method ¹				
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	See attached Emissions Calculation for all values								

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded								
21A. Shell Color: Gray	21B. Roof Color: Gra	у	21C. Year	Last Painted: New				
22. Shell Condition (if metal and unlined):	•							
🛛 No Rust 🗆 Light Rust 🗆 Dense	Rust 🛛 Not applic	able						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?				
23. Operating Pressure Range (psig):	•							
Must be listed for tanks using VRUs wi	th closed vent system	1.						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):				
🗆 Yes 🛛 No								
25. Complete item 25 for Floating Roof Tanks	$\overline{\mathbf{s}}$ Does not apply	\boxtimes						
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal				
🗆 Vap	or mounted resilient s	eal 🗌 Other (des	scribe):					
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No						
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗆 Rim 🗆 Ot	her (describ	be):				
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ No						
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not appl	у					
26A. Deck Type:	Velded	26B. For bolted decks	, provide dec	k construction:				
26C. Deck seam. Continuous sheet construction	n:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e 🛛 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	de other (de	escribe)				
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. For column supp	orted	26G. For column supported				
		tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? Yes No								
28. Closed Vent System with Enclosed Combustor? Yes No								
SITE INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software								
29. Provide the city and state on which the data	in this section are based	:						
30. Daily Avg. Ambient Temperature (°F): 31. Annual Avg. Maximum Temperature (°F):								
32. Annual Avg. Minimum Temperature (°F):	32. Annual Avg. Minimum Temperature (°F):33. Avg. Wind Speed (mph):							
34. Annual Avg. Solar Insulation Factor (BTU/		35. Atmospheric Press	-					
LIQUID INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software								

36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maximur	m (°F):
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):			37B. Maximum (psig):	
38A. Minimum liquid surface temperature (°F)		38B. (Corresponding va	por pressure (ps	ia):
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (ps	ia):
40A. Maximum liquid surface temperature (°F)	:	40B. 0	Corresponding va	apor pressure (ps	ia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
	•	Not Applicable	

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following: 1. 2.

EXIST

3.

Existing Equipment Installation of New Equipment NEW

Equipment Removed REM

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S022	E022	Line Heater	2011	Existing; No change	1.54	~1,217
S023	E023	Line Heater	2011	Existing; No change	1.15	~1,217
S024	E024	Line Heater	2011	Existing; No change	0.77	~1,217
S025	E025	Line Heater	2011	Existing; No change	0.77	~1,217
S026	E026	Line Heater	2011	Existing; No change	0.77	~1,217
S027	E027	Line Heater	2011	Existing; No change	0.77	~1,217
S028	E028	Line Heater	2011	Existing; No change	0.77	~1,217
S029	E029	Thermoelectric Generator	2011	Existing; No change	0.013	~1,217
S030	E030	Thermoelectric Generator	2011	Existing; No change	0.013	~1,217
S044	E044	Line Heater	2015	Existing; No change	1.54	~1,217
S045	E045	Line Heater	2015	Existing; No change	1.54	~1,217
S046	E046	Line Heater	2015	Existing; No change	1.54	~1,217
S047	E047	Line Heater	2015	Existing; No change	1.54	~1,217
S048	E048	Thermoelectric Generator	2015	Existing; No change	0.013	~1,217
S050	E050	Line Heater	TBD	New	1.15	~1,217

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	<i>ise this form</i>		151				
Engine Manufac			SG-637				
		110					
Manufacturers I	Rated bhp/rpm						
Source Status ²		NS					
Date Installed/ Modified/Remo	ved/Relocated ³		3D				
Engine Manufac /Reconstruction		> J	uly 2010				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4SRB					
APCD Type ⁷		NSCR					
Fuel Type ⁸		PQNG					
H ₂ S (gr/100 scf	r/100 scf) 0		0				
Operating bhp/r	pm	1	10				
BSFC (BTU/bhj	p-hr)	7,0	000				
Hourly Fuel Th	roughput	733 ft ³ /hr NA gal/hr			/hr l/hr		/hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	6.4MMft³/yrMMft³/yrNAgal/yrgal/yr				Aft ³ /yr l/yr	
Fuel Usage or H Operation Mete		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
	NO _x	0.24	1.06				
	СО	0.49	2.12				
	VOC	0.18	0.81				
	SO ₂	<0.01	<0.01				
	PM ₁₀	0.01	0.07				
	Formaldehyde	0.02	0.07				
	Total HAPs	0.02	0.11				
	GHG (CO ₂ e)	90	395				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- Enter the Engine Type designation(s) using the following codes: 6 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn 4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7 Air/Fuel Ratio Ignition Retard A/F IR HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst SCR Lean Burn & Selective Catalytic Reduction 8 Enter the Fuel Type using the following codes: Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel PQ 9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used. MD Manufacturer's Data AP AP-42 GRI-HAPCalcTM OT GR Other (please list)
- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# S051, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included?

Yes 🗵 No 🗆

See attached certification

□ Oxidation Catalyst

Provide details of process control used for proper mixing/control of reducing agent with gas stream: Sequential multi-part fuel injection

Manufacturer: Ford	Model #: CSG-637
Design Operating Temperature: 1,600 °F	Design gas volume: scfm
Service life of catalyst: 5,000 hours	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled: 444.9 acfm at 1,600 °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst hed (delta P): 6 inches of H_2O	

Pressure drop against catalyst bed (delta P): 6 inches of H₂O

Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ2? \Box Yes \boxtimes No

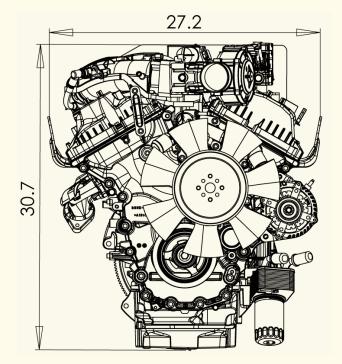
How often is catalyst recommended or required to be replaced (hours of operation)? 5,000 hours

How often is performance test required?

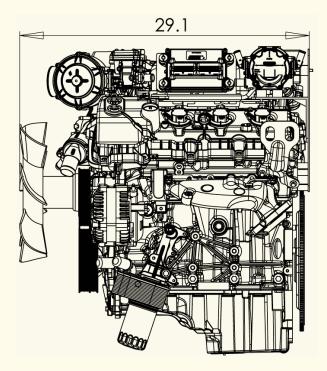
⊠ NSCR

Initial

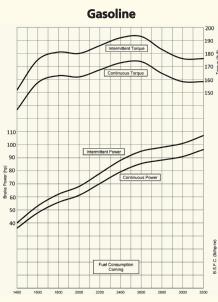
Annual


Every 8,760 hours of operation Field Testing Required

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT


Per 40 CFR §60.4243(a)(1), EQT must maintain the certified engine and control device according to the manufacturer's emission related written instructions and keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

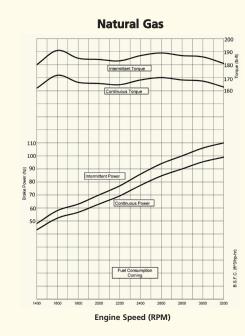
Installation Drawings


Front End View

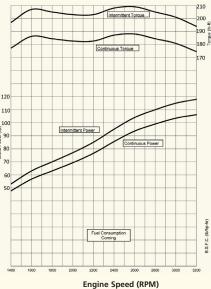
Left Side View

Power Curves (corrected per SAE J1349)

Engine Speed (RPM)


Ford

Powertrain Assemblies


& Components

Provided By Ford Component Sales

Power <u>Produ</u>cts

Liquefied Petroleum Gas

For additional information Contact:

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans • 14" (355mm) diameter suction • 14" (355mm) diameter pusher Flywheels • 11.5" (292mm) SAE over-center clutch • flat face flywheel **Flywheel Housings** • SAE #3 **Exhaust Manifold** • rear dump down **Power Steering Pump** Air Conditioning Wiring Harnesses **Discrete Speed Switch** Variable Speed Hand Throttle Variable Speed Foot Pedal **Engine Mounts** • Automotive with insulators • Open power unit **Electronic Instrument Panel, Gauges** Three Way Catalyst / Muffler Standard

Transmissions 6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6
Bore and Stroke	3.7"x 3.4" (94mm x 86mm)
Displacement	3.7L Liter (225.7 CID)
Compression Ratio	10.5:1
Oil Capacity	6 qts. including filter
	355 Lbs. with accessories (161 Kgs.)
Dimensions	L 25.4" x W 29.5" x H 29.4"
	(646 mm x 751 mm x 748 mm)

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power		(72 [kW] @ 3200rpm)
Intermittent Torque		(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque		
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power		(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection


Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S04	9	Emissi	on Point ID#	#: C001-C002, E049 Year Installed/Modified: N/A			
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks							
			Loading A	Area Data			
Number of Pumps: 1		Numbe	r of Liquids	Loaded: 1		Max number of (1) time: 1	trucks loading at one
Are tanker trucks pressu If Yes, Please describe:	re tested for lea	ks at this	or any other	location?	🗆 Yes	⊠ No □	Not Required
Provide description of c Trucks utilize vapor rec	losed vent syste overy lines to ro	m and an oute displ	y bypasses. aced vapors	back into bat	tery of ta	anks.	
Are any of the following Closed System to tan Closed System to tan Closed System to tan	nker truck passin nker truck passin	ng a MAC ng a NSP	CT level annu S level annua	al leak test?	apor ret	urn?	
Pro	jected Maximu	n Opera	ing Schedul	e (for rack o	r transf	er point as a wh	ole)
Time	Jan – Ma	ır	Apr	- Jun	J	ul – Sept	Oct - Dec
Hours/day	Varies		Va	ries		Varies	Varies
Days/week	7			7		7	7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)	
Liquid Name	Pr	oduced F	luids				
Max. Daily Throughput (1000 gal/day)	calc	ttached e culations oughput	for all				
Max. Annual Throughpu (1000 gal/yr)	Max. Annual Throughput (1000 gal/yr) See attached emissions calculations for all throughput values						
Loading Method ¹		SP					
Max. Fill Rate (gal/min)	fax. Fill Rate (gal/min) Varies						
Average Fill Time (min/loading) Varies							
Max. Bulk Liquid Temperature (°F) See ProMax results							
True Vapor Pressure ²	See	ProMax	results				
Cargo Vessel Condition	3	U					
Control Equipment or Method ⁴	(captu	VB, EC red loadin	D 1g losses)				

Max. Collection Efficiency (%)		70	
Max. Control Efficiency (%)		95	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate Annual (ton/yr)		See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate Annual (ton/yr)		See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP	Splash Fill		SUB	Submerged Fill	
2	At maxir	num bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as 1	many as apply (complete and	submit app	propriate .	Air Pollut	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Device	ce	F	Flare			
	TO	Thermal Oxidization or Inc.	ineration					
5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
	TM	Test Measurement based up	on test dat	ta submitt	al	0	Other (de	scribe)

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc TM input and aggregate report. Use extra pages if necessary.						
Manufacturer:			Model:			
Max. Dry Gas Flow	Rate:		Reboiler Design He	at Input		
Design Type: 🗆 TE	G DEG	🗆 EG	Source Status ¹ :			
Date Installed/Modi	fied/Removed ² :		Regenerator Still V	ent APCD/ERD ³ :		
Control Device/ERI	D ID# ³ :		Fuel HV (BTU/scf)	:		
H ₂ S Content (gr/100) scf):		Operation (hours/ye	ear):		
Pump Rate (gpm):						
Water Content (wt 9	%) in: Wet Gas: Dry	Gas:				
Is the glycol dehydr	ation unit exempt fro	m 40CFR63 Section	764(d)? 🗆 Yes	□ No: If Yes, answ	ver the following:	
meters per day, as d The actual average	letermined by the pro emissions of benzene	tural gas to the glyco cedures specified in § from the glycol dehy etermined by the proc	\$63.772(b)(1) of this addration unit process	subpart.	□ No re are less than 0.90	
	ation unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	uster (UC)? 🗆 Yes	□ No	
		being utilized? 🗆 Ye				
		ck to the flame zone				
Recycling the glyco □ Yes □ No	l dehydration unit ba	ck to the flame zone	of the reboiler and m	ixed with fuel.		
Still vent emissi Still vent emissi Still vent emissi	ons to the atmosphere ons stopped with valv ons to glow plug.			r		
🔲 Flash Tank	e following equipment	•	nor or flach tank you	0.00		
		nuously burns conder Control Device	-	018		
		Control Device	Technical Data			
	Pollutants Controlled		Manufacturer'	s Guaranteed Control	Efficiency (%)	
		Emissio	ns Data			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶ Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Annual Emissions (1000000000000000000000000000000000000			

	1		

1 Enter the Source Status using the following codes:

NS Construction of New Source ES **Existing Source**

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA

5

- None Condenser FL Flare CD Condenser/Combustion Combination TO Thermal Oxidizer 0 Other
- CC (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

Enter the Potential Emissions Data Reference designation using the following codes:

- MD Manufacturer's Data AP AP-42
- GRI-GLYCalc[™] GR OT Other (please list)
- 6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?						
🗌 Yes 🛛 No						
Please list approximate number.						

ATTACHMENT R

Air Pollution Control Device Data Sheet

EQT Production, LLC | WEU-2 Pad Trinity Consultants

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: Not Applicable Make/Model:					
Primary Control Device ID: Make/Model:					
Control Efficiency (%): APCD/ERD Data Sheet Completed: 🗆 Yes 🔅 No					
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%): APCD/ERD Data Sheet Completed: 🗆 Yes 🔅 No					

VAPOR COMBUSTION (Including Enclosed Combustors)							
			General Ir	formation			
Control Device ID#: C001-C002 (existing; no change)				Installation Date: 2011 (C001) & 2015 (C002)			
Maximum Rated To ~7,849 scfh	pacity cfd		Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr	bm Design Heat Content t) 1,500 BTU/scf			
			Control Devic	e Information			
Enclosed Combu		ce	Type of Vapor Co	mbustion Control? ed Flare		Ground Flare	
Manufacturer: LEEI Model: Enclosed Co				Hours of operation	per year? 8	3,760	
List the emission un Emission Point ID#				vapor control device	:		
Emission Unit ID#	Emission	Source D	Description	Emission Unit ID#	Emissi	on Source Description	
S031-S042	Produced Fluid Tanks						
S049	Liquid Lo	oading					
S043	Sand Sep	arator Ta	nk (optional)				
If this vapor co	ombustor co	ontrols en	nissions from more the	an six (6) emission un	its, please	attach additional pages.	
Assist Type (Flares	only)		Flare Height	Tip DiameterWas the design per §60.			
Steam Pressure	Air 🛛 Air		~25 feet	4 feet		□ Yes □ No ⊠ N/A Provide determination.	
		i	Waste Gas 1	Information		1	
Maximum Waste 130 (s		Rate		Vaste Gas Stream Exit Velocity of the Emissions Str BTU/ft ³ Varies (ft/s)			
1	Provide an	attachme	nt with the characteri	stics of the waste gas	stream to	be burned.	
			Pilot Gas I	nformation			
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot~50 scfh			Heat Input per Pilot Will automatic re-ignition 0.05 MMBTU/hr be used? □ Yes ⊠ No				
If automatic re-ignition is used, please describe the method.							
Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type? ⊠ Thermocouple□ Infrared□ Ultraviolet□ Camera□ Other:							
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit							
Additional information attached? 🛛 Yes 🔅 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.							

