625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

April 26, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6123

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70B Permit Application EQT Production Company WEU-49 Natural Gas Production Site Facility ID No. 017-00150

Dear Mr. Durham,

Enclosed are two electronic copies and one original hard copy of a proposed application for a G70-B General Air Permit for the WEU-49 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A151). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Application

WEU-49 Natural Gas Production Site

West Union, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

April 2016

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-B General Permit Registration to the WVDEP's Department of Air Quality to receive the authority to operate new units at the WEU-49 facility, currently permitted under G70-A151. The site is located in Doddridge County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the WEU-49 facility.

FACILITY DESCRIPTION

The EQT WEU-49 natural gas production site operates in Doddridge County, WV and consists of seven (7) permitted natural gas wells. Six (6) wells are in operation and one (1) future well is planned. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant is currently authorized to operate the following:

- Seven (7) permitted natural gas wells (Six (6) wells are currently operating, one (1) well planned);
- Seven (7) line heaters each rated at 1.00 MMBtu/hr heat input;
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water:
- Eight (8) 400 barrel (bbl) tanks for storage of produced condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 mmBtu/hr heat input; and
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input.

The applicant seeks to authorize the operation of:

- One (1) 110 hp natural gas compressor engine;
- One (1) line heater rated at 0.75 MMBtu/hr heat input; and
- Seven (7) line heaters with the increased heat input rating from 1.0 MMBtu/hr to 1.5 MMBtu/hr.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The WEU-49 pad will be located in Doddridge County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the WEU-49 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The WEU-49 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the WEU-49 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the WEU-49 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

The closest EQT owned or operated site is the WEU-1 production site located 0.85 miles (4,400 ft.) northeast of the WEU-49 pad. These facilities do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the WEU-49 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On August 18, 2015 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice is to clarify how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ½ mile of one another.

The WEU-49 and WEU-1 pads are located on surface sites located greater than EPA's ¼ mile proposed ruling. Although the applicant notes the proposed status of this adjacency determination, it is the only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack

of finalized guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required. Therefore, due to the extended proximity, these facilities are not adjacent properties.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the WEU-49 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to WEU-49 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the WEU-49 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the WEU-49 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by

4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 $\rho NG = 0.042$ lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{140,000 \ scf}{day} * \frac{1 \ day}{24 \ hours} * \frac{0.042 \ lb}{scf} = \frac{245 \ lb}{hr} = \frac{1,073 \ tons}{year}$$

If the Incinerator Capacity is less than $15,000 \, \text{lbs/hr}$, then $F = 5.43 \, \text{m}$

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 - To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the WEU-49 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to registrants that are subject to the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the WEU-49 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy)

of a single HAP, 25 tpy of combined HAPs, and 100 tpy of other regulated pollutants.

The potential emissions of regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to the NESHAP requirements. Excluded from G70-B general permit eligibility are sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the WEU-49 facility:

 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke lean burn (4SLB) spark ignition (SI) engine manufactured in 2015. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40CFR60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the WEU-49 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at WEU-49 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, the facility will not qualify as a pneumatic controller affected facility.

<u>Storage vessels</u>: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke lean burn (4SLB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of

40 CFR 60 Subpart JJJJ. Per 40 CFR 63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

······································	Decilon incibilit	D DOCKIED III III	" HELD DITE		
□CONSTRUCTION MODIFICATION □ RELOCATION	MODIFICATION □CLASS II ADMINISTRATIVE UPDATE				
S	ECTION 1. GENERAL	INFORMATION			
Name of Applicant (as registered with the	WV Secretary of State's	Office): EQT Produ	ction Company		
Federal Employer ID No. (FEIN) 25-072	4685				
Applicant's Mailing Address 625 Libert	y Avenue, Suite 1700				
City: Plttsburgh	State: PA		ZIP Code	15222	
Facility Name: WEU-49 Natural Gas Pr	oduction Facility				
Operating Site Physical Address: None If none available, list road, city or town as	nd zip of facility. Left F	ork Run Road, West	Union, WV 264	156	
City: West Union, WV	Zip Code: 26456		County: D	oddridge	
Latitude & Longitude Coordinates (NAD8 Latitude: 39.25473 Longitude: -80.78660	3, Decimal Degrees to 5	digits):			
SIC Code: 1311 NAICS Code: 211111		Q Facility ID No. (For 7-00150	existing facilities	s)	
	CERTIFICATION OF IN	IFORMATION			
Official is a President, Vice President, Se Directors, or Owner, depending on busine authority to bind the Corporation, F Proprietorship. Required records of de compliance certifications and all requested Representative. If a business wishes to certification dependent of and the appropriate names and sigunsigned G70-B Registration Application utilized, the application will	ss structure. A business of Partnership, Limited Liab aily throughput, hours of aired notifications must be rtify an Authorized Repro- natures entered. Any ad- an will be returned to the	may certify an Authorize ility Company, Associate operation and mainten be signed by a Responsive sentative, the official ministratively incomple applicant. Furthern	zed Representativ ation, Joint Ventu ance, general cor- ible Official or an agreement below lete or improper more, if the G70-	e who shall have are or Sole respondence, a Authorized shall be checked ly signed or B forms are not	
I hereby certify that is an Authorize (e.g., Corporation, Partnership, Limited L obligate and legally bind the business. If t notify the Director of the Division of Air (I hereby certify that all information contains documents appended hereto is, to the best have been made to provide the most comp	he business changes its a Quality immediately ined in this G70-B Gener of my knowledge, true, a	iation Joint Venture or Authorized Representat al Permit Registration accurate and complete,	Sole Proprietorshive, a Responsible Application and a	nip) and may e Official shall any supporting	
Responsible Official Signature: Name and Title: Kenneth Kirk - Execut Email: kkirk@eqt.com	Ive Vice President Date	Phone 412-553-5700	0/6	Fax	
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	Fax			
If applicable: Environmental Contact Alex Bosiljevac Name and Title: Environmental Coordi Email: abosiljevac@eqt.com		<u>95-3699</u>	Fax		

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: EQT proposes the addition of one (1) 0.75 MMBtu/hr line heater and one (1) low pressure separator to regulate flashing emissions from produced fluids originating from the seven (7) phase separators. The low pressure separator will be installed between the phase separators and produced fluid tanks. A natural gas compressor engine will be installed to compress the natural gas recovered from the low pressure separator and directed to the sales pipeline.

Directions to the facility: From West Union take WV-18S and then turn right to take US-50 W. Follow US-50 W for 2.6 miles, before turning left onto Arnolds Creek Road/Central Station Road/Right Fork Run Road. Continue 0.7 miles, before turning left onto Left Fork Run Road. Travel for 2.1 miles, and turn onto an unnamed access road on the left. The WEU-49 natural gas production site is located alongside this access road.

ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). ☐ Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ⊠ I wish to pay by credit card. Contact for payment (incl. name and email address): Alex Bosiljevac abosiljevac@eqt.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ☐ Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed in its entirety) – Attachment A ☐ Siting Criteria Waiver (if applicable) – Attachment B ☐ Current Business Certificate – Attachment C □ Process Flow Diagram – Attachment D □ Process Description – Attachment E □ Plot Plan – Attachment F ⊠ G70-B Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I □ Fugitive Emissions Summary Sheet – Attachment J ☐ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment ☐ Tanker Truck Loading Data Sheet (if applicable) – Attachment O ☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc™ input and output reports and information on reboiler if applicable) - Attachment P ☑ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment R 🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S □ Facility-wide Emission Summary Sheet(s) – Attachment T □ Class I Legal Advertisement – Attachment U

All attachments must be identified by name, divided into sections, and submitted in order.

☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

Table of Contents

ATTACHMENT A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT B CITING CRITERIA WAIVER – (NOT APPLICABLE)

ATTACHMENT C BUSINESS CERTIFICATE

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E PROCESS DESCRIPTION

ATTACHMENT F PLOT PLAN

ATTACHMENT G AREA MAP

ATTACHMENT H APPLICABILITY FORM

ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT L STORAGE VESSEL DATA SHEET

ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET – (NOT APPLICABLE)

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION

DEVICE (ERD) SHEET

ATTACHMENT S EMISSION CALCULATIONS

ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes ⊠	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes ⊠	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No ⊠
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes ⊠	No □
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities? Manager and other workers will shuttle between WEU-49 and WEU-1.	Yes ⊠	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes ⊠	No □
Does one (1) facility operation support the operation of the other facility?	Yes □	No ⊠
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No ⊠
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No ⊠
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No ⊠
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No ⊠
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes ⊠	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No ⊠
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No ⊠
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No ⊠

Attachment B CITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

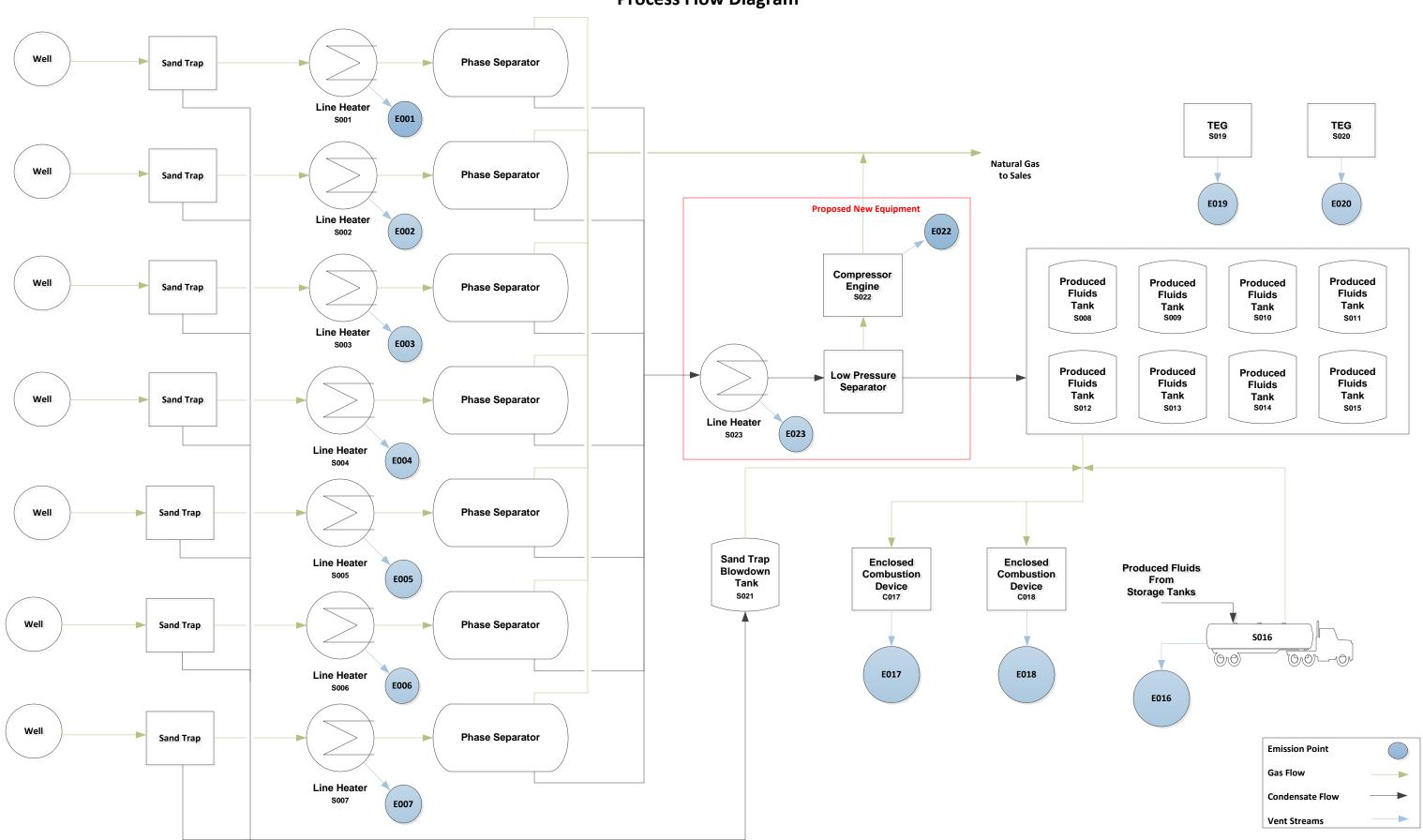
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.3 L0553297664

