

Dominion Transmission, Inc.

Permit Modification Hastings Compressor Station

Pine Grove, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc.

March 2015

INTRODUCTION

Dominion Transmission, Inc. (Dominion) is submitting this application for permit modification to the West Virginia Department of Air Quality for the Hastings Compressor Station (Station) located in Wetzel County, West Virginia. The facility currently operates under Title V operating permit R30-10300006-2011, which was issued on July 11, 2011 to Dominion Transmission, Inc. and revised to reflect the addition of an emergency generator on November 27, 2012. Other related permits include the Rule 13 construction permits R13-2555B and R13-2870A.

The Hastings Compressor Station is a production facility and currently operates a triethylene glycol (TEG) dehydration unit to remove moisture from natural gas. This application addresses the proposed replacement of the dehydration unit, the associated reboiler, and the control device. The process equipment affected by this proposed modification is displayed below in Table 1: Equipment Table

Table 1. Equipment Table							
Emission Unit Name	Emission Unit ID						
Old Equi	ipment						
Natco Reboiler	005-05						
Natco Dehydration Unit	004-01						
Dehydration Unit Flare	DEHY						
Proposed New	v Equipment						
Reboiler 02	005-06						
Inegral Dehydration Unit	004-02						
QTI. Q50 Enclosed Combustion Device	DEHY1						

Table 1: Equipment Table

FACILITY DESCRIPTION

The Hastings Compressor Station is located off Route 20 in Pine Grove, Wetzel County, WV. The facility receives gas from nearby well sites and provides compression and dehydration of the gas. Hastings Compressor Station is classified as a production facility in its construction permit. The Title V operating permit for the site is aggregated with the nearby Mockingbird Hill Compressor Station and the Lewis Wetzel Compressor Station.

The Hastings Compressor Station currently consists of the follow equipment:

- Two (2) Cooper GMXE-6 engines each rated at 500 hp;
- One (1) Generac QT080 Auxillary Generator rated at 128 hp (80 kW);
- One (1) Natco Dehydration Unit rated at 7.5 MMscf/day;
- One (1) Natco Reboiler rated at 0.38 MMBtu/hr;
- One (1) Natco Heater rated at 10.0 MMBtu/hr;
- One (1) Dehydration Unit Flare rate at 73 scf/min; and
- Four (4) Tanks of various sizes for the storage of fluids.

The proposed modification would include the decommissioning of the Natco Dehydration Unit, the Natco Reboiler, and the Dehydration Unit Flare. To replace these units, Dominion is seeking approval to install:

- One (1) Inegral Dehydration Unit rated at 7.5 MMscf/day;
- One (1) Diverse Energy Systems Reboiler rated at 0.55 MMBtu/hr; and
- One (1) Questor Technologies Q50 Enclosed Combustion Device.

A process flow diagram is included in this application in Attachment D.

EXISTING PERMIT STATUS

The major source thresholds for the West Virginia Title V operating permitting program, WV 45CSR30, are 100 tons per year of any regulated air pollutant, 10 tons per year of single HAP or 25 tons per year of aggregate HAPs.

The aggregation of the Hastings Station, Mockingbird Hill Station, and Lewis Wetzel Station results in total Potential to Emit (PTE) that exceed the major source threshold for Nitrogen Oxides (NO_x), Volatile Organic Compounds (VOCs), Carbon Monoxide (CO) and the PSD threshold NOx and VOCs. The facility is also currently classified as a major source of Hazardous Air Pollutants (HAPs), with a PTE of 32.3 tpy of aggregate HAPs.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the Hastings Compressor Station and makes an applicability determination for each regulation based on activities conducted at the Station and the emissions of regulated air pollutants associated with this project. This review is presented to supplement and/or add clarification to the information provided in the WVDAQ permit modification forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to the Hastings Compressor Station are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The reboiler proposed in this application is an indirect heat exchanger that combusts natural gas. However, it is exempt from this regulation since the heat input capacity is less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Hastings Compressor Station are subject to this requirement. Based on the nature of the process at the compressor station, the presence of objectionable odors is unlikely and this project is not expected to impact the ability to comply with 45 CSR 04.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device proposed at the Hastings Compressor Station is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion devices shall not exceed 20 percent, except as provided by 6-4.4. Particulate matter emissions from these units will not exceed the levels calculated in accordance with 6-4.1.

Where:

PM_{allowable} (lb/hr) = F x Incinerator Capacity (tons/hr)

 $DEHY1-PM_{allowable}$ (lb/hr) = 86.09 lb/hr x 5.43 (F factor) x 1 ton/2000 lb = 0.23 tpy

Where 89.09 pounds per hour is the maximum mass flowrate of wet gas, 5.43 is the F factor. Based upon AP-42, the enclosed combustion device will comply with the allowable PM emission limit determined in accordance with 45 CSR6-4.

45 CSR 10 – To Prevent and Control Air Pollution From the Emission of Sulfur Oxides

The reboiler is an indirect heat exchanger that combusts natural gas but is exempt from this regulation since the heat input capacity is less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation And Operation of Stationary Sources of Air Pollutants

This permit modification is being submitted to the WVDAQ to seek authorization for the operation of replacement equipment at the Hastings Compressor Station.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

The potential emissions from equipment at the Hastings Compressor Station, when aggregated with the Lewis Wetzel Station and Mockingbird Hill Station, exceed the Prevention of Significant Deterioration (PSD) emission thresholds for NO₂ and VOCs. As such, the facility is a major source under PSD and any modifications must be reviewed to determine if they are considered major modifications under the 45 CSR 14. Per 45 CSR 14-2.74, a modification is considered to be major if it results in a net emission increase that would equal or exceed any of the following rates:

Pollutant	Pollutant Emission Rate (tons/year)
Carbon monoxide:	100 tpy
Nitrogen oxides:	40 tpy
Sulfur dioxide:	40 tpy
Particulate matter:	25 tpy
PM ₁₀ :	15 tpy
PM _{2.5} :	10 tpy of direct PM _{2.5} emissions
PM _{2.5} :	40 tpy of SO ₂ emissions
PM _{2.5} :	40 tpy of NO _X emissions (unless demonstrated not to be a PM _{2.5} precursor under subsection 2.66).
Ozone:	40 tpy of VOC or NO _X
Lead:	0.6 tpy
Fluorides:	3 tpy

Sulfuric acid mist:	7 tpy
Hydrogen sulfide (H ₂ S):	10 tpy
Total reduced sulfur (including H ₂ S):	10 tpy
Reduced sulfur compounds (including H ₂ S):	10 tpy

Per 45 CSR 14-3.4, the determination of whether a project is a major modification is a two-step process. A project is a major modification for a regulated pollutant if it causes two types of emissions increases -- a significant emissions increase (as defined in subsection 2.75), and a significant net emissions increase (as defined in subsections 2.46 and 2.74).

Emissions calculations used to determine the PTE's are included in the permit application as Attachment I. GRI GLY-CALC was utilized to determine the PTE levels for the glycol dehydration unit. Pursuant to guidance from the WVDAQ, a 20% increase is applied to the simulated PTEs to account for potential gas variability. AP-42 and 40 CFR 98 Subpart C emission factors are utilized to calculate the PTE from the reboiler.

The proposed modification results in the overall decrease in the PTEs for regulated air pollutants. Despite the increase to the reboiler heat input rating, the total changes result in a net decrease to existing PTEs. The current Title V operating permit for the Hastings Compressor Station does not include Greenhouse Gas Emissions. Potentials to Emit have been included for GHGs from each applicable source. For this reason, the proposed modification is being treated as an increase to PTEs, based upon the increase to GHGs. The following table shows the change to the potential to emit for the proposed changes:

Hastings Compressor Station Proposed Change to PTEs											
Emission Unit	Reboile	r 005-06	Dehydratio Process V 004-02	ents	Enclosed Coml	Total					
	lb/hr	tpy	lb/hr	tpy	lb/hr	hr tpy		tpy			
VOC's		0.01	-0.72	-3.15	-0.02	-0.11	-0.73	-3.24			
CO	0.04	0.16			-1.58	-6.92	-1.54	-6.76			
NOx	0.02	0.06			-0.25	-1.09	-0.24	-1.03			
PM ₁₀		0.008			-0.03	-0.13	-0.03	-0.13			
SO ₂						-0.01		-0.008			
CO ₂	64.34	281.80	173.27	758.92	69.84	305.88	307.44	1,346.60			
CH ₄	0.001	0.005	3.60	15.78	0.001	0.006	3.606	15.796			
N ₂ O	<0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.002			
Total HAPs			-0.74	-3.31	<0.001	<0.001	-0.74	-3.30			
Total CO ₂ e	64.398	282.23	400.23	979.55	69.91	306.19	534.54	1,567.97			

Since the proposed project does not cause a significant emissions increase, the proposed modification of the dehydration unit qualifies as a minor permitting action and is not subject to the requirements of this rule.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements codified in 40 CFR 60. A discussion of NSPS that could be reasonably anticipated to apply at the Station is provided in the Federal Regulatory Discussion. This project only impacts the dehydration unit at the Station and therefore, it has been determined that no NSPS requirements are triggered by the project.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Wetzel County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS). Therefore, this regulation would not apply to the Hastings Compressor Station.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

This Site does not qualify as a waste treatment, storage, and disposal facility and no hazardous waste will be burned at this Site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 codifies the requirements of the federal Title V operating permit program (40 CFR 70) for West Virginia. The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The PTEs of VOCs, NOx, and CO are above the corresponding major source thresholds. The Hastings Station, Lewis Wetzel Station, and Mockingbird Hill Station qualify as major sources under the Title V program. The submission of this permit modification application will serve as the application for modification for the facilities' Title V Operating Permit. An additional electronic copy of this application is included with this submission for distribution to the WVDAQ Title V Permitting Group.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The following NESHAP Rules are applicable to the proposed changes at the Hastings Compressor Station:

• 40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities. Additional discussion is provided in the federal discussion of this permit application.

FEDERAL REGULATIONS

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from certain affected facilities that commence construction, modification or reconstruction after August 23, 2011.

The proposed installation of the replacement dehydration unit neither involves installation of an affected facility as defined by Subpart OOOO, nor changes the facility status with respect to Subpart OOOO.

Similarly, no other NSPS are applicable to the proposed project.

40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

Dominion is seeking a federally enforceable permit limitation on the control of emissions from the dehydration unit. This is allowable under West Virginia State Rules since the issued permit will require that the enclosed combustion device is operational at all times that a vent stream is present from the glycol process unit. The issuance of a federally enforceable permit limitation on the glycol process vents supports maintaining the classification of the Hastings Compressor Station as an area source of HAPs. <u>The issuance of a federally enforceable permit limit on the control of emissions needs to be issued by October 15, 2015.</u>

An area source of HAPs is defined as a facility that has a PTE of less than 10 tons per year of any single HAP, and less than 25 tpy of aggregate HAPs. The Hastings Compressor Station has been determined to be an area source of HAPs, since a major source HAP determination is completed for each surface site. Despite the aggregation of the Hastings, Lewis Wetzel, and Mockingbird Hill facilities in the Title V Operating Permit, these facilities are considered separate surface sites under 40 CFR 63. For this reason, the Hastings Compressor Station qualifies as an area source facility that operates a 40 CFR 63 Section HH affected source, the dehydration unit.

The existing Title V Permit indicates that the Hastings Compressor Station is not located in an Urban-1 county, as defined in §63.761. The designation of a facility operating in a non-Urban county is made from data found in the 2000 US census. Since more recent census data has not become available since the issuance of this permit, there is no change to the urban classification of Pine Grove, West Virginia. Dominion has conducted the required analysis of PTE emissions from the affected source and determined that the facility is eligible to claim the benzene exemption under §63.764(e)(1)(ii), since the actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere is less than 0.90 megagrams. This applicability determination has been made utilizing controlled PTE values since Dominion is seeking a federally enforceable permit limitation that will require that all vapors from the glycol process unit be routed to the enclosed combustion device. The total benzene emissions for this proposed modification, as demonstrated in the GLY-CALC simulation provided as a part of this permit application, are 0.11 tons per year of benzene, which is equal to 0.10 megagrams of benzene. Since Dominion is claiming the benzene exemption under 63.764(e)(1)(ii), Dominion does not have to comply with control requirements for glycol dehydration unit process vents in 63.765.

