

April 8, 2015

BY: U.S. CERTIFIED MAIL, RETURN RECEIPT REQUESTED

7014 3490 0000 0448 3870

William F. Durham Director, Division of Air Quality WVDEP 601 57th Street Charleston, WV 25304

RE: <u>Dominion Transmission, Inc. - General Permit (G35-A) Application</u>

Cassidy Mountain Compressor Station

Dear Mr. Durham:

Enclosed are one complete original and two (2) cd copies of a G35-A General Permit application for the proposed replacement of the existing flare and the addition of a new auxiliary emergency generator at Dominion Transmission, Inc.'s Cassidy Mountain Compressor Station in Randolph County, West Virginia.

The public notice affidavit will be submitted to WVDEP once it is received from the newspaper.

If you require any additional information, please contact Rebekah Remick at (804) 273-3536 or via email at Rebekah.J.Remick@dom.com.

Sincerely,

Amanda B. Tornabene

Director, Gas Environmental Services

APPLICATION FOR CLASS II GENERAL PERMIT G35-A

DOMINION TRANSMISSION, INC. CASSITY MOUNTAIN STATION FACILITY ID No. 083-00123

Submitted By:

DOMINION TRANSMISSION, INC. 445 West Main Street Clarksburg, WV 26301

Prepared By:

Submitted To:

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Division of Air Quality 601 57th Street, SE Charleston, WV 25304

Submitted: April 2015

TABLE OF CONTENTS

Se	ctio	n	Page N	umber
1.		INTR	ODUCTION	1-1
	1.1		STING CASSITY MOUNTAIN STATION	
	1.2		JECT OVERVIEW	
	1.3		LICATION ORGANIZATION	
2.	1.5		CESS DESCRIPTION AND PROPOSED CHANGES	
3.			SIONS INVENTORY	
	3.1	GLY	COL DEHYDRATION UNIT CONTROL DEVICE	3-1
	3.2	ΑUΣ	KILIARY EMERGENCY GENERATOR	3-3
4.		REGI	ULATORY ANALYSIS	4-1
	4.1		ERAL AIR QUALITY REGULATIONS	
		4.1.1	New Source Performance Standards (NSPS)	
		4.1.2	National Emission Standards for Hazardous Air Pollutants (NESHAP)	
		4.1.3	Compliance Assurance Monitoring (CAM)	
		4.1.4	New Source Review (NSR)	4-5
	4.2	STA	TE OF WEST VIRGINIA REQUIREMENTS	4-6
		4.2.1	45 CSR6 – To Prevent and Control Air Pollution from Combustion of Refus	se 4-6
		4.2.2	45 CSR10 – To Prevent and Control Air Pollution from the Emission of Sul	fur
			Oxides	
		4.2.3	45 CSR13 – Permits for Construction, Modification, Relocation, and Operation	
			Stationary Sources of Air Pollutants	
		4.2.4	45 CSR30 – Requirements of Operating Permits and 45 CSR30A – Deferral	
			Nonmajor and Area Sources From Permitting Requirements	
		4.2.5	45 CSR34 – Emission Standards for Hazardous Air Pollutants (HAP)	4-8
5.			MARY OF APPLICATION FORMS AND SUPPORTING	
		INFO	RMATION	5-1

LIST OF TABLES

Table	Page Number
Table 2-1 Emission Units Table	2-2
Table 3-1 Flare Related Potential Emissions Summary	3-2
Table 3-2 Emergency Generator Potential Emissions Summary	3-4
Table 3-3 Project Related Changes in Potential Emissions Summary	3-7
Table 4-1 Emission Standards Table for New Emergency Generator	4-2

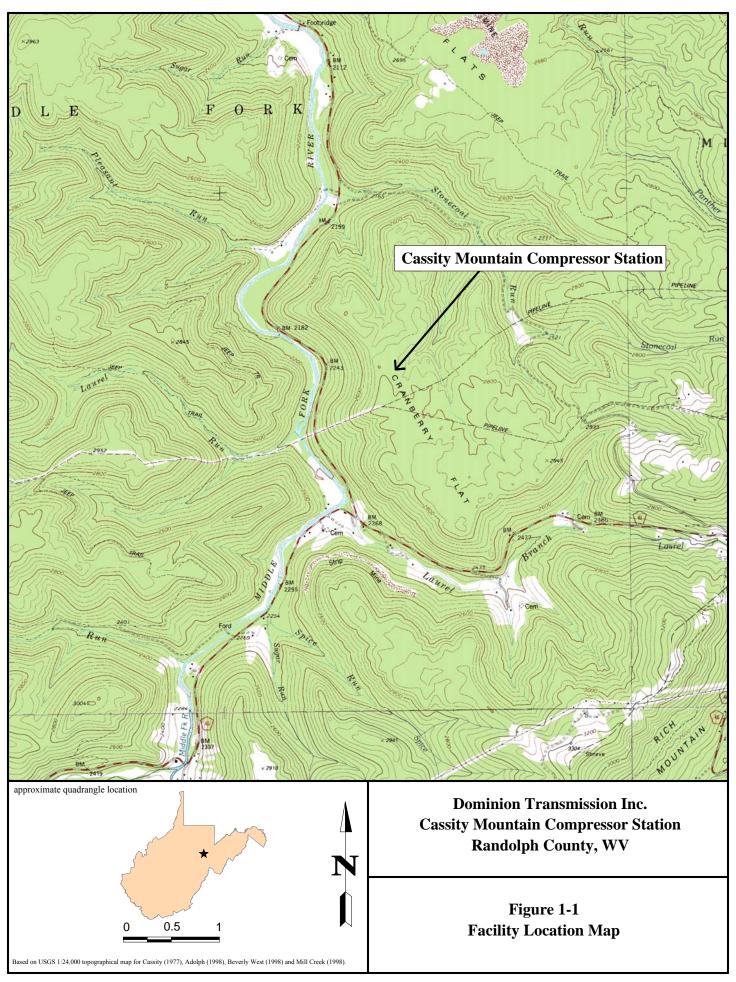
LIST OF FI	GURES
Figure	Page Number
Figure 1-1 Facility Location Map	1-2

LIST OF APPENDICES

Appendix A Application Forms and Attachments

Appendix B GRI-GLYCalc Emission Summary and Wet Gas Analysis

Appendix C Flare Design Evaluation Sheet



1. INTRODUCTION

Dominion Transmission, Inc. (Dominion) specializes in natural gas transmission and storage services. The Cassity Mountain Station (Station) is an existing natural gas compressor station that pumps natural gas prior to the point of custody transfer. The Station uses one (1) glycol dehydration unit to remove water from wet natural gas and transports the natural gas to a natural gas processing plant. Dominion is proposing to replace the existing flare at the Station. The flare serves as an air pollution control device for the glycol dehydration unit. In addition to the flare replacement, Dominion is proposing to install one (1) new Cummins Inc. (Cummins) auxiliary emergency generator at the Station.

1.1 EXISTING CASSITY MOUNTAIN STATION

The Station is located in Randolph County, West Virginia. Figure 1-1 shows the general location of the Station on a section of the Cassity, West Virginia, United States Geological Survey (USGS) quadrangle. The major source thresholds for the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAP, or 100 tpy of all other regulated pollutants. The Station does not have the potential to emit over 100 tpy of any pollutant, nor does the Station emit any individual HAP or any combination of HAPs above the 10 tpy and 25 tpy thresholds respectively. Therefore, the Station is classified as a nonmajor source for Title V purposes and is classified as an area source of HAPs. Because the Station is not a major source, it is not required to have an operating permit pursuant to Title V of the Federal Clean Air Act (CAA) as amended, and West Virginia 45 CSR30 regulations. However, the Station is required to have a General Permit pursuant to West Virginia 45 CSR13 regulations. The Station currently operates under a Class II General Permit G35-A027A, issued on April 26, 2011, with an effective date of April 26, 2011.

1.2 PROJECT OVERVIEW

Dominion is submitting an Application for Class II General Permit G35-A to the West Virginia Department of Environmental Protection (WVDEP) for proposed modifications to the Station. Specifically, Dominion is proposing to remove the existing flare (Emission Point ID: F-1) that serves as a control device to the glycol dehydration unit and replace it with a new enclosed flare, which will also serve as an air pollution control device for the existing glycol dehydration unit. In addition, Dominion is proposing to install a Cummins natural gas-fired auxiliary emergency generator at the Station that will provide backup power to the Station in emergency situations.

Although 45 CSR§13-4.2(b) identifies a change in control equipment as a Class II administrative update, "flares" meet the 45 CSR§6-2 definition of "incinerator". Because the proposed enclosed flare meets the West Virginia definition of incinerator, the replacement of the control device (i.e., flare) is considered a minor modification. In accordance with 45 CSR§13-5, a Class II General Permit application must be submitted to WVDEP for review. This interpretation was confirmed on March 28, 2014 during a phone call with Beverly McKeone of the WVDEP. Additionally, the proposed installation of a new Cummins auxiliary emergency generator is considered a minor modification. Therefore, Dominion is submitting this Application for a G35-A General Permit for the proposed project changes.

Dominion plans to begin construction upon issuance of this permit (anticipated May, 2015). This Application includes the requisite WVDEP Application form, supporting Application attachments, supporting narrative, and the applicable Application fees.

1.3 APPLICATION ORGANIZATION

This Application is organized in a report format and includes the following sections and appendices:

Section 1 – Introduction

Section 2 – Process Description and Proposed Changes

Section 3 – Emissions Inventory

Section 4 – Regulatory Analysis

Section 5 – Summary of Application Forms and Supporting Information

Appendix A – Application Forms and Attachments

Appendix B – GRI-GLYCalc Emission Summary and Wet Gas Analysis

Appendix C – Flare Design Evaluation

2. PROCESS DESCRIPTION AND PROPOSED CHANGES

The Cassity Mountain Station is a natural gas compressor station used to compress gas for Dominion's pipeline system in West Virginia. The Station transports natural gas to a natural gas processing plant while serving the purpose of pumping natural gas from production and gathering lines to a Dominion pipeline. The Station operates under General Permit G35-A027A, which was issued on April 26, 2011. As part of operations at the Station, Dominion uses a glycol dehydration unit to remove water and impurities from the inlet natural gas stream. Water is removed from the rich natural gas stream via physical absorption while the natural gas stream flows countercurrent to circulating triethylene glycol (TEG) in a contactor. The rich TEG is sent to a flash tank to reduce volatile hydrocarbons (HC). Vapors from the flash tank are primarily vented to the atmosphere. Vapors from the reboiler pass through a still column that is controlled by the existing flare referenced as Emission Point ID: F-1.

Dominion proposes to replace the existing control device (i.e., flare) for the dehydration unit with a new enclosed flare. For the purposes of this Application, the new enclosed flare will be referenced as Emission Point ID: F-2. As part of the control device replacement, a blow-case will be installed between the still column and the enclosed flare. The installation of the blow-case is considered part of the control device installation, as it serves to enhance the efficiency of the enclosed flare. The installation of the blow-case is not considered a modification of the glycol dehydration unit. The glycol dehydration unit will not be debottlenecked as a result of the proposed project.

In addition to the installation of the new control device, Dominion proposes to install a new Cummins natural gas-fired auxiliary emergency generator to provide backup power in emergency situations. The changes associated with these modifications are summarized in Table 2-1.

Table 2-1
Emission Units Table
Dominion Transmission Inc. – Cassity Mountain Station

y .						
Emission Unit ID	Emission Point ID	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type of Change	Control Device
F-1	F-1	Glycol Dehydration Unit Flare	2011	165 scfm	Removal	N/A
F-2	F-2	Glycol Dehydration Unit Enclosed Flare, Questor Q100 (95% control efficiency)	2015	46 scfm	New	N/A
GE-1	GE-1	Emergency Generator, Cummins Inc.	2015	97.5 HP	New	N/A

The existing flare (Emission Point ID: F-1) at the Station is proposed to be replaced with a new Questor Technologies Inc. (Questor) Q100 enclosed flare, referenced within the Application as Emission Point ID: FL-2. The new Questor Q100 enclosed flare will operate with a 95% control efficiency. The new emergency generator (Emission Point ID: GE-1) proposed to be installed is a Cummins model WSG-1068 natural gas-fired engine rated at 97.5 horsepower (HP).

The changes in emissions of criteria pollutants, greenhouse gases (GHG), and HAPs as a result of this project are discussed in Section 3. Emissions of lead (Pb) are insignificant from the proposed sources mentioned above and are not considered further.

3. EMISSIONS INVENTORY

Dominion proposes to replace the existing control device (i.e., flare) with a new control device (i.e., enclosed flare) for the glycol dehydration unit at the Station. Dominion is also proposing to install one (1) new natural gas-fired emergency generator to provide backup power during emergency situations. Dominion has quantified the potential emissions of particulate matter (PM), volatile organic compounds (VOC), nitrogen oxides (NO_X), carbon monoxide (CO), sulfur dioxide (SO₂), GHG, and HAPs that are associated with the project. Emissions of PM account for both condensable PM and filterable PM, where filterable PM is all PM less than or equal to 30 microns in diameter according the WVDEP Division of Air Quality Guidance for Pollutant Reporting. PM is conservatively assumed to be equivalent to PM less than 10 microns in diameter (PM₁₀) and PM less than 2.5 microns in diameter (PM_{2.5}).

3.1 GLYCOL DEHYDRATION UNIT CONTROL DEVICE

The proposed replacement control device is a Questor Q100 enclosed flare. A summary of the potential to emit (PTE) of NSR regulated pollutants from the new enclosed flare and the pilot flame is included in Table 3-1. The potential emissions of NO_X, CO, and SO₂ are based on vendor guarantees (see Attachment G, located in Appendix A, for the Questor vendor information sheets) which account for emissions associated with the combustion of natural gas (e.g. fuel gas and pilot gas) and waste gas. The potential emissions of VOC and HAPs are calculated using GRI-GLYCalc Version 4.0 using an updated wet gas analysis, a maximum stripping gas flowrate of 65 standard cubic feet per minute (scfm), and natural gas emission factors from AP-42 (Chapter 1.4, Table 1.4-2, 07/98) for VOC and total organic compounds (TOC). A summary of the GRI-GLYCalc inputs and results are included in Appendix B. The use of stripping gas lowers the saturation of the water in the glycol solution, thus increasing the glycol concentration. The GRI-GLYCalc Version 4.0 model is used to calculate the VOC and HAP emissions from the combustion of waste gas in the flare, while the AP-42 emission factors are used to calculate the emissions from the combustion of natural gas from the pilot stream and the additional natural gas fuel inlet stream.

Table 3-1
Dominion Transmission, Inc. - Cassity Mountain Station
Project Related Potential Emissions Summary

	Emission Points						
Regulated Pollutant	RSV-2 (Cont	rolled by F-2)	F-2 (New)				
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)			
	Cr	iteria Pollutants					
PM ^(a)	-	-	0.05	0.24			
VOC ^(b)	1.11	4.87	-	-			
NO _X ^(c)	-	-	0.67	2.93			
CO ^(c)	-	-	0.56	2.46			
SO ₂ ^(c)	-	-	2.33E-03	0.01			
	Greenh	ouse Gas Pollutants ^(d)					
CO ₂ ^(e)	-	-	626.99	2753.75			
CH ₄ ^(f)	-	-	1.78	7.82			
$N_2O^{(g)}$	-	-	7.37E-03	3.24E-02			
CO ₂ e ^(h)	-	-	673.72	2,958.99			
	Hazar	dous Air Pollutants					
Total HAP ^(b)	0.35	1.54	-	-			

⁽a) Potential emissions of PM include PTE from the combustion of natural gas from the pilot flame and the supplemental natural gas stream, calculated based on the AP-42, Chapter 1.4, Table 1.4-2 emission factor for PM (Total). The supplemental natural gas stream flowrate includes the flow of natural gas used as both fuel gas (20 Mscf/day) and stripping gas (93.6 Mscf/day). PM emissions also include PTE from enclosed flare's combustion of emissions from the dehydration still vent and waste fuel gas, calculated based on the AP-42, Chapter 13.5, Table 13.5-1 emission factor for soot, assuming a lightly smoking flare (40 µg/L). According to the May 2011 Emission Estimation Protocol for Petroleum Refineries, approved by the U.S. EPA on March 28, 2011, 40 µg/L is equivalent to 0.027 lb/MMBtu. PM is conservatively assumed to be equivalent to all filterable PM including PM₁₀ and PM₂₅, and condensable fractions.

 $^{(e)}$ CO₂ is calculated assuming emissions from both natural gas and waste gas streams. in metric tons/year, calculated according to 40 CFR 98 Equation Y-1a, where:

$$CO_2 = 0.98 \times 0.001 \times \left[\sum_{p=1}^{n} \left[\frac{44}{12} \times (Flare)_p \times \frac{(MW)_p}{MVC} \times (CC)_p \right] \right]$$

(f)CH₄ is in metric tons/year, calculated according to 40 CFR 98 Equation Y-4, where:

$${\rm CH_4} = \left({\rm CO_2} \times \frac{{\rm EmF_{CH4}}}{{\rm EmF}}\right) + CO_2 \times \frac{0.02}{0.98} \times \frac{16}{44} \times f_{CH4}$$

 $^{(g)}N_2O$ is in metric tons/year, calculated according to 40 CFR 98 Equation Y-5, where:

$$N_2 O = \left(\text{CO}_2 \times \frac{\text{EmF}_{N20}}{\text{EmF}} \right) \qquad (\text{Eq. Y-5})$$

 $^{(h)}CO_2e$ is carbon dioxide equivalent in metric tons/year, calculated according to 40 CFR 98 Equation A-1, where:

$$CO_2e = \sum_{i=1}^n GHG_i \times GWP_i$$

Table A-1: Global Warming Potentials				
Pollutant	GWP (100 year)			
CO ₂	1			
CH ₄	25			
N_2O	298			

Flare p = volume flare gas combusted = ~ 46 acfm. MW = molecular weight flare gas = 21 kg/kg-mol.

MVC = molar conversion factor of 849.5 scf/kg-mol at 68°F.

CC = carbon concentration of flare gas = 7.87%.

0.98 = combustion efficiency of flare (used 0.95 for 95% efficiency)

 $\label{eq:charge_charge} EmF_{CH4} = Default \ CH_4 \ emission \ factor \ for \ "Fuel \ Gas" \ from \\ Table \ C-2 \ .$

EmF = default CO₂ emission factor for flare gas of 60 kg/CO₂/MMBtu.

 CO_2 = emission rate of CO_2 from flared gas in metric tons/year. f_{CHM} = default weight fraction of carbon in flare gas of 0.4.