Attachment D PROCESS FLOW DIAGRAM

Attachment D

WEU 49 Natural Gas Production

Process Flow Diagram

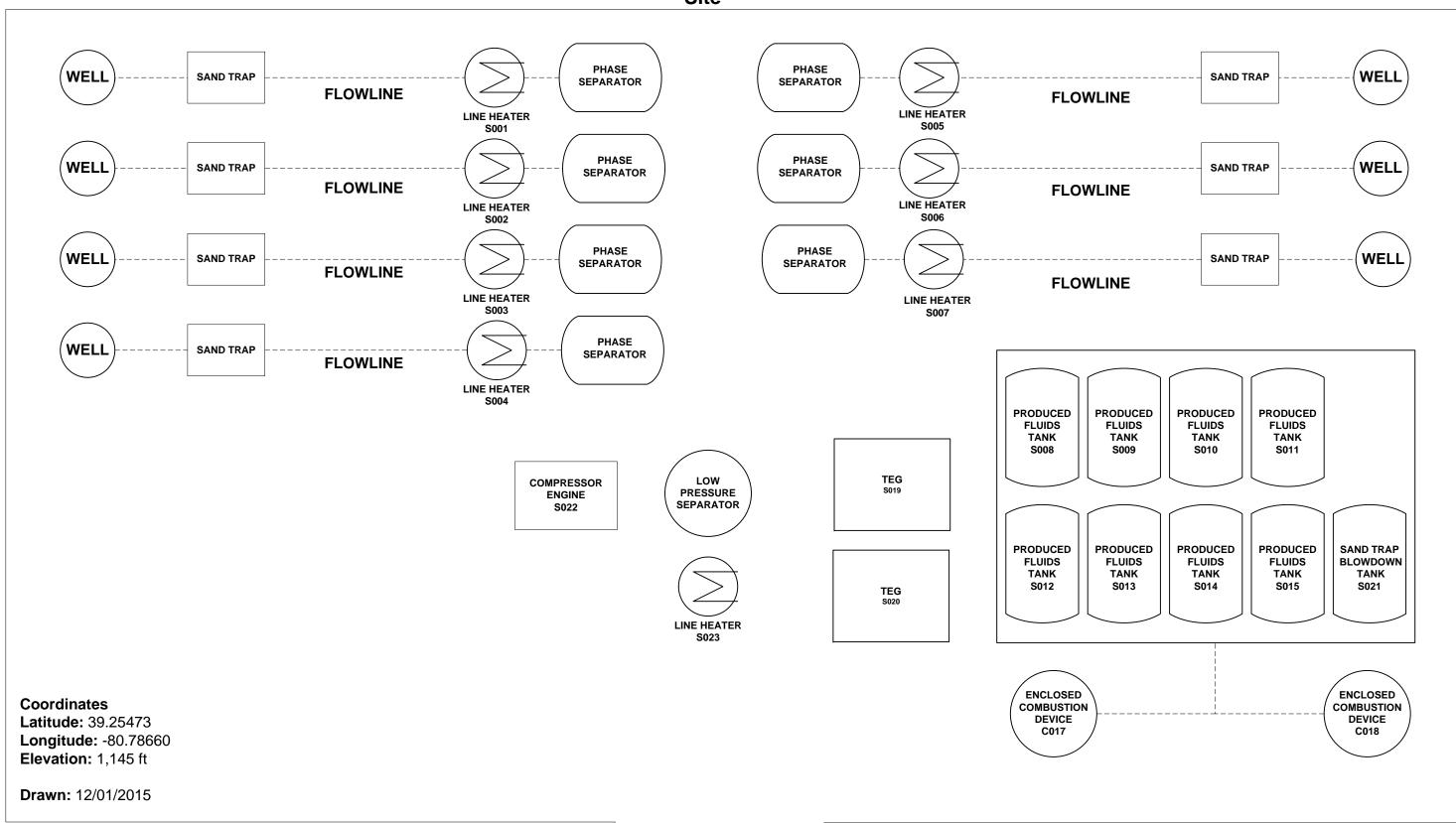
Attachment E PROCESS DESCRIPTION

Attachment E Process Description

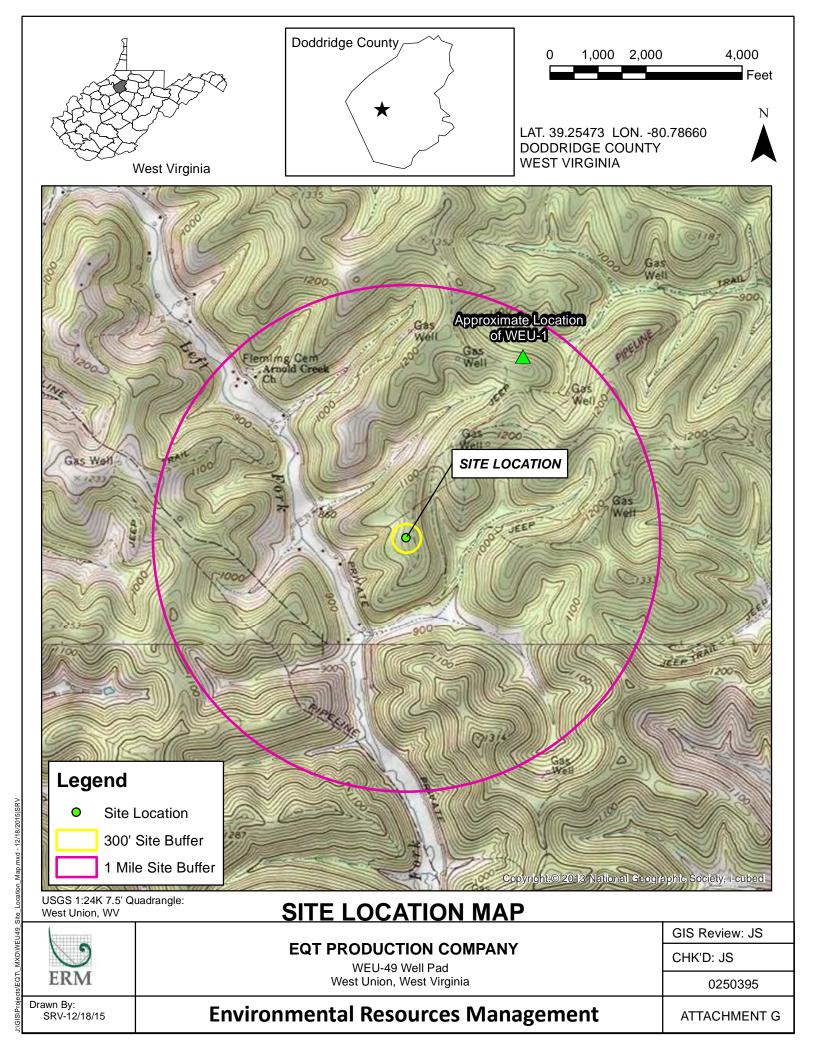
This permit application is being filed for EQT Production Company and addresses operational activities associated with the WEU-49 natural gas production site. Incoming raw natural gas from the seven (7) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove sediment. Fluids from these sand traps are manually blowdown to the sand trap blowdown tank (S021), as needed. From the sand traps, raw gas is routed through line heaters (S001-S007) to assist with the phase separation process in the downstream phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (S023) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from approximately 390 psig to 30 psig. Vapors realized at the low pressure separator are directed to a 110 bhp compressor engine (S022) and routed to the sales pipeline. Produced fluid from the low pressure separator is sent to the produced fluids storage tanks (\$008-\$015). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion units (C017, C018) and burnt. Produced fluids are pumped into a tank truck (S016) on an asneeded basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion units.

Two thermoelectric generation units (S019, S020) are operated and provide power to the WEU-49 natural gas production site.

A process flow diagram is included as Attachment D.


Attachment F PLOT PLAN

Attachment F


Plot Plan

EQT WEU 49 (017-00150) Natural Gas Production Site

Attachment G AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-B APPLICABLE SECTIONS					
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)				
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines				
X Section 14.0	Tanker Truck Loading ³				
□Section 15.0	Glycol Dehydration Units ⁴				

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S002	E002	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S003	E003	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S004	E004	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S005	E005	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S006	E006	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S007	E007	Line Heater	2015	2015	1.54 MMBtu/hr	Modification	NA	NA
S008	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S009	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S010	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S011	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S012	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S013	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S014	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S015	E017 E018	Produced Fluid Tank	2015	2015	400 bbl	Modification	C017 C018	NA
S016	E016 E017 E018	Tank Truck Loading Rack	2015	2015	145,430 gal/day	Modification	NA	NA
C017	E017	Enclosed Combustion Device	2015	2015	11.66 MMBtu/hr	Modification	NA	NA
C018	E018	Enclosed Combustion Device	2015	2015	11.66 MMBtu/hr	Modification	NA	NA
S019	E019	Thermal Electric Generator	2015	2015	0.013 MMBtu/hr	Existing NA		NA
S020	E020	Thermal Electric Generator	2015	2015	0.013 MMBtu/hr	Existing	NA	NA
S021	E017 E018	Sand Trap Blowdown Tank	2015	2015	140 bbl	Modification	C017 C018	NA

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S022	E022	Compressor Engine	2016	2015	110 hp	New	Selective Catalytic Reduction	NA
S023	E023	Line Heater	2016	2015	0.75 MMBtu/hr	New	NA	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

When required by rule

New, modification, removal, existing

For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J FUGITIVE EMISSIONS SUMMARY SHEET

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET									
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.									
	Source/Equipm	nent: Faci	lity-Wide				<u>-</u>			
	Leak Detection Method Used	1	☐ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	☑ Other (please describe) Permittee will follow section 4.1.4 in issued permit.			☐ None required		
Compone	Closed		Source of Leak Factors (EPA, other (specify))		Stream type (gas, liquid, etc.)		Estimated Emissions (tpy)			
Туре	Vent System	Count				VOC	HAP	GHG (CO ₂ e)		
Pumps	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both					
Valves	☐ Yes ⊠ No	271	EPA, 40 CFR	EPA, 40 CFR 98 Subpart W		0.61	0.34	25.99		
Safety Rela	ief ☐ Yes ⊠ No	8	EPA, 40 CFR	EPA, 40 CFR 98 Subpart W		0.03	0.01	1.14		
Open Ende Lines	d ☐ Yes ⊠ No	20	EPA, 40 CFR 98 Subpart W		⊠ Gas □ Liquid □ Both	0.10	0.06	4.22		
Sampling Connection	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both					
Connection (Not sampli	I IXI NO	1,188	EPA, 40 CFR	98 Subpart W	⊠ Gas □ Liquid □ Both	0.30	0.17	12.66		
Compresso	☐ Yes ⊠ No	1	EPA, 40 CFR 98 Subpart W Table W-1B: Default average component counts are used for major equipment. Compressor components (12 valves and 57 connections) are included in valve and connection counts.		⊠ Gas □ Liquid □ Both					
Flanges	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both					
Other ¹	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both					
1 Other equ	nipment types m	ay include	compressor seals, relief valves, di	iaphragms, drains, meters, etc.						
			sources of fugitive emissions (e.g.			atic controllers.	etc.):			

Please indicate if there are any closed vent by passes (include component): ${\bf N}{\bf A}$

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) NA

Attachment K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
047-017-06443		9/3/15	Green Completion
047-017-06444		9/3/15	Green Completion
047-017-06445		9/4/15	Green Completion
047-017-06446		9/7/15	Green Completion
047-017-06447		9/7/15	Green Completion
047-017-06448		9/7/15	Green Completion
047-017-06449		TBD	TBD

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L - STORAGE VESSEL DATA SHEET

1. Bulk Storage Area Name WEU-49 Storage Tank Area	2. Tank Name Produced Fluid Tanks (S008-S015)
3. Emission Unit ID number \$008-\$015	4. Emission Point ID number E017 or E018
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Original Installation 2015	\square New construction \square New stored material \boxtimes Other
Anticipated Modification 04/2016	☐ Relocation
Was the tank manufactured after August 23, 2011?	
⊠ Yes □ No	
7A. Description of Tank Modification (if applicable) Addition	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
☐ Yes	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes ⊠ No	
If Yes, please provide the appropriate documentation and item	s 8-42 below are not required.
ANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the interna-	al cross-sectional area multiplied by internal height.
16,800 gallons	T
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This is also	
13A. Maximum annual throughput (gal/yr) 53,080,272	13B. Maximum daily throughput (gal/day) 145,425
14. Number of tank turnovers per year 3,156	15. Maximum tank fill rate (gal/min) 101
16. Tank fill method \square Submerged \square Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? $\ \square$ Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	- ·
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
oximes Fixed Roof $oximes$ vertical $oximes$ horizontal $oximes$ flat roo	f \boxtimes cone roof \square dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ double	e deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting
□ Variable Vapor Space □ lifter roof □ diaphragm	
☐ Pressurized ☐ spherical ☐ cylindrical	
☐ Other (describe)	
□ Other (describe)	
RESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	ture Disc (psig)
	oon Adsorption ¹
∀ Vent to Vapor Combustion Device¹ (vapor combustors, flare	
☐ Conservation Vent (psig) ☐ Conservation Vent (psig)	denser'
-0.05 Vacuum Setting 14.0 oz Pressure Setting	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☒ No - A lock down screw	hatch will be installed instead of Thief Hatch.

¹ Complete appropriate Air Pollution Control Device Sheet									
20. Expected Emission R Material Name	Rate (submit Test Dat Flashing Loss		Breathing Loss		Working Loss		he application). Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (Pre control)	73.84	323.43	0.01	0.04	0.10	0.42	73.95	323.89	EPA - ProMax

TANK CONSTRUCTION AND OPERATION INFORMATION									
21. Tank Shell Construction:									
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) Welded									
21A. Shell Color: Green 21B. Roof Color: Green 21C. Year Last Painted: NA									
` '	22. Shell Condition (if metal and unlined):								
☐ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable									
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating	temperature:	22C. If ye	es, how is heat provided to tank?					
23. Operating Pressure Range (psig):									
Must be listed for tanks using VRUs									
24. Is the tank a Vertical Fixed Roof Tank	, , , , , , , , , , , , , , , , , , , ,	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):					
⊠ Yes □ No	5 ft								
25. Complete item 25 for Floating Roof Ta	ks Does not apply	\boxtimes							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one): N	etallic (mechanical) sho	e seal	unted resili	ent seal					
	apor mounted resilient s	eal Other (des	scribe):						
25C. Is the Floating Roof equipped with a se	condary seal? Yes	□ No							
25D. If yes, how is the secondary seal moun	ed? (check one)	oe 🗆 Rim 🗆 Ot	her (describ	pe):					
25E. Is the floating roof equipped with a we	ther shield?	□ No							
25F. Describe deck fittings:									
26. Complete the following section for Inter	nal Floating Roof Tanks	□ Does not apply	*						
26A. Deck Type: ☐ Bolted ☐	Welded	26B. For bolted decks	, provide dec	ck construction:					
26C. Deck seam. Continuous sheet construc	tion:								
\square 5 ft. wide \square 6 ft. wide \square 7 ft. w	ide \Box 5 x 7.5 ft. wide	\square 5 x 12 ft. wide \square	other (de	escribe)					
26D. Deck seam length (ft.): 26E. A	ea of deck (ft ²):	26F. For column supp	orted	26G. For column supported					
		tanks, # of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU? ☐ Ye	x ⊠ No								
•									
28. Closed Vent System with Enclosed Com- SITE INFORMATION	Juston: 🖂 1 es 🗀 100								
29 Provide the city and state on which the data in this section are based: Charleston . WV									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

30. Daily Avg. Ambient Temperature (°F): 70 °F			31. Annual Avg. Maximum Temperature (°F): 65.5 °F			
32. Annual Avg. Minimum Temperature (°F): 44.0 °F			33. Avg. Wind Speed (mph): 18 mph			
34. Annual Avg. Solar Insulation Factor (BTU/	(ft ² -day): 1,123	35. At	mospheric Press	sure (psia): 14.70		
LIQUID INFORMATION		•				
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 1	08.4		36B. Maximur	n (°F): 108.4	
liquid (°F): 108.4						
37. Avg. operating pressure range of tank	37A. Minimum (psig)	Atmos	pheric	37B. Maximur	n (psig): Atmospheric	
(psig): Atmospheric						
38A. Minimum liquid surface temperature (°F)			1 0	apor pressure (psi		
39A. Avg. liquid surface temperature (°F): 108	3.4	39B. Corresponding vapor pressure (psia): 0.66				
40A. Maximum liquid surface temperature (°F)		40B. Corresponding vapor pressure (psia): 0.66				
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if	necessary.		
41A. Material name and composition:	Produced Flui	d				
41B. CAS number:						
41C. Liquid density (lb/gal):	8.32					
41D. Liquid molecular weight (lb/lb-mole):	19.76					
41E. Vapor molecular weight (lb/lb-mole):	41.99					
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	From: January To: December					
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	110.0 F 30.0 psig					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)

TO U.S. A. N. SHE (A.S.)	2 T 1 Y C 1 T D1 1 T 1 (CO21)
1. Bulk Storage Area Name SHR-60 Storage Tank	2. Tank Name Sand Trap Blowdown Tank (S021)
Area	
3. Emission Unit ID number S021	4. Emission Point ID number E022 or E023
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
06/2016 Anticipated Installation	
Was the tank manufactured after August 23, 2011?	☐ Relocation
⊠ Yes □ No	Refocution
7A. Description of Tank Modification (if applicable) NA	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
□ Yes ⊠ No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes ⊠ No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.
TANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the internal	d cross-sectional area multiplied by internal height.
5,880 gallons	
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 5,880 gallons
13A. Maximum annual throughput (gal/yr) 306,600	13B. Maximum daily throughput (gal/day) 840
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 4.1
16. Tank fill method ☐ Submerged ☐ Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat root	f \square cone roof \square dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	\square self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	
☐ Pressurized ☐ spherical ☐ cylindrical	
☐ Other (describe)	
PRESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	rure Disc (psig)
	oon Adsorption ¹
□ Vent to Vapor Combustion Device¹ (vapor combustors, flare)	
☐ Conservation Vent (psig) ☐ Cond	lenser ¹
Vacuum Setting Pressure Setting	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☐ No - Two 16 oz. weighte	d emergency hatches.
¹ Complete appropriate Air Pollution Control Device Sheet	

20. Expected Emission Ra	ate (subm	it Test Da	ta or Calcı	ılations he	ere or else	where in the	he applica	tion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
		Ü					Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	1
Produced Fluid	6.89	1.26	< 0.01	< 0.01	< 0.01	< 0.01	6.89	1.26	EPA - ProMax
(Pre-Control)									

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) WELDED								
21A. Shell Color: Green	21B. Roof Color: Green	21C. Year Last Painted: NA						
22. Shell Condition (if metal and unlined): ⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable								
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs with	closed vent system.							
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (for): 24B. If yes, for cone roof, provide slop (ft/ft):						
⊠ Yes □ No	5 ft.	NA						
25. Complete item 25 for Floating Roof Tanks	s \square Does not apply \boxtimes							
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	tallic (mechanical) shoe seal	mounted resilient seal						
□ Va _F	oor mounted resilient seal \Box Other (describe):						
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No							
25D. If yes, how is the secondary seal mounted	1? (check one)	Other (describe):						
25E. Is the floating roof equipped with a weath	er shield?							
25F. Describe deck fittings:								
26. Complete the following section for Interna	al Floating Roof Tanks 🛛 Does not ap	pply						
26A. Deck Type: ☐ Bolted ☐ W	Velded 26B. For bolted dec	eks, provide deck construction:						
26C. Deck seam. Continuous sheet construction	on:							
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wid	e \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide	☐ other (describe)						
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²): 26F. For column su							
	tanks, # of columns	tanks, diameter of column:						
27. Closed Vent System with VRU? ☐ Yes	⊠ No	,						
28. Closed Vent System with Enclosed Combustor? ⊠ Yes □ No								
SITE INFORMATION								
29. Provide the city and state on which the data in this section are based: Charleston , WV								
30. Daily Avg. Ambient Temperature (°F): 70 °F								

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

32. Annual Avg. Minimum Temperature (°F): 44 ° F		33. Avg. Wind Speed (mph): 18 mph				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,123		35. Atmospheric Pressure (psia): 14.70				
LIQUID INFORMATION		ı				
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 8	85.4		36B. Maximur	m (°F): 85.4	
liquid (°F): 85.4						
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0.0		37B. Maximur	m (psig): 0.0	
(psig): 0.0 (Atmosphere)	(Atmosphere)			(Atmosphere)		
38A. Minimum liquid surface temperature (°F)	85.4	38B.	Corresponding v	apor pressure (ps	(a): 0.32	
39A. Avg. liquid surface temperature (°F): 85 .	.4	39B. Corresponding vapor pressure (psia): 0.32				
40A. Maximum liquid surface temperature (°F): 85.4			40B. Corresponding vapor pressure (psia): 0.32			
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if	necessary.		
41A. Material name and composition:	Produced Flu	id				
41B. CAS number:						
41C. Liquid density (lb/gal):	8.03					
41D. Liquid molecular weight (lb/lb-mole):	19.28					
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	From: January To: December					
42. Final maximum gauge pressure and	85 F					
temperature prior to transfer into tank used as	307 psig					
inputs into flashing emission calculations.						

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2015	Existing	1.00	1,262
S002	E002	Line Heater	2015	Existing	1.00	1,262
S003	E003	Line Heater	2015	Existing	1.00	1,262
S004	E004	Line Heater	2015	Existing	1.00	1,262
S005	E005	Line Heater	2015	Existing	1.00	1,262
S006	E006	Line Heater	2015	Existing	1.00	1,262
S007	E007	Line Heater	2015	Existing	1.00	1,262
S019	E019	TEG	2015	Existing	0.013	1,262
S020	E020	TEG	2015	Existing	0.013	1,262
S023	E023	Line Heater	2016	New	0.75	1,262

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- Enter design heat input capacity in MMBtu/hr.
- Enter the fuel heating value in BTU/standard cubic foot.

Attachment N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D# ¹	SO)22				
Engine Manufac	cturer/Model	Ford / CSG-637					
Manufacturers F	Rated bhp/rpm	110 / 3200					
Source Status ²		N	IS				
Date Installed/ Modified/Remov	ved/Relocated ³	04/2	2016				
Engine Manufac		20	15				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵				□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4S	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		P	Q				
H ₂ S (gr/100 scf))	0.	25				
Operating bhp/r	pm	110 /	3,200				
BSFC (BTU/bhp	o-hr)	6,552.9					
Hourly Fuel Thi	roughput	686.5 ft ³ /gal	hr I/hr	ft³/hr gal/hr			/hr l/hr
(Must use 8,760	Annual Fuel Throughput (Must use 8,760 hrs/yr unless emergency generator) 6.01		6.01 MMft ³ /yr gal/yr		MMft³/yr gal/yr		lft³/yr l/yr
Fuel Usage or H Operation Meter		Yes ⊠	No □	Yes □	No 🗆	Yes □	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NOx	0.42	1.85				
MD	CO	0.88	3.85				
MD	VOC	0.29	1.29				
AP	SO ₂	<0.01	<0.01				
AP	PM Filterable	<0.01	0.01				
AP	PM Condensable	0.01	0.03				
AP	Formaldehyde	0.01	0.06				
AP	Total HAPs	0.02	0.07				
AP	GHG (CO ₂ e)	82.58	361.69				

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

² Enter the Source Status using the following codes:

MS Modification of Existing Source RS Relocated Source REM Removal of Source

Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E022, use extra pages as necessary)

(Emission Unit ID# E022, use extra pages as necessary) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Sequential Multipart Fuel Injection Manufacturer: Ford Model #: CSG-637 Design Operating Temperature: 1,600 °F Design gas volume: scfm Service life of catalyst: 5000 Hours Provide manufacturer data? ⊠Yes □ No Volume of gas handled: 444.9 cfm at 1,600 °F Operating temperature range for NSCR/Ox Cat: °F to From Reducing agent used, if any: Reducing agent used, if any: Pressure drop against catalyst bed (delta P): 6" inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? 5000 How often is performance test required? Initial ☐ Annual ☐ Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 40CFR60.4243(a)(1) - EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

EDI Ford Industrial LSI Fuel and Power Figures

CSG637

		Coo	alina		LPG				NG				
		Gas	soline			L	PG						
RPM	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [ft^3/hp- hr]	Fuel Consumption [ft^3/hr]	Fuel Consumption [btu/hr]
1500	42.3	47.0	0.48	3.7	52.1	57.9	0.34	4.1	47.8	53.1	6.81	361.8	379,914
1600	47.7	53.0	0.45	3.9	56.8	63.2	0.33	4.3	52.4	58.2	6.54	380.9	399,966
1700	52.2	58.0	0.43	4.1	60.0	66.7	0.33	4.6	54.7	60.8	6.58	400.0	420,019
1800	55.0	61.1	0.43	4.2	63.1	70.2	0.33	4.8	57.0	63.3	6.62	419.1	440,071
1900	58.5	65.0	0.42	4.4	66.3	73.7	0.33	5.0	60.1	66.7	6.57	438.2	460,124
2000	61.2	68.0	0.41	4.6	69.5	77.2	0.33	5.2	63.1	70.2	6.52	457.3	480,176
2100	65.7	73.0	0.40	4.7	73.1	81.2	0.33	5.5	66.0	73.4	6.49	476.4	500,229
2200	70.2	78.0	0.39	4.9	76.7	85.2	0.33	5.7	68.9	76.6	6.47	495.5	520,281
2300	74.7	83.0	0.37	5.0	81.1	90.1	0.32	5.9	73.0	81.1	6.34	514.6	540,334
2400	79.2	88.0	0.36	5.2	85.4	94.9	0.32	6.2	77.1	85.6	6.23	533.7	560,386
2500	82.8	92.0	0.35	5.3	89.4	99.3	0.31	6.4	80.7	89.6	6.17	552.8	580,439
2600	85.5	95.0	0.35	5.4	93.3	103.7	0.31	6.6	84.3	93.6	6.11	571.9	600,491
2700	87.3	97.0	0.35	5.5	95.9	106.6	0.31	6.9	87.0	96.6	6.12	591.0	620,544
2800	88.2	98.0	0.35	5.7	98.6	109.5	0.31	7.1	89.7	99.6	6.12	610.1	640,596
2900	89.1	99.0	0.36	5.8	101.0	112.3	0.32	7.3	92.6	102.9	6.11	629.2	660,649
3000	90.9	101.0	0.36	5.9	103.5	115.0	0.32	7.5	95.5	106.1	6.11	648.3	680,701
3100	93.6	104.0	0.35	6.0	104.8	116.5	0.32	7.8	97.3	108.1	6.17	667.4	700,754
3200	96.3	107.0	0.35	6.1	106.1	117.9	0.33	8.0	99.0	110.0	6.24	686.5	720,806

^{*}Fuel Consumption and BSFC listed is 100% Intermittent Load

^{*}Figures are Gross; Fan losses not accounted for.

Attachment O TANKER TRUCK LOADING DATA SHEET

A	TTAC	HMI	ENT O	– TAI	NKER T	RUCK L	OAD	ING DA	TA S	НЕЕТ
Emission Unit	ID#: S01	6		Emissi	on Point ID#	: E016/E017	/E018	Year Insta	lled/Mo	dified: 2015
Emission Unit	Descripti	on: T	ank Truck	Loadir	ng Rack					
					Loading A	Area Data				
Number of Pur	nps: 1			Numbe	r of Liquids	Loaded: 1		Max numb		cks loading at one
Are tanker true If Yes, Please		ire tesi	ted for leak	s at this	or any other	location?	□ Yes	⊠ No		Required
Provide descri combustion						Emissions	collecte	ed and cor	trolled	by enclosed
Are any of the ☐ Closed Sys ☐ Closed Sys ☑ Closed Sys	tem to tai	nker tr nker tr	uck passing uck passing	g a MAC g a NSPS	T level annu S level annua	al leak test?	apor ret	urn?		
	Pro	jected	Maximum	Operat	ing Schedul	e (for rack o	r transf	er point as	a whole)
Time			Jan – Mai			- Jun		ul – Sept		Oct - Dec
Hours/day			As neede	-		eded		s needed		As needed
Days/week			As neede			eded		s needed		As needed
Liquid Nome			1	Liquid duced F		xtra pages as	s necess:	ary)		
Max. Daily Th (1000 gal/day)			Pioc	145.43						
Max. Annual T		ıt		53,080.2	28					
Loading Metho	od¹			SP						
Max. Fill Rate	(gal/min))		100						
Average Fill T (min/loading)	ime			42 min	1					
Max. Bulk Liq Temperature (85 °F						
True Vapor Pr	essure ²			NA						
Cargo Vessel (Condition	3		U						
Control Equip	ment or			ed Com Device 17 or C						
Max. Collection	n Efficie	псу	(00	70 %	.010)					
Max. Control I	Efficiency	,		98 %						
Max.VOC	Loading (lb/hr)			0.08						
Emission Rate	Annual (ton/yr)			0.35						
Max.HAP	Loading (lb/hr)			<0.01						
Emission Rate	Annual (ton/yr)			<0.01						
Estimation Me	thod ⁵		EPA A	AP-42, F	ProMax					
B B O List as CA ECD	Ballast Other (many as Carbo Enclos	liquid ed Ves describ apply n Adso sed Co	oe) (complete orption ombustion I	Device	Clear nit appropria VB F	nte Air Pollut		SUB U crol Device Balance (c	Sheets)	ed (dedicated service)
TO EPA TM	EPA E	Emissi	idization or on Factor ir ement base	n AP-42	ation est data subi	mittal	MB O	Material Other (de		

Attachment Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?
☐ Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?
☐ Yes No
Please list approximate number.

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

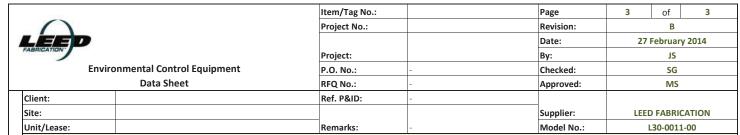
ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

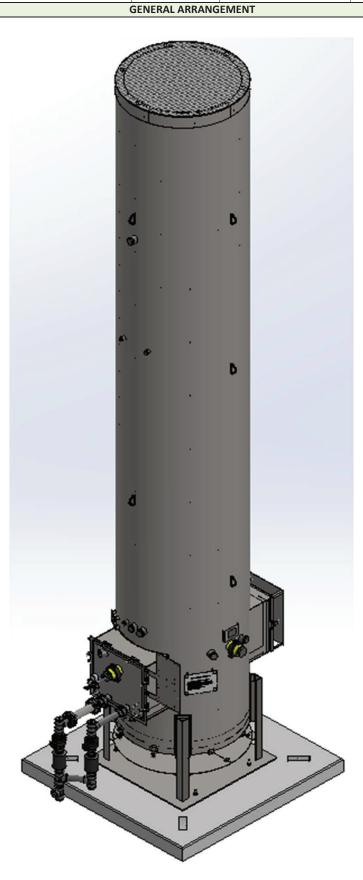
VAPOR COMBUSTION

		(Including Enclo	sed Con	ıbusto	rs)	
		General Ir	formation			
Control De	evice ID#: C017		Installation New		015 Iodified	Relocated
Maximum ~7,800 sc	Rated Total Flow Capa fh 188,000		Maximum Heat Input mfg. spec 11.66 MMBTU/h	(from sheet)	Design H 1,262 B	eat Content TU/scf
		Control Device	e Informati	on		
⊠ Enclose □ Therma	ed Combustion Device l Oxidizer	Type of Vapor Co ☐ Elevate		ontrol?		Ground Flare
	rer: LEED Fabricatio closed Combustor 4		Hours of o	peration	per year? 8	3,760
List the em S016 , S02		ssions are controlled by this	vapor conti	ol device	(Emission	Point ID# \$008-\$015 ,
Emission Unit ID#	Emission Source Des	cription	Emission Unit ID#	Emissio	on Source I	Description
S008 - S015	Produced	Fluids Tanks				
S021	Sand Trap	Blowdown Tank				
S016	Tank Trucl	CLoading Rack				
If this	s vapor combustor cont	rols emissions from more the	an six (6) en	nission un	its, please	attach additional pages.
Assist Typ	e (Flares only)	Flare Height	Tip	Diamete	er	Was the design per §60.18?
Steam Pressu	re Air	~25 feet		4 feet		☐ Yes ☐ No Provide determination.
		Waste Gas 1	Information	ı		
Maxim	um Waste Gas Flow Ra 102.63 (lb/hr)		aste Gas Sti BTU/ft³	ream	Exit Vel	ocity of the Emissions Stream (ft/s)
	Provide an att	achment with the characteri	stics of the v	waste gas	stream to	be burned.
		Pilot Gas I	nformation			
Number	of Pilot Lights 1	Fuel Flow Rate to Pilot Flame per Pilot ~30 scfh		nput per 3 3 BTU/h		Will automatic re-ignition be used? ☐ Yes ⊠ No
If automati	c re-ignition is used, p	lease describe the method.				
	me equipped with a mo		If Yes, wh		⊠ Thermoo	couple
		maintenance procedures req e attached manufacture s				intain the warranty. (If
			flame demo	nstration	per §60.18	or §63.11(b) and

			VAPOR CO				
		(I 1	ncluding Enclo	sed Con	ıbusto	rs)	
			General In	formation			
Control De	vice ID#: C018			Installation New		015 Aodified	☐ Relocated
Maximum 1 ~7,800 sc	Rated Total Flow Ca fh 188,00			Maximum Heat Input mfg. spec 11.66 MMBTU/h	(from sheet)	Design H 1,262 B	eat Content TU/scf
			Control Devic	e Informati	on		
⊠ Enclose	ed Combustion Devi l Oxidizer	ce	Type of Vapor Co		ontrol?		Ground Flare
	er: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	,760
List the em S016 , S02		missions	s are controlled by this	vapor contr	ol device	e (Emission	Point ID# \$008-\$015 ,
Emission Unit ID#	Emission Source D	escriptio	on	Emission Unit ID#	Emissio	on Source I	Description
S008- S015	Produc	ed Fluid	ds Tanks				
S021	Sand Tra	p Blow	down Tank				
S016	Tank Tro	ıck Loa	ding Rack				
If this	vapor combustor co	ontrols e	missions from more the	an six (6) em	nission un	iits, please	attach additional pages.
Assist Type	e (Flares only)		Flare Height	Tip	Diamete	er	Was the design per §60.18?
Steam Pressur	e Air		~25 feet		4 feet		☐ Yes ☐ No Provide determination.
			Waste Gas l	Information	ı		
Maxim	nm Waste Gas Flow 102.63 (lb/hr)	Rate	Heat Value of W Variable		eam	Exit Vel	ocity of the Emissions Stream (ft/s)
	Provide an	attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.
			Pilot Gas I	nformation			
Number	of Pilot Lights 1		Flow Rate to Pilot lame per Pilot ~30 scfh		nput per 3 BTU/h		Will automatic re-ignition be used? □ Yes ⊠ No
If automati	c re-ignition is used	, please	describe the method.				
	me equipped with a f the flame?		to detect the	If Yes, wh	• •	⊠ Thermoo □ Camera	couple Infrared Other:
			enance procedures req ched manufacture s				intain the warranty. (If
	•		es	flame demoi	nstration	per §60.18	or §63.11(b) and

Battery Pack


age	1	of	2
evision:		В	
ate:	27 1	ebruar	y 2014
v:		JS	


					Project No.:				F	Revision:		В	
1	LEED								ı	Date:		27 February 2014	
-	FABRICATION -				Project:				1	Ву:		JS	
	Enviro	ment	tal Control Equipment		P.O. No.:					Checked:		SG	_
	2.1111101		Data Sheet		RFQ No.:					Approved		MS	-
	au .	-	Data Silect							Approved		IVIS	_
	Client:				Ref. P&ID:	-							
	Site:				_				-	Supplier:		LEED FABRICATION	_
	Unit/Lease:				Remarks:	-				Model No	.:	L30-0011-00	_
					GEN	IERAL							
1	Design Code:							NDE:			LEED	D Fabrication Standards	
2	Service:							Custom	er Specs:			Yes	
3	Description:		Standard Dual	Stage 48 High Effic	ciency Combust	tor					✓	No No	
					PROCE	SS DATA							
	Con Commonition				al 0/	Process Condit	ions:						
	Gas Composition:				mol %	Varia	able		Value		Units		
4	Methane					Flow I	Rate		Up to 1	40	Mscfd		_
5	Ethane					Press	sure		Up to 1	.2	oz/in2		_
6	Propane					Temper		<u> </u>			°F		_
7	I-Butane					Molecular					•		_
8	n-Butane					Process/Wa			✓ Gas			quid	_
l	I-Pentane											quiu	_
9						Detailed Proce						ata indicatad abaya	_
10	n-Pentane					2. DRE: 98 % o					ver attillig fi	ate indicated above.	
11	n-Hexane					3. Burner Press	•	•	Ü				
12	CO2							pr 1411	0.20 02/1112				
13	N2												
14	Helium												
15	H ₂ O												
16	C7												
17	C8												
18	С9												
19	C10												
20	C11+												
21			TOTAL										
	Other Components:				PPMV	Available Utilit	ties:						
22	H2S					Fuel / Pi	ilot Ga	as		Min.	30psig Na	tural Gas /Propane 40-50 SC	F
23	Benzene					Instrum	ent Ai	ir		NA			
24	Toluene					Pow	ver			120 V	/ 60 Hz o	r Solar Power	
25	E-Benzene					Stea	am			NA			_
26	Xylene					Purge	Gas						_
				<u> </u>	DESIG	N DATA							
27	Ambient Temperatures:					Noise Performa	ance F	Require	ments:			Under 85 dBA	_
28	•	L	.ow, °F	-20		Structural Desi	ign Co	de:					_
29			igh, °F	120		Wind Design Co	_					ASCE	_
	Design Conditions:		ressure/Temperature										_
l	Max. Relative Humidity,		· · · · · · · · · · · · · · · · · · ·	90				Pressur	e/Speed			100 mph	_
l	Elevation (ASL), ft	-						Categor				r	_
	Area Classification:			Class I I	Div 2	Seismic Design			•				_
	Electrical Design Code:			NEC		2001811		Locatio	n				-
-					QUIPMENT	SPECIFICATION		2000110					
35	Type:		☐ Elevated ✓ E	Enclosed	·	Equipment Des							-
36	15-1		Above Ground			Equipment Des		ompone	int		Mata	rial / Size / Rating / Other	_
37			= -	1ultiple Stack		Rurner	C	ompone			iviater	nar / Size / Nating / Other	_
			Portable / Trailer	.a.upic Stuck		Burner	or T:-	/ Acc:	Cac Power			204 55	_
38 39			rorable / rrailer			Burne		-	Gas Burner	+		304 SS	_
40	Smokeless By:		□ Stoom □ A	Assist Air		Dilat	Bu	urner Bo	uy			Carbon Steel	_
41	omoreiess by.					Pilot		Dilet T		+		204.00	_
			☐ Gas Assist ✓ S	Staging				Pilot Tip				304 SS	_
42	Cto also		Colf Cupporting			etb. 7 m ·		ilot Line	(5)			Carbon Steel	_
	Stack:		Self Supporting	'makalass 🗆		Firebox / Stack	(61				A 1 1	_
	Flare Burner:			Smokeless	Gas Assist			Shell				Carbon Steel	_
	Pilot:	=	Intermittent	Continuous				Piping				Carbon Steel	_
46	Pilot Air Inspirator:	<u> </u>	Local	Remote	-1-1			Nozzles				Carbon Steel	_
47	Pilot Flame Control:	Ш	No 🗸	Yes (Thermocoup	pie)			Flanges				Carbon Steel	_
48		_		1				nsulatio				Blanket	_
49	Pilot Ignition:	<u> </u>	Flamefront Generator	Inspirating Ignito				ulation I				304 SS	
50		<u> </u>	Electronic 🗸	Automatic	Manual			Refracto				NA	
	i .	1	With Pilot Flame Control				Refra	ctory Ar	nchors			NA	_
51		=			- I								
52			With Auto Pilot Re-Ignition			La	adder	s and Pl	atforms			NA	_
52 53	Pilot Ignition Backup:								atforms nnections		P	NA er EPA requirements	_

Other

Item/Tag No.:

					Item/Tag No	.:		Page		2 of 3
					Project No.:			Revision	1:	В
	LEED							Date:		27 February 2014
	FABRICATION"				Project:			Ву:		JS
	Environr	mental	Control Equip r	ment	P.O. No.:		-	Checked	l:	SG
			ta Sheet		RFQ No.:		-	Approve		MS
	Client:				Ref. P&ID:		-			1
	Site:							Supplier	r:	LEED FABRICATION
	Unit/Lease:				Remarks:		_	Model N		L30-0011-00
	C, 200001				EQUIPMENT	SPECIF	ICATION			100 0011 00
56	Flame Detection:	The	ermocouple	✓ Ionization Ro		1	ry Equipment			
57			' Scanner	20111244011114		Auxiliai	Valves			NA
58		<u> </u>	Scarrier			+	Blowers			
59	_									NA NA
						-	Dampers		-	NA
60							Inlet KO / Liquid Seal			NA
61			a	0			Flame / Detonation Arrestor			Yes
62			•	*		Instrum	nentation & Controls			
63							Solenoids / Shut-Off Valves		Check	with Sales for available config.
64						-	Flow Meters			NA
65							Calorimeter			NA
66							Pressure Switches/Transmitters		<u> </u>	NA
67						<u> </u>	Thermocouples		Check	with Sales for available config.
68				4		<u></u>	Temperature Switches/Transmitte	ers	<u> </u>	NA
69							BMS		Check	with Sales for available config.
70			100	Se E			CEMS			NA
71				E) h			Other			NA
72										
73										
74										
75										
					FABRICATION	AND IN	ISPECTION			
76	Special requirements		Skid Mounted	✓ Concrete Pad			Eq	uipment	Info	
77			Other				Component			Weight / Dimensions
78						Burner				
79	Inspection	✓	Vendor Standar	d			Burner Assembly			
80			Other. Specify:			Stack				
81	Material Certification	✓	Vendor Standar	d			Stack Assembly			48 " OD x 25 ' H
82			MTR				Pilot Tip			
83			Certificate of Co	ompliance			Pilot Line(s)			
84			Other (Specify):				Stack Assembly			
85	NDE	✓	Vendor Standar	d		Auxilia	ry Equipment			
86			Radiography. Sp	pecify:			Blowers			
87			Ultrasonic. Spe	cify:			Inlet KO / Liquid Seal			
88			Liquid Penetrant	t.			Flame / Detonation Arrestor			
89			Magnetic Particl	es.			Skid			
90			PMI. Specify:			Instrum	nentation & Controls			
91			Other. Specify:				BMS			
92		<u> </u>	Vendor Standar	d			Control Panel			
93	-		Other. Specify:							
94		<u> </u>	Vendor Standar	d						
95			Other. Specify:							
96	Finished Color		Vendor Standar	d						
97			Other. Specify:							
98			-							
99										
	Additional Notes:					1				

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

Attachment S EMISSION CALCULATIONS

Line Heaters S001 - S007

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.10	0.45
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.12	0.53
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.01
$PM_{Condensable}$	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	180.14	789.03
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	0.015
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO₂e							180.33	789.85

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 9 line heaters are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Line Heaters S023

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	0.05	0.22
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	0.06	0.26
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
$PM_{Condensable}$	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	0.02
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.75	1,262	8,760	87.73	384.27
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.75	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.75	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							87.82	384.67

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 9 line heaters are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Thermoelectric Generators S019 & S020

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	1.52	6.66
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
Total HAPs						,	<0.01	<0.01
Total CO₂e							1.52	6.67

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Natural Gas Compressor Engine S022

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours		Annual Emissions (tpy)
VOC's	1.21	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.29	1.29
Formaldehyde	2.05E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	0.01	0.06
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Ethylbenze	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Xylene	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
СО	3.62	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.88	3.85
NOx	1.74	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.42	1.85
PM _{Filterable}	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	0.01
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	0.03
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	82.49	361.32
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	<0.01	<0.01
Total HAPs							•	0.02	0.07
Total CO₂e								82.58	361.69

Notes:

- -Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.
- -Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 3.2, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- Vendor Guarantee Emissions are listed in Attachment S
- Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S008 - S015

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)		
VOCs	73.95	323.89		
HAPs	5.72	25.06		
Hexane	5.39	23.60		
Benzene	0.08	0.36		
Toluene	0.15	0.65		
Ethylbenzene	0.03	0.13		
Xylene	0.08	0.33		
CO ₂	0.70	3.05		
CH ₄	4.69	20.54		
Total CO₂e	117.92	516.48		

Notes:

- Emission rates for Produced Fluid Tanks S008 S015 were calculated using ProMax software. ProMax output sheets for the WEU-49 Pad are attached.
- The emission rates displayed above are pre-control device emissions.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.
- For emission calculation purposes, the total throughput for tanks S009 S016 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S021

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	1.78	7.79
HAPs	0.13	0.56
Hexane	<0.01	0.01
Benzene	<0.01	<0.01
Toluene	0.11	0.47
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	0.03	0.11
CH ₄	0.62	2.70
Total CO₂e	15.45	67.68

Notes:

- Blowdown operations are conducted on the WEU-49 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates.
- Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the WEU-49 Pad are attached.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Unloading Operations S016

Total Emissions from Tank Unloading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.27	1.17	70%	98%	<0.01	0.02	0.08	0.35
HAPs	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
CO_2	0.13	0.58	70%	98%	1.44	6.32	0.04	0.17
CH ₄	0.14	0.59	70%	98%	<0.01	<0.01	0.04	0.18
Total CO₂e	3.51	15.37			1.49	6.53	1.05	4.61

⁻ CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

- Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.
- Vapors from tank unloading operations are vapor-balanced to the produced fluid tanks and realized at one of the two enclosed combustion devices. AP-42 calculation methods were used to estimate the collection efficiency from tank unloading operations. Emissions that are not collected during the unloading events are realized at the Loading Rack Emission Point, E020.

Enclosed Ground Flares C017 - C018

Emissions	from	Tan

Gas Composition of Vent Gas

									_
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	36.97	161.94	98%	0.74	3.24	Methane	0.12	ľ
	HAPs	2.86	12.53	98%	0.06	0.25	Ethane	0.25	1
	Hexane	2.69	11.80	98%	0.05	0.24	Propane	0.25	
	Benzene	0.04	0.18	98%	<0.01	<0.01	Butane	0.16	
Produced Fluids Tanks S008 - S015	Toluene	0.07	0.32	98%	<0.01	<0.01	Pentanes	0.06	
	Ethylbenzene	0.02	0.07	98%	<0.01	<0.01	Carbon Dioxide	0.007	
	Xylene	0.04	0.17	98%	<0.01	<0.01			
	CO ₂	0.35	1.52	98%	262.98	1,151.87	Vent (Sas Properties	=
	CH₄	2.34	10.27	98%	0.05	0.21			
	VOCs	0.89	3.90	98%	0.02	0.08	Vent Gas Properties	Mass Flow Rate	e Density (lb/ft³)
	HAPs	0.06	0.28	98%	<0.01	<0.01	1	(lb/hr)	, , ,
	Hexane	<0.01	<0.01	98%	<0.01	<0.01	Produced Fluids Tank	101.30	0.10
	Benzene	<0.01	<0.01	98%	<0.01	<0.01	Blowdown Tank	1.63	0.08
Sand Trap Blowdown Tank - S016	Toluene	0.05	0.23	98%	<0.01	<0.01		l	l.
•	Ethylbenzene	<0.01	<0.01	98%	<0.01	<0.01			
	Xylene	<0.01	<0.01	98%	<0.01	<0.01			
	CO ₂	0.01	0.06	98%	5.21	22.83			
	CH ₄	0.31	1.35	98%	<0.01	0.03			
	VOCs	0.13	0.59	98%	<0.01	<0.01			
	HAPs	<0.01	<0.01	98%	<0.01	<0.01			
Truck Loading - S017	CO ₂	0.07	0.29	98%	0.72	3.16			
	CH₄	0.07	0.30	98%	<0.01	<0.01			
	VOCs	38.00	166.43		0.76	3.33	1		
	HAPs	2.92	12.81		0.06	0.26	1		
	Hexane	2.70	11.80		0.05	0.24			
	Benzene	0.04	0.18		<0.01	<0.01			
_ ,	Toluene	0.13	0.56		<0.01	0.01	1		
Totals	Ethylbenzene	0.02	0.07		<0.01	<0.01	1		
	Xylene	0.04	0.17		<0.01	<0.01	1		
	CO ₂	0.43	1.87		268.92	1,177.86	1		
	CH ₄	2.72	11.92		0.05	0.24	1		
	CO2e	68.44	299.77		270.27	1,183.77	1		

Emissions from Pilot Operations

					•						
Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.80		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
СО	84		1,262	30,000	11,660,000	<0.01	0.01	0.90	3.94	0.90	3.95
NO_x	100		1,262	30,000	11,660,000	<0.01	0.01	1.07	4.69	1.07	4.71
PM _{Condensable}	5.70		1,262	30,000	11,660,000	<0.01	<0.01	0.06	0.27	0.06	0.27
$PM_{Filterable}$	1.90		1,262	30,000	11,660,000	<0.01	<0.01	0.02	0.09	0.02	0.09
PM_Total	7.60		1,262	30,000	11,660,000	<0.01	<0.01	0.08	0.36	0.08	0.36
SO ₂	0.60		1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.03	<0.01	0.03
CO ₂	120,000	53.06	1,262	30,000	11,660,000	3.51	15.37	1,363.95	5,974.12	1,367.46	5,989.49
CH ₄	2.3	0.001	1,262	30,000	11,660,000	<0.01	<0.01	0.03	0.11	0.03	0.11
N ₂ O	2.2	<0.001	1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Total HAPs	_		-	·	·		·	·	-	<0.01	<0.01
CO₂e										1,368.88	5,995.67

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	0.76	3.33
HAPs	0.06	0.26
CO	0.90	3.95
NO _x	1.07	4.71
PM _{Condensable}	0.06	0.27
PM _{Filterable}	0.02	0.09
PM _{Total}	0.08	0.36
SO ₂	<0.01	0.03
CO ₂	1,636.38	7,167.34
CH₄	0.08	0.35
N ₂ O	<0.01	0.01
CO ₂ e	1,639.14	7,179.44

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

- Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)
- Emissions from Enclosed Combustion Device Operations (Ib/hr) = Emission factor (Ib/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24
- Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation
- Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$\begin{split} E_{\sigma,CH,4}(un-combusted) &= V_{\sigma} * (1-\eta) * X_{CH,4} \\ E_{\sigma,CO2}\left(un-combusted\right) &= V_{\sigma} * X_{CO2} \\ \end{split} \tag{Eq. W-19}$$

$$E_{\sigma,CO2}\left(combusted\right) &= \sum_{j=1}^{5} \left(\eta * V_{\sigma} * Y_{j} * R_{j}\right) \\ \end{split} \tag{Eq. W-20}$$

$$E_{\alpha,CO2} (combusted) = \sum_{j=1}^{5} (\eta * V_{\alpha} * Y_{j} * R_{j})$$
 (Eq. W-21)

Where:

Ea,CH₄(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

Particle size multiplier 1 4.8

Silt content of road surface material (%) ² Number of days per year with precipitation >0.01 in. ³ 150

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	1.72	1	1,826	NA	NA	7.37	6.73	1.88	1.71	0.19	0.171
2	Employee Vehicles	4	3	10	1.72	1	200	NA	NA	2.61	0.26	0.67	0.07	0.07	<0.01
		_	-	_			•		Totals:	9.98	6.99	2.54	1.78	0.25	0.178

Notes:

- ¹ Particle Size Multiplier used from AP-42 13.2.2 Final Version 11/2006
- ² Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 Final Version 11/2006
- ³ Number of days per year with precipitation >0.01 in³ found using AP-42 13.2.2 Figure 13.2.2-1 Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Default Average Component Counts for Major Onshore Natural Gas Production Equipment										
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves						
Wellheads	8	38	0.5	0						
Separators	1	6	0	0						
Meters/Piping	12	45	0	0						
Compressors	12	57	0	0						
In-line Heaters	14	65	2	1						
Dehydrators	24	90	2	2						

Dehydrators

1- Table W-1B to 40CFR98 Subpart W

		Gas Composition				
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes +	CO ₂	CH ₄
Mole %	4.00	1.78	0.64	0.58	0.15	78.13
MW	44	58	72	86.00	44 00	16.00

IVIVV	77	50	12	80.00	44.00	10.00							
				Fugitive	Emissions								
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO₂e (tons/yr)
Valves	271	0.027	8760	0.14	0.61	0.08	0.34	<0.01	<0.01	0.24	1.04	5.93	25.99
Connectors	1188	0.003	8760	0.07	0.30	0.04	0.17	<0.01	<0.01	0.12	0.51	2.89	12.66
Open-ended Lines	19.5	0.061	8760	0.02	0.10	0.01	0.06	<0.01	<0.01	0.04	0.17	0.96	4.22
Pressure Relief Valves	8	0.040	8760	<0.01	0.03	<0.01	0.01	<0.01	<0.01	0.01	0.05	0.26	1.14
			Total Emissions:	0.24	1.04	0.13	0.58	<0.01	<0.01	0.40	1.76	10.05	44.01

Example Equations:
Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Fugitive Leaks

Well Specific Equipment Counts									
Facility Equipment									
Туре	Count on Site								
Wellheads	7								
Separators	7								
Meters/Piping	8								
Compressors	1								
In-line Heaters	8								
Dehvdrators	0								

²- Table W-1A to 40CFR98 Subpart W

Notes:
-A gas sample from the WEU-49 Site is included with this submittal

Total WEU 49 Site Emission Levels

	VC	OCs	H	APs	(0	N	O _x	PN	1 _{Total}	PM _F	ilterable	PM _{Cor}	densable	S	02	(CO ₂	С	H ₄	N	,0	(CO ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	<0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E002)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	<0.01	0.04	<0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E003)	<0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	<0.01	0.04	<0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E004)	<0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E005)	<0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E006)	<0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E007)	<0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E023)	<0.01	0.01	< 0.01	<0.01	0.05	0.22	0.06	0.26	< 0.01	0.02	< 0.01	<0.01	< 0.01	0.01	< 0.01	<0.01	87.73	384.27	< 0.01	<0.01	<0.01	< 0.01	87.82	384.67
TEG (E019)	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	<0.01	<0.01	< 0.01	1.52	6.67
TEG (E020)	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	< 0.01	<0.01	< 0.01	1.52	6.67
Compressor Engine (E022)	0.29	1.29	0.00	0.00	0.42	1.85	< 0.01	0.01	< 0.01	0.04	< 0.01	0.03	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	0.016	0.072	82.58	361.69	0.00	0.00
Enclosed Combustion Unit (E017)	0.76	3.33	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	< 0.01	0.03	1,636.38	7,167.34	0.08	0.35	<0.01	0.01	1,639.14	7,179.44
Enclosed Combustion Unit (E018)	0.76	3.33	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	< 0.01	0.03	1,636.38	7,167.34	0.08	0.35	< 0.01	0.01	1,639.14	7,179.44
*Tank Truck Loading Operations (E016)	0.08	0.35	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01							<0.01	<0.01	0.04	0.17	0.04	0.18	<0.01	< 0.01	1.05	4.61
Haul Roads									9.98	6.99	9.98	6.99	< 0.01	<0.01										
Fugitives Leaks	0.24	1.04	0.13	0.58													<0.01	<0.01	0.40	1.76			10.05	44.01
Totals	2.19	9.57	0.27	1.20	3.10	13.57	3.19	13.97	92.72	8.08	10.05	7.28	0.18	0.80	0.02	0.09	4,804.73	21,044.74	0.65	2.83	82.59	361.73	4,822.90	21,124.30

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, and truck loading are routed to either C017 or C018. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C017 and C018 are additive.

^{*}Emissions from Tank Truck Loading Operations are routed to the enclosed combustion devices. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the enclosed combustion devices are realized at the Tank Truck Loading Operations Emission Point.

Total WEU-49 Site Emission Levels - HAP Speciation

	Total	HAPs	Forma	ldehyde	Hex	kane	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	ene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Line Heater (E001)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E002)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E003)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E004)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E005)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E006)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E007)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E019)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E022)	0.00	0.00	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.878	3.846
Enclosed Combustion Unit (E017)	0.06	0.26	<0.01	<0.01	0.05	0.24	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (E018)	0.06	0.26	<0.01	<0.01	0.05	0.24	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E016)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	0.13	0.58	<0.01	<0.01	0.13	0.58	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.27	1.20	0.02	0.07	0.26	1.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C017 or C018. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C017 and C018 are additive.

Legacy Measurement Solutions

Tulsa, OK 918-827-5770

Customer : 01 - GAS ANALYTICAL SERVICES- Date Sampled : 09/08/2015

MOUNDS

 Station Id
 : 514395
 Date Analyzed
 : 09/21/2015

 Cylinder Id
 : 1
 Effective Date
 : 10/01/2015

 Producer
 : EQT PRODUCTION
 Line Pressure
 : 0.00000

 Lease
 : WEV 49
 Cyl Pressure
 : 1000.00000

 Area
 : MGMD
 Temp
 : 80.00000

 Sample By
 : BOB GUM
 Cylinder Type
 : Spot

Property Cd : Formation :

COMPONENT		Mole Percent	WT. Percent	Liq Vol Percent
Methane	C1	11.8315	1.9289	4.4466
Ethane	C2	8.4266	2.5749	4.9959
Propane	C3	6.1620	2.7614	3.7630
Iso-Butane	IC4	1.5078	0.8906	1.0933
Normal-Butane	NC4	3.6167	2.1363	2.5274
Iso-Pentane	IC5	1.7562	1.2877	1.4236
Normal-Pentane	NC5	2.0125	1.4756	1.6167
Nitrogen	N2	0.0344	0.0097	0.0080
Carbon-Dioxide	CO2	0.1923	0.0860	0.0726
BENZENE	BENZENE	0.0848	0.0673	0.0524
TOLUENE	TOLUENE	0.3790	0.3548	0.2806
ETHYLBENZENE	E-BENZENE	0.1864	0.2010	0.1590
M-XYLENE/P-XYLENE	M- XYLENE/P- XYLENE	0.5373	0.5797	0.4604
C6's	C6's	4.7644	4.1723	4.3508
C7's	C7's	10.4765	15.9296	14.7673
C8's	C8's	8.1255	8.9914	8.6988
C9's	C9's	6.8140	8.5181	7.8540
C10's	C10's	14.0291	18.3440	17.0186
C11's	C11's	5.7368	7.9853	6.8834
C12's	C12's	10.4668	16.3477	14.6596
C13's	C13's	2.8594	5.3576	4.8679
TOTAL		100.0000	100.0000	100.0000

Totals

SPECIFIC GRAVITY @ 60 DEG. F. (WATER = 1) 0.6909

MOLECULAR WEIGHT 98.4038

Comments: EXTENDED CONDENSATE SAMPLE

POUNDS/GALLON (ABSOLUTE DENSITY)	5.7605
CALC. VAPOR PRESSURE @ 14.65 PSIA, 100 Deg. F.	664.2658
CUFT. VAPOR / GALLON @ 14.65 PSIA, 60 Deg. G.	22.3543
BTU / CUFT. DRY GAS @ 14.65 PSIA, 60 Deg. F.	5,058.5392
BTU / GALLON LIQUID	118,482.0797
BTU / POUND	20,439.7146

Comments: EXTENDED CONDENSATE SAMPLE

Gas Analytical

Report Date: Sep 14, 2015 9:23a

Client: Equitable Production Date Sampled: Sep 8, 2015 11:00a

Site: 514394 Analysis Date: Sep 11, 2015 2:17p

Field No: 9998 Collected By: J. Brown

Meter: 514394 Date Effective: Sep 8, 2015 12:00a

Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI): 70.0 **Lab File No: X_CH1-6024.CHR** Sample Temp (°F):

Sample Type: Spot Field H2O: No Test

Reviewed By: Field H2S: No Test

Component	Mol %	Gal/MSCF
Methane	78.1311	
Ethane	14.2559	3.79
Propane	4.0036	1.10
I-Butane	0.5947	0.19
N-Butane	1.1890	0.37
I-Pentane	0.3163	0.12
N-Pentane	0.3248	0.12
Nitrogen	0.4544	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1535	
Hexanes+	0.5767	0.24
TOTAL	100.0000	5.93

Analytical Results at Base Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Analytical Results at Contract Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

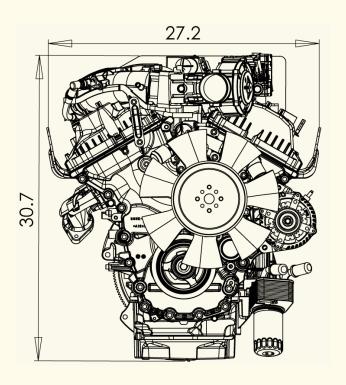
Z Factor (Saturated): 0.99604

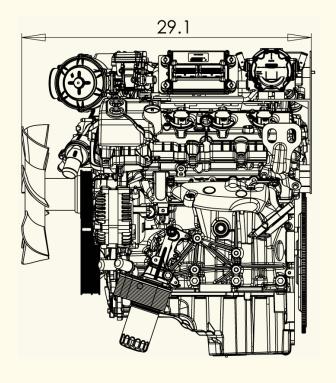
Calculated Specific Gravities

Ideal Gravity: 0.7188 Real Gravity: 0.7211

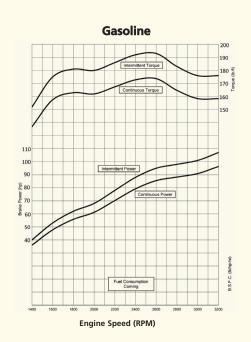
Molecular Wt: 20.8177 lb/lbmol

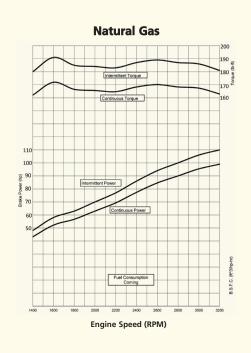
Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

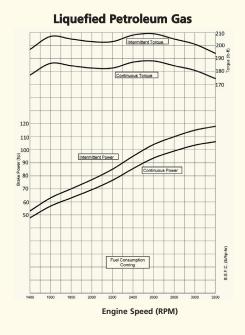

Source	Date	Notes
--------	------	-------


Gas Analytical Sep 11, 2015 results to Bob Gum

Installation Drawings


Front End View


Left Side View



Power Curves (corrected per SAE J1349)

For additional information Contact:

Powertrain Assemblies & Components Provided By Ford Component Sales

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans

- 14" (355mm) diameter suction
- 14" (355mm) diameter pusher

Flywheels

- 11.5" (292mm) SAE over-center clutch
- flat face flywheel

Flywheel Housings

• SAE #3

Exhaust Manifold

• rear dump down

Power Steering Pump Air Conditioning Wiring Harnesses Discrete Speed Switch Variable Speed Hand Throttle

Variable Speed Foot Pedal Engine Mounts

• Automotive with insulators

Open power unit

Electronic Instrument Panel, Gauges Three Way Catalyst / Muffler Standard

Transmissions

6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Products
Powertrain Assemblies

& Components
Provided By Ford
Component Sales

Specifications

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2015 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Engine Distributors, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: FEDIB03.7CSG-006

Effective Date: 06/08/2015

Expiration Date: 12/31/2015

Issue Date: 06/08/2015

Revision Date: N/A

Manufacturer: Engine Distributors, Inc.

Engine Family: FEDIB03.7CSG

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

Gasoline (up to and including 10% Ethanol)

Natural Gas (CNG/LNG)

Emission Standards:

Mobile Part 1048

HC + NOx (g/kW-hr) : 0.8

NMHC + NOx (g/kW-hr) : 0.8

CO (g/kW-hr) : 20.6 Part 60 Subpart JJJJ Table 1

NOx (g/kW-hr): 1.3

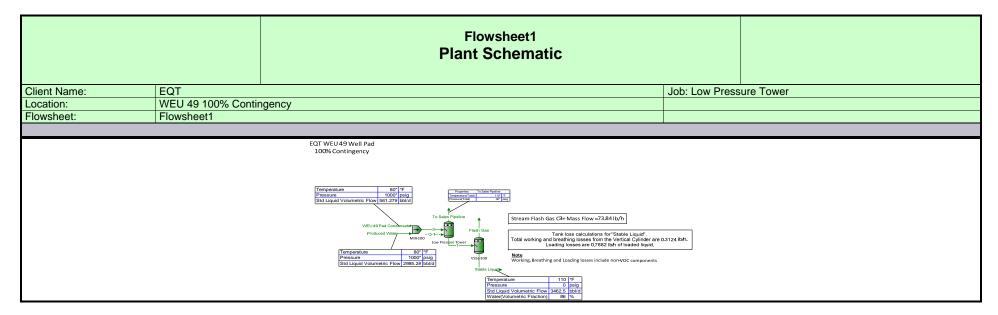
HC + NOx (g/kW-hr) : 0.8

CO (g/kW-hr) : 2.7 CO (g/kW-hr) : 20.6

VOC (g/kW-hr): 0.9

Emergency Use Only: N

Byron J. Bunker, Division Director


Compliance Division

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: Low Pressure Tower WEU 49 100% Contingency Location:

Flowsheet: Flowsheet1

Connections Flash Gas Produced Stable Liquid To Sales WEU 49 Pad Water **Pipeline** Condensate From Block VSSL-100 VSSL-100 Low Pressure Tower To Block MIX-100 MIX-100 ----

Stream Composition									
	Flash Gas	Flash Gas Produced Water		To Sales Pipeline	WEU 49 Pad Condensate				
Mole Fraction	%	%	%	%	%				
Methane	12.1035	0 *	0.00112811	44.2173	11.8315 *				
Ethane	25.2724	0 *	0.0105681	26.9913	8.4266 *				
Propane	25.2282	0 *	0.0325237	14.3222	6.162 *				
Isobutane	5.28741	0 *	0.0159354	2.27965	1.5078 *				
n-Butane	11.0638	0 *	0.0456282	4.46596	3.6167 *				
Isopentane	3.06638	0 *	0.0305574	1.11095	1.7562 *				
n-Pentane	2.87609	0 *	0.0370936	1.02312	2.0125 *				
Nitrogen	0.0146536	0 *	5.19944E-07	0.132513	0.0344 *				
Carbon Dioxide	0.650956	0 *	0.000368728	0.581411	0.1923 *				
Benzene	0.043173	0 *	0.0018042	0.014746	0.0848 *				
Toluene	0.0662762	0 *	0.00843967	0.0225241	0.379 *				
Ethylbenzene	0.0118994	0 *	0.00421178	0.00407194	0.1864 *				
m-Xylene	0.029449	0 *	0.0121548	0.0100905	0.5373 *				
C6	2.59038	0 *	0.100869	0.88638	4.7644 *				
C7	2.1572	0 *	0.232314	0.736413	10.4765 *				
C8	0.596454	0 *	0.183363	0.20489	8.1255 *				
C9	0.180394	0 *	0.154717	0.0623709	6.814 *				
C10	0.133406	0 *	0.319248	0.0468344	14.0291 *				
C11	0.0183097	0 *	0.130656	0.00649953	5.7368 *				
C12	0.0139762	0 *	0.238441	0.00501085	10.4668 *				
C13	0.0012438	0 *	0.0651471	0.000452458	2.8594 *				
Water	8.59444	100 *	98.3748	2.87539	0 *				

	Flash Gas	Produced Water	Stable Liquid	To Sales Pipeline	WEU 49 Pad Condensate
Mass Fraction	%	%	%	%	%
Methane	4.62475	0 *	0.000915697	23.8473	1.92156
Ethane	18.0997	0 *	0.0160785	27.2847	2.56517
Propane	26.4963	0 *	0.0725646	21.2315	2.75081
Isobutane	7.31964	0 *	0.0468635	4.45437	0.887216
n-Butane	15.3162	0 *	0.134185	8.72636	2.12813
Isopentane	5.26939	0 *	0.111551	2.69464	1.28276
n-Pentane	4.94237	0 *	0.135412	2.48161	1.46997
Nitrogen	0.00977718	0 *	7.36972E-07	0.124796	0.00975591
Carbon Dioxide	0.682343	0 *	0.000821073	0.860213	0.085678
Benzene	0.0803218	0 *	0.00713066	0.0387228	0.0670589
Toluene	0.145446	0 *	0.0393455	0.0697693	0.353528
Ethylbenzene	0.0300891	0 *	0.0226243	0.0145331	0.200342
m-Xylene	0.0744657	0 *	0.0652918	0.036014	0.577487
C6	5.31681	0 *	0.439815	2.56791	4.15657
C7	5.14838	0 *	1.17782	2.4807	10.6276
C8	1.62277	0 *	1.05978	0.786811	9.39655
C9	0.551064	0 *	1.00402	0.268926	8.8475
C10	0.452093	0 *	2.2983	0.224022	20.208
C11	0.068166	0 *	1.03334	0.0341539	9.07811
C12	0.0567019	0 *	2.05501	0.028694	18.0493
C13	0.00546167	0 *	0.607707	0.0028043	5.33689
Water	3.68777	100 *	89.6714	1.74146	0

Process Streams Report All Streams Tabulated by Total Phase

Job: Low Pressure Tower Client Name: EQT WEU 49 100% Contingency

Location: Flowsheet: Flowsheet1

	Flash Gas	Produced	Stable Liquid	To Sales	WEU 49 Pad
Mass Flow	lb/h	Water lb/h	lb/h	Pipeline lb/h	Condensate lb/h
Methane	4.68476	0 *	0.444651	101.127	106.256 *
Ethane	18.3346	0 *	7.80754	115.703	141.845 *
Propane	26.8402	0 *	35.2365	90.0341	152.111 *
Isobutane	7.41462	0 *	22.7564	18.8891	49.0601 *
n-Butane	15.5149	0 *	65.1587	37.0049	117.679 *
Isopentane	5.33776	0 *	54.168	11.4268	70.9326 *
n-Pentane	5.00651	0 *	65.7545	10.5235	81.2845 *
Nitrogen	0.00990405	0 *	0.000357865	0.529208	0.53947 *
Carbon Dioxide	0.691197	0 *	0.398703	3.64781	4.73771 *
Benzene	0.0813641	0 *	3.46256	0.164208	3.70813 *
Toluene	0.147334	0 *	19.1057	0.295863	19.5489 *
Ethylbenzene	0.0304796	0 *	10.9861	0.061629	11.0782 *
m-Xylene	0.075432	0 *	31.7049	0.152721	31.9331 *
C6	5.38581	0 *	213.569	10.8894	229.844 *
C7	5.21519	0 *	571.937	10.5196	587.672 *
C8	1.64382	0 *	514.617	3.33654	519.598 *
C9	0.558215	0 *	487.539	1.14041	489.237 *
C10	0.45796	0 *	1116.03	0.949983	1117.43 *
C11	0.0690506	0 *	501.775	0.144833	501.989 *
C12	0.0574376	0 *	997.889	0.121679	998.068 *
C13	0.00553255	0 *	295.095	0.0118919	295.113 *
Water	3.73562	43554.5 *	43543.4	7.38483	0 *

	Stream Properties									
Property	Units	Flash Gas	Produced Water	Stable Liquid	To Sales Pipeline	WEU 49 Pad Condensate				
Temperature	°F	109.682	80 *	109.682	110 *	80 *				
Pressure	psia	14.6959 *	1014.7 *	14.6959	44.6959 *	1014.7 *				
Mole Fraction Vapor	%	100	0	0	100	0				
Mole Fraction Light Liquid	%	0	100	1.62477	0	100				
Mole Fraction Heavy Liquid	%	0	0	98.3752	0	0				
Molecular Weight	lb/lbmol	41.9851	18.0153	19.7638	29.7457	98.7771				
Mass Density	lb/ft^3	0.102267	62.2329	59.2878	0.221743	43.2606				
Molar Flow	lbmol/h	2.4127	2417.64	2456.96	14.2562	55.9813				
Mass Flow	lb/h	101.298	43554.5	48558.8	424.059	5529.67				
Vapor Volumetric Flow	ft^3/h	990.525	699.864	819.036	1912.39	127.822				
Liquid Volumetric Flow	gpm	123.494	87.2557	102.114	238.427	15.9363				
Std Vapor Volumetric Flow	MMSCFD	0.021974	22.019	22.377	0.12984	0.509857				
Std Liquid Volumetric Flow	sgpm	0.401364	87.0686 *	100.99	2.04766	16.3702 *				
Compressibility		0.987448	0.0507183	0.000801786	0.98074	0.400043				
Specific Gravity		1.44963	0.997817	0.950597	1.02704	0.693624				
API Gravity			9.89088	15.699		69.6259				
Enthalpy	Btu/h	-123538	-2.9686E+08	-3.00117E+08	-579053	-5.26079E+06				
Mass Enthalpy	Btu/lb	-1219.55	-6815.83	-6180.49	-1365.5	-951.375				
Mass Cp	Btu/(lb*°F)	0.428649	0.980687	0.934021	0.456784	0.509282				
Ideal Gas CpCv Ratio		1.12484	1.32536	1.29056	1.17382	1.05352				
Dynamic Viscosity	cP	0.00917122	0.891684	0.616407	0.0102566	0.426355				
Kinematic Viscosity	cSt	5.59851	0.89448	0.652695	2.88756	0.615259				
Thermal Conductivity	Btu/(h*ft*°F)	0.0121793	0.351656	0.322914	0.0155598	0.0715561				
Surface Tension	lbf/ft	T	0.0049665	0.00426974 ?		0.000809098				
Net Ideal Gas Heating Value	Btu/ft^3	2104.22	0	103.259	1551.6	5017.75				
Net Liquid Heating Value	Btu/lb	18835.7	-1059.76	1016.12	19660.9	19123.1				
Gross Ideal Gas Heating Value	Btu/ft^3	2291.26	50.31	160.723	1698.18	5412.42				
Gross Liquid Heating Value	Btu/lb	20526.3	0	2119.48	21530.9	20639.4				

		All S	reams Report treams by Total Phase			
Client Name:	EQT			Job: Low I	Pressure Tower	
Location:	WEU 49 100% (Contingency				
Flowsheet:	Flowsheet1					
				·		
		Conn	ections			
		1	3			
From Block		Low Pressure	MIX-100			
To Block		Tower VSSL-100	Low Pressure			
		1002.00	Tower			
		Stream C	omposition			
		1	3			
Mole Fraction		%	%			
Methane		0.0130009	0.267762			
Ethane		0.0353506	0.190705			
Propane		0.0572413	0.139454			
Isobutane		0.0211069	0.0341234			
n-Butane		0.0564373	0.0818505			
Isopentane		0.0335356	0.0397451			
n-Pentane		0.0398787	0.0455454			
Nitrogen		1.4895E-05	0.000778516			
Carbon Dioxide		0.00100697	0.00435199			
Benzene		0.00184478	0.00191913			
Toluene		0.00849641	0.00857725			
Ethylbenzene		0.00421932	0.00421847			
m-Xylene C6		0.0121718 0.103311	0.0121598 0.107824			
C7		0.103311	0.107824			
C8		0.234202				
C9		0.154742	0.18389 0.15421			
C10		0.319065	0.317496			
C11		0.130546	0.129831			
C12		0.238221	0.236877			
C13		0.0650844	0.0647119			
Water		98.2868	97.7369			
Mass Fraction		1 %	3 %			
Methane		0.0105413	0.216477			
Ethane		0.0103413	0.288984			
Propane		0.037239	0.309898			
Isobutane		0.0620035	0.099951			
n-Butane		0.16579	0.239748			
Isopentane		0.122288	0.144512			
n-Pentane		0.145419	0.165602			
Nitrogen		2.1089E-05	0.00109907			
Carbon Dioxide		0.00223982	0.00965221			
Benzene		0.00728302	0.00755464			
Toluene		0.0395664	0.0398273			
Ethylbenzene		0.0226399	0.0225698			
m-Xylene		0.0653109	0.0650578			
C6		0.449968	0.468266			
C7		1.18609	1.19727			·
C8		1.06095	1.05859			
C9		1.00307	0.996731			
C10		2.29445	2.27656			
C11		1.03133	1.02271			
C12		2.05085	2.03338			
C13		0.606453	0.601238			
Water		89.4924	88.7343			
		1	3			
Mass Flow		lb/h	lb/h			
Methane		5.12941	106.256			

^{*} User Specified Values ? Extrapolated or Approximate Values

Process Streams Report All Streams **Tabulated by Total Phase** Client Name: Job: Low Pressure Tower EQT WEU 49 100% Contingency Location: Flowsheet: Flowsheet1 **Mass Flow** lb/h lb/h Ethane 26.1421 141.845 Propane 62.0767 152.111 Isobutane 30.171 49.0601 117.679 n-Butane 80.6736 Isopentane 59.5057 70.9326 n-Pentane 70.761 81.2845 0.53947 0.0102619 Nitrogen Carbon Dioxide 1.0899 4.73771 3.70813 Benzene 3.54393 19.5489 Toluene 19.2531 Ethylbenzene 11.0166 11.0782 m-Xylene 31.7804 31.9331 C6 218.955 229.844 C7 577.153 587.672 C8 516.261 519.598 C9 488.097 489.237 C10 1116.48 1117.43 C11 501.844 501.989 998.068 C12 997.946 C13 295.101 295.113 Water 43547.1 43554.5 **Stream Properties Property** Units Temperature °F 110 80.0337 Pressure 44.6959 1014.7 psia Mole Fraction Vapor % 0 0 Mole Fraction Light Liquid % 1.70862 2.20512 Mole Fraction Heavy Liquid 97.7949 % 98.2914 Molecular Weight lb/lbmol 19.7856 19.843 Mass Density lb/ft^3 59.199 59.3185 Molar Flow lbmol/h 2459.37 2473.62 Mass Flow lb/h 48660.1 49084.2 Vapor Volumetric Flow ft^3/h 821.976 827.468 Liquid Volumetric Flow 102.48 103.165 gpm Std Vapor Volumetric Flow MMSCFD 22.399 22.5288 Std Liquid Volumetric Flow 101.391 103.439 sgpm Compressibility 0.00244352 0.0586049 Specific Gravity 0.949173 0.951089 **API** Gravity 15.8906 16.6509 Enthalpy Btu/h -3.00241E+08 -3.02121E+08 Mass Enthalpy Btu/lb -6170.17 -6155.16 Btu/(lb*°F) Mass Cp 0.933375 0.928095 Ideal Gas CpCv Ratio 1.29015 1.29181 Dynamic Viscosity cР 0.609776 0.819251 Kinematic Viscosity cSt 0.645256 0.851885 Thermal Conductivity Btu/(h*ft*°F) 0.322032 0.308067 Surface Tension 0.00425286 lbf/ft 0.00432531 Net Ideal Gas Heating Value Btu/ft^3 105.222 113.558 Net Liquid Heating Value Btu/lb 1053.22 1213.98 Gross Ideal Gas Heating Value Btu/ft^3 162.813 171.662 Gross Liquid Heating Value Btu/lb 2157.8 2325.17 Remarks

^{*} User Specified Values

Simulation initiated on 2/4/	2016 12.26.37 FIVI			WEU49_10	10% Cont_2.	4.20 16.pmx				Page 1 01 1
			E	nergy (Strear	n Repo	rt			
Client Name:	EQT							Job: Low Pr	essure 7	Tower
Location:	WEU 49 100%	Contingency	/							
Flowsheet:	Flowsheet1									
				Ener	gy Stre	eams				
Energy Stream		Energy Ra	ate		Power		F	rom Block		To Block
Q-1	1.30	0077E+06	Btu/h	5	11.221	hp				Low Pressure Tower
Remarks										

WEU49_100% Cont_2.4.2016.pmx Simulation Initiated on 2/4/2016 12:26:57 PM Page 1 of 1

Blocks Low Pressure Tower

Separator Report

Client Name: EQT Job: Low Pressure Tower Modified: 9:36 AM, 1/21/2016 Status: Solved 10:20 AM, 2/4/2016 Location: Flowsheet: WEU 49 100% Contingency Flowsheet1

Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
3	Inlet	MIX-100	To Sales Pipeline	Vapor Outlet	
1	Light Liquid Outlet	VSSL-100	Q-1	Energy	

Block Parameters

Diook i didilicters						
Pressure Drop	970 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	0.576327 %	Heat Duty	1.30077E+06 Btu/h			
Mole Fraction Light Liquid	1.69877 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	97.7249 %	Heat Release Curve	5			
		Increments				

WEU49_100% Cont_2.4.2016.pmx Simulation Initiated on 2/4/2016 12:26:57 PM Page 1 of 1

Blocks MIX-100

Mixer/Splitter Report

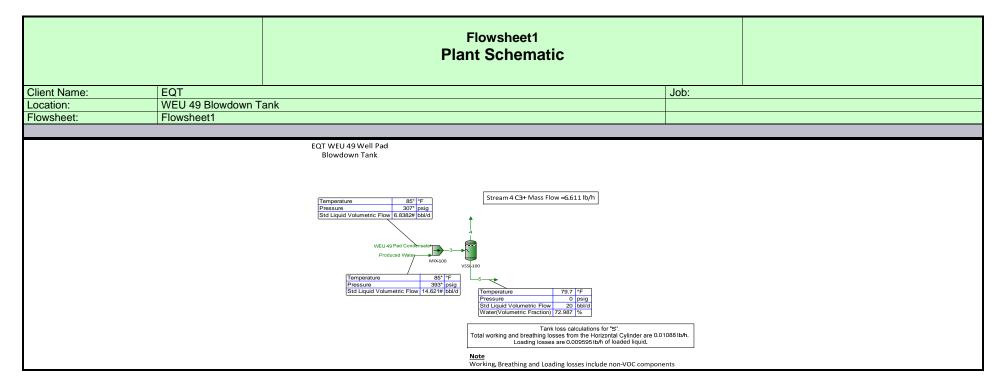
Client Name: EQT Job: Low Pressure Tower Modified: 2:14 PM, 7/24/2014 Status: Solved 10:20 AM, 2/4/2016 WEU 49 100% Contingency Location: Flowsheet: Flowsheet1

Connections								
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block			
Produced Water	Inlet		WEU 49 Pad Condensate	Inlet				
3	Outlet	Low Pressure Tower						

Block Parameters

Fraction to PStream 3 100 % Pressure Drop 0 psi

Blocks VSSL-100 Separator Report Client Name: EQT Job: Low Pressure Tower WEU 49 100% Contingency Modified: 12:59 PM, 12/3/2015 Location: Flowsheet: Flowsheet1 Status: Solved 10:20 AM, 2/4/2016 **Connections** Connection Type Stream **Connection Type** Other Block Stream Other Block Inlet Low Pressure Tower Flash Gas Vapor Outlet Stable Liquid Light Liquid Outlet **Block Parameters** Pressure Drop 30 psi Main Liquid Phase Light Liquid 0.0981026 % Mole Fraction Vapor Heat Duty 0 Btu/h 1.62318 % Mole Fraction Light Liquid Heat Release Curve Type Plug Flow Heat Release Curve Mole Fraction Heavy Liquid 98.2787 % 5 Increments Remarks


		F		Environment onment1			
Client Name:	EQT				Job: Low Pressure	e Tower	
ocation:	WEU 49 100% Co	ontingency					
lowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynti	ng Intervals	0		Freeze Out Temperature Threshold Difference)	10 °F	
Gibbs Excess Mo	del	77 °F		Phase Tolerance		1 %	
Evaluation Tempe	erature						
			Comp	onents			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
1ethane		False	False	Ethylbenzene		False	False
thane		False	False	m-Xylene		False	False
ropane		False	False	C6		False	False
obutane		False	False	C7		False	False
-Butane		False	False	C8		False	False
sopentane		False	False	C9		False	False
		False	False	C10		False	False
-Pentane		False	False	C11		False	False
litrogen				040		False	False
litrogen		False	False	C12			
n-Pentane Nitrogen Carbon Dioxide Benzene		False	False	C13		False	False
litrogen Carbon Dioxide Senzene							False True
litrogen Carbon Dioxide Benzene		False	False	C13		False	
litrogen Carbon Dioxide Senzene		False False	False False	C13		False	
litrogen arbon Dioxide enzene oluene	9	False False	False False	C13 Water		False	True
Nitrogen Carbon Dioxide		False False Phys	False False ical Prope	C13 Water erty Method Sets		False False	True

		Calcu	lator Report		
lient Name:	EQT			Job: Low Pressur	re Tower
ocation:	WEU 49 100% C	Contingency			
		Simi	ole Solver 1		
			urce Code		
tesidual Error (for C	V1) = TP / 12638		urce Code		
ooladal Ellor (lor o	<u> </u>				
		Calculate	d Variable [CV1]		
ourceMoniker	ProMax:ProMa Volumetric Flov	x!Project!Flowsheets!Flowsheet1	!PStreams!WEU 49 Pad Conde	ensate!Phases!To	tal!Properties!Std Liquid
'alue	561.265				
Init	bbl/d				
		Measure	ed Variable [TP]		
ourceMoniker		x!Project!Flowsheets!Flowsheet1	!PStreams!Stable Liquid!Phase	s!Total!Properties	s!Std Liquid Volumetric Flow
alue	1.26382E+06				
nit	bbl/yr				
		0 - 1	n Drawartias	Ctat	us: Solved
			r Properties	Siait	
Error Calculated Value		-3.72017E-07 16.3702 sgpm	Iterations Max Iterations		13 20
Lower Bound		sgpm			1
					·
			Weighting		Λ
Upper Bound		sgpm	Priority		0 Active
Upper Bound Step Size		sgpm sgpm	Priority Solver Active		0 Active
Upper Bound		sgpm	Priority	k	
Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False	Priority Solver Active Group	k	Active
Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default	Priority Solver Active Group	k	Active
Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default	Priority Solver Active Group Skip Dependency Check	k	Active
Upper Bound Step Size Is Minimizer Algorithm	V1) = Water/86 -	sgpm sgpm False Default	Priority Solver Active Group Skip Dependency Check	k	Active
Upper Bound Step Size Is Minimizer Algorithm	V1) = Water/86 -	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code	k	Active
Upper Bound Step Size Is Minimizer Algorithm	,	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]		Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]		Active False
Upper Bound Step Size Is Minimizer Algorithm demarks desidual Error (for C	ProMax:ProMa 2985.21	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]		Active False
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue	ProMax:ProMa	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]		Active False
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue	ProMax:ProMa 2985.21	sgpm sgpm False Default Simp South Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha		Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for CourceMoniker falue	ProMax:ProMa 2985.21 bbl/d	sgpm sgpm False Default Simp Soot 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Flo
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit ourceMoniker	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa	sgpm sgpm False Default Simp South Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Flo
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit ourceMoniker alue	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Soot 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Flo
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit ourceMoniker alue	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa	sgpm sgpm False Default Simp Soot 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Flo
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit ourceMoniker alue	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp South Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha Variable [Water] !PStreams!Stable Liquid!Phase	ases!Total!Proper	Active False rties!Std Liquid Volumetric Floring ion!Volumetric Fraction!Water
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue nit ourceMoniker alue nit	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Soluti Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Pha Variable [Water] !PStreams!Stable Liquid!Phase	ases!Total!Proper	Active False ties!Std Liquid Volumetric Floring ion!Volumetric Fraction!Water
Upper Bound Step Size Is Minimizer Algorithm Icemarks Icesidual Error (for Compared Moniker Icelanit Icenary Cource Moniker Icelanit Icenary Cource Moniker	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp South Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase er Properties Iterations	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Floring Inc. ion!Volumetric Fraction!Water us: Solved 13
Upper Bound Step Size Is Minimizer Algorithm Lemarks Lesidual Error (for CoourceMoniker falue Init Error Calculated Value	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Son 1 Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1] PStreams!Produced Water!Phase Variable [Water] PStreams!Stable Liquid!Phase Iterations Max Iterations	ases!Total!Proper	False Tries!Std Liquid Volumetric Floring Inc. ion!Volumetric Fraction!Water us: Solved 13 20
Upper Bound Step Size Is Minimizer Algorithm Lemarks Lesidual Error (for CoourceMoniker alue Init Error Calculated Value Lower Bound	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Sort Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase er Properties Iterations Max Iterations Weighting	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Floring Incomply Columetric Fraction!Water ion!Volumetric Fraction!Water us: Solved 13 20 1
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C GourceMoniker 'alue Init Error Calculated Value Lower Bound Upper Bound Upper Bound	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Son 1 Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase er Properties Iterations Max Iterations Weighting Priority	ases!Total!Proper	Active False Titles!Std Liquid Volumetric Floring Incomplete Inco
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Juit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Sort Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase Properties Iterations Max Iterations Weighting Priority Solver Active	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Floring Incomply Columetric Fraction!Water ion!Volumetric Fraction!Water us: Solved 13 20 1
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C GourceMoniker 'alue Unit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp South Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm sgpm sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase Properties Iterations Max Iterations Weighting Priority Solver Active Group	ases!Total!Proper	Active False Ties!Std Liquid Volumetric Florities!Std Liquid
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Sort Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase Properties Iterations Max Iterations Weighting Priority Solver Active	ases!Total!Proper	Active False Titles!Std Liquid Volumetric Floring Incomplete Inco
Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C ourceMoniker alue nit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 2985.21 bbl/d ProMax:ProMa 85.9996	sgpm sgpm False Default Simp Sort Calculate x!Project!Flowsheets!Flowsheet1 Measured x!Project!Flowsheets!Flowsheet1 Solve -5.09198E-06 87.0686 sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] !PStreams!Produced Water!Phase Variable [Water] !PStreams!Stable Liquid!Phase Properties Iterations Max Iterations Weighting Priority Solver Active	ases!Total!Proper	Active False Titles!Std Liquid Volumetric Floring Incomplete Inco

Officiation mittated on 2	/4/2010 12.20.37 FW	WE049_100	7/8 COIII_2.4.20 To.pmx		rage i
		User Valu	ıe Sets Report		
Client Name:	EQT			Job: Low P	Pressure Tower
ocation:	WEU 49 100% (Contingency			
		Cn+	Flow/Frac.		
			ie [CnPlusSum]		
Parameter		73.8416 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value S	Set was programmat	ically generated. GUID={E867C4	85-3D3C-49CB-BC24-EA16	6096DB2B1}	
		Tan	k Losses		
			e [ShellLength]		
Parameter Lower Bound		20 ft 0 ft	Upper Bound * Enforce Bounds		False
Lower bound		U IÍ	Eniorce bounds		raise
		User Val	ue [ShellDiam]		
Parameter		12 ft	Upper Bound		
Lower Bound		0 ft	* Enforce Bounds		False
Description			ie [BreatherVP]		
Parameter Lower Bound		0.03 psig	Upper Bound * Enforce Bounds		False
201101 200110			21110100 2001100		. 4.00
		User Value	e [BreatherVacP]		
Parameter		-0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Hear Value	e [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
		User Va	lue [OpPress]		
Parameter Lower Bound		0 psig	Upper Bound * Enforce Bounds		False
Lower Bound			Efficied Bouries		T disc
		User Value	[AvgPercentLiq]		
Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
		Hear Value	[MaxPercentLiq]		
Parameter		90 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			ue [AnnNetTP]		
Parameter Lower Bound		3457.98 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds		False
Lower Bouria		U DDI/day	Linoide Dounds		i disc
		User V	alue [OREff]		
Parameter		0 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
		11	- [Atm D=======1		
Parameter		14.1085 psia	e [AtmPressure] Upper Bound		
Lower Bound		14.1000 psia	* Enforce Bounds		False
			•		

		USEI Vai	lue Sets Report			
lient Name:	EQT			Job: Low F	Pressure Tower	
ocation:	WEU 49 100% (Contingency				
		Usei	r Value [TVP]			
Parameter		0.352046 psia	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		User Value	e [AvgLiqSurfaceT]			
Parameter		57.7675 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Hear Value	[MaxLiqSurfaceT]			
Parameter		66.3119 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
			FT - 4 - 11			
Parameter		0.312395 lb/h	ue [TotalLosses] Upper Bound			
Lower Bound		0.312395 Ib/h	* Enforce Bounds		False	
			e [WorkingLosses]			
Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	
Lower Bound		ton/yi	Eniorce Bounds		raise	
		User Value	[StandingLosses]			
Parameter		0 ton/yr	Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
		Hear Value	e [RimSealLosses]			
Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
Dorometer			E [WithdrawalLoss] Upper Bound			
Parameter Lower Bound		0 ton/yr	* Enforce Bounds		False	
		User Value	e [LoadingLosses]			
Parameter		0 lb/h	Upper Bound		Foloo	
Lower Bound		lb/h	* Enforce Bounds		False	
		User Value	[DeckFittingLosses]			
Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Hear Value	[DockSoaml cocce]			
Parameter		0 ton/yr	[DeckSeamLosses] Upper Bound			
Lower Bound		0 (0)11/1	* Enforce Bounds		False	
Doromatar			e [FlashingLosses]			
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	
		User Value	e [GasMoleWeight]			
Parameter		0.0256078 kg/mol	Upper Bound		F.1.	
Lower Bound			* Enforce Bounds		False	

ProMax 3.2.12198.0 Copyright © 2002-2012 BRE Group, Ltd.

From Block

To Block

5

VSSL-100

4

VSSL-100

3

MIX-100

VSSL-100

Process Streams Report All Streams

Tabulated by Total Phase

Client Name:	EQT	Job:	
Location:	WEU 49 Blowdown Tank		
Flowsheet:	Flowsheet1		

Connections

WEU 49 Pad

Condensate

MIX-100

Produced

Water

MIX-100

	Stream C	omposition			
	Produced Water	WEU 49 Pad Condensate	3	4	5
Mole Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	11.09 *	0.681199	31.7665	0.00738634
Carbon Dioxide	0 *	0.102 *	0.00626531	0.281957	0.000289342
Ethane	0 *	8.288 *	0.509087	22.623	0.0297413
Propane	0 *	7.164 *	0.440046	17.0913	0.0791094
i-Butane	0 *	2.232 *	0.1371	4.20264	0.048974
n-Butane	0 *	5.433 *	0.33372	8.92652	0.14746
i-Pentane	0 *	3.677 *	0.225858	3.56227	0.153537
n-Pentane	0 *	3.866 *	0.237467	3.0488	0.176528
Isohexane	0 *	4.668 *	0.28673	1.80814	0.253751
n-Hexane	0 *	4.11 *	0.252455	1.19369	0.232053
2,2,4-Trimethylpentane	0 *	0.031 *	0.00190416	0.00344008	0.00187087
Benzene	0 *	0.234 *	0.0143734	0.0659843	0.0132546
Heptane	0 *	12.522 *	0.769159	1.28232	0.758035
Toluene	0 *	0.939 *	0.0576777	0.0829813	0.0571292
Octane	0 *	14.608 *	0.89729	0.487975	0.906163
Ethylbenzene	0 *	0.127 *	0.00780092	0.00362186	0.00789151
o-Xylene	0 *	1.159 *	0.0711911	0.0249805	0.0721928
Nonane	0 *	7.352 *	0.451594	0.08128	0.459621
Decane	0 *	12.398 *	0.761542	0.0451694	0.77707
Water	100 *	0 *	93.8575	3.41746	95.8179

	Produced	WEU 49 Pad	3	4	5
	Water	Condensate			
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	2.12587 *	0.495623	13.6495	0.00545611
Carbon Dioxide	0 *	0.0536389 *	0.0125053	0.332358	0.000586327
Ethane	0 *	2.97785 *	0.694253	18.2199	0.0411777
Propane	0 *	3.77472 *	0.880034	20.1858	0.160622
i-Butane	0 *	1.55013 *	0.361397	6.54246	0.131066
n-Butane	0 *	3.77324 *	0.879691	13.8963	0.394639
i-Pentane	0 *	3.16997 *	0.739045	6.88386	0.510065
n-Pentane	0 *	3.33291 *	0.777033	5.89162	0.586443
Isohexane	0 *	4.8067 *	1.12063	4.17343	1.00687
n-Hexane	0 *	4.23212 *	0.986674	2.75519	0.920772
2,2,4-Trimethylpentane	0 *	0.0423126 *	0.00986472	0.0105249	0.00984012
Benzene	0 *	0.218407 *	0.0509192	0.138049	0.0476723
Heptane	0 *	14.9928 *	3.49541	3.4415	3.49742
Toluene	0 *	1.03381 *	0.241021	0.204785	0.242371
Octane	0 *	19.9388 *	4.64851	1.49296	4.7661
Ethylbenzene	0 *	0.161108 *	0.0375607	0.0102989	0.0385766
o-Xylene	0 *	1.47027 *	0.342778	0.0710329	0.352905
Nonane	0 *	11.2671 *	2.62681	0.279213	2.71429
Decane	0 *	21.0782 *	4.91416	0.172135	5.09087
Water	100 *	0 *	76.6861	1.649	79.4823

	Produced	WEU 49 Pad	3	4	5
	Water	Condensate			
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	1.37868 *	1.37868	1.36405	0.0146321

Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job: Location: WEU 49 Blowdown Tank

Flowsheet: Flowsheet1

	Produced	WEU 49 Pad	3	4	5
Mass Flow	Water lb/h	Condensate lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0 *	0.0347863 *	0.0347863	0.0332139	0.0015724
Ethane	0 *	1.93121 *	1.93121	1.82078	0.11043
Propane	0 *	2.448 *	2.448	2.01725	0.430754
i-Butane	0 *	1.0053 *	1.0053	0.653813	0.351491
n-Butane	0 *	2.44705 *	2.44705	1.38872	1.05833
i-Pentane	0 *	2.05581 *	2.05581	0.687931	1.36788
n-Pentane	0 *	2.16148 *	2.16148	0.588772	1.57271
Isohexane	0 *	3.11728 *	3.11728	0.417067	2.70021
n-Hexane	0 *	2.74464 *	2.74464	0.275337	2.46931
2,2,4-Trimethylpentane	0 *	0.0274408 *	0.0274408	0.0010518	0.026389
Benzene	0 *	0.141643 *	0.141643	0.0137958	0.127847
Heptane	0 *	9.72324 *	9.72324	0.343923	9.37932
Toluene	0 *	0.670452 *	0.670452	0.0204649	0.649987
Octane	0 *	12.9308 *	12.9308	0.149198	12.7816
Ethylbenzene	0 *	0.104483 *	0.104483	0.00102921	0.103454
o-Xylene	0 *	0.953512 *	0.953512	0.00709859	0.946413
Nonane	0 *	7.30704 *	7.30704	0.0279028	7.27913
Decane	0 *	13.6698 *	13.6698	0.0172021	13.6526
Water	213.319 *	0 *	213.319	0.164791	213.154

Stream Properties							
Property	Units	Produced Water	WEU 49 Pad Condensate	3	4	5	
Temperature	°F	85 *	85 *	85.2654	79.6854	79.6854	
Pressure	psia	407.696 *	321.696 *	321.696	14.6959 *	14.6959	
Mole Fraction Vapor	%	0	4.04224	0.206284	100	0	
Mole Fraction Light Liquid	%	100	95.9578	5.89431	0	4.1814	
Mole Fraction Heavy Liquid	%	0	0	93.8994	0	95.8186	
Molecular Weight	lb/lbmol	18.0153	83.6887	22.0492	37.3356	21.7179	
Mass Density	lb/ft^3	62.1455	31.188	51.2531	0.0958949	57.1012	
Molar Flow	lbmol/h	11.841	0.774928	12.6159	0.267664	12.3483	
Mass Flow	lb/h	213.319	64.8527	278.172	9.99339	268.178	
Vapor Volumetric Flow	ft^3/h	3.43257	2.07941	5.4274	104.212	4.69654	
Liquid Volumetric Flow	gpm	0.427957	0.259252	0.676663	12.9927	0.585543	
Std Vapor Volumetric Flow	MMSCFD	0.107843	0.00705775	0.114901	0.00243778	0.112463	
Std Liquid Volumetric Flow	sgpm	0.42644 *	0.199448 *	0.625888	0.0425526	0.583335	
Compressibility		0.0202195	0.147682	0.0236652	0.988522	0.000965675	
Specific Gravity		0.996417			1.2891	0.915538	
API Gravity		9.96415				22.2694	
Enthalpy	Btu/h	-1.45326E+06	-62878.5	-1.51614E+06	-12145.5	-1.50399E+06	
Mass Enthalpy	Btu/lb	-6812.63	-969.559	-5450.38	-1215.35	-5608.19	
Mass Cp	Btu/(lb*°F)	0.981529	0.522577	0.875159	0.423509	0.884263	
Ideal Gas CpCv Ratio		1.32512	1.0633	1.25922	1.14462	1.26452	
Dynamic Viscosity	cP	0.833816			0.00903325	0.765717	
Kinematic Viscosity	cSt	0.837605			5.88068	0.821429	
Thermal Conductivity	Btu/(h*ft*°F)	0.353848			0.0126736	0.275946	
Surface Tension	lbf/ft	0.00492858				0.00399843 ?	
Net Ideal Gas Heating Value	Btu/ft^3	0	4265.11	261.983	1932.24	225.778	
Net Liquid Heating Value	Btu/lb	-1059.76	19184.8	3660.04	19489.1	3070.18	
Gross Ideal Gas Heating Value	Btu/ft^3	50.31	4603.87	330.01	2106.31	291.507	
Gross Liquid Heating Value	Btu/lb	0	20720.9	4830.84	21258.4	4218.69	

Officiation militated on 2/10/	2013 12.00.771 W	VVLO	43_DIOWGOWII Talik_2.10	3.2013.pmx			1 age 1 of 1
			Blocks MIX-100 Mixer/Splitter Rep	ort			
Client Name:	EQT				Job:		
Location:	WEU 49 Blowdown	Tank			Modified: 2:	14 PM, 7/24/20	14
Flowsheet:	Flowsheet1					olved 12:02 PM, 2/18/2015	
	Connections						
Stream	Connection	Type Other B	lock	Stream	Connecti	on Type	Other Block
Produced Water	Inlet	•		NEU 49 Pad Condensate	Inle	et	
3	Outlet	VSSL-	100				
			Block Paramet	ters			
Pressure Drop		0 psi	Frac	ction to PStream 3			100 %
Remarks							

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job:
Location:	WEU 49 Blowdown Tank	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 12:02 PM, 2/18/2015

Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet						

Block Parameters						
Pressure Drop	307 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	2.12163 %	Heat Duty	0 Btu/h			
Mole Fraction Light Liquid	4.09268 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	93.7857 %	Heat Release Curve Increments	5			

Eı			Job:		
Eı					
	nvironme	ent Settings			
0		Freeze Out Temperatu	re	10 °F	
		Threshold Difference			
77 °F		Phase Tolerance		1 %	
		Component Name			Phase
					Initiator
					False
		Water		False	True
False	False				
	cal Prope	erty Method Sets			
COSTALD		Overall Package		Peng-Robinso	
	n			Peng-Robinson Peng-Robinson Peng-Robinson	on
	ry's Law mponent False	ry's Law Phase Initiator False	Components ry`s Law Phase Initiator False False False Benzene False False Toluene False False Toluene False False Ethylbenzene False False Ethylbenzene False False Nonane False False Decane False False Water	Components ry's Law Phase Component Name Initiator False False Benzene False False Heptane False False Toluene False False Octane False False Ethylbenzene False False Decane False False Water	Components ry's Law Phase Component Name Henry's Law Component False False Benzene False False False Heptane False False False Toluene False False False Doctane False False False Ethylbenzene False False False False Doctane False

Simulation Initiated on 2/18	/2015 12:06:44 PM	WEU49_Blow	down Tank_2.18.2015.pmx		Page 1 c
		Calcu	lator Report		
Client Name:	EQT			Job:	
ocation:	WEU 49 Blowdown Tank				
		C:	ala Calman 4		
			ole Solver 1 urce Code		
Residual Error (for C	:V1) = TP / 20 - 1	30	urce Code		
CSIGGAI ETTOT (TOT C	VI) = 11 / 20 · 1				
		Calculate	d Variable [CV1]		
SourceMoniker	ProMax:ProMax!Project!Flo Volumetric Flow	wsheets!Flowsheet1	!PStreams!WEU 49 Pad Conde	ensate!Phas	ses!Total!Properties!Std Liquid
/alue	6.83823				
Jnit	bbl/d				
		Measure	ed Variable [TP]		
ourceMoniker		wsheets!Flowsheet1	!PStreams!5!Phases!Total!Prop	erties!Std	Liquid Volumetric Flow
'alue	20.0001				
Jnit	bbl/d				
			er Properties		Status: Solved
Error	3.66029		Iterations		8
Calculated Value	0.19	9448 sgpm	Max Iterations		20
Lower Bound		sgpm	Weighting		1
Upper Bound		sgpm	Priority		0
Step Size		sgpm	Solver Active		Active
Is Minimizer		False	Group		
Algorithm	D	efault	Skip Dependency Chec	k	False
Remarks					
		Sim	ole Solver 2		
		So	urce Code		
Residual Error (for C	V1) = LF /73 - 1				
		Calculate	d Variable [CV1]		
SourceMoniker Zalue	14.6208			ases!Total!	Properties!Std Liquid Volumetric Flo
Jnit	bbl/d				
			ed Variable [LF]		
SourcoMonikor	DroMay:DroMayIDrojactIEIa	webootelEloweboot1	IDStroome FIDhacae Total Com	naaitianICt	d Liquid Volumetric Fraction Mater

weasi	urea	varia	pie	լեր	ı

SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water
Value	73.0472
Unit	%

	Solve	er Properties	Status: Solved
Error	0.000646915	Iterations	8
Calculated Value	0.42644 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

		User Va	alue Sets Report	
Client Name:	EQT		Job:	
Location:	WEU 49 Blowdov	wn Tank		
		C	n+ Flow/Frac.	
+ D .			alue [CnPlusSum]	
* Parameter Lower Bound		6.61055 lb/h lb/h	Upper Bound * Enforce Bounds	False
Lower Bouria		ID/II	Efficice Bourius	False
Remarks This User Value Set	was programmati	cally generated. GUID={E867	'C485-3D3C-49CB-BC24-EA16096DB2B	51}
		_	ank Losses	
<u> </u>			alue [ShellLength]	
* Parameter * Lower Bound		10 ft 0 ft	Upper Bound * Enforce Bounds	False
Lower Bound		Ο π	Enforce Bounds	False
		Lleer V	Johns [ChallDiam]	
* Doromotor			/alue [ShellDiam]	
* Parameter * Lower Bound		10 ft 0 ft	Upper Bound * Enforce Bounds	False
Lower Bound		0 11	Efficice Bourius	i aise
		Hear V	alua [Proother\/D]	
* Danamatan			alue [BreatherVP]	
* Parameter Lower Bound		0.03 psig	Upper Bound * Enforce Bounds	False
Lower Bound			Efficice Boulius	i dise
		Hear Val	lue [BreatherVacP]	
* Parameter		-0.03 psig	Upper Bound	
Lower Bound		-0.03 psig	* Enforce Bounds	False
Zower Bound			Emoros Bourido	1 4100
		Hear Va	lue [DomeRadius]	
Parameter		ft	Upper Bound	ft
Lower Bound		ft	* Enforce Bounds	False
Lower Bound		T.	Emerce Bearing	i dioo
		Hear V	Value [OpPress]	
* Parameter		0 psig	Upper Bound	
Lower Bound		0 psig	* Enforce Bounds	False
201101 200110			2	. 4.00
		Hear Vali	ue [AvgPercentLiq]	
* Parameter		50 %	Upper Bound	
Lower Bound		<u> </u>	* Enforce Bounds	False
				: , , , , , , , , , , , , , , , , , , ,
		Hear Vali	ue [MaxPercentLiq]	
* Parameter		90 %	Upper Bound	
Lower Bound		%	* Enforce Bounds	False
201101 200110		~	2	. 4.00
		Hear V	/alue [AnnNetTP]	
* Parameter		19.8551 bbl/day	Upper Bound	
* Lower Bound		0 bbl/day	* Enforce Bounds	False
		- Donady		. 6.60
		Heat	r Value [OREff]	
* Parameter		0 %	Upper Bound	
Lower Bound		<u> </u>	* Enforce Bounds	False
		Hear Va	lue [AtmPressure]	
* Parameter		14.1085 psia	Upper Bound	
Lower Bound		14.1000 psia	* Enforce Bounds	False

		User Va	lue Sets Report		
Client Name:	EQT			Job:	
Location:	WEU 49 Blowdo	own Tank			
		Hos	· Value ITVDI		
* Parameter		0.596697 psia	r Value [TVP] Upper Bound		
Lower Bound		0.090091 psia	* Enforce Bounds		False
		User Value	e [AvgLiqSurfaceT]		
* Parameter		57.7675 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
			lue [TotalLosses]		
* Parameter Lower Bound		0.010877 lb/h	Upper Bound * Enforce Bounds		Falsa
Lower Bound		lb/h	* Enforce Bounds		False
		Heer Velv	o DA/outsingst accord		
* Parameter		0.0476412 ton/yr	e [WorkingLosses] Upper Bound		
Lower Bound		0.0476412 ton/yr	* Enforce Bounds		False
Lower Boaria		tonyi	Efficiee Bounds		1 4130
		User Value	e [StandingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
		· ·			
		User Valu	e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
* Dana a a la a			e [LoadingLosses]		
* Parameter Lower Bound		0.00959524 lb/h lb/h	* Enforce Bounds		False
Lower Bouria		10/11	Enlorce Bounds		raise
		Hear Value	[DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [FlashingLosses]		
* Parameter		0 ton/yr	Upper Bound		<u> </u>
Lower Bound			* Enforce Bounds		False
			- FO - M - L-24/ 1 1 / 2		
* D			e [GasMoleWeight]		
* Parameter Lower Bound		0.0320318 kg/mol	Upper Bound * Enforce Bounds		False
LOWEI DOUIIU			Enlorce Dounds		raise
Remarks					
	t was programmat	tically generated. GUID={B57Al	FC7E-AAE8-4873-921B-7B403	31991004}	

Attachment T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT T - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	NO_x		СО		VOC		SO_2		PM_{10}		PM _{2.5}		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S002)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S003)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S004)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S005)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S006)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (S007)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Truck Liquids Unloading (S016)					0.08	0.38							1.05	4.61
TEG (S019)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
Enclosed Combustion Unit (C017)	1.07	4.71	0.90	3.95	0.76	3.33	<0.01	0.03	0.02	0.09	0.02	0.09	1,639.14	7,719.44
Enclosed Combustion Unit (C018)	1.07	4.71	0.90	3.95	0.76	3.33	<0.01	0.03	0.02	0.09	0.02	0.09	1,639.14	7,719.44
Compressor Engine (S022)	0.42	1.85	0.88	3.85	0.29	1.29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	82.58	361.69
Line Heater (S023)	0.06	0.26	0.05	0.22	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01	87.82	384.67
TOTAL	3.19	13.95	3.20	14.01	1.89	8.44	<0.01	0.06	0.04	0.18	0.04	0.18	4,272.47	18,713.42

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S007)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Truck Liquids Unloading (S016)													<0.01	<0.01
TEG (S019)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C017)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.24	0.06	0.26
Enclosed Combustion Unit (C018)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.24	0.06	0.26
Compressor Engine (S022)	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.07
Line Heater (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
TOTAL	0.04	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.11	0.47	0.16	0.69

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit Registration for the WEU-49 natural gas production facility located in West Union, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.25473 and -80.78660.

The applicant estimates the increased potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 13.57 tpy Nitrogen Oxides (NO_x) = 13.97 tpy Particulate Matter (PM) = 8.08 tpy Sulfur Dioxide (SO₂) = 0.09 tpy Volatile Organic Compounds (VOC) = 9.57 tpy Formaldehyde = 0.07 tpy Hexane = 1.13 tpy Hazardous Air Pollutants (HAPs) = 1.20 tpy Carbon Dioxide Equivalents (CO₂e) = 21,124.30 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of February, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222