Based upon this regulatory applicability analysis, Dominion is only required to comply with 63.772(b)(2) and conduct a determination of glycol dehydration unit flow rate or benzene emissions. This requires that Dominion makes a determination of actual average benzene or BTEX emissions from a glycol dehydration unit using an acceptable procedure under the Rule. This determination will be made using GRI GLY-CALC utilizing inputs that are representative of actual operating conditions. Records of actual natural gas throughput and actual average benzene emissions will be kept pursuant to 63.774(d)(1).

CAM Applicability Requirements Summary

40 CFR Part 64 applies to pollutant specific emissions at a major source. An applicability determination has been made as a part of this permit application.

The Hastings Compressor Station qualifies under 40 CFR §64.2(a) as a unit that is located at a major source that is required to obtain a Title V permit. The Station also is subject to an emissions limit or standard for an applicable pollutant (40 CFR §64.2(a)(1)), uses a control device to achieve compliance with an applicable limitation or standard (40 CFR §64.2(a)(2)), and the potential precontrol emissions of the applicable pollutant from the unit is greater than 100 tpy of VOCs.

The Hastings Compressor Station, however, is exempt from the requirements of 40 CFR Part 64 since §64.2(b)(i) states that the requirements of Part 64 do not apply if, *"Emission limitations or standards proposed by the Administrator after November 15, 1990 pursuant to section 111 or 112 of the Act."* The Hastings Compressor Station currently operates under Title V Permit R30-10300006-2011, where CAM rule non-applicability was determined during the Title V operating permit renewal application. The proposed modifications included in this permit application will not have an effect on the CAM applicability for the Hastings Compressor Station.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)							
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN) CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	 □ ADMINISTRATIVE AMENDMENT □ MINOR MODIFICATION □ SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION 							
(Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.								
 Name of applicant (as registered with the WV Secretary of S Dominion Transmission, Inc. 								
3. Name of facility (if different from above):	4. The applicant is the:							
Hastings Compressor Station	🗆 OWNER 🗌 OPERATOR 🖾 BOTH							
Currently, the Hastings Compressor Station Title V Per the emissions from the Hastings Compressor Station, I Station, and the Lewis Wetzel Compressor Station. This application is for a modification proposed at the Hastin Station.	Mockingbird Hill s permit							
5A. Applicant's mailing address:	5B. Facility's present physical address:							
445 West Main Street Clarksburg, WV 26301	P.O. Box 450, Route 20 Pine Grove, WV 26419							
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 								
7. If applicant is a subsidiary corporation, please provide the na	me of parent corporation: Dominion Resources Inc.							
8. Does the applicant own, lease, have an option to buy or othe	erwise have control of the proposed site? XES DO							
- If YES, please explain: The applicant is the owner	of the site.							
 If NO, you are not eligible for a permit for this source. 								

 Type of plant or facility (stationary source) to be con administratively updated or temporarily permitted crusher, etc.): 	10. North American Industry Classification System (NAICS) code for the facility:								
Natural Gas Transmission Facility (Note: Hasting considered production equipment with regards to	486210								
11A. DAQ Plant ID No. (for existing facilities only): 103-00006	CSR30 (Title V) permit numbers existing facilities only):								
	1 – Updated Nov. 2012								
All of the required forms and additional information can be	found under the Permitting Section of DA	AQ's website, or requested by phone.							
12A.									
 For Modifications, Administrative Updates or Tele present location of the facility from the nearest state 		please provide directions to the							
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	rovide directions to the proposed new s	ite location from the nearest state							
From Clarksburg, take Rt. 20 North for 37 miles	to Hastings. The Station entrance is	on the left side of the road.							
,	J								
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:							
N/A	Pine Grove	Wetzel							
12.E. UTM Northing (KM): 4,377.66	12F. UTM Easting (KM): 528.64	12G. UTM Zone: 17							
13. Briefly describe the proposed change(s) at the facility									
The proposed changes at the facility include the replacement of the TEG Dehydration Unit (Emission Unit 004-01), Dehydration Unit Flare (Emission Unit 005-01), and the Natco Reboiler (Emission Unit 005-02). Proposed replacement equipment includes an Inegral TEG Dehydration Unit, and Diverse Energy Systems 550 RECON reboiler with a heat input rating of 0.55 MMBtu/hr, and a Questor Technologies Q50 enclosed combustion device with a heat input rating of 2 MMBtu/hr.									
14A. Provide the date of anticipated installation or change		14B. Date of anticipated Start-Up							
 If this is an After-The-Fact permit application, provi change did happen: N/A 	de the date upon which the proposed	if a permit is granted: October 15, 2015							
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit	•	units proposed in this permit							
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	activity/activities outlined in this applica Weeks Per Year 52	ation:							
16. Is demolition or physical renovation at an existing fac	cility involved? XES NO								
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed							
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.							

18	B. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the
	proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application
	(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this
	information as Attachment D.

-

Section II. Additional attachments and supporting documents.										
19. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and										
45CSR13).										
20. Include a Table of Contents as the first page of your application package.										
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 										
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 										
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and contr device as Attachment F.	ol									
23. Provide a Process Description as Attachment G.										
- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable	:).									
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by pho	ne.									
24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.										
 For chemical processes, provide a MSDS for each compound emitted to the air. 										
25. Fill out the Emission Units Table and provide it as Attachment I.										
26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.										
27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.										
28. Check all applicable Emissions Unit Data Sheets listed below:										
Bulk Liquid Transfer Operations Haul Road Emissions Quarry										
Chemical Processes Hot Mix Asphalt Plant Solid Materials Sizing, Handling and Storage										
Concrete Batch Plant Incinerator Facilities										
Grey Iron and Steel Foundry										
General Emission Unit, specify – Reboiler, TEG Dehydration Unit										
Fill out and provide the Emissions Unit Data Sheet(s) as Attachment L.										
29. Check all applicable Air Pollution Control Device Sheets listed below:										
□ Absorption Systems □ Baghouse ⊠ Flare										
Adsorption Systems Condenser Mechanical Collector										
Afterburner Electrostatic Precipitator Wet Collecting System										
☐ Other Collectors, specify N/A										
Fill out and provide the Air Pollution Control Device Sheet(s) as Attachment M.										
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.										
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .	t									
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.										

32. Public Notice. At the time that the appl	cation is submitted, place a Class I Legal A	Advertisement in a newspaper of general								
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal										
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.										
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?										
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.										
Secti	on III. Certification of Informat	tion								
34. Authority/Delegation of Authority. On Check applicable Authority Form below.		sponsible official signs the application.								
Authority of Corporation or Other Business	Entity	artnership								
Authority of Governmental Agency	Authority of Lir	mited Partnership								
Submit completed and signed Authority Form	n as Attachment R.									
All of the required forms and additional informa	tion can be found under the Permitting Section	on of DAQ's website, or requested by phone.								
35A. Certification of Information. To certify 2.28) or Authorized Representative shall check Certification of Truth, Accuracy, and Comp I, the undersigned ⊠ Responsible Official / application and any supporting documents ap reasonable inquiry I further agree to assume r stationary source described herein in accorda Environmental Protection, Division of Air Qual and regulations of the West Virginia Division of business or agency changes its Responsible notified in writing within 30 days of the official Compliance Certification Except for requirements identified in the Title Y that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	k the appropriate box and sign below. Deteness Authorized Representative, hereby cerp pended hereto, is true, accurate, and comples pended hereto, is true, accurate, and complex pended hereto, is true, accurate, accurate, and complex pended hereto, is true, accurate,	rtify that all information contained in this lete based on information and belief after on and/or relocation and operation of the nts thereto, as well as the Department of plication, along with all applicable rules eq. (State Air Pollution Control Act). If the irector of the Division of Air Quality will be								
35B. Printed name of signee: Brian Sheppar	35C. Title: Vice President, Pipeline Operations									
35D. E-mail: Brian.C.Sheppard@dom.com	36E. Phone: 304-627-3733	36F. FAX: 304-627-3323								
36A. Printed name of contact person (if differe	nt from above): Rebekah Remick	36B. Title: Air Specialist								
36C. E-mail: Rebekah.J.Remick@dom.com	36D. Phone: 804-273-3536	36E. FAX: N/A								

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED	WITH THIS PERMIT APPLICATION:							
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 							
	Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.							
FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:								
□ Forward 1 copy of the application to the Title V Permitting	Group and:							
□ For Title V Administrative Amendments:								
□ NSR permit writer should notify Title V permit write	r of draft permit,							
☐ For Title V Minor Modifications:								
Title V permit writer should send appropriate notifie	cation to EPA and affected states within 5 days of receipt,							
□ NSR permit writer should notify Title V permit write								
For Title V Significant Modifications processed in parallel v								
NSR permit writer should notify a Title V permit write	ter of draft permit,							
Public notice should reference both 45CSR13 and 1	Title V permits,							
EPA has 45 day review period of a draft permit.								
All of the required forms and additional information can be for	und under the Permitting Section of DAQ's website, or requested by phone.							

Table of Contents

- ATTACHMENT A BUSINESS CERTIFICATE
- ATTACHMENT B LOCATION MAP
- ATTACHMENT C SCHEDULE OF CHANGES
- ATTACHMENT D REGULATORY DISCUSSION
- ATTACHMENT E PLOT PLAN
- ATTACHMENT F DETAILED PROCESS FLOW DIAGRAMS
- ATTACHMENT G PROCESS DESCRIPTION
- ATTACHMENT I EQUIPMENT LIST FORM
- ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET
- ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET
- ATTACHMENT L EMISSIONS UNIT DATA SHEETS
- ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS
- ATTACHMENT O MONITORING, REPORTING, AND RECORDKEEPING PLAN
- ATTACHMENT P PUBLIC NOTICE
- ATTACHMENT S TITLE V PERMIT

Attachments H, Q, and R are not applicable to this application and are not provided.

Attachment A BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: DOMINION TRANSMISSION INC 445 W MAIN ST CLARKSBURG, WV 26301-2843

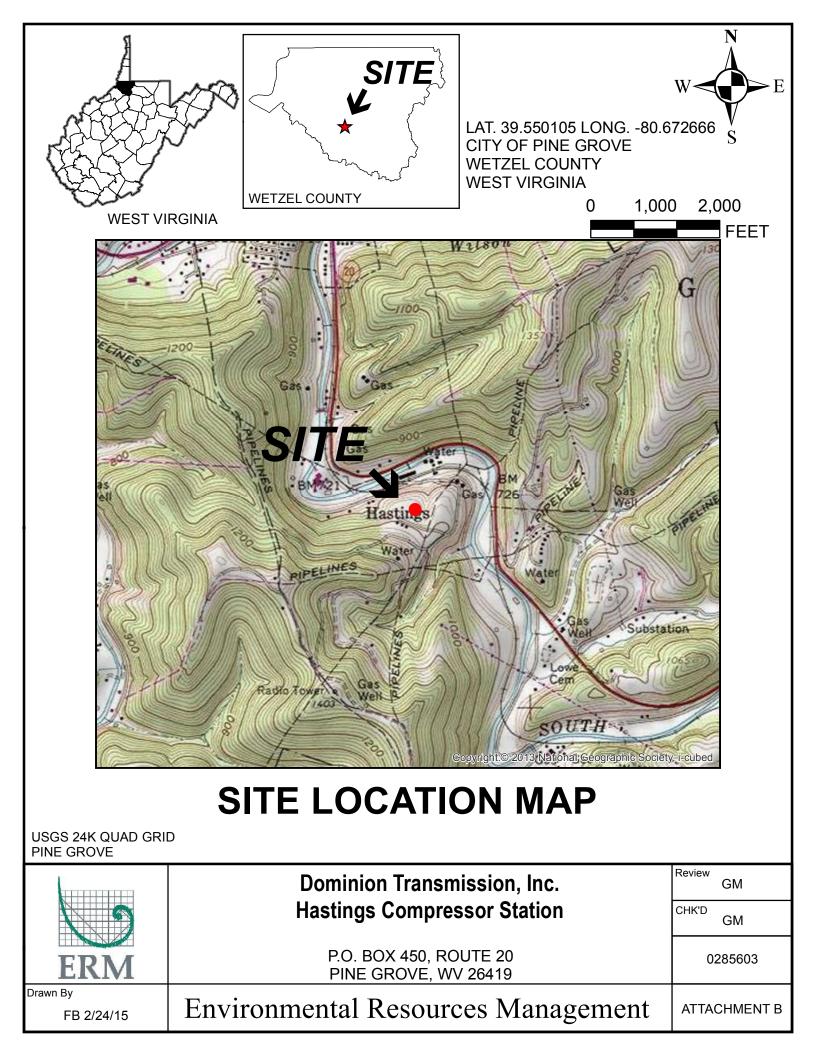
BUSINESS REGISTRATION ACCOUNT NUMBER:

1038-3470

This certificate is issued on: 06/8/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.