CONDENSER – Not Applicable						
General In	nformation					
Control Device ID#: Installation Date:						
Manufacturer:	Model:	Control Device Name:				
Control Efficiency (%):						
Manufacturer's required temperature range for control efficie	ncy. °F					
Describe the warning and/or alarm system that protects again	st operation when uni	t is not meeting the design requirements:				
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.						
Is condenser routed to a secondary APCD or ERD?						

ADSORPTION SYS	TEM – Not Applicable					
General	Information					
Control Device ID#:	Installation Date:					
Manufacturer:	Model: Control Device Name:					
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:					
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter:ftAdsorber area:ft²					
Adsorbent type and physical properties:	Overall Control Efficiency (%):					
Working Capacity of Adsorbent (%):						
Operatin	g Parameters					
Inlet volume: scfm @ °F						
Adsorption time per adsorption bed (life expectancy): Breakthrough Capacity (lbs of VOC/100 lbs of adsorber						
Temperature range of carbon bed adsorber. °F - °F						
Control Devie	ce Technical Data					
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)					
Describe the warning and/or alarm system that protects again	inst operation when unit is not meeting the design requirements:					
Has the control device been tested by the manufacturer and	certified?					
Describe all operating ranges and maintenance procedures r	equired by the manufacturer to maintain the warranty.					
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawing	s, and performance testing.					

VAPOR RECOVERY UNIT									
General Information									
Emission U	Unit ID#: \$051	Installation Date: TBD							
Device Information									
Manufactu Model: CS									
List the en	nission units whose emissions are controlled by this	s vapor reco	very unit (Emission Point ID# NA)						
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description						
NA	Low Pressure Separator								
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please attach additional pages	-					
	information attached? ⊠ Yes □ No ch copies of manufacturer's data sheets, drawings,	and perform	nance testing.						

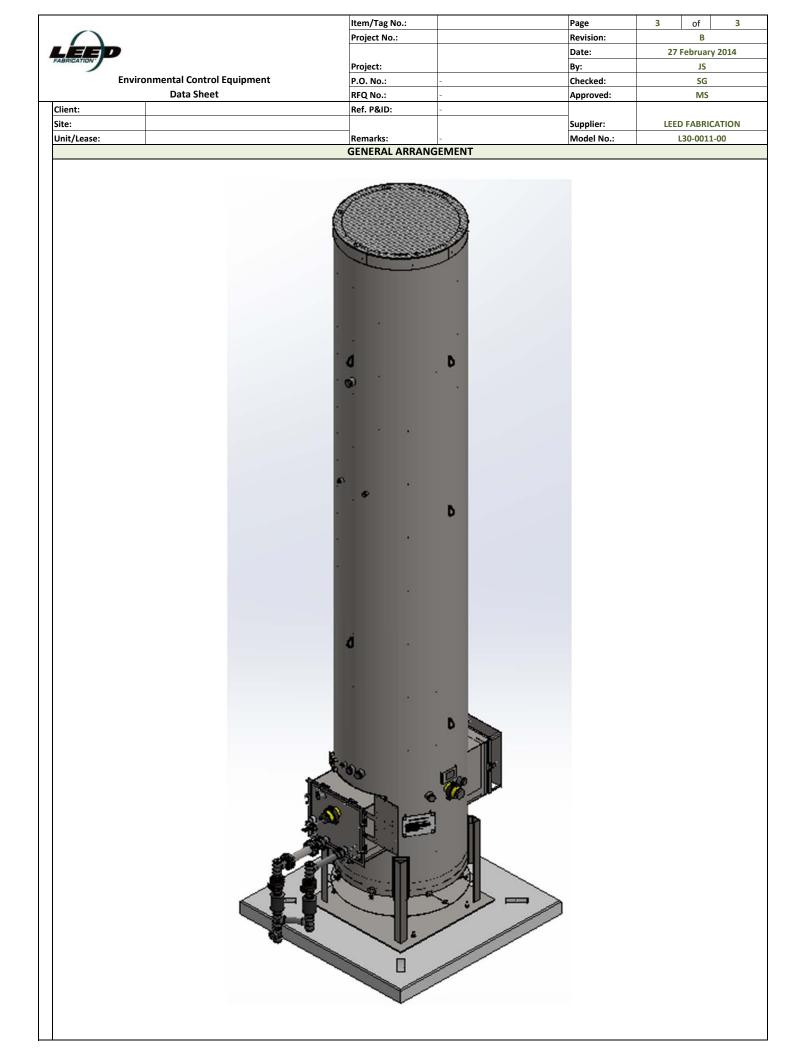
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas


 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

												1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:				Revision:			В	-	
				FIOJECT NO.									
1	LEED							Date:		27 February 2014		y 2014	
1	FABRICATION			Project:					Bv:			JS	-
					By:								
	Envire	omental Control Equipment		P.O. No.:	- Checke			Checked:			SG		
		Data Sheet		RFQ No.:		_			Approved	٩٠		MS	
-		2414 0							Approved	u.		1415	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:						NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage //8 High	Efficiency Combus	stor						✓ No		
5	Description.	Standard Duar	Stage 40 mgm				I						
				PROC	ESS DAT	ГА							
					Process	Conditions:							
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				-	Temperature	e			°F			
7	I-Butane				M	olecular Wei	ght		1				
							-						
8	n-Butane					ess/Waste St		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2				3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2				_								
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
				111010									
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				li li	nstrument A	ir		NA				
						Darrea							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam	eam NA						
26	Xylene				Purge Gas								
	Apienie			DECK	GN DAT	-							
			•	DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F		-20	Structural Design Code:								
29	L	High, °F	-	120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature											
31			1	90	1		Process	e/Sneed			100 mm	h	
		,,,,,			Pressure/Speed 100 mph								
32	Elevation (ASL), ft				Category								
33	Area Classification:		Clas	s I Div 2	Seismic Design Code:								
				NEC	1	0		n					
54	Electrical Design Code:				1		Locatio			_			
1				EQUIPMENT	SPECIF	ICATION							
35	Type:	Elevated 🗸 E	Inclosed		Equinm	ent Design:							
	-					-	· · · ·		1			10.11	
36	-	Above Ground				C	ompone	Int		IVIat	erial / Size	e / Katin	g / Other
37		✓ Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	Assist	Gas Burner			21	04 SS	
					1								
39	-					В	urner Bo	dy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41			Staging		1		Pilot Tip				24	04 SS	
	-		aging		+								
42						P	ilot Line	(s)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			1				
			mokeless		1		CL - 11				A 1	on Charl	
44			-	Gas Assist			Shell					on Steel	
45	5 Pilot: V Intermittent Continuous						Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles				Carb	on Steel	
			-	aguala)	+								
47	Pilot Flame Control:	No	Yes (Thermo	coupie)	1		Flanges				Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	-	Flamefront Generator	Inspirating Ig	nitor	1		sulation					04 SS	
				_	+								
50	L	Electronic 🗸	Automatic	Manual			Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors	Г			NA	
52	-	With Auto Pilot Re-Ignition			1								
					+		rs and Pl					NA	
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	iezo-Flectric				Sight Gla					2	
			ICLO-LICULIIL		+		-	JJ				4	
55	1	Battery Pack			1		Other						

		Item/Tag No.:	Page	2 of 3
\cap		Project No.:	Revision:	В
LEED			Date:	27 February 2014
FABRICATION		Project:	By:	JS
Enviro	nmental Control Equipment	P.O. No.:	Checked:	
	Data Sheet	RFQ No.:	Approved	
Client:	Butu bheet	Ref. P&ID: -	Approved	
Site:				
			Supplier:	LEED FABRICATION
Unit/Lease:		Remarks:	Model No	D.: L30-0011-00
Flame Detection:		EQUIPMENT SPECIFICATIO		
	Thermocouple / Ionizati	on Rod Auxiliary Equip		
	UV Scanner		Valves	NA
General Configuration:			Blowers	NA
			Dampers	NA
		lr	nlet KO / Liquid Seal	NA
		Flam	e / Detonation Arrestor	Yes
		Instrumentatio	n & Controls	
		Sole	noids / Shut-Off Valves	Check with Sales for available co
			Flow Meters	NA
	•		Calorimeter	NA
		Pressu	re Switches/Transmitters	NA
			Thermocouples	Check with Sales for available co
	4	Tempera	ture Switches/Transmitters	NA
			BMS	Check with Sales for available co
	The second se		CEMS	NA
			Other	NA
			otici	110
	AL .			
5	ŭ			
	*	FABRICATION AND INSPECT	ION	
Special requirements	Skid Mounted 🗸 Concrete P			
special requirements	Other		Equipment Ir	
			Component	Weight / Dimensions
		Burner		
Inspection	Vendor Standard		Burner Assembly	
	Other. Specify:	Stack		
Material Certification	Vendor Standard		Stack Assembly	48 " OD x 25 ' H
			Pilot Tip	
	Certificate of Compliance		Pilot Line(s)	
	Other (Specify):		Stack Assembly	
NDE	✓ Vendor Standard	Auxiliary Equip	ment	
	Radiography. Specify:		Blowers	
	Ultrasonic. Specify:	Ir	nlet KO / Liquid Seal	
		Flam	e / Detonation Arrestor	
	Liquid Penetrant.		Cl.:d	
	Liquid Penetrant. Magnetic Particles.		Skid	
		Instrumentatio		
	Magnetic Particles.			
	Magnetic Particles. PMI. Specify:		n & Controls	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify:		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Vendor Standard		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
3 2 2 Surface Preparation 3 4 Paint System 5 5	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. MI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
Surface Preparation Paint System Finished Color	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	

ATTACHMENT S

Emission Calculations

Company Name:	EQT Production, LLC
Facility Name:	WEU2 Wellpad

Project Description:

G70-B Application

Facility-Wide Emission Summary - Controlled

Wells	11	per pad	Carbo
Storage Tanks	12	per pad	CO ₂
Sand Separator Tank	1	per pad	CH ₄
Line Heaters	11	per pad	N ₂ O
TEGs	3	per pad	
Dehy Reboiler	0	per pad	
Glycol Dehy	0	per pad	
Dehy Drip Tank	0	per pad	
Dehy Combustor	0	per pad	
Compressor	1	per pad	
High Pressure Separator	11	per pad	
Low Pressure Separator	1	per pad	
Vapor Recovery Unit	1	per pad	
Tank Combustor	2	per pad	
Length of lease road	3,990	feet	

Carbon equivalent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

1	
25	
298	

Emission	Emission	Emission	N	0 _x	C	0	V)C	S	0 ₂	PM	A110	PN	1 _{2.5}	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S031-S042	Storage Vessels					1.87	8.18							29.17	127.78
C001-C002	S049	Captured Liquid Loading					14.81	3.85								
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C001	S031-S042, S049, C001		1.15	5.03	0.96	4.22	8.34	6.02	0.01	0.03	0.09	0.38	0.09	0.38	1,385.69	6,069.32
C002	S031-S042, S049, C002		1.15	5.03	0.96	4.22	8.34	6.02	0.01	0.03	0.09	0.38	0.09	0.38	1,385.69	6,069.32
E022	S022	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E023	S023	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	134.69	589.92
E024	S024	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E025	S025	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E026	S026	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E027	S027	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E028	S028	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E044	S044	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E045	S045	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E046	S046	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E047	S047	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E050	S050	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E029	S029	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E030	S030	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E048	S048	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E043	S043	Sand Separator Tank					0.04	0.18							1.15	5.08
E051	S051	VRU Engine	0.24	1.06	0.49	2.12	0.19	0.81	4.5E-04	2.0E-03	0.01	0.07	0.01	0.07	90.18	394.99
E049	S049	Uncaptured Liquid Loading					126.96	33.01								
		Fugitives						29.95								1,047.13
		Haul Roads										10.72		1.07		
Facility Total			3.86	16.91	3.52	15.44	143.94	76.31	0.02	0.10	0.29	11.99	0.29	2.34	4,488.45	20,706.56
Facility Total (excluding fugiti	ive emissions)		3.86	16.91	3.52	15.44	16.98	13.35	0.02	0.10	0.29	1.27	0.29	1.27	4,488.45	19,659.43

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

EOT Production, LLC WEU2 Wellpad G70-B Application

			racility	-wide E	mission S	Summary	y - contro	ulleu								
Emission	Emission	Emission		dehyde		zene	Tolu	uene	Ethylb	enzene		enes	n-He	exane		al HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S031-S042	Storage Vessels			2.8E-03	0.01	0.01	0.03	2.6E-04	1.2E-03	4.6E-04	2.0E-03	0.05	0.23	0.06	0.28
C001-C002	S049	Captured Liquid Loading			1.2E-02	3.1E-03	1.9E-02	5.1E-03	8.9E-04	2.3E-04	1.5E-03	3.9E-04	0.39	0.10	0.45	0.12
2001	C001	Tank Combustor														
2002	C002	Tank Combustor														
2001	S031-S042, S049, C001				0.01	0.01	0.01	0.02	5.8E-04	6.9E-04	9.8E-04	1.2E-03	0.22	0.16	0.26	0.20
2002	S031-S042, S049, C002				0.01	0.01	0.01	0.02	5.8E-04	6.9E-04	9.8E-04	1.2E-03	0.22	0.16	0.26	0.20
E022	S022	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023	S023	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E024	S024	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
2025	S025	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E026	S026	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E027	S027	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E028	S028	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E044	S044	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E045	S045	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E046	S046	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E047	S047	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E050	S050	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
2029	S029	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
2030	S030	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E048	S048	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E043	S043	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
2051	S051	VRU Engine	0.02	0.07	1.2E-03	5.3E-03	4.3E-04	1.9E-03	1.9E-05	8.4E-05	1.5E-04	6.6E-04			0.02	0.11
2049	S049	Uncaptured Liquid Loading			0.10	0.03	0.17	0.04	7.6E-03	2.0E-03	0.01	3.4E-03	3.38	0.88	3.88	1.01
		Fugitives				0.01		0.04		< 0.01		0.05		0.44		1.24
		Haul Roads														
acility Total			0.02	0.07	0.12	0.06	0.19	0.12	0.01	3.5E-03	0.02	0.06	3.85	1.76	4.44	2.88
Facility Total (excluding f	fugitive emissions)		0.02	0.07	0.02	0.02	0.03	0.03	1.2E-03	1.5E-03	2.1E-03	3.1E-03	0.47	0.43	0.57	0.63

ions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, en enly by the total number of co stors (i.e., Combustor Point Emi combustor.