0.98 = combustion efficiency of flare (used 0.95 for 95%)

efficiency)

 CO_2 = emission rate of CO_2 from flared gas in metric tons/year. EmF_{N2O} = Default N_2O emission factor for "Fuel Gas" from Table C-2.

 $\label{eq:emf} EmF = default\ CO_2\ emission\ factor\ for\ flare\ gas\ of\ 60$ $kg/CO_2/MMBtu.$

 $\label{eq:GHG} GHG_i = mass\ emissions\ of\ each\ greenhouse\ gas\ listed\ in\ Table\ A-1,\ metric\ tons/year.$

 $GWP_i = global$ warming potential for each greenhouse gas from Table A-1.

 $n = number \ of \ greenhouse \ gases \ emitted.$

⁽b) Potential emissions of VOC and HAP include PTE from the pilot flame's natural gas combustion (i.e., pilot, fuel gas, and stripping gas streams) were calculated using AP-42 Chapter 1.4, Table 1.4-2. Emissions factors for VOC and TOC, and PTE from enclosed flare's combustion of emissions from the dehydration still vent waste gas were calculated using GRI-GLYCalc Version 4.0 and an updated were gas analysis. The VOC and HAP emissions from the dehydration still vent represent the sum of controlled regenerator emissions and flash tank off gas emissions generated using GRI-GLYCalc 4.0 with the incorporation of a 20% safety factor. To be consistent with the previous G35-A General Permit application that was submitted to West Virginia Department of Environmental Protection (WVDEP) on March 18, 2011, the Station's PTE is shown from the still vent which is controlled by the flare.

⁽e) Potential emissions of NO_X, CO, and SO₂ include PTE from the combustion of waste gas and fuel gas, with a maximum flowrate = 66 Mscf/day (46 scf/min) and a waste to fuel gas ratio of 1:0.2, based on vendor guarantees. NO_X, CO, and SO₂ emissions also include PTE from the combustion of natural gas used as stripping gas, with a flowrate = 93.6 Mscf/day (65 scf/min), calculated based on the AP-42, Chapter 1.4, Table 1.4-2 emission factors for natural gas combustion.

⁽d) Potential emissions of greenhouse gases are calculated from the combustion of natural gas from the pilot flame, the supplemental natural gas stream, and the waste gas in the enclosed flare. The supplemental natural gas stream flowrate includes the flow of natural gas used as both fuel gas (20 Mscf/day) and stripping gas (93.6 Mscf/day). Emissions from the supplemental natural gas tread the pilot flame natural gas were calculated using a fuel flowrate of 10,000 scf/day and a pilot flame flowrate of 1,200 scf/day (34 m³/d) to the enclosed flare. Greenhouse gas pollutant emission factors for the combustion of natural gas were obtained from 40 CFR Part 98, Subpart C. The emissions from the combustion of waste gas use the methodologies outlined below:

Potential emissions of PM include emissions from the combustion of supplemental natural gas used for the pilot flame and the natural gas fuel stream (calculated using the emission factor from AP-42, Chapter 1.4, Table 1.4-2, 07/98 for PM-Total). The potential emissions of PM also include emissions from the combustion of waste gas in the enclosed flare (calculated using AP-42 Chapter 13.5, Table 13.5-1, 09/91 emission factors for soot, conservatively assuming a lightly smoking flare).

Potential emissions of GHG from the new enclosed flare include emissions from the combustion of waste gas from the glycol dehydration unit and the combustion of supplemental natural gas used for the pilot flame and the natural gas fuel inlet stream. GHG emissions were calculated on a carbon dioxide equivalent (CO₂e) basis. This method adds the potential emissions of carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄), using emission factors, global warming potentials (GWP), and methodologies obtained from 40 CFR Part 98, Subparts C and Y. GHG emissions from the combustion of the still overhead were calculated pursuant to 40 CFR Part 98, Subpart Y (Petroleum Refineries). This method was used rather than 40 CFR Part 98, Subpart W (Petroleum and Natural Gas Systems) because Subpart Y more appropriately estimates GHG emissions based on flare specifications rather than Subpart W, which estimates GHG emissions based on the specifications of glycol dehydration units. GHG emissions from the combustion of supplemental natural gas used for the pilot flame and the natural gas fuel inlet stream were calculated based on emission factors obtained from 40 CFR Part 98, Subpart C, Tables C-1 and C-2, and the maximum natural gas flowrate supplied to the enclosed flare.

The PTE of the new enclosed flare is calculated by assuming 8,760 operating hours per year, and a maximum waste gas volumetric flowrate of approximately 46 standard cubic feet per minute (scf/min), based on the design capacity of the new Questor Q100 enclosed flare.

3.2 AUXILIARY EMERGENCY GENERATOR

The proposed new auxiliary emergency generator is a natural gas-fired Cummins model WSG-1068 with a rated capacity of 97.5 HP. A summary of PTE of NSR regulated pollutants and HAPs from the emergency generator is included in Table 3-2.

Table 3-2
Proposed Emergency Generator Potential Emissions
Dominion Transmission, Inc. - Cassity Mountain Station

Dellesteret	Emission	Factor	Deferre	Potential Emissions				
Pollutant	Value	Unit	Reference	(lb/hr)	(tons/yr)			
Criteria Pollutants								
PM	7.71E-05	lb/MMBtu	(b)	6.64E-05	1.66E-05			
VOC ^(c)	1.20	g/HP-hr	(a)	0.26	0.06			
NO_X	6.10	g/HP-hr	(a)	1.31	0.33			
CO	50.30	g/HP-hr	(a)	10.80	2.70			
SO_2	5.88E-04	lb/MMBtu	(b)	5.06E-04	1.27E-04			
	Green H	ouse Gas Pollu	tants					
CO_2	53.06	kg/MMBtu	(d)	100.72	25.18			
$\mathrm{CH_4}$	1.00E-03	kg/MMBtu	(d)	1.90E-03	4.75E-04			
N_2O	1.00E-04	kg/MMBtu	(d)	1.90E-04	4.75E-05			
CO ₂ e				100.82	25.21			
	Hazard	ous Air Polluta	ints					
Formaldehyde	0.05	lb/MMBtu	(b)	0.05	0.01			
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	(b)	3.44E-05	8.61E-06			
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	(b)	2.74E-05	6.84E-06			
1,1-Dichloroethane	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06			
1,2-Dichloroethane	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06			
1,2-Dichloropropane	2.69E-05	lb/MMBtu	(b)	2.32E-05	5.79E-06			
1,3-Butadiene	2.67E-04	lb/MMBtu	(b)	2.30E-04	5.75E-05			
1,3-Dichloropropene	2.64E-05	lb/MMBtu	(b)	2.27E-05	5.68E-06			
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	(b)	2.15E-04	5.38E-05			
Acrolein	5.14E-03	lb/MMBtu	(b)	4.43E-03	1.11E-03			
Acetaldehyde	8.36E-03	lb/MMBtu	(b)	7.20E-03	1.80E-03			
Benzene	4.40E-04	lb/MMBtu	(b)	3.79E-04	9.47E-05			
Biphenyl	2.12E-04	lb/MMBtu	(b)	1.83E-04	4.56E-05			
Carbon Tetrachloride	3.67E-05	lb/MMBtu	(b)	3.16E-05	7.90E-06			
Chlorobenzene	3.04E-05	lb/MMBtu	(b)	2.62E-05	6.54E-06			
Chloroform	2.85E-05	lb/MMBtu	(b)	2.45E-05	6.13E-06			
Ethylbenzene	3.97E-05	lb/MMBtu	(b)	3.42E-05	8.55E-06			
Ethylene Dibromide	4.43E-05	lb/MMBtu	(b)	3.81E-05	9.54E-06			
Methanol	2.50E-03	lb/MMBtu	(b)	2.15E-03	5.38E-04			
Methylene Chloride	2.00E-05	lb/MMBtu	(b)	1.72E-05	4.31E-06			
n-Hexane	1.11E-03	lb/MMBtu	(b)	9.56E-04	2.39E-04			

Table 3-2
Proposed Emergency Generator Potential Emissions
Dominion Transmission, Inc. - Cassity Mountain Station

Pollutant	Emission	Factor	Reference	Potential	Potential Emissions	
Fonutant	Value	Unit	Reference	(lb/hr)	(tons/yr)	
Naphthalene	7.44E-05	lb/MMBtu	(b)	6.41E-05	1.60E-05	
Phenol	2.40E-05	lb/MMBtu	(b)	2.07E-05	5.17E-06	
Styrene	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06	
Toluene	4.08E-04	lb/MMBtu	(b)	3.51E-04	8.78E-05	
Vinyl Chloride	1.49E-05	lb/MMBtu	(b)	1.28E-05	3.21E-06	
Xylene	1.84E-04	lb/MMBtu	(b)	1.58E-04	3.96E-05	
2-Methylnaphthalene	3.32E-05	lb/MMBtu	(b)	3.78E-04	1.66E-03	
Acenaphthene	1.25E-06	lb/MMBtu	(b)	1.42E-05	6.24E-05	
Acenaphthlene	5.53E-06	lb/MMBtu	(b)	6.30E-05	2.76E-04	
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	(b)	1.89E-06	8.28E-06	
Benzo(e)pyrene	4.15E-07	lb/MMBtu	(b)	4.73E-06	2.07E-05	
Benzo(ghi)perylene	4.14E-07	lb/MMBtu	(b)	4.71E-06	2.07E-05	
Chrysene	6.93E-07	lb/MMBtu	(b)	7.89E-06	3.46E-05	
Fluoranthene	1.11E-06	lb/MMBtu	(b)	1.26E-05	5.54E-05	
Fluorene	5.67E-06	lb/MMBtu	(b)	6.46E-05	2.83E-04	
Phenanthrene	1.04E-05	lb/MMBtu	(b)	1.18E-04	5.19E-04	
Pyrene	1.36E-06	lb/MMBtu	(b)	1.55E-05	6.78E-05	
Total HAP				0.06	0.02	

⁽a) Emission factors are obtained from engine manufacturer's technical data sheet.

⁽b) Emission factors are from AP-42, Section 3.2, Table 3.2-2 Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines (7/00).

^(c) Emission factor includes non-methane hydrocarbons, VOC, precursor organic compounds, and reactive organic compounds constituents.

 $^{^{(}d)}$ Emission factors are from 40 CFR Part 98 Subpart C. Carbon dioxide equivalent (CO₂e) is calculated according to 40 CFR 98 Equation A-1.

The potential emissions of NO_X, CO, and VOC are based on vendor guarantees (Attachment P, located in Appendix A, Cummins vendor information sheets), while the potential emissions of PM, SO₂ and HAPs are calculated based on emission factors for natural gas-fired 4-stroke lean burn reciprocating engines (4SLB) in AP-42, Chapter 3.2, Table 3.2-2, 07/00. The PTE of the new emergency generator is calculated by assuming 500 operating hours per year.

A summary of project related changes in emissions are shown below in Table 3-3. Additionally, a Station-wide emissions summary as a result of the replacement of the existing control device (i.e., flare) and the installation of the emergency generator can be found in Attachment G, located in Appendix A.

Table 3-3
Dominion Transmission, Inc. - Cassity Mountain Station
Project Related Changes in Potential Emissions Summary

Regulated Pollutant	Existing Potential Emissions (tons/yr) ^(a)			Project Related Potential Emissions $\left(ext{tons/yr} \right)^{ ext{(b)}}$			Change in Potential Emissions (tons/yr) ^(c)				Summary of Changes in Potential Emissions ^(d)	
	RBV-2	RSV-2	FL-1	RBV-2	RSV-2	GE-1	FL-2	RBV-2	RSV-2	GE-1	FL-2	
	Criteria Pollutants											
PM	< 0.01	ı	-	< 0.01	-	1.66E-05	0.24	0.00	-	1.66E-05	0.24	0.24
VOC	0.18	19.64	-	0.18	4.87	0.06	-	0.00	-14.77	0.06	-	-14.71
NO_X	0.30	-	0.79	0.30	-	0.33	2.93	0.00	-	0.33	2.14	2.47
CO	0.26	ı	2.30	0.26	-	2.70	2.46	0.00	-	2.70	0.16	2.86
SO_2	< 0.01	-	-	< 0.01	-	0.00	0.01	0.00	-	1.27E-04	0.01	0.01
	Greenhouse Gas Pollutants											
CO ₂ e	442.40	ı	8,554.53	442.40	-	25.21	2,958.99	0.00	-	25.21	-5,595.54	-5,570.34
	Hazardous Air Pollutants											
Total HAP	< 0.01	4.38	-	< 0.01	1.54	0.02	-	0.00	-2.84	0.02	-	-2.82

⁽a) As reported in Attachment I of the General Permit application submitted to the West Virginia Department of Environmental Protection (WVDEP) on March 18, 2011.

⁽b) As calculated in Table 3-1 of this General Permit application.

 $^{^{(}c)}\ Change\ in\ Potential\ Emissions = ([Project\ Related\ Potential\ Emissions] - [Existing\ Potential\ Emissions]).$

⁽d) Summary of Changes in Potential Emissions represents the increase or decrease in potential emissions from the Station as a result of the proposed project. The decrease in the Station's VOC and HAP emissions is attributed to an updated wet gas analysis.

4. REGULATORY ANALYSIS

Dominion has reviewed the Federal and State of West Virginia air quality regulations for potentially applicable air quality requirements that could impact the proposed project. The following sections address only those air regulations that could apply to the proposed project.

4.1 FEDERAL AIR QUALITY REGULATIONS

For the purpose of this application, potentially applicable Federal air quality regulations include the following:

- New Source Performance Standards (NSPS)
- National Emission Standards for Hazardous Air Pollutants (NESHAP)
- Compliance Assurance Monitoring (CAM)
- New Source Review (NSR)

A discussion of each specific Federal requirement is presented in the following subsections.

4.1.1 New Source Performance Standards (NSPS)

The United States Environmental Protection Agency (U.S. EPA) has promulgated standards of performance for new, modified, or reconstructed sources of air pollution at 40 CFR Part 60, referred to as NSPS. Although the enclosed flare and the glycol dehydration unit are not subject to an NSPS regulation, the proposed emergency generator is subject to the requirements discussed in 40 CFR Part 60. The following Part 60 Subparts apply to the proposed project:

- Subpart A General Provisions
- <u>Subpart JJJJ</u> Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

4.1.1.1 40 CFR Part 60, Subpart A – General Provisions

NSPS promulgated under 40 CFR Part 60 apply to new, modified and reconstructed affected facilities in specific source categories. Because the installation of the new Cummins emergency generator is subject to the provisions in 40 CFR Part 60, Subpart JJJJ, 40 CFR Part 60, Subpart A is generally applicable and Dominion will comply with the provisions as appropriate.

4.1.1.2 40 CFR Part 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The provisions of 40 CFR Part 60, Subpart JJJJ apply to owners and/or operators of stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. Since the new Cummins auxiliary emergency generator is located at an area source of HAP and is an engine greater than 25 HP that was manufactured on or after July 1, 2008, the generator must meet the requirements contained in 40 CFR Part 60, Subpart JJJJ.

The new Cummins auxiliary emergency generator must meet the NO_X + HC and CO emission standards as defined in Table 4-1, pursuant to 40 CFR $\S60.4233(d)$, and listed in Table 1 of Subpart JJJJ:

Table 4-1
Emission Standards Table for New Emergency Generator
Dominion Transmission Inc. – Cassity Mountain Station

Engine Type	Maximum Engine	Emission Standard (g/HP-hr)			
	Power	$NO_X + HC$	CO		
Emergency 25 <hp<130< td=""><td>10</td><td>387</td></hp<130<>		10	387		

Pursuant to §60.4243(b)(1) and §60.4243(a)(1), the Station will appropriately maintain the RICE and keep records to demonstrate compliance with Subpart JJJJ.

Pursuant to §60.4243(d), there is no time limit on the use of the emergency stationary RICE in emergency situations. However, for the proposed engine to meet the definition of an emergency stationary RICE under Subpart JJJJ, the new emergency generator must limit maintenance checks and readiness testing to a maximum of 100 hours per year, and must limit non-emergency operation to a maximum of 50 hours per year, included in 100 hours of maintenance and testing. In order to document the hours of operation of this engine in emergency and non-emergency situations, a non-resettable hour meter will be installed.

Additionally, the station will comply with the recordkeeping requirements codified at §60.4245(a).

4.1.2 National Emission Standards for Hazardous Air Pollutants (NESHAP)

U.S. EPA has promulgated National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40 CFR Part 63. Several existing emission units at the Station are already subject to a NESHAP. The proposed project will not impact the Station's ability to comply with previously applicable requirements. The following Part 63 Subparts potentially apply to the proposed project:

- <u>Subpart A</u> General Provisions
- Subpart HH NESHAP for Oil and Natural Gas Production Facilities
- Subpart HHH NESHAP for Natural Gas Transmission and Storage Facilities
- Subpart ZZZZ NESHAP for Stationary Reciprocating Internal Combustion Engines

4.1.2.1 40 CFR Part 63, Subpart A – General Provisions

Pursuant to the Clean Air Act Amendments of 1990, process-specific NESHAPs are promulgated at 40 CFR Part 63. NESHAPs promulgated under 40 CFR Part 63, also referred to as Maximum Achievable Control Technology (MACT) standards, apply to identified source categories that are considered area sources or major sources of HAPs. As previously mentioned in Section 1.1, the potential emissions of HAPs from the Station are less than the major source thresholds. Therefore, the Station qualifies as an area source of HAPs as defined in §63.2. As an area source of HAPs, the glycol dehydration unit at the Station is subject to MACT standards codified at 40 CFR Part 63. Note that the existing flare serving as a control device for the glycol dehydration unit is subject to the control device and work practice requirements specified in Condition No. 10.1.4 of General Permit G35-A027A, which are based on provisions in 40 CFR §63.11 (Subpart A). The replacement flare will be subject to the same requirements.

4.1.2.2 40 CFR Part 63, Subpart HH – NESHAP for Oil and Natural Gas Production Facilities

The Station is subject to 40 CFR Part 63, Subpart HH – *National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities* (Subpart HH) because the Station transports natural gas to a natural gas processing plant. The Station is subject to the area source requirements and the only affected source is the glycol dehydration unit. The glycol dehydration unit at the Station meets the definition of a large glycol dehydration unit because its

actual annual gas flowrate is greater than 85 thousand standard cubic meters per day (Mm³/day), and its uncontrolled benzene emissions are greater than 0.90 megagrams per year (Mg/yr), or 1 tpy. The Station is not located within an urbanized area plus offset (UA plus offset) and urban cluster (UC) boundary. A map depicting the location determination is included in Attachment F, located in Appendix A.

