

April 20, 2015

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-A Permit Application

EQT Production Company OXF-159 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-A General Air Permit Application for the OXF-159 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

625 Liberty Ave. Suite

Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

1700

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-A General Air Permit Application OXF 159 Natural Gas Production Site

West Union, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

April 2015

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-A Class II General Permit application to the WVDEP's Department of Air Quality for the OXF-159 natural gas production site located in Doddridge County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF-159 pad.

FACILITY DESCRIPTION

The EQT OXF-159 natural gas production site operates in Doddridge County, WV and consists of seven (7) natural gas wells. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant seeks to authorize the operation of:

- Seven (7) natural gas wells;
- Seven (7) line heaters each rated at 1.00 MMBtu/hr heat input;
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water;
- Eight (8) 400 barrel (bbl) tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 mmBtu/hr heat input;
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input; and
- One (1) Produced Fluids Loading Rack.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF-159 pad will be located in Doddridge County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the OFX-159 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The OXF-159 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF-159 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF-159 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

There are no EQT owned or operated sites with a 1.4 mile radius of the OXF-159 pad. The nearest pad is the OXF 138 pad which is located 1.43 miles to the west of OXF 159. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the OXF-159 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF-159 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF-159 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF-159 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the OXF-159 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 10 - To Prevent and Control Air Pollution From the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, And Operation of Stationary Sources of Air Pollutants

This G70-A permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-159 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare any future

increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-A general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-159 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-A general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-A permit are not subject to the OXF-163 facility:

- 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

FEDERAL REGULATIONS

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-A permit.

The only affected facilities expected to be subject to Subpart OOOO located at the OXF-159 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at OXF-159 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Any pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, there will not be any pneumatic controller affected facilities located at this site.

Storage vessels: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

The following NSPS included in the G70-A permit are not applicable to the OXF-163 facility:

• 40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

No additional NSPS are expected to be applicable to this facility.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304

Phone: (304) 926-0475 * www.dep.wv.gov/dag

APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE

	1 Hone. (304) 920-0473 www.dep.wv.	gov/uaq	ASTATI	ONART SC	DURCE OF AIR POLLUTANTS						
□ CONSTRUCT	TION ☐ MODIFICATION ☐ F	RELOCA	TION 🔲	CLASS I AD	MINISTRATIVE UPDATE						
			☐ CLASS II ADMINISTRATIVE UPDATE								
	CHECK WHICH TYPE OF GENERAL PERMIT REGISTRATION YOU ARE APPLYING FOR:										
☐ G10-D – Coal	☐ G10-D – Coal Preparation and Handling ☐ G40-C – Nonmetallic Minerals Processing										
☐ G20-B – Hot N	Mix Asphalt		☐ G50-B – Concrete Batch								
☐ G30-D – Natu	ral Gas Compressor Stations		☐ G60-C - Class II Emergency Generator								
☐ G33-A - Spar	k Ignition Internal Combustion Engines				mergency Generator						
☐ G35-A – Natu	ral Gas Compressor Stations (Flare/Glycol Dehy	ydration U	Init) 🛮 🖂 G70)-A – Class II (Oil and Natural Gas Production Facility						
li .											
	SECTION I.	GENER	AL INFORMATI	ON							
Name of application	ant (as registered with the WV Secretary of State	e's Office):	2. Federal E	mployer ID No. (FEIN):						
	EQT Production Company				25-0724685						
3. Applicant's mail	ling address:		4. Applicant's phy	vsical address:	:						
	ŭ		Directions from C								
625 Liberty Avenu	ue, Suite 1700				Turn right onto Oil Well Road after 300						
Pittsburgh, PA 15	222		feet. The facility is located 1.1 miles down Oil Well Road.								
5. If applicant is a	subsidiary corporation, please provide the name	e of paren	t corporation:								
6. WV BUSINESS	REGISTRATION. Is the applicant a resident of	f the State	of West Virginia?] YES ⊠ NO						
- IF YE	S, provide a copy of the Certificate of Incorpora				p (one page) including any name change						
	amendments or other Business Registration										
- IF NO	provide a copy of the Certificate of Authority amendments or other Business Certificate a			stration (one p	page) including any name change						
	amendments of other business certificate a	S AllaCIII	Hent A.								
	SECTION II.	FACILI	TY INFORMATI	ON							
	facility (stationary source) to be constructed,	8a.	Standard Industria	I AND	8b. North American Industry						
	d or administratively updated (e.g., coal	Clas	sification		·						
preparation plant, p	orimary crusher, etc.):	Clas	sification (SIC) cod	de: 1311	System (NAICS) code: 211111						
Class II Oil and N	atural Gas Production Facility		, ,								
0 DAO Blass ID N					er General Permit numbers associated						
9. DAQ Plant ID N	lo. (for existing facilities only):	with	this process (for e	xisting facilities	s only):						
N/A		N/A									
		13/7	•								

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:							
OXF-159 Natural Gas Production Facility	Mailing: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222 Physical:							
13A. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site?								
 14A. For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. Directions from West Union, WV: Travel south on WV-18S. After 4.8 miles, turn right onto Lick Run. After 2.6 miles, turn right onto county road 40/3. After 1.9 miles, turn left onto Maxwell Ridge. Turn right onto Oil Well Road after 300 feet. The facility is located 1.1 miles down Oil Well Road. 								
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:						
West Union, WV Doddridge Northing (KM): 520.52 Easting (KM): 4,339.87 Zone: 17								
18A. Briefly describe the proposed new operation The OXF-159 Natural Gas Production Facility wi be in production in July 1, 2015.	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.20784 Longitude: -80.76235							

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).
24. Include a Table of Contents as the first page of your application package.
All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.
25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.
 □ ATTACHMENT A: CURRENT BUSINESS CERTIFICATE □ ATTACHMENT B: PROCESS DESCRIPTION □ ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS □ ATTACHMENT D: PROCESS FLOW DIAGRAM □ ATTACHMENT E: PLOT PLAN □ ATTACHMENT F: AREA MAP □ ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM □ ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS □ ATTACHMENT I: EMISSIONS CALCULATIONS □ ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT □ ATTACHMENT K: ELECTRONIC SUBMITTAL (not applicable) □ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE □ ATTACHMENT M: SITING CRITERIA WAIVER (not applicable) □ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (not applicable) □ ATTACHMENT O: EMISSIONS SUMMARY SHEETS □ OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)
Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, a the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

	FOR A CORPORATION (domestic or foreign) ☑ I certify that I am a President, Vice President, S corporation	Secretary, Treasurer or in charge of a principal business	function of the
	FOR A PARTNERSHIP I certify that I am a General Partner		
<u>!</u> [FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General	Manager	
<u>.</u>	FOR AN ASSOCIATION I certify that I am the President or a member of	the Board of Directors	
_	FOR A JOINT VENTURE I certify that I am the President, General Partne	r or General Manager	
_	OR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor		
is an Auti Liability (ify that (please print or type) norized Representative and in that capacity shall represe company, Association Joint Venture or Sole Proprietorshi its Authorized Representative, a Responsible Official sha	n) and may oblicate and legally hind the business. If the	huninana
110101013,	certify that all information contained in this General Permi to the best of my knowledge, true, accurate and complet ensive information possible	t Registration Application and any supporting document e, and that all reasonable efforts have been made to pro	s appended ovide the most
Signature (please use blue ink)	Responsible Official		1/15
Name & Title Ke	nneth Kirk, Executive Vice President		
Signature(please use blue ink)	Authorized Representative (if applicable)	Date	
Applicant's Name	R. Alex Bosiljevac, Environmental Coor	dinator	
Phone & Fax	(412) 395-3699 Phone	Fax	
Email	abosiljeva	c@eqt.com	

Attachment A

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment B

Attachment B Process Description

This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF-159 natural gas production site. Incoming raw natural gas from the seven (7) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blowdown to the sand trap blowdown tank (S016), as needed. From the sand traps, raw gas is routed through line heaters (S001-S007) to assist with the phase separation process in the downstream three-phase separators. In the separator, produced fluids are removed from the raw gas and transferred to the produced fluids storage tanks (S008-S015). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C018, C019) and burnt. Produced fluids are pumped into a tank truck (S017) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

Two thermoelectric generation units (S020, S021) are operated and provide power to the OXF-159 natural gas production site.

A process flow diagram is included as Attachment D.

Attachment C

Attachment C

G70-A General Permit Description of Fugitive Emissions

This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF-159 natural gas production site. Fugitive emissions on the site are generated from a number of sources, including an unpaved haul road and equipment leaks. These fugitive emission sources cannot be controlled by air pollution control devices. Emission levels for fugitive emissions were calculated using AP-42 emission factors, results of a gas analysis, and 40 CFR 98 Subpart W factors and equipment counts. A summary of the fugitive emissions on the OXF-159 natural gas production site can be found in Attachment O – Emissions Summary Sheet.

Attachment D

Attachment D OFX 159 Natural Gas Production

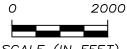
Process Flow Diagram


Attachment E

Attachment E Plot Plan

PIOL PIAII

EQT OXF 159 Natural Gas Production Site


Attachment F

LAT. 39.20784 LON. -80.76235 CITY OF WEST UNION DODDRIDGE COUNTY **o** WEST VIRGINIA

SCALE (IN FEET)

SITE LOCATION MAP

ADAPTED FROM USGS

REVISIONS ARE TO BE MADE ON THE CADD FILE ONLY

5	EQT PRODUCTION COMPANY OXF 159 WELL PAD	CADD Review CHK'D MC
ERM _®	WEST UNION, WEST VIRGINIA	0250395
Drawn By MLB/11-20-14	Environmental Resources Management	ATTACHMENT F

Attachment G

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol	
	Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants	
	for Stationary Reciprocating Internal Combustion Engines	
	(40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	_
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	П
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	_
50000117	and Located Within an UA/UC (40CFR63, Subpart HH)	
	and Localed " Imm an Cri CC (10Cl 100), Subpart III)	ш

^{*} Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart 0000 control requirements or the applicable control device requirements of Section 14.

^{**} Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

^{***} Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Line Heater	2015	1.00 mmBtu/hr	New	NA
S002	E002	Line Heater	2015	1.00 mmBtu/hr	New	NA
S003	E003	Line Heater	2015	1.00 mmBtu/hr	New	NA
S004	E004	Line Heater	2015	1.00 mmBtu/hr	New	NA
S005	E005	Line Heater	2015	1.00 mmBtu/hr	New	NA
S006	E006	Line Heater	2015	1.00 mmBtu/hr	New	NA
S007	E007	Line Heater	2015	1.00 mmBtu/hr	New	NA
S008	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S009	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S010	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S011	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S012	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S013	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S014	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S015	E018 E019	Produced Fluid Tank	2015	400 bbl	New	C018 C019
S016	E018 E019	Sand Trap Blow Tank	2015	140 bbl	New	C018 C019
S017	E018 E019 E022	Tank Truck Loading Rack	2015	28,974 gal/day	New	NA
C018	E018	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
C019	E019	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
S020	E020	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA
S021	E021	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E,

removal

For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

EQT PRODUCTION COMPANY, LLC OXF-159 PRODUCTION PAD

³ New, modification,

^{...} or other appropriate designation.

Attachment G Emission Source Data Sheets NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at
this facility:
API Number
047-017-06503
047-017-06502
047-017-06504
047-017-06505
047-017-06506
047-017-06507
TBD

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where.

 $047 = State\ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment G Emission Source Data Sheets STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERA A	AL INF	FORMA	TION	(required)
----	----------	--------	-------	------	------------

1. Bulk Storage Area Name	2. Tank Name
OXF-159 Storage Tank Area	Produced Fluid Tanks (S008-S015)
3. Emission Unit ID number	4. Emission Point ID number
S008-S015	E018 or E019
5. Date Installed or Modified (for existing tanks)	6. Type of change:
7/1/2015 (anticipated)	New construction ☐ New stored material ☐
• •	Other
7A. Description of Tank Modification (if applicable): NA	
7B. Will more than one material be stored in this tank? If	f so, a separate form must be completed for each material.
☐ Yes	
7C. Provide any limitations on source operation affecting	emissions. (production variation, etc.) NA
II. TANK INFORMATION (required)	
8. Design Capacity (specify barrels or gallons). Use the i	internal cross-sectional area multiplied by internal height.
16,800 gallons	
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This i	s also known as "working volume. 16,800 gallons
13A. Maximum annual throughput (gal/yr) 10,271,100	13B. Maximum daily throughput (gal/day) 28,140
14. Number of tank turnovers per year 612	15. Maximum tank fill rate (gal/min) 19.54
16. Tank fill method Submerged Splash	☐ Bottom Loading
17. Is the tank system a variable vapor space system?	Yes No
If yes, (A) What is the volume expansion capacity of the s	ystem (gal)?
(B) What are the number of transfers into the system	m per year?
18. Type of tank (check all that apply):	
\boxtimes Fixed Roof $\underline{\mathbf{X}}$ vertical horizontal	flat roof X cone roof dome roof other
(describe)	
	_ double deck roof
Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof vertical column su	
☐ Variable Vapor Space lifter roof di	iaphragm
	lindrical
Underground	
Other (describe)	
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)
Refer to enclosed TANKS Summary Sheets	
Refer to the responses to items 19 – 26 in section V	Ш

IV. SITE INFORMATION (check which one applies)										
Refer to enclosed TANKS Summary Sheets										
⊠ Refer to the responses to items 27 – 33 in section VII										
V. LIQUID INFORMATION (check which one applies) Refer to enclosed TANKS Summary Sheets Refer to the responses to items 34 – 39 in section VII										
Kerer to the respons	565 10 11	ems 54 –	37 III SC	Ction vii	L					
VI. EMISSIONS AND					quired))				
40. Emission Control De	evices (check as a	many as	apply):	_					
Does Not Apply					_	e Disc (ps	-			
Carbon Adsorption ¹		- 1 /				s Blanket			-	
Vent to Vapor Comb	oustion I	Device' (vapor co							
Condenser ¹						ration Ven		C . 44		
Other ¹ (describe)						Setting		ssure Setti	ing	
¹ Complete appropriate A	Air Pollu	ıtion Con	trol Devi	ice Sheet	Emerg	ency Relie	i vaive ((psig)		
41. Expected Emission I	Rate (su	bmit Tes	t Data or	Calculati	ons her	e or elsewl	here in th	e applica	tion).	
Material Name and	Flashi	ing	Breath	ing	Work	ing Loss	Total		Estimation	
CAS No.	Loss		Loss				Emissi	ons	Method ¹	
							Loss			
lb/hr tpy lb/hr tpy lb/hr tpy lb/hr tpy										
				1 2 0						
	Ple			1 2 0		ed in Atta				
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
	Ple			1 2 0						
¹ EPA – EPA Emission Factor		ase Refe	r to Calc	culations	Provide	ed in Atta	chment		ata O – Other (specify)	
¹ EPA = EPA Emission Factor, Remember to attach emissions	MB = M	ase Refe	nce, SS = S	culations Similar Sour	Provide	Similar Source	chment	roughput Da		
Remember to attach emissions SECTION VII (require	MB = M calculation	aterial Bala	nce, SS = S	Similar Sour	Provide Troe, ST = 1 heets and	Similar Sour	chment	roughput Da		
Remember to attach emissions SECTION VII (require TANK CONSTRUCTION	MB = M calculation d if did ON AN	aterial Bala	nce, SS = S	Similar Sour	Provide Troe, ST = 1 heets and	Similar Sour	chment	roughput Da		
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction	MB = M calculation d if did ON AN tion:	aterial Bala aterial Bala ons, includia	nce, SS = S ng TANKS vide TAI	Similar Sour Summary S. NKS Sun	Provide A service of the service of	Similar Sourother modeli	chment	roughput Da		
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction Riveted Guni	MB = M calculation d if did ON AN tion: te lined	aterial Bala ons, includia not prov D OPER	nce, SS = S ng TANKS ATION DXy-coate	Similar Sour Summary S. NKS Sun INFORM	rce, ST = heets and MATIO	Similar Sour	chment	roughput Day sheets if a	pplicable.	
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction	MB = M calculation d if did ON AN tion: te lined n	aterial Bala ons, includin not prov D OPER Epc 20	nce, SS = S ng TANKS vide TAN OXy-coate OB. Roo	Similar Sour Summary S. NKS Sun INFORM	Provide A service of the service of	Similar Sourother modeli	chment	roughput Day sheets if a		

No Rust Light Rus	st Dense Rust No	ot applicable			
22A. Is the tank heated?	Yes 22B. If yes, operat	ing temperature:	22C. If y	yes, how is heat prov	vided to
⊠ No			tank?		
23. Operating Pressure Range	* •				
24. Is the tank a Vertical Fix	24A . If yes, for do	ome roof provide	24B. If y	yes, for cone roof, pr	rovide
Roof Tank?	radius (ft): NA		slope (ft/	ft): 0.08 ft/ft	
∑ Yes □No					
25. Complete item 25 for Flo		es not apply 🛚			
25A. Year Internal Floaters I					
25B. Primary Seal Type (che	<u> </u>	_		mounted resilient se	eal
	☐ Vapor mounted res		Other (desc	cribe):	
25C. Is the Floating Roof equ	• •				
25D. If yes, how is the secon	•] Rim	Other (describe)	1:
25E. Is the floating roof equi	pped with a weather shield?	☐ Yes ☐ 1	No		
25F. Describe deck fittings:					
26. Complete the following s			Ooes n		
26A. Deck Type: Bol	ted Welded	26B. For bolted de	ecks, prov	ide deck constructio	n:
26C. Deck seam. Continuou		_	_	_	
5 ft. wide 6 ft. wide			t. wide	other (describe)	
	26E. Area of deck (ft ²):	26F. For column		26G. For column	
(ft.):		supported tanks, #	of	supported tanks, di	ameter
		columns:		of column:	
SITE INFORMATION:					
27. Provide the city and state					
28. Daily Avg. Ambient Tem	*	29. Annual Avg. N			65.5 °F
30. Annual Avg. Minimum T		31. Avg. Wind Spo		-	
32. Annual Avg. Solar Insula	tion Factor (BTU/ft ² -day):	33. Atmospheric P	ressure (p	osia): 14.70	
1,123					
LIQUID INFORMATION:	Refer to ProMax Simulation	on Sheets in Attachr	nent I.		

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERAI	L INF	ORMA	ATION	(required)
----	---------	-------	------	-------	------------

Bulk Storage Area Name	2. Tank Name				
OXF-159 Storage Tank Area	Sand Trap Blowdown Tank				
3. Emission Unit ID number	4. Emission Point ID number				
S016	E018 or E019				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
7/1/2015 (anticipated)	New construction New stored material				
	Other				
7A. Description of Tank Modification (if applicable): NA					
7B. Will more than one material be stored in this tank? <i>If</i>	so, a separate form must be completed for each material.				
Yes No					
7C. Provide any limitations on source operation affecting	emissions. (production variation, etc.) NA				
II. TANK INFORMATION (required)					
8. Design Capacity (specify barrels or gallons). Use the i	nternal cross-sectional area multiplied by internal height.				
5,880 gallons					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10				
10A. Maximum Liquid Height (ft.) 10 10B. Average Liquid Height (ft.) 5					
11A. Maximum Vapor Space Height (ft.) 10 11B. Average Vapor Space Height (ft.) 5					
12. Nominal Capacity (specify barrels or gallons). This i					
13A. Maximum annual throughput (gal/yr) 305,760	13B. Maximum daily throughput (gal/day) 838				
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 14				
16. Tank fill method ☐ Submerged ☐ Splash	☐ Bottom Loading				
17. Is the tank system a variable vapor space system?					
If yes, (A) What is the volume expansion capacity of the s	•				
(B) What are the number of transfers into the system	n per year?				
18. Type of tank (check all that apply):					
<u> </u>	flat roof cone roof dome roof other				
(describe)					
External Floating Roof pontoon roof	_ double deck roof				
Domed External (or Covered) Floating Roof					
1 = -	pport self-supporting				
Variable Vapor Space lifter roof di					
	lindrical				
Underground					
Other (describe)					

III. TANK CONSTRU	CTION	AND O	PERAT:	ION INF	ORMA	TION (ch	eck whic	ch one ap	pplies)
Refer to enclosed TA	ANKS S	ummary	Sheets						
Refer to the respon	ses to it	ems 19 –	26 in se	ction VI	[
IV. SITE INFORMAT	ION (ci	heck whic	ch one ap	pplies)					
Refer to enclosed TA	ANKS S	ummary	Sheets						
Refer to the respon	ses to it	ems 27 –	33 in se	ction VI					
V. LIQUID INFORMA				applies)					
Refer to enclosed TA									
⊠ Refer to the respon	ses to it	ems 34 –	39 in se	ction VI	Ī				
VI. EMISSIONS AND					quired)	ı			
40. Emission Control Do	evices (check as	many as	apply):					
Does Not Apply					_	e Disc (ps	_		
Carbon Adsorption ¹		1				s Blanket			_
Vent to Vapor Comb	oustion I	Device ¹ (vapor co						
_	☐ Condenser¹ ☐ Conservation Vent (psig								
Other ¹ (describe)	Other ¹ (describe) Vacuum Setting Pressure Setting								
1					Emerge	ency Relie	f Valve ((psig)	
¹ Complete appropriate A									
41. Expected Emission								e applica	
Material Name and	Flashi	ng	Breath	ing	Work	ing Loss	Total		Estimation
CAS No.	Loss		Loss				Emissi	ons	Method ¹
							Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	Ple	ase Refe	r to Calc	ulations	Provide	ed in Atta	chment .	I.	
						•			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION A	AND OP	ERATION INFOR	RMATION		
19. Tank Shell Construction:					
☐ Riveted ☐ Gunite lin	ed 🔲	Epoxy-coated rivets	Other WELI	DED	
20A. Shell Color: Green		20B. Roof Color:	Green	20C. Ye	ear Last Painted: NA
21. Shell Condition (if metal	and unli	ned):			
No Rust Light Rus	st 🔲 🛚	Dense Rust	ot applicable		
22A. Is the tank heated?	Yes	22B. If yes, operat	ting temperature:	22C. If	yes, how is heat provided to
⊠ No				tank?	
23. Operating Pressure Range		-0.5 oz. to 10 oz.			
24. Is the tank a Vertical Fix	ed	24A. If yes, for do	ome roof provide	24B. If	yes, for cone roof, provide
Roof Tank?		radius (ft): N/A		slop (ft/f	(t): NA
☐ Yes ⊠No					
25. Complete item 25 for Flo	ating Ro	oof Tanks Do	es not apply 🛚		
25A. Year Internal Floaters In	nstalled:				
25B. Primary Seal Type (che	ck one):	☐ Metallic (mech	anical) shoe seal	Liquid	mounted resilient seal
		Vapor mounted res		Other (des	cribe):
25C. Is the Floating Roof equ)	
25D. If yes, how is the second	dary seal	mounted? (check of	one) Shoe	Rim	Other (describe):
25E. Is the floating roof equip	pped wit	h a weather shield?	Yes	No	
25F. Describe deck fittings:					
26. Complete the following s	ection fo	r Internal Floating	Roof Tanks	Does 1	not annly
26A. Deck Type: Bolt		Welded			ride deck construction:
ZoA. Deck Type Boil	icu	Welded	20B. Tor boiled d	ecks, prov	ide deek construction.
26C. Deck seam. Continuous	s sheet co	onstruction:			
☐ 5 ft. wide ☐ 6 ft. wide			ft. wide $\prod 5 \times 12$	ft. wide	other (describe)
		rea of deck (ft ²):	26F. For column		26G. For column
(ft.):		` ,	supported tanks, #	of	supported tanks, diameter
			columns:		of column:
SITE INFORMATION:					
27. Provide the city and state	on whic	h the data in this sec	tion are based: Cha	arleston, V	WV
28. Daily Avg. Ambient Tem					Temperature (°F): 65.5 °F
30. Annual Avg. Minimum T	_		31. Avg. Wind Sp		
32. Annual Avg. Solar Insula			33. Atmospheric		
1,123		•		`	
LIQUID INFORMATION:	Refer to	ProMax Simulation	on Sheets in Attach	ment I.	

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
S001	E001	Line Heater	2015	New	NA	1.00	1,088
S002	E002	Line Heater	2015	New	NA	1.00	1,088
S003	E003	Line Heater	2015	New	NA	1.00	1,088
S004	E004	Line Heater	2015	New	NA	1.00	1,088
S005	E005	Line Heater	2015	New	NA	1.00	1,088
S006	E006	Line Heater	2015	New	NA	1.00	1,088
S007	E007	Line Heater	2015	New	NA	1.00	1,088
S020	E020	TEG	2015	New	NA	0.013	1,088
S021	E021	TEG	2015	New	NA	0.013	1,088

Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

New, modification, removal

Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad.

This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:	S017 2. En	nission Point ID: E018/F	3. Year Instal	lled/ Modified: 2015	
4. Emission Unit Des	cription: Tank Truck	Loading Rack			
5. Loading Area Data:					
5A. Number of pump	s: 1 5B. N	Number of liquids loaded		n number of loading at one time: 1	
6. Describe cleaning l NA	ocation, compounds a	nd procedure for tank tru	cks:		
7. Are tank trucks pre Yes No If YES, describe: NA	ssure tested for leaks a	t this or any other location	on?		
8. Projected Maximus	m Operating Schedule	(for rack or transfer poir	at as a whole):		
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.	
hours/day	As needed	As needed	As needed	As needed	
days/week	As needed	As needed	As needed	As needed	

Liquid Name	Produced Fluids
Max. daily throughput (1000 gal/day)	28.97
Max. annual throughput (1000 gal/yr)	10,575
Loading Method ¹	SP
Max. Fill Rate (gal/min)	42
Average Fill Time (min/loading)	100 min
Max. Bulk Liquid Temperature (°F)	70 °F
True Vapor Pressure ²	NA
Cargo Vessel Condition ³	U
Control Equipment or Method ⁴	Enclosed Combustion Device
	(C021 or C022)
Minimum collection efficiency (%)	70 %
Minimum control efficiency (%)	98 %

Attachment G Emission Source Data Sheets

3.6 .	T 1' /11 /1 \	2.22							
Maximum	Loading (lb/hr)	0.02							
Emission Rate									
	Annual (ton/yr)	0.09							
	(
Estimation Method	15	EPA AP-42, ProMax							
Notes:									
¹ BF = Bottom Fill	¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill								
² At maximum bulk liquid temperature									
³ B = Ballasted Vesse	el, C = Cleaned, U = Uncleaned (dedica	ted service), O = other (describe)							
⁴ List as many as app	ly (complete and submit appropriate Ai	r Pollution Control Device Sheets as Attachment "H"):							
CA = Carbon Adsorp	otion								
VB = Dedicated Vap	or Balance (closed system)								
ECD = Enclosed Co	mbustion Device								
F = Flare									
TO = Thermal Oxida	tion or Incineration								
⁵ EPA = EPA Emiss	ion Factor as stated in AP-42								
MB = Material Bal	MB = Material Balance								
TM = Test Measure	TM = Test Measurement based upon test data submittal								
O = other (describe	2)								

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation/air pollution control device.

RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring.

EQT will comply with all monitoring requirements set forth in the permit that is issued.

EQT will comply with all recordkeeping requirements set forth in the permit that is issued.

REPORTING Please describe the proposed frequency of reporting of the recordkeeping.

TESTING Please describe any proposed emissions testing for this process equipment/air pollution control device.

EQT will comply with all reporting requirements set forth in the permit that is issued.

EQT will comply with all testing requirements set forth in the permit that is issued.

11. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty: NA

Attachment G Emission Source Data Sheets LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	257	N/A	N/A	650.14
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	7	N/A	N/A	26.23
vaives	Non VOC				
Open-ended Lines ¹²	VOC	17.5	N/A	N/A	100.02
	Non-VOC				
Sampling Connections ¹³	VOC				
Commodations	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	voc	1,123	N/A	N/A	315.65
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Attachment G Emission Source Data Sheets

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).

EPA emission factor and component counts as specified in 40 CFR Part 98, subpart W

- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR ____51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Attachment G

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

 k =
 Particle size multiplier
 4.9
 1.5

 s =
 Silt content of road surface material (%)
 4.8
 4.8

150

150

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Liquids Hauling	14	30	10	0.80	1	2,799	NA	NA
2	Employee Vehicles	4	3	10	0.80	1	200	NA	NA
3									
4									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

Number of days per year with precipitation >0.01 in.

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

p =

		P	M	PM-10			
k =	Particle size multiplier	4	.9	1.5			
s =	Silt content of road surface material (%)	4	.8	4.8			
S =	Mean vehicle speed (mph)	,	5	5			
W =	Mean vehicle weight (tons)	30	3	30	3		
w =	Mean number of wheels per vehicle	14 4		14	4		
p =	Number of days per year with precipitation >0.01 in.	150		150			

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

SOMMAN OF ONE AVED HADENOAD EMISSIONS										
		Р	PM			PM	l-10			
Item No.	Uncor	Uncontrolled Controlled			Uncor	ntrolled	Controlled			
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY		
1	3.43	4.32	3.43	4.32	0.87	1.10	0.87	1.10		
2	1.22	1.22 0.12 1.22 0.12 0.31 0.03 0.31 0.03								
3										
4										
5	Note: AP-4	2 has been ເ	updated sind	e the last re	vision of thi	is form. The	most recent	lv		
6	published f	factors were	used in pre	paring these		alculations.				
7	detailed ca	detailed calculation methodologies.								
8										
TOTALS:	4.65 4.44 4.65 4.44 1.19 1.13 1.19 1.13									

Attachment H

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE	INSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.			
		General In	formation						
1. Control Device ID#: C018			2. Installation Date	te: 2015		⊠ New			
3. Maximum Rated Total Flow 7,800 scfh	Capacity:	4. Maximum D 11.66 MMB	Design Heat Input: 5. Design Heat Content: 3tu/hr 1,088 BTU/scf						
Control Device Information									
6. Select the type☐ Elevated Flare	_ `		vice being used: 🗵	Enclosed C Completion C					
7. Manufacturer: LEED Fabr Model No.: Enclosed Combus			8. Hours of operation per year: 8,760						
9. List the emiss			ontrolled by this var 08-S015, S016, S0		n contro	l device:			
10. Emission Unit ID#	Emission So	urce Description:	Emission U	nit ID#	Emissi	on Source Description:			
S008-S015		Fluids Tanks	S017		Tank Truck Loading Rack				
S016	_	Blowdown Tank							
If this vapor combusto	r controls emi	ssions from more	than six emission u	nits, please at	tach ada	litional pages.			
11. Assi	st Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?			
Steam - Air - I	Pressure - 🛚	Non -	25 ft	4 ft		□Yes □No NA			
		Waste Gas	Information						
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperature of the emissions stream (°F)		18. Exit Velocity of the emissions stream (ft/s)				
425 lb/hr	Va	riable	70						
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	ırned.					

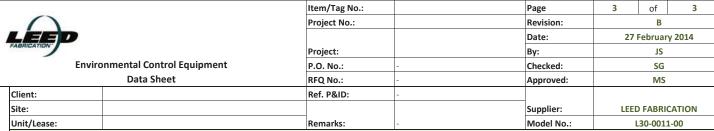
Pilot Information											
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic reignition be used?							
Pipeline quality Natural Gas	1	~30	0.03 MMBtu/hr	☐ Yes ⊠ No							
25. If automatic re-ig	gnition will be used, describ	be the method: N/A									
26. Describe the method of controlling flame:											
There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.											
27. Is pilot flame equipped with a monitor to detect the presence of the flame?											
•		Camera with monitoring	ng control room Oth	er, describe:							
∑ Yes □ No											
29. Pollu	utant(s) Controlled	30. % Capture Eff	TICIONCV	ufacturer's Guaranteed rol Efficiency (%)							
	НС	100		>98							
	VOC	100		>98							
	HAP	100		>98							
32. Has the control of	device been tested by the ma	anufacturer and certified?									
	,										
Yes											
33. Describe all oper	rating ranges and maintenar	nce procedures required by t	the manufacturer to mainta	ain warranty:							
See Attached											
34. Additional Inform	mation Attached?	YES NO									
Please attach a copy	of manufacturer's data she of manufacturer's drawing of the manufacturer's perfo	3.									

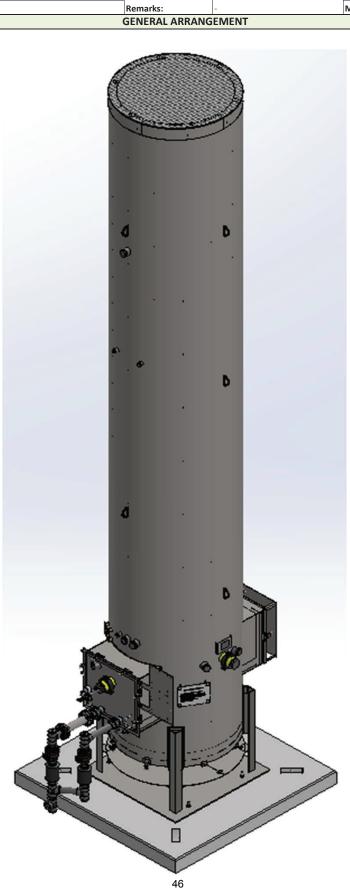
AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE	INSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.				
		General In	formation							
1. Control Device ID#: C019			2. Installation Date	te: 2015		⊠ New				
3. Maximum Rated Total Flow ~7,800 scfh 188,000		4. Maximum D 11.66 MMB	Design Heat Input: 5. Design Heat Content: 1,088 BTU/scf							
Control Device Information										
6. Select the type☐ Elevated Flare	_ `		vice being used: 🗵	Enclosed Completion C						
7. Manufacturer: LEED Fabrication 8. Hours of operation per year: 8,760										
9. List the emiss	9. List the emission units whose emissions are controlled by this vapor combustion control device: Emission Units: S008-S015, S016 and S017									
10. Emission Unit ID#	Emission So	urce Description:	Emission U	nit ID#	Emissi	on Source Description:				
S008-S015		Fluids Tanks	S017		Tank Truck Loading Rack					
S016	•	Blowdown Tank		. ,						
If this vapor combusto	r controls emi	ssions from more		nits, please at	tach ada	1				
11. Ass	st Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?				
Steam - Air - I	Pressure - 🛚	Non -	25 ft	4 ft		□Yes □No NA				
		Waste Gas	Information							
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperature of the emissions stream (°F)		18. Exit Velocity of the emissions stream (ft/s)					
425 lb/hr	Va	riable	70							
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	ırned.						

Pilot Information											
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic reignition be used?							
Pipeline quality Natural Gas	1	~30	0.03 MMBtu/hr	☐ Yes ⊠ No							
25. If automatic re-ig	gnition will be used, describ	be the method: N/A									
26. Describe the method of controlling flame:											
There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.											
27. Is pilot flame equipped with a monitor to detect the presence of the flame?											
•		Camera with monitoring	ng control room Oth	er, describe:							
∑ Yes □ No											
29. Pollu	utant(s) Controlled	30. % Capture Eff	TICIONCV I	ufacturer's Guaranteed rol Efficiency (%)							
	НС	100		>98							
	VOC	100		>98							
	HAP	100		>98							
32. Has the control of	device been tested by the ma	anufacturer and certified?									
	,										
Yes											
33. Describe all oper	rating ranges and maintenar	nce procedures required by t	the manufacturer to mainta	ain warranty:							
See Attached											
34. Additional Inform	mation Attached?	YES NO									
Please attach a copy	of manufacturer's data she of manufacturer's drawing of the manufacturer's perfo	3.									


Battery Pack


Item/Tag No.:		Page	1	of				
Project No.:	lo.: Revision:							
		Date:	27 February 20					
Project:		Ву:		JS	-			
P.O. No.:	-	Checked:		SG	-			

1	FABRICATION D		Date:				27 February 2014			
			Project:			Ву:		JS		
	Enviromental Control Equipment		P.O. No.:	-		Check		SG		
	Data Sheet		RFQ No.:	-		Appro	ved:	MS		
	Client:		Ref. P&ID:	-						
	Site:					Suppli	er:	LEED FABRICATION		
	Unit/Lease:		Remarks:	-		Mode	l No.:	L30-0011-00		
			GEN	IERAL		<u>.</u>				
1	Design Code:				NDE:		L	EED Fabrication Standards		
2	Service:				Customer	Specs:		Yes		
3	Description: Standard Dua	Stage 48 High Eff	iciency Combust	tor				✓ No		
				SS DATA	<u> </u>					
				Process Conditions:						
	Gas Composition:		mol %	Variable		Value	11			
	20.11						Unit			
4	Methane			Flow Rate		Up to 140	Mscf			
5	Ethane			Pressure		Up to 12	oz/in	2		
6	Propane			Temperature			°F			
7	I-Butane			Molecular Wei	ght					
8	n-Butane			Process/Waste St	tream	✓ Gas		Liquid		
9	I-Pentane			Detailed Process De	scription /	Process Notes:				
0	n-Pentane			1. Turndown 10:1. B	Based on an	expected norm	al operatin	g rate indicated above.		
1	n-Hexane			2. DRE: 98 % operat	ting at desi	gn conditions				
2				3. Burner Pressure D	Orop: Min. (0.10 oz/in2				
3	N2									
.4	H ₂ O	-								
.5										
6										
7										
8	C9									
9	C10									
0	C11+									
1	TOTAL	-								
	Other Components:		PPMV	Available Utilities:						
2	H2S			Fuel / Pilot G	as	IV	lin. 30psig	Natural Gas /Propane 40-50 SCFH		
3	Benzene			Instrument A	ir	N		·		
4	Toluene			Power				z or Solar Power		
5				Steam			A	2 0. 30.01 . 0.00.		
6				Purge Gas						
.0	Xylene		DESIG	N DATA						
_		T	-				1	Hada or dpa		
	Ambient Temperatures:		-	Noise Performance		ents:		Under 85 dBA		
8	Low, °F	-20	-	Structural Design Co	ode:					
9	<u> </u>	120	0	Wind Design Code:				ASCE		
	Design Conditions: Pressure/Temperature									
1	Max. Relative Humidity, %	90)	Pressure/Speed				100 mph		
2	Elevation (ASL), ft				Category					
3	Area Classification:	Class I	Div 2	Seismic Design Code	e:					
4	Electrical Design Code:	NE	С		Location					
		•	EQUIPMENT :	SPECIFICATION						
5	Type: Elevated 🗸	Enclosed		Equipment Design:						
6					omponent		Ma	terial / Size / Rating / Other		
7		Multiple Stack		Burner	ponent		1710	, care , maning , concr		
8					/ Acciet C-	ac Burnar	+	304 cc		
9					Assist Ga		+	304 SS		
		Assist A:-			urner Body	r	+	Carbon Steel		
	,	Assist Air		Pilot			+			
1	Gas Assist	Staging			Pilot Tip		+	304 SS		
2				Р	ilot Line(s)			Carbon Steel		
3	Stack: Self Supporting			Firebox / Stack						
4 Flare Burner: Non-Smokeless 🗸 Smokeless 🗔 Ga:					Shell			Carbon Steel		
5	Pilot:			Piping			Carbon Steel			
6	Pilot Air Inspirator:	Remote			Nozzles		⊥ ̄	Carbon Steel		
	Pilot Flame Control: No	Yes (Thermocou	ıple)		Flanges			Carbon Steel		
8				1	Insulation			Blanket		
	Pilot Ignition: Flamefront Generator	/ Inspirating Ignit	or		sulation Pin	ıs	1	304 SS		
0	Electronic		Manual		Refractory	-				
1	With Pilot Flame Control	acomade _	. idilidai			ors	NA NA			
	With Auto Pilot Re-Ignition	<u> </u>			actory Anch		+	NA NA		
2	with Auto Pilot Re-Ignition	1			rs and Platfo		+	NA		
3			41	1	mple Conne	ections	+	Per EPA requirements		
4	Pilot Ignition Backup: Manual Specify: i.e	Piezo-Electric	44	T 9	Sight Glass			2		

Other

					Item/Tag No.	g No.:			Page		2	of	3
					Project No.:				Revision	1:		В	
1	LEED								Date:		27	Februar	y 2014
	FABRICATION .				Project:				Ву:			JS	
	Enviro		Control Equipment		P.O. No.:		-		Checked	d:		SG	
		Dat	ta Sheet		RFQ No.:		-		Approve	ed:		MS	
	Client:				Ref. P&ID:		-						
	Site:								Supplier	r:	LEE	D FABRIC	CATION
	Unit/Lease:				Remarks:		-		Model N	lo.:		L30-0011	L -00
					QUIPMENT	SPECIF	ICATION						
	Flame Detection:		ermocouple ✓	Ionization Rod		Auxiliar	y Equipment						
57			/ Scanner				Valves					NA	
58	General Configuration:						Blowers					NA	
59							Dampers					NA	
60							Inlet KO / Liquid Se					NA	
61			d b				Flame / Detonation Arr	estor				Yes	
62			•			Instrum	entation & Controls			61 1			
63			10.14				Solenoids / Shut-Off Va	alves		Check			lable config.
64 65							Flow Meters					NA	
66							Calorimeter	mittors				NA	
67							Pressure Switches/Trans	nitters		Chaal		NA for anall	labla saufia
68			6 -			-	Thermocouples	nemi++-	rc	cneck		NA	lable config.
69			2 3 -			- 1	emperature Switches/Tra	ismitte	rs	Chook			lable config
70			. ' '				BMS			Спеск			lable config.
71			. 1	J			CEMS Other					NA NA	
72							Other					IVA	
73													
74			H.										
75			0										
				FA	BRICATION	AND IN	SPECTION			l .			
76	Special requirements	П	Skid Mounted 🗸 C				Equ	uipment	Info				
77			Other				Component		•		Weight /	Dimens	ions
78						Burner	•						
79	Inspection	✓	Vendor Standard				Burner Assembly						
80			Other. Specify:			Stack							
81	Material Certification	✓	Vendor Standard				Stack Assembly				48 " O	D x 25 ' I	Н
82			MTR				Pilot Tip						
83			Certificate of Complian	nce			Pilot Line(s)						
84			Other (Specify):				Stack Assembly						
	NDE	✓	Vendor Standard			Auxiliar	y Equipment						
86			Radiography. Specify:				Blowers						
87		<u> </u>	Ultrasonic. Specify:			<u> </u>	Inlet KO / Liquid Se						
88			Liquid Penetrant.			-	Flame / Detonation Arr	estor					
89			Magnetic Particles.			lact:	Skid						
90			PMI. Specify:			ınstrum	entation & Controls						
91 92	Surface Preparation		Other. Specify: Vendor Standard			-	BMS Control Band						
93	Sanace riepaiduon		Other. Specify:			 	Control Panel						
	Paint System		Vendor Standard			 							
95			Other. Specify:										
	Finished Color	\ <u>\</u>	Vendor Standard										
97			Other. Specify:								-	-	
98						†							
99													
	Additional Notes:									l .			

Attachment I

Line Heaters S001 - S007

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.005	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.002	0.007
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.08	0.34
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.09	0.40
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.007	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	0.002
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.00	1,088	8,760	116.98	512.36
CH₄	0.001	kg CH₄ / MMBtu	40CFR98 Subpart C	1.00	1,088	8,760	0.002	0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.00	1,088	8,760	<0.001	<0.001
Total HAPs							0.002	0.008
Total CO ₂ e							117.10	512.89

Notes:

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 7 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Thermoelectric Generators S020 & S021

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
CO	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.004
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.005
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.013	1,088	8,760	1.52	6.66
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.013	1,088	8,760	<0.001	<0.001
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.013	1,088	8,760	<0.001	<0.001
Total HAPs							<0.001	<0.001
Total CO₂e							1.52	6.67

Notes:

- -Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- -Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- $-CO_2$ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S008 - S015

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	538.75	2,359.73
HAPs	13.81	60.49
CO_2	15.34	67.17
CH₄	193.33	846.77
Total CO₂e	4,848.48	21,236.33

Notes:

- -Emission rates for Produced Fluid Tanks S008 S015 were calculated using ProMax software. ProMax output sheets for the OFX-159 Pad are attached.
- -The emission rates displayed above are pre-control device emissions.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.
- -For emission calculation purposes, the total throughput for tanks S008 S015 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S016

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	16.04	70.26
HAPs	0.41	1.80
CO ₂	0.46	2.00
CH₄	5.76	25.21
Total CO₂e	144.35	632.24

Notes:

- -Blowdown operations are conducted on the OFX-159 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- -Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates
- -Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the WEU-49 Pad are attached.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO ₂=1, GWP CH₄=25, GWP N₂O=298
- $-\text{CO}_2 \text{ and CH}_4 \text{ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.}\\$

onal		
es.		

Tank Unloading Operations S017

Total Emissions from Tank Unloading Operations

			TOTAL ELIMODIUM	moni rank omoading o	pe: u.i.e.i.e			
Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.06	0.27	70%	98%	<0.001	0.00	0.02	0.08
HAPs	<0.001	0.001	70%	98%	<0.001	<0.001	<0.001	<0.001
CO ₂	0.006	0.025	70%	98%	0.30	1.31	0.002	0.007
CH ₄	0.01	0.04	70%	98%	<0.001	<0.001	0.003	0.013
Total CO₂e	0.25	1.08			0.30	1.33	0.074	0.33

⁻CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

Gas Composition of Vent

Gas						
Gas Stream	Mole Fraction					
Methane	0.50					
Ethane	0.09					
Propane	0.11					
Butane	0.13					
Pentanes	0.10					
Carbon Dioxide	0.014					

Ver	Vent Gas Properties				
Flo	lass wrate o/hr)	Density (lb/ft ³)			
().16	0.09			

⁻Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.
-Vapors from tank unloading operations are vapor-balanced to the produced fluid tanks and realized at one of the two enclosed combustion devices. AP-42 calculation methods were used to estimate the collection efficiency from tank unloading operations. Emissions that are not collected during the unloading events are realized at the Loading Rack Emission Point, E022.

Enclosed Ground Flares C018 - C019

Emissions from Tanks

Gas Composition of Vent Gas

Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	269.38	1179.87	98%	5.39	23.60	Methane	0.50	
Produced Fluids Tanks S008 - S015	HAPs	6.90	30.24	98%	0.138	0.60	Ethane	0.09	
Produced Fluids Tariks 5006 - 5015	CO ₂	7.67	33.58	98%	1081.66	4,737.69	Propane	0.11	
	CH₄	96.66	423.38	98%	1.93	8.47	Butane	0.13	
	VOCs	8.02	35.13	98%	0.16	0.70	Pentanes	0.10	1
Cond Tran Diaudaum Tank C010	HAPs	0.21	0.90	98%	0.004	0.02	Carbon Dioxide	0.014	
Sand Trap Blowdown Tank - S016	CO ₂	0.23	1.00	98%	32.21	141.07	Vent	t Gas Properties	
	CH₄	2.88	12.60	98%	0.06	0.25			
	VOCs	0.03	0.14	98%	<0.001	0.00	Vent Gas Properties	Mass Flow Rate (lb/hr)	Density (lb/ft ³)
Truck Loading - S017	HAPs	<0.001	<0.001	98%	<0.001	<0.001		(15/111)	
Truck Edading - 3017	CO ₂	0.003	0.012	98%	0.15	0.66	Produced Fluids Tank	412.02	0.09
	CH₄	0.005	0.02	98%	<0.001	<0.001	Blowdown Tank	12.27	0.09
	VOCs	277.43	1215.14		5.55	24.30			
	HAPs	7.11	31.14		0.14	0.62			
Totals	CO ₂	7.90	34.60		1114.02	4,879.42			
	CH₄	99.55	436.01		1.99	8.72			
	CO2e	2,496.54	10,934.83		1163.79	5,097.42]		

Emissions from Pilot Operations

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.5		1,020	30,000	11,660,000	<0.001	<0.001			<0.001	<0.001
Hexane	1.8		1,020	30,000	11,660,000	<0.001	<0.001			<0.001	<0.001
Formaldehyde	0.075		1,020	30,000	11,660,000	<0.001	<0.001			<0.001	<0.001
CO	84		1,020	30,000	11,660,000	0.002	0.01	0.96	4.21	0.96	4.22
NO_x	100		1,020	30,000	11,660,000	0.003	0.01	1.14	5.01	1.15	5.02
PM ₁₀	7.6		1,020	30,000	11,660,000	<0.001	<0.001	0.09	0.38	0.09	0.38
SO ₂	0.6		1,020	30,000	11,660,000	<0.001	<0.001	0.007	0.03	0.007	0.03
CO ₂	120,000	53.06	1,020	30,000	11,660,000	3.51	15.37	1,363.95	5,974.12	1,367.46	5,989.49
CH₄	2.3	0.001	1,020	30,000	11,660,000	<0.001	<0.001	0.03	0.11	0.03	0.11
N ₂ O	2.2	<0.001	1,020	30,000	11,660,000	<0.001	<0.001	0.00	0.01	0.00	0.01
Total HAPs										<0.001	<0.001
CO ₂ e										1,368.88	5,995.67

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.55	24.30
HAPs	0.14	0.62
CO	0.96	4.22
NOx	1.15	5.02
PM ₁₀	0.09	0.38
SO ₂	0.01	0.03
CO ₂	2,481.48	10,868.90
CH₄	2.02	8.83
N ₂ O	0.00	0.01
CO ₂ e	2,532.67	11,093.09

Notes:

- -Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO ₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24 Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$\begin{split} E_{a,CH4}(un-combusted) &= V_a * (1-\eta) * X_{CH4} & \text{(Eq. W-19)} \\ E_{a,CO2}\left(un-combusted\right) &= V_a * X_{CO2} & \text{(Eq. W-20)} \\ E_{a,CO2}\left(combusted\right) &= \sum_{J=1}^{5} \left(\eta * V_a * Y_j * R_j\right) & \text{(Eq. W-21)} \end{split}$$

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

 Y_j = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_j = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial I	Roads	
Constant	PM	PM-10	PM-2.5
k (lb/VMT)	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

where

. •		
k		Particle size multiplier 1
S	4.8	Silt content of road surface material (%) ²
р	150	Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	0.80	2,518	NA	3.43	4.32	0.87	1.10	0.09	0.11
2	Employee Vehicles	4	3	0.80	200	NA	1.22	0.12	0.31	0.03	0.03	0.003
						Totals:	4.65	4.44	1.19	1.13	0.12	0.11

Notes:

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

^{1 -} Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Fugitive Leaks

Default Average (Component Counts for N	Major Onshore Natural Gas Pro	duction Equipment ¹	
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves
Wellheads	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line Heaters	14	65	2	1
Dehydrators	24	90	2	2

Well Specific Equ	ipment Counts
Facility Equipment	
Туре	Count on Site
Wellheads	7
Separators	7
Meters/Piping	8
Compressors	0
In-line Heaters	7
Dehydrators	0

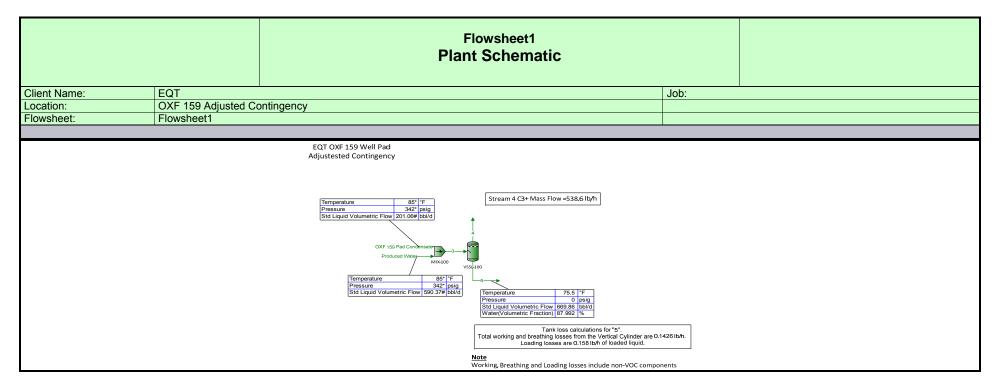
¹⁻ Table W-1B to 40CFR98 Subpart W

	Gas Composition Gas Composition													
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	4.16	1.71	0.71	0.22	0.14	0.03	0.009	0.41	0.01	0.014	<0.001	0.007	0.19	78.57
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO₂e (lbs/hr)	Total CO₂e (tons/yr)
Valves	257	0.027	8760	0.07	0.33	0.007	0.03	0.001	0.007	0.23	0.99	5.66	24.78
Connectors	1123	0.003	8760	0.04	0.16	0.003	0.01	<0.001	0.003	0.11	0.48	2.75	12.03
Open-ended Lines	17.5	0.06	8760	0.011	0.05	0.001	0.005	<0.001	0.001	0.03	0.15	0.87	3.81
Pressure Relief Valves	7	0.04	8760	0.003	0.013	<0.001	0.00	<0.001	<0.001	0.01	0.04	0.23	1.00
			Total Emissions:	0.12	0.55	0.01	0.05	0.003	0.011	0.38	1.66	9.50	41.63

²- Table W-1A to 40CFR98 Subpart W

-Gas Composition data for OXF-159 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT


Example Equations:
Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Total OXF 159 Site Emission Levels

	VC	Cs	HA	NPs	C	O.	N	O _x	P	M	S	O ₂	(CO ₂	C	H ₄	N	20	C	CO ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (E002)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	<0.001	117.10	512.89
Line Heater (E003)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	<0.001	117.10	512.89
Line Heater (E004)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (E005)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	<0.001	117.10	512.89
Line Heater (E006)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	<0.001	117.10	512.89
Line Heater (E007)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
TEG (E020)	<0.001	<0.001	<0.001	<0.001	0.001	0.004	0.001	0.005	<0.001	<0.001	<0.001	<0.001	1.52	6.66	<0.001	<0.001	<0.001	<0.001	1.52	6.67
TEG (E021)	<0.001	<0.001	<0.001	<0.001	0.001	0.004	0.001	0.005	< 0.001	<0.001	<0.001	<0.001	1.52	6.66	<0.001	< 0.001	< 0.001	<0.001	1.52	6.67
Enclosed Combustion Unit (E018)	5.55	24.30	0.14	0.62	0.96	4.22	1.15	5.02	0.09	0.38	0.007	0.03	2,481.48	10,868.90	2.02	8.83	0.00	0.01	2,532.67	11,093.09
Enclosed Combustion Unit (E019)	5.55	24.30	0.14	0.62	0.96	4.22	1.15	5.02	0.09	0.38	0.007	0.03	2,481.48	10,868.90	2.02	8.83	0.00	0.01	2,532.67	11,093.09
*Tank Truck Loading Operations (E022)	0.02	0.004	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.01	0.003	0.01	< 0.001	<0.001	0.07	0.33
Haul Roads									4.65	4.44										
Fugitives Leaks	0.12	0.55	0.011	0.05									0.003	0.011	0.38	1.66			9.50	41.63
Totals	11.26	49.31	0.31	1.35	2.47	10.81	2.94	12.87	4.87	5.42	0.02	0.08	5,784.85	25,337.66	4.43	19.40	0.01	0.03	5,897.57	25,831.37

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C018 or C019. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C018 and C019 are additive.

^{*}Emissions from Tank Truck Loading Operations are routed to the enclosed combustion devices. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the enclosed combustion devices are realized at the Tank Truck Loading Operations Emission Point.

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: OXF 159 Adjusted Contingency Flowsheet1 Location: Flowsheet:

Connections									
	OXF 159 Pad Condensate	Produced Water	3	4	5				
From Block			MIX-100	VSSL-100	VSSL-100				
To Block	MIX-100	MIX-100	VSSL-100						

	Stream Co	Stream Composition											
	OXF 159 Pad Condensate	Produced Water	3	4	5								
Mole Fraction	%	%	%	%	%								
Nitrogen	0 *	0 *	0	0	0								
Methane	39.036 *	0 *	2.37215	50.0481	0.00520225								
Carbon Dioxide	1.142 *	0 *	0.0693973	1.44677	0.00101531								
Ethane	6.932 *	0 *	0.421245	8.8135	0.00459877								
Propane	8.493 *	0 *	0.516104	10.5196	0.0194642								
i-Butane	4.426 *	0 *	0.26896	5.20503	0.0239013								
n-Butane	7.067 *	0 *	0.429449	8.01503	0.0528507								
i-Pentane	5.735 *	0 *	0.348506	5.44803	0.0953318								
n-Pentane	5.472 *	0 *	0.332523	4.76715	0.11236								
Isohexane	1.191 *	0 *	0.0723749	0.710529	0.0406928								
n-Hexane	1.113 *	0 *	0.067635	0.549058	0.043734								
2,2,4-Trimethylpentane	0.008 *	0 *	0.000486145	0.00184946	0.000418462								
Benzene	0.035 *	0 *	0.00212689	0.0166384	0.00140644								
Heptane	3.893 *	0 *	0.236571	0.844489	0.206389								
Toluene	0.283 *	0 *	0.0171974	0.0531399	0.015413								
Octane	5.264 *	0 *	0.319884	0.400113	0.315901								
Ethylbenzene	0.048 *	0 *	0.00291687	0.00313193	0.0029062								
o-Xylene	0.627 *	0 *	0.0381016	0.0310813	0.0384502								
Nonane	3.782 *	0 *	0.229825	0.0968504	0.236427								
Decane	5.453 *	0 *	0.331369	0.0456807	0.345552								
Water	0 *	100 *	93.9232	2.98426	98.438								

	OXF 159 Pad Condensate	Produced Water	3	4	5
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	11.842 *	0 *	1.89008	23.4598	0.00429425
Carbon Dioxide	0.950388 *	0 *	0.15169	1.86042	0.00229917
Ethane	3.94155 *	0 *	0.629104 Ĥ	7.74342	0.00711519
Propane	7.08182 *	0 *	1.13032	13.5538	0.0441628
i-Butane	4.86454 *	0 *	0.776422	8.83955	0.0714808
n-Butane	7.76722 *	0 *	1.23971	13.6117	0.158058
i-Pentane	7.8244 *	0 *	1.24884	11.4851	0.353909
n-Pentane	7.46558 *	0 *	1.19157	10.0497	0.417123
Isohexane	1.94081 *	0 *	0.30977	1.78908	0.180437
n-Hexane	1.81371 *	0 *	0.289483	1.3825	0.193922
2,2,4-Trimethylpentane	0.0172804 *	0 *	0.00275809	0.00617284	0.00245955
Benzene	0.051698 *	0 *	0.00825143	0.0379747	0.00565279
Heptane	7.37648 *	0 *	1.17735	2.47249	1.06412
Toluene	0.493078 *	0 *	0.0786994	0.143063	0.0730722
Octane	11.3705 *	0 *	1.81482	1.33543	1.85674
Ethylbenzene	0.0963632 *	0 *	0.0153804	0.00971536	0.0158756
o-Xylene	1.25874 *	0 *	0.200906	0.0964151	0.210041
Nonane	9.17243 *	0 *	1.464	0.362945	1.56026
Decane	14.6714 *	0 *	2.34169	0.18991	2.52981
Water	0 *	100 *	84.0392	1.57088	91.2492

OXF 159 Pad Produced 3 4 5 Condensate Water lb/h **Mass Flow** lb/h lb/h lb/h lb/h 0 * 0 Nitrogen 0 0 0 Methane 193.722 * 0 193.722 193.317 0.404749

Process Streams Report All Streams Tabulated by Total Phase

Job:

Client Name: EQT Location: OXF 159 Adjusted Contingency

Flowsheet: Flowsheet1

	OXF 159 Pad Condensate	Produced Water	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	15.5473 *	0 *	15.5473	15.3306	0.216705
Ethane	64.4793 *	0 *	64.4793	63.8087	0.670632
Propane	115.851 *	0 *	115.851	111.688	4.1625
i-Butane	79.5785 *	0 *	79.5785	72.8412	6.73732
n-Butane	127.063 *	0 *	127.063	112.166	14.8976
i-Pentane	127.999 *	0 *	127.999	94.6413	33.3572
n-Pentane	122.129 *	0 *	122.129	82.8133	39.3154
Isohexane	31.7495 *	0 *	31.7495	14.7427	17.0068
n-Hexane	29.6702 *	0 *	29.6702	11.3924	18.2779
2,2,4-Trimethylpentane	0.282688 *	0 *	0.282688	0.0508665	0.231821
Benzene	0.845722 *	0 *	0.845722	0.312925	0.532796
Heptane	120.671 *	0 *	120.671	20.3743	100.297
Toluene	8.06621 *	0 *	8.06621	1.17889	6.88732
Octane	186.009 *	0 *	186.009	11.0045	175.004
Ethylbenzene	1.5764 *	0 *	1.5764	0.0800583	1.49634
o-Xylene	20.5917 *	0 *	20.5917	0.794497	19.7972
Nonane	150.051 *	0 *	150.051	2.99081	147.06
Decane	240.009 *	0 *	240.009	1.56493	238.444
Water	0 *	8613.51 *	8613.51	12.9446	8600.56

		Stream I	Properties			
Property	Units	OXF 159 Pad Condensate	Produced Water	3	4	5
Temperature	°F	85 *	85 *	85.0738	75.5487	75.5487
Pressure	psia	356.696 *	356.696 *	356.696	14.6959 *	14.6959
Mole Fraction Vapor	%	42.7382	0	2.54276	100	0
Mole Fraction Light Liquid	%	57.2618	100	3.48018	0	1.55953
Mole Fraction Heavy Liquid	%	0	0	93.9771	0	98.4405
Molecular Weight	lb/lbmol	52.8825	18.0153	20.1341	34.2243	19.4346
Mass Density	lb/ft^3	7.0698	62.1427	27.9946	0.0884111	60.0023
Molar Flow	lbmol/h	30.9345	478.122	509.057	24.0775	484.979
Mass Flow	lb/h	1635.89	8613.51	10249.4	824.038	9425.36
Vapor Volumetric Flow	ft^3/h	231.391	138.609	366.121	9320.52	157.083
Liquid Volumetric Flow	gpm	28.8488	17.2811	45.6462	1162.04	19.5844
Std Vapor Volumetric Flow	MMSCFD	0.28174	4.35456	4.6363	0.219289	4.41701
Std Liquid Volumetric Flow	sgpm	5.86418 *	17.219 *	23.0832	3.54554	19.5377
Compressibility		0.456463	0.017691	0.0438834	0.990445	0.000828722
Specific Gravity			0.996371		1.18167	0.962053
API Gravity			9.97032			15.1436
Enthalpy	Btu/h	-1.85417E+06	-5.86819E+07	-6.0536E+07	-1.09812E+06	-5.94379E+07
Mass Enthalpy	Btu/lb	-1133.43	-6812.77	-5906.3	-1332.61	-6306.17
Mass Cp	Btu/(lb*°F)	0.532877	0.981624	0.910675	0.42921	0.94053
Ideal Gas CpCv Ratio		1.10014	1.32512	1.28606	1.15732	1.29935
Dynamic Viscosity	cP		0.833256		0.00934903	0.87553
Kinematic Viscosity	cSt		0.837081		6.60145	0.903081
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0137752	0.316366
Surface Tension	lbf/ft		0.00492858			0.00456897
Net Ideal Gas Heating Value	Btu/ft^3	2714.32	0	164.944	1753	86.1029
Net Liquid Heating Value	Btu/lb	19339.1	-1059.76	2196.07	19304.1	700.355
Gross Ideal Gas Heating Value	Btu/ft^3	2943.02	50.31	226.095	1913.98	142.297
Gross Liquid Heating Value	Btu/lb	20980.3	0	3348.63	21089.2	1797.61

Remarks

			MIX	ocks (-100 litter Report			
Client Name:	EQT				Job:		
Location:	OXF 159 Adjust	ed Contingend	:y		Modified: 3:	14 PM, 7/24/2	2014
Flowsheet:	Flowsheet1				Status: Solv	red 10:33 AM	, 4/15/2015
			Conn	ections			
Stream	Connect	ion Type	Other Block	Stream	Connecti	on Type	Other Block
Produced Water	Inl	let		OXF 159 Pad	Inl	et	
				Condensate			
3	Ou	tlet	VSSL-100				

Block Parameters

0 psi

Fraction to PStream 3

Remarks

Pressure Drop

100 %

Blocks VSSL-100

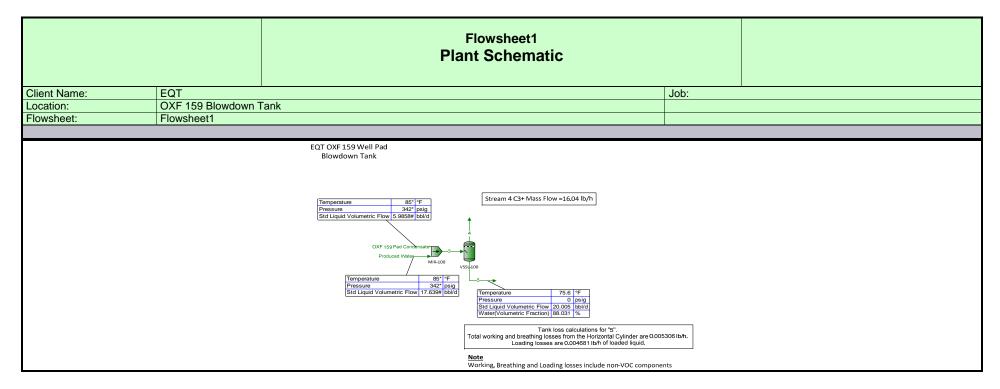
Separator Report

Client Name:	EQT	Job:
Location:	OXF 159 Adjusted Contingency	Modified: 2:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 10:33 AM, 4/15/2015

Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet						

Block Parameters							
Pressure Drop	342 psi	Main Liquid Phase	Light Liquid				
Mole Fraction Vapor	4.72983 %	Heat Duty	0 Btu/h				
Mole Fraction Light Liquid	1.48576 %	Heat Release Curve Type	Plug Flow				
Mole Fraction Heavy Liquid	93.7844 %	Heat Release Curve	5				
		Increments					

Remarks


Simulation Initiated on 4/15/2015 10:37:46 AM	C	DXF159_Adjusted	Cont_4.15.2015.pmx			Page 1 of 1
	F		Environment nment1			
Client Name: EQT			J	lob:		
	ted Contingency		Ī			
Flowsheet: Flowsheet1						
		Environme	ent Settings			
Number of Poynting Intervals	0		Freeze Out Temperature	!	10 °F	
			Threshold Difference			
Gibbs Excess Model	77 °F		Phase Tolerance		1 %	
Evaluation Temperature						
		Comp	onents			
Component Name	Henry`s Law Component	Comp Phase Initiator	Onents Component Name		Henry`s Law Component	Phase Initiator
	Henry`s Law Component False	Phase	Component Name		Henry's Law Component False	
Nitrogen	Component	Phase Initiator			Component	Initiator
Nitrogen Methane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane		Component False	Initiator False
Nitrogen Methane Carbon Dioxide	Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	Initiator False False
Nitrogen Methane Carbon Dioxide Ethane	Component False False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False	Initiator False False False
Nitrogen Methane Carbon Dioxide Ethane Propane	Component False False False False False	Phase Initiator False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False	Initiator False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane	Component False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		False	Initiator False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane	Component False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		False False False False False False False False False	Initiator False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane n-Pentane Isohexane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	Initiator False True
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane Liquid Molar Volume Stability Calculation	Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	Initiator False True

	/2015 10:37:46 AM		OXF159_Adjuste	dCont_4.15.2015.pmx		Page 1 of 1
			Calcula	tor Report		
Client Name:	EQT				Job:	
Location:	OXF 159 Adjust	ed Contingency				
	Í	<u> </u>				
			Simple	Solver 1		
			Sour	ce Code		
Residual Error (for C	V1) = TP / 24450	0 - 1	Oour	oc oouc		
Tresidual Error (lor o	11 / 24400	1				
			Calculated	Variable [CV1]		
SourceMoniker	ProMay:ProMa	vIProjectIFloweboo	telFloweboot1IP	Strooms OVE 150 Pod Co	ndoneato!Pha	ses!Total!Properties!Std Liquid
Sourceiviorlikei	Volumetric Flo		isi iowsneetiir.	olieanis:OXI 139 Fau Co	niuerisale:Fria	ises:10tai:F10perties:3td Liquid
Value	201.058	· · ·				
Unit	bbl/d					
			Measured	Variable [TP]		
SourceMoniker	ProMay:ProMa	vIProjectIFlowsboo		Streams!5!Phases!Total!P	Properties 19th	Liquid Volumetric Flow
Value	244500	ini rojecti iowanee	ion iowaneeriipi	ou camo:o!F naoco! 10tdl!P	TOPETHES!OIU I	LIQUIU VOIUITIGUIC I IOW
Unit	bbl/yr					
J	3011 j.					
			Solver	Properties		Status: Solved
Error		-7.59591E-11	Joivei	Iterations		3
Calculated Value		5.86418	sanm	Max Iterations		20
Calculated Value		0.00+10				1
Lower Bound			sanm	Weighting		
Lower Bound Upper Bound			sgpm sapm	Weighting Priority		0
Lower Bound Upper Bound Step Size			sgpm	Weighting Priority Solver Active		-
Upper Bound Step Size Is Minimizer		False		Priority Solver Active Group		0
Upper Bound Step Size		False Default	sgpm	Priority Solver Active	neck	0
Upper Bound Step Size Is Minimizer Algorithm			sgpm sgpm	Priority Solver Active Group	neck	0 Active
Upper Bound Step Size Is Minimizer Algorithm			sgpm sgpm	Priority Solver Active Group Skip Dependency Cf	neck	0 Active
Upper Bound Step Size Is Minimizer Algorithm	V1) = LF /88 - 1		sgpm sgpm	Priority Solver Active Group Skip Dependency Ch	neck	0 Active
Upper Bound Step Size Is Minimizer Algorithm Remarks	V1) = LF /88 - 1		sgpm sgpm	Priority Solver Active Group Skip Dependency Ch	neck	0 Active
Upper Bound Step Size Is Minimizer Algorithm Remarks	V1) = LF /88 - 1		sgpm sgpm Simple Sour	Priority Solver Active Group Skip Dependency Ch	neck	0 Active
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	,	Default	sgpm sgpm Simple Sour	Priority Solver Active Group Skip Dependency Ch Solver 2 Ce Code Variable [CV1]		O Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa	Default	sgpm sgpm Simple Sour	Priority Solver Active Group Skip Dependency Ch Solver 2 Ce Code Variable [CV1]		0 Active
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa 590.367	Default	sgpm sgpm Simple Sour	Priority Solver Active Group Skip Dependency Ch Solver 2 Ce Code Variable [CV1]		O Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value	ProMax:ProMa	Default	sgpm sgpm Simple Sour	Priority Solver Active Group Skip Dependency Ch Solver 2 Ce Code Variable [CV1]		O Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value	ProMax:ProMa 590.367	Default	Simple Sour Calculated ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Cf e Solver 2 ce Code Variable [CV1] Streams!Produced Water!		O Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit	ProMax:ProMa 590.367 bbl/d	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch e Solver 2 ce Code Variable [CV