EOT Production, LLC WEU2 Wellpad G70-B Application

Produced Fluids Storage Vessels

Potential Throughput	
Operational Hours	8,760 hrs/yr
Maximum Condensate Throughput ¹	20,034 bbl/month
Maximum Produced Water Throughput ²	82,428 bbl/month

¹ Based on the highest monthly throughput recorded at the site (July 2015). Includes a safety multiplier of approximately 13. ² Based on the highest monthly throughput recorded at the site (May 2013). Includes a safety multiplier of approximately 13. Overall Control Efficiency of Combustor 95%

Storage Tanks - Uncontrolled

	Brea	thing	Wor	king	Flas	hing	Total E	nissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	23.338	102.222	23.338	102.222
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	20.610	90.271	20.610	90.271
Propane	0.101	0.440	1.851	8.105	15.484	67.818	17.435	76.364
Isobutane	0.020	0.089	0.343	1.501	3.062	13.414	3.426	15.004
n-Butane	0.039	0.170	0.660	2.893	6.100	26.720	6.800	29.783
Isopentane	0.015	0.064	0.248	1.086	2.296	10.055	2.558	11.205
n-Pentane	0.014	0.059	0.229	1.002	2.146	9.399	2.388	10.461
n-Hexane	0.006	0.025	0.097	0.426	0.927	4.061	1.030	4.513
Cyclohexane	8.5E-05	3.7E-04	0.001	0.006	0.018	0.081	0.020	0.087
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.006	0.028	0.109	0.479	1.109	4.860	1.225	5.367
n-Octane	0.002	0.010	0.040	0.176	0.417	1.826	0.459	2.012
n-Nonane	4.2E-04	0.002	0.007	0.031	0.077	0.337	0.084	0.370
n-Decane	1.8E-04	0.001	0.003	0.013	0.034	0.149	0.037	0.162
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.009	0.041	0.157	0.687	1.476	6.465	1.642	7.193
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	1.1E-04	5.0E-04	0.005	0.020	0.050	0.221	0.055	0.242
Toluene	2.5E-04	0.001	0.006	0.025	0.111	0.487	0.117	0.513
Ethylbenzene	1.3E-05	5.5E-05	2.3E-04	0.001	0.005	0.022	0.005	0.023
m-Xylene	2.1E-05	9.4E-05	3.9E-04	0.002	0.009	0.039	0.009	0.040
Isooctane	3.5E-04	0.002	0.006	0.026	0.060	0.262	0.066	0.289
Total VOC Emissions:	0.21	0.93	3.76	16.48	33.38	146.21	37.36	163.63
Total HAP Emissions:	6.5E-03	0.03	0.11	0.50	1.16	5.09	1.28	5.62

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition. 2 Composition of condensate from WEU-6 sample from 12/12/2014.

EOT Production, LLC WEU2 Wellpad G70-B Application

Storage Tanks - Controlled

	Brea	thing	Wor	king	Flas	ning	Total En	nissions
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
Methane	<0.001	< 0.001	< 0.001	< 0.001	1.167	5.111	1.167	5.111
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	1.030	4.514	1.030	4.514
Propane	0.005	0.022	0.093	0.405	0.774	3.391	0.872	3.818
sobutane	0.001	0.004	0.017	0.075	0.153	0.671	0.171	0.750
n-Butane	0.002	0.009	0.033	0.145	0.305	1.336	0.340	1.489
sopentane	0.001	0.003	0.012	0.054	0.115	0.503	0.128	0.560
n-Pentane	0.001	0.003	0.011	0.050	0.107	0.470	0.119	0.523
n-Hexane	2.9E-04	0.001	0.005	0.021	0.046	0.203	0.052	0.226
Cyclohexane	4.3E-06	1.9E-05	7.2E-05	3.2E-04	0.001	0.004	0.001	0.004
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	3.2E-04	0.001	0.005	0.024	0.055	0.243	0.061	0.268
n-Octane	1.2E-04	0.001	0.002	0.009	0.021	0.091	0.023	0.101
n-Nonane	2.1E-05	9.2E-05	3.5E-04	0.002	0.004	0.017	0.004	0.018
n-Decane	8.8E-06	3.9E-05	1.5E-04	0.001	0.002	0.007	0.002	0.008
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Friethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	4.7E-04	0.002	0.008	0.034	0.074	0.323	0.082	0.360
8-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Veohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	5.7E-06	2.5E-05	2.3E-04	0.001	0.003	0.011	0.003	0.012
oluene	1.3E-05	5.6E-05	2.8E-04	0.001	0.006	0.024	0.006	0.026
Ethylbenzene	6.3E-07	2.8E-06	1.2E-05	5.1E-05	2.5E-04	0.001	2.6E-04	0.001
n-Xylene	1.1E-06	4.7E-06	2.0E-05	8.6E-05	4.4E-04	0.002	4.6E-04	0.002
sooctane	1.8E-05	7.8E-05	3.0E-04	0.001	0.003	0.013	0.003	0.014
Fotal VOC Emissions:	1.1E-02	0.05	0.19	0.82	1.67	7.31	1.87	8.18
otal HAP Emissions:	3.3E-04	1.4E-03	5.7E-03	2.5E-02	5.8E-02	0.25	0.06	0.28

Produced Fluids Storage Vessels

EQT Production, LLC WEU2 Wellpad G70-B Application

VRU Engine

Manufacturer:	Ford
Model No.:	CSG-637
Engine ID	S051
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	110

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Specific Fuel Consumption (Btu/bhp-hr):	7,000
Maximum Fuel Consumption at 100% Load (scf/hr):	733
Heat Input (MMBtu/hr):	0.77
Potential Fuel Consumption (MMBtu/yr):	6,745
Max. Fuel Consumption at 100%(MMscf/hr):	0.0007
Max. Fuel Consumption (MMscf/yr):	6.4
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission	Units	Maximum Emis	Potential sions	Estimation Basis / Emission
Fonutant	Factor	Units	lbs/hr	tpy	Factor Source
NO _X	1.0	g/bhp-hr	0.24	1.06	Manufacturer
VOC (excludes HCHO)	0.7	g/bhp-hr	0.17	0.74	Manufacturer
VOC (includes HCHO)			0.19	0.81	VOC + HCHO
CO	2.0	g/bhp-hr	0.49	2.12	Manufacturer
SO _x	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
PM ₁₀	0.02	lb/MMBtu	0.01	0.07	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.01	0.07	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Ta	ble Below	90	395	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tal	ble Below	0.02	0.11	AP-42, Table 3.2-3 (Aug-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

<u>EOT Production, LLC</u> <u>WEU2 Wellpad</u> <u>G70-B Application</u>

	VRU	Engine			
Greenhouse Gas (GHG) & Hazardous Air Poll	utant (HAP) Emissions	Calculations:			
Pollutant	Emission	Units		Potential sions	Estimation Basis / Emission
Fonutant	Factor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	53.06	kg/MMBtu	90.09	394.59	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	1.7E-03	7.4E-03	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	1.7E-04	7.4E-04	40 CFR 98, Table C-2
GHG (CO ₂ e)			90	395	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	1.9E-05	8.5E-05	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	1.2E-05	5.2E-05	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	6.63E-04	lb/MMBtu	5.1E-04	2.2E-03	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	1.27E-05	lb/MMBtu	9.8E-06	4.3E-05	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	2.79E-03	lb/MMBtu	2.1E-03	9.4E-03	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	2.63E-03	lb/MMBtu	2.0E-03	8.9E-03	AP-42, Table 3.2-3 (Aug-2000)
Benzene	1.58E-03	lb/MMBtu	1.2E-03	5.3E-03	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	1.77E-05	lb/MMBtu	1.4E-05	6.0E-05	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	1.29E-05	lb/MMBtu	9.9E-06	4.4E-05	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	1.37E-05	lb/MMBtu	1.1E-05	4.6E-05	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	2.48E-05	lb/MMBtu	1.9E-05	8.4E-05	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	2.13E-05	lb/MMBtu	1.6E-05	7.2E-05	AP-42, Table 3.2-3 (Aug-2000)
Methanol	3.06E-03	lb/MMBtu	2.4E-03	1.0E-02	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	4.12E-05	lb/MMBtu	3.2E-05	1.4E-04	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	9.71E-05	lb/MMBtu	7.5E-05	3.3E-04	AP-42, Table 3.2-3 (Aug-2000)
PAH	1.41E-04	lb/MMBtu	1.1E-04	4.8E-04	AP-42, Table 3.2-3 (Aug-2000)
Styrene	1.19E-05	lb/MMBtu	9.2E-06	4.0E-05	AP-42, Table 3.2-3 (Aug-2000)
Toluene	5.58E-04	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	7.18E-06	lb/MMBtu	5.5E-06	2.4E-05	AP-42, Table 3.2-3 (Aug-2000)
Xylene	1.95E-04	lb/MMBtu	1.5E-04	6.6E-04	AP-42, Table 3.2-3 (Aug-2000)
Total HAP		•	0.02	0.11	

EQT Production, LLC WEU2 Wellpad G70-B Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)^{2,3}

Constituent	Total Em lb/hr	iissions ¹ tpy
Methane	0.046	0.203
Ethane	0.025	0.109
Propane	0.013	0.057
Isobutane	0.004	0.017
n-Butane	0.009	0.041
Isopentane	0.004	0.019
n-Pentane	0.004	0.018
Hexanes	0.002	0.009
Heptanes	0.002	0.009
Octane	0.001	0.003
Nonane	< 0.001	0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.006
2,2,4-Trimethylpentane	< 0.001	<0.001
Total HC Emissions:	0.113	0.493
Total VOC Emissions:	0.041	0.181
Total HAP Emissions:	0.002	0.010

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.
 ³ E&P TANK v2.0 emission calculations are based on WEU-6 sample from 12/12/2014.

EQT Production, LLC WEU2 Wellpad G70-B Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Er	nissions
Constituent	lb/hr	tpy
Methane	0.046	0.203
Ethane	0.025	0.109
Propane	0.013	0.057
Isobutane	0.004	0.017
n-Butane	0.009	0.041
Isopentane	0.004	0.019
n-Pentane	0.004	0.018
Hexanes	0.002	0.009
Heptanes	0.002	0.009
Octane	0.001	0.003
Nonane	< 0.001	0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.006
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total Emissions:	0.113	0.495
Total VOC Emissions:	0.041	0.181
Total HAP Emissions:	0.002	0.010

Company Name:	EQT Production, LLC
Facility Name:	WEU2 Wellpad
Project Description:	G70-B Application

Source Designation:	C001 & C002
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.380
Combustor Rating (scf/hr)	7,849
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission	Com	oustor	Pil	ot	Та	tal
Pollutant	Factors ² (lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:	7849.17 scf	lb-mol	20.01 lb	=	413.81 lb/hr
	hr	379.5 scf	lb-mol		

	Line Heaters	
Project Description:	G70-B Application	
Facility Name:	WEU2 Wellpad	
Company Name:	EQT Production, LLC	

Source Designation:	S022, S044-S047		
Fuel Used:	Natural Gas		
Higher Heating Value (HHV) (Btu/scf):	1,050		
Heat Input (MMBtu/hr)	1.54		
Fuel Consumption (MMscf/hr):	1.47E-03		
Potential Annual Hours of Operation (hr/yr):	8,760		

Criteria and Manufacturer Specific Pollutant Emission Rates;

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³
NO _x	100	0.15	0.64
со	84	0.12	0.54
VOC	5.5	0.01	0.04
SO ₂	0.6	8.8E-04	3.9E-03
PM Total	7.6	0.01	0.05
PM Condensable	5.7	0.01	0.04
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01
Lead	5.00E-04	7.3E-07	3.2E-06
CO ₂	117.0	180.00	788.38
CH ₄	2.21E-03	3.4E-03	1.5E-02
N ₂ O	2.21E-04	3.4E-04	1.5E-03

EQT Production, LLC WEU2 Wellpad G70-B Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.2E-08
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Chrysene	1.8E-06	2.6E-09	1.2E-08
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.2E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	5.0E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.8E-08	7.7E-08
Cadmium	1.1E-03	1.6E-06	7.1E-06
Chromium	1.4E-03	2.1E-06	9.0E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.6E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.8E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

	Line Heaters	
Project Description:	G70-B Application	
Facility Name:	WEU2 Wellpad	
Company Name:	EQT Production, LLC	

Source Designation:	S024-S028
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	0.77
Fuel Consumption (MMscf/hr):	7.33E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³
NO _x	100	0.07	0.32
со	84	0.06	0.27
VOC	5.5	4.0E-03	0.02
SO ₂	0.6	4.4E-04	1.9E-03
PM Total	7.6	0.01	0.02
PM Condensable	5.7	4.2E-03	0.02
PM ₁₀ (Filterable)	1.9	1.4E-03	0.01
PM _{2.5} (Filterable)	1.9	1.4E-03	0.01
Lead	5.00E-04	3.7E-07	1.6E-06
CO ₂	117.0	90.00	394.19
CH ₄	2.21E-03	1.7E-03	7.4E-03
N ₂ O	2.21E-04	1.7E-04	7.4E-04