The glycol dehydration unit actual average benzene emissions (i.e., controlled emissions) are less than 0.90 Mg/yr (1 tpy), as determined in accordance with \$63.772(b)(2)(i). Therefore, the glycol dehydration unit meets the exemption criteria as specified by \$63.764(e)(ii). Potential actual average benzene emissions following the replacement of the control device will remain less than 0.90 Mg/yr (1 tpy), due to the emissions reductions associated with the federally enforceable controls (i.e., replacement enclosed flare) in place per \$63.772(b)(2). Because the control device replacement ensures that the potential annual benzene emissions will remain less than 0.90 Mg/yr (1 tpy), the dehydration unit will remain exempt from the requirements of \$63.764(d)(1)(i) through (iii). Records associated with this determination will be maintained in accordance with \$63.774(d)(1). Although the dehydration unit is not subject to control device requirements of 40 CFR 63 Subpart HH or Subpart A, the proposed dehydration unit control device (replacement enclosed flare) will be subject to the control device and work practice requirements specified in \$63.11 (Subpart A), as required per Condition No. 10.1.4 of General Permit G35-A027A.

4.1.2.3 Condition 40 CFR Part 63, Subpart HHH – NESHAP for Natural Gas Transmission and Storage Facilities

The provisions of 40 CFR Part 63, Subpart HHH apply to glycol dehydration units located at natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user. Because the Station is associated with a natural gas production facility, HHH does not apply.

4.1.2.4 Condition40 CFR Part 63, Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

The provisions of 40 CFR Part 63, Subpart ZZZZ apply to owners and/or operators of stationary RICE located an area source of HAP emissions. The proposed natural gas fired emergency

generator meets the definition of RICE as defined in 40 CFR Part 63, Subpart ZZZZ and will meet the requirements of this subpart by complying with 40 CFR Part 60 Subpart JJJJ.

4.1.3 Compliance Assurance Monitoring (CAM)

U.S. EPA promulgated the Compliance Assurance Monitoring (CAM) rule at 40 CFR Part 64 on October 22, 1997 with an effective date of November 21, 1997. According to 40 CFR §64.2(a), a unit located at a nonmajor source that is not required to obtain Title V permit, is exempt from CAM. Therefore, the Station is not subject to CAM requirements.

4.1.4 New Source Review (NSR)

U.S. EPA has approved West Virginia's NSR regulations through their incorporation into the West Virginia State Implementation Plan (SIP). The state-specific NSR regulations are codified in West Virginia 45 CSR§14 and 19.

4.1.4.1 Prevention of Significant Deterioration (PSD)

The Prevention of Significant Deterioration (PSD) regulations ensure that major new sources and major modifications to existing sources will not result in the significant deterioration of air quality in areas designated by U.S. EPA as in attainment of National Ambient Air Quality Standards (NAAQS). Because the replacement of the existing control device (i.e. replacement enclosed flare) is not a major modification and since the Station is not a major source under the PSD rules, PSD does not apply.

4.1.4.2 Nonattainment New Source Review (NNSR)

The NNSR regulations ensure that major new sources and major modifications to existing sources located in areas of nonattainment of NAAQS will not adversely impact the area's progress toward achieving NAAQS. Because the change does not meet major source criteria when considered alone and as the Station is not an existing major source under the NNSR rules, the NNSR rules do not apply.

4.2 STATE OF WEST VIRGINIA REQUIREMENTS

The proposed project is potentially subject to the following West Virginia air quality regulations as codified in Title 45 – Division of Air Quality Code. It should be noted that none of the existing Title 45 regulations that currently apply to the Station will be impacted by the proposed project.

- 45 CSR6 To Prevent and Control Air Pollution from Combustion of Refuse
- 45 CSR10 To Prevent and Control Air Pollution from the Emission of Sulfur Oxides
- 45 CSR13 Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants
- 45 CSR30 Requirements of Operating Permits
- 45 CSR30A Deferral of Nonmajor and Area Sources from Permitting Requirements
- 45 CSR34 Emission Standards for Hazardous Air Pollutants

4.2.1 45 CSR6 – To Prevent and Control Air Pollution from Combustion of Refuse

The provisions of this rule establish emission standards for PM and requirements for activities involving incineration of refuse which are not subject to, or are exempted from regulation under a federal counterpart for specific combustion sources. The proposed control device (i.e., enclosed flare) for the glycol dehydration unit at the Station meets the definition of an "incinerator" in 45 CSR§6-2, and therefore is subject to the 45 CSR6 regulations. The monitoring requirements, testing requirements, recordkeeping requirements, and reporting requirements of this rule therefore apply.

Based on 45 CSR§6-4, the allowable PM emissions for the flare are calculated using the following formula:

$$PM_{allowable}\left(\frac{lb}{hr}\right) = Incinerator Capacity\left(\frac{tons}{hr}\right) \times F$$

Where: F = Factor for determining maximum allowable particulate emissions. For incinerators with a capacity less than 15,000 lb/hr: F = 5.43.

Incinerator Capacity = design capacity of the flare (estimated total flow rate to the flare, including materials to be burned, carrier gases, auxiliary fuel, etc.).

The allowable PM limit calculation is provided below:

$$PM_{allowable} = 143 \frac{lb}{hr} x 5.43 (F factor) x \frac{1 ton}{2000 lb} = 0.39 lb/hr,$$

Based on AP-42, the enclosed flare will comply with the allowable PM emission limit determined in accordance with 45 CSR§6-4.

4.2.2 45 CSR10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The provisions of this rule regulate emissions of sulfur oxides (SO_X). The existing control device (i.e., flare) is subject to the applicable emission limits specified in 45 CSR§10-4.1 Standards for Manufacturing Process Source Operations and 45 CSR§10-5.1 Combustion of Refinery or Process Gas Streams. The existing source-specific emission limits will not change as a result of the proposed project. The new enclosed flare and the new auxiliary emergency generator are exempt from the testing, monitoring, recordkeeping, and reporting requirements of 45 CSR§10-8 because both combust natural gas (CSR§10-10.3).

4.2.3 45 CSR13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

The provisions of this rule set forth the procedures for stationary source reporting, and the criteria for obtaining a permit to modify a nonmajor stationary source. The proposed project is a modification to a nonmajor source as defined in 45 CSR13, and therefore requires a General Permit.

4.2.4 45 CSR30 – Requirements of Operating Permits and 45 CSR30A – Deferral of Nonmajor and Area Sources From Permitting Requirements

45 CSR30 provides for the establishment of a comprehensive air permitting system consistent with the requirements of Title V of the CAA. The provisions of 45 CSR30A provide for the deferral of nonmajor and area sources from the obligation to obtain a permit under 45 CSR30. Because the Station is a nonmajor source and is an area source, the provisions of 45 CSR30 do not apply.

4.2.5 45 CSR34 – Emission Standards for Hazardous Air Pollutants (HAP)

The provisions of this rule incorporate 40 CFR Parts 61 and 63 by reference including any required methods, performance specifications, and all test methods which are approved to flare standards. Exclusions are identified at 45 CSR§34-4. The proposed project does not affect the applicability of 45 CSR34. Therefore, the standards set forth by 40 CFR Part 63, Subpart HH will continue to apply.

5. SUMMARY OF APPLICATION FORMS AND SUPPORTING INFORMATION

Dominion is including a check payable to the "West Virginia Department of Environmental Protection – Division of Air Quality" in the amount of \$3,000, as established in 45 CSR13 and 45 CSR22, to cover the G35-A General Permit Application fee (\$500) and the fee applicable to sources subject to NESHAP requirements (\$2,500).

The following attachments included as Appendix A provide supporting information for the General Permit G35-A Application:

- Attachment A Business Certificate
- Attachment B Process Description
- Attachment D Process Flow Diagram
- Attachment E Plot Plan
- Attachment F Area Map
- Attachment G Equipment Data Sheets
- Attachment H Air Pollution Control Device Sheets
- Attachment I Emission Calculations
- Attachment J Class I Legal Advertisement
- Attachment L General Permit Registration Application Fee
- Attachment P Other Supporting Documents (Emergency Generator Vendor Information)

^{**}Note – There are no Attachments C, H, K, M, N and O for this permit application

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304

Phone: (304) 926-0475 * www.dep.wv.gov/daq

APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS

☐ CONSTRUCTION ☐ MODIFICATION ☐ RE	LOCATION		CLASS I ADMINISTRATIVE UPDATE			
☐ CLASS II ADMIN	IISTRATIVE	UPDATE				
		TD 4 TION	VOLUME ADDITION OF THE PROPERTY OF THE PROPERT			
CHECK WHICH TYPE OF GENERAL PE	RMII REGIS	TRATION	YOU ARE APPLYING FOR:			
☐G10-D – Coal Preparation and Handling						
G20-B – Hot Mix Asphalt			C – Nonmetallic Minerals Processing			
G30-D – Natural Gas Compressor Stations			B – Concrete Batch			
'			C - Class II Emergency Generator			
G33-A – Spark Ignition Internal Combustion Engines		☐G65-0	C – Class I Emergency Generator			
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	dration Unit)	☐G70-/	A – Class II Oil and Natural Gas Production Facility			
SECTION I. GI	ENERAL INF	ORMATIC	ON			
Name of applicant (as registered with the WV Secretary of State's Dominion Transmission, Inc.	Office):		2. Federal Employer ID No. (FEIN): 550629203			
Applicant's mailing address:	4. Appl	icant's phy	sical address:			
445 West Main Street	Cassity, Randolph County					
Clarksburg, WV 26301	West	/irginia 2	6301			
If applicant is a subsidiary corporation, please provide the name of	f narant carner	ation: N/A				
5. If applicant is a substituting corporation, please provide the name of	parent corpor	alion. N/A				
6. WV BUSINESS REGISTRATION. Is the applicant a resident of the	e State of West	: Virginia?	⊠YES □NO			
 IF YES, provide a copy of the Certificate of Incor change amendments or other Business Registra 			Limited Partnership (one page) including any name nament A .			
 IF NO, provide a copy of the Certificate of Authoral amendments or other Business Certificate as A 		ty of LLC /	Registration (one page) including any name change			
SECTION II. FACILITY INFORMATION						
7. Type of plant or facility (stationary source) to be constructed,	8a. Standar	d Industrial	AND			
modified, relocated or administratively updated (e.g., coal preparation plant, primary crusher, etc.):	8b. North Ar	8b. North American Industry Classification				
Replacement enclosed flare control device (for dehydration unit), and	Classification	n (SIC) cod	e: 4922 System (NAICS) code: 486210			
Installation of one (1) new spark ignition engine driven emergency generator.						

9. DAG Plant ID No. (for existing facilities only). 083 – 00123	with this process (for G35-A027A	existing facilities only):				
	A: PRIMARY OPERATING SITE INFORM	MATION				
11A. Facility name of primary operating site:	12A. Address of primary operating site:					
Cassity Mountain Station	445 West Main Street	Physical: Cassity, Randolph County WV 26301				
 13A. Does the applicant own, lease, have an option IF YES, please explain: The applicant own IF NO, YOU ARE NOT ELIGIBLE FOR A PERSON 	vns the proposed site.	proposed site? XES				
 14A. – For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. From Route 33, go west from Weston. Turn right onto 151 and go ½ mile. Turn right and go3/10 mile to Pumpkintown Road. Turn left onto Pumpkintown Road and go 4 miles. Turn left and go11 miles (through the towns of Mabie and Cassity) to Dominion gate on left of road. Turn left, station is 4 miles. 						
15A. Nearest city or town: Cassity	16A. County: Randolph	17A. UTM Coordinates: Northing (KM): 4,292.294 Easting (KM): 584.773 Zone: 17				
18A. Briefly describe the proposed new operation Dominion Transmission, Inc. (Dominion) is enclosed flare to replace the existing flare existing glycol dehydration system locate Dominion is also proposing to install one generator at the Station.	is proposing to construct one (1) no e utilized as control devices on the ed at the Cassity Mountain Station.	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 38.7753 Longitude: -80.0241				
B: 1 ST ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits)						
11B. Name of 1 st alternate operating site: N/A	12B. Address of 1 st alternate operating s Mailing: N/A Physical: N/A	ite:				
13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? N/A — IF YES , please explain: N/A						

10. List all current 45CSR13 and other General Permit numbers associated

- IF **NO**, YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.

14B. — For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road;				
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. N/A 				
15B. Nearest city or town:	16B. County:		17B. UTM Coordinates:	
N/A	N/A			
			Northing (KM): N/A	
			Easting (KM): N/A	
			Zone: N/A	
18B. Briefly describe the proposed new operation or change (s) to th		e facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):	
IVA			Latitude: N/A	
			Longitude: N/A	
C: 2 ND ALTERNATE OPERATIN	NG SITE INFORMA	TION (only available for G20,	G40, & G50 General Permits):	
11C. Name of 2 nd alternate operating site:	12C. Address of 2	2 nd alternate operating site:		
N/A	Mailing: N/A			
	Physical: N/A			
13C. Does the applicant own, lease, have an option	on to buy, or otherw	rise have control of the propose	ed site? N/A	
─ IF YES, please explain: N/A				
- IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS S	OURCE.		
	pdates at an existir	ng facility, please provide direct	tions to the present location of the facility from the	
nearest state road;				
For Construction or Relocation permits, MAP as Attachment F.	piease provide dire	ctions to the proposed new site	location from the nearest state road. Include a	
N/A				
15C. Nearest city or town:	16C. County:		17C. UTM Coordinates:	
N/A	N/A		Northing (KM): N/A	
			Easting (KM): N/A	
		- C 196 -	Zone: N/A	
18C. Briefly describe the proposed new operation N/A	or change (s) to the	e facility:	19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):	
			Latitude: N/A	
			Longitude: N/A	
		21. Date of anticipated Start-up if registration is granted:		
20. Provide the date of anticipated installation or change:		N/A		
N/A				
If this is an After-The-Fact permit application, pupon which the proposed change did happen:	provide the date			
_ N/A				
00.00			V 4 4 0700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
22. Provide maximum projected Operating Schedule of activity/activities outlined in this application if other than 8760 hours/year. (Note: anything other than 24/7/52 may result in a restriction to the facility's operation).				
Hours per day N/A Days per week N/A Weeks per year N/A Percentage of operation N/A				

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).			
24. Include a Table of Contents as the first page of your application package.			
All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.			
25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.			
⊠ATTACHMENT A : CURRENT BUSINESS CERTIFICATE			
☐ATTACHMENT B: PROCESS DESCRIPTION			
ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS			
☑ATTACHMENT D: PROCESS FLOW DIAGRAM			
⊠ATTACHMENT E: PLOT PLAN			
⊠ATTACHMENT F: AREA MAP			
☑ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM			
☐ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS			
☑ATTACHMENT I: EMISSIONS CALCULATIONS			
☑ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT			
ATTACHMENT K: ELECTRONIC SUBMITTAL			
☑ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE			
☐ATTACHMENT M: SITING CRITERIA WAIVER			
☐ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)			
☐ATTACHMENT O: EMISSIONS SUMMARY SHEETS			
☑ATTACHMENT P: OTHER SUPPORTING DOCUMENTATION (Emergency Generator Vendor Information)			
Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West			

Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

Name & Title	<u>F</u>	OR A CORPORATION (domestic or foreign)			
	Σ		rer or in charge of a principal business function of the		
FOR A LIMITED LIABILITY COMPANY	E	OR A PARTNERSHIP			
Certify that I am a General Partner or General Manager		I certify that I am a General Partner			
FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor I hereby certify that (please print or type) Is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or, I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature Priesse use blue ink) Responsible Official Date Parian Sheppard, Vice President, Pipeline Operations Pipease use blue ink) Authorized Representative (if applicable) Date Dominion Transmission, Inc. Phone & Fax 304-627-3323 Phone	<u> </u>				
I certify that I am the President or a member of the Board of Directors	_				
Certify that I am the President, General Partner or General Manager	<u>E</u> C		ectors		
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor	<u>E</u>				
I hereby certify that (please print or type) Brian Sheppard is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or, I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature please use blue ink) Responsible Official Date Phone & Fax 304-627-3733 304-627-3323 Phone			nager		
I hereby certify that (please print or type) Is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or, I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature	<u>F</u>	<u>OR A SOLE PROPRIETORSHIP</u>			
is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or, I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature Please use blue ink) Responsible Official Responsible Official Date Name & Title Brian Sheppard, Vice President, Pipeline Operations Please use blue ink) Authorized Representative (if applicable) Date Date Phone & Fax 304-627-3323 Phone		I certify that I am the Owner and Proprietor			
is an Authorized Representative and in that capacity shall represent the interest of the business. (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or, I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature Please use blue ink	l hereby o	certify that (please print or type)	Sheppard		
hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible Signature	is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited				
Name & Title Brian Sheppard, Vice President, Pipeline Operations Signature (please use blue ink) Authorized Representative (if applicable) Applicant's Name Dominion Transmission, Inc. Phone & Fax 304-627-3733 Phone Fax	hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most				
Name & Title Brian Sheppard, Vice President, Pipeline Operations Signature [please use blue ink] Authorized Representative (if applicable) Applicant's Name Dominion Transmission, Inc. Phone & Fax 304-627-3733 Phone Fax	Signature	But Shew	04-02-15		
Signature (please use blue ink) Authorized Representative (if applicable) Applicant's Name Dominion Transmission, Inc. Phone & Fax Phone Phone	(please use blue ink)	Responsible Official	Date		
Signature	Name & Title Brian Sheppard, Vice President, Pipeline Operations				
Applicant's Name Dominion Transmission, Inc. Phone & Fax Phone & Fax	(please print or type)				
Applicant's Name			Data		
Phone & Fax	(please use blue ink)	Authorized Representative (if applicable)	Balo		
Phone Fax	Applicant's Name	Dominion Transmission, Inc.			
Phone Fax	Phone & Fax	304-627-3733	304-627-3323		
Email <u>Brian.C.Sheppard@dom.com</u>			Fax		
	Email	Brian.C.Sheppard@dom.com			