This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

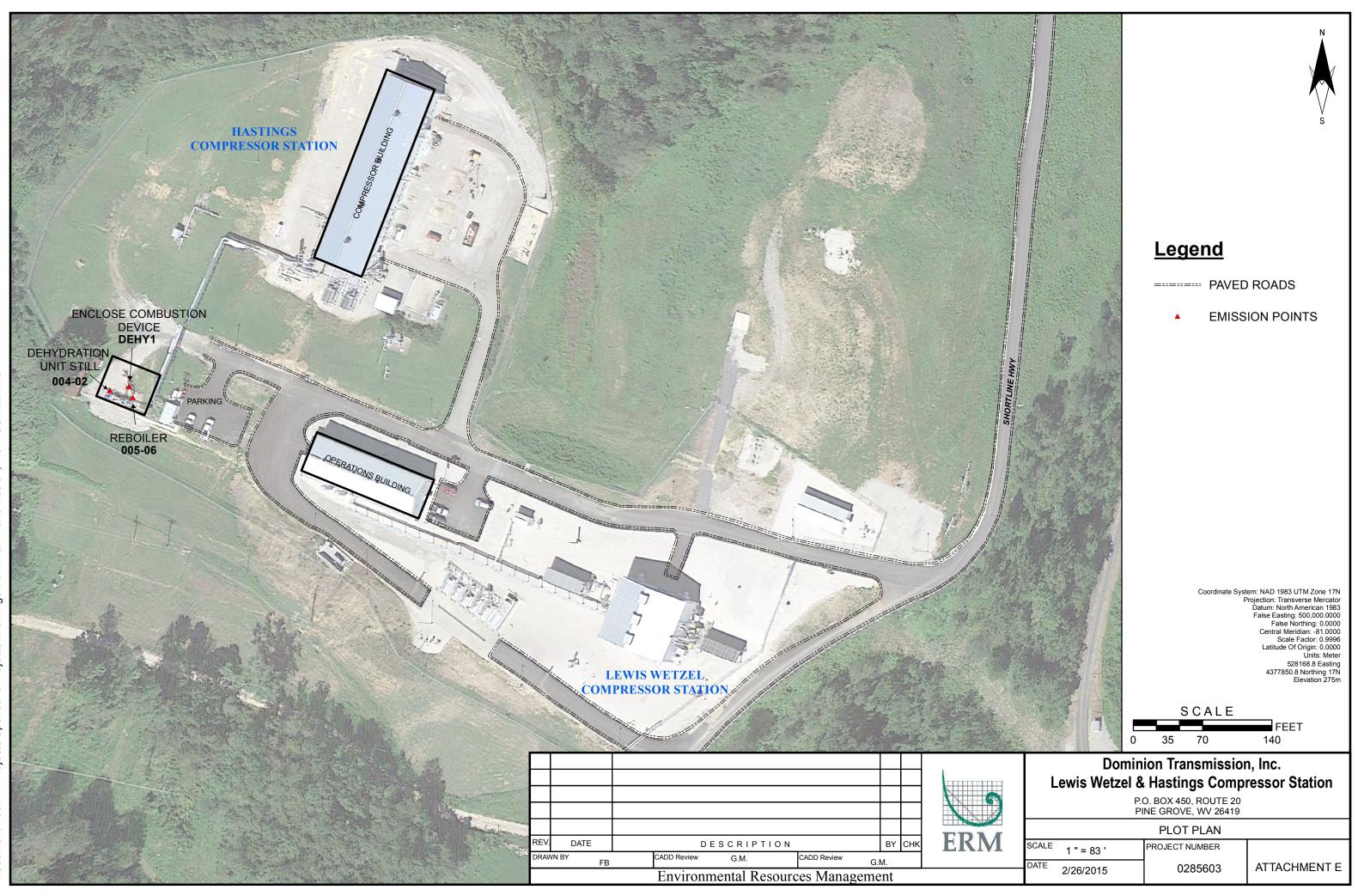
atL006 v.4 L0228957312

Attachment B LOCATION MAP

Attachment C

Schedule of Changes

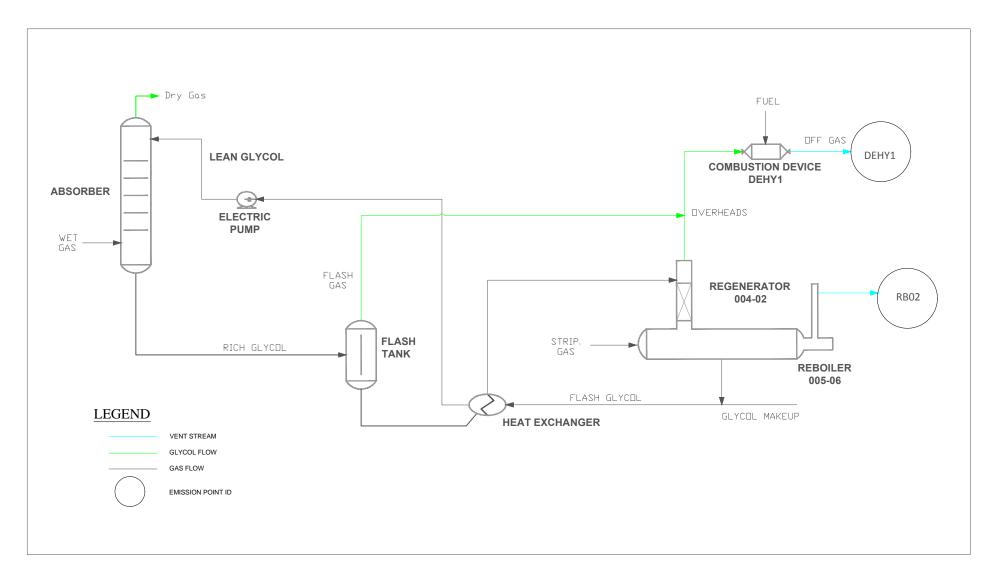
Attachment C Schedule of Changes


Dominion Transmission, Inc. proposes that the modification equipment be permitted to install and operate as soon as possible, but no later than October 15, 2015.

Attachment D REGULATORY DISCUSSION

Attachment D Regulatory Discussion

Dominion Transmission, Inc. has included a State and Federal Regulatory discussion in the introduction to this permit application.


Attachment E

Attachment F

DETAILED PROCESS FLOW DIAGRAM

Attachment F Detailed Process Flow Diagram

Attachment G PROCESS DESCRIPTION

Attachment G Process Description

This permit application is being filed for Dominion Transmission, Inc. to replace a dehydration unit at the Hastings Compressor Station. This process description discusses the gas dehydration at the Station.

The wet gas is first routed through an absorber, which uses lean glycol to remove water from the gas. Dry gas from the absorber leaves the station via pipeline. Rich glycol from the absorber flows to an uncontrolled flash gas tank and then to a heat exchanger. The exchanger transfers heat from both the flashed glycol and the Reboiler Heater (RB02) to the lean and makeup glycol stream. The flashed glycol continues to the Regenerator, which separates the overheads (moisture and any absorbed hydrocarbons) from the glycol. Overheads are released as off gas from the Dehy Unit and routed to the Enclosed Combustion Device (DEHY1) for incineration. Glycol leaving the Regenerator is pumped and returned to the absorber after passing through the heat exchanger.

A process flow diagram is included as Attachment F.

Attachment I EQUIPMENT LIST FORM

	Attachment I Emission Units Table (includes all emission units and air pollution control devices										
	that will	be part of this permit application	-								
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴					
004-02	DEHY1	Dehydration Unit Still	2015	7.5 MMscf/day	New	DEHY1					
005-06	RB02	Reboiler	2015	0.55 MMBtu/hr	New	N/A					
DEHY1	DEHY1	Enclosed Combustion Device	2015	32.8 Mscf/day	New	N/A					
004-01	DEHY	Dehydration Unit Still	1972	7.5 MMscf/day	Removal	DEHY					
005-02	RB01	Reboiler	1972	0.38 MMBtu/hr	Removal	N/A					
DEHY	DEHY	Flare	1972	73 acf/min	Removal N/A						
² For <u>E</u> mission ³ New, modifica	Points use the fo ation, removal	s) use the following numbering system:1S, 2 ollowing numbering system:1E, 2E, 3E, or ollowing numbering system: 1C, 2C, 3C, or	other appropria	te designation.	n.						

Attachment J

EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

Table 1: Emissions Data															
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Through (Must match	hission Unit Vented hrough This Point at match Emission Units Table & Plot Plan) Air Pollution Contr Device (Must match Emission Units Table Plot Plan)		evice at match Units Table &	ice for match Emission hits Table & Unit		All Regulated Pollutants - Chemical Name/CAS ³ (<i>Speciate VOCs</i> & <i>HAPS</i>)	Maximum Potential Uncontrolled Emissions ⁴		ial Maximum Potential Controlled Emissions ⁵		Form or Phase (At exit conditions , Solid,	Est. Method Used ⁶	Emission Concentrati on ⁷ (mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/Vapo r)		
DEHY1	Upward Vertical Stack	004-02, DEHY1	Dehydration Unit Still	DEHY1	DEHY1	NA	NA	Total VOCs Total HAPs Benzene Ethylbenzene Toluene Xylenes n-Hexane CO NOx PM ₁₀ SO ₂ CO ₂ CH ₄ N ₂ O CO ₂ e	32.75 4.48 0.40 0.04 1.19 2.24 0.61 <0.001 <0.001 <0.001 0.33 41.34 <0.001 1,033.74	143.44 19.61 1.75 0.18 5.21 9.80 2.67 <0.001 <0.001 <0.001 <0.001 1.47 181.05 <0.001 4,527.72	3.75 0.29 0.02 0.002 0.07 0.12 0.09 0.04 0.05 <0.001 243.10 3.60 <0.001 470.14	16.44 1.28 0.10 0.01 0.28 0.51 0.38 0.18 0.21 0.02 <0.001 1,064.80 15.79 0.001 1,285.75	Gas	GRI GLY CALC, 40 CFR 98	NA
RB02	Upward Vertical Stack	005-06	Reboiler	NA	NA	NA	NA	Total VOCs Total HAPs Hexane Formaldehyde Benzene Toluene Pb CO NOx PM ₁₀ SO ₂ CO ₂ CH ₄ N ₂ O Total CO ₂ e	0.003 0.001 0.001 <0.001 <0.001 <0.001 0.05 0.06 0.004 <0.001 64.34 0.001 <0.001 64.40	0.01 0.004 0.004 <0.001 <0.001 0.20 0.24 0.02 0.001 281.80 0.01 0.001 282.23	0.003 0.001 0.001 <0.001 <0.001 <0.001 0.05 0.06 0.004 <0.001 64.34 0.001 <0.001 64.40	0.01 0.004 0.004 <0.001 <0.001 <0.001 0.20 0.24 0.02 0.001 281.80 0.01 0.001 282.23	Gas	AP-42, 40 CFR 98	NA

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed

WVDEP-DAQ Revision 2/11

to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	ter Data			
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Exit Gas			Emission Point Elevation (ft)		UTM Coordinates (km)	
		Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
RB02	0.9	1,086	415.2	12.6	900	21	4,377.836	528.169
DEHY1	1.7	1465	1411	20.3	900	30	4,377.836	528.169

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	🗌 Yes 🛛 No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	🗌 Yes 🛛 No
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	🗌 Yes 🛛 No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes 🛛 No
1	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
•	🗌 Yes 🛛 No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	TYes No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

Attachment L EMISSION UNIT DATA SHEETS

		Manufacturer and Model		Ineg	gral
		Max Dry Gas F	low Rate (mmscf/day)	7.5 MMscf/day	
		Design Heat	Input (mmBtu/hr)	0.55 MMBtu/hr	
		Design Typ	be (DEG or TEG)	TEG	
	l Glycol	Sou	rce Status ²	New	
•	tion Unit ata	Date Installed/	Modified/Removed ³	October 2015	
		Regenerator	Still Vent APCD ⁴	T	0
		Fuel H	IV (Btu/scf)	1,2	36
		H ₂ S Cont	tent (gr/100 scf)	0 pj	pm
		Opera	tion (hrs/yr)	8,760	
Source ID # ¹	Vent	Reference ⁵ Potential Emissions ⁶		lbs/hr	tons/yr
	Reboiler Vent	AP-42	NO _X	0.05	0.23
		AP-42	СО	0.04	0.19
005-06		AP-42	VOC	0.003	0.01
		AP-42	SO_2	< 0.001	0.001
		AP-42	PM_{10}	0.004	0.02
		GRI-GLYCalc [™]	VOC	3.75	16.44
		GRI-GLYCalc [™]	Benzene	0.02	0.07
004-02	Glycol Regenerator	GRI-GLYCalc TM	Ethylbenzene	0.002	0.008
004-02	Still Vent	GRI-GLYCalc TM	Toluene	0.05	0.22
		GRI-GLYCalc TM	Xylenes	0.09	0.41
		GRI-GLYCalc TM	n-Hexane	0.02	0.10