EQT Production, LLC WEU2 Wellpad G70-B Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential E	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	1.8E-08	7.7E-08
3-Methylchloranthrene	1.8E-06	1.3E-09	5.8E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.2E-08	5.1E-08
Acenaphthene	1.8E-06	1.3E-09	5.8E-09
Acenaphthylene	1.8E-06	1.3E-09	5.8E-09
Anthracene	2.4E-06	1.8E-09	7.7E-09
Benz(a)anthracene	1.8E-06	1.3E-09	5.8E-09
Benzene	2.1E-03	1.5E-06	6.7E-06
Benzo(a)pyrene	1.2E-06	8.8E-10	3.9E-09
Benzo(b)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Benzo(g,h,i)pervlene	1.2E-06	8.8E-10	3.9E-09
Benzo(k)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Chrysene	1.8E-06	1.3E-09	5.8E-09
Dibenzo(a,h) anthracene	1.2E-06	8.8E-10	3.9E-09
Dichlorobenzene	1.2E-03	8.8E-07	3.9E-06
Fluoranthene	3.0E-06	2.2E-09	9.6E-09
Fluorene	2.8E-06	2.1E-09	9.0E-09
Formaldehyde	7.5E-02	5.5E-05	2.4E-04
Hexane	1.8E+00	1.3E-03	5.8E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.3E-09	5.8E-09
Naphthalene	6.1E-04	4.5E-07	2.0E-06
Phenanthrene	1.7E-05	1.2E-08	5.5E-08
Pyrene	5.0E-06	3.7E-09	1.6E-08
Toluene	3.4E-03	2.5E-06	1.1E-05
Arsenic	2.0E-04	1.5E-07	6.4E-07
Beryllium	1.2E-05	8.8E-09	3.9E-08
Cadmium	1.1E-03	8.1E-07	3.5E-06
Chromium	1.4E-03	1.0E-06	4.5E-06
Cobalt	8.4E-05	6.2E-08	2.7E-07
Manganese	3.8E-04	2.8E-07	1.2E-06
Mercury	2.6E-04	1.9E-07	8.3E-07
Nickel	2.1E-03	1.5E-06	6.7E-06
Selenium	2.4E-05	1.8E-08	7.7E-08
Total HAP		1.4E-03	6.1E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

	Line Heater	
Project Description:	G70-B Application	
Facility Name:	WEU2 Wellpad	
Company Name:	EQT Production, LLC	

	Line Heater	
Source Designation:	S023	
Fuel Used:	Natural Gas	
Higher Heating Value (HHV) (Btu/scf):	1,050	
Heat Input (MMBtu/hr)	1.15	
Fuel Consumption (MMscf/hr):	1.10E-03	
Potential Annual Hours of Operation (hr/yr):	8,760	

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.11	0.48	
СО	84	0.09	0.40	
VOC	5.5	0.01	0.03	
SO ₂	0.6	6.6E-04	2.9E-03	
PM Total	7.6	0.01	0.04	
PM Condensable	5.7	0.01	0.03	
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01	
Lead	5.00E-04	5.5E-07	2.4E-06	
CO ₂	117.0	134.55	589.32	
CH ₄	2.21E-03	2.5E-03	1.1E-02	
N ₂ O	2.21E-04	2.5E-04	1.1E-03	

EQT Production, LLC WEU2 Wellpad G70-B Application

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07	
3-Methylchloranthrene	1.8E-06	2.0E-09	8.6E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08	
Acenaphthene	1.8E-06	2.0E-09	8.6E-09	
Acenaphthylene	1.8E-06	2.0E-09	8.6E-09	
Anthracene	2.4E-06	2.6E-09	1.2E-08	
Benz(a)anthracene	1.8E-06	2.0E-09	8.6E-09	
Benzene	2.1E-03	2.3E-06	1.0E-05	
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09	
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.6E-09	
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09	
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.6E-09	
Chrysene	1.8E-06	2.0E-09	8.6E-09	
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09	
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06	
Fluoranthene	3.0E-06	3.3E-09	1.4E-08	
Fluorene	2.8E-06	3.1E-09	1.3E-08	
Formaldehyde	7.5E-02	8.2E-05	3.6E-04	
Hexane	1.8E+00	2.0E-03	8.6E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.6E-09	
Naphthalene	6.1E-04	6.7E-07	2.9E-06	
Phenanthrene	1.7E-05	1.9E-08	8.2E-08	
Pyrene	5.0E-06	5.5E-09	2.4E-08	
Toluene	3.4E-03	3.7E-06	1.6E-05	
Arsenic	2.0E-04	2.2E-07	9.6E-07	
Beryllium	1.2E-05	1.3E-08	5.8E-08	
Cadmium	1.1E-03	1.2E-06	5.3E-06	
Chromium	1.4E-03	1.5E-06	6.7E-06	
Cobalt	8.4E-05	9.2E-08	4.0E-07	
Manganese	3.8E-04	4.2E-07	1.8E-06	
Mercury	2.6E-04	2.8E-07	1.2E-06	
Nickel	2.1E-03	2.3E-06	1.0E-05	
Selenium	2.4E-05	2.6E-08	1.2E-07	
Total HAP		2.1E-03	9.1E-03	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

	Line Heater	
Project Description:	G70-B Application	
Facility Name:	WEU2 Wellpad	
Company Name:	EQT Production, LLC	

Source Designation:	S050	
Fuel Used:	Natural Gas	
Higher Heating Value (HHV) (Btu/scf):	1,050	
Heat Input (MMBtu/hr)	1.15	
Fuel Consumption (MMscf/hr):	1.10E-03	
Potential Annual Hours of Operation (hr/yr):	8,760	

Criteria and Manufacturer Specific Pollutant Emission Rates;

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.11	0.48	
со	84	0.09	0.40	
VOC	5.5	0.01	0.03	
SO ₂	0.6	6.6E-04	2.9E-03	
PM Total	7.6	0.01	0.04	
PM Condensable	5.7	0.01	0.03	
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01	
Lead	5.00E-04	5.5E-07	2.4E-06	
CO ₂	117.0	135.00	591.29	
CH ₄	2.21E-03	2.5E-03	1.1E-02	
N ₂ O	2.21E-04	2.5E-04	1.1E-03	

EQT Production, LLC WEU2 Wellpad G70-B Application

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07	
3-Methylchloranthrene	1.8E-06	2.0E-09	8.7E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08	
Acenaphthene	1.8E-06	2.0E-09	8.7E-09	
Acenaphthylene	1.8E-06	2.0E-09	8.7E-09	
Anthracene	2.4E-06	2.6E-09	1.2E-08	
Benz(a)anthracene	1.8E-06	2.0E-09	8.7E-09	
Benzene	2.1E-03	2.3E-06	1.0E-05	
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09	
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.7E-09	
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09	
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.7E-09	
Chrysene	1.8E-06	2.0E-09	8.7E-09	
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09	
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06	
Fluoranthene	3.0E-06	3.3E-09	1.4E-08	
Fluorene	2.8E-06	3.1E-09	1.3E-08	
Formaldehyde	7.5E-02	8.2E-05	3.6E-04	
Hexane	1.8E+00	2.0E-03	8.7E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.7E-09	
Naphthalene	6.1E-04	6.7E-07	2.9E-06	
Phenanthrene	1.7E-05	1.9E-08	8.2E-08	
Pyrene	5.0E-06	5.5E-09	2.4E-08	
Toluene	3.4E-03	3.7E-06	1.6E-05	
Arsenic	2.0E-04	2.2E-07	9.6E-07	
Beryllium	1.2E-05	1.3E-08	5.8E-08	
Cadmium	1.1E-03	1.2E-06	5.3E-06	
Chromium	1.4E-03	1.5E-06	6.7E-06	
Cobalt	8.4E-05	9.2E-08	4.0E-07	
Manganese	3.8E-04	4.2E-07	1.8E-06	
Mercury	2.6E-04	2.9E-07	1.3E-06	
Nickel	2.1E-03	2.3E-06	1.0E-05	
Selenium	2.4E-05	2.6E-08	1.2E-07	
Total HAP		2.1E-03	9.1E-03	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC
Facility Name:	WEU2 Wellpad
Project Description:	G70-B Application

Thermoelectric Generators

S029-S030, S048
Natural Gas
1,050
0.013
1.23E-05
8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴	
NO _x	100	1.2E-03	0.01	
со	84	1.0E-03	4.5E-03	
VOC	5.5	6.8E-05	3.0E-04	
SO ₂	0.6	7.4E-06	3.2E-05	
PM Total	7.6	9.4E-05	4.1E-04	
PM Condensable	5.7	7.0E-05	3.1E-04	
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04	
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04	
Lead	5.00E-04	6.2E-09	2.7E-08	
CO ₂	116.9	1.51	6.64	
CH ₄	2.21E-03	2.9E-05	1.3E-04	
N ₂ O	2.21E-04	2.9E-06	1.3E-05	

EQT Production, LLC WEU2 Wellpad G70-B Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential I	Emissions	
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09	
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10	
Acenaphthene	1.8E-06	2.2E-11	9.7E-11	
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11	
Anthracene	2.4E-06	3.0E-11	1.3E-10	
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11	
Benzene	2.1E-03	2.6E-08	1.1E-07	
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11	
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11	
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Chrysene	1.8E-06	2.2E-11	9.7E-11	
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11	
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08	
Fluoranthene	3.0E-06	3.7E-11	1.6E-10	
Fluorene	2.8E-06	3.5E-11	1.5E-10	
Formaldehyde	7.5E-02	9.3E-07	4.1E-06	
Hexane	1.8E+00	2.2E-05	9.7E-05	
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11	
Naphthalene	6.1E-04	7.5E-09	3.3E-08	
Phenanthrene	1.7E-05	2.1E-10	9.2E-10	
Pyrene	5.0E-06	6.2E-11	2.7E-10	
Toluene	3.4E-03	4.2E-08	1.8E-07	
Arsenic	2.0E-04	2.5E-09	1.1E-08	
Beryllium	1.2E-05	1.5E-10	6.5E-10	
Cadmium	1.1E-03	1.4E-08	5.9E-08	
Chromium	1.4E-03	1.7E-08	7.6E-08	
Cobalt	8.4E-05	1.0E-09	4.5E-09	
Manganese	3.8E-04	4.7E-09	2.1E-08	
Mercury	2.6E-04	3.2E-09	1.4E-08	
Nickel	2.1E-03	2.6E-08	1.1E-07	
Selenium	2.4E-05	3.0E-10	1.3E-09	
Total HAP		2.3E-05	1.0E-04	

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC WEU2 Wellpad G70-B Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

51,678,963 gal/yr 70% non-tested tanker trucks 95% Combustor destruction efficiency

Liquid Loading Emissions

		Uncontrolled Emissions lb/hr tpy		Uncaptured Emissions lb/hr tpy		Controlled Emissions lb/hr tpy	
	10/111	tpy	10/111	фу	10/111	tpy	
Propane	202.812	52.731	60.843	15.819	7.098	1.846	
Isobutane	39.583	10.292	11.875	3.087	1.385	0.360	
n-Butane	75.943	19.745	22.783	5.924	2.658	0.691	
Isopentane	28.690	7.460	8.607	2.238	1.004	0.261	
n-Pentane	26.463	6.880	7.939	2.064	0.926	0.241	
n-Hexane	11.266	2.929	3.380	0.879	0.394	0.103	
Cyclohexane	0.166	0.043	0.050	0.013	0.006	0.002	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	12.654	3.290	3.796	0.987	0.443	0.115	
n-Octane	4.646	1.208	1.394	0.362	0.163	0.042	
n-Nonane	0.815	0.212	0.245	0.064	0.029	0.007	
n-Decane	0.344	0.089	0.103	0.027	0.012	0.003	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	18.162	4.722	5.449	1.417	0.636	0.165	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.338	0.088	0.102	0.026	0.012	0.003	
Toluene	0.556	0.144	0.167	0.043	0.019	0.005	
Ethylbenzene	0.025	0.007	0.008	0.002	0.001	0.000	
m-Xylene	0.043	0.011	0.013	0.003	0.002	0.000	
Isooctane	0.690	0.179	0.207	0.054	0.024	0.006	
Total VOC Emissions:	423.196	110.031	126.959	33.009	14.812	3.851	
Total HAP Emissions:	12.918	3.359	3.875	1.008	0.452	0.118	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	20	3.75	1.00	0.04	3.75	0.16
Compressor	Gas	0.22800	1	2.20	0.14	0.01	0.31	0.01
Valves	Gas	0.00597	597	34.42	0.14	0.01	4.91	0.20
Pressure Relief Valves	Gas	0.10400	43	42.68	0.14	0.01	6.09	0.25
Open-Ended Lines	All	0.00170	42	0.69	0.14	0.01	0.10	4.1E-03
Connectors	All	0.00183	2,636	46.57	0.14	0.01	6.64	0.28
Intermittent Pneumatic Devices ⁴	Gas	13.5	55				8.16	0.34
			Emission Totals:	130.30			29.95	1.24

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A and is in scf/hr/component. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	20	3.75	2.9E-04	8.6E-04	< 0.01	9.9E-04	0.01
Compressor	Gas	0.22800	1	2.20	1.7E-04	5.1E-04	< 0.01	5.8E-04	0.01
Valves	Gas	0.00597	597	34.42	2.7E-03	0.01	< 0.01	0.01	0.08
Pressure Relief Valves	Gas	0.10400	43	42.68	3.3E-03	0.01	< 0.01	0.01	0.10
Open-Ended Lines	All	0.00170	42	0.69	5.4E-05	1.6E-04	< 0.01	1.8E-04	1.6E-03
Connectors	All	0.00183	2,636	46.57	3.6E-03	0.01	< 0.01	0.01	0.11
Intermittent Pneumatic Devices ⁴	Gas	13.5	55		4.5E-03	0.01	< 0.01	0.02	0.14
			Emission Totals:	130.30	0.01	0.04	<0.01	0.05	0.44

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A and is in scf/hr/component. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)		(tpy)	(tpy)
Pumps	20	0.01	0.03	2.4E-04	0.73
Compressor	1	4.17	0.62	0.01	15.59
Valves	597	0.027	2.41	0.02	60.25
Pressure Relief Devices	43	0.04	0.25	2.1E-03	6.35
Open-Ended Lines	42	0.061	0.38	3.1E-03	9.58
Connectors	2,636	0.003	1.18	0.01	29.55
Intermittent Pneumatic Devices	55	13.5	36.99	0.30	925.08
	Total		41.87	0.34	1,047.13

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production, 40 CFR 98, Subpart W (Table W-6 for VRU compressor). Pneumatics assume operation 1/3 of the year.