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

DOMINION TRANSMISSION INC

445 W MAIN ST

CLARKSBURG, WV 26301-2843

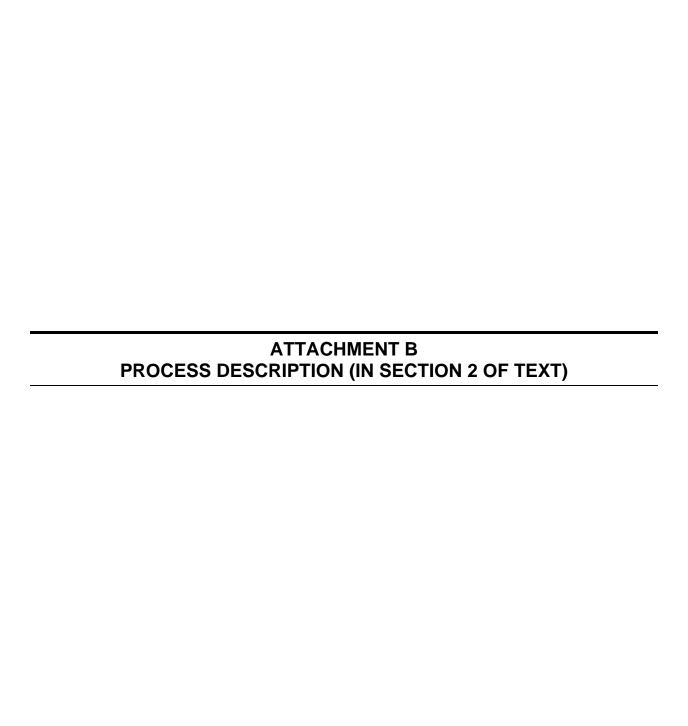
BUSINESS REGISTRATION ACCOUNT NUMBER:

1038-3470

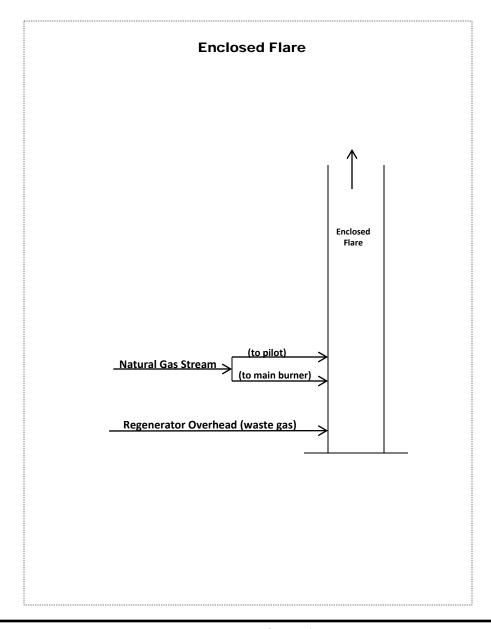
This certificate is issued on:

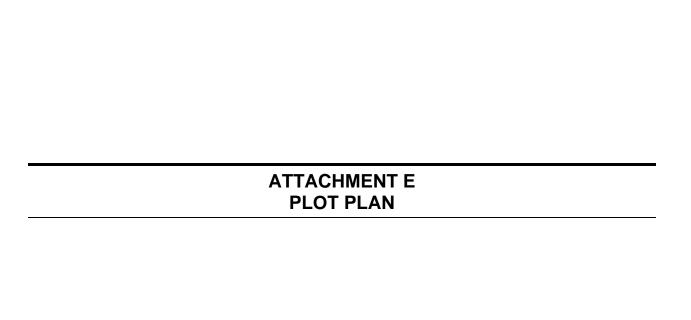
06/8/2011

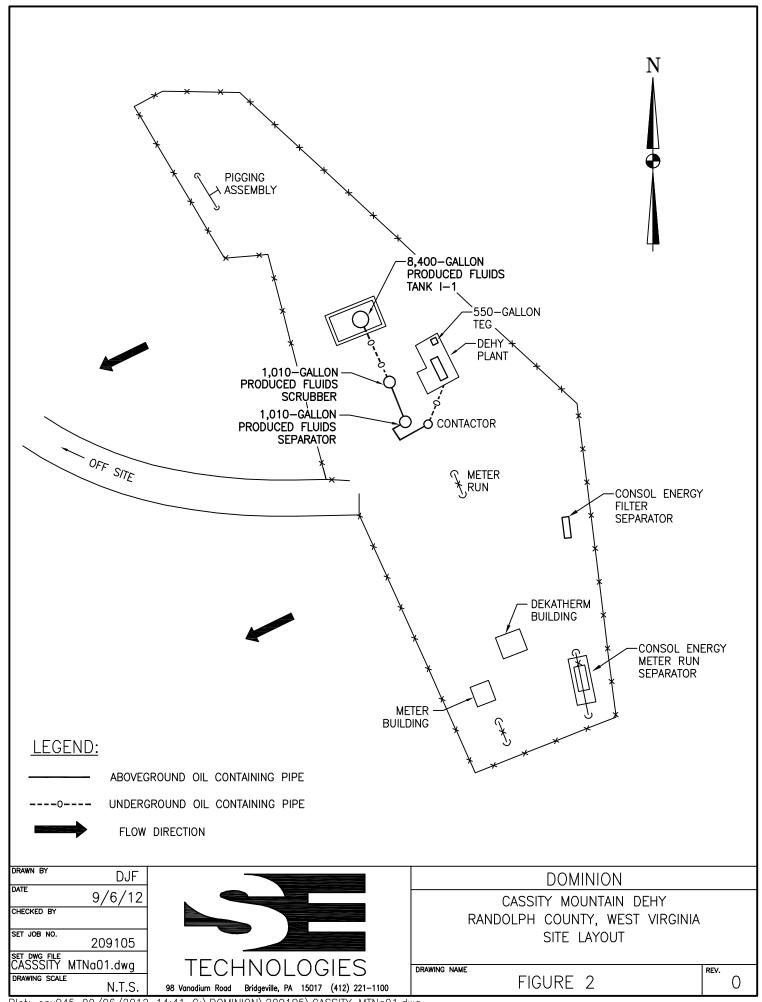
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

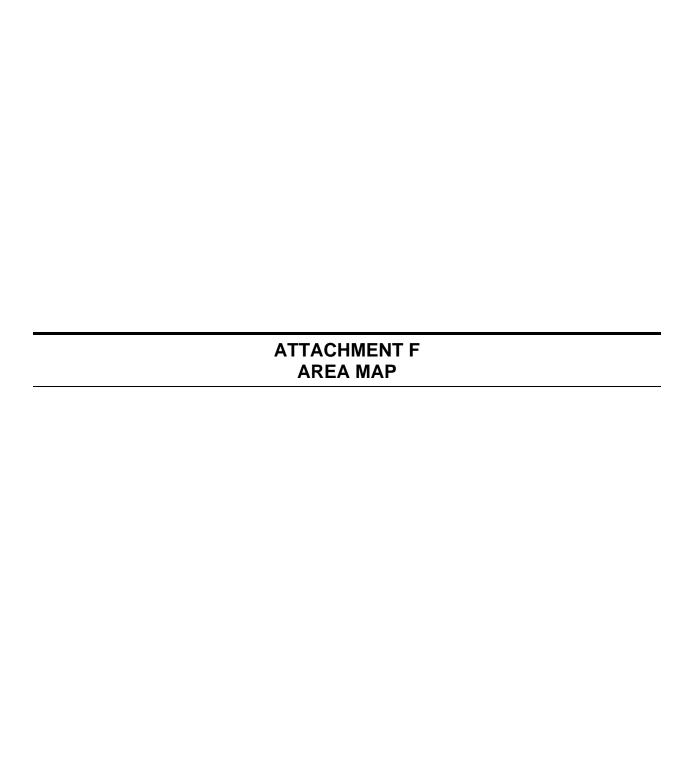

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

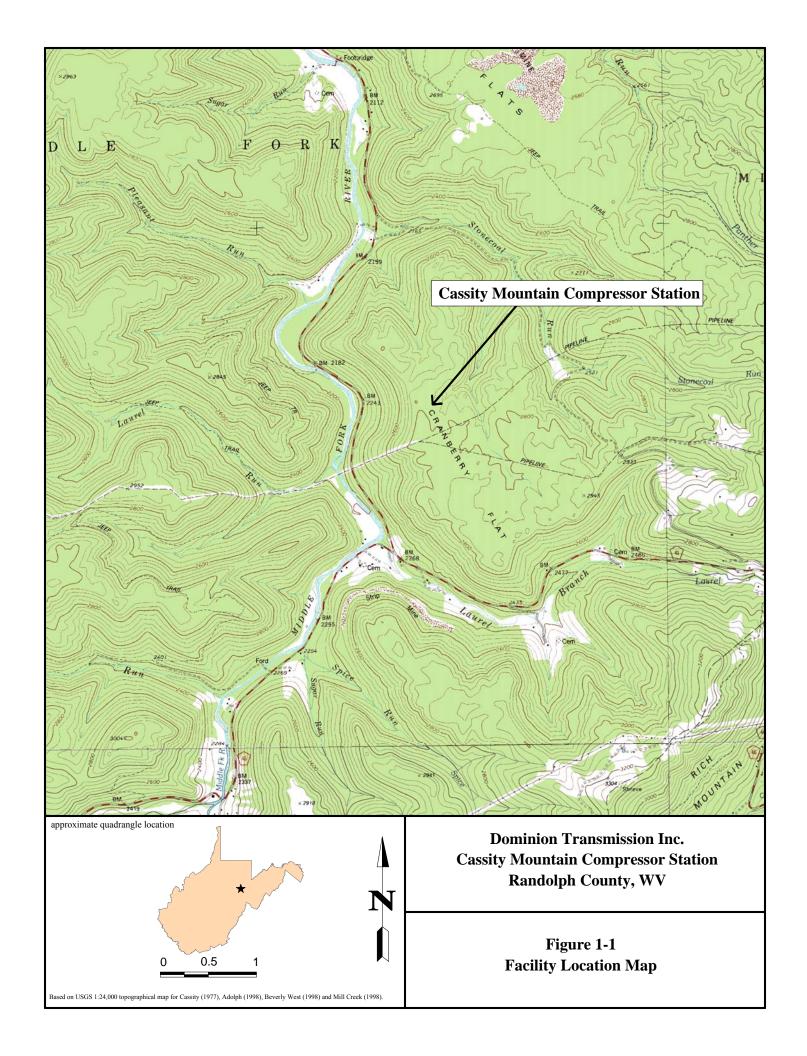
This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.


TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.4 L0228957312




ATTACHMENT D PROCESS FLOW DIAGRAM

OKLAHOMA

TENNESSEE SOUTH CAROLINA

ARKANSAS CAROLINA

Cassity Mountain Station
Location: Lat 38.7753 , Long -80.0241
Non-Urban
Created 8/4/2014

= Cassity Mountain Station

Legend:

Boundaries

State

'00 County

'00 Urban Area

Features

Stree

- Railroad

Pipe/Powerline

Stream/Waterbody

Items in grey text are not visible at this zoom level

1 of 1 08/03/2014

ATTACHMENT G EQUIPMENT DATA SHEETS

General Permit G35-A Registration Section Applicability Form

General Permit G35-A was developed to allow qualified registrants to seek registration for a variety of sources. These sources include internal combustion engines, boilers, reboilers, line heaters, tanks, emergency generators, dehydration units not subject to MACT standards, dehydration units not subject to MACT standards and being controlled by a flare control device, dehydration units not subject to MACT standards and being controlled by recycling the dehydration unit back to flame zone of reboiler, dehydration units not subject to MACT standards being controlled by a thermal oxidizer, and permit exemptions including the less than 1 ton/year benzene exemption, the 40CFR63 Subpart HH - Annual Average Flow of Gas Exemption (3 mmscf/day), and the 40CFR63 Subpart HHH - Annual Average Flow of Gas Exemption (10 mmscf/day). All registered facilities will be subject to Sections 1.0, 1.1, 2.0, 3.0, and 4.0.

General Permit G35-A allows the registrant to choose which sections of the permit that they wish to seek registration under. Therefore, please mark which sections that you are applying for registration under. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Reciprocating Internal Combustion Engines (R.I.C.E.)*	\boxtimes
Section 6	Boilers, Reboilers, and Line Heaters	\boxtimes
Section 7	Tanks	
Section 8	Emergency Generators	\boxtimes
Section 9	Dehydration Units Not Subject to MACT Standards	
Section 10	Dehydration Units Not Subject to MACT Standards and being controlled by a flare control device	\boxtimes
Section 11	Dehydration Units Not Subject to MACT Standards being controlled by recycling the dehydration unit back to the flame zone of the reboiler	
Section 12	Dehydration Units Not Subject to MACT Standards and being controlled by a thermal oxidizer	
Section 13	Permit Exemption (Less than 1 ton/year of benzene exemption)	\boxtimes
Section 14	Permit Exemption (40CFR63 Subpart HH – Annual average flow of gas exemption (3 mmscf/day))	
Section 15	Permit Exemption (40CFR63 Subpart HHH – Annual average flow of gas exemption (10 mmscf/day))	
Section 16	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (40CFR60 Subpart JJJJ)	\boxtimes

^{*} Affected facilities that are subject to Section 5 may also be subject to Section 16. Therefore, if the applicant is seeking registration under both sections, please select both.

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ide	GE-1				
Engine Man	Cummins 60 GGHE				
Manufactu	rer's Rated bhp/rpm	97.5	bhp		
So	urce Status ²	Λ	7S		
Date Installed	d/Modified/Removed ³	20	015		
Engine Manufact	ured/Reconstruction Date ⁴	20)14		
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Y	es		
	Engine Type ⁶	4S	LB		
	APCD Type ⁷	SC	CR		
г.	Fuel Type ⁸	PQ			
Engine, Fuel and	H ₂ S (gr/100 scf)	Negligible			
Combustion Data	Operating bhp/rpm	97.5 bhp			
	BSFC (Btu/bhp-hr)	9,272			
	Fuel throughput (ft ³ /hr)	861			
	Fuel throughput (MMft ³ /yr)	0.43			
	Operation (hrs/yr)	500			
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr		
MD	NO_X	1.31	0.33		
MD	СО	10.80	2.70		
AP/MD	VOC	0.26	0.06		
AP	AP SO ₂		<0.01		
AP	PM_{10}	<0.01	<0.01		
AP	Formaldehyde	0.02	<0.01		
		_			

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke

LB4S Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufact	turer and Model	Cameron	300/550	
		Max Dry Gas F	low Rate (mmscf/day)	55 MMSCFD		
		Design Heat	Input (mmBtu/hr)	0.9.	30	
		Design Typ	pe (DEG or TEG)	TE	G	
	l Glycol	Sou	rce Status ²	E	S	
•	ition Unit ata	Date Installed	/Modified/Removed ³	6/01/2	2011	
		Regenerator	Still Vent APCD ⁴	F	L	
		Fuel I	HV (Btu/scf)	1,10	6.5	
		H ₂ S Cont	tent (gr/100 scf)	Negliį	gible	
		Opera	ation (hrs/yr)	8,760		
Source ID #1	Vent	Reference ⁵	Reference ⁵ Potential Emissions ⁶		tons/yr	
		MD	NO_X	0.07	0.30	
		MD	СО	0.06	0.26	
RBV-2	Reboiler Vent	MD	VOC	0.04	0.18	
		AP	SO ₂	<0.01	<0.01	
		AP	PM_{10}	<0.01	<0.01	
		GRI-GLYCalc TM	VOC	1.11	4.87	
		GRI-GLYCalc TM	Benzene	0.03	0.15	
RSV-2	Glycol Regenerator	GRI-GLYCalc TM	Ethylbenzene	0.10	0.43	
NS V -2	Still Vent	GRI-GLYCalc TM	Toluene	0.06	0.26	
		GRI-GLYCalc TM	Xylenes	0.13	0.57	
		GRI-GLYCalc TM	n-Hexane	0.02	0.09	

	1.	Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The
		glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the
Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.		compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using
		Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2.	Enter	the S	Source	Status	using	the	following	g code	s:
----	-------	-------	--------	--------	-------	-----	-----------	--------	----

NSConstruction of New SourceESExisting SourceMSModification of Existing SourceRSRemoval of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA None CD Condenser

FL Flare CC Condenser/Combustion Combination

TO Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD Manufacturer's Data

GR GRI-GLYCalcTM OT Other _____ (please list)

AP

AP-42

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI- $GLYCalc^{TM}$ analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

West Virginia Department of Environmental Protection

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475

Web Page: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description						
Affected facility actual annual average natural gas throughput (scf/day): 55 MMSCFD						
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day): N/A						
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer. <i>No</i>						
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas Yes						
(NG) enters the NG transmission and storage source category or is delivered to the end user.						
The affected facility is: prior to a NG processing plant a NG processing plant						
prior to the point of custody transfer and there is no NG processing plant						
The affected facility transports or stores natural gas prior to entering the pipeline to a local No						
distribution company or to a final end user (if there is no local distribution company).						
The affected facility exclusively processes, stores, or transfers black oil.						
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees						
Section B: Dehydration Unit (if applicable) 1						
Description: Cameron Glycol Dehydration Unit						
Date of Installation: 11/2011 Annual Operating Hours: 8,760 Burner rating (MMbtu/hr): 0.930						
Exhaust Stack Height (ft): 25.5 Stack Diameter (ft): 0.83 Stack Temp. (°F): ~1,650						
Glycol Type: 🛛 TEG 🔲 EG 🔲 Other:						
Glycol Pump Type: Electric Gas If gas, what is the volume ratio?ACFM/gpm						
Condenser installed?						
Incinerator/flare installed?						
Other controls installed?						
Wet Gas ² : Gas Temp.: ~80 °F Gas Pressure ~500 psig						
(Upstream of Contact Tower) Saturated Gas?						
Dry Gas: Gas Flowrate(MMSCFD) Actual Design 55 MMSCFD						
(Downstream of Contact Tower) Water Content <u>5 lb/MMSCF</u>						
Lean Glycol: Circulation rate (gpm) Actual ³ Maximum ⁴ <u>3 gal/lb H₂O</u>						
Pump make/model: <u>N/A</u>						
Glycol Flash Tank (if applicable): Temp.: <u>150 °F</u> Pressure <u>50 psig</u> Vented? Yes No						
If no, describe vapor control: N/A						
Stripping Gas (if applicable): Source of gas: <u>Dry gas</u> Rate <u>65</u> scfm						

applicant provide thi	ing the chain of custody in is level of detail for all sour	the following required dehydration unit information: formation. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the cess. The level of detail that is necessary is to establish where the custody transfer points are located. This can be train indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request					
more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream including mole percents of C ₁ -C ₈ , benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of							
		. on maximum Lean Glycol circulation rate and maximum throughput.					
	Secti	on C: Facility NESHAPS Subpart HH/HHH status					
	Subject to Su	ıbpart HH					
ffected facility	Subject to Su	ıbpart HHH					
status:	☐ Not Subject	☐ < 10/25 TPY					
oose only one)	because:	Affected facility exclusively handles black oil					
		☐ The facility wide actual annual average NG throughput is < 650 thousand scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd ☐ No affected source is present					
	applicant provide the accomplished by submore detailed inform Extended gas analysed Association (GPA) and the entrained liquids from EPA Method TO-14 GRI-GLYCalc Ver. Detailed calculations of the provided free detailed calculations and the provided free detailed calculations are status:	System map indicating the chain of custody in applicant provide this level of detail for all sour accomplished by submitting a process flow diag more detailed information in order to make the r Extended gas analysis from the Wet Gas Strear Association (GPA) 2286 (or similar). A sample entrained liquids from the sample and a probe to EPA Method TO-14, (or similar) should be used GRI-GLYCalc Ver. 3.0 aggregate report based of Detailed calculations of gas or hydrocarbon flow Section Subject to Subject					