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA	None	CD	Condenser
FL	Flare	CC	Condenser/Combustion Combination

TO Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

West Virginia Department of Environmental Protection

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

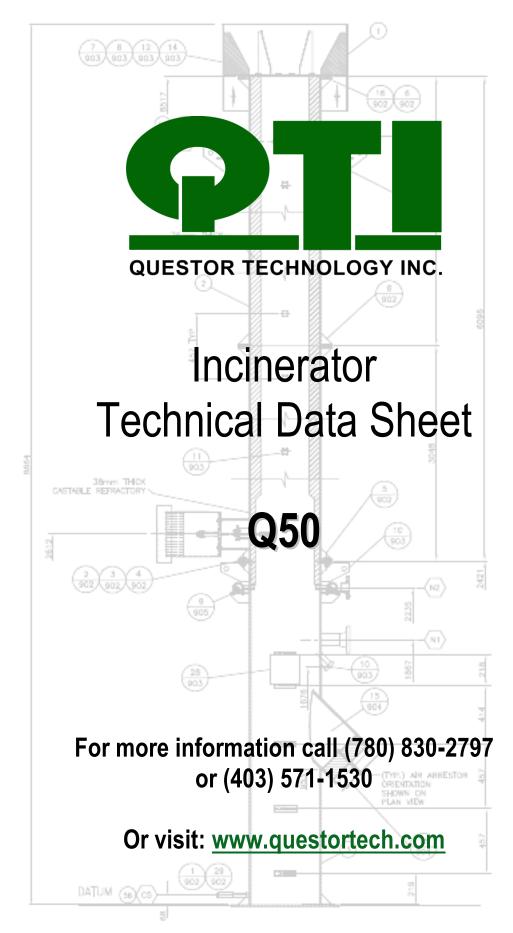
Section A: Facility Description				
Affected facility actual annual average natural gas throughput (scf/day): 7.5 MMscf/day				
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):				
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes	No		
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	No		
(NG) enters the NG transmission and storage source category or is delivered to the end user.				
The affected facility is:				
prior to the point of custody transfer and there is no NG processing plant				
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	No		
distribution company or to a final end user (if there is no local distribution company).				
The affected facility exclusively processes, stores, or transfers black oil.	Yes	<u>No</u>		
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees				
Section B: Dehydration Unit (if applicable) ¹				
Description: Inegral 7.5 MMscf/day Dehydration Unit				
Date of Installation: 2015 Annual Operating Hours: Burner rating (MI	Mbtu/hr):			
8,760 0.55 M	MBtu/hr			
Exhaust Stack Height (ft): 21 Stack Diameter (ft): 0.9 Stack Te	emp. (°F):	1,086		
Glycol Type: \square TEG \square EG \square Other:				
Glycol Pump Type: 🛛 Electric 🗌 Gas If gas, what is the volume ratio?	ACF	FM/gpm		
Condenser installed?	ressure	psig		
Incinerator/flare installed? Xes No Destruction Eff. <u>95</u> %				
Other controls installed? Yes No Describe:				
Wet Gas ² : Gas Temp.: <u>110</u> °F Gas Pressure <u>314.70</u> psig				
(Upstream of Contact Tower) Saturated Gas? Xes No If no, water conten	lt lb/	MMSCF		
Dry Gas: Gas Flowrate(MMSCFD) Actual Design _7.5 MMscf	/day			
(Downstream of Contact Tower) Water Content <u>7.0000</u> lb/MMSCF				
Lean Glycol: Circulation rate (gpm) Actual ³ Maximum ⁴ <u>3.0 gal/lb H2O</u>				
Pump make/model:				
Glycol Flash Tank (if applicable): Temp.: <u>150</u> °F Pressure <u>60</u> psig Vented? Y	es 🖂	No 🗌		
If no, describe vapor control:				
Stripping Gas (if applicable): Source of gas: Dry Gas Rate	<u>16.065</u> s	cfm		

 Please attach the following required dehydration unit information: System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream including mole percents of C₁-C₈, benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput. Detailed calculations of gas or hydrocarbon flow rate. 						
	Section C: Facility NESHAPS Subpart HH/HHH status					
	Subject to Subpart HH – Benzene Exemption Claimed					
Affected facility	Subject to Subpart HHH					
status:	\Box Not Subject \Box < 10/25 TPY					
(choose only one) because: Affected facility exclusively handles black oil						
	\Box The facility wide actual annual average NG throughput is < 650 thousand					
	scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					
	□ No affected source is present					

Attachment M

AIR POLLUTION CONTROL DEVICE SHEETS

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet


Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.						
		General II	formation			
1. Control Device ID#: DEHY	1. Control Device ID#: DEHY1 2. Installation Date: 2015 Xew					
3. Maximum Rated Total Flow 50,000 scf/d	Capacity:		esign Heat Input: /IBtu/hr	5. Design 588.3 I		ntent:
		Control Devi	ce Information			
6. Select the type	of vapor com	oustion control de	vice being used:	Enclosed C	ombustio	on Device
Elevated Flare	e 🗌 Ground H	Flare 🗌 Thern	nal Oxidizer	Completion C	ombusti	on Device
 Manufacturer: Questor Tec Model No.: Q50 	hnologies Inc.		8. Hours of oper 8,760	ation per year	:	
-	ion units whos		ontrolled by this va 004-02, DEHY1	por combustic	on contro	l device:
10. Emission Unit ID#	Emission So	ource Description	: Emission	Unit ID#	Emissi	on Source Description:
004-02	Dehydra	ation Unit Still				
DEHY1	Enclosed Co	ombustion Devic	e			
If this vapor combusto	or controls emi	ssions from more	than six emission u	nits, please at	tach ada	litional pages.
11. Ass	ist Type		12. Flare Height	13. Tip Di	ameter	14. Was the design per §60.18?
Steam - Air - H	Pressure - 🛛	Non -	~8 ft	20 in		Yes No
		Waste Gas	Information			
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions stre			Exit Velocity of the ssions stream (ft/s)
55,200 scf/d	Va	riable	70			
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	urned.	•	

	Pilot Information						
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic re- ignition be used?			
Pipeline quality Natural Gas	1	~50	0.03 MMBtu/hr	🗌 Yes 🛛 No			
25. If automatic re-ig	gnition will be used, describ	be the method:					
N/A	-						
26. Describe the met	thod of controlling flame:						
There are 3 flame of	cells to stop the main flan	ne front and two (2) 2" fla	me arrestors on the pip	ing from the drip pot to			
the burner assembly	y.						
27. Is pilot flame equipped with a monitor 28. If yes, what type? 🛛 Thermocouple 🗌 Infra-Red 🗌 Ultra Violet							
to detect the presence of the flame?							
	Camera with monitoring control room Other, describe:						
Xes Yes	No						

29. Pollutant(s) Controlled	30. % Capture Efficiency	 Manufacturer's Guaranteed Control Efficiency (%) 				
НС	100	>95				
VOC	100	>95				
НАР	100	>95				
32. Has the control device been tested by the manufa	cturer and certified?					
Pending Testing						
33. Describe all operating ranges and maintenance pr	rocedures required by the manufact	urer to maintain warranty:				
See Attached						
34. Additional Information Attached? XES NO						
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.						

*Dominion Transmission, Inc. has contacted Questor Technologies, Inc. regarding the maximum rated waste gas flow rate for the Q50 unit. QTI has informed Dominion that the 50,000 scf/day rating provided on the specification sheet is a methane-equivalent measurement. The unit will realize a higher capacity based upon the heat input characteristics of the waste gas stream. QTI is having this unit tested and the results are being submitted to the EPA for review and approval. The Q50 unit is expected to be a MACT HH/HHH certified control device and a maximum rated flow capacity will be published by the EPA.

Questor Technology Inc. – Operations - 8515,109 Street, Grande Prairie, Alberta, Office 780-830-2797 Questor Technology Inc. – Head Office - 1121, 940 6th Ave, Calgary, Alberta, Office 403-571-1530

Application	Imperial	Metric	
Maximum flow throughput	50,000 scf/d	1416 sm3/d	
Maximum heat throughput	2 MMBtu/h	2.11 GJ/h	
Operating temperature	1112° – 2192° F	600° – 1200° C	
Application	Various		
Input composition	As per design		
Output composition	As per design		
Fuel gas requirement	As per	^r design	
Waste gas pressure As per design			
Application Continuous		inuous	
Combustion efficiency	>99.99%		

Design Specifications	Imperial	Metric	
Total height	30 ft	9.14 m	
Total weight	10,000 lb	4,545 kg	
Foot print dimensions	5 ft x 6 ft	1,524 mm x 1,828 mm	
Foundation	Base bolted		
Support system	Free-standing: no guy wires		
Wind load	100 mph	160 km/h	
Air induction	Natural draft: no fans or blowers		
Power requirement	24 volt DC		

Burner Section	Imperial	Metric
Burner height	8 ft	2,438 mm
Burner Outer Diameter	20 in	508 mm
Burner material	A	36 CS
Burner wall thickness	0.5 in	12.7 mm
Air intakes with manual doors	Three (3)	
Dimensions (O.D.)	14 in	356 mm
Material	A36 CS	
Air intake arrestors	Three (3) STANDARD	
Material	Spiral wound aluminum	
Dimensions	4 in x 14 in	102 mm x 356 mm
Manufacturer	Black, Sivalls & Bryson	

Waste gas manifold dimensions	3 in	76 mm
Material	304 SS	
Manufacturer	Questor Technology	
Inline flame arrestor (Waste Gas)	One (1) S	TANDARD
Classification	3 in – 150 ANSI	76 mm - 150 ANSI
Dimensions	4 ½ in x 6 in	111 mm x 152 mm
Material	30	4 SS
Manufacturer	Black, Sivalls & Bryson	
Sour service ball valve (Waste Gas)	3 in	76 mm
Model	150 F	ull Port
Manufacturer	WKM DynaSeal	
Proximity switch	One (1)	
Model	LPS-DZ1NA2	
Manufacturer	TopWorx	
Fuel gas manifold dimensions	2 in	
Material	304 SS	
Manufacturer	Questor Technology	
Sight glass	galvanized	51 mm
Diameter	2 in	

Stack Section	Imperial	Metric
Stack height	20 ft	6.1 m
Stack O.D.	20 in	508 mm
Stack I.D.	13-¼ in	337 mm
Stack material	A36	CS
Stack wall thickness	0.5 in	12.7 mm
Wind shroud O.D.	34-3/8 in	873 mm
Material	A36 CS	
Lifting lugs material	A36	CS

Thermocouple ports	Two (2)
Manufacturer	Wika
Model	TC 10

Gas Supply Connections	Imperial	Metric
Pilot gas	1/4 in NPT	6 mm
Waste gas	3 in - RFWN	76 mm
Fuel gas	2 in - RFWN	51 mm

Pilot Gas Burner	Imperial	Metric
Burner control system	Profire	e 2100
Igniters	One	e (1)
Capacity	1200 scf/d	34 sm³/d
Operational pressure	8 psig	55.2 kPa

Fuel Gas Manifold	Imperial	Metric
Manifold material	304	SS
Nozzles	Fou	ır (4)
Operational pressure range	5-18 psig	34.5-124.1 kPa

Waste Gas Manifold	Imperial	Metric
Manifold material	304	SS
Nozzles	Fou	ır (4)
Operational pressure range	1-40 psig	7-276 kPa

Refractory Specifications	Imperial	Metric
Туре	26LI C	astable
Model	KAST-O-LIT	E 26 LI PLUS
Dimensions	3 in	76 mm
Manufacturer	APG	ireen
Maximum operating temperature	2600° F	1425° C