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Mole fractions of CH_4 and CO_2 based on gas analysis: CH_4 .

81% CO₂: 0.24%

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO₂): 1

Methane (CH₄): 25

 Company Name:
 EQT Production, LLC

 Facility Name:
 WEU2 Wellpad

 Project Description:
 G70-B Application

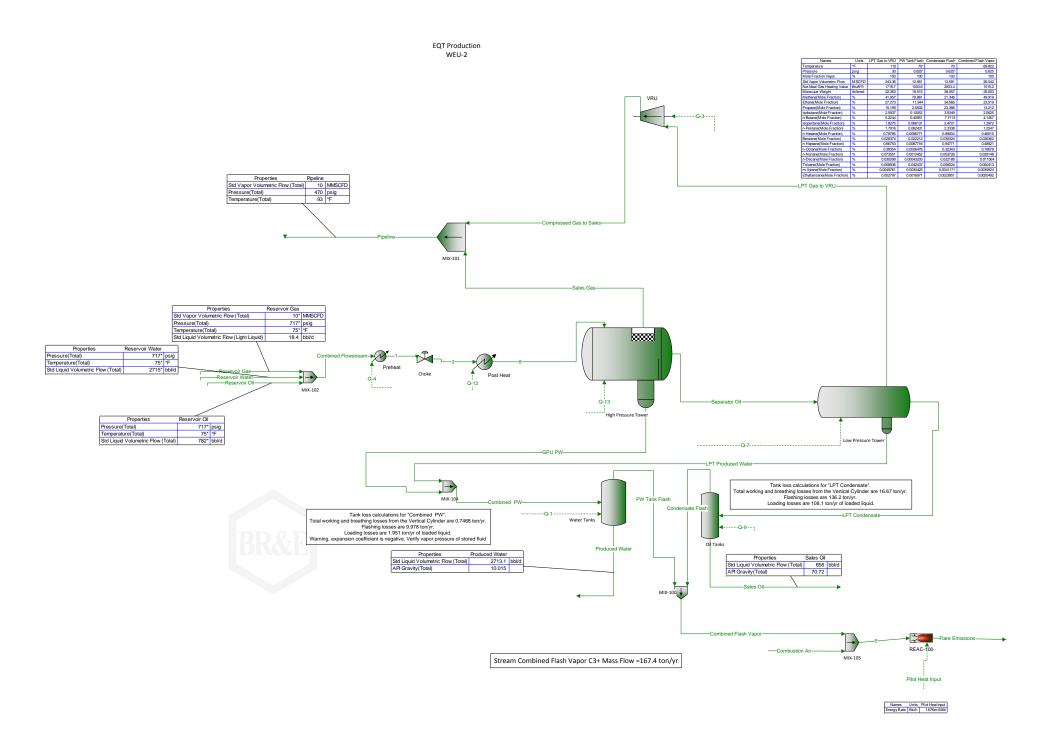
Haul Roads

Estimated Potential Road Fugitive Emissions

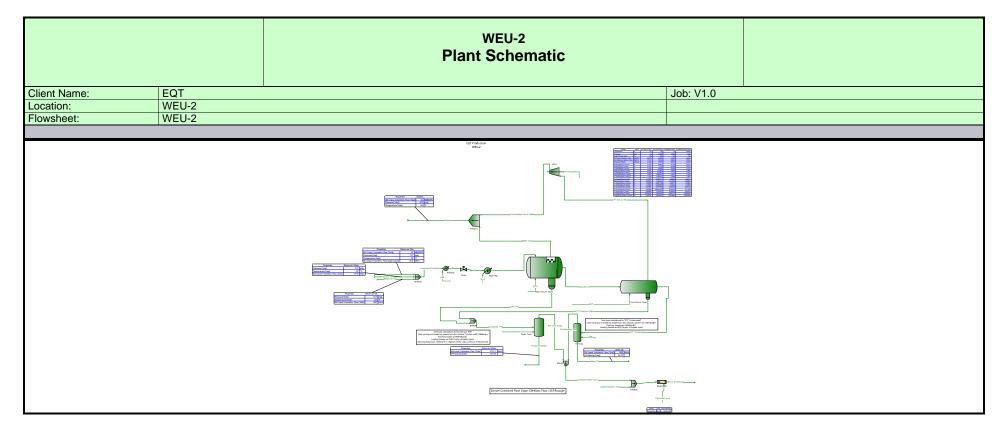
Unpaved Road Emissions

Unpaved Road	s: E (lb/VMT) =	$= k(s/12)^{a}(W/3)^{b})^{*}$	[(365-p)/365]	
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.76 0.76	12,920 200	19,526 302	0 0	41.82 0.23	10.66 0.06	1.07 0.01
Total Potential Emissions								42.05	10.72	1.07


EQT Production, LLC WEU2 Wellpad Company Name: Facility Name: **Project Description:** G70-B Application

Gas Analysis


Sample Location: Sample Date: HHV (Btu/scf):	WEU-1 512507 5/20/2013 1,217	Note: A conservatively	low BTU content of 1,0	50 was used for calcula	ations.
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.240	44.01	0.11	0.01	0.528
Nitrogen	0.428	28.01	0.12	0.01	0.599
Methane	80.616	16.04	12.93	0.65	64.630
Ethane	13.296	30.07	4.00	0.20	19.983
Propane	3.541	44.10	1.56	0.08	7.805
Isobutane	0.426	58.12	0.25	0.01	1.237
n-Butane	0.746	58.12	0.43	0.02	2.167
Isopentane	0.191	72.15	0.14	0.01	0.689
n-Pentane	0.164	72.15	0.12	0.01	0.591
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.055	86.18	0.05	0.00	0.237
Cyclohexane	0.009	84.16	0.01	0.00	0.038
Other Hexanes	0.091	86.18	0.08	0.00	0.392
Heptanes	0.079	100.21	0.08	0.00	0.396
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.052	114.23	0.06	0.00	0.297
Benzene*	0.002	78.11	0.00	0.00	0.008

wieuryicycionexane	<0.001	90.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.052	114.23	0.06	0.00	0.297
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.005	92.14	0.00	0.00	0.023
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.005	106.16	0.01	0.00	0.027
C8 + Heavies	0.054	130.80	0.07	0.00	0.353
Totals	100.000		20.01	1.00	100

TOC (Total)	99.33	98.87
VOC (Total)	5.42	14.26
HAP (Total)	0.12	0.59

		All S	reams Report treams by Total Phase			
Client Name:	EQT			Job: V1.0		
Location:	WEU-2					
Flowsheet:	WEU-2					
		Conn	ections			
		Combined	Combined	Pipeline	Produced	Reservoir Gas
		PW	Flash Vapor		Water	
From Block		MIX-104	MIX-100	MIX-101	Water Tanks	
To Block		Water Tanks	MIX-105			MIX-102
			omposition		1	
		Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		0.0946722	0.0992049	131.544	0.00184678	131.645 *
Methane		18.9688	23.3384	14463.5	0.736865	14200 *
CO2 Ethane		2.62524 5.35289	1.59083 20.6098	116.906 4514.7	1.19673 0.242169	<u> </u>
Propane		1.6868	16.9781	1730.08	0.242169	4389.7
Isobutane		0.0847524	3.49361	274.156	0.00161289	271.861 *
n-Butane		0.354231	7.02222	504.151	0.0155191	476.075 *
Isopentane		0.0698873	2.72759	191.061	0.00198854	151.306 *
n-Pentane		0.0659321	2.57502	182.349	0.00183248	129.917 *
n-Hexane		0.0120087	1.15561	92.24	0.000141235	52.0404 *
Methylcyclopenta	ane	0	0	0	0	0 *
Benzene		0.175434	0.0600114	2.72635	0.150744	1.71531 *
Cyclohexane		0.00296813	0.0223282	1.5746	0.00043794	8.31649 *
n-Heptane		0.0126811	1.42858	137.362	0.000173102	86.9156 *
n-Octane		0.0043419	0.555219	64.807	3.8071E-05	13.7963 *
n-Nonane		0.00252549	0.105209	14.5807	7.0351E-05	42.2465 *
n-Decane n-Undecane		0.00089358	0.0479509	<u>8.3285</u> 0	1.88235E-05 0	20.3089 *
Dodecane		0	0	0	0	0 *
Water		39578.9	0.662849	33.0898	39578.3	0 *
Triethylene Glyco	bl	0	0.002010	0	0	0 *
Oxygen		0	0	0	0	0 *
Argon		0	0	0	0	0 *
Carbon Monoxide	e	0	0	0	0	0 *
Cyclopentane		0	0	0	0	0 *
Isohexane		0.0207857	1.81975	139.054	0.000265926	86.1032 *
3-Methylpentane Neohexane		0	0	0	0	0 *
2,3-Dimethylbuta	ne	0	0	0	0	0 *
Methylcyclohexar		0	0	0	0	0 *
Isooctane		0.000112657	0.0763405	7.23342	1.64552E-07	65.2188 *
Decane, 2-Methy	4-	0	0	0	0	0 *
Toluene		 0.345675	0.135368	7.41324	0.290031	5.05831 *
m-Xylene		0.0286963	0.0111146	0.754544	0.0240996	5.82836 *
Ethylbenzene		0.0152068	0.00633996	0.422687	0.0126428	0 *
		Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Volumetric Frac	tion					
Nitrogen		3.23081E-06	0.0012279	0.00477335	6.2245E-08	0.00541156
Methane		 0.00118214	0.502437	0.840529	4.54473E-05	0.874982
CO2		5.22881E-05	0.012445	0.00228801	2.3623E-05	0.00223396
Ethane		0.000227439	0.234863	0.115554	1.02157E-05	0.0986924
Propane		6.12317E-05	0.131081	0.0251875	3.12301E-06	0.0168571
Isobutane		2.81136E-06	0.0203568	0.00259581	5.32349E-08	0.00123502
n-Butane		1.16004E-05	0.0408548	0.00440793	5.05797E-07	0.00149823
Isopentane n-Pentane		2.12981E-06	0.0127154 0.0119913	0.00107368 0.0009786	6.03407E-08	-1.83493E-06 -5.64018E-05
UPPENIALLE		2.01299E-06 3.48357E-07	0.00119913	0.0009786	5.57135E-08 4.08142E-09	-0.000130938
			0.00447.304	0.000279430	4.001420-09	-0.000130938
n-Hexane	ane					
	ane	0 4.14093E-06	0.000257686	0 1.16077E-05	0 3.5477E-06	0 -2.42417E-06

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Trinity Consultants, Inc. and Affiliates

