625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

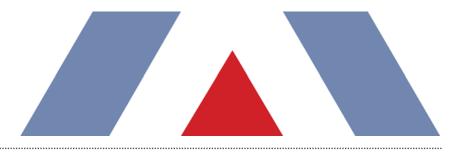
May 6, 2015

CERTIFIED MAIL # 7014 2120 0002 1164 5297

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70 Permit Application EQT Production Company PET-35 Natural Gas Production Site

Dear Mr. Durham,


Enclosed are two electronic and one original hard copy of a G70-A General Air Permit Application for the PET-35 Natural Gas Production Well Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production PET-35 Pad

G70-A Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

May 2015

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-A APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration (PSD) Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	7
3.3.1. NSPS Subparts D, Da, Db, and Dc	8
3.3.2. NSPS Subparts K, Ka, and Kb	8
3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution	8
3.3.4. Non-Applicability of All Other NSPS	9
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	9
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	9
3.4.2. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	9
3.5. West Virginia SIP Regulations	9
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Hea	
Exchangers	10
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Cont to an Objectionable Odor	ributes 10
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	10
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	10
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Prepa Storage and Other Sources of Fugitive Particulate Matter	ration, 10
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	10
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	10
3.5.8. Non-Applicability of Other SIP Rules	11
4. G70-A APPLICATION FORMS	12
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE	
ATTACHMENT B: PROCESS DESCRIPTION	
ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: AREA MAP	
ATTACHMENT G: EMISSION UNIT DATA SHEETS AND G70-A SECTION APPLICABILITY FORM	
ATTACHMENT H: AIR POLLUTION CONTROL DEVICE DATA SHEET	

ATTACHMENT I: EMISSION CALCULATIONS ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT ATTACHMENT K: ELECTRONIC SUBMITTAL ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE ATTACHMENT M: SITING CRITERIA WAIVER (*NOT APPLICABLE*) ATTACHMENT N: MATERIAL SAFETY DATA SHEET (*NOT APPLICABLE*) ATTACHMENT O: EMISSION SUMMARY SHEET EQT Production Company (EQT) is submitting this Class II General Permit (G70-A) application to the West Virginia Department of Environmental Protection (WVDEP) for the PET-35 facility, a natural gas production well pad, located in Lewis County, West Virginia.

1.1. FACILITY AND PROJECT DESCRIPTION

The PET-35 Wellpad is a new natural gas production facility that will consist of six (6) natural gas well. Natural gas and liquids (including water and condensate) will be extracted from deposits underneath the surface. Natural gas will be transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced will be stored in storage vessels.

This application seeks to permit the following equipment at the PET-35 pad:

- Six (6) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by one (1) combustor rated at 11.66 MMBtu/hr;
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator (Vapors from this tank may be controlled by the aforementioned combustor. For emission calculation purposes, no control is assumed.);
- > Six (6) line heaters, each rated at 1.54 MMBtu/hr (heat input); and
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr (heat input).

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the proposed PET-35 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a quarter-mile radius of the PET-35 Pad. Therefore, the PET-35 Pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-A APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-A permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-A Application Forms;
- > Attachment A: Current Business Certificate;
- > Attachment B: Process Description;
- > Attachment C: Description of Fugitive Emissions;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Plot Plan;
- > Attachment F: Area Map;
- > Attachment G: Emission Unit Data Sheets and G70-A Section Applicability Form;
- > Attachment H: Air Pollution Control Device Sheets;
- > Attachment I: Emission Calculations;
- > Attachment J: Class I Legal Advertisement;
- > Attachment K: Electronic Submittal;
- > Attachment L: General Permit Registration Application Fee;
- > Attachment M: Siting Criteria Waver (*not applicable*);
- > Attachment N: Material Safety Data Sheet (not applicable); and
- > Attachment O: Emissions Summary Sheet.

The characteristics of air emissions from the existing natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment I of this application.

Emissions from this project will result from natural gas combustion in the line heaters and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters and TEGs: Potential emissions of criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.² Please note that potential emissions of NO_x, CO, PM, SO₂ and GHGs from the combustors are also calculated according to the aforementioned methodologies.
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with Table 2-4: Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated in gas service at 0&G Production Operations. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the condensate/water stored in the tanks at the facility are calculated using API E&P TANK v2.0.
- > **Tank Truck Loading:** Emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using U.S. EPA's AP-42 Chapter 5 Section 2 factors.⁴
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants.⁶ The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

⁶ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad.

3.3.1. NSPS Subparts D, Da, Db, and Dc

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart OOOO–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. This NSPS was published in the Federal Register on August 16, 2012, and amended in the Federal Register on September 23, 2013⁷. The list of potentially affected facilities includes:

- > Gas wellheads
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment (excluding natural gas processing plants)
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants
- > Storage vessels in the production, processing, or transmission and storage segments
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells

There will be six (6) produced fluids storage vessels and one (1) sand separator storage vessel at the wellpad. Emissions from the proposed produced fluids storage vessels will be controlled by one (1) enclosed combustor with a destruction efficiency greater than 95 percent. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-A permit. As such, per 60.5365(e), the tanks are not storage vessel affected facilities under the rule.

7 78 FR 54816 (http://www.gpo.gov/fdsys/pkg/FR-2013-09-23/pdf/2013-22010.pdf)

The pneumatic controllers were ordered and installed after August 23, 2011 and are therefore potentially subject to NSPS 0000. Per 60.5365(d)(2), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000.

3.3.4. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol (TEG) dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The wellpad does not include any boilers, or gas fired heaters; therefore the requirements of this subpart do not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent. Per 45 CSR 2-4, PM emissions from the unit will not exceed a level of 0.09 multiplied by the heat design input in MMBtu/hr of the unit.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-A application forms including the required attachments.

EQT Production, LLC | PET-35 Pad Trinity Consultants

STATES OF STATES	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTE DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov.		APPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS			
	CTION I MODIFICATION I CLASS II ADMIN		ATIVE UPDATE			
	CHECK WHICH TYPE OF GENERAL PERMIT REGISTRATION YOU ARE APPLYING FOR:					
 G10-D – Coal Preparation and Handling G20-B – Hot Mix Asphalt G30-D – Natural Gas Compressor Stations G33-A – Spark Ignition Internal Combustion Engines G35-A – Natural Gas Compressor Stations (Flare/Glycol Dehydratio 			 G40-C - Nonmetallic Minerals Processing G50-B - Concrete Batch G60-C - Class II Emergency Generator G65-C - Class I Emergency Generator Mit) 			
	SECTION I. GE	ENERAL				
1. Name of applica EQT Production	ant (as registered with the WV Secretary of State's Company	Office):	: 2. Federal Employer ID No. (FEIN): 25-0724685			
 3. Applicant's mailing address: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222 4. Applicant's physical address: 						
5. If applicant is a	subsidiary corporation, please provide the name of	parent co	t corporation:			
 6. WV BUSINESS REGISTRATION. Is the applicant a resident of the State of West Virginia?						
	SECTION II. FACILITY INFORMATION					
7. Type of plant or facility (stationary source) to be constructed, modified, relocated or administratively updated (e.g., coal preparation plant, primary crusher, etc.): Natural gas production		Classific	Standard IndustrialAND8b. North American Industrysificationsification (SIC) code: 1311System (NAICS) code: 211111			
9. DAQ Plant ID No. (for existing facilities only): 10. List all current 45CSR13 and other General Permit numbers associativity with this process (for existing facilities only):						

A: PRIMARY OPERATING SITE INFORMATION

,				
11A. Facility name of primary operating site:	12A. Address of primary operating site:			
PET-35 Pad	Mailing: 625 Liberty Avenue, Suite 1700, Pittsburgh, PA 15222			
	Physical:			
13A. Does the applicant own, lease, have an optic	n to buy, or otherwise have control of the prop	oosed site? XES NO		
 IF YES, please explain: Property is leased 	d and held under production rights			
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS SOURCE.			
14A. – For Modifications or Administrative U nearest state road;	pdates at an existing facility, please provide d	rections to the present location of the facility from the		
 For Construction or Relocation permits, MAP as Attachment F. 	please provide directions to the proposed new	site location from the nearest state road. Include a		
Take Interstate 79 S to Exit 96 toward W Weston/US-19) and continue for ~0.4 mi Road. The wellpad will be located approx	les. Turn left onto US-19 S and conti	nue for ~3.6 miles. Turn right onto Copley		
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:		
Weston	Lewis	Northing (KM): 4,314.806		
Vestori		Easting (KM): 540.419 Zone: 17		
18A. Briefly describe the proposed new operation	or change (s) to the facility:	19A. Latitude & Longitude Coordinates (NAD83,		
Construction and operation of a natural gas v	vellpad.	Decimal Degrees to 5 digits):		
		Latitude: <u>38.981317°</u> Longitude: <u>-80.533338°</u>		
B: 1 ST ALTERNATE OPERATIN	IG SITE INFORMATION (only available for (G20, G40, & G50 General Permits)		
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:			
N/A	Mailing:	Physical:		
13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site?				
 IF YES, please explain: 				
– IF NO , YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.				
14B. – For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road;				
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. 				

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B. Briefly describe the proposed new operation	or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
		Latitude: Longitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits):

11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:			
_N/A	Mailing:		Physical:		
13C. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? YES NO - IF YES, please explain:					
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS S	OURCE.			
14C. – For Modifications or Administrative U nearest state road;	pdates at an existi	ng facility, please provide direc	tions to the present	location of th	ne facility from the
 For Construction or Relocation permits, MAP as Attachment F. 	please provide dire	ctions to the proposed new site	e location from the n	earest state	road. Include a
150 Negrest situ er teur	16C Country		170	UTM Coordir	
15C. Nearest city or town:	16C. County:		Northing (KM):		
			Easting (KM):		
18C. Briefly describe the proposed new operation	or change (s) to th	e facility:	Zone: 19C. Latitude & L (NAD83, Decimal		
			Latitude:		
			Longitude:		· · · · · · · · · ·
20. Provide the date of anticipated installation or c	hange:	21. Date of anticipated Start-	up if registration is g	granted:	
9/_22/_2015	9/22/2015	i			
If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: :					
<u>//</u>					
22. Provide maximum projected Operating Schedule of activity/activities outlined in this application if other than 8760 hours/year. (Note: anything other than 24/7/52 may result in a restriction to the facility's operation).					
Hours per day_24 Days per week7 Weeks per year52 Percentage of operation100					

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B: PROCESS DESCRIPTION
- ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D: PROCESS FLOW DIAGRAM
- ATTACHMENT E: PLOT PLAN
- ATTACHMENT F: AREA MAP
- ☑ ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT I: EMISSIONS CALCULATIONS
- ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT K: ELECTRONIC SUBMITTAL
- ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
- ATTACHMENT M: SITING CRITERIA WAIVER (Not Applicable)
- ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (Not Applicable)
- ATTACHMENT O: EMISSIONS SUMMARY SHEETS
- OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.) (Not Applicable)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION
--

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.	
I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation	
FOR A PARTNERSHIP I certify that I am a General Partner	
FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager	
FOR AN ASSOCIATION Certify that I am the President or a member of the Board of Directors	
FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager	
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor	
I hereby certify that (please print or type) is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,	
I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible	
Signature Canton MAY 6. 2015	
(please use blue ink) Responsible Official Date	-
Name & Title David Elkin, Senior Vice President (please print or type)	-
Signature	_
(please use blue ink) Authorized Representative (if applicable) Date	
Applicant's Name Alex Bosiljevac – Environmental Coordinator	-
Phone & Fax	
Phone Fax	
Emailabosiljevac@eqt.com	

ATTACHMENT A

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Process Description

ATTACHMENT B: PROCESS DESCRIPTION

This project involves the construction and operation of a natural gas production wellpad (PET-35).

The PET-35 wellpad will consist of six wells. The incoming gas stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank. The gas then flows into a three-phase separator which separates produced water and condensate from the gas stream. The produced water and condensate are transferred to the storage tanks, where vapors are controlled by a combustor. Once the tanks are filled, the contents are loaded into trucks for transport using vapor-balanced loading. At the wellpad, heat is provided by line heaters and electricity is provided by thermoelectric generators.