Paint Specifications	
Stack and base surface code	Steel Structures Painting Council
Preparation	SSPC-SP 5 - White Metal Blast Cleaning
Primer	Clovatherm Hi-Heat Resistant Zinc - 83220
Paint	Clovatherm Hi-Heat Resistant Enamel - 83225
Dry film thickness	2-4 mil
Base skid surface code	Steel Structures Painting Council
Preparation	SSPC-SP 6 - Commercial Blast Cleaning
Paint	Cloverdale Rustex 71029 Primer - Cloverdale 74 Enamel

Fuel Train	Imperial Metric
Fuel train classification	CSA B149.3 STANDARD - Class 1 Div. 2
CCS pressure switches	Тwo (2)
Model	6900GZE
Manufacturer	Custom Control Sensors Inc.
Operating pressure	1-18 psig 7-124.1 kPa
Fuel gas regulator	One (1)
Model	627-462
Manufacturer	Fisher
Fuel line code	A106B pipe / A105 fittings
Pilot gas regulator	One (1)
Model	67 CFR -362SC
Manufacturer	Fisher
Instrument air regulator	One (1)
Model	67 CFR – 362 SC
Manufacturer	Fisher

Main gas solenoids	Two (2)	
Model	HV285926 CSA Gas Approved	
Manufacturer	ASCO	
Pilot solenoid	Two (2)	
Model	HV287776 CSA Gas Approved	
Manufacturer	ASCO	
Temperature transmitter	One (1)	
Model	644	
Manufacturer	Rosemount	
Temperature control valve	One (1)	
Model	SMT 1400	
Manufacturer	Kimray	
Ball Valves	Two (2)	
Model	CF8M CSA Approved	
Manufacturer	Neo 2500 Series	
Tube valves manufacturer	Swagelok	
Tubing fittings manufacturer	Swagelok	
Tubing material	0.035 in (SS) 0.9 mm (SS)	
Tubing	Swagelok	
Gauges	2 ½" Dial, Stainless	
Model	WJ Series	
Manufacturer	Western Gauge	
Needle Valves		
Model	WN1412P	
Manufacturer	WGI	

Electrical	
Control panel classification	NEMA 4x (Hoffman)
Ignition panel classification	NEMA 4x (Hoffman)
Power requirements	24 VDC
Power Consumption	
Profire BMS	1.6 watts
ESD Solenoids (each)	12.1 watts
Pilot Solenoids (each)	4 watts
Electrical JBS	
Model	NEMA 4x
Manufacturer	Hoffman
Electrical Connectors	
Model	STX/STO 050-464
Manufacturer	Thomas and Betts
Terminal Blocks	
Model	SAK 6
Manufacturer	Weidmuller
Fuses	
Classification	Sand Filled fast acting
Model	GSD10
Manufacturer	Ferraz

Burner Management System				
Overview				
feed/vent) on the waste gas line. The status contact	vides an Emergency Stop Reset push button. The air			
System	Profire 2100			
Manufacturer	Profire Combustion Inc.			
BMS code	CSA, TSSA & UL			
Flame testing	Ionization loop			
Shutdown rate	3 seconds			
Remote operation	Start/Stop & ESD contact			
Instrument air code	ANSI/ISA S7.3			
Programmable	Purge times, auto restart & restart tries			
Display	Flame, Program, ESD, Display Window,			
	Auto & Manual Modes, Pilot, Ignite, Main			
Power requirements	24 VDC			
Optional – 24 VDC Power Supply				
Model	CP SNT 160W			
Manufacturer	Weidmuller			
	Single or 3-phase input option, 120/230/480VAC			

Table B-1 Section 60.18 Demonstration

Hastings Compressor Station				
Type Unassisted				
Throat Diameter (inches) 13.25				

		2300	scf/h
GLYCalc	INPUT	Compound Net	Mixture Net
	mole	Heating Value	Heating Value
Compound	percent	(Btu/scf)	(Btu/scf)
water	55.100	0	0.0
carbon dioxide	0.089	0	0.0
nitrogen	0.304	0	0.0
methane	34.000	913	310.4
ethane	5.000	1641	82.1
propane	2.110	2385	50.3
Isobutane	0.446	3105	13.8
n-butane	0.729	3113	22.7
Isopentane	0.237	3716	8.8
n-pentane	0.205	3709	7.6
cyclopentane	0.048	3516	1.7
n-hexane	0.088	4412	3.9
cyclohexane	0.048	4185	2.0
other hexanes	0.130	4870	6.3
heptane	0.183	4925	9.0
benzene	0.070	3601	2.5
toluene	0.176	4284	7.5
ethylbenzene	0.005	4977	0.3
xylene	0.289	4980	14.4
octane (C8+)	0.774	5804	44.9
hydrogen sulfide	0.000	596	0.0
TOTALS:	100		588.3

Assist gas requirements for nonassisted flare per 40 CFR 60.18(c)(3):

Minimum allowable net heating value	200	Btu/scf
Additional assist gas required	0.0	scfh
Assist (fuel) gas supplied - (From Flash Tank)	56.6	scfh
Composite net heating value	606.40	Btu/scf

Maximum allowable flare exit velocity (V_{max}) for nonassisted flare per 40 CFR 60.18(f)(5):

Lower (Net) Heating Value	Btu/scf	MJ/scm
(1000 Btu/scf = 37.3 MJ/scm)	588	21.9
Vmax = 10^[(LHV+28.2)/31.7] for Vmax in m/sec and LHV in MJ/scm	m/sec	ft/sec
(1 m = 3.28 ft)	39.9	130.8
Vmax limit based on 40 CFR 60.18(b)(4)(iii)	39.9	130.8

Actual flare exit velocity:

Total volumetric flow (vent gas + assist gas in scfh/3600 sec/hr) =	0.65	scf/sec
Total volumetric flow at 180F & atmospheric pressure =	0.85	cf/sec
Flare exit cross-sectional area based on throat diameter =	0.96	ft2
Velocity = volumetric flow / cross-sectional area =	0.9	ft/sec

Attachment N

SUPPORTING EMISSIONS CALCULATIONS

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Reboiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	0.003	0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	0.001	0.004
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	<0.001	<0.001
CO	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	0.05	0.20
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	0.06	0.24
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	0.004	0.02
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.55	1,000	8,760	<0.001	0.001
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.55	1,000	8,760	64.34	281.80
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.55	1,000	8,760	0.001	0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.55	1,000	8,760	<0.001	0.001
Total HAPs							0.001	0.004
Total CO ₂ e							64.40	282.23

Reboiler - Emission Unit 005-06

Notes:

-AP-42, Chapter 1.4 references are from the July 1998 revision.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Dehydrator Emissions - Emission Unit 004-02

	Max. Hourly Controlled Emissions	Max. Annual Controlled Emissions		
Pollutant	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
VOCs	25.43	111.40	1.27	5.57
HAPs	3.67	16.08	0.18	0.80
Benzene	0.33	1.45	0.02	0.07
Ethylbenzene	0.04	0.15	0.00	0.008
Toluene	0.99	4.32	0.05	0.22
Xylenes	1.86	8.15	0.09	0.41
n-Hexane	0.46	2.01	0.02	0.10
CO ₂	0.24	1.05	144.35	632.26
CH ₄	33.10	144.97	1.66	7.25
Total CO ₂ e	827.71	3,625.30	185.73	813.48

Regenerator	Overhead	Vent
-------------	----------	------

		-		
Gas Stream	Mole Fraction	Vent Gas Parameter	Flow Rate (scf/hr)	Destruction Efficiency
Methane	0.34	Regen. Overhead	2,300	0.95
Ethane	0.05			
Propane	0.02			
Butane	0.01			
Pentanes	0.004			
Carbon Dioxide	0.0008			

Flash Tank

Pollutant	Max. Hourly Uncontrolled Emissions (lb/hr)	Max. Annual Uncontrolled Emissions (tons/yr)	Max. Hourly Controlled Emissions (lb/hr)	Max. Annual Controlled Emissions (tons/yr)
VOCs	1.86	8.13	0.09	0.41
HAPs	0.06	0.27	0.003	0.01
Benzene	0.0001	0.01	0.0001	0.001
Ethylbenzene	0.0001	0.0005	0.0001	0.000
Toluene	0.005	0.02	0.0002	0.001
Xylenes	0.004	0.02	0.0002	0.0009
n-Hexane	0.05	0.22	0.003	0.01
CO ₂	0.04	0.18	1.14	4.99
CH ₄	1.35	5.91	0.07	0.30
Total CO ₂ e	33.74	147.80	2.82	12.37

Vent Gas Properties

Dehydrator Emissions - Emission Unit 004-02

Total Dehydrator Emissions							
Pollutant	Max. Hourly Uncontrolled Emissions (lb/hr)	Max. Annual Uncontrolled Emissions (tons/yr)	Max. Hourly Controlled Emissions (lb/hr)	Max. Annual Controlled Emissions (tons/yr)			
VOCs	27.29	119.54	3.13	13.70			
HAPs	3.73	16.34	0.24	1.07			
Benzene	0.33	1.46	0.02	0.08			
Ethylbenzene	0.04	0.15	0.00	0.01			
Toluene	0.99	4.34	0.05	0.24			
Xylenes	1.86	8.16	0.10	0.42			
n-Hexane	0.51	2.22	0.07	0.32			
CO ₂	0.276	1.22	144.39	632.43			
CH ₄	34.45	150.88	3.00	13.15			
Total CO₂e	861.45	3,773.10	333.53	816.29			

Total Dehydrator Emissions - 20% Contingency

Pollutant	Max. Hourly Uncontrolled Emissions (lb/hr)	Max. Annual Uncontrolled Emissions (tons/yr)	Max. Hourly Controlled Emissions (Ib/hr)	Max. Annual Controlled Emissions (tons/yr)
VOCs	32.75	143.44	3.75	16.44
HAPs	4.48	19.61	0.29	1.28
Benzene	0.40	1.75	0.02	0.10
Ethylbenzene	0.04	0.18	0.002	0.01
Toluene	1.19	5.21	0.07	0.28
Xylenes	2.24	9.80	0.12	0.51
n-Hexane	0.61	2.67	0.09	0.38
CO ₂	0.33	1.47	173.27	758.92
CH ₄	41.34	181.05	3.60	15.78
Total CO₂e	1,033.74	4,527.72	400.23	979.55

Notes:

-The WVDAQ has historically issued permits for deydration units that include a 20% contingency on the total dehydration emissions soved for using GRI GLY-CALC to account for gas variability through the system. This contingency is being included in the permit application in order to properly assess expected permit PTE levels.

-Emission rates for the dehydrator were calculated using GRI-GLYCALC version 4.0. The GRI-GLYCALC output sheets for the Hastings Compressor Station are attached

-Emissions from the reboiler overhead vent is routed to the enclosed combustion device.

 $-CO_2$ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298 Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

$E_{a,CH4}(un-combusted) = V_a * (1-\eta) * X_{CH4}$	(Eq.	W-19)
$E_{a,CO2}$ (un-combusted) = $V_a * X_{CO2}$	(Eq.	₩-20)
$E_{a,CO2} (combusted) = \sum_{J=1}^{5} (\eta * V_a * Y_j * R_j)$	(Eq.	₩-21)

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

 η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero. XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_j = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_j = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Enclosed Combustion Device - DEHY 1

Duffiel and Fliot Emissions										
Pollutant	Emission Factor (Ib/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Pilot Gas Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/hr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (Ib/hr)
VOCs	5.5		1,236	30,000	567,000	0.000	0.001			0.000
Hexane	1.8		1,236	30,000	567,000	0.000	0.000			0.000
Formaldehyde	0.075		1,236	30,000	567,000	0.000	0.000	0.000	0.000	0.000
CO	84		1,236	30,000	567,000	0.002	0.01	0.04	0.17	0.04
NO _x	100		1,236	30,000	567,000	0.002	0.01	0.05	0.20	0.05
PM	7.6		1,236	30,000	567,000	0.000	0.001	0.003	0.02	0.004
SO ₂	0.6		1,236	30,000	567,000	0.000	0.000	0.000	0.001	0.000
CO ₂		53	1,236	30,000	567,000	3.51	15.37	66.33	290.51	69.84
CH ₄		0.001	1,236	30,000	567,000	0.000	0.000	0.001	0.01	0.001
N ₂ O		0.0001	1,236	30,000	567,000	0.000	0.000	0.000	0.001	0.000
Total HAPs						0.000	0.000			0.000
CO ₂ e						3.51	15.39	66.395	290.81	69.91

Burner and Pilot Emissions

Notes:

-AP-42, Chapter 1.4 references are from the July 1998 revision.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

y S	Max. Yearly Emissions (tons/yr)
	0.001
	0.000
	0.000
	0.18
	0.21
	0.02
	0.001
	305.88
	0.006
	0.001
	0.000
	306.19

Hastings Compressor Station

Emission Unit	Reboiler 005-06		Dehydration Unit Process Vents 004-02		Enclosed Combustion Device DEHY1		Total	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC's	0.003	0.01	3.75	16.44	<0.001	0.001	3.76	16.46
CO	0.05	0.20	<0.001	<0.001	0.04	0.18	0.09	0.38
NOx	0.06	0.24	<0.001	<0.001	0.05	0.21	0.10	0.45
PM ₁₀	0.004	0.02	<0.001	<0.001	<0.001	0.016	0.004	0.03
SO ₂	<0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.002
CO ₂	64.34	281.80	173.27	758.92	69.84	305.88	307.44	1346.60
CH_4	0.001	0.005	3.60	15.78	0.001	0.006	3.61	15.80
N ₂ O	<0.001	0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.002
Total HAPs	0.001	0.004	0.29	1.28	<0.001	<0.001	0.29	1.29
Total CO ₂ e	64.40	282.23	400.23	979.55	69.91	306.19	534.54	1,567.97

Total Modification PTEs

Total Existing PTEs

Emission Unit	Reboile	r 005-01	Dehydration Process Ve 004-01		Enclosed Coml DE		Тс	otal
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
VOC's	<0.01	<0.01	4.47	19.59	0.02	0.11	4.49	19.70
CO	0.01	0.04	NA	NA	1.62	7.10	1.63	7.14
NOx	0.04	0.18	NA	NA	0.30	1.30	0.34	1.48
PM ₁₀	<0.01	0.01	NA	NA	0.03	0.150	0.03	0.16
SO ₂	<0.001	<0.001	NA	NA	<0.01	0.01	<0.001	0.01
CO ₂	NA	NA	NA	NA	NA	NA	0.000	0.000
CH ₄	NA	NA	NA	NA	NA	NA	0.000	0.000
N ₂ O	NA	NA	NA	NA	NA	NA	0.000	0.000
Total HAPs	<0.01	<0.01	1.03	4.59	NA	NA	1.03	4.59
Total CO ₂ e	NA	NA	NA	NA	NA	NA	0.000	0.000

Proposed Change to PTEs **Dehydration Unit** Process Vents **Enclosed Combustion Device Emission Unit** Reboiler 005-06 004-02 DEHY1 Total lb/hr lb/hr lb/hr tpy lb/hr tpy tpy tpy 0.01 -3.15 -0.02 -3.24 VOC's -0.11 -0.72 -0.73 --CO 0.04 0.16 -1.58 -6.92 -1.54 -6.76 ----NOx -0.25 0.02 0.06 -1.09 -0.24 -1.03 ----- PM_{10} 0.008 -0.03 -0.13 -0.03 -0.13 ------ SO_2 ---0.01 ---0.008 ---------- CO_2 64.34 758.92 69.84 281.80 173.27 305.88 307.44 1,346.60 CH_4 3.60 0.001 0.005 15.78 0.001 0.006 3.606 15.796 N_2O <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.002 Total HAPs <0.001 -3.30 -0.74 -3.31 <0.001 -0.74 ------Total CO₂e 979.55 306.19 534.54 64.398 282.23 400.23 69.91 1,567.97

Hastings Compressor Station

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

DESCRIPTION:

Description: Updated GLY CALC to reflect changes in permitted equipment - February 2015

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.6550	39.719	7.2487
Ethane	0.4564	10.955	1.9992
Propane	0.2820	6.769	1.2353
Isobutane	0.0786	1.887	0.3443
n-Butane	0.1285	3.085	0.5630
Isopentane	0.0520	1.247	0.2276
n-Pentane	0.0449	1.077	0.1966
n-Hexane	0.0229	0.550	0.1003
Cyclohexane	0.0123	0.294	0.0537
Other Hexanes	0.0340	0.816	0.1490
Heptanes	0.0555	1.333	0.2433
Benzene	0.0166	0.398	0.0726
Toluene	0.0493	1.183	0.2159
Ethylbenzene	0.0017	0.042	0.0077
Xylenes	0.0930	2.232	0.4073
C8+ Heavies	0.4004	9.609	1.7537
Total Emissions	3.3831	81.195	14.8181
Total Hydrocarbon Emissions Total VOC Emissions	3.3831 1.2717	81.195 30.522	14.8181 5.5702
Total HAP Emissions	0.1835	4.404	0.8038
Total BTEX Emissions	0.1606	3.855	0.7035

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	33.0991	794.378	$144.9740 \\ 39.9849 \\ 24.7063 \\ 6.8860 \\ 11.2606$
Ethane	9.1290	219.095	
Propane	5.6407	135.377	
Isobutane	1.5721	37.731	
n-Butane	2.5709	61.702	
Isopentane	1.0392	24.940	4.5515
n-Pentane	0.8977	21.544	3.9317
n-Hexane	0.4579	10.990	2.0057
Cyclohexane	0.2452	5.885	1.0740
Other Hexanes	0.6802	16.324	2.9792

Page: 1

Heptanes	1.1108	26.658	Page: 2 4.8651
Benzene	0.3317	7.960	1.4528
Toluene	0.9860	23.663	4.3185
Ethylbenzene	0.0350	0.840	0.1533
Xylenes	1.8596	44.631	8.1452
C8+ Heavies	8.0077	192.186	35.0739
Total Emissions	67.6627	1623.905	296.3626
Total Hydrocarbon Emissions	67.6627	1623.905	296.3626
Total VOC Emissions	25.4346	610.432	111.4038
Total HAP Emissions	3.6702	88.084	16.0754
Total BTEX Emissions	3.2123	77.094	14.0697

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	0.0674 0.0457 0.0347 0.0104 0.0173	1.097 0.832	0.2953 0.2002 0.1519 0.0457 0.0756
Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	0.0069 0.0059 0.0025 0.0005 0.0041	0.166 0.140 0.059 0.013 0.098	
Heptanes Benzene Toluene Ethylbenzene Xylenes	0.0002	0.005	0.0011 <0.0001 0.0009
C8+ Heavies Total Emissions	0.0059	0.142	0.0259
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	0.2060 0.0928 0.0030 0.0006	4.943 2.228 0.073 0.014	0.4066

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane N-Pentane n-Hexane Cyclohexane Other Hexanes Heptanes Benzene Toluene	1.3482 0.9142 0.6935 0.2087 0.3453 0.1386 0.1170 0.0496 0.0104 0.0821 0.0818 0.0024 0.0049	32.357 21.942 16.643 5.010 8.288 3.327 2.809 1.190 0.250 1.969 1.969 1.962 0.057 0.117	5.9051 4.0043 3.0374 0.9143 1.5126 0.6072 0.5126 0.2171 0.0456 0.3594 0.3581 0.0104 0.0214
Ethylbenzene	0.0001	0.003	0.0005

Xylenes	0.0039	0.095	Page: 3 0.0173
C8+ Heavies	0.1183	2.839	0.5181
Total Emissions	4.1191	98.857	18.0415
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	4.1191 1.8566 0.0609 0.0113	98.857 44.559 1.462 0.272	18.0415 8.1320 0.2668 0.0496

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.7224	41.337	7.5440
Ethane	0.5022	12.052	2.1995
Propane	0.3167	7.601	1.3872
Isobutane	0.0890	2.137	0.3900
n-Butane	0.1458	3.499	0.6387
Isopentane	0.0589	1.413	0.2579
n-Pentane	0.0507	1.218	0.2222
n-Hexane	0.0254	0.609	0.1111
Cyclohexane	0.0128	0.307	0.0560
Other Hexanes	0.0381	0.915	0.1669
Heptanes	0.0596	1.431	0.2612
Benzene	0.0167	0.401	0.0732
Toluene	0.0495	1.189	0.2170
Ethylbenzene	0.0018	0.042	0.0077
Xylenes	0.0932	2.236	0.4081
C8+ Heavies	0.4063	9.751	1.7796
Total Emissions	3.5891	86.138	15.7202
Total Hydrocarbon Emissions	3.5891	86.138	15.7202
Total VOC Emissions	1.3646	32.750	5.9768
Total HAP Emissions	0.1866	4.477	
Total BTEX Emissions	0.1612	3.868	0.7060

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	150.8791 43.9892 27.7437 7.8003 12.7731	7.5440 2.1995 1.3872 0.3900 0.6387	95.00 95.00 95.00 95.00 95.00 95.00
Isopentane	5.1587	0.2579	95.00
n-Pentane	4.4443	0.2222	95.00
n-Hexane	2.2228	0.1111	95.00
Cyclohexane	1.1197	0.0560	95.00
Other Hexanes	3.3386	0.1669	95.00
Heptanes	5.2232	0.2612	95.00
Benzene	1.4632	0.0732	95.00
Toluene	4.3399	0.2170	95.00
Ethylbenzene	0.1537	0.0077	95.00
Xylenes	8.1624	0.4081	95.00

Page: 4

CE	8+ Heavies	35.5920	1.7796	95.00
Total	Emissions	314.4041	15.7202	95.00
Total Hydrocarbon Total VOC Total HAP Total BTEX	Emissions Emissions	314.4041 119.5358 16.3421 14.1193	15.7202 5.9768 0.8171 0.7060	95.00 95.00 95.00 95.00

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature			
Excess Oxygen			
Combustion Efficiency Supplemental Fuel Requirement			
Supprementar ruer Requirement	: 3.078-00	I MM BIO/III	
Component Er	mitted	Destroyed	
Methane	5.00%	95.00%	
		95.00%	
		95.00%	
Isobutane			
n-Butane	5.00%	95.00%	
- .		0.5.000	
Isopentane			
n-Pentane			
n-Hexane			
Cyclohexane Other Hexanes			
Other nexalles	5.00%	95.00%	
Heptanes	5.00%	95.00%	
Benzene	5.00%	95.00%	
		95.00%	
Ethylbenzene			
Xylenes	5.00%	95.00%	
C8+ Heavies	5.00%	95.00%	

ABSORBER

Calculated Absorber Stages: 2.54 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 110.0 deg. F Pressure: 314.7 psig Dry Gas Flow Rate: 7.5000 MMSCF/day Glycol Losses with Dry Gas: 0.0736 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 198.95 lbs. H2O/MMSCF Specified Lean Glycol Recirc. Ratio: 3.00 gal/lb H2O Remaining Absorbed in Dry Gas in Glycol

Water	3.50%	96.50%
Carbon Dioxide	99.80%	0.20%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%

	Ethane	99.95%	5	5
	n-Butane	99.90% 99.84% 99.79% 99.77% 99.71%	0.10% 0.16% 0.21% 0.23% 0.29%	
	n-Hexane Cyclohexane her Hexanes Heptanes Benzene	97.84% 99.61% 98.97%	0.39% 1.03%	
	Toluene Lhylbenzene Xylenes C8+ Heavies			
FLASH TANK				
Flash Cont Fla	Flash Control: crol Efficiency: ash Temperature: Flash Pressure:	95.00 % 150.0	deg. F	
Component		Et in R Glycol F	emoved in lash Gas	
	Water Don Dioxide Nitrogen	Glycol F 99.98% 66.02% 15.27% 16.03%	'lash Gas 0.02% 33.98% 84.73% 83.97%	
	Water Water Don Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	Glycol F 99.98% 66.02% 15.27% 16.03% 37.69% 56.85%	'lash Gas 0.02% 33.98% 84.73% 83.97% 62.31% 43.15%	
Carl	Water Water Don Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	Glycol F 99.98% 66.02% 15.27% 16.03% 37.69% 56.85% 65.11% 70.48% 72.57%	<pre>'lash Gas 0.02% 33.98% 84.73% 83.97% 62.31% 43.15% 34.89% 29.52% 27.43%</pre>	
Carl Carl Otl	Water Water Don Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane Heptanes	Glycol F 99.98% 66.02% 15.27% 16.03% 37.69% 56.85% 65.11% 70.48% 72.57% 76.41% 84.49% 95.50% 80.94% 91.16%	<pre>'lash Gas 0.02% 33.98% 84.73% 83.97% 62.31% 43.15% 34.89% 29.52% 27.43% 23.59% 15.51% 4.50% 19.06% 8.84%</pre>	

_____ Regenerator Stripping Gas: Dry Product Gas Stripping Gas Flow Rate: 16.0650 scfm Remaining Distilled Component in Glycol Overhead Water29.58%70.42%Carbon Dioxide0.00%100.00%Nitrogen0.00%100.00%