		All St	reams Report reams by Total Phase			
Client Name:	EQT			Job: V1.0		
Location:	WEU-2					
Flowsheet:	WEU-2					
		Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Volumetric Frac	tion		ridon rapo.		Trato.	
n-Heptane		3.55806E-07	0.00472572	0.000185174	4.83964E-09	-0.000282402
n-Octane		1.17965E-07	0.00160047	2.05604E-05	1.03085E-09	-3.06482E-05
n-Nonane		6.69832E-08	0.000268081 0.000109401	-6.07856E-06 -4.47383E-06	1.85982E-09 4.89742E-10	-2.32123E-05
n-Decane n-Undecane		2.33232E-08 0	0.000109401	-4.47363E-06	4.89742E-10 0	1.7185E-05 0
Dodecane		0	0	0	0	0
Water		0.99844	0.0126838	0.00162534	0.999906	0
Triethylene Glyco	bl	0	0	0	0	0
Oxygen		0	0	0	0	0
Argon Carbon Monoxide		0	0	0	0	0
Carbon Monoxide Cyclopentane	3	0	0	0	0	0
Isohexane		6.03885E-07	0.00705473	0.000468553	7.69578E-09	-0.000178985
3-Methylpentane		0	0	0	0	0
Neohexane		0	0	0	0	0
2,3-Dimethylbuta		0	0	0	0	0
Methylcyclohexar	ne	0	0	0	0	0
Isooctane Decane, 2-Methy	1_	3.0298E-09 0	0.000221337	8.64417E-06 0	4.40975E-12 0	-0.000183802
Toluene	1-	8.07494E-06	0.00048926	1.63413E-05	6.75691E-06	-1.22514E-05
m-Xylene		6.64832E-07	3.46313E-05	6.97597E-07	5.56905E-07	-8.51476E-06
Ethylbenzene		3.50428E-07	1.97729E-05	4.46719E-07	2.90602E-07	0
		Combined	Combined	Dinalina	Produced	Reservoir Gas
		Combined PW	Flash Vapor	Pipeline	Water	
Mole Fraction		PW	Flash Vapor		Water	
Nitrogen		PW 1.53724E-06	Flash Vapor 0.00121517	0.00417875	Water 3.00065E-08	0.00428 *
Nitrogen Methane		PW 1.53724E-06 0.00053784	Flash Vapor 0.00121517 0.499194	0.00417875 0.802319	Water 3.00065E-08 2.09066E-05	0.00428 * 0.80616 *
Nitrogen Methane CO2		PW 1.53724E-06 0.00053784 2.71336E-05	Flash Vapor 0.00121517 0.499194 0.0124036	0.00417875 0.802319 0.00236393	Water 3.00065E-08 2.09066E-05 1.2377E-05	0.00428 * 0.80616 * 0.0024 *
Nitrogen Methane CO2 Ethane		PW 1.53724E-06 0.00053784	Flash Vapor 0.00121517 0.499194	0.00417875 0.802319	Water 3.00065E-08 2.09066E-05	0.00428 * 0.80616 *
Nitrogen Methane CO2		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06	0.00428 * 0.80616 * 0.0024 * 0.13296 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane	ne	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.00460147	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane	ine	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00746 * 0.00191 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0122468 0.00460147 0 0.000263625 9.10374E-05	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09	0.00428 * 0.80616 * 0.0024 * 0.03240 * 0.03541 * 0.00426 * 0.00746 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 0 * 0 * 0 * 0.0055 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane	INE	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 9E-05 * 0.00079 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane	ine	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.00460147 0 0.0000263625 9.10374E-05 0.00489212 0.00166786	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 9E-05 * 0.00079 * 0.00011 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane	ane	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.00460147 0 0.0000263625 9.10374E-05 0.00489212 0.00166786 0.000281479	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00426 * 0.00191 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 0.00079 * 0.00011 * 0.0003 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane	ine	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 2.85673E-09	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.000115642	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 9E-05 * 0.00079 * 0.00011 * 0.0003 * 0.00013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Doctane n-Doctane n-Decane	ine	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.00460147 0 0.0000263625 9.10374E-05 0.00489212 0.00166786 0.000281479	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 0.00079 * 0.00011 * 0.0003 * 0.00013 * 0.00013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Docane n-Undecane Dodecane Water		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0129724 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.000115642 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 9E-05 * 0.00079 * 0.00011 * 0.0003 * 0.00013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glyco		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000115642 0 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0.00163454 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03541 * 0.00426 * 0.00746 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0 * 2E-05 * 0.00001 * 0.00011 * 0.00013 * 0.000013 * 0.0000000 * 0.000000000 * 0.000000000 * 0.00000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glyco Oxygen		PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.000115642 0 0 0 0.0126253 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0.00163454 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03541 * 0.00426 * 0.00746 * 0.00746 * 0.00164 * 0.00055 * 0 * 2E-05 * 0.00011 * 0.00011 * 0.00011 * 0.00013 * 0.00010 * 0.00013 * 0.00010 * 0.00010 * 0.000010 * 0.00000000 * 0.00000000 * 0.000000000 * 0.000000000000 * 0.000000000000 * 0.0000000000000000 * 0.00000000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Water Triethylene Glycco Oxygen Argon	51	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0129724 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00460786 0.000281479 0.000115642 0 0 0 0 0 0 0.00126253	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0.999959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03241 * 0.003541 * 0.00746 * 0.00746 * 0.00164 * 0.00055 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.0003 * 0.00013 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.000010 * 0.00000000 * 0.00000000 * 0.00000000000 * 0.000000000 * 0.00000000000 * 0.0000000000 * 0.000000000000 * 0.0000000000 * 0.00000000000 * 0.0000000000000 * 0.000000000000000 * 0.000000000000000 * 0.0000000000000000 * 0.000000000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane N-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Heptane n-Decane n-Decane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide)	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0129724 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.00126253 0 0 0 0 0 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03296 * 0.03541 * 0.00426 * 0.00746 * 0.00746 * 0.00164 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.0003 * 0.00013 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.000010 * 0.00000000 * 0.000000000 * 0.00000000000 * 0.0000000000 * 0.00000000000 * 0.00000000000000 * 0.00000000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Water Triethylene Glycco Oxygen Argon)	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0122468 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.00126253 0 0 0 0.0126253 0 0 0 0 0.00126253	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03241 * 0.00426 * 0.00746 * 0.00746 * 0.00164 * 0.00055 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.0003 * 0.00013 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.00010 * 0.000010 * 0.000010 * 0.000010 * 0.000010 * 0.000000000 * 0.000000000000 * 0.000000000000000 * 0.0000000000000000 * 0.00000000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane) 2	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0129724 0.0122468 0.00460147 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.00126253 0 0 0 0 0 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03296 * 0.03541 * 0.00746 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.00013 * 0.000013 * 0.000013 * 0.000013 * 0.000013 * 0.000013 * 0.000010 * 0.000010 * 0.000010 * 0.000010 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000000 * 0.000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane Nonane n-Decane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane) 2	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0122468 0.00460147 0 0 0.000263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.000115642 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00428 * 0.80616 * 0.0024 * 0.03241 * 0.003541 * 0.00746 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.00013 * 0.00013 * 0.00013 * 0.00013 * 0.00013 * 0.0001 * 0.0001 * 0.0001 * 0.00001 * 0.00001 * 0.00001 * 0.00001 * 0.00000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.00000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000000 * 0.0000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta	ol e ne	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0129724 0.0122468 0.00460147 0 0.00263625 9.10374E-05 0.00489212 0.00166786 0.000281479 0.00126253 0 0 0.00126253 0 0 0.00126253 0 0 0.00126253 0 0 0 0.00126253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 0 3.10604E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0.00163454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0 0 0 0.999959 0	0.00428 * 0.80616 * 0.0024 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.00011 * 0.00013 * 0.00014 * 0.00014 * 0.000014 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.00000000 * 0.000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane Nonane n-Decane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta	ol e ne	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.000263625 9.10374E-05 0.00166786 0.000281479 0.00115642 0 0 0.0126253 0 0 0 0.0126253 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0.00050483 0.000101169 5.20908E-05 0 0 0 0.00163454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.0003 * 0.00011 * 0.0003 * 0.00013 * 0.0003 * 0.00013 * 0.0001 * 0.0003 * 0.00013 * 0.00013 * 0.00013 * 0.00013 * 0.00011 * 0.00001 * 0.00001 * 0.00001 * 0.00001 * 0.000001 * 0.000001 * 0.000001 * 0.0000001 * 0.0000001 * 0.0000001 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.000000000 * 0.00000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.000000000 * 0.000000000 * 0.00000000 * 0.000000000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta Methylcyclohexar Isooctane	pl e ne ne	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.000263625 9.10374E-05 0.00166786 0.000281479 0.00115642 0 0 0.0126253 0 0 0 0.0126253 0 0 0.007246 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0 0 3.10604E-05 1.66499E-05 1.66499E-05 0.00121993 0.000504883 0.000101169 5.20908E-05 0 0 0 0.00163454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00164 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.00011 * 0.0003 * 0.00013 * 0.00014 * 0.00052 * 0.00052 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane Nonane n-Decane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta	pl e ne ne	PW 1.53724E-06 0.00053784 2.71336E-05 8.09755E-05 1.74001E-05 6.63277E-07 2.77223E-06 4.4061E-07 4.15674E-07 6.33868E-08 0 1.0216E-06 1.60422E-08 5.75657E-08 1.72898E-08 8.95687E-09 2.85673E-09 2.85673E-09 0 0 0 0 0 0 0 0 0 0 0 0	Flash Vapor 0.00121517 0.499194 0.0124036 0.235192 0.132118 0.0206254 0.0414574 0.0129724 0.0122468 0.000263625 9.10374E-05 0.00166786 0.000281479 0.00115642 0 0 0.0126253 0 0 0 0.0126253 0	0.00417875 0.802319 0.00236393 0.133614 0.0349152 0.00419757 0.00771901 0.0023566 0.00224914 0.000952531 0.00050483 0.000101169 5.20908E-05 0 0 0 0.00163454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 3.00065E-08 2.09066E-05 1.2377E-05 3.66576E-06 8.93125E-07 1.26307E-08 1.21532E-07 1.2545E-08 1.15605E-08 7.45974E-10 0 8.78393E-07 2.36852E-09 7.86306E-10 1.517E-10 2.49667E-10 6.02168E-11 0	0.00428 * 0.80616 * 0.0024 * 0.13296 * 0.03541 * 0.00426 * 0.00746 * 0.00191 * 0.00191 * 0.00055 * 0.00055 * 0.00055 * 0.00079 * 0.00011 * 0.00011 * 0.00013 * 0.00011 * 0.00013 * 0.00011 * 0.000011 * 0.000001 * 0.000011 * 0.000011 * 0.000000 * 0.000011 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.000000000 * 0.000000000 * 0.000000000 * 0.000000000 * 0.00000000 * 0.000000000000 * 0.00000000000 * 0.000000000000000000 * 0.00000000000000000000000000000000000

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Trinity Consultants, Inc. and Affiliates

		All S	reams Report treams by Total Phase			
Client Name: EQT				Job: V1.0	-	
Location: WEU-2						
Flowsheet: WEU-2						
Mole Fraction		Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Ethylbenzene		6.51541E-08	2.04915E-05	3.54308E-06	5.42034E-08	0
Etriyiberizerie		0.51541E-06	2.04915E-05	3.34306E-00	5.42034E-06	0
		Stream	Properties			
Property	Units	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Temperature	°F	90	69.8216	93.2457	70	75
Pressure	psig	470	0.625	470	0.625	717
Mole Fraction Vapor		0	1	0.999772	0	0.997802
Mole Fraction Light Liquid		1	0	0.00022842	1	0.00219847
Mole Fraction Heavy Liquid		0	0	0	0	0
Molecular Weight	lb/lbmol	18.0168	29.0026	20.1279	18.0158	20.008
Mass Flow	lb/h	39608.9	84.5214	22618.1	39581.1	21968.4
Vapor Volumetric Flow	ft^3/h	638.403	1073.4	12571.4	635.589	7373.53
Liquid Volumetric Flow	gpm	79.5931	133.827	1567.35	79.2423	919.298
Std Vapor Volumetric Flow	MMSCFD	20.0226	0.0265421	10.2344	20.0096	10
Std Liquid Volumetric Flow	sgpm	79.2944	0.412845	134.536	79.1307	131.273
Specific Gravity		0.994784	1.00138		0.998487	
API Gravity		10.065			10.0151	
Net Ideal Gas Heating Value	Btu/ft^3	0.687198	1515.16	1101.22	0.0375931	1096.63
Net Liquid Heating Value	Btu/lb	-1044.52	19706.6	20706.4	-1058.9	20746.3
Pemarke	Dtu/ID	-1044.32	19700.0	20700.4	-1000.9	201

Remarks

		All St	eams Report reams y Total Phase		
Client Name:	EQT			Job: V1.0	
Location:	WEU-2				
Flowsheet:	WEU-2				
		Conne	ections		
		Reservoir Oil	Sales Oil		
From Block			Oil Tanks		
To Block		MIX-102			
		Stream C	omposition		
		Reservoir Oil	Sales Oil		
Mass Flow		lb/h	lb/h		
Nitrogen		0 *	0.000416052		
Methane		288.853 *	1.1815		
CO2		3.82867 *	0.106767		
Ethane		168.48 *	22.6335		
Propane		118.561 *	85.8284		
Isobutane		55.884 *	50.0938		
n-Butane		176.817 *	141.703		
Isopentane		194.773 *	152.289		
n-Pentane		248.19 *	193.182		
n-Hexane		345.953 *	304.597		
Methylcyclopentane	9	0 *	0		
Benzene		10.7595 *	9.53766		
Cyclohexane		0 *	6.71912 1218.29		
n-Heptane n-Octane		<u> 1270.17 *</u> 1642.27 *	1590.7		
n-Nonane		932.251 *	959.812		
n-Decane		1391.11 *	1403.04		
n-Undecane		0 *	0		
Dodecane		0 *	0		
Water		0 *	0.0359977		
Triethylene Glycol		0 *	0		
Oxygen		0 *	0		
Argon		0 *	0		
Carbon Monoxide		0 *	0		
Cyclopentane		0 *	0		
Isohexane		396.869 *	342.099		
3-Methylpentane		0 *	0		
Neohexane		0 *	0		
2,3-Dimethylbutane		0 *	0		
Methylcyclohexane Isooctane		2.38085 *	60.2899		
Decane, 2-Methyl-		2.38085	0.2899		
Toluene		83.0795 *	80.2991		
m-Xylene		20.5885 *	25.6271		
Ethylbenzene		12.7957 *	12.354		
			-		
Volumetric Fraction	on	Reservoir Oil	Sales Oil		
Nitrogen		0	6.85126E-08		
Methane		0.0863113	0.000353693		
CO2		0.000269055	6.50565E-06		
Ethane		0.0331312	0.00476904		
Propane		0.0201384	0.0162885		
Isobutane		0.00880376	0.00903636		
n-Butane		0.0270213	0.0248057		
Isopentane		0.0278476	0.0253211		
n-Pentane		0.0352213	0.0318627		
n-Hexane	_	0.0464601	0.0480082		
Methylcyclopentane	9	0	0		
Benzene		0.00106524	0.00110609		
Cyclohexane		0	0.000897123		
n-Heptane n-Octane		0.1644 0.204889	0.186336 0.235571		
n-Nonane		0.204889	0.138654		
* User Specified Values			3.2.15289.0	Linner	ed to Trinity Consultants, Inc. and Affiliates

* User Specified Values ? Extrapolated or Approximate Values

ProMax 3.2.15289.0 Copyright © 2002-2015 BRE Group, Ltd.

		All St	reams Report treams by Total Phase		
Client Name:	EQT	-		Job: V1.0	
Location:	WEU-2				
Flowsheet:	WEU-2				
	•			•	
Volumetric Frac	tion	Reservoir Oil	Sales Oil		
n-Decane		0.165597	0.199416		
n-Undecane Dodecane		0	0		
Water		0	-2.75162E-06		
Triethylene Glyco		0	0		
Oxygen		0	0		
Argon		0	0		
Carbon Monoxide	e	0	0		
Cyclopentane		0	0		
Isohexane		0.0538609	0.0545099		
3-Methylpentane		0	0		
Neohexane		0	0		
2,3-Dimethylbuta	ne	0	0		
Methylcyclohexar	ne	0	0		
Isooctane Decane, 2-Methy	1	0.000300841	0.00906532		
Toluene	/[-	0.00827856	0.00948274		
m-Xylene		0.00827850	0.00304607		
Ethylbenzene		0.00127158	0.00146638		
Enyiberizerie		0.00121100	0.00140000		
		Reservoir Oil	Sales Oil		
Mole Fraction			0.000.405.07		
Nitrogen		0 *	2.32943E-07		
Methane CO2		0.19869 * 0.00096 *	0.00115513 3.80506E-05		
Ethane		0.06183 *	0.0118059		
Propane		0.02967 *	0.0305284		
Isobutane		0.01061 *	0.013518		
n-Butane		0.03357 *	0.038239		
Isopentane		0.02979 *	0.0331062		
n-Pentane		0.03796 *	0.041996		
n-Hexane		0.0443 *	0.0554386		
Methylcyclopenta	ane	0 *	0		
Benzene		0.00152 *	0.00191511		
Cyclohexane		0 *	0.00125221		
n-Heptane n-Octane		0.13988 * 0.15865 *	0.190697		
n-Octane n-Nonane		0.15865 *	0.218416 0.117376		
n-Decane		0.10789 *	0.117376		
n-Undecane		0.10703	0.104004		
Dodecane		0 *	0		
Water		0 *	3.13403E-05		
Triethylene Glyco	bl	0 *	0		
Oxygen		0 *	0		
Argon		0 *	0		
Carbon Monoxide	9	0 *	0		
Cyclopentane		0 *	0		
Isohexane		0.05082 *	0.0622641		
3-Methylpentane Neohexane		0 *	0		
2,3-Dimethylbuta	ne	0 *	0		
Methylcyclohexar		0 *	0		
		0.00023 *	0.00827825		
Isooctane		0.00023	0.00027023		
	/ -				
Isooctane Decane, 2-Methy Toluene	/ -	-	0.0136691		
	/-	0.00995 *	0.0136691 0.00378606		