A process flow diagram is included as Attachment D.

ATTACHMENT C

Description of Fugitive Emissions

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	N/A					
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}	1.37 0.35 0.04	6.02 1.53 0.15	1.37 0.35 0.04	6.02 1.53 0.15	O ^A
Loading/Unloading Operations	VOC HAP	0.27 0.01	1.20 0.03	0.09 <0.01	0.40 0.01	O ^B
Equipment Leaks	VOC CO2e HAP	Does not apply	11.66 719 0.31	Does not apply	11.66 719 0.31	Oc
lowdown Emissions N/A						
Other	N/A					

^AAP-42, Section 13.2.2.

^B AP-42 Section 5.2.

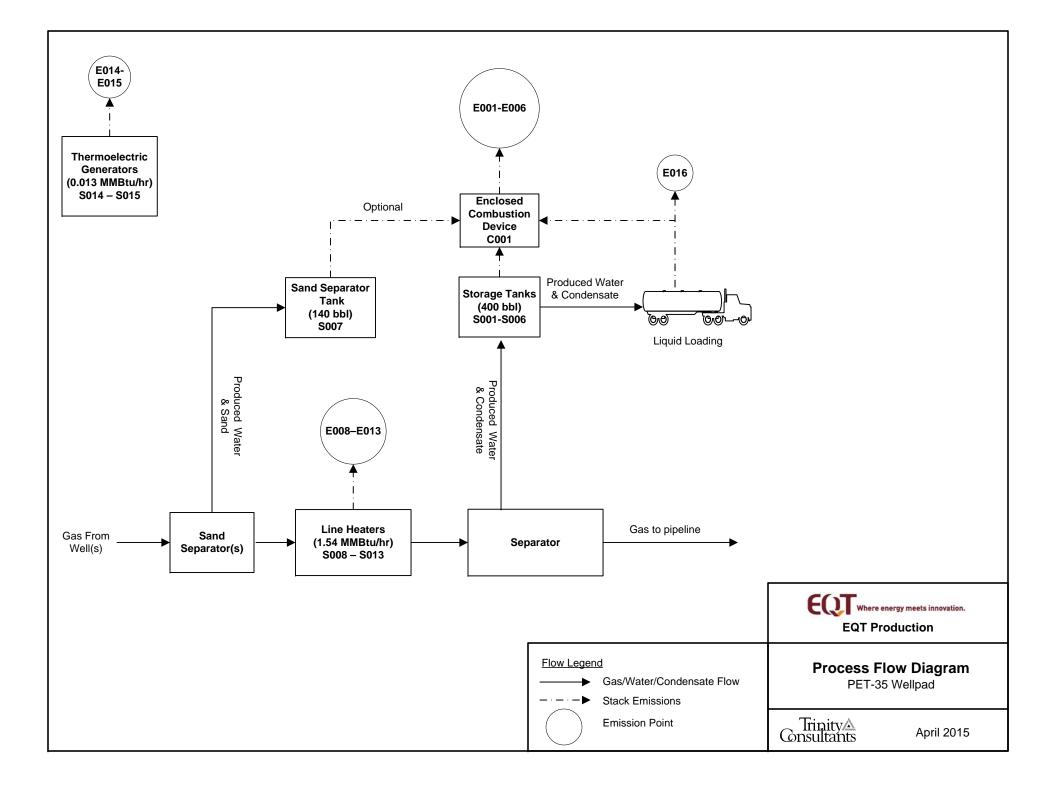
^c Protocol for Equipment Leak Estimates (EPA-453/R-95-017), Table 2-1, Nov. 1995.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

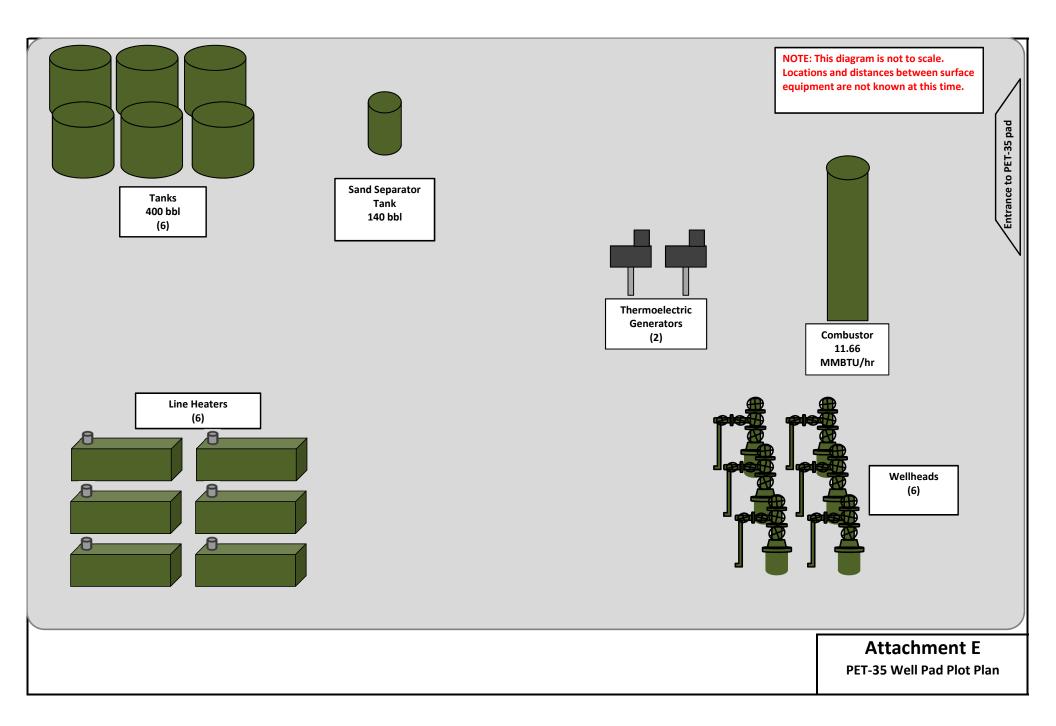
³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).


LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components	Number of Components Monitored by Frequency	Average Time to Repair (days)	Estimated Annual Emission Rate (Ib/yr) ¹
Pumps	light liquid VOC	1	TBD	TBD	384
	heavy liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Valves	Gas VOC	295	TBD	TBD	6,802
	Light Liquid VOC		TBD	TBD	
	Heavy Liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Safety Relief Valves	Gas VOC	18	TBD	TBD	7,231
	Non VOC		TBD	TBD	
Open-ended Lines	VOC	15	TBD	TBD	98
	Non-VOC		TBD	TBD	
Sampling Connections	VOC		TBD	TBD	
Connections	Non-VOC		TBD	TBD	
Compressors	VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Flanges	VOC	1,245	TBD	TBD	8,800
	Non-VOC		TBD	TBD	
Other	VOC		TBD	TBD	
	Non-VOC		TBD	TBD	

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction


ATTACHMENT D

Process Flow Diagram

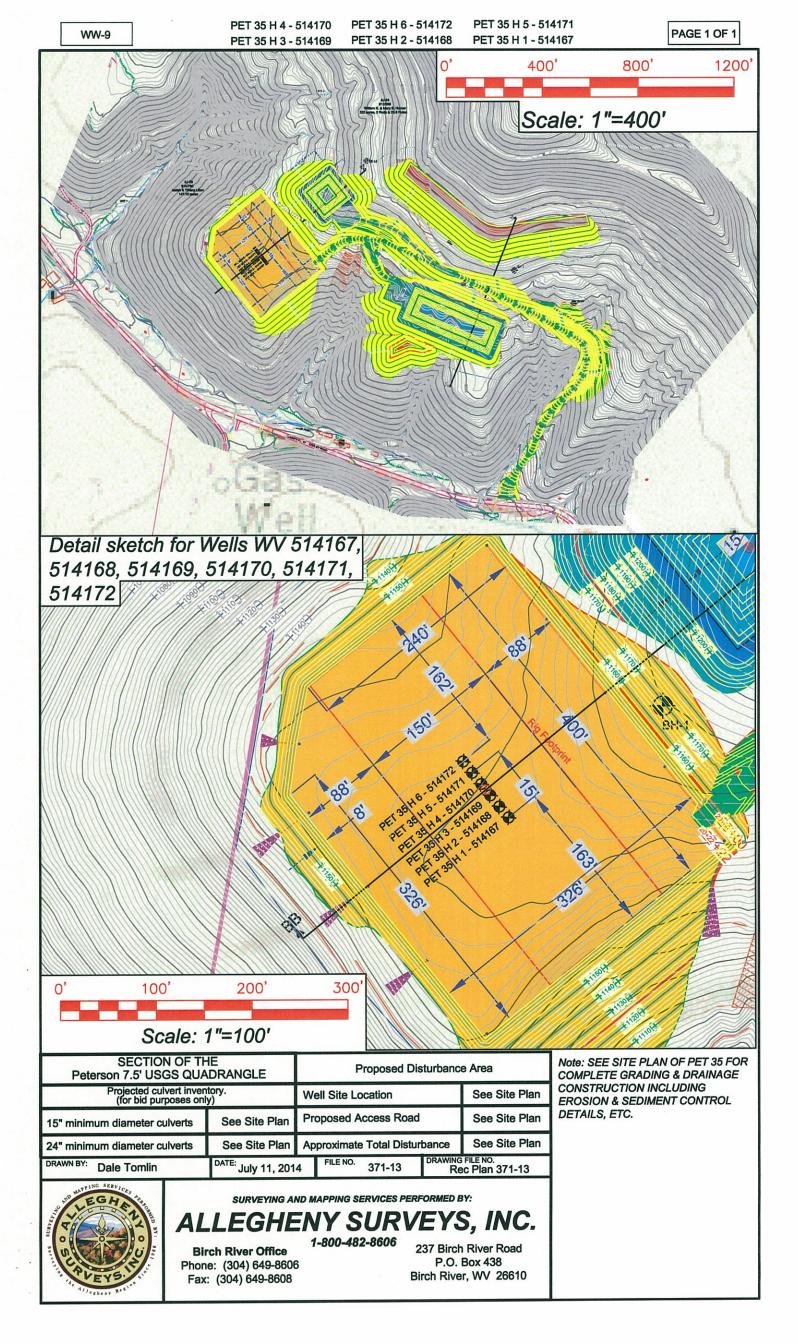
ATTACHMENT E

Plot Plan

ATTACHMENT F

Area Map

ATTACHMENT F: AREA MAP



 UTM Northing (KM):
 4,314.806

 UTM Easting (KM):
 540.419

 Elevation:
 ~1,160 ft

ATTACHMENT G

Emission Unit Data Sheets and G70-A Section Applicability Form

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	\boxtimes
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants for Stationary	
	Reciprocating Internal Combustion Engines (40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	

* Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)						
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S002	E002	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S003	E003	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S004	E004	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S005	E005	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S006	E006	Produced Fluids Storage Tank	TBD	400 bbl	New	C001
S007	E007	Sand Separator Tank	TBD	140 bbl	New	C001 (optional)
S008	E008	Line Heater	TBD	1.54 MMBtu/hr	New	None
S009	E009	Line Heater	TBD	1.54 MMBtu/hr	New	None
S010	E010	Line Heater	TBD	1.54 MMBtu/hr	New	None
S011	E011	Line Heater	TBD	1.54 MMBtu/hr	New	None
S012	E012	Line Heater	TBD	1.54 MMBtu/hr	New	None
S013	E013	Line Heater	TBD	1.54 MMBtu/hr	New	None
S014	E014	Thermoelectric Generator	TBD	0.013 MMBtu/hr	New	None
S015	E015	Thermoelectric Generator	TBD	0.013 MMBtu/hr	New	None
S016	E016	Liquid Loading	TBD	NA	New	None
C001	C001	Combustor	TBD	11.66 MMBtu/hr	New	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API n	umber(s) for each NG well at this facility:
47-041-05689	
47-041-05690	
47-041-05691	
47-041-05692	
47-041-05693	
47-041-05694	

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001 = Well number. Each well will have a unique well number.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name					
PET-35 Wellpad	Produced Fluids Tanks					
3. Emission Unit ID number	4. Emission Point ID number					
S001 through S006	E001 through E006					
5. Date Installed or Modified (for existing tanks)	6. Type of change:					
TBD	\boxtimes New construction \square New stored material \square Other					
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.					
🗌 Yes 🛛 No						
7C. Provide any limitations on source operation affecting emission	7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)					
None						

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
400 bbl					
9A. Tank Internal Diameter (ft.) ~12	9B. Tank Internal Height (ft.) ~20				
10A. Maximum Liquid Height (ft.) ~20	10B. Average Liquid Height (ft.) ~10				
11A. Maximum Vapor Space Height (ft.) ~20	11B. Average Vapor Space Height (ft.) ~10				
12. Nominal Capacity (specify barrels or gallons). This is also be	known as "working volume. 400 bbl				
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
~2,401,862 per tank	~6,580 per tank				
14. Number of tank turnovers per year ~143 per tank	15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? 🗌 Yes 🔀 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	ear?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof $X_$ verticalhorizontalfla	t roof _X cone roof dome roof other				
(describe)					
External Floating Roof pontoon roof doub	le deck roof				
Domed External (or Covered) Floating Roof					
Internal Floating Roof vertical column support					
Variable Vapor Space lifter roof diaphrag					
Pressurized spherical cylindric	al				
Other (describe)					

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets
 Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

ollution Control I (submit Test Dat Flashing Loss	a or Calcu		re or else	where in the second sec	ne applica Total	tion).	Estimation Method
(submit Test Dat	a or Calcu	ulations he	re or else		ne applica	tion).	Estimation Method
				where in th		tion).	
llution Control	Device Sh	neet					
Emergency Relief Valve (psig)							
			Ũ			ing	
		Conse	rvation V	/ent (psig)	– Enardo	Valve	
n Device1 (vapo	r combust	tors, flares,	thermal	oxidizers)			
		Inert C	Gas Blan	cet of			
		Ruptu	re Disc (psig)			
s (check as many	as apply):					
			☐ Inert C n Device ¹ (vapor combustors, flares, ⊠ Conse Vacuum	☐ Rupture Disc (☐ Inert Gas Blank n Device ¹ (vapor combustors, flares, thermal ⊠ Conservation V Vacuum Setting	□ Rupture Disc (psig) □ Inert Gas Blanket of n Device ¹ (vapor combustors, flares, thermal oxidizers) □ Conservation Vent (psig) Vacuum Setting Pres	□ Rupture Disc (psig) □ Inert Gas Blanket of n Device ¹ (vapor combustors, flares, thermal oxidizers) □ Conservation Vent (psig) – Enardo Vacuum Setting Pressure Sett	Rupture Disc (psig) Inert Gas Blanket of n Device ¹ (vapor combustors, flares, thermal oxidizers) Conservation Vent (psig) – Enardo Valve Vacuum Setting Pressure Setting

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION								
19. Tank Shell Construction:								
□ Riveted □ Gunite lined □ Epoxy-coated rivets □ Other (describe) Welded								
20A. Shell Color: Gray	20B. Roof Color: Gray 20C. Year Last Painted: New							
21. Shell Condition (if metal and unlined):								
🖾 No Rust 🗌 Light Rust 🔲 Dense Rust 🗌 Not applicable								
22A. Is the tank heated? \Box Yes \boxtimes No	No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tan							
23. Operating Pressure Range (psig): -0.03 to 0	.70 psig							
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):						
\square Yes \square No 0.06 ft/ft								
25. Complete item 25 for Floating Roof Tanks	\square Does not apply \square							
25A. Year Internal Floaters Installed:								

25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal Vapor mounted resilient seal Other (describe):									
25C. Is the Floating Roof equipped with a secondary seal? Yes No									
25E. Is the floating roof equipped with a weather shield? Yes No									
25F. Describe deck fittings:									
26. Complete the following section for Internal Floating Roof Tanks Does not apply									
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:									
26C. Deck seam. Continuous sheet construction:									
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)									
26D. Deck seam length (ft.):	of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported				
			tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION:									
27. Provide the city and state on which the data in this section are based: Elkins, WV									
28. Daily Avg. Ambient Temperature (°F): 49.0629. Annual Avg. Maximum Temperature (°F): 61.15									
30. Annual Avg. Minimum Tempe				vg. Wind Speed					
32. Annual Avg. Solar Insulation F	Factor (BTU/	ft ² -day): 1,193.87	33. A	mospheric Press	ure (psia): 1	3.73			
LIQUID INFORMATION:					1				
34. Avg. daily temperature range o liquid (°F): 51.30	f bulk	34A. Minimum (°F):	34B. Maximum (°F):			imum (°F):			
35. Avg. operating pressure range of	of tank	35A. Minimum (psig)	: 0.1791 35B. Ma			ximum (psig): 0.3117			
(psig): 0.2373									
36A. Minimum liquid surface temp			36B. Corresponding vapor pressure (psia): 0.3117						
37A. Avg. liquid surface temperatu				Corresponding va					
38A. Maximum liquid surface temp				Corresponding va		e (psia): 0.1791			
39. Provide the following for each	1 0		Add add	litional pages if 1	necessary.				
39A. Material name and composition	on:	Produced Fluid							
39B. CAS number:		TBD							
39C. Liquid density (lb/gal):		TBD							
39D. Liquid molecular weight (lb/l		TBD							
39E. Vapor molecular weight (lb/lb		19.13							
39F. Maximum true vapor pressure	-	TBD							
39G. Maxim Reid vapor pressure		TBD							
39H. Months Storage per year. Fro		12 (All year)							
To:									

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name					
PET-35 Wellpad	Sand Separator Tank					
3. Emission Unit ID number	4. Emission Point ID number					
S007	E007					
5. Date Installed or Modified (for existing tanks)	6. Type of change:					
TBD	\boxtimes New construction \square New stored material \square Other					
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.					
🗌 Yes 🛛 No	☐ Yes					
7C. Provide any limitations on source operation affecting emissi	7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)					
None						

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
140 bbl						
9A. Tank Internal Diameter (ft.) ~10	9B. Tank Internal Height (ft.) ~10					
10A. Maximum Liquid Height (ft.) ~10	10B. Average Liquid Height (ft.) ~5					
11A. Maximum Vapor Space Height (ft.) ~10	11B. Average Vapor Space Height (ft.) ~5					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 140 bbl					
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
~141,120	~387					
14. Number of tank turnovers per year ~24 per tank	15. Maximum tank fill rate (gal/min) TBD					
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? 🗌 Yes 🛛 No						
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per	year?					
18. Type of tank (check all that apply):						
Fixed RoofverticalXhorizontalfla	at roof cone roof dome roof other (describe)					
External Floating Roof pontoon roof doub	ble deck roof					
Domed External (or Covered) Floating Roof						
Internal Floating Roof vertical column support	self-supporting					
□ Variable Vapor Space lifter roof diaphrag	gm					
Pressurized spherical cylindric	al					
Underground						
Other (describe)						

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

 Refer to enclosed TANKS Summary Sheets

 Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \boxtimes Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

-							
Refer to enclosed TANKS Summary Sheets							
\boxtimes Refer to the responses to items 34 – 39 in section	VII						
VI. EMISSIONS AND CONTROL DEVICE	E DATA (required)						
40. Emission Control Devices (check as many as app	ply):						
Does Not Apply	Rupture Disc (psig)						
Carbon Adsorption ¹	Inert Gas Blanket of						
Vent to Vapor Combustion Device ¹ (vapor comb	ustors, flares, thermal oxidizers) (Optional)						
Condenser ¹	Conservation Vent (psig)						
\Box Other ¹ (describe)	Vacuum Setting Pressure Setting						
	Emergency Relief Valve (psig)						
¹ Complete appropriate Air Pollution Control Device	¹ Complete appropriate Air Pollution Control Device Sheet						
41. Expected Emission Rate (submit Test Data or Ca	alculations here or elsewhere in the application).						

Material Name and	Flashing Loss		Breathing Loss		Working Loss		Total		Estimation Method ¹
CAS No.							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

See Attached Emission Calculations

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATIO	N INFORMATION						
19. Tank Shell Construction:							
□ Riveted □ Gunite lined □ Epoxy-coated rivets □ Other (describe) Welded							
20A. Shell Color: Gray	20B. Roof Color: Gray	20C. Year Last Painted: New					
21. Shell Condition (if metal and unlined):							
🖾 No Rust 🔲 Light Rust 🗌 Dense Rust 🔲 Not applicable							
22A. Is the tank heated? Yes X No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?					
23. Operating Pressure Range (psig): -0.03 to 0.70 psig							
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):					
☐ Yes ⊠No							
25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
□ Vapor mounted resilient seal □ Other (describe):							
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No						
25D. If yes, how is the secondary seal mounted	$? (check one) \square Shoe \square Rim \square O$	ther (describe):					

25E. Is the floating roof equipped with a weather shield? Yes No								
25F. Describe deck fittings:								
26. Complete the following section for Inte	rnal Floating Roof Tanks	\boxtimes	Does not appl	у				
26A. Deck Type: Bolted	Welded	26B. 1	For bolted decks,	, provide dec	k construction:			
26C. Deck seam. Continuous sheet constru		_		_				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft			x 12 ft. wide					
26D. Deck seam length (ft.): 26E.	area of deck (ft ²):		For column supp	orted	26G. For column supported			
		tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION:								
27. Provide the city and state on which the								
28. Daily Avg. Ambient Temperature (°F):			-	-	erature (°F): 61.15			
30. Annual Avg. Minimum Temperature (°			vg. Wind Speed					
32. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,193.8733. Atmospheric Pressure (psia): 13.73								
LIQUID INFORMATION:								
34. Avg. daily temperature range of bulk	34A. Minimum (°F):			34B. Max	imum (°F):			
liquid (°F): 51.30								
35. Avg. operating pressure range of tank	35A. Minimum (psig)	: 0.1791		35B. Maximum (psig): 0.3117				
(psig): 0.2373								
36A. Minimum liquid surface temperature			Corresponding va		u ,			
37A. Avg. liquid surface temperature (°F):			Corresponding va					
38A. Maximum liquid surface temperature			Corresponding va		e (psia): 0.3117			
39. Provide the following for each liquid or		Add add	litional pages if 1	necessary.				
39A. Material name and composition:	Produced Fluid							
39B. CAS number:	TBD							
39C. Liquid density (lb/gal):	TBD							
39D. Liquid molecular weight (lb/lb-mole)	TBD							
39E. Vapor molecular weight (lb/lb-mole):	19.13							
39F. Maximum true vapor pressure (psia):	TBD							
39G. Maxim Reid vapor pressure (psia):	TBD							
39H. Months Storage per year. From:	12 (All year)							
To:								

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
S008	E008	Line Heater	TBD	New	None	1.54	~1,225
S009	E009	Line Heater	TBD	New	None	1.54	~1,225
S010	E010	Line Heater	TBD	New	None	1.54	~1,225
S011	E011	Line Heater	TBD	New	None	1.54	~1,225
S012	E012	Line Heater	TBD	New	None	1.54	~1,225
S013	E013	Line Heater	TBD	New	None	1.54	~1,225
S014	E014	Thermoelectric Generator	TBD	New	None	0.013	~1,225
S015	E015	Thermoelectric Generator	TBD	New	None	0.013	~1,225

¹ Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1,

LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:		2. Emission Point ID:		alled/ Modified:				
S016		E016	TBD					
4. Emission Unit Descr	ription: Liquid Lo	pading						
5. Loading Area Data:								
5A. Number of pumps:	1	5B. Number of liquids loade		um number of ss loading at one time:1				
6. Describe cleaning location, compounds and procedure for tank trucks:								
🗌 Yes 🛛 No	sure tested for lea	ks at this or any other location?	2					
If YES, describe:								
8. Projected Maximum	Operating Sched	ule (for rack or transfer point as	s a whole):					
-								
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.				
hours/day	As needed	As needed	As needed	As needed				
days/week	As needed	As needed	As needed	As needed				
								

9. Bulk Liquid Data (add pages as necessary):		
Liquid Name	Produced Fluids	
Max. daily throughput (1000 gal/day)	Variable	
Max. annual throughput (gal/yr)	14,552,294	
Loading Method ¹	SP	
Max. Fill Rate (gal/min)		
Average Fill Time (min/loading)		
Max. Bulk Liquid Temperature (°F)	51.30	
True Vapor Pressure ²	0.3117	
Cargo Vessel Condition ³	Unknown	
Control Equipment or Method ⁴	VB	
Minimum collection efficiency (%)	70	
Minimum control efficiency (%)	95	
	* Continued on next page	

		NOC A	00	-		
Maximum	Loading (lb/hr)	VOC: 0.				
Emission Rate		HAP: <0				
	Annual (ton/yr)	VOC: 0.				
	5	HAP: 0.0)]			
Estimation Method	5	EPA				
Notes:						
1 BF = Bottom Fill	SP = Splash Fill $SUB = Submeter SUB = Submeter$	rged Fill				
² At maximum bulk li			<u> </u>			
$^{3}B = Ballasted Vessel$	I, C = Cleaned, U = Uncleaned (dedicated) y (complete and submit appropriate A	ated service)	O = other (desc	cribe)		
CA = Carbon Adsorption		ar Pollution	Control Device	Sheets as Attack	hment "H"):	
	or Balance (closed system)					
ECD = Enclosed Cor						
F = Flare						
TO = Thermal Oxidat	ion or Incineration					
5 EPA = EPA Emissi	on Factor as stated in AP-42					
MB = Material Bala	ince					
	ment based upon test data submittal					
O = other (describe)						
MONITORING Pla and ranges that an demonstrate compli	propose testing in order to demon ease list and describe the process por re proposed to be monitored in ance with the operation of this air pollution control device.	arameters order to	RECORDKE		e describe th	e proposed recordkeeping
None			None			
REPORTING <i>Pleas</i> of the recordkeeping.	e describe the proposed frequency of	reporting		Please describe nent/air pollutio		d emissions testing for this vice.
None			None			
		rocedures	required by M	nufacturer to	maintain w	arranty: N/A
11. Describe all on	erating ranges and maintenance n					
11. Describe all op	erating ranges and maintenance p	noccurres	lequiled by the		maman w	
11. Describe all op	erating ranges and maintenance p	foccures	iequired by inc		inumum w	
11. Describe all op	erating ranges and maintenance p	noccures			inaniani w	

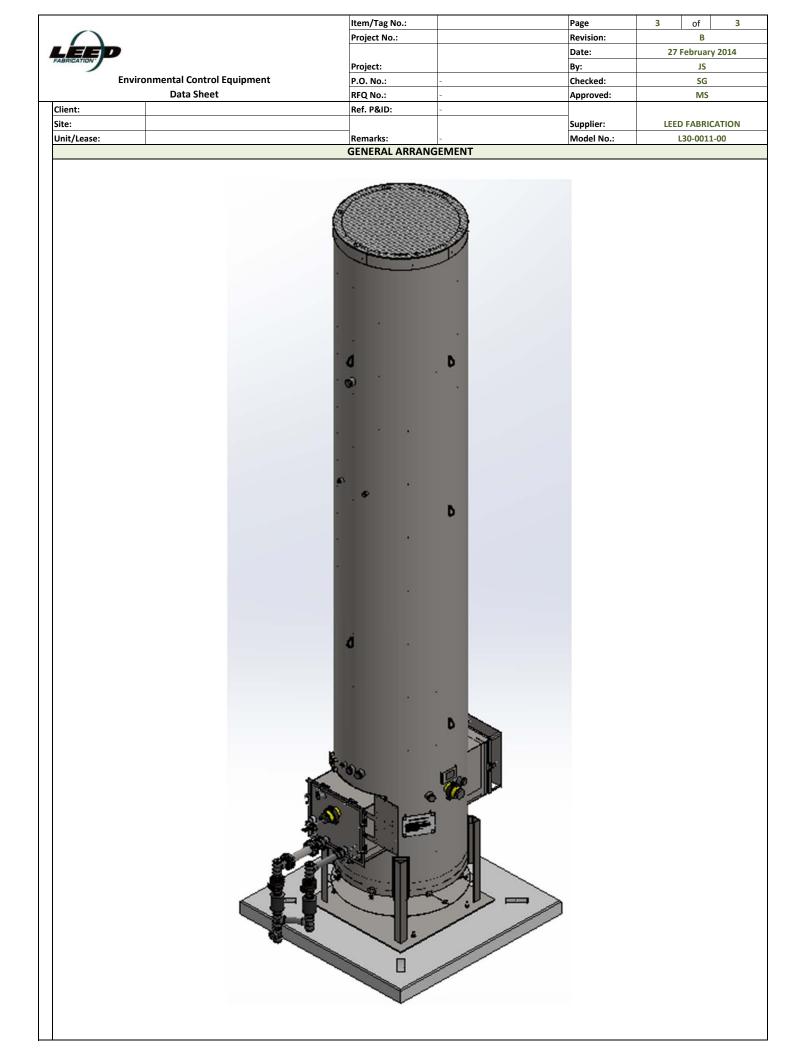
ATTACHMENT H

Air Pollution Control Device Data Sheets

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE	INSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.
		General Ir	ofrmation			
1. Control Device ID#: C001			2. Installation Dat	te: TBD		🛛 New
3. Maximum Rated Total Flow ~130 scf/min ~188,38		4. Maximum D 11.66 MMBt	esign Heat Input: u/hr	5. Design ~1,225	Heat Cor BTU/sc	
		Control Devi	ce Information			
6. Select the type	of vapor comb	oustion control de	vice being used: 🗵	Enclosed C	ombustic	on Device
Elevated Flar	e 🗌 Ground H	Flare 🗌 Thern	nal Oxidizer 🔲 🛛	Completion C	ombustio	on Device
7. Manufacturer: LEED Fabric		8. Hours of operation	ation per year:	8760		
Model No.: Enclosed Combust	or 48"		-			
9. List the emiss			ontrolled by this vap 2001-E006, E007, E		n contro	l device:
10. Emission Unit ID#		urce Description:	Emission U	nit ID#	Emissi	on Source Description:
S001 – S006	Produced Tanks	Fluid Storage				
S007	(optional)	tor Storage Tank				
S016	Liquid Loadi	ng				
If this vapor combusto	or controls emi	ssions from more	than six emission u	nits, please at	tach add	itional pages.
11. Ass	ist Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?
Steam - Air - I	Pressure - 🛛	Non -	~25 ft	~4 ft		Yes No NA
		Waste Gas	Information			
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions stre			Exit Velocity of the ons stream (scf/min)
~130	Va	riable	~70			
19. Provide an attachment with	n the character	istics of the waste	gas stream to be bu	Irned. See atta	iched em	ission calculations.


	Pilot Information									
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic re- ignition be used?						
Pipeline quality natural gas	1	25	26,335	🗌 Yes 🛛 No						
25. If automatic re-ig NA	25. If automatic re-ignition will be used, describe the method: NA									
	thod of controlling flame: stop the main flame front; C	One 2" flame arrestor on pipi	ing from drip pot to burne	er assembly.						
27. Is pilot flame equipped with a monitor to detect the presence of the flame? 28. If yes, what type? ⊠ Thermocouple □ Infra-Red □ Ultra Viole ☑ Yes □ No ○ Camera with monitoring control room □ Other, describe:										

29. Pollutant(s) Controlled	30. % Capture Efficiency	 Manufacturer's Guaranteed Control Efficiency (%) 							
НС	100	\geq 95							
VOC	100	≥95							
НАР	100	\geq 95							
32. Has the control device been tested by the manufa	cturer and certified?								
33. Describe all operating ranges and maintenance pr See attached specification sheet.	33. Describe all operating ranges and maintenance procedures required by the manufacturer to maintain warranty: See attached specification sheet.								
34. Additional Information Attached? XES									
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performan	nce testing.								

If any of the requested information is not available, please contact the manufacturer.

												1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:		<u></u>			Revision:			В	-
				FIOJECT NO.									
1	LEED								Date:		27	February	y 2014
1	FABRICATION			Project:					By:			JS	
	Envire	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		RFQ No.:		_			Approved	٩٠		MS	
-		2414 0							Approved	u.		1415	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:						NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage // High	Efficiency Combus	stor						✓ No		
5	Description.	Standard Duar	Stage 40 mgm				I						
				PROC	ESS DAT	ГА							
					Process	Conditions:							
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				-	Temperature	e			°F			
7	I-Butane				M	olecular Wei	ght		1				
							-						
8	n-Butane					ess/Waste St		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2				3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2				_								
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
				111010									
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				li li	nstrument A	ir		NA				
						Darrea							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Apienie			DECK	GN DAT	-							
				DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F		-20	Structur	ral Design Co	nde:						
					-	•	Juc.						
29	L	High, °F		120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature							Г				
31			1	90	1		Process	e/Speed			100 mp	h	
		,,,,,									700 mb		
32	Elevation (ASL), ft						Catego	ry					
33	Area Classification:		Clas	s I Div 2	Seismic	Design Code	e:						
				NEC	1	0		n					
54	Electrical Design Code:				1		Locatio			_			
1				EQUIPMENT	SPECIF	ICATION							
35	Type:	Elevated 🗸 E	Inclosed		Equinm	ent Design:							
	-					-	· · · ·		1			10.11	
36	-	Above Ground				C	ompone	Int		IVIat	erial / Size	e / Katin	g / Other
37		✓ Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	Assist	Gas Burner			21	04 SS	
					1								
39	-					В	urner Bo	dy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41			Staging		1		Pilot Tip				20	04 SS	
	-		aging		+								
42						P	ilot Line	(s)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			1				
			mokeless		1		CL - 11				A 1	on Charl	
44			-	Gas Assist			Shell					on Steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles				Carb	on Steel	
			-		+								
47	Pilot Flame Control:	No	Yes (Thermo	coupie)	1		Flanges				Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	-	Flamefront Generator	Inspirating Ig	nitor	1		sulation					04 SS	
				_	+								
50	L	Electronic 🗸	Automatic	Manual			Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors	Г			NA	
52	-	With Auto Pilot Re-Ignition			1								
					+		rs and Pl					NA	
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	iezo-Flectric				Sight Gla					2	
			ICLO-LICULIIL		+		-	JJ				4	
55	1	Battery Pack			1		Other						

		Item/Tag No.:	Page	2 of 3
\cap		Project No.:	Revision:	В
LEED			Date:	27 February 2014
FABRICATION		Project:	By:	JS
Enviro	nmental Control Equipment	P.O. No.:	Checked:	
	Data Sheet	RFQ No.:	Approved	
Client:	Butu bheet	Ref. P&ID: -	Approved	
Site:				
			Supplier:	LEED FABRICATION
Unit/Lease:		Remarks:	Model No	D.: L30-0011-00
Flame Detection:		EQUIPMENT SPECIFICATIO		
	Thermocouple / Ionizati	on Rod Auxiliary Equip		
	UV Scanner		Valves	NA
General Configuration:			Blowers	NA
			Dampers	NA
		lr	nlet KO / Liquid Seal	NA
		Flam	e / Detonation Arrestor	Yes
		Instrumentatio	n & Controls	
		Sole	noids / Shut-Off Valves	Check with Sales for available co
			Flow Meters	NA
	•		Calorimeter	NA
		Pressu	re Switches/Transmitters	NA
			Thermocouples	Check with Sales for available co
	4	Tempera	ture Switches/Transmitters	NA
			BMS	Check with Sales for available co
	The second se		CEMS	NA
			Other	NA
			otici	110
	AL .			
5	ŭ			
	*	FABRICATION AND INSPECT	ION	
Special requirements	Skid Mounted 🗸 Concrete P			
special requirements	Other		Equipment Ir	
			Component	Weight / Dimensions
		Burner		
Inspection	Vendor Standard		Burner Assembly	
	Other. Specify:	Stack		
Material Certification	Vendor Standard		Stack Assembly	48 " OD x 25 ' H
			Pilot Tip	
	Certificate of Compliance		Pilot Line(s)	
	Other (Specify):		Stack Assembly	
NDE	✓ Vendor Standard	Auxiliary Equip	ment	
	Radiography. Specify:		Blowers	
	Ultrasonic. Specify:	Ir	nlet KO / Liquid Seal	
		Flam	e / Detonation Arrestor	
	Liquid Penetrant.		Cl.:d	
	Liquid Penetrant. Magnetic Particles.		Skid	
		Instrumentatio		
	Magnetic Particles.			
	Magnetic Particles. PMI. Specify:		n & Controls	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify:		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Vendor Standard		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
3 2 2 Surface Preparation 3 4 Paint System 5 5	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. MI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
Surface Preparation Paint System Finished Color	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	

ATTACHMENT I

Emission Calculations

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	6	per pad			
Storage Tank(s)	6	per pad	S001 - S006	E001- E006	Combustor
Sand Separator Tank	1	per pad	S007	E007	None
Line Heater(s)	6	per pad	S008 - S013	E008 - E013	None
Thermoelectric Generator(s) (TEGs)	2	per pad	S014 - S015	E014 - E015	None
Dehydrator(s)	0	per pad			
Reboiler(s)	0	per pad			
Dehy Drip Tank	0	per pad			
Tank Combustor(s)	1	per pad	C001	C001	
Dehy Combustor(s)	0	per pad			
Length of lease road	2,000	feet			

Constituent	Produced Fluid Storage Tanks (includes Combustor) (tpy)	Sand Separator Tank (tpy)	Line Heaters (tpy)	TEGs (tpy)	Fugitive Components (tpy)	Liquid Loading (tpy)	Haul Roads (tpy)	Total Emissions (tpy)
Criteria Pollutants								
NOx	4.18		3.299	9.26E-03				7.49
CO	3.51		2.771	7.78E-03				6.29
PM Total	0.32		0.251	7.04E-04			6.02	6.59
PM ₁₀ Total	0.32		0.251	7.04E-04			1.53	2.10
PM _{2.5} Total	0.32		0.251	7.04E-04			0.15	0.72
SO ₂	0.03		0.020	5.56E-05				0.04
VOC	14.54	0.64	0.181	5.09E-04	11.66	0.36		27.38
Greenhouse Gases								
CO ₂	5,988.64		4,730.29	13.28	0.19			10,732
CH ₄	5.83	2.5E-01	0.09	2.5E-04	28.77			34.94
N ₂ O	0.01		0.01	2.5E-04 2.5E-05	20.77			0.02
-				13.29	710.26			11,612
CO ₂ e	6,137.78	6.30	4,735.18	13.29	719.36			11,612
Hazardous Air Pollutants								
Methylnaphthalene (2-)			7.9E-07	2.2E-09				7.9E-07
Methylchloranthrene (3-)			5.9E-08	1.7E-10				6.0E-08
Dimethybenz(a)anthracene (7,12-)			5.3E-07	1.5E-09				5.3E-07
Acenaphthene			5.9E-08	1.7E-10				6.0E-08
Acenaphthylene			5.9E-08	1.7E-10				6.0E-08
Anthracene			7.9E-08	2.2E-10				7.9E-08
Benz(a)anthracene			5.9E-08	1.7E-10				6.0E-08
Benzene	6.0E-03	< 0.001	6.9E-05	1.9E-07	5.6E-03	2.1E-05		1.2E-02
Benzo(a)pyrene			4.0E-08	1.1E-10				4.0E-08
Benzo(b)fluoranthene			5.9E-08	1.7E-10				6.0E-08
Benzo(g,h,i)perylene			4.0E-08	1.1E-10				4.0E-08
Benzo(k)fluoranthene			5.9E-08	1.7E-10				6.0E-08
Chrysene			5.9E-08	1.7E-10				6.0E-08
Dibenzo(a,h)anthracene			4.0E-08	1.1E-10				4.0E-08
Dichlorobenzene			4.0E-05	1.1E-07				4.0E-05
Fluoranthene			9.9E-08	2.8E-10				9.9E-08
Fluorene			9.2E-08	2.6E-10				9.3E-08
Formaldehyde			2.5E-03	6.9E-06				2.5E-03
Hexane, n-	1.6E-01	7.0E-03	5.9E-02	1.7E-04	1.7E-01	8.7E-04		3.9E-01
Indeno(1,2,3-cd)pyrene			5.9E-08	1.7E-10				6.0E-08
Naphthalene			2.0E-05	5.7E-08				2.0E-05
Phenanthrene			5.6E-07	1.6E-09				5.6E-07
Pyrene			1.6E-07	4.6E-10				1.7E-07
Toluene	1.2E-02	< 0.001	1.1E-04	3.1E-07	1.2E-02	4.0E-05		2.4E-02
Arsenic		<0.001	6.6E-06	1.9E-08		4.02-05		6.6E-06
Beryllium			4.0E-07	1.1E-09				4.0E-07
Cadmium			3.6E-05	1.0E-07				3.6E-05
Chromium			4.6E-05	1.3E-07				4.6E-05
Cobalt			2.8E-06	7.8E-09				2.8E-06
Manganese			1.3E-05	3.5E-08				1.3E-05
Mercury			8.6E-06	2.4E-08				8.6E-06
Nickel			6.9E-05	1.9E-07				6.9E-05
Selenium			7.9E-07	2.2E-09				0.9E-03 7.9E-07
Ethylbenzene	<0.001	< 0.001	7.9E=07	2.2E-09	< 0.001	2.2E-06		2.2E-06
Trimethylpentane (2,2,4-)	<0.001	<0.001			<0.001 1.2E-01	2.2E-06 1.9E-06		2.2E-06 1.2E-01
Xylene	<0.001 6.0E-03	<0.001			6.0E-03	3.0E-05		1.2E-01 1.2E-02
Total HAP	0.18	0.01	0.06	1.7E-04	0.31	0.00		0.57
10001010	0.10	0.01	0.00	1./12-04	0.51	0.00		0.07

Produced Fluid Storage Tanks

Throughput Parameter	Value	Units
Operational Hours	8,760	hrs/yr
Total Produced Fluid Throughput for E&P ¹	22.7	bbl/day bbl/month
Total Condensate Throughput	2,832	bbl/month
Total Produced Water Throughput	25,762	bbl/month

Description	Potential Throughput ² (gal/yr)
Produced Water and Condensate	14,411,174

¹ For the purposes of establishing PTE, produced water is conservatively assumed to contain 5% condensate.

 2 Based on maximum historical produced water and condensate throughput for OXF-131 wellpad.

Storage Tanks (400 bbl, each) - Uncontrolled (Per tank)

	Total Emissions ¹		
Constituent	lb/hr	tpy	
Methane	4.353	19.064	
Ethane	6.504	28.487	
Propane	5.625	24.636	
Isobutane	1.185	5.191	
n-Butane	2.337	10.236	
Isopentane	0.734	3.217	
n-Pentane	0.606	2.653	
n-Hexane	0.117	0.513	
Cyclohexane	< 0.001	< 0.001	
Other Hexanes	0.140	0.615	
Heptanes	0.205	0.900	
Benzene	0.003	0.015	
Toluene	0.008	0.036	
Ethylbenzene	< 0.001	0.002	
Xylenes	0.004	0.018	
2,2,4-Trimethylpentane	< 0.001	0.002	
C8+ Heavies	0.097	0.427	
Total Emissions:	22.021	96.453	
Total VOC Emissions:	11.064	48.461	
Total HAP Emissions:	0.135	0.590	

¹ E&P TANK v2.0 calculates working, breathing and flashing losses and reports the sum as one total.

 2 E&P TANK v2.0 emission calculations are based on 5/14/2014 condensate sample from OXF-131 wellpad.

Control Efficiency of Combustor	95%	Guaranteed efficiency for Leed Enclosed Combustor
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Combustor Rating	11.66 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual

Produced Fluid Storage Tanks

Storage Tanks (400 bbl, each) - Controlled (Per tank)

	Total Emissions	
Constituent	lb/hr	tpy
Methane	0.218	0.953
Ethane	0.325	1.424
Propane	0.281	1.232
Isobutane	0.059	0.260
n-Butane	0.117	0.512
Isopentane	0.037	0.161
n-Pentane	0.030	0.133
n-Hexane	0.006	0.026
Cyclohexane	< 0.001	< 0.001
Other Hexanes	0.007	0.031
Heptanes	0.010	0.045
Benzene	< 0.001	0.001
Toluene	< 0.001	0.002
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.005	0.022
Total Emissions:	1.101	4.823
Total VOC Emissions:	0.553	2.423
Total HAP Emissions:	0.007	0.030

Enclosed Combustor Emissions¹

	Emission Factor	Combustor Potential Emissions		Pilot S Potential Emissions	
Pollutant ²	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.082	0.951	4.168	0.002	0.009
СО	0.069	0.799	3.501	0.002	0.008
PM/PM ₁₀	0.006	0.072	0.317	1.6E-04	0.001
SO ₂	4.9E-04	0.006	0.025	1.3E-05	5.65E-05
CO ₂ (Natural Gas Firing)	116.997	1364.189	5975.146	3.081	13.495
CH ₄ (Natural Gas Firing)	0.002	0.026	0.113	5.8E-05	2.54E-04
N ₂ O (Natural Gas Firing)	2.2E-04	0.003	0.011	5.8E-06	2.54E-05

¹ Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at this facility. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

² GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name: Facility Name: Project Description:

EQT Production, LLC PET-35 Wellpad G-70A Permit Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Total Produced Water and Sand Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

 $^{\rm 1}$ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)

	Total Emissions ¹	
Constituent	lb/hr	tpy
Methane	0.058	0.252
Ethane	0.086	0.376
Propane	0.074	0.326
Isobutane	0.016	0.069
n-Butane	0.031	0.135
Isopentane	0.010	0.043
n-Pentane	0.008	0.035
n-Hexane	0.002	0.007
Cyclohexane	< 0.001	< 0.001
Other Hexanes	0.002	0.008
Heptanes	0.003	0.012
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.001	0.005
Total Emissions:	0.291	1.274
Total VOC Emissions:	0.146	0.640
Total HAP Emissions:	0.002	0.010

¹ E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

² E&P TANK v2.0 emission calculations are based on 5/14/2014 condensate sample from OXF-131 wellpad.

EQT Production, LLC PET-35 Wellpad G-70A Permit Application

Line Heaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,225	BTU/scf
Heat Input	1.54	MMBtu/hr (each)
Fuel Consumption	1.26E-03	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	1.3E-01	5.5E-01
СО	84	1.1E-01	4.6E-01
SO_2	0.6	7.5E-04	3.3E-03
PM Total	7.6	9.5E-03	4.2E-02
PM Condensable	5.7	7.2E-03	3.1E-02
PM ₁₀ (Filterable)	1.9	2.4E-03	1.0E-02
PM _{2.5} (Filterable)	1.9	2.4E-03	1.0E-02
VOC	5.5	6.9E-03	3.0E-02
Lead	5.00E-04	6.3E-07	2.7E-06
CO ₂ (Natural Gas Firing) ⁴	143,374	180	788
CH ₄ (Natural Gas Firing) ⁴	2.7	3.4E-03	1.5E-02
N ₂ O (Natural Gas Firing) ⁴	0.27	3.4E-04	1.5E-03

EQT Production, LLC PET-35 Wellpad G-70A Permit Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor Potential Emissions		Emissions
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.0E-08	1.3E-07
3-Methylchloranthrene	1.8E-06	2.3E-09	9.9E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-08	8.8E-08
Acenaphthene	1.8E-06	2.3E-09	9.9E-09
Acenaphthylene	1.8E-06	2.3E-09	9.9E-09
Anthracene	2.4E-06	3.0E-09	1.3E-08
Benz(a)anthracene	1.8E-06	2.3E-09	9.9E-09
Benzene	2.1E-03	2.6E-06	1.2E-05
Benzo(a)pyrene	1.2E-06	1.5E-09	6.6E-09
Benzo(b)fluoranthene	1.8E-06	2.3E-09	9.9E-09
Benzo(g,h,i)perylene	1.2E-06	1.5E-09	6.6E-09
Benzo(k)fluoranthene	1.8E-06	2.3E-09	9.9E-09
Chrysene	1.8E-06	2.3E-09	9.9E-09
Dibenzo(a,h) anthracene	1.2E-06	1.5E-09	6.6E-09
Dichlorobenzene	1.2E-03	1.5E-06	6.6E-06
Fluoranthene	3.0E-06	3.8E-09	1.6E-08
Fluorene	2.8E-06	3.5E-09	1.5E-08
Formaldehyde	7.5E-02	9.4E-05	4.1E-04
Hexane	1.8E+00	2.3E-03	9.9E-03
Indo(1,2,3-cd)pyrene	1.8E-06	2.3E-09	9.9E-09
Naphthalene	6.1E-04	7.7E-07	3.4E-06
Phenanthrene	1.7E-05	2.1E-08	9.3E-08
Pyrene	5.0E-06	6.3E-09	2.7E-08
Toluene	3.4E-03	4.3E-06	1.9E-05
Arsenic	2.0E-04	2.5E-07	1.1E-06
Beryllium	1.2E-05	1.5E-08	6.6E-08
Cadmium	1.1E-03	1.4E-06	6.0E-06
Chromium	1.4E-03	1.8E-06	7.7E-06
Cobalt	8.4E-05	1.1E-07	4.6E-07
Manganese	3.8E-04	4.8E-07	2.1E-06
Mercury	2.6E-04	3.3E-07	1.4E-06
Nickel	2.1E-03	2.6E-06	1.2E-05
Selenium	2.4E-05	3.0E-08	1.3E-07
Total HAP		2.4E-03	1.0E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf)

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators (TEGs)

Parameter	Value	Units
Manufacturer	Global Thermoelectric	
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,225	BTU/scf
Heat Input	0.013	MMBtu/hr (each)
Fuel Consumption ¹	1.06E-05	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

 1 Global Themoelectric specification sheet states 311 f³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
NO _x	100	1.1E-03	4.6E-03
СО	84	8.9E-04	3.9E-03
SO ₂	0.6	6.3E-06	2.8E-05
PM Total	7.6	8.0E-05	3.5E-04
PM Condensable	5.7	6.0E-05	2.6E-04
PM ₁₀ (Filterable)	1.9	2.0E-05	8.8E-05
PM _{2.5} (Filterable)	1.9	2.0E-05	8.8E-05
VOC	5.5	5.8E-05	2.5E-04
Lead	5.00E-04	5.3E-09	2.3E-08
CO ₂ (Natural Gas Firing) ⁴	143,374	2	7
CH_4 (Natural Gas Firing) ⁴	2.7	2.9E-05	1.3E-04
N ₂ O (Natural Gas Firing) ⁴	0.27	2.9E-06	1.3E-05

Thermoelectric Generators (TEGs)

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³	
HAPs:				
Methylnaphthalene (2-)	2.4E-05	2.5E-10	1.1E-09	
3-Methylchloranthrene	1.8E-06	1.9E-11	8.3E-11	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.7E-10	7.4E-10	
Acenaphthene	1.8E-06	1.9E-11	8.3E-11	
Acenaphthylene	1.8E-06	1.9E-11	8.3E-11	
Anthracene	2.4E-06	2.5E-11	1.1E-10	
Benz(a)anthracene	1.8E-06	1.9E-11	8.3E-11	
Benzene	2.1E-03	2.2E-08	9.7E-08	
Benzo(a)pyrene	1.2E-06	1.3E-11	5.6E-11	
Benzo(b)fluoranthene	1.8E-06	1.9E-11	8.3E-11	
Benzo(g,h,i)perylene	1.2E-06	1.3E-11	5.6E-11	
Benzo(k)fluoranthene	1.8E-06	1.9E-11	8.3E-11	
Chrysene	1.8E-06	1.9E-11	8.3E-11	
Dibenzo(a,h) anthracene	1.2E-06	1.3E-11	5.6E-11	
Dichlorobenzene	1.2E-03	1.3E-08	5.6E-08	
Fluoranthene	3.0E-06	3.2E-11	1.4E-10	
Fluorene	2.8E-06	3.0E-11	1.3E-10	
Formaldehyde	7.5E-02	7.9E-07	3.5E-06	
Hexane	1.8E+00	1.9E-05	8.3E-05	
Indo(1,2,3-cd)pyrene	1.8E-06	1.9E-11	8.3E-11	
Naphthalene	6.1E-04	6.5E-09	2.8E-08	
Phenanthrene	1.7E-05	1.8E-10	7.9E-10	
Pyrene	5.0E-06	5.3E-11	2.3E-10	
Toluene	3.4E-03	3.6E-08	1.6E-07	
Arsenic	2.0E-04	2.1E-09	9.3E-09	
Beryllium	1.2E-05	1.3E-10	5.6E-10	
Cadmium	1.1E-03	1.2E-08	5.1E-08	
Chromium	1.4E-03	1.5E-08	6.5E-08	
Cobalt	8.4E-05	8.9E-10	3.9E-09	
Manganese	3.8E-04	4.0E-09	1.8E-08	
Mercury	2.6E-04	2.7E-09	1.2E-08	
Nickel	2.1E-03	2.2E-08	9.7E-08	
Selenium	2.4E-05	2.5E-10	1.1E-09	
Total HAP		2.0E-05	8.7E-05	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf)

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fugitive Components

Component Counts

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Productior

Fugitive Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Total Fugitive Emissions (lb/hr)	TOC Annual Fugitive Emissions (tpy)
Valves	Gas	5.97E-03	295	3.88	17.01
Pump Seals	Light Liquid	1.99E-02	1	0.04	0.19
Pressure Relief Valves	Gas	1.04E-01	18	4.13	18.08
Connectors	All	1.83E-03	1,245	5.02	22.00
Open-Ended Lines	All	1.70E-03	15	0.06	0.25
			Emission Totals:	13.13	57.52

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction.

² Assumes one pump for liquid loading, no compressors or dehydrators, and one meter per wellhead. Pressure relief valves count includes an Enardo valve and Emergency Pressure Relief valve for each storage tank.

VOC and HAP Weight Fractions¹

Service	Weight Fraction VOC	Weight Fraction Hexane	Weight Fraction Benzene	Weight Fraction Toluene	Weight Fraction Ethylbenzene	Weight Fraction 2,2,4- trimethylpentane	Weight Fraction Xylene
Gas	0.200	3.0E-03	9.7E-05	2.1E-04	<0.001	2.1E-03	1.1E-04
Light Liquid	1.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
All	0.200	3.0E-03	9.7E-05	2.1E-04	<0.001	2.1E-03	1.1E-04

¹ All weight fractions from the same representative gas analyses used for other emission calculation

EQT Production, LLC PET-35 Wellpad **G-70A Permit Application**

Fugitive Components

25

VOC and HAP Fugitive Emissions

Pollutant	Hourly Fugitive Emissions (lb/hr)	Annual Fugitive Emissions (tpy)
VOC	2.662	11.66
Hexane	3.9E-02	1.7E-01
Benzene	1.3E-03	5.6E-03
Toluene	2.7E-03	1.2E-02
Ethylbenzene	< 0.001	< 0.001
2,2,4-trimethylpentane	2.7E-02	1.2E-01
Xylene	1.4E-03	6.0E-03
Total HAP	7.2E-02	3.1E-01

GHG Fugitive Emissions from Component Leaks

Component	Component Count ¹	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Connectors Open-Ended Lines Pressure Relief Devices Pneumatic Devices Valves	1,245 15 18 30 295	3.0E-03 6.1E-02 4.0E-02 6.0E+00 2.7E-02	5.6E-01 1.4E-01 1.1E-01 2.7E+01 1.2E+00	3.6E-03 8.8E-04 6.9E-04 1.7E-01 7.7E-03	1.4E+01 3.4E+00 2.7E+00 6.7E+02 3.0E+01
	Total	1	28.8	0.186	719

¹ The component count for pneumatics assumes 5 pneumatics per well ² Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W, except for pneumatics, which are set at NSPS OOOO limits.

³ Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.

⁴ Mole fractions of CH₄ and CO₂ based on gas analysis: $CH_{4:}$ 80.26% CO₂: 0.19% ⁵ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: Carbon Dioxide (CO₂): Methane (CH₄): 1

Liquid Loading

Liquid Loading Losses:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T

Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - collection efficiency * control efficiency)

Parameter	Value	Description
S Collection Efficiency Control Efficiency P M T	70% 95% 0.31 21.62	saturation factor for vapor balancing (AP-42 Table 5.2-1) collection efficiency for non-NSPS/MACT annual leak tested trucks control efficiency of combustor max true vapor pressure of liquid loaded (psia) - EPA TANKS Data molecular weight of vapors (lb/lb-mol) - EPA TANKS Data temperature of liquids loaded (deg R) - EPA TANKS Data

	Loading	Maximum		VOC Emissions	
	Losses	Throughput ¹	Total Uncontrolled	Controlled Uncaptured	Controlled ² Captured
Description	(lb/10 ³ gal)	(gal)	(tpy)	(tpy)	(tpy)
Liquids Hauling	0.2	14,552,294	1.20	0.36	0.04

¹ Sum of the annual throughput from each well at the pad including the sand separator tank.

² Represents all vapors captured during liquid loading operations that are routed to the combustor for control.

Speciated HAP Emission Potential:

Constituent	mol% ¹	True Vapor Pressure of Organic Compounds in liquid (psia) ²	Partial Vapor Pressure (psia)	Mole Fraction	Molecular Weight	VOC Vapor Weight	Speciated Weight Fraction	Controlled Speciated Liquid Loading Emissions (tpy) ³
Methane	0.095							
Ethane	0.602							
Propane	1.646	127.310	2.1E+00	3.2E-01	4.4E+01	1.4E+01	2.0E-01	8.2E-03
Isobutane	0.867	46.110	4.0E-01	6.1E-02	5.8E+01	3.6E+00	4.9E-02	2.1E-03
n-Butane	2.986	32.045	9.6E-01	1.5E-01	5.8E+01	8.5E+00	1.2E-01	4.9E-03
Isopentane	3.103	12.530	3.9E-01	5.9E-02	7.2E+01	4.3E+00	5.9E-02	2.5E-03
n-Pentane	3.943	8.433	3.3E-01	5.1E-02	7.2E+01	3.7E+00	5.1E-02	2.1E-03
n-Hexane	4.692	2.436	1.1E-01	1.7E-02	8.6E+01	1.5E+00	2.1E-02	8.7E-04
Other Hexanes	4.939	2.436	1.2E-01	1.8E-02	8.6E+01	1.6E+00	2.2E-02	9.2E-04
Heptanes	14.686	0.735	1.1E-01	1.7E-02	9.8E+01	1.6E+00	2.2E-02	9.4E-04
Benzene	0.200	1.508	3.0E-03	4.6E-04	7.8E+01	3.6E-02	5.0E-04	2.1E-05
Toluene	1.138	0.425	4.8E-03	7.4E-04	9.2E+01	6.8E-02	9.4E-04	4.0E-05
Ethylbenzene	0.155	0.151	2.3E-04	3.6E-05	1.1E+02	3.8E-03	5.3E-05	2.2E-06
Xylenes	1.763	0.180	3.2E-03	4.8E-04	1.1E+02	5.1E-02	7.1E-04	3.0E-05
2,2,4-Trimethylpentane	0.031	0.596	1.8E-04	2.8E-05	1.1E+02	3.2E-03	4.5E-05	1.9E-06
C8+ Heavies	59.154	3.400	2.0E+00	3.1E-01	1.1E+02	3.3E+01	4.6E-01	1.9E-02
	100.0		6.54			72.15	1.00	
Total Emissions: Total HAP Emissions:								0.04 9.6E-04

¹An atmospheric analysis of a representative condensate sample (from wellpad OXF-131, Well #512441) is utilized to estimate the composition.

² Emission factors from AP-42 Section 7.1 "Liquid Storage Tanks" Tables 7.1-2, 7.1-3 and 7.1-5 (at 70 deg F or ~21 deg C) and Handbook of Chemistry and Physics: 84th Edition (at 295 K)

³ Speciated emissions (tpy) = Speciated Weight Fraction x Calculated Controlled Liquid Loading Emissions (tpy). As methane and ethane will flash off prior to loading, the emissions

from these constituents are not included in the speciation.

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Javen Roan Emissions				
Unpaved Roads	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b})$	*[(365-p)/36	5]
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	РМ	Emissions (tpy) PM ₁₀	PM _{2.5}
Liquids Hauling	20	40	30	0.76	3,638	2,756	0	5.90	1.50	0.150
Employee Vehicles	3	3	3	0.76	200	152	0	0.12	0.03	0.003
Total Potential Emissions								6.02	1.53	0.15

Combustor Flow Rate Calculations

	lb/hr	lb-mol/hr	mol%	MW lb/lb-mol	MW in Mixture
Carbon Dioxide	0.111	0.003	0.001	44.01	0.03
Nitrogen	< 0.001	< 0.001	< 0.001	28.00	< 0.001
Methane	26.176	1.632	0.387	16.04	6.21
Ethane	39.110	1.301	0.309	30.07	9.28
Propane	33.824	0.767	0.182	44.10	8.02
Isobutane	7.126	0.123	0.029	58.12	1.69
n-Butane	14.053	0.242	0.057	58.12	3.33
Isopentane	4.414	0.061	0.015	72.15	1.05
n-Pentane	3.644	0.051	0.012	72.15	0.86
n-Hexane	0.704	0.008	0.002	85.67	0.17
Cyclohexane	< 0.001	< 0.001	< 0.001	84.16	< 0.001
Other Hexanes	0.842	0.010	0.002	86.18	0.20
Heptanes	1.233	0.013	0.003	97.88	0.29
2,2,4-Trimethylpentane	< 0.001	< 0.001	< 0.001	114.23	< 0.001
Benzene	0.018	2.3E-04	5.5E-05	78.11	0.00
Toluene	0.048	0.001	1.2E-04	92.14	0.01
Ethylbenzene	< 0.001	< 0.001	< 0.001	106.17	< 0.001
Xylenes	0.024	2.3E-04	5.4E-05	106.17	0.01
C8 + Heavies	0.583	0.005	0.001	107.73	0.138
Total	131.91	4.22			31.29

1. Representative gas stream from the produced water storage tanks, sand separator tank, and dehy tank flowing to the combustor.

C001

Combustor Rating	11.66 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Pilot Rating	26,335 btu/hr	
Pilot Fuel Usage	21 scf/hr	
Combustor Flow Capacity	188.38 MSCFD	Max. flowrate from LEED Combustor Operations Manual
	7,849 scf/hr	
	131 scf/min	

Enclosed Combustor Mass Flow Rate (C001)									
	7,849 scf	*	1 lbmole	*	31.29 lb	=	648	lb	
	hr		379 scf	-	lbmole	_		hr	

Mass flow rate (lb/hr) = <u>Maximum Rated total flow capacity (scf/hr) * Vapor Molecular Weight (lb/lbmole)</u> Molar Gas Volume (scf/lbmole)

EQT Production, LLC PET-35 Wellpad G-70A Permit Application

Gas Analysis

Sample Location:	Average of OXF-121 and OXF-136
Sample Date:	5/30/2013
HHV (Btu/scf):	1,225

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.190	44.01	8.3E-02	4.1E-03	4.1E-01
Nitrogen	0.524	28.01	1.5E-01	7.3E-03	7.3E-01
Methane	80.257	16.04	1.3E+01	6.4E-01	6.4E+01
Ethane	12.984	30.07	3.9E+00	1.9E-01	1.9E+01
Propane	3.842	44.10	1.7E+00	8.4E-02	8.4E+00
Isobutane	0.490	58.12	2.8E-01	1.4E-02	1.4E+00
n-Butane	0.918	58.12	5.3E-01	2.6E-02	2.6E+00
Isopentane	0.243	72.15	1.8E-01	8.7E-03	8.7E-01
n-Pentane	0.217	72.15	1.6E-01	7.7E-03	7.7E-01
n-Hexane	0.070	86.18	6.0E-02	3.0E-03	3.0E-01
Cyclohexane	0.011	84.16	9.3E-03	4.6E-04	4.6E-02
Other Hexanes	0.114	86.18	9.8E-02	4.8E-03	4.8E-01
Heptanes	0.080	100.21	8.0E-02	4.0E-03	4.0E-01
2,2,4-Trimethylpentane	0.037	114.23	4.2E-02	2.1E-03	2.1E-01
Benzene*	0.003	78.11	2.0E-03	9.7E-05	9.7E-03
Toluene*	0.005	92.14	4.1E-03	2.1E-04	2.1E-02
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001
Xylenes*	0.002	106.16	2.1E-03	1.1E-04	1.1E-02
C8 + Heavies	0.017	114.23	1.9E-02	9.6E-04	9.6E-02
Totals	100		20.17	1.00	100

TOC (Total)	99.29	98.86
VOC (Total)	6.05	15.67
HAP (Total)	0.12	0.55

* * * * * * Project Setup Information ***** Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\PET 35\02 Draft\Attach I - Emission Calcs\E&P Tank\2015-0311_EQT_PET-35_G70 Ap_Produced Fluid Tanks.ept Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 95.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No Filed Name : PET-35 Wellpad Well Name : Produced Fluid Tanks Date : 2015.03.11 * * * * * * Data Input Separator Pressure: 414.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 55.00[F]C10+ SG: 0.8024 C10+ MW : 163.342 -- Low Pressure Oil _____ _____ Component mol % No. 0.0000 H2S 1 0.0000 2 02 C02 0.0840 3 0.0000 4 N2 5 C1 9.9570 6 7 C2 8.1140 C3 6.8240 i -C4 8 1.8640 9 4.8700 n-C4 10 i-C5 2.9440 3.3610 n-C5 11 12 2.2410 C6 C7 13 9.7080 14 C8 11.4500 C9 15 8.4380 C10+ 25.3730 16 Benzene 0.0910 17 0.7580 Tol uene 18 E-Benzene Xyl enes 19 0.1130 1.3570 20 n-C6 2.4330 21 22 224Trimethylp 0.0200 -- Sales Oil _____

2015-0311_EQT_PET-35_G70 Ap_Produced Fluid Tanks.txt

2015-0311_EQT_PET-35_G70 Ap_Produced Fluid Tanks.txt Production Rate : 22.7[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 59.11 Reid Vapor Pressure : 10.60[psia]								
* * * * *	**************************************							
* * * *		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	* * * * * * * * * * * * * * * * * * * *			
E	mission Summary							
ltem	1	Uncontrolled [ton/vr]	Uncontrolled [[b/br]	Controlled [ton/yr]	Controlled [lb/hr]			
Tota Page	II HAPs • 1	0. 590	0. 135	[ton/yr] 0.030	0.007 E&P TANK			
Tota VOCs	I HC	96. 012 76. 948 48. 461	21. 921 17. 568 11. 064		1.096			
Unco	ntrolled Recove	ry Info.						
	Vapor HC Vapor GOR	6. 3900 6. 3700 281. 50	[MSCFD] [MSCFD] [SCF/bbl]					
E	mission Composi	tion						
1 2 3 4 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 21 22 22	Component H2S 02 C02 N2 C1 C2 C3 i -C4 n-C4 i -C5 n-C5 C6 C7 C8 C9 C10+ Benzene Tol uene E-Benzene Xyl enes n-C6 224Tri methyl p Total	[ton/yr] 0.000 0.000 0.441 0.000 19.064	[lb/hr] 0.000 0.000 0.101 0.000	Controlled [ton/yr] 0.000 0.000 0.441 0.000 0.953 1.424 1.232 0.260 0.512 0.161 0.133 0.031 0.045 0.017 0.004 0.001 0.001 0.001 0.002 0.000 0.001 0.026 0.000 4.823				
S	tream Data							
No. Component MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions mol % mol % mol % mol % mol % mol % Page 2								

2015-0311_EQT_PET-35_G70 Ap_Produced Fluid Tanks.txt

mol 0/			35_G70 AP_	Produced r	i ui u Taliks		
	2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.000 2 02	2	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
	02	44.01	0. 0840	0.0069	0. 0001	0. 3251	0. 3289
0.3254 4 Ni	2	28. 01	0.0000	0.0000	0.0000	0.0000	0. 0000
0.000 5 C	1	16. 04	9. 9570	0. 2491	0. 0001	40. 3145	12.0792
38.60 6 C	2	30. 07	8. 1140	1. 3061	0. 2375	29. 4027	52.0759
30. 77 7 C	3	44. 10	6. 8240	3. 2946	2.8877	17.8607	22. 6275
	-C4	58. 12	1.8640	1. 5368	1. 5034	2.8873	3. 1206
	-C4	58. 12	4.8700	4.6049	4.5743	5. 6989	6.0623
	-C5	72. 15	2.9440	3. 4237	3.4639	1. 4439	1. 5163
	-C5	72. 15	3. 3610	4.0550	4. 1140	1. 1907	1. 2521
1.194 12 Co	6	86. 16	2. 2410	2.8819	2.9372	0. 2370	0. 2510
0.2378 13 C	7	100. 20	9. 7080	12. 7165	12.9774	0. 3002	0. 3211
0.301 14 C		114. 23	11. 4500	15.0807	15. 3960	0. 0965	0. 1043
0.096 15 C	9	128. 28	8. 4380	11. 1296	11. 3633	0. 0212	0. 0250
0. 021 16 C	10+	163.34	25. 3730	33. 4860	34. 1908	0.0030	0. 0034
0.0030 17 Be	0 enzene	78. 11	0. 0910	0. 1181	0. 1204	0. 0064	0. 0068
0.006/ 18 To	4 ol uene	92. 13	0. 7580	0. 9963	1.0170	0. 0128	0. 0138
	-Benzene	106. 17	0. 1130	0. 1490	0. 1521	0.0005	0. 0006
0.000 20 X	5 yl enes	106. 17	1.3570	1. 7892	1.8267	0. 0056	0. 0061
0.005 21 n	6 -C6	86. 18	2. 4330	3. 1494	3. 2114	0. 1926	0. 2046
0.193 22 2	24Trimethylp	114.24	0. 0200	0. 0262	0. 0268	0.0005	0. 0005
0.000	5						
M			95.74	116. 43	118. 13	31.04	35.93
	tream Mole Ratio		1.0000	0. 7577	0. 7421	0. 2423	0. 0156
	eating Value	[BTU/SCF]				1808.07	2072.28
	07 as Gravity	[Gas/Air]				1.07	1. 24
1. 08 Bi	ubble Pt. @ 100F	[psi a]	406.75	28.61	13. 23		
R	VP @ 100F	[psi a]	101.88	15. 92	10. 81		
	2	-				E&	P TANK
U	pec. Gravity @ 100F			0. 715			

Page 3

2015-0311_EQT_PET-35_G70 Ap_Produced Fluid Tanks.txt

* * * * * * Project Setup Information Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\PET 35\02 Draft\Attach I - Emission Calcs\E&P Tank\2015-0311_EQT_PET-35_G70 Ap_Sand Sep Tanks.ept Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No ***** Filed Name : PET-35 Wellpad Well Name : Sand Separator Tank Date : 2015.03.11 * * * * * * Data Input Separator Pressure: 414.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 55.00[F]C10+ SG: 0.8024142.242 C10+ MW : 163.342 -- Low Pressure Oil _____ _____ Component mol % No. 0.0000 H2S 1 0.0000 2 02 C02 0.0840 3 0.0000 4 N2 5 C1 9.9570 6 7 C2 8.1140 C3 6.8240 i -C4 8 1.8640 9 4.8700 n-C4 10 i-C5 2.9440 3.3610 n-C5 11 12 2.2410 C6 C7 9.7080 13 14 C8 11.4500 C9 15 8.4380 C10+ 25.3730 16 Benzene 0.0910 17 0.7580 Tol uene 18 E-Benzene Xyl enes 0. 1130 1. 3570 19 20 n-C6 2.4330 21 22 224Trimethylp 0.0200 -- Sales Oil _____

2015-0311_EQT_PET-35_G70 Ap_Sand Sep Tanks.txt

2015-0311_EQT_PET-35_G70 Ap_Sand Sep Tanks.txt Production Rate : 0.3[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 59.11 Reid Vapor Pressure : 10.60[psia]								
* * * *	**************************************							
	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	*****			
	Emission Summary							
Ite	m	Uncontrolled [ton/yr]	Uncontrolled [b/br]	Controlled [ton/yr]	Controlled [lb/hr]			
Tot Pag	al HAPs e 1	0.010	0.002	0.010	[lb/hr] 0.002 E&P TANK			
Tot VOC	al HC s, C2+ s, C3+	1. 269 1. 017						
Unc	ontrolled Recove	ry Info.						
	Vapor HC Vapor GOR	84.4800 x1E-3 84.2100 x1E-3 281.60	[MSCFD]					
	Emission Composi	tion						
No 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 12 13 14 5 16 7 8 9 20 12 12 13 14 5 16 7 8 9 20 12 21 22 12 12 12 12 12 12 12	Component H2S 02 C02 N2 C1 C2 C3 i -C4 n-C4 i -C5 n-C5 C6 C7 C8 C9 C10+ Benzene Tol uene E-Benzene Xyl enes n-C6 224Tri methyl p Total	[ton/yr] 0.000 0.000 0.006 0.000 0.252 0.376		Controlled [ton/yr] 0.000 0.000 0.006 0.252 0.376 0.326 0.069 0.135 0.043 0.035 0.043 0.035 0.008 0.012 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 1.274				
	Stream Data							
	No. Component MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions mol % mol % mol % mol % mol % mol % Page 2							

2015-0311_EQT_PET-35_G70 Ap_Sand Sep Tanks.txt

	2015-0311_EQT_P	PET-35_G70	Ap_Sand Se	ep Tanks.t>	٢t	
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2	44.01	0.0840	0.0069	0.0001	0. 3251	0. 3289
0.3254 4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1	16.04	9.9570	0. 2491	0.0001	40. 3145	12.0792
38. 6045 6 C2	30. 07	8. 1140	1. 3061	0. 2375	29. 4027	52.0759
30. 7759 7 C3	44.10	6.8240	3. 2946	2.8877	17.8607	22.6275
18. 1494 8 i -C4	58.12	1.8640	1. 5368	1. 5034	2.8873	3. 1206
2.9014 9 n-C4	58.12	4.8700	4.6049	4.5743	5.6989	6.0623
5. 7209 10 i -C5	72. 15	2.9440	3. 4237	3.4639	1. 4439	1. 5163
1. 4483 11 n-C5	72. 15	3.3610	4.0550	4. 1140	1. 1907	1. 2521
1. 1944 12 C6	86.16	2.2410	2.8819	2.9372	0. 2370	0. 2510
0. 2378 13 C7	100. 20	9. 7080	12.7165	12. 9774	0. 3002	0. 3211
0. 3015 14 C8	114. 23	11. 4500	15.0807	15. 3960	0.0965	0. 1043
0.0969 15_C9	128.28	8.4380	11. 1296	11. 3633	0. 0212	0. 0250
0. 0215 16 C10+	163.34	25.3730	33. 4860	34. 1908	0.0030	0.0034
0.0030 17 Benzene	78. 11	0.0910	0. 1181	0. 1204	0.0064	0. 0068
0. 0064 18 Tol uene	92.13	0. 7580	0. 9963	1.0170	0. 0128	0. 0138
0.0128 19 E-Benzene	106. 17	0. 1130	0. 1490	0. 1521	0.0005	0.0006
0. 0005 20 Xyl enes	106. 17	1.3570	1. 7892	1. 8267	0.0056	0. 0061
0.0056 21 n-C6	86.18	2.4330	3. 1494	3. 2114	0. 1926	0. 2046
0.1933 22 224Trimethylp	114.24	0.0200	0. 0262	0. 0268	0.0005	0.0005
0.0005						
MW		95.74	116.43	118. 13	31.04	35.93
31.33 Stream Mole Ra	atio	1.0000	0. 7577	0. 7421	0. 2423	0. 0156
	[BTU/SCF]				1808.07	2072.28
	[Gas/Air]				1.07	1. 24
1.08 Bubble Pt.@^	100F [psia]	406.75	28.61	13. 23		
RVP @ 100F	[psi a]	101.88	15. 92	10. 81		
Page 2					E8	P TANK
Spec. Gravity	@ 100F	0. 685	0. 715	0. 717		

Page 3

2015-0311_EQT_PET-35_G70 Ap_Sand Sep Tanks.txt

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	PET-35 (OXF-131 Sample) Vertical Fixed Roof Tank Liquid Loading parameters for PET-131 wellpad using OXF-131 atmospheric condensate analysis.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 20.00 10.00 16,800.00 866.21 14,552,294.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof) Breather Vent Settings	Cone 0.00 0.00
Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.70

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

PET-35 (OXF-131 Sample) - Vertical Fixed Roof Tank

N. 4	March	Ten	aily Liquid Superature (de	eg F)	Liquid Bulk Temp		r Pressure		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Fluid	All	55.41	46.54	64.27	51.30	0.2373	0.1791	0.3117	21.6164			18.81	
2,2,4-Trimethylpentane						0.5211	0.3991	0.6729	114.2300	0.0000	0.0000	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.0267	0.7943	1.3132	78.1100	0.0001	0.0003	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4614	0.3889	0.5438	58.1200	0.0010	0.0016	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0301	0.0245	0.0369	142.2900	0.0219	0.0024	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0923	0.0669	0.1257	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5323	0.4043	0.6943	100.2000	0.0061	0.0120	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.6957	1.3330	2.1360	86.1700	0.0035	0.0218	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.0329	7.1932	11.0836	72.1500	0.0010	0.0315	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
methane						100.7917	87.8791	115.0985	44.0956	0.0000	0.0037	44.10	Option 2: A=7.3408624923, B=1104.2267744, C=291.70993941
Nonane (-n)						0.0588	0.0475	0.0729	128.2600	0.0069	0.0015	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1303	0.1035	0.1637	114.2300	0.0067	0.0032	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.1673	5.0301	7.5097	72.1500	0.0012	0.0274	72.15	Option 3: A=27691, B=7.558
Propane (-n)						100.7917	87.8791	115.0985	44.0956	0.0004	0.1441	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.2857	0.2141	0.3766	92.1300	0.0005	0.0005	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2153	0.1602	0.2863	18.0150	0.9500	0.7499	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-o)						0.0601	0.0431	0.0827	106.1700	0.0008	0.0002	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

PET-35 (OXF-131 Sample) - Vertical Fixed Roof Tank

Annual Emission Calcaulations Standing Losses (lb):	8.3659
Vapor Space Volume (cu ft):	1,130.9734
Vapor Density (lb/cu ft):	0.0009
Vapor Space Expansion Factor:	0.0246
Vented Vapor Saturation Factor:	0.8883
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,130.9734
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.0000
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	6.0000
/apor Density	0.0009
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	21.6164
Vapor Pressure at Daily Average Liquid	21.0104
Surface Temperature (psia):	0.2373
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0246
Daily Vapor Temperature Range (deg. R):	35.4636
Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia):	0.1326 0.7300
	0.7300
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.2373
Vapor Pressure at Daily Minimum Liquid	0.2373
Surface Temperature (psia):	0.1791
Vapor Pressure at Daily Maximum Liquid	0.1101
Surface Temperature (psia):	0.3117
Daily Avg. Liquid Surface Temp. (deg R):	515.0759
Daily Min. Liquid Surface Temp. (deg R):	506.2100
Daily Max. Liquid Surface Temp. (deg R):	523.9417
Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8883
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2373
Vapor Space Outage (ft):	10.0000
Vorking Losses (lb):	357.7824
Vapor Molecular Weight (lb/lb-mole):	21.6164
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2373
Annual Net Throughput (gal/yr.):	14,552,294.0000
Annual Turnovers:	866.2080
Turnover Factor:	0.2013
Maximum Liquid Volume (gal):	16,800.0000
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

PET-35 (OXF-131 Sample) - Vertical Fixed Roof Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Produced Fluid	357.78	8.37	366.15					
methane	1.32	0.03	1.35					
Propane (-n)	51.56	1.21	52.77					
Butane (-n)	0.57	0.01	0.59					
Isopentane	11.26	0.26	11.52					
Pentane (-n)	9.79	0.23	10.02					
Hexane (-n)	7.81	0.18	7.99					
2,2,4-Trimethylpentane	0.01	0.00	0.01					
Benzene	0.09	0.00	0.10					
Heptane (-n)	4.28	0.10	4.38					
Toluene	0.18	0.00	0.18					
Octane (-n)	1.14	0.03	1.17					
Ethylbenzene	0.00	0.00	0.00					
Xylene (-o)	0.06	0.00	0.06					
Nonane (-n)	0.53	0.01	0.54					
Decane (-n)	0.86	0.02	0.88					
Water	268.30	6.27	274.57					

TANKS 4.0 Report

ATTACHMENT J

Class I Legal Advertisement

EQT Production, LLC | PET-35 Pad Trinity Consultants

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II General Permit (G70-A) for a new natural gas production wellpad (PET-35 wellpad). The facility will be located off of Copley Road in Lewis County, West Virginia approximately 5.25 miles Southwest of Weston, WV at 39.981317, -80.533338.

The applicant estimates that the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions (tons per year)					
NO _X	7.49					
CO	6.29					
VOC	27.38					
SO ₂	0.04					
РМ	6.59					
Total HAPs	0.57					
Carbon Dioxide Equivalents (CO ₂ e)	11,612					

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the XX day of May, 2015.

By: EQT Production Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT K

Electronic Submittal

EQT Production, LLC | PET-35 Pad Trinity Consultants

ATTACHMENT L

General Permit Registration Application Fee

ATTACHMENT M

Siting Criteria Waiver (not applicable)

ATTACHMENT N

Material Safety Data Sheet (not applicable)

ATTACHMENT O

Emission Summary Sheet

Emission Point ID No.	Emission Point Type ¹	Emission Unit Vented Through This Point		ted Contro		All Regulated Pollutants - Chemical Name/CAS ²	nts - Potential ical Uncontrolled		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)	
E001 – E006 (Total-All Tanks)	Upward vertical stack	S001 – S006	Produced Fluids Tanks	C001	Combustor	VOC HAPs	66.38 0.81	290.77 3.54	3.32 0.04	14.54 0.18	Gas/Vapor	E&P Tank v2.0
E007	Upward vertical stack	S007	Sand Separator Tank	None		VOC HAPS	0.15 <0.01	0.64 <0.01	0.15 <0.01	0.64 <0.01	Gas/Vapor	E&P Tank v2.0
E008 – E013 (Total – All units)	Upward vertical stack	S008 – S013	Line Heaters	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e} HAPs	$\begin{array}{c} 0.75 \\ 0.63 \\ 0.06 \\ < 0.01 \\ 0.04 \\ 1.081 \\ < 0.01 \end{array}$	3.30 2.77 0.25 0.02 0.18 4,735 0.01	$\begin{array}{c} 0.75 \\ 0.63 \\ 0.06 \\ < 0.01 \\ 0.04 \\ 1,081 \\ < 0.01 \end{array}$	3.30 2.77 0.25 0.02 0.18 4,735 0.01	Gas/Vapor	AP-42
E014 – E015 (Total – All units)	Upward vertical stack	S014 – S015	TEGs	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e} HAPs	<0.01 <0.01 <0.01 <0.01 <0.01 3 <0.01	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 13 \\ < 0.01 \end{array}$	<0.01 <0.01 <0.01 <0.01 <0.01 3 <0.01	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 13 \\ < 0.01 \end{array}$	Gas/Vapor	AP-42
E016 (Uncaptured)	Upward vertical stack	Fugitive	Liquid Loading	None		VOC HAPs	0.27 0.01	1.20 0.03	0.09 <0.01	0.36 0.01	Gas/Vapor	AP-42
E016 (Controlled emissions)	Upward vertical stack	S001 – S006	Liquid Loading	C001	Combustor	VOC HAPs	0.27 0.01	1.20 0.03	0.01 <0.01	0.04 <0.01	Gas/Vapor	AP-42
C001	Upward vertical stack	C001	Combustor	NA		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ CO _{2e}	0.95 0.80 0.07 0.01 1,401	4.18 3.51 0.32 0.03 6,138	$\begin{array}{c} 0.95 \\ 0.80 \\ 0.07 \\ 0.01 \\ 1,401 \end{array}$	4.18 3.51 0.32 0.03 6,138	Gas/Vapor	AP-42

G70-A EMISSIONS SUMMARY SHEET

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs,

H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).