Methane Ethane	0.00% 0.00%	Page: 100.00% 100.00%	6
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.69% 0.65%	100.00% 100.00% 100.00% 99.31% 99.35%	
n-Hexane	0.59%	99.41%	
Cyclohexane	3.35%	96.65%	
Other Hexanes	1.24%	98.76%	
Heptanes	0.55%	99.45%	
Benzene	5.03%	94.97%	
Toluene	7.94%	92.06%	
Ethylbenzene	10.44%	89.56%	
Xylenes	12.95%	87.05%	
C8+ Heavies	12.19%	87.81%	

STREAM REPORTS:

WET GAS STREAM

Pressure:	110.00 deg. F 329.40 psia 3.14e+005 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	4.19e-001 1.49e-001 7.18e-001 8.03e+001 1.12e+001	5.44e+001 1.66e+002 1.07e+004
	Isobutane n-Butane Isopentane	4.21e+000 7.99e-001 1.18e+000 3.67e-001 2.84e-001	3.84e+002 5.67e+002 2.19e+002
	Cyclohexane Other Hexanes Heptanes		1.04e+001 1.09e+002 8.92e+001
	Ethylbenzene	3.98e-003	8.75e-002 3.50e+000
	Total Components	100.00	1.70e+004

DRY GAS STREAM

Temperature: 110.00 deg. F Pressure: 329.40 psia Flow Rate: 3.13e+005 scfh

Component Conc. Loading (vol%) (lb/hr) _____ ____ Water 1.47e-002 2.19e+000 Carbon Dioxide 1.50e-001 5.43e+001 Nitrogen 7.21e-001 1.66e+002 Methane 8.06e+001 1.06e+004 Ethane 1.12e+001 2.78e+003 Propane 4.22e+000 1.53e+003 Isobutane 8.01e-001 3.83e+002 n-Butane 1.18e+000 5.66e+002 Isopentane 3.68e-001 2.19e+002 n-Pentane 2.84e-001 1.69e+002 n-Hexane 8.66e-002 6.15e+001 Cyclohexane 1.47e-002 1.02e+001 Other Hexanes 1.53e-001 1.09e+002 Heptanes 1.07e-001 8.82e+001 Benzene 2.49e-003 1.60e+000 Toluene 3.71e-003 2.81e+000 Ethylbenzene 6.01e-005 5.25e-002 Xylenes 1.88e-003 1.64e+000 C8+ Heavies 6.24e-002 8.76e+001 Total Components 100.00 1.69e+004 LEAN GLYCOL STREAM Temperature: 110.00 deg. F Flow Rate: 3.00e+000 gpm Conc. Component Conc. Loading (wt%) (lb/hr) TEG 9.84e+001 1.66e+003 Water 1.50e+000 2.53e+001 Carbon Dioxide 6.40e-013 1.08e-011 Nitrogen 1.50e-013 2.53e-012 Methane 3.20e-018 5.39e-017 Ethane 4.10e-008 6.92e-007 Propane 3.88e-009 6.54e-008 Isobutane 1.06e-009 1.79e-008 n-Butane 1.72e-009 2.90e-008 Isopentane 1.50e-004 2.53e-003 n-Pentane 1.47e-004 2.48e-003 n-Hexane 9.47e-005 1.60e-003 Cyclohexane 4.39e-004 7.41e-003 Other Hexanes 2.55e-004 4.30e-003 Heptanes 2.74e-004 4.62e-003 Benzene 1.03e-003 1.73e-002 Toluene 5.00e-003 8.43e-002 Ethylbenzene 2.41e-004 4.06e-003 Xylenes 1.63e-002 2.76e-001 C8+ Heavies 6.36e-002 1.07e+000 Total Components 100.00 1.69e+003

RICH GLYCOL STREAM Temperature: 110.00 deg. F Pressure: 329.40 psia Flow Rate: 3.16e+000 gpm NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.39e+001 4.85e+000 6.11e-003 1.43e-003 9.09e-002	8.56e+001 1.08e-001 2.53e-002
Propane Isobutane	8.31e-002 9.10e-002 3.39e-002 6.63e-002 2.86e-002	1.61e+000 5.98e-001 1.17e+000
n-Hexane Cyclohexane Other Hexanes		3.20e-001 2.32e-001 4.31e-001
Toluene Ethylbenzene	1.21e-001	1.07e+000 3.90e-002 2.13e+000
Total Components	100.00	1.77e+003

FLASH TANK OFF GAS STREAM

Pemperature: 150 Pressure: 74 Plow Rate: 5.66e+			
Compo	onent		Loading (lb/hr)
Ca	rbon Dioxide Nitrogen Methane	6.17e-001 5.59e-001 5.12e-001 5.64e+001 2.04e+001	3.67e-002 2.14e-002 1.35e+000
	Isobutane n-Butane Isopentane	1.05e+001 2.41e+000 3.99e+000 1.29e+000 1.09e+000	2.09e-001 3.45e-001 1.39e-001
C	Cyclohexane ther Hexanes Heptanes		1.04e-002 8.21e-002 8.18e-002
	Ethylbenzene	2.49e-002	1.07e-004 3.94e-003
Tota	l Components	100.00	4.19e+000

FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F Flow Rate: 3.15e+000 gpm		
Component		Loading (lb/hr)
Water Carbon Dioxide Nitroger	9.41e+001 4.86e+000 4.05e-003 2.19e-004 1.46e-002	8.56e+001 7.13e-002 3.86e-003
Propane Isobutane n-Butane	e 3.14e-002 e 5.19e-002 e 2.21e-002 e 4.68e-002 e 2.08e-002	9.14e-001 3.90e-001 8.24e-001
n-Hexane Cyclohexane Other Hexanes		2.70e-001 2.21e-001 3.49e-001
Toluene Ethylbenzene	1.21e-001	1.06e+000 3.89e-002 2.13e+000
Total Components	100.00	1.76e+003

FLASH GAS EMISSIONS

Flow Rate: 2.53e+002 scfh Control Method: Combustion Device Control Efficiency: 95.00 Component Conc. Loading (vol%) (lb/hr) Water 5.98e+001 7.18e+000 Carbon Dioxide 3.90e+001 1.14e+001 Nitrogen 1.15e-001 2.14e-002 Methane 6.30e-001 6.74e-002 Ethane 2.28e-001 4.57e-002 Propane 1.18e-001 3.47e-002 Isobutane 2.69e-002 1.04e-002 n-Butane 4.46e-002 1.73e-002 Isopentane 1.44e-002 6.93e-003 n-Pentane 1.22e-002 5.85e-003 n-Hexane 4.31e-003 2.48e-003 Cyclohexane 9.28e-004 5.21e-004 Other Hexanes 7.14e-003 4.10e-003 Heptanes 6.12e-003 4.09e-003 Benzene 2.29e-004 1.19e-004 Toluene 3.99e-004 2.45e-004 Ethylbenzene 7.55e-006 5.34e-006 Xylenes 2.79e-004 1.97e-004 C8+ Heavies 5.21e-003 5.91e-003 ----- -----_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Total Components 100.00 1.88e+001

_ _ _

REGENERATOR OVERHEADS STREAM _____ Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:2.30e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 5.51e+001 6.03e+001 Carbon Dioxide 8.93e-002 2.39e-001 Nitrogen 3.04e-001 5.17e-001 Methane 3.40e+001 3.31e+001 Ethane 5.00e+000 9.13e+000 Propane 2.11e+000 5.64e+000 Isobutane 4.46e-001 1.57e+000 n-Butane 7.29e-001 2.57e+000 Isopentane 2.37e-001 1.04e+000 n-Pentane 2.05e-001 8.98e-001 n-Hexane 8.75e-002 4.58e-001 Cyclohexane 4.80e-002 2.45e-001 Other Hexanes 1.30e-001 6.80e-001 Heptanes 1.83e-001 1.11e+000 Benzene 7.00e-002 3.32e-001 Toluene 1.76e-001 9.86e-001 Ethylbenzene 5.43e-003 3.50e-002 Xylenes 2.89e-001 1.86e+000 C8+ Heavies 7.74e-001 8.01e+000 ----- ------Total Components 100.00 1.29e+002

COMBUSTION DEVICE OFF GAS STREAM

Pressure:	1000.00 deg. F 14.70 psia 5.12e+001 scfh		
	Component		Loading (lb/hr)
	Ethane	7.64e+001 1.12e+001 4.74e+000	4.56e-001
	Isobutane	1.00e+000 1.64e+000	7.86e-002
		4.61e-001 1.97e-001 1.08e-001	4.49e-002 2.29e-002 1.23e-002
	Benzene Toluene Ethylbenzene	4.11e-001 1.57e-001 3.96e-001 1.22e-002 6.49e-001	1.66e-002 4.93e-002 1.75e-003
	C8+ Heavies	1.74e+000	4.00e-003
	Total Components	100.00	3.38e+000

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Hastings Compressor Station File Name: M:\Projects\D\Dominion\Hasting Permit Modification\Hastings Permit Modification - GLY CALC.ddf Date: March 12, 2015 DESCRIPTION: _____ Description: Updated GLY CALC to reflect changes in permitted equipment - February 2015 Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 110.00 deg. F Pressure: 314.70 psig Wet Gas Water Content: Saturated Component Conc. (vol 응) ----- -----
 Carbon Dioxide
 0.1500

 Nitrogen
 0.7210

 Methane
 80.5910

 Ethane
 11.2300

 Propane
 4.2230

 Isobutane
 0.8020

 n-Butane
 1.1850

 Isopentane
 0.3690

 n-Pentane
 0.2850

 n-Hexane
 0.0870
 n-Hexane 0.0870 Cyclohexane 0.0150 cher Hexanes 0.1540 Heptanes 0.1080 Benzene 0.0030 Toluene 0.0050 Other Hexanes Ethylbenzene 0.0001 Xylenes 0.0040 C8+ Heavies 0.0680 DRY GAS: _____ Flow Rate: 7.5 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content:1.5 wt% H2ORecirculation Ratio:3.0 gal/lb H2O PUMP:

Page: 1

Glycol Pump Type: Electric/Pneumatic

FLASH TANK: Flash Control: Combustion device Flash Control Efficiency: 95.00 % Temperature: 150.0 deg. F Pressure: 60.0 psig STRIPPING GAS: Source of Gas: Dry Gas Gas Flow Rate: 16.065 scfm REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device:	Combustion Device
Destruction Efficiency:	95.0 %
Excess Oxygen:	0.0 %
Ambient Air Temperature:	60.0 deg. F

Number: 1030-14100796-006A

Oct. 23, 2014

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name:Old Hastings Station Sample Point: Before Dehy Contactor Cylinder No: 1790 Analyzed: 10/22/2014 13:33:04 by JD Sampled By:TRSample Of:GasSpotSample Date:10/13/2014 12:00Sample Conditions: 7.4 psig, @ 68.21 °FMethod:GPA 2286

			Analy	ical Data		
Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.721	0.986		GPM TOTAL C2+	5.234	
Carbon Dioxide	0.150	0.322		GPM TOTAL C3+	2.228	
Methane	80.591	63.137		GPM TOTAL iC5+	0.427	
Ethane	11.230	16.490	3.006			
Propane	4.223	9.094	1.164			
Iso-butane	0.802	2.276	0.263			
n-Butane	1.185	3.363	0.374			
Iso-pentane	0.369	1.300	0.135			
n-Pentane	0.285	1.004	0.103			
Hexanes Plus	0.444	2.028	0.189			
	100.000	100.000	5.234			
Physical Properties	5		Total	C6+		
Relative Density Rea	al Gas		0.7092	3.2186		
Calculated Molecula	r Weight		20.48	93.22		
Compressibility Fact	or		0.9966			
GPA 2172-09 Calcu	lation:					
Calculated Gross E	STU per ft ³ @	14.696 ps	sia & 60°F			
Real Gas Dry BTU			1237	5073		
Water Sat. Gas Base	e BTU		1215	4985		
Comments: H2O 0 H2S 0		/MMCF ; H	20 Mol% : 1.744	; Wt% : 1.538		

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Number: 1030-14100796-006A

Oct. 23, 2014

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name:Old Hastings Station Sample Point: Before Dehy Contactor Cylinder No: 1790 Analyzed: 10/22/2014 13:33:04 by JD Sampled By:TRSample Of:GasSpotSample Date:10/13/2014 12:00Sample Conditions: 7.4 psig, @ 68.21 °FMethod:GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.721	0.986		GPM TOTAL C2+	5.234	
Carbon Dioxide	0.150	0.322		GPM TOTAL C3+	2.228	
Methane	80.591	63.137		GPM TOTAL iC5+	0.427	
Ethane	11.230	16.490	3.006			
Propane	4.223	9.094	1.164			
Iso-Butane	0.802	2.276	0.263			
n-Butane	1.185	3.363	0.374			
Iso-Pentane	0.369	1.300	0.135			
n-Pentane	0.285	1.004	0.103			
Hexanes	0.241	0.971	0.095			
Heptanes Plus	0.203	1.057	0.094			
	100.000	100.000	5.234			
Physical Properties	s		Total	C7+		
Relative Density Re	al Gas		0.7092	3.5187		
Calculated Molecula			20.48	101.91		
Compressibility Fact	tor		0.9966			
GPA 2172-09 Calcu	ulation:					
Calculated Gross E	BTU per ft ³ @	🛿 14.696 ps	sia & 60°F			
Real Gas Dry BTU			1237	5486		
Water Sat. Gas Bas	e BTU		1215	5391		
Comments: H2O (H2S (/MMCF ; H	2O Mol% : 1.744	; Wt% : 1.538		

& Yalug

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Number: 1030-14100796-006A

Oct. 23, 2014

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name:Old Hastings Station Sample Point: Before Dehy Contactor Cylinder No: 1790 Analyzed: 10/22/2014 13:33:04 by JD Sampled By:TRSample Of:GasSpotSample Date:10/13/2014 12:00Sample Conditions: 7.4 psig, @ 68.21 °FMethod:GPA 2286

			Analytical I	Data		
Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.721	0.986		GPM TOTAL C2+	5.234	
Methane	80.591	63.137				
Carbon Dioxide	0.150	0.322				
Hydrogen Sulfide	NIL	NIL				
Ethane	11.230	16.490	3.006			
Propane	4.223	9.094	1.164			
Iso-Butane	0.802	2.276	0.263			
n-Butane	1.185	3.363	0.374			
Iso-Pentane	0.369	1.300	0.135			
n-Pentane	0.285	1.004	0.103			
i-Hexanes	0.154	0.612	0.060			
n-Hexane	0.087	0.359	0.035			
Benzene	0.003	0.011	0.001			
Cyclohexane	0.015	0.063	0.005			
i-Heptanes	0.079	0.364	0.034			
n-Heptane	0.029	0.137	0.013			
Toluene	0.005	0.021	0.002			
i-Octanes	0.053	0.287	0.025			
n-Octane	0.007	0.041	0.004			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.004	0.019	0.001			
i-Nonanes	0.005	0.064	0.006			
n-Nonane	0.002	0.016	0.001			
i-Decanes	NIL	0.024	0.001			
n-Decane	0.001	0.006	0.001			
Undecanes	NIL	0.002	NIL			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	0.001	NIL			
Tetradecanes Plus	NIL	0.001	NIL			
	100.000	100.000	5.234			

Number: 1030-14100796-006A

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name:Old Hastings Station Sample Point: Before Dehy Contactor Cylinder No: 1790 Analyzed: 10/22/2014 13:33:04 by JD Sampled By:TRSample Of:GasSpotSample Date:10/13/2014 12:00Sample Conditions: 7.4 psig, @ 68.21 °FMethod:GPA 2286

Oct. 23, 2014

Physical Properties	Total	C14+	
Calculated Molecular Weight	20.478	198.413	
GPA 2172-09 Calculation:			
Calculated Gross BTU per ft ³ @ 14	.696 psia & 60°F		
Real Gas Dry BTU	1236.6	10728.8	
Water Sat. Gas Base BTU	1215.1	10541.6	
Relative Density Real Gas	0.7092	6.8500	
Compressibility Factor	0.9966		
Comments: H2O Content: 80 #/MM	CF		
H2S 0 ppm	••		

& Yalug

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Attachment O

MONITORING, REPORTING, AND RECORDKEEPING PLAN

Attachment O

Monitoring, Recordkeeping, Reporting, Testing Plans.

Dominion Transmission, Inc. proposes the following MRRT for the equipment included in this permit modification:

Reboiler – Emission Unit ID: 005-06

- Monitoring None
- Recordkeeping Dominion shall maintain records of the operating schedule and the quantity and quality of fuel consumed in each fuel burning unit.
- Testing None

Dehydration Unit – Emission Unit ID: 004-02

- Monitoring Dominion shall monitor its minor source of HAPs status and the benzene exemption status of the Station to ensure dehydration unit compliance. Recordkeeping –Dominion will maintain records of actual average benzene emissions in accordance with 40 CFR 63 Section HH.
- Reporting None
- Testing Dominion is required to collect a wet gas samples 180 days after the issuance of the Title V Renewal Application and within 2 years prior to the submission of the subsequent Renewal Application.

Enclosed Combustion Device – Emission Unit ID: DEHY1

- Monitoring Method 22 Visual emissions checks shall be conducted monthly.
- Recordkeeping Dominion will maintain records of all visual emissions checks.
- Reporting Dominion will report any violations of the allowable visual emissions requirements.
- Testing None

Attachment P PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Dominion Transmission, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for the Hastings Compressor Station, for a natural gas production operation, located in Pine Grove, Wetzel County, West Virginia. The latitude and longitude coordinates are: 39.54989 and -80.67244. Startup of operations is scheduled to begin on October 15, 2015.

The applicant estimates the total increase in maximum potential to discharge the following regulated air pollutants on a facility-wide basis: 1,567.97 tpy of greenhouse gases, measured in CO2 equivalencies. All other pollutants decrease with this proposed project. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the XXth day of March, 2015.

By: Dominion Transmission, Inc. Brian Sheppard Vice President of Pipeline Operations 445 West Main Street Clarksburg, WV 26301

Attachment S

TITLE V PERMIT

Attachment S

Title V Permit Revision Information

1. New Applicable Requirements Summary	
Mark all applicable requirements associated with the change	es involved with this permit revision:
SIP	☐ FIP
Minor source NSR (45CSR13)	D PSD (45CSR14)
NESHAP (45CSR15)	Nonattainment NSR (45CSR19)
Section 111 NSPS (Subpart(s))	Section 112(d) MACT standards (Subpart(s) Subpart HH
Section 112(g) Case-by-case MACT	112(r) RMP
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)
Tank vessel reqt., section 183(f)	Emissions cap 45CSR§30-2.6.1
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule
☐ 45CSR4 State enforceable only rule	Acid Rain (Title IV, 45CSR33)
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) ⁽¹⁾
NO _x Budget Trading Program Non-EGUs (45CSR1)	NO _x Budget Trading Program EGUs (45CSR26)
⁽¹⁾ If this box is checked, please include Compliance Assur Specific Emission Unit (PSEU) (See Attachment H to Title	

2. Non Applicability Determinations

List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination.

- SIP/FIP Not a specifically listed facility under either plan.
- NESHAP (45CSR15) Rule no longer effective.
- Section 111 NSPS The facility not is subject to the requirements Section OOOO. No NSPS standards are applicable to revision.
- Section 112(g) Case-by-case MACT No case-by-case MACT being requested.
- Section 112(i) Early HAP reduction Facility did not utilize the early reduction program.
- Section 129 Facility does not own a solid waste incinerator.
- Section 183(f) Any tank vessels per section 183(f) are not included in this revision.
- NAAQs Facility is a permanent source and not a contemporary source.
- 45CSR4 No changes requested.
- 45CSR28 No emissions are banked or traded per this regulation.
- 45CSR1 No changes to the facility are being requested.
- 45CSR14 The proposed modification qualifies as a minor permitting action.
- 45CSR19 Revision does not trigger thresholds. Area is listed as attainment
- Section 112(d) MACT standards Facility operates an affected unit under Section HH.
- 112(r) RMP Does not affect facility RMP.
- Section 183 (e) Facility does not produce a 183(e) listed consumer or commercial product.
- Stratospheric ozone (Title VI) Revision does not involve any regulate pollutant.
- Emission Cap 45CSR section 30-2.6.1 Facility has no emission cap agreement per section 2.6.1.
- 45CSR27 Revision does not affect existing TAP emissions.
- 45CSR33 Facility is not subject to the Acid Rain provisions listed in section 1.5.
- 40CFR64 Revision does not impact CAM.

• 45CSR26 - Compressors are not defined as EGU's.

Permit Shield Requested (not applicable to Minor Modifications)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. Suggested Title V Draft Permit Language

Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? \Box Yes \boxtimes No If Yes, describe the changes below.

Also, please provide **Suggested Title V Draft Permit language** for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.

4. Active NSR Permits/Permit Determinations/Consent Orders Associated With This Permit Revision

Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
R30-10300006-2011	07/11/2012	N/A
R13-2555B	09/17/2012	N/A
	/ /	

5. Inactive NSR Permits/Obsolete F	Permit or Consent Orders Co	onditions Associated With This Revision
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
NA	/ /	
	/ /	

Pollutant	Change in Potential Emissions (+ or -), TPY
со	-6.76
NOx	-1.03
PM10	-0.13
S02	-0.008
Total VOC	-3.24
Total HAP	-3.30

Note:	This certification must be signed by a response certification will be returned as incomplete. Modification Procedures are as follows:	
i. ii. iii.	Proposed changes do not violate any applicable re Proposed changes do not involve significant of recordkeeping requirements in the permit; Proposed changes do not require or change a limitation or other standard, or a source-spec ambient air quality impacts, or a visibility increm	changes to existing monitoring, reporting, o a case-by-case determination of an emission ific determination for temporary sources o
iv.	Proposed changes do not seek to establish or cha is no underlying applicable requirement and whi an applicable requirement to which the source Such terms and conditions include, but are not li used to avoid classification as a modification un emissions limit approved pursuant to regulation Air Act;	nge a permit term or condition for which there ich permit or condition has been used to avoid would otherwise be subject (synthetic minor) mited to a federally enforceable emissions can ider any provision of Title I or any alternative s promulgated under § $112(j)(5)$ of the Clear
v.	Proposed changes do not involve preconstruction 45CSR14 and 45CSR19;	n review under Title I of the Clean Air Act of
vi.	Proposed changes are not required under any significant modification;	rule of the Director to be processed as a
procedur permits, procedur the State	standing subparagraph 45CSR§30-6.5.a.1.A. (items i tres may be used for permit modifications involving emissions trading, and other similar approaches, to the sare explicitly provided for in rules of the Director w Implementation Plan under the Clean Air Act, or whic g permit issued under 45CSR30.	the use of economic incentives, marketable he extent that such minor permit modification hich are approved by the U.S. EPA as a part o
procedur permits, procedur the State operating Pursuan of Mino	standing subparagraph 45CSR§30-6.5.a.1.A. (items in res may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or whic	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor
procedur permits, procedur the State operating Pursuan of Mino permit r	standing subparagraph 45CSR§30-6.5.a.1.A. (items i trees may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we Implementation Plan under the Clean Air Act, or whice g permit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor
procedur permits, procedur the State operating Pursuan of Mino permit r (Signed):	standing subparagraph 45CSR§30-6.5.a.1.A. (items i the res may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or which g permit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor occessing of this application.
procedur permits, procedur the State operating Pursuan of Mino permit r (Signed):	standing subparagraph 45CSR§30-6.5.a.1.A. (items i the res may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or which g permit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minon ocessing of this application.
procedur permits, procedur the State operating Pursuan of Mino permit r (Signed): Named (type	standing subparagraph 45CSR§30-6.5.a.1.A. (items i the resonance of the permit modifications involving emissions trading, and other similar approaches, to the resonance explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or which germit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor ocessing of this application.
procedur permits, procedur the State operating Pursuan of Mino permit r (Signed): Named (type Note: Please	standing subparagraph 45CSR§30-6.5.a.1.A. (items i the res may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or which g permit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor ocessing of this application.
procedur permits, procedur the State operating Pursuan of Mino permit r (Signed): Named (type Note: Please	standing subparagraph 45CSR§30-6.5.a.1.A. (items i the res may be used for permit modifications involving emissions trading, and other similar approaches, to the res are explicitly provided for in rules of the Director we implementation Plan under the Clean Air Act, or which g permit issued under 45CSR30.	the use of economic incentives, marketable ne extent that such minor permit modification hich are approved by the U.S. EPA as a part o h may be otherwise provided for in the Title V n contained herein meets the criteria for use tion 45CSR§30-6.5.a.1.A. The use of Minor ocessing of this application.