		All St	eams Report reams ^{y Total Phase}			
Client Name: EQT	÷			Job: V1.0	•	
Location: WEU-2						
Flowsheet: WEU-2						
				•		
		Stream F	Properties			
Property	Units	Reservoir Oil	Sales Oil			
Temperature	°F	75 *	70 *	· · · · · ·		
Pressure	psig	717 *	0.625			
Mole Fraction Vapor		0	0			
Mole Fraction Light Liquid		1	1			
Mole Fraction Heavy Liquid		0	0			
Molecular Weight	lb/lbmol	81.257	104.465			
Mass Flow	lb/h	7363.61	6660.43			
Vapor Volumetric Flow	ft^3/h	179.08	153.665			
Liquid Volumetric Flow	gpm	22.3268	19.1582			
Std Vapor Volumetric Flow	MMSCFD	0.825344	0.580679			
Std Liquid Volumetric Flow	sgpm	22.8083 *	19.1893			
Specific Gravity		0.659288	0.694958			
API Gravity		80.4779	70.719			
Net Ideal Gas Heating Value Btu/ft^3		4147.74	5301.34			
Net Liquid Heating Value	Btu/lb	19218.5	19099.4			
Remarks						

Simulation Initiated on 3/1/	2016 4:53:40	PM		20160120_EQT_W	EU 2.pmx			P	age 1 of 1
			Er	nergy Strear	n Repo	rt			
Client Name:	EQT						Job: V1.0		
Location:	WEU-2								
Flowsheet:	WEU-2								
				Energy Str	eams				
Energy Stream		Energy Ra	ite	Power		F	rom Block	To Block	
Pilot Heat Input		1.67565E+06 *	* Btu/h	658.555	* hp			REAC-100	
Remarks									

			QT_WEU 2.pmx rnings Report		
Client Name:	EQT			Job: V1.0	
Location:	WEU-2				
ProMax:ProMax!Pro Warning:		/EU-2!Blocks!VRU htropy is negative.			

		l	Jser Value	e Sets Report	
Client Name:	EQT				Job: V1.0
Location:	WEU-2				
			Tank I	osses.53	
				[ShellLength]	
* Parameter		20		Upper Bound	ft
* Lower Bound		0	ft	* Enforce Bounds	False
* Parameter		12		e [ShellDiam] Upper Bound	ft
* Lower Bound		0		* Enforce Bounds	False
Lower Bound		<u> </u>	it in the second	Enioroe Bounda	1 000
			User Value	[BreatherVP]	
* Parameter		0.875		Upper Bound	psig
Lower Bound			psig	* Enforce Bounds	False
				[BreatherVacP]	
* Parameter		-0.0375		Upper Bound	psig
Lower Bound			psig	* Enforce Bounds	False
				[Dama Daulina]	
Parameter			User value ft	[DomeRadius] Upper Bound	ft
Lower Bound			ft	* Enforce Bounds	False
Lower Bound				Emoroo Boundo	1 000
			User Valu	le [OpPress]	
* Parameter		0	psig	Upper Bound	psig
Lower Bound			psig	* Enforce Bounds	False
* Parameter		50		AvgPercentLiq] Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
		l	Jser Value [MaxPercentLiq]	
* Parameter		90		Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
				e [AnnNetTP]	
* Parameter		683.337		Upper Bound	bbl/day
* Lower Bound		0	bbl/day	* Enforce Bounds	False
			lleer Va	lue [OREff]	
* Parameter		0		Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
			User Value	[AtmPressure]	
* Parameter		14.2535	psia	Upper Bound	psia
Lower Bound			psia	* Enforce Bounds	False
* User Specified Values			ProMax	(3.2.15289.0	Licensed to Trinity Consultants, Inc. and Affiliates

* User Specified Values ? Extrapolated or Approximate Values ProMax 3.2.15289.0 Copyright © 2002-2015 BRE Group, Ltd.

		llear Val	ue Sets Report		
		USEI VAI			
Client Name:	EQT	-		Job: V1.0	
Location:	WEU-2				
* Parameter		61.4758 °F	[MaxLiqSurfaceT] Upper Bound		°F
Lower Bound		<u> </u>	* Enforce Bounds	Fa	alse
		User Val	ue [TotalLosses]		
* Parameter		16.6683 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fa	alse
		User Value	e [WorkingLosses]		
* Parameter		2.62231 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	F;	alse
* • •			[StandingLosses]		
* Parameter Lower Bound		0.155741 ton/yr ton/yr	Upper Bound * Enforce Bounds	E	ton/yr alse
Lower Bound		ton/yi	Ellipice Boullas	<u> </u>	1150
			e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	F	alse
Loniol Bound		con yr			
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fa	alse
		· · ·			
		User Value	e [LoadingLosses]		
* Parameter		108.085 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fa	alse
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fa	alse
* D /			[DeckSeamLosses]		
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	E	ton/yr alse
Lower Dound		ton/yi	Eniorce Bounds	1.6	
		Llsor Value	[FlashingLosses]		
* Parameter		136.229 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fa	alse
		User Value	e [GasMoleWeight]		
* Parameter		0.0538365 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds	Fa	alse
Remarks This User Value S	et was programm	natically generated. GUID={5524A	B8C-40B1-4354-9DD7-EED657	770BF87}	
		Tank	Losses.331		
* Paramotor		20 ft	ue [ShellLength] Upper Bound		ft
 * Parameter * Lower Bound 		20 ft	* Enforce Bounds	F	alse

		U	ser Valu	e Sets Report		
Client Name:	EQT				Job: V1.0	•
Location:	WEU-2					
				ue [ShellDiam]		
* Parameter		12 ft		Upper Bound		ft
* Lower Bound		0 ft		* Enforce Bounds		False
				e [BreatherVP]		
* Parameter		0.875 p		Upper Bound		psig
Lower Bound		p	sig	* Enforce Bounds		False
		(Iser Value	[BreatherVacP]		· · ·
* Parameter		-0.0375 p		Upper Bound		psig
Lower Bound		<u>р</u>	sig	* Enforce Bounds		False
			le er M			
Danastrati				e [DomeRadius]		<i>"</i>
Parameter Lower Bound		ft ft		Upper Bound * Enforce Bounds		ft False
Lower Bound		11		Enlorce Bounds		Faise
			Lleer Ma			
* Deverseter		0 -		ue [OpPress]		
 Parameter Lower Bound 		0 p		Upper Bound * Enforce Bounds		psig False
Lower Bound		ρ	sig	Enlorce Bounds		Faise
* Parameter		50 %		[AvgPercentLiq] Upper Bound		%
Lower Bound		50 %		* Enforce Bounds		False
Lower Dound		/	0	Enlorde Bounds		1 4150
			sor Valuo	[MaxPercentLiq]		
* Parameter		90 %		Upper Bound		%
Lower Bound		00 /		* Enforce Bounds		False
			-			
			User Valu	ue [AnnNetTP]		
* Parameter		2728.91 b		Upper Bound		bbl/day
* Lower Bound			bl/day	* Enforce Bounds		False
			User V	alue [OREff]		
* Parameter		0 %		Upper Bound		%
Lower Bound		9	0	* Enforce Bounds		False
			Jser Value	e [AtmPressure]		
* Parameter		14.2535 p		Upper Bound		psia
Lower Bound		p	sia	* Enforce Bounds		False
				MaxLiqSurfaceT]		
* Parameter		61.4758 °	F	Upper Bound		°F
Lower Bound		0	F	* Enforce Bounds		False
				e [TotalLosses]		
* Parameter		0.746818 to		Upper Bound		ton/yr
Lower Bound		to	on/yr	* Enforce Bounds		False
				[WorkingLosses]		
* Parameter		0.12447 to		Upper Bound		ton/yr
Lower Bound		to	on/yr	* Enforce Bounds		False
				StandingLosses]		
* Parameter			on/yr	Upper Bound		ton/yr
Lower Bound		to	on/yr	* Enforce Bounds		False

* User Specified Values ? Extrapolated or Approximate Values

E

		User Valu	ue Sets Report		
Client Name:	EQT			Job: V1.0	
Location:	WEU-2				
		User Value	[RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			[LoadingLosses]		
* Parameter		1.95113 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
* Developmenter			DeckFittingLosses]		ta a b m
 Parameter Lower Bound 		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bouria			Efficice Bourius		Faise
		User Value [DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[FlashingLosses]		
* Parameter		9.97833 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			[GasMoleWeight]		
* Parameter		0.0451413 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks This User Value Set	was programmat	tically generated. GUID={234170	19-6BCF-4B6A-8C2C-C51E3	F9510A8}	

20160126_EQT_WEU-2_G70_Sand Separator Tank.txt

***** Project Setup Information ***** Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Wells\153901.0056 WV Wells 2015\WEU 2\02 Draft\2016-0126_EQT_WEU-2_G70-B Application\Att S Emission Calcs\01 E&P TANK\20160126_EQT_WEU-2_G70_Sand Separator Tank. ept Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 100.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No Filed Name : WEU-2 Wellpad - Sand Separator Tank Well Name : PTE for G70 Application Well ID : WEU-6 Condensate Sample 12/12/2014 Date : 2015.05.13 ***** Data Input * * * * * * Separator Pressure: 470.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 55.00[F]C10+ SG: 0.7740C10- MU: 152.78 C10+ SG C10+ MW : 152.78 -- Low Pressure Oil _____ Component mol % No. 0.0000 H2S 1 0.0000 2 02 0.0960 3 C02 4 N2 0.0000 5 C1 19.8690 C2 6. 1830 6 7 С3 2.9670 8 i -C4 1.0610 9 n-C4 3.3570 10 2.9790 i -C5 11 n-C5 3.7960 12 5.0820 C6 13 C7 13.9880 14 C8 15.8650 8.0210 15 C9 C10+ 10.7890 16 17 Benzene 0.1520 0.9950 18 Tol uene 19 0.1330 E-Benzene Xyl enes 20 0.2140 21 4.4300 n-C622 224Trimethylp 0.0230

Sales Oil	20160126_EQT_WE	U-2_G70_Sand Separator Tank.txt
Production Rate Days of Annual Oper API Gravity Reid Vapor Pressure	: 0.1[bb ration : 365 [d : 59.11 : 10.60[lays/year]
* * * * * * * * * * * * * * * * * * *	****	***************************************
* Calculation R	Resul ts	
* * * * * * * * * * * * * * * * * * *	*****	***************************************
Emission Summary	,	
ltem	Uncontrolled	Uncontrolled
Page 1	[ton/yr]	LID/NFJ E&P TANK
	0.010 0.493	0. 002 0. 113
VOCs, C2+ VOCs, C3+	0. 493 0. 290 0. 181	0. 066 0. 041
Uncontrolled Recove	ery Info.	
Vapor HC Vapor GOR	40. 4100 x1E-3 40. 2900 x1E-3 404. 10	[MSCFD] [MSCFD] [SCF/bbl]
Emission Composi	ti on	
No Component 1 H2S 2 O2 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i -C4 9 n-C4 10 i -C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p Total Stream Data	Uncontrolled [ton/yr] 0.000 0.003 0.000 0.203 0.109 0.057 0.017 0.041 0.019 0.018 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.000 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.000 0.009 0.000 0.009 0.0000 0.0000 0.0000 0.0000 0.000000	Uncontrolled [lb/hr] 0.000 0.000 0.000 0.046 0.025 0.013 0.004 0.009 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.000 0.001 0.002 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000
No. Component		LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Page 2

20160126_EQT_WEU-2_G70_Sand Separator Tank.txt

	0126_EQT_WE	U-2_G70_Sa	ind Separat	or Tank.tx	t	
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 C02	44.01	0.0960	0.0066	0.0051	0. 3051	0. 3328
0. 3053 4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1	16.04	19.8690	0. 4389	0. 2348	65.3006	41. 4140
65.0693 6 C2	30.07	6. 1830	0. 9135	0.8052	18. 5042	24.6182
18.5634 7 C3	44.10	2.9670	1. 3987	1. 3537	6. 6339	11. 5103
6. 6811 8 i -C4	58.12	1.0610	0. 8894	0. 8805	1. 4623	2. 9291
1.4765 9 n-C4	58.12	3.3570	3. 2729	3. 2548	3. 5536	7. 5461
3. 5923 10 i -C5	72.15	2.9790	3. 6673	3. 6701	1. 3695	3. 2894
1. 3881 11 n-C5	72.15	3. 7960	4. 8763	4.8850	1. 2701	3. 2290
1.2891 12C6	86.16	5.0820	7.0121	7.0378	0. 5690	1. 6493
0. 5795 13 C7	100. 20	13. 9880	19. 7739	19. 8599	0. 4595	1. 5537
0. 4700 14 C8	114.23	15.8650	22. 5895	22. 6931	0. 1417	0. 5627
0. 1457 15 C9	128.28	8. 0210	11. 4423	11. 4956	0. 0213	0. 0989
0.0221 16 C10+	152. 78	10. 7890	15. 4015	15. 4738	0.0039	0. 0231
0.0041 17 Benzene	78. 11	0. 1520	0. 2119	0. 2128	0. 0118	0. 0356
0. 0121 18 Tol uene	92.13	0. 9950	1. 4126	1. 4189	0. 0187	0. 0667
0.0191 19 E-Benzene	106.17	0. 1330	0. 1896	0. 1905	0.0007	0.0030
0. 0007 20 Xyl enes	106.17	0. 2140	0. 3051	0. 3065	0.0010	0. 0041
0.0010 21 n-C6	86. 18	4. 4300	6. 1653	6. 1893	0. 3726	1. 1321
0.3799 22 224Trimethylp	114.24	0. 0230	0. 0326	0. 0327	0.0006	0.0020
0. 0006						
MW AF 47		80. 92	104.67	105.01	25.38	34.81
25.47 Stream Mole Ratio		1.0000	0. 7004	0. 6972	0. 2996	0.0029
0.3025 Heating Value	[BTU/SCF]				1503.68	2005.07
1508.53 Gas Gravity	[Gas/Air]				0.88	1. 20
0.88 Bubble Pt. @ 100F	[psi a]	692.52	25.67	19.05		
Page 2					E8	P TANK
RVP @ 100F	[psi a]	153.75	12.00	10. 69		

Page 3

20160126_EQT_WEU-2_G70_Sand Separator Tank.txt Spec. Gravity @ 100F 0.636 0.678 0.678