COMPI	COMPRESSOR STATION EMISSION SUMMARY SHEET FOR CRITERIA POLLUTANTS									
	C	ompressor S	tation			Registratio	on Number (Agen	ncy Use) G35-A		
		Potentia	al Emissions	(lbs/hr)			Potent	ial Emissions	(tons/yr)	
Source ID No.	NO _X	CO	voc	SO ₂	PM_{10}	NO _X	CO	VOC	SO ₂	PM ₁₀
GE-1	1.31	10.80	0.26	<0.01	<0.01	0.33	2.70	0.06	<0.01	<0.01
RBV-2	0.07	0.06	0.04	<0.01	<0.01	0.30	0.26	0.18	<0.01	<0.01
RSV-2	-	-	1.11	-	-	-	-	4.87	-	-
F-2	0.67	0.56	-	<0.01	0.05	2.93	2.46	-	0.01	0.24
Total	2.05	11.42	1.41	<0.01	0.05	3.56	5.42	5.11	0.01	0.24

COMPR	COMPRESSOR STATION EMISSION SUMMARY SHEET FOR HAZARDOUS/TOXIC POLLUTANTS											
	Compressor Station								ation Num	ber (Agency Use)	<u>G35-A</u>	
		Po	otential Em	issions (lbs/	/hr)			Pot	ential Emis	ssions (tons	/yr)	
Source ID No.	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde	Benzene	Ethyl- benzene	Toluene	Xylenes	n- Hexane	Formalde- hyde
GE-1	<0.01	<0.01-	<0.01	<0.01	<0.01	0.05	<0.01	<0.01	<0.01-	<0.01	<0.01	<0.01
RBV-2	-	-	-	-	<0.01	<0.01	-	-	-	-	<0.01	<0.01
RSV-2	0.03	0.10	0.06	0.13	0.02	-	0.15	0.43	0.26	0.57	0.09	-
Total	0.03	0.10	0.06	0.13	0.02	0.05	0.15	0.43	0.26	0.57	0.09	0.01

Flare System Control Device Sheet

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.									
				General In	nformation				
1) Control Device ID#: F-2 2) Installation Date: May 2015 \boxtimes New									
3) Maximum F	lare R	ated Capacit	ty: 66 A	Ascf/d	4) Maximur	n Pilot	Rated Capacity:	1,200 scf/d	
				5) Emission U	nit Informat	ion			
		Lis	t the emission	units whose em (Emission P	oint ID#: <u>F-2</u>		ed by this flare:		
Emissio	n Uni	t ID#	Em	ission Source I	Description		Inst	allation Date	
RSV-2			Glycol Dehy	ydrator – Rege	neration Still	Vent	06/01/2011	☐ NEW	
								☐ NEW	
								☐ NEW	
								☐ NEW	
								□NEW	
If t	his fla	are controls	emissions fro	m more than f	ïve emission	units,	please attach addi	tional pages.	
			6)	Stack Informa	ation [] N/A			
Flare Height	Tip	Diameter	Stack Discharge		Assist Type Exit		Exit Velocity of Gas	Heat Content of Waste Gas + Any Auxiliary Fuel	
25.5 ft	1.	. 46 ft	Horizonta Vertical Vertical v	al vith Rain cap	Steam Air Pressure Non	e	< 45.5 ft	/s ~591 Btu /scf	
				7) Flare Fue	l Informatio	n			
Type/Grade of Fuel Combusto		Cap	um Fuel acity le units)	Heat Co (include		F	uel Contents	Requested Operating Limitation (include units)	
Waste Gas		~ 66 I	Mscf/d	~591 Bt	u/scf		lfur: <i>negligible</i>	N/A	
		·		y		sh: negligible			
Fuel Gas (Natural Gas) ~10 Mscf/d			Mscf/d	~1,000 B	tu/scf		lfur: negligible th: negligible None		
	į			8) Pilot Fuel	Information				
Typo/Crodo o	·t	Maxim	um Fuel	Heat Co				Requested Operating	
Type/Grade of Fuel Combusted Capa			(include		F	uel Contents	Limitation		
Natural Gas (include units) Natural Gas ~1,200 scf/d		~1,000 Btu/scf		% Sulfur: <i>Negligible</i> % Ash: <i>negligible</i>		(include units) None			
If e	either	the Flare o	r Pilot will cor	nbust more th	an one type o	II.	attach additional	information.	

Flare System Control Device Sheet (continued)

	9) Control	l Information						
Pollutant(s) Controlled	% Control Efficiency	Pollutant(s) Controlled	% Control Efficiency					
VOC	95%							
HAP	95%							
If ad	ditional pollutants are being co	ntrolled, attach additional infor	rmation.					
10	10) Emission Calculations Attached? ☐ YES ☐ NO Please attach a copy of all emission calculations.							
11) Additional Information Attached? YES NO								
	Please attach a copy of fla	re manufacturer's data sheet.						

If any of the requested information is not available, please contact the flare manufacturer.

Flares meeting the requirements of G35-A Section 10 and registered under General Permit G35-A are considered federally enforceable.

Dominion – Cassity Mountain Station

Q100 Thermal Oxidizer Emission Estimates

Design Load – GRI-GLYCalc Simulation Data received August 2013

Waste stream	Regenerator Overheads Stream
Flowrate	66 mscf/d
Major Components	89.3% H ₂ O, 0.55% C ₁ , 0.31% C ₂

Flue gas emission estimates based on waste to fuel gas ratio of 1:0.2

Nitrogen Oxides

NOx (ppm) less than 60 ppm NOx (tons/yr) 0.86 tons/yr

Sulphur Dioxide

 SO_2 (ppm) 0 ppm SO_2 (tons/yr) 0 tons/yr

Carbon Monoxides

CO (ppm) less than 100 ppm CO (tons/yr) 0.72 tons/yr

Total Hydrocarbons

HCT (ppm) less than 20 ppm HCT (tons/yr) 0.035 tons/yr

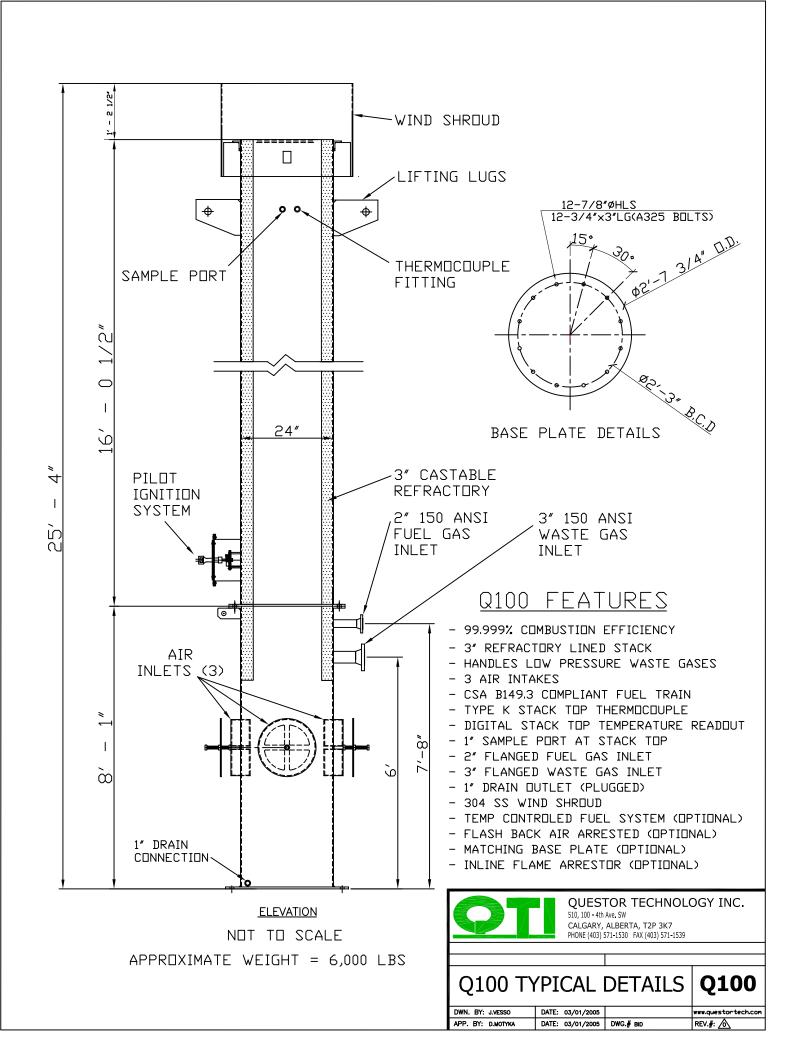
Nonmethane Hydrocarbons

NMHC (ppm) less than 20 ppm NMHC (tons/yr) 0.008 tons/yr

Fuel

Fuel type Natural gas (1050 Btu/scf NHV)

Typical fuel consumption 10 - 20 mscf/d


Exhaust characteristics

Exhaust diameter 17.2 inches

Exhaust height 30 Ft from skid base Exhaust temperature 1112 - 1600°F Exhaust velocity 16 - 25 ft/sec

Questor model number Q100 Thermal Oxidizer

Questor combustion Efficiency >99.99%

QUESTOR TECHNOLOGY INC.

QUESTOR Q100 INCINERATOR

TECHNICAL SPECIFICATIONS

Design Basis

Maximum throughput: 100,000 scf/d of methane equivalent gas

Fuel requirement: (varies depending upon waste gas composition)

Design operating temperature: 600 to 1200 °C

Questor Q100 Incinerator Detail

Total height: $25 \frac{1}{2}$ feet (7.7 meters) Total weight: 6,000 lbs (2,120 kg)

Foot print: 2 feet – 7 ³/₄ inch Dia (0.86 m Dia)

Number of sections:

Stack material:

Stack OD:

Stack Refractory I.D.:

Stack length:

3 – Stack and air induction

A36 - Refractory lined

24.0 inches (61 cm)

17.5 inches (44.5 cm)

16.0 feet (4.9 m)

Stack wall thickness: 0.25 inches (6.35 mm)

Air induction material: A36

Air induction OD: 24 inches (61 cm)

Air induction length: 8 feet – 5 inches (2.5 m) Air induction wall thickness: 0.500 inches (12.7 mm)

Wind shroud: Stainless steel, 2 feet – 10 inches OD

Flanges A105 BWRF

Bolting A335

Refractory Specification

Type: 4LI

Thickness: 3 inches
Manufacturer: Rescocast

Maximum working temperature: 2600 °F 1427 °C

Gas Supply Connections

Waste gas: 3 inch 150ANSI RFWN

Pilot gas: ¼ inch NPT

Fuel gas: 2 inch 150ANSI RFWN

QUESTOR Q100 INCINERATOR

TECHNICAL SPECIFICATIONS

C	om	ıbι	ısti	on	Air
---	----	-----	------	----	-----

Natural draft: 3 openings c/w flame arrestor cells (Optional)

Pilot Gas Burner

Pilot Ignition Control: Profire 1100,

Number of Igniters:

Capacity at $\tilde{3}$ psi: 34 m³/d

Fuel Gas Burner

Operating Pressure Range: 5-7 psig

Manifold material: Stainless steel 304

Waste Gas Burner

Operating Pressure Range: Atmospheric

Manifold material: Stainless steel 304

Control Panel – (Solar Power Battery)

NEMA 4, local control panel: 24 VDC controls Ignition panel: NEMA 4 x enclosure

Surface Preparation

Sand blast: SP6

Top coat: High temperature aluminum

QUESTOR Q100 INCINERATOR

TECHNICAL SPECIFICATIONS

Optional Equipment

Stack top temperature: 2 – Alltemp Type K Thermocouple, Inconel 600

& Hastelloy X thermowell

2 - Rosemount 644 Temperature Transmitters

Air intake flame arrestors: 3 – Circular wrapped corrugated aluminum flash

Back arrestors 4" thick x 17" diameter

1 – Zirco burner box housing flame arrestor

Inline flame arrestor: 1 - 3" 150ANSI RF flanged, CS body, SS

element

Flame arrestor

Matching base plate: $1 - \frac{1}{2}$ " x 2' 7 $\frac{3}{4}$ " plate with matching $\frac{7}{8}$ " bolt

holes

Guy Wires $3 - \frac{3}{8}$ " x 100' guy wires

Table 3-1 Dominion Transmission, Inc. - Cassity Mountain Station Project Related Potential Emissions Summary

	Emission Points								
Regulated Pollutant	RSV-2 (Cont	rolled by F-2)	F-2 (F-2 (New)					
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)					
	Cı	iteria Pollutants							
$PM^{(a)}$	-	-	0.05	0.24					
VOC ^(b)	1.11	4.87	-	-					
$NO_X^{(c)}$	-	-	0.67	2.93					
CO ^(c)	-	-	0.56	2.46					
SO ₂ ^(c)	-	-	2.33E-03	0.01					
	Greenh	ouse Gas Pollutants ^(d)							
$CO_2^{(e)}$	-	-	626.99	2753.75					
$\mathrm{CH_4}^{(\mathrm{f})}$	-	-	1.78	7.82					
$N_2O^{(g)}$	-	-	7.37E-03	3.24E-02					
CO ₂ e ^(h)	-	-	673.72	2,958.99					
	Hazai	dous Air Pollutants							
Total HAP ^(b)	0.35	1.54	-						

⁽a) Potential emissions of PM include PTE from the combustion of natural gas from the pilot flame and the supplemental natural gas stream, calculated based on the AP-42, Chapter 1.4, Table 1.4-2 emission factor for PM (Total). The supplemental natural gas stream flowrate includes the flow of natural gas used as both fuel gas (20 Mscf/day) and stripping gas (93.6 Mscf/day). PM emissions also include PTE from enclosed flare's combustion of emissions from the dehydration still vent and waste fuel gas, calculated based on the AP-42, Chapter 13.5, Table 13.5-1 emission factor for soot, assuming a lightly smoking flare (40 µg/L). According to the May 2011 Emission Estimation Protocol for Petroleum Refineries, approved by the U.S. EPA on March 28, 2011, 40 µg/L is equivalent to 0.027 lb/MMBtu. PM is conservatively assumed to be equivalent to all filterable PM including PM₁₀ and PM₃, and condensable fractions.

 $^{(e)}$ CO₂ is calculated assuming emissions from both natural gas and waste gas streams. in metric tons/year, calculated according to 40 CFR 98 Equation Y-1a, where:

$$CO_2 = 0.98 \times 0.001 \times \left[\sum_{p=1}^{n} \left[\frac{44}{12} \times (Flare)_p \times \frac{(MW)_p}{MVC} \times (CC)_p \right] \right]$$

 $^{(f)}$ CH $_4$ is in metric tons/year, calculated according to 40 CFR 98 Equation Y-4, where:

$${\rm CH_4} = \left({\rm CO_2} \times \frac{{\rm EmF_{CH4}}}{{\rm EmF}}\right) + CO_2 \times \frac{0.02}{0.98} \times \frac{16}{44} \times f_{CH4}$$

 $^{(g)}N_2O$ is in metric tons/year, calculated according to 40 CFR 98 Equation Y-5, where:

$$N_2O = \left(CO_2 \times \frac{EmF_{N20}}{EmF}\right)$$
 (Eq. Y-5)

 $^{\text{(h)}}\text{CO}_2\text{e}$ is carbon dioxide equivalent in metric tons/year, calculated according to 40 CFR 98 Equation A-1, where:

$$CO_2e = \sum_{i=1}^n GHG_i \times GWP_i$$

Table A-1: Global Warming Potentials						
Pollutant	GWP (100 year)					
CO ₂	1					
CH ₄	25					
N ₂ O	298					

Flare p = volume flare gas combusted = ~ 46 acfm. MW = molecular weight flare gas = 21 kg/kg-mol.

MVC = molar conversion factor of 849.5 scf/kg-mol at 68°F.

 $CC=carbon\ concentration\ of\ flare\ gas=7.87\%.$

0.98 = combustion efficiency of flare (used 0.95 for 95% efficiency)

 $\rm EmF_{\rm CH4}$ = Default $\rm CH_4$ emission factor for "Fuel Gas" from Table C-2 .

EmF = default CO₂ emission factor for flare gas of 60 kg/CO₂/MMBtu.

CO₂ = emission rate of CO₂ from flared gas in metric tons/year.

 f_{CH4} = default weight fraction of carbon in flare gas of 0.4.

 $0.98 = combustion \ efficiency \ of \ flare (used 0.95 \ for 95\% \ efficiency)$

 $CO_2=$ emission rate of CO_2 from flared gas in metric tons/year. $EmF_{N2O}=$ Default N_2O emission factor for "Fuel Gas" from Table C-2 .

EmF = default CO₂ emission factor for flare gas of 60 kg/CO₂/MMBtu.

 GHG_i = mass emissions of each greenhouse gas listed in Table A-1, metric tons/year.

 $GWP_i = global$ warming potential for each greenhouse gas from Table A-1.

 $n = number \ of \ greenhouse \ gases \ emitted.$

⁽b) Potential emissions of VOC and HAP include PTE from the pilot flame's natural gas combustion (i.e., pilot, fuel gas, and stripping gas streams) were calculated using AP-42 Chapter 1.4, Table 1.4-2. Emissions factors for VOC and TOC, and PTE from enclosed flare's combustion of emissions from the dehydration still vent waste gas were calculated using GRI-GLYCalc Version 4.0 and an updated were gas analysis. The VOC and HAP emissions from the dehydration still vent represent the sum of controlled regenerator emissions and flash tank off gas emissions generated using GRI-GLYCalc 4.0 with the incorporation of a 20% safety factor. To be consistent with the previous G35-A General Permit application that was submitted to West Virginia Department of Environmental Protection (WVDEP) on March 18, 2011, the Station's PTE is shown from the still vent which is controlled by the flare.

⁽e) Potential emissions of NO_X, CO, and SO₂ include PTE from the combustion of waste gas and fuel gas, with a maximum flowrate = 66 Mscf/day (46 scf/min) and a waste to fuel gas ratio of 1:0.2, based on vendor guarantees. NO_X, CO, and SO₂ emissions also include PTE from the combustion of natural gas used as stripping gas, with a flowrate = 93.6 Mscf/day (65 scf/min), calculated based on the AP-42, Chapter 1.4, Table 1.4-2 emission factors for natural gas combustion.

⁽d) Potential emissions of greenhouse gases are calculated from the combustion of natural gas from the pilot flame, the supplemental natural gas stream, and the waste gas in the enclosed flare. The supplemental natural gas stream flowrate includes the flow of natural gas used as both fuel gas (20 Mscf/day) and stripping gas (93.6 Mscf/day). Emissions from the supplemental natural gas tread the pilot flame natural gas were calculated using a fuel flowrate of 10,000 scf/day and a pilot flame flowrate of 1,200 scf/day (34 m³/d) to the enclosed flare. Greenhouse gas pollutant emission factors for the combustion of natural gas were obtained from 40 CFR Part 98, Subpart C. The emissions from the combustion of waste gas use the methodologies outlined below:

Table 3-2
Proposed Emergency Generator Potential Emissions
Dominion Transmission, Inc. - Cassity Mountain Station

Dellesteret	Emission	Factor	Deferre	Potential Emissions						
Pollutant	Value	Unit	Reference	(lb/hr)	(tons/yr)					
Criteria Pollutants										
PM	7.71E-05	lb/MMBtu	(b)	6.64E-05	1.66E-05					
VOC ^(c)	1.20	g/HP-hr	(a)	0.26	0.06					
NO_X	6.10	g/HP-hr	(a)	1.31	0.33					
CO	50.30	g/HP-hr	(a)	10.80	2.70					
SO_2	5.88E-04	lb/MMBtu	(b)	5.06E-04	1.27E-04					
	Green H	ouse Gas Pollu	tants							
CO_2	53.06	kg/MMBtu	(d)	100.72	25.18					
$\mathrm{CH_4}$	1.00E-03	kg/MMBtu	(d)	1.90E-03	4.75E-04					
N_2O	1.00E-04	kg/MMBtu	(d)	1.90E-04	4.75E-05					
CO ₂ e				100.82	25.21					
	Hazard	ous Air Polluta	ints							
Formaldehyde	0.05	lb/MMBtu	(b)	0.05	0.01					
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	(b)	3.44E-05	8.61E-06					
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	(b)	2.74E-05	6.84E-06					
1,1-Dichloroethane	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06					
1,2-Dichloroethane	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06					
1,2-Dichloropropane	2.69E-05	lb/MMBtu	(b)	2.32E-05	5.79E-06					
1,3-Butadiene	2.67E-04	lb/MMBtu	(b)	2.30E-04	5.75E-05					
1,3-Dichloropropene	2.64E-05	lb/MMBtu	(b)	2.27E-05	5.68E-06					
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	(b)	2.15E-04	5.38E-05					
Acrolein	5.14E-03	lb/MMBtu	(b)	4.43E-03	1.11E-03					
Acetaldehyde	8.36E-03	lb/MMBtu	(b)	7.20E-03	1.80E-03					
Benzene	4.40E-04	lb/MMBtu	(b)	3.79E-04	9.47E-05					
Biphenyl	2.12E-04	lb/MMBtu	(b)	1.83E-04	4.56E-05					
Carbon Tetrachloride	3.67E-05	lb/MMBtu	(b)	3.16E-05	7.90E-06					
Chlorobenzene	3.04E-05	lb/MMBtu	(b)	2.62E-05	6.54E-06					
Chloroform	2.85E-05	lb/MMBtu	(b)	2.45E-05	6.13E-06					
Ethylbenzene	3.97E-05	lb/MMBtu	(b)	3.42E-05	8.55E-06					
Ethylene Dibromide	4.43E-05	lb/MMBtu	(b)	3.81E-05	9.54E-06					
Methanol	2.50E-03	lb/MMBtu	(b)	2.15E-03	5.38E-04					
Methylene Chloride	2.00E-05	lb/MMBtu	(b)	1.72E-05	4.31E-06					
n-Hexane	1.11E-03	lb/MMBtu	(b)	9.56E-04	2.39E-04					

Table 3-2
Proposed Emergency Generator Potential Emissions
Dominion Transmission, Inc. - Cassity Mountain Station

Pollutant	Emission	Factor	Reference	Potential Emissions		
Fonutant	Value	Unit	Reference	(lb/hr)	(tons/yr)	
Naphthalene	7.44E-05	lb/MMBtu	(b)	6.41E-05	1.60E-05	
Phenol	2.40E-05	lb/MMBtu	(b)	2.07E-05	5.17E-06	
Styrene	2.36E-05	lb/MMBtu	(b)	2.03E-05	5.08E-06	
Toluene	4.08E-04	lb/MMBtu	(b)	3.51E-04	8.78E-05	
Vinyl Chloride	1.49E-05	lb/MMBtu	(b)	1.28E-05	3.21E-06	
Xylene	1.84E-04	lb/MMBtu	(b)	1.58E-04	3.96E-05	
2-Methylnaphthalene	3.32E-05	lb/MMBtu	(b)	3.78E-04	1.66E-03	
Acenaphthene	1.25E-06	lb/MMBtu	(b)	1.42E-05	6.24E-05	
Acenaphthlene	5.53E-06	lb/MMBtu	(b)	6.30E-05	2.76E-04	
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	(b)	1.89E-06	8.28E-06	
Benzo(e)pyrene	4.15E-07	lb/MMBtu	(b)	4.73E-06	2.07E-05	
Benzo(ghi)perylene	4.14E-07	lb/MMBtu	(b)	4.71E-06	2.07E-05	
Chrysene	6.93E-07	lb/MMBtu	(b)	7.89E-06	3.46E-05	
Fluoranthene	1.11E-06	lb/MMBtu	(b)	1.26E-05	5.54E-05	
Fluorene	5.67E-06	lb/MMBtu	(b)	6.46E-05	2.83E-04	
Phenanthrene	1.04E-05	lb/MMBtu	(b)	1.18E-04	5.19E-04	
Pyrene	1.36E-06	lb/MMBtu	(b)	1.55E-05	6.78E-05	
Total HAP				0.06	0.02	

⁽a) Emission factors are obtained from engine manufacturer's technical data sheet.

⁽b) Emission factors are from AP-42, Section 3.2, Table 3.2-2 Uncontrolled Emission Factors for 4-Stroke Lean-Burn Engines (7/00).

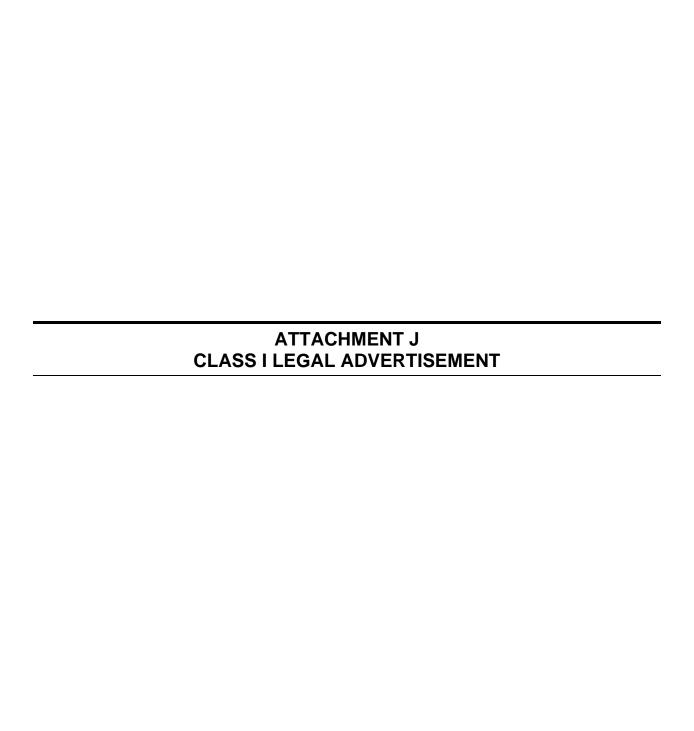
^(c) Emission factor includes non-methane hydrocarbons, VOC, precursor organic compounds, and reactive organic compounds constituents.

 $^{^{(}d)}$ Emission factors are from 40 CFR Part 98 Subpart C. Carbon dioxide equivalent (CO₂e) is calculated according to 40 CFR 98 Equation A-1.

Table 3-3
Dominion Transmission, Inc. - Cassity Mountain Station
Project Related Changes in Potential Emissions Summary

Regulated Pollutant	O	Potential E (tons/yr) ^(a)		Projec		otential Em	issions	Change in Potential Emissions (tons/yr) ^(c)			Summary of Changes in Potential Emissions ^(d)	
	RBV-2	RSV-2	FL-1	RBV-2	RSV-2	GE-1	FL-2	RBV-2	RSV-2	GE-1	FL-2	
					C	riteria Pollı	ıtants					
PM	< 0.01	ı	-	< 0.01	ı	1.66E-05	0.24	0.00	-	1.66E-05	0.24	0.24
VOC	0.18	19.64	-	0.18	4.87	0.06	-	0.00	-14.77	0.06	1	-14.71
NO_X	0.30	-	0.79	0.30	-	0.33	2.93	0.00	-	0.33	2.14	2.47
CO	0.26	ı	2.30	0.26	1	2.70	2.46	0.00	-	2.70	0.16	2.86
SO_2	< 0.01	-	-	< 0.01	-	0.00	0.01	0.00	-	1.27E-04	0.01	0.01
					Greer	nhouse Gas 1	Pollutants					
CO ₂ e	442.40	-	8,554.53	442.40	-	25.21	2,958.99	0.00	-	25.21	-5,595.54	-5,570.34
					Haza	rdous Air P	ollutants					
Total HAP	< 0.01	4.38	-	< 0.01	1.54	0.02	-	0.00	-2.84	0.02	=	-2.82

⁽a) As reported in Attachment I of the General Permit application submitted to the West Virginia Department of Environmental Protection (WVDEP) on March 18, 2011.


⁽b) As calculated in Table 3-1 of this General Permit application.

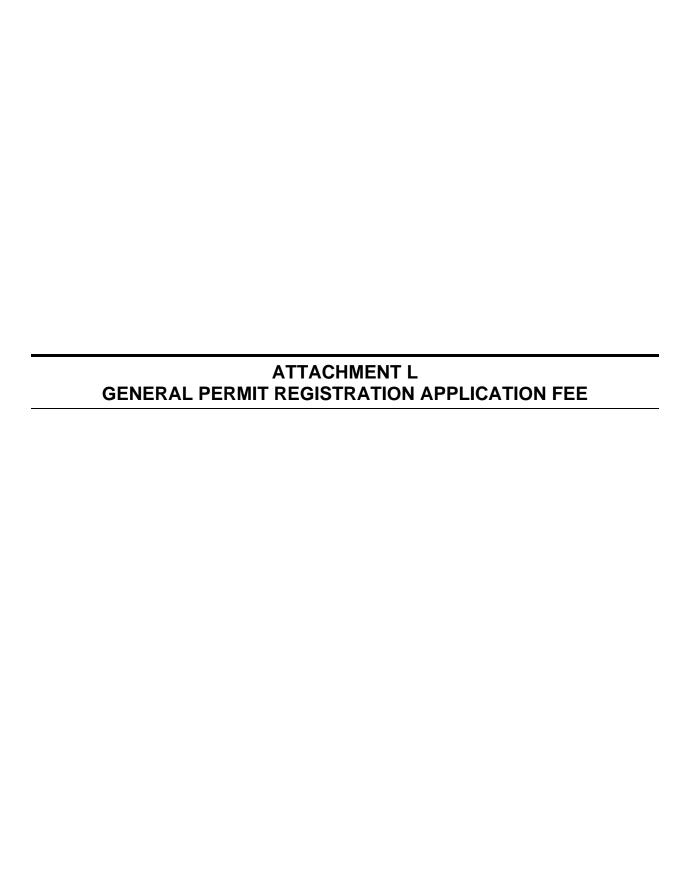
 $^{^{(}c)}\ Change\ in\ Potential\ Emissions = ([Project\ Related\ Potential\ Emissions] - [Existing\ Potential\ Emissions]).$

⁽d) Summary of Changes in Potential Emissions represents the increase or decrease in potential emissions from the Station as a result of the proposed project. The decrease in the Station's VOC and HAP emissions is attributed to an updated wet gas analysis.

Table 3-4
Dominion Transmission, Inc. - Cassity Mountain Station
Facility-Wide Potential Emission Summary

		Potential Emissions (tons/yr)								
Regulated Pollutant	Existing Glycol Dehydrator (RSV-2)	Existing Reboiler (RBV-2)	Proposed Flare (FL-2)	Proposed Emergency Generator (GE-1)	Total	Title V Thresholds	Title V Facility?			
			Criteria Pollutant	S						
PM	-	< 0.01	0.24	1.66E-05	0.24	100	No			
VOC	4.87	0.18	-	0.06	5.05	100	No			
NO_X	-	0.30	2.93	0.33	3.23	100	No			
СО	-	0.26	2.46	2.70	2.72	100	No			
SO_2	-	< 0.01	0.01	1.27E-04	0.01	100	No			
	Greenhouse Gas Pollutants									
CO ₂ e	-	442.40	2,958.99	25.21	3,401.39	100,000	No			
		Haz	ardous Air Pollut	tants						
Total HAP	1.54	6.90E-03	-	0.02	1.55	25	No			

AIR QUALITY PERMIT NOTICE


Notice of Application

Notice is given that Dominion Transmission, Inc. has applied to the West Virginia Department of Environmental Protection (WVDEP), Division of Air Quality, for a modification to the General Permit, for the Cassity Mountain Station located in Randolph Country, West Virginia. The latitude and longitude coordinates are 38.7753° north latitude, -80.0241° east longitude.

The applicant estimates the project's increased potential to discharge the following Criteria Air Pollutants will be approximately 0.24 tpy particulate matter (PM), -14.71 tpy volatile organic compounds (VOC), 2.47 tpy nitrogen oxides (NO_X), 2.86 tpy carbon monoxide (CO), and 0.01 tpy sulfur dioxide (SO₂). Additionally, the project's increased potential to discharge the following will approximately be -5,570.34 tpy greenhouse gases (GHG) and -2.82 tpy hazardous air pollutants (HAP). Startup of operation is planned to commence in May 2015. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours. Dated this the (**Day**) day of (**Month**), (**Year**).

By: Dominion Transmission, Inc.
Brian Sheppard
VP of Pipeline Operations
445 West Main Street
Clarksburg, WV 26301

ATTACHMENT P OTHER SUPPORTING DOCUMENTATION (EMERGENCY GENERATOR VENDOR INFORMATION)

Power Generation

Generator set data sheet

EPA Emissions

Model: GGHE

KW rating: 60 natural gas standby

60 propane standby

Frequency: 60

Fuel type: Natural gas/propane

Exhaust emission data sheet:	EDS-322
Exhaust emission compliance sheet:	
Sound performance data sheet:	MSP-178
Cooling performance data sheet:	
Prototype test summary data sheet:	PTS-144
Standard set-mounted radiator cooling outline:	0500-3447

Fuel	Natural gas					Propane										
	Standby			Standby Prime				Standby				Prime				
consumption	kW (k	(AV			kW (kVA)			kW (kVA)			kW (kVA)					
Ratings	60 (75	5)						60 (75)								
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full
scfh	375.6	533.8	692.0	861.0					145.5	208.1	270.6	345.0				
m³/hr	10.6	15.1	19.6	24.4					4.1	5.9	7.7	9.8				

	Natural gas		Propane			
Engine	Standby rating	Prime rating	Standby rating	Prime rating		
Engine model	WSG-1068					
Configuration	Cast iron, V 10 cylin	nder				
Aspiration	Naturally aspirated					
Gross engine power output, kWm (bhp)	72.7 (97.5)		72.9 (97.7)			
BMEP at rated load, kPa (psi)	723.9 (105.0)		723.9 (105.0)			
Bore, mm (in)	90.2 (3.55)					
Stroke, mm (in)	105.9 (4.17)					
Rated speed, rpm	1800					
Piston speed, m/s (ft/min)	6.4 (1250.0)					
Compression ratio	9.0:1	9.0:1				
Lube oil capacity, L (qt)	6.1 (6.5)	6.1 (6.5)				
Overspeed limit, rpm	2250 ± 50	2250 ± 50				
Regenerative power, kW	16.00					

Fuel flow

Minimum operating pressure, kPa (in H2O)	1.7 (7.0)	1.7 (7.0)
Maximum operating pressure, kPa (in H2O)	3.4 (13.6)	3.4 (13.6)

	Natural gas	Natural gas		
Air	Standby rating	Prime rating	Standby rating	Prime rating
Combustion air, m³/min (scfm)	4.0 (141.6)		4.0 (141.6)	
Maximum air cleaner restriction, kPa (in H ₂ O)	1.2 (5.0)			
Alternator cooling air, m³/min (scfm)	37.0 (1308.0)			

Exhaust

Exhaust flow at rated load, m³/min (cfm)	12.5 (441.0)	12.0 (424.0)	
Exhaust temperature, °C (°F)	565.0 (1049.0)	570 (1058)	
Maximum back pressure, kPa (in H ₂ O)	5.0 (20.0)		

Standard set-mounted radiator cooling

Ambient design, °C (°F)	40 (104)		
Fan load, kW (HP)	7.1 (9.5)		
Coolant capacity (with radiator), L (US gal)	32.2 (8.5)		
Coolant system air flow, m³/min (scfm)	169.8 (6000.0)		
Total heat rejection, MJ/min (Btu/min)	4.3 (4050.0)	3.8 (3600.0)	
Maximum cooling air flow static restriction, kPa (in H ₂ O)	0.124 (0.5)		

Weights ²	
Unit dry weight kgs (lbs)	892 (1966)
Unit wet weight kgs (lbs)	929 (2048)

Notes:

¹ For non-standard remote installations contact your local Cummins Power Generation representative. ² Weights represent a set with standard features. See outline drawing for weights of other configurations.

Alternator data

Natural gas three pha	se table¹	105 °C	105 °C	105 °C	105 °C	125 °C	125 °C	125 °C	125 °C	150 °C	150 °C	150 °C
Feature code		B418	B415	B268	B304	B417	B414	B267	B303	B416	B413	B419
Alternator data sheet number		204	204	207	204	204	204	205	203	204	204	203
Voltage ranges		110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	120/208 thru 139/240 240/416 thru 277/480	347/600	110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	120/208 thru 139/240 240/416 thru 277/480	347/600	110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	347/600
Surge kW		71	71	72	71.7	71	71	71.6	70.4	71	71	70.4
Motor starting kVA (at 90% sustained voltage)	Shunt	231	231	360	231	231	231	260	188	231	231	188
	PMG	272	272	423	272	272	272	306	221	272	272	221
Full load current amps at standby rating	110/190 228	115/200 217	120/208 208	<u>127/220</u> 197	139/240 181	220/380 114	230/400 108	240/416 104	<u>255/440</u> 99	277/480 90	347/600 72	
Propane three phase t	table¹	105 °C	105 °C	105 °C	105 °C	125 °C	125 °C	125 °C	125 °C	150 °C	150 °C	150 °C
Feature code		B418	B415	B268	B304	B417	B414	B267	B303	B416	B413	B419
Alternator data sheet number		204	204	207	204	204	204	205	203	204	204	203
Voltage ranges		110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	120/208 thru 139/240 240/416 thru 277/480	347/600	110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	120/208 thru 139/240 240/416 thru 277/480	347/600	110/190 thru 120/208 220/380 thru 240/416	120/208 thru 139/240 240/416 thru 277/480	347/600
Surge kW		78.5	78.5	79.5	79.1	78.5	78.5	79.1	77.8	78.5	78.5	77.8
Motor starting kVA (at 90% sustained voltage)	Shunt	231	231	360	231	231	231	260	188	231	231	188
	PMG	272	272	423	272	272	272	306	221	272	272	221
Full load current amps at standby rating	110/190 228	115/200 217	120/208 208	127/220 197	139/240 181	220/380 114	230/400 108	240/416 104	99	<u>277/480</u> 90	347/600 72	
Natural gas single pha	se table	105 °C	105 °C	105 °C	105 °C	125 °C	125 °C	125 °C	125 °C			
Feature code Alternator data sheet		B418 204	B415 204	B274 205	B268 207	B417 204	B414 204	B273 204	B267 205			
number		_										
Voltage ranges		120/240²	120/240 ²	120/240³	120/240³	120/240 ²	120/240²	120/240 ³	120/240³			
Surge kW Motor starting kVA (at		69.6	69.6	71.1	70.6	69.6	69.6	70.3	69.2			
90% sustained voltage)	Shunt	130	130	155	215	130	130	130	155			
	PMG	153	153	183	250	153	153	153	183			
Full load current amps at standby rating	115/230 ²	115/230 ³ 261	120/240 ² 167	120/240 ³ 250								
Propane single phase	table	105 °C	105 °C	105 °C	105 °C	125 °C	125 °C	125 °C	125 °C			
Feature code		B418	B415	B274	B268	B417	B414	B273	B267			
Alternator data sheet number		204	204	205	207	204	204	204	205			
Voltage ranges		120/240 ²	120/240 ²	120/240 ³	120/240 ³	120/240 ²	120/240 ²	120/240 ³	120/240³			
Surge kW		76.9	76.9	78.5	77.9	76.9	76.9	77.7	76.4			
Motor starting kVA (at 90% sustained voltage)	Shunt	130	130	155	215	130	130	130	155			
	PMG	153	153	183	250	153	153	153	183			
Full load current amps at standby rating	115/230 ²	115/230 ³ 261	120/240 ² 167	120/240 ³ 250								

Notes:

¹ Single phase power can be taken from a three phase generator set at up to 2/3 set rated 3-phase kW at 1.0 power factor. Also see Note 3 2. The broad range alternators can supply single phase output up to 2/3 set rated 3-phase kW at 1.0 power factor.
3. The extended stack (full single phase output) and 4 lead alternators can supply single phase output up to full set rated 3-phase kW at 1.0

power factor.

Derating factors

Natural gas

Standby/prime	Rated power available up to 915 m (3000 ft) at ambient temperatures up to 40 °C (104 °F). Above 915 m (3000 ft) derate at 4% per 305 m (1000 ft), and 2% per 11 °C (1% per 10 °F) above 40 °C (104 °F).				

Propane

Standby/prime	Rated power available up to 1220 m (4000 ft) at ambient temperatures up to 40 °C (104 °F). Above 1220 m
	(4000 ft) derate at 4% per 305 m (1000 ft), and 2% per 11 °C (1% per 10 °F) above 40 °C (104 °F).

Ratings definitions

Emergency standby power (ESP):	Limited-time running power (LTP):	Prime power (PRP):	Base load (continuous) power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

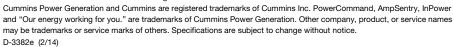
Formulas for calculating full load currents:

Three phase output

Single phase output

kW x 1000 Voltage x 1.73 x 0.8 kW x SinglePhaseFactor x 1000

Voltage


Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA

Phone 763 574 5000 Fax 763 574 5298

Our energy working for you.™

©2014 Cummins Power Generation Inc. All rights reserved.

Exhaust Emission Data Sheet 60GGHE

60 Hz Spark Ignited Generator Set EPA Emissions

Engine Information:

Model:WSG-1068Bore:3.55 in. (90.2 mm)Type:4 Cycle, V-10 Cylinder Spark-IgnitedStroke:4.17 in. (105.9 mm)Aspiration:Naturally aspiratedDisplacement:412.5 cu. in. (6.8 liters)

Compression Ratio: 9:1

Emission Control Device: Electronics Air/Fuel Ratio Control and Closed-loop Breather System

	Natural Gas	Propane
PERFORMANCE DATA	Standby	Standby
Genset Rating (kW) @1800 RPM (60 Hz)	60	60
BHP @ 1800 RPM (60 Hz)	97.7	97.7
Fuel Consumption (SCFH)	861	345
Air to Fuel Ratio	16.2	14.5
Exhaust Gas Flow (CFM)	470	445
Exhaust Gas Temperature (°F)	1211	1207
EXHAUST EMISSION DATA		
HC (Total Unburned Hydrocarbons)*	850	1680
NOx (Oxides of Nitrogen as NO2)	1680	1557
CO (Carbon Monoxide)	20121	31097
		Values are ppmvd
HC (Total Unburned Hydrocarbons)*	1.2	1.0
NOx (Oxides of Nitrogen as NO ₂)	6.1	5.4
CO (Carbon Monoxide)	50.3	74.6
<u>.</u>		Values are Grams per HP-Hour

Values are Grams per HP-Hour

*HC includes all NMHC, VOC, POC, and ROC constituents (Non-Methane HC, Volatile Organic Compounds, Precursor Organic Compounds, and Reactive Organic Compounds)

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (\pm 25 RPM) with full load (\pm 2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:

Natural Gas: Dry gas as received from Supplier (1000 BTU/SCF).

Propane: Meets the requirements for Commercial Grade Propane under the ASTM D1835 Standard

Specification for Liquefied Gases

Fuel Temperature 60 ± 9 °F at Flow Transmitter

Fuel Pressure 14.73PSIA ± 0.5 PSIA at Flow Transmitter

Intake Air Temperature: 77 ± 9 °F at inlet Barometric Pressure: 29.92 in. Hg ± 1 in. Hg

Humidity: NOx measurement corrected to 75 grains H2O/lb dry air

The NOx, HC, and CO emission data tabulated here were from a single engine under the test conditions shown above. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limit, or with improper maintenance, may results in elevated emission levels.

EPA Exhaust Emission Compliance Statement GGHE Natural gas standby 60 Hz Spark Ignited Generator Set

Compliance Information:

The engine used in this generator set complies with U.S. EPA emission regulations under the provisions of 40 CFR Part 60, Stationary Emergency Spark-Ignited emissions limits when tested per ISO 8178 D2.

Engine Manufacturer: Cummins Inc

EPA Certificate Number: DCEXB06.8GDC-003

Effective Date: 10/17/2012

Date Issued: 10/17/2012

EPA Engine Family: DCEXB06.8GDC

Engine Information:

Model: WSG-1068 Bore: 3.55 in. (90.2 mm)

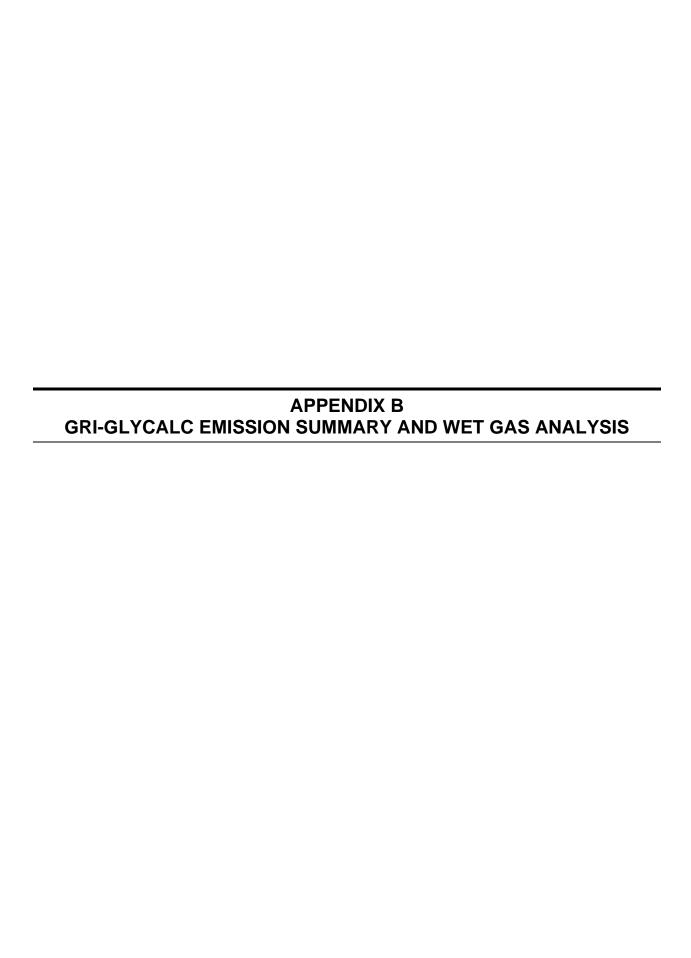
Engine Nameplate HP: 97.5

Type: 4 Cycle, V-10 Cylinder Spark-Ignited Stroke: 4.17 in. (105.9 mm)
Aspiration: Naturally aspirated Displacement: 412.5 cu. in. (6.8 liters)

Compression Ratio: 9.0:1

Emission Control Device: Electronics Air/Fuel Ratio Control and Closed-loop Breather System

U.S. Environmental Protection Agency Stationary Emergency SI Emission Limits


(All values are Grams per HP-Hour)

COMPONENT

HC + NOx (Total Unburned 10 Hydrocarbons and Oxides of Nitrogen)

CO (Carbon Monoxide) 387

Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

Certificate of Analysis

Number: 1030-14020696-003A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Feb. 26, 2014

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name: Cassity MT Method: GPA 2286

Cylinder No: 2345

Analyzed: 02/24/2014 13:46:24 by JD

Sampled By:

Sample Of: Gas Spot Sample Date: 02/11/2014 09:35 Sample Conditions: 500 psig, @ 36 °F

Analytical Data

			7 (11 di y c	Ioai Bata		
Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.440	0.740		GPM TOTAL C2+	0.716	
Carbon Dioxide	0.375	0.990		GPM TOTAL C3+	0.117	
Methane	96.577	92.984		GPM TOTAL iC5+	0.030	
Ethane	2.239	4.040	0.599			
Propane	0.227	0.601	0.063			
Iso-butane	0.031	0.108	0.010			
n-Butane	0.043	0.150	0.014			
Iso-pentane	0.019	0.082	0.007			
n-Pentane	0.013	0.056	0.005			
Hexanes Plus	0.036	0.249	0.018			
	100.000	100.000	0.716			
Physical Properties	S		Total	C6+		
Relative Density Rea	al Gas		0.5763	3.9645		
Calculated Molecula	r Weight		16.66	114.82		
Compressibility Fact	or		0.9979			
GPA 2172-09 Calcu	ılation:					
Calculated Gross B	BTU per ft ³ @	14.696 ps	ia & 60°F			
Real Gas Dry BTU	-	-	1029	6240		
Water Sat. Gas Base	e BTU		1011	6131		
Comments: H2O N	//ol% · 1 744	· \/\t% · 1 8	83			

Comments: H2O Mol%: 1.744; Wt%: 1.883

2.5 Gallons per minute glycol flow tag info

H2S 0 ppm

Clio Saley

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-14020696-003A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Feb. 26, 2014

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston , WV 26452

Station Name: Cassity MT Method: GPA 2286

Cylinder No: 2345

Analyzed: 02/24/2014 13:46:24 by JD

2.5 Gallons per minute glycol flow tag info

H2S 0 ppm

Sampled By:

Sample Of: Gas Spot Sample Date: 02/11/2014 09:35 Sample Conditions: 500 psig, @ 36 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 4.696 psia			
Nitrogen	0.440	0.740		GPM TOTAL C2+	0.716	
Carbon Dioxide	0.375	0.990		GPM TOTAL C3+	0.117	
Hydrogen Sulfide	NIL	NIL		GPM TOTAL iC5+	0.030	
Methane	96.577	92.984				
Ethane	2.239	4.040	0.599			
Propane	0.227	0.601	0.063			
Iso-Butane	0.031	0.108	0.010			
n-Butane	0.043	0.150	0.014			
Iso-Pentane	0.019	0.082	0.007			
n-Pentane	0.013	0.056	0.005			
Hexanes	0.017	0.070	0.006			
Heptanes Plus	0.019	0.179	0.012			
	100.000	100.000	0.716			
Physical Properties		Tota	al	C7+		
Relative Density Real	Gas	0.576	3	4.5256		
Calculated Molecular V		16.6	6	131.07		
Compressibility Factor		0.997	9			
GPA 2172-09 Calcula						
Calculated Gross BT	U per ft³ @ 1	4.696 psia & 6	0°F			
Real Gas Dry BTU	-	102		7090		
Water Sat. Gas Base B	RTH	101	1	6966		

Clio Saley

Hydrocarbon Laboratory Manager

Certificate of Analysis

Number: 1030-14020696-003A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

W. Steven Kiser **Dominion Transmission** 335 US Highway 33 West Weston, WV 26452

Station Name: Cassity MT Method: GPA 2286 Cylinder No: 2345

Analyzed: 02/24/2014 13:46:24 by JD Sampled By:

Sample Of: Gas Spot Sample Date: 02/11/2014 09:35 Sample Conditions: 500 psig, @ 36 °F

Feb. 26, 2014

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.440	0.740		GPM TOTAL C2+	0.716	
Methane	96.577	92.984				
Carbon Dioxide	0.375	0.990				
Hydrogen Sulfide	NIL	NIL				
Ethane	2.239	4.040	0.599			
Propane	0.227	0.601	0.063			
Iso-Butane	0.031	0.108	0.010			
n-Butane	0.043	0.150	0.014			
Iso-Pentane	0.019	0.082	0.007			
n-Pentane	0.013	0.056	0.005			
i-Hexanes	0.012	0.048	0.004			
n-Hexane	0.005	0.022	0.002			
Benzene	NIL	NIL	NIL			
Cyclohexane	NIL	NIL	NIL			
i-Ĥeptanes	0.006	0.038	0.003			
n-Heptane	0.002	0.013	0.001			
Toluene	NIL	NIL	NIL			
i-Octanes	0.003	0.028	0.002			
n-Octane	0.001	0.008	NIL			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	NIL	NIL			
i-Nonanes	NIL	NIL	NIL			
n-Nonane	NIL	NIL	NIL			
i-Decanes	NIL	NIL	NIL			
n-Decane	NIL	NIL	NIL			
Undecanes	NIL	NIL	NIL			
Dodecanes	0.003	0.033	0.002			
Tridecanes	0.003	0.040	0.003			
Tetradecanes Plus	0.001	0.019	0.001			
	100.000	100.000	0.716			
Physical Properties Calculated Molecular V	Veight	To		14+ 413		

Calculated Molecular Weight 198.413 GPA 2172-09 Calculation:

Calculated Gross BTU per ft³ @ 14.696 psia & 60°F

Real Gas Dry BTU 1028.9 10728.8 Water Sat. Gas Base BTU 1011 10541.6 Relative Density Real Gas 0.5763 6.8500 Compressibility Factor 0.9979

Comments: 2.5 Gallons per minute glycol flow tag info

H2S 0 ppm

Certificate of Analysis Number: 1030-14020696-003A **Houston Laboratories** 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

W. Steven Kiser Dominion Transmission 335 US Highway 33 West Weston, WV 26452

Station Name: Cassity MT GPA 2286 Method: Cylinder No: 2345

Analyzed: 02/24/2014 13:46:24 by JD

Sampled By: Sample Of: Gas Spot Sample Date: 02/11/2014 09:35 Sample Conditions: 500 psig, @ 36 °F

Feb. 26, 2014

Page: 1

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Cassity Mountain PTE

File Name: M:\Dominion\RFP 02-2014 WV Flare Permitting Projects\GLYCalc\Cassity

Mountain\Final Runs\Cassity Mountain PTE (Sample 2)031215.ddf

Date: March 13, 2015

DESCRIPTION:

Description: PTE for Dominion Cassity Mountain Station

(Gas Sample 2) completed 3-13-15

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 80.00 acs.
500.00 psig 80.00 deg. F

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.3750
Nitrogen	0.4400
Methane	96.5770
Ethane	2.2390
Propane	0.2270
Isobutane	0.0310
n-Butane	0.0430
Isopentane	0.0190
n-Pentane	0.0130
n-Hexane	0.0050
Other Hexanes	0.0120
Heptanes	0.0080
2,2,4-Trimethylpentane	0.0010
Benzene	0.0010
Toluene	0.0010
Ethylbenzene	0.0010
Xylenes	0.0010
C8+ Heavies	0.0110

DRY GAS:

Flow Rate: 55.0 MMSCF/day Water Content: 5.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG
Water Content: 1.5 wt% H2O
Recirculation Ratio: 3.0 gal/lb H2O

Page: 2

FLASH TANK: _____

Flash Control: Vented to atmosphere

Temperature: 150.0 deg. F Pressure: 50.0 psig

STRIPPING GAS:

Source of Gas: Dry Gas

Gas Flow Rate: 65.000 scfm

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device

Destruction Efficiency: 95.0 %
Excess Oxygen: 5.0 %
Ambient Air Temperature: 68.0 deg. F

Case Name: Cassity Mountain PTE
File Name: M:\Dominion\RFP 02-2014 WV Flare Permitting Projects\GLYCalc\Cassity
Mountain\Final Runs\Cassity Mountain PTE (Sample 2)031215.ddf

Date: March 13, 2015

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	7.9916	191.798	35.0031
Ethane	0.3588	8.612	1.5717
Propane	0.0577	1.385	0.2527
Isobutane	0.0113	0.272	0.0496
n-Butane	0.0172	0.412	0.0752
Isopentane	0.0098	0.235	0.0428
n-Pentane	0.0075	0.179	0.0327
n-Hexane	0.0048	0.115	0.0210
Other Hexanes	0.0096	0.231	0.0422
Heptanes	0.0152	0.364	0.0665
2,2,4-Trimethylpentane	0.0012	0.029	0.0053
Benzene	0.0237	0.568	0.1036
Toluene	0.0440	1.057	0.1929
Ethylbenzene	0.0756	1.815	0.3313
Xylenes	0.1032	2.476	0.4519
C8+ Heavies	0.1282	3.078	0.5616
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	8.8593	212.624	38.8039
	8.8593	212.624	38.8039
	0.5090	12.215	2.2292
	0.2525	6.060	1.1059
	0.2465	5.916	1.0796

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	7.1766 1.1540 0.2267	172.239 27.696 5.440	31.4335 5.0545 0.9928
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes		2.301	0.4200
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	0.4731 0.8807	21.136 36.304	3.8573
C8+ Heavies	2.5646	61.550	11.2329
Total Emissions	177.1869	4252.487	776.0788
Total Hydrocarbon Emissions Total VOC Emissions	177.1869 10.1791		

			Page: 2
Total HAP Emissions	5.0496	121.191	22.1173
Total BTEX Emissions	4.9297	118.313	21.5922

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	4.6968	112.724	20.5721
Ethane	0.6096	14.630	2.6700
Propane	0.1339	3.214	0.5866
Isobutane	0.0311	0.747	0.1364
n-Butane	0.0506	1.215	0.2218
Isopentane	0.0292	0.701	0.1280
n-Pentane	0.0230	0.551	0.1005
n-Hexane	0.0132	0.318	0.0579
Other Hexanes	0.0286	0.687	0.1253
Heptanes	0.0298	0.715	0.1304
2,2,4-Trimethylpentane	0.0032	0.077	0.0140
Benzene	0.0046	0.110	0.0202
Toluene	0.0059	0.141	0.0258
Ethylbenzene	0.0062	0.149	0.0273
Xylenes	0.0059	0.141	0.0258
C8+ Heavies	0.0495	1.189	0.2169
Total Emissions	5.7213	137.310	25.0591
Total Hydrocarbon Emissions	5.7213	137.310	25.0591
Total VOC Emissions	0.4148	9.956	1.8170
Total HAP Emissions	0.0390	0.937	0.1710
Total BTEX Emissions	0.0226	0.543	0.0991

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Cassity Mountain PTE

File Name: M:\Dominion\RFP 02-2014 WV Flare Permitting Projects\GLYCalc\Cassity

Mountain\Final Runs\Cassity Mountain PTE (Sample 2)031215.ddf

Date: March 13, 2015

DESCRIPTION:

Description: PTE for Dominion Cassity Mountain Station

(Gas Sample 2) completed 3-13-15

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane Isopentane	7.9916 0.3588 0.0577 0.0113 0.0172	191.798 8.612 1.385 0.272 0.412	35.0031 1.5717 0.2527 0.0496 0.0752
n-Pentane n-Hexane Other Hexanes Heptanes	0.0075 0.0048 0.0096 0.0152	0.179 0.115 0.231 0.364	0.0327 0.0210 0.0422 0.0665
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	0.0012 0.0237 0.0440 0.0756 0.1032	0.029 0.568 1.057 1.815 2.476	0.0053 0.1036 0.1929 0.3313 0.4519
C8+ Heavies Total Emissions	0.1282 8.8593	3.078 212.624	0.5616 38.8039
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	8.8593 0.5090 0.2525 0.2465	212.624 12.215 6.060 5.916	38.8039 2.2292 1.1059 1.0796

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	159.8313	3835.951	700.0610
Ethane	7.1766	172.239	31.4335
Propane	1.1540	27.696	5.0545
Isobutane	0.2267	5.440	0.9928
n-Butane	0.3432	8.238	1.5034
Isopentane	0.1957	4.696	0.8570
n-Pentane	0.1493	3.582	0.6537
n-Hexane	0.0959	2.301	0.4200
Other Hexanes	0.1926	4.622	0.8435
Heptanes	0.3035	7.283	1.3292

			Page: 2
2,2,4-Trimethylpentane	0.0240	0.576	0.1051
Benzene	0.4731	11.354	2.0720
Toluene	0.8807	21.136	3.8573
Ethylbenzene	1.5127	36.304	6.6256
Xylenes	2.0633	49.519	9.0373
C8+ Heavies	2.5646	61.550	11.2329
Total Emissions	177.1869	4252.487	776.0788
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	177.1869 10.1791 5.0496 4.9297	4252.487 244.297 121.191 118.313	776.0788 44.5843 22.1173 21.5922

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	4.6968 0.6096 0.1339 0.0311 0.0506	14.630 3.214	2.6700 0.5866
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes	0.0292 0.0230 0.0132 0.0286 0.0298	0.701 0.551 0.318 0.687 0.715	
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	0.0032 0.0046 0.0059 0.0062 0.0059	0.141	0.0202 0.0258
C8+ Heavies Total Emissions	0.0495 5.7213	1.189 137.310	0.2169 25.0591
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	5.7213 0.4148 0.0390 0.0226	137.310	25.0591 1.8170 0.1710

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 68.00 deg. F
Excess Oxygen: 5.00 %
Combustion Efficiency: 95.00 %

Supplemental Fuel Requirement: 8.52e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	5.00%	95.00%
Ethane	5.00%	95.00%
Propane	5.00%	95.00%
Isobutane	5.00%	95.00%

		Page:	3
n-Butane	5.00%	95.00%	
Isopentane	5.00%	95.00%	
n-Pentane	5.00%	95.00%	
n-Hexane	5.00%	95.00%	
Other Hexanes	5.00%	95.00%	
Heptanes	5.00%	95.00%	
2,2,4-Trimethylpentane	5.00%	95.00%	
Benzene	5.00%	95.00%	
Toluene	5.00%	95.00%	
Ethylbenzene	5.00%	95.00%	
Xylenes	5.00%	95.00%	
C8+ Heavies	5.00%	95.00%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25
Calculated Dry Gas Dew Point: 3.85 lbs. H2O/MMSCF

80.0 deg. F Temperature: 80.0 a.s Pressure:

Dry Gas Flow Rate: 55.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1144 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 54.20 lbs. H2O/MMSCF Specified Lean Glycol Recirc. Ratio: 3.00 gal/lb H20

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.10%	92.90%
Carbon Dioxide	99.90%	0.10%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.96%	0.04%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.90%	0.10%
n-Pentane	99.87%	0.13%
n-Hexane	99.75%	0.25%
Other Hexanes	99.82%	0.18%
Heptanes	99.48%	0.52%
2,2,4-Trimethylpentane	99.78%	0.22%
Benzene	90.03%	9.97%
Toluene	84.21%	15.79%
Ethylbenzene	76.44%	23.56%
Xylenes	67.84%	32.16%
C8+ Heavies	97.86%	2.14%

FLASH TANK

Flash Pressure: 50.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.97%	0.03%
Carbon Dioxide	58.08%	41.92%
Nitrogen	11.29%	88.71%
Methane	11.80%	88.20%
Ethane	29.77%	70.23%
Propane	48.39%	51.61%
Isobutane	57.19%	42.81%
n-Butane	63.10%	36.90%
Isopentane	65.44%	34.56%
n-Pentane	69.92%	30.08%
n-Hexane	79.73%	20.27%
Other Hexanes	75.39%	24.61%
Heptanes	88.21%	11.79%
2,2,4-Trimethylpentane	79.69%	20.31%
Benzene	99.07%	0.93%
Toluene	99.38%	0.62%
Ethylbenzene	99.63%	0.37%
Xylenes	99.75%	0.25%
C8+ Heavies	98.20%	1.80%

REGENERATOR

Regenerator Stripping Gas:

Dry Product Gas

Stripping Gas Flow Rate: 65.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water	29.19%	70.81%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.76%	99.24%
n-Pentane	0.72%	99.28%
n-Hexane	0.63%	99.37%
Other Hexanes	1.33%	98.67%
Heptanes	0.57%	99.43%
2,2,4-Trimethylpentane	1.88%	98.12%
Benzene	5.05%	94.95%
Toluene	7.95%	92.05%
Ethylbenzene	10.45%	89.55%
Xylenes	12.95%	87.05%
C8+ Heavies	12.25%	87.75%

STREAM REPORTS:

Page: 5

WET GAS STREAM

Temperature: 80.00 deg. F Pressure: 514.70 psia Flow Rate: 2.29e+006 scfh

Component Conc. Loading (vol%) (lb/hr) Water 1.14e-001 1.24e+002 Carbon Dioxide 3.75e-001 9.97e+002 Nitrogen 4.39e-001 7.44e+002 Methane 9.65e+001 9.36e+004 Ethane 2.24e+000 4.07e+003 Propane 2.27e-001 6.05e+002 Isobutane 3.10e-002 1.09e+002 n-Butane 4.29e-002 1.51e+002 Isopentane 1.90e-002 8.28e+001 n-Pentane 1.30e-002 5.66e+001 n-Hexane 4.99e-003 2.60e+001 Other Hexanes 1.20e-002 6.25e+001 Heptanes 7.99e-003 4.84e+001 2,2,4-Trimethylpentane 9.99e-004 6.90e+000 Benzene 9.99e-004 4.72e+000 Toluene 9.99e-004 5.57e+000 Ethylbenzene 9.99e-004 6.41e+000 Xylenes 9.99e-004 6.41e+000 C8+ Heavies 1.10e-002 1.13e+002 -----Total Components 100.00 1.01e+005

DRY GAS STREAM

Temperature: 80.00 deg. F Pressure: 514.70 psia Flow Rate: 2.29e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	8.11e-003 3.75e-001 4.40e-001 9.66e+001 2.24e+000	9.96e+002 7.44e+002 9.36e+004
Isobutane n-Butane Isopentane	2.27e-001 3.10e-002 4.30e-002 1.90e-002 1.30e-002	1.09e+002 1.51e+002 8.27e+001
Other Hexanes Heptanes 2,2,4-Trimethylpentane	7.96e-003	6.23e+001 4.82e+001 6.88e+000
Ethylbenzene	6.78e-004 1.08e-002	4.90e+000 4.35e+000 1.11e+002

Page: 6

LEAN GLYCOL STREAM

Temperature: 80.00 deg. F Flow Rate: 5.64e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 3.12e+003 Water 1.50e+000 4.76e+001 Carbon Dioxide 3.00e-012 9.53e-011 Nitrogen 1.38e-013 4.39e-012 Methane 5.64e-018 1.79e-016 Ethane 1.29e-008 4.10e-007 Propane 3.33e-010 1.06e-008 Isobutane 6.88e-011 2.18e-009 n-Butane 1.07e-010 3.40e-009 Isopentane 1.33e-005 4.23e-004 n-Pentane 1.20e-005 3.82e-004 n-Hexane 1.03e-005 3.26e-004 Other Hexanes 3.66e-005 1.16e-003 Heptanes 3.98e-005 1.26e-003 2,2,4-Trimethylpentane 7.43e-006 2.36e-004 Benzene 7.80e-004 2.48e-002 Toluene 2.38e-003 7.54e-002 Ethylbenzene 5.53e-003 1.76e-001 Xylenes 9.64e-003 3.06e-001 C8+ Heavies 1.04e-002 3.32e-001 -----Total Components 100.00 3.17e+003

RICH GLYCOL STREAM

Temperature: 80.00 deg. F Pressure: 514.70 psia Flow Rate: 5.90e+000 gpm

NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.46e+001 4.94e+000 2.89e-002 1.33e-003 1.61e-001	1.63e+002 9.53e-001 4.40e-002
Propane Isobutane	2.63e-002 7.86e-003 2.20e-003 4.16e-003 2.56e-003	2.59e-001 7.27e-002 1.37e-001
n-Hexane Other Hexanes	7.64e-003	6.53e-002 1.16e-001 2.53e-001
	1.50e-002 2.89e-002 5.10e-002	9.54e-001

Page: 7 Xylenes 7.17e-002 2.37e+000

C8+ Heavies 8.35e-002 2.76e+000

Total Components 100.00 3.30e+003

FLASH TANK OFF GAS STREAM

Temperature: 150.00 deg. F Pressure: 64.70 psia Flow Rate: 1.26e+002 scfh

Component	Conc. (vol%)	
Carbon Dioxide Nitrogen Methane	7.16e-001 2.73e+000 4.19e-001 8.81e+001 6.10e+000	4.00e-001 3.90e-002 4.70e+000
Isobutane		3.11e-002 5.06e-002 2.92e-002
Other Hexanes Heptanes 2,2,4-Trimethylpentane	8.94e-002	2.86e-002 2.98e-002 3.19e-003
Ethylbenzene	1.67e-002 8.75e-002	6.23e-003 5.90e-003 4.95e-002

FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F Flow Rate: 5.88e+000 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.47e+001 4.95e+000 1.68e-002 1.51e-004 1.91e-002	1.63e+002 5.54e-001 4.97e-003
Propane Isobutane	7.84e-003 3.81e-003 1.26e-003 2.63e-003 1.68e-003	1.26e-001 4.16e-002 8.66e-002
n-Hexane Other Hexanes	6.76e-003	5.20e-002 8.76e-002 2.23e-001
Benzene	1.49e-002	4.91e-001

Page: 8
Toluene 2.88e-002 9.48e-001

Ethylbenzene 5.09e-002 1.68e+000 Xylenes 7.16e-002 2.36e+000

C8+ Heavies 8.21e-002 2.71e+000

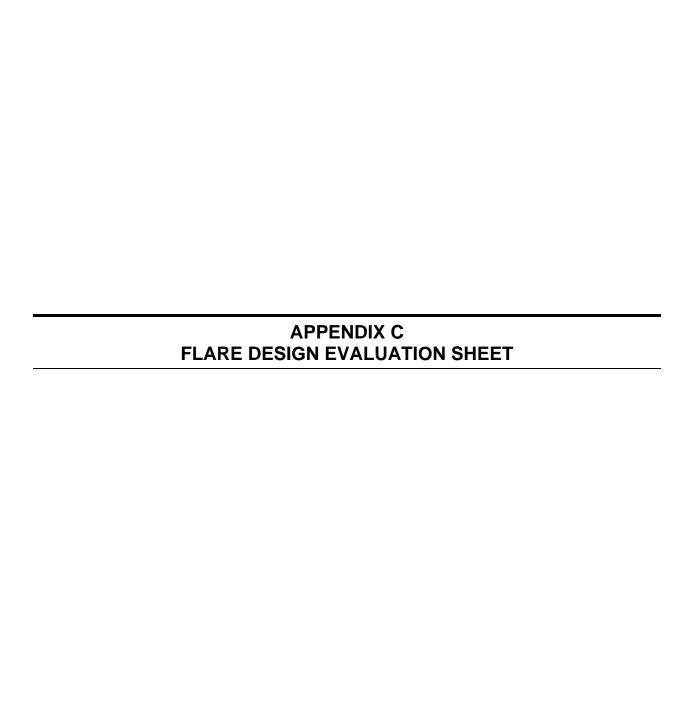
Total Components 100.00 3.30e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 6.38e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	3.81e+001 3.04e-001 2.70e-001 5.92e+001 1.42e+000	2.25e+000 1.27e+000 1.60e+002
Isobutane n-Butane Isopentane	1.56e-001 2.32e-002 3.51e-002 1.61e-002 1.23e-002	2.27e-001 3.43e-001 1.96e-001
Other Hexanes Heptanes 2,2,4-Trimethylpentane	1.80e-002	1.93e-001 3.03e-001 2.40e-002
Ethylbenzene Xylenes C8+ Heavies	1.16e-001 8.95e-002	1.51e+000 2.06e+000 2.56e+000
Total Components	100.00	2.96e+002

COMBUSTION DEVICE OFF GAS STREAM


Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.96e+002 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	9.66e+001 2.31e+000 2.54e-001 3.78e-002 5.73e-002	3.59e-001 5.77e-002 1.13e-002
n-Hexane Other Hexanes	2.01e-002 1.08e-002	7.46e-003 4.79e-003 9.63e-003
	5.87e-002 9.27e-002	2.37e-002 4.40e-002

Page: 9 Xylenes 1.88e-001 1.03e-001

C8+ Heavies 1.46e-001 1.28e-001

Total Components 100.00 8.86e+000

Flare Design Evaluation

Туре	Unassisted
Throat Diameter (inches)	17.5

	Flowrate (scf/h):	6380	scf/h
GLYCalc	INPUT	Compound Net	Mixture Net
	mole	Heating Value	Heating Value
<u>Compound</u>	percent	(Btu/scf)	(Btu/scf)
Water	38.100	0	0.0
Carbon Dioxide	0.304	0	0.0
Nitrogen	0.270	0	0.0
Methane	59.200	913	540.5
Ethane	1.420	1641	23.3
Propane	0.156	2385	3.7
Isobutane	0.023	3105	0.7
n-Butane	0.035	3113	1.1
Isopentane	0.016	3716	0.6
n-Pentane	0.012	3709	0.5
n-Hexane	0.007	4412	0.3
Other Hexanes	0.013	4870	0.6
Heptane	0.018	4925	0.9
2, 2, 4 - Trimethylpentane	0.001	3698	0.0
Benzene	0.036	3601	1.3
Toluene	0.057	4284	2.4
Ethylbenzene	0.085	4977	4.2
Xylene	0.116	4980	5.8
Octane (C8+)	0.090	5804	5.2
Hydrogen Sulfide	0.000	596	0.0
TOTALS:	100		591.2

Assist gas requirements for nonassisted flare per 40 CFR 60.18(c)(3):

Minimum allowable net heating value	200	Btu/scf
Additional assist gas required	0.0	scfh
Assist (fuel) gas supplied	0	scfh
Composite net heating value	591.2	Btu/scf

Maximum allowable flare exit velocity (V_{max}) for nonassisted flare per 40 CFR 60.18(f)(5):

Lower (Net) Heating Value	Btu/scf	MJ/scm
(1000 Btu/scf = 37.3 MJ/scm)	591	22.1
$Vmax = 10^{(LHV+28.2)/31.7}$ for $Vmax$ in m/sec and LHV in MJ/scm	m/sec	ft/sec
(1 m = 3.28 ft)	40.2	131.8
Vmax limit based on 40 CFR 60.18(b)(4)(iii)	40.2	131.8

Actual flare exit velocity:

Total volumetric flow (vent gas + assist gas in scfh/3600 sec/hr) =	1.77	scf/sec
Total volumetric flow at 180F & atmospheric pressure =	2.29	cf/sec
Flare exit cross-sectional area based on throat diameter =	1.67	ft2
Velocity = volumetric flow / cross-sectional area =	1.4	ft/sec