Certificate of Analysis

Number: 2030-14120143-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330 Dec. 22, 2014

Field:EQTStation Name:Lewis Maxwell 513347 Well 6 PadStation Number:Sample Point:Sample Point:SubmeterAnalyzed:12/17/2014 15:24:04 by GR

Sampled By:	RM-GAS	
Sample Of:	Condensate	Spot
Sample Date:	12/12/2014	
Sample Condition	is:470 psig	
Method:	GPA-2186M/GF	PA-2103
Cylinder No:	GAS	

Analytical Data										
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %					
Nitrogen	NIL	28.013	NIL	0.807	NIL					
Methane	19.869	16.043	3.935	0.300	8.672					
Carbon Dioxide	0.096	44.010	0.052	0.817	0.042					
Ethane	6.183	30.069	2.295	0.356	4.260					
Propane	2.967	44.096	1.615	0.507	2.105					
Iso-Butane	1.061	58.122	0.761	0.563	0.894					
n-Butane	3.357	58.122	2.409	0.584	2.726					
Iso-Pentane	2.979	72.149	2.653	0.625	2.806					
n-Pentane	3.796	72.149	3.381	0.631	3.544					
i-Hexanes	5.082	85.277	5.350	0.666	5.308					
n-Hexane	4.430	86.175	4.713	0.664	4.693					
2,2,4-Trimethylpentane	0.023	114.231	0.033	0.697	0.031					
Benzene	0.152	78.114	0.147	0.885	0.110					
Heptanes	13.988	97.962	16.915	0.702	15.938					
Toluene	0.995	92.141	1.132	0.872	0.858					
Octanes	15.865	109.580	21.463	0.734	19.328					
Ethylbenzene	0.133	106.167	0.174	0.872	0.132					
Xylenes	0.214	106.167	0.280	0.885	0.210					
Nonanes	8.021	124.629	12.340	0.744	10.960					
Decanes Plus	10.789	152.780	20.352	0.774	17.383					
	100.000		100.000		100.000					
Physical Properties			Total	C10+						
Specific Gravity at 60°F			6612	0.7741						
API Gravity at 60°F			2.504	51.293						
Molecular Weight			1.003	152.780						
Pounds per Gallon (in Vacua	um)	5.512		6.454						
Pounds per Gallon (in Air)			5.506	6.447						
Cu. Ft. Vapor per Gallon @ 14.73 psia		25	5.765	15.993						

Patter L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

Certificate of Analysis

Number: 2030-14120143-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 22, 2014

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:EQTStation Name:Lewis Maxwell 513347 Well 6 PadStation Number:Sample Point:Sample Point:SubmeterAnalyzed:12/17/2014 15:24:04 by GR

Sampled By:	RM-GAS	
Sample Of:	Condensate	Spot
Sample Date:	12/12/2014	
Sample Condition		
Method:	GPA-2186M/GF	PA-2103
Cylinder No:	GAS	

Analytical Data Components Mol. % MW Wt. % Sp. Gravity L.V. % Nitrogen NIL 28.013 NIL 0.807 NIL Carbon Dioxide 0.096 44.010 0.052 0.817 0.042 Methane 19.869 16.043 3.935 0.300 8.672 Ethane 6.183 30.069 2.295 0.356 4.260 Propane 2.967 44.096 1.615 0.507 2.105 Iso-butane 1.061 58.122 0.761 0.563 0.894 2.409 n-Butane 3.357 58.122 0.584 2.726 Iso-pentane 2.979 72.149 2.653 0.625 2.806 72.149 n-Pentane 3.796 3.381 0.631 3.544 85.695 10.063 0.665 10.001 Hexanes 9.512 Heptanes Plus 50.180 117.573 72.836 0.741 64.950 100.000 100.000 100.000 **Physical Properties** C7+ Total Specific Gravity at 60°F 0.6612 0.7414 API Gravity at 60°F 82.504 59.363 81.003 Molecular Weight 117.573 Pounds per Gallon (in Vacuum) 5.512 6.181 Pounds per Gallon (in Air) 5.506 6.174 Cu. Ft. Vapor per Gallon @ 14.73 psia 25.765 19.904

Pater L. Perro

Quality Assurance:

Hydrocarbon Laboratory Manager

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

 Field:
 EQT

 Station Name:
 Lewis Maxwell 513347 Well 6 Pad

 Station Number:
 Sample Point:

 Submeter

Certificate of Analysis

Number: 2030-14120143-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 22, 2014

Sampled By:RM-GASSample Of:CondensateSpotSample Date:12/12/2014Sample Conditions: 470 psigCylinder No:GAS

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech	
Color Visual	Proprietary	Dark Straw		TC	12/18/2014
API Gravity @ 60° F	ASTM D-5002	65.59	ō	CM	12/18/2014
Specific Gravity @ 60/60° F	ASTM D-5002	0.7179		CM	12/18/2014
Density @ 60° F	ASTM D-5002	0.7172	g/ml	CM	12/18/2014
Shrinkage Factor	Proprietary	0.8272		TC	12/18/2014
Flash Factor	Proprietary	386.2976 C	Cu. Ft./S.T. Bbl	TC	12/18/2014

Par L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

Certificate of Analysis

Number: 2030-13050229-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 29, 2013

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name:	512507	Sampled By:	GR-GAS	
Station Location	n:EQT Production	Sample Of:	Gas Spot	
Cylinder No:	GAS	Sample Date:	05/20/2013 12:00	
Analyzed:	05/29/2013 11:21:20 by CC	Sample Conditions	s:313 psig	
		Method:	GPA 2286	

Analytical Data

Analytical Data									
Components	Mol. %	Wt. %	GPM at 14.73 psia						
Nitrogen	0.428	0.599		GPM TOTAL C2+	5.207				
Carbon Dioxide	0.240	0.528							
Methane	80.616	64.659							
Ethane	13.296	19.989	3.567						
Propane	3.541	7.807	0.978						
Iso-Butane	0.426	1.238	0.140						
n-Butane	0.746	2.168	0.236						
Iso-Pentane	0.191	0.689	0.070						
n-Pentane	0.164	0.592	0.060						
i-Hexanes	0.091	0.381	0.037						
n-Hexane	0.055	0.232	0.022						
Benzene	0.002	0.009	0.001						
Cyclohexane	0.009	0.038	0.003						
i-Heptanes	0.056	0.267	0.024						
n-Heptane	0.023	0.114	0.011						
Toluene	0.005	0.023	0.002						
i-Octanes	0.052	0.284	0.024						
n-Octane	0.011	0.063	0.006						
Ethylbenzene	NIL	NIL	NIL						
Xylenes	0.005	0.026	0.002						
i-Nonanes	0.024	0.149	0.012						
n-Nonane	0.006	0.037	0.003						
Decane Plus	0.013	0.108	0.009						
	100.000	100.000	5.207						

.

	Certificate of Analysis Number: 2030-13050229-001A	Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330		May 29, 2013
Station Name: 512507 Station Location:EQT Production Cylinder No: GAS Analyzed: 05/29/2013 11:21:20 by CC	Sampled By: Sample Of: Sample Date: Sample Conditio Method:	GR-GAS Gas Spot 05/20/2013 12:00 ns:313 psig GPA 2286

Physical Properties	Total	C10+
Calculated Molecular Weight	20.00	141.68
GPA 2172-09 Calculation:		
Calculated Gross BTU per ft ³ @ 14	l.73 psia & 60°F	
Real Gas Dry BTU	1216.5	7479.1
Water Sat. Gas Base BTU	1195.9	7349.0
Relative Density Real Gas	0.6926	4.8910
Compressibility Factor	0.9967	

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330 May 29, 2013

Station Name:	512507	Sampled By:	GR-GAS
Station Location	h:EQT Production	Sample Of:	Gas Spot
Cylinder No:	GAS	Sample Date:	05/20/2013 12:00
Analyzed:	05/29/2013 11:21:20 by CC	Sample Condition	s:313 psig
		Method:	GPA 2286

Components		Analytical Data										
	Mol. %	Wt. %	GPM at 14.73 psia									
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	$\begin{array}{r} 0.428\\ 0.240\\ 80.616\\ 13.296\\ 3.541\\ 0.426\\ 0.746\\ 0.191\\ 0.164\\ 0.352\\ \hline 100.000\\ \end{array}$	$\begin{array}{r} 0.599\\ 0.528\\ 64.659\\ 19.989\\ 7.807\\ 1.238\\ 2.168\\ 0.689\\ 0.592\\ 1.731\\ 100.000\\ \end{array}$	3.567 0.979 0.140 0.236 0.070 0.060 0.156 5.208	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.208 1.641 0.286							
Physical PropertiesTotalRelative Density Real Gas0.6926Calculated Molecular Weight20.00Compressibility Factor0.9967GPA 2172-09 Calculation:Calculated Gross BTU per ft³ @ 14.73 psia & 60°FReal Gas Dry BTU1216.6Water Sat. Gas Base BTU1195.9		0.6926 20.00 0.9967 & 60°F 1216.6	C6+ 3.3957 98.35 5333.2 5240.3									

Patter L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

				e of Analysis -13050229-001A	4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball Gas Analytical S PO Box 1028 Bridgeport, WV					May 29, 2013
Station Name: 512 Station Location: EQ Cylinder No: GA Analyzed: 05/2	T Production			Sampled By: Sample Of: Sample Date: Sample Conditions Method:	GR-GAS Gas Spot 05/20/2013 12:00 :313 psig GPA 2286
			Analyt	ical Data	
Components	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen Carbon Dioxide Methane Ethane Propane so-Butane h-Butane so-Pentane h-Pentane Hexanes Heptanes Plus	0.428 0.240 80.616 13.296 3.541 0.426 0.746 0.191 0.164 0.146 0.206 100.000	0.599 0.528 64.659 19.989 7.807 1.238 2.168 0.689 0.592 0.613 1.118 100.000	3.567 0.978 0.140 0.236 0.070 0.060 0.059 0.097 5.207	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.207 1.640 0.286
Physical Properties Relative Density Rea Calculated Molecular Compressibility Factor	l Gas Weight		Total 0.6926 20.00 0.9967	C7+ 3.7086 107.41	

5765.9

5665.5

Pater L. Perro

1216.6

1195.9

.

Hydrocarbon Laboratory Manager

Quality Assurance:

Real Gas Dry BTU Water Sat. Gas Base BTU

Comments: H2O Mol% : 1.740 ; Wt% : 1.570

ATTACHMENT T

Emission Summary Sheet

EQT Production, LLC | WEU-2 Pad Trinity Consultants

	ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources	List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID# (Emission Source	Ν	O _x	С	0	V	C	S	SO ₂ PM		M ₁₀ P		I _{2.5}	GHG	GHG (CO ₂ e)	
ID)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
C001 (S031-S042, S049, C001)	1.15	5.03	0.96	4.22	8.34	6.02	0.01	0.03	0.09	0.38	0.09	0.38	1,385.69	6,069.32	
C002 (S031-S042, S049, C002)	1.15	5.03	0.96	4.22	8.34	6.02	0.01	0.03	0.09	0.38	0.09	0.38	1,385.69	6,069.32	
E022 (8022)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20	
E023 (S023)	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	134.69	589.92	
E024 (S024)	0.07	0.32	0.06	0.27	0.00	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60	
E025 (S025)	0.07	0.32	0.06	0.27	0.00	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60	
E026 (S026)	0.07	0.32	0.06	0.27	0.00	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60	
E027 (S027)	0.07	0.32	0.06	0.27	0.00	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60	
E028 (S028)	0.07	0.32	0.06	0.27	0.00	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60	
E029 (S029)	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64	
E030 (S030)	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64	
E043 (S043)					0.04	0.18							1.15	5.08	
E044 (S044)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20	
E045 (S045)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20	
E046 (S046)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20	
E047 (S047)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20	
E048 (S048)	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64	
E049 (S049)					126.96	33.01									

E050 (S050)	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E051 (S051)	0.24	1.06	0.49	2.12	0.19	0.81	0.00	0.00	0.01	0.07	0.01	0.07	90.18	394.99
Fugitives						29.95								1,047.13
Haul Roads										10.72		1.07		
Facility Total	3.86	16.91	3.52	15.44	143.94	76.31	0.02	0.10	0.29	11.99	0.29	2.34	4,488.45	20,706.56
Facility Total (excl. fugitives)	3.86	16.91	3.52	15.44	16.98	13.35	0.02	0.10	0.29	1.27	0.29	1.27	4,488.45	19,659.43

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

List all sources								LLED EN						
	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S031-S042, S049, C001)			0.01	0.01	0.01	0.02	5.8E-04	6.9E-04	9.8E-04	1.2E-03	0.22	0.16	0.26	0.20
C002 (S031-S042, S049, C002)			0.01	0.01	0.01	0.02	5.8E-04	6.9E-04	9.8E-04	1.2E-03	0.22	0.16	0.26	0.20
E022 (S022)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023 (S023)	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E024 (S024)	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E025 (S025)	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E026 (S026)	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E027 (S027)	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E028 (S028)	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E029 (S029)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E030 (S030)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E043 (S043)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-0
E044 (S044)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E045 (S045)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E046 (S046)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E047 (S047)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E048 (S048)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E049 (S049)			0.10	0.03	0.17	0.04	7.6E-03	2.0E-03	0.01	3.4E-03	3.38	0.88	3.88	1.01

E050 (S050)	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E051 (S051)	0.02	0.07	1.2E-03	5.3E-03	4.3E-04	1.9E-03	1.9E-05	8.4E-05	1.5E-04	6.6E-04			0.02	0.11
Fugitives				0.01		0.04		< 0.01		0.05		0.44		1.24
Haul Roads														
Facility Total	0.02	0.07	0.12	0.06	0.19	0.13	0.01	3.53E-03	0.02	0.06	3.85	1.76	4.44	2.88
Facility Total (excl. fugitives)	0.02	0.07	0.02	0.02	0.03	0.03	1.2E-03	1.5E-03	2.1E-03	3.1E-03	0.47	0.43	0.57	0.63

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

EQT Production, LLC | WEU-2 Pad Trinity Consultants

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit Registration for an existing natural gas production facility WEU-2 located on Bulldog Drive, near West Union, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.27255 N, -80.77145 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	16.91
СО	15.44
VOC	13.35
SO ₂	0.10
PM	1.27
Total HAPs	2.88
Carbon Dioxide Equi (CO ₂ e)	valents 19,659.43

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2016.

By: EQT Production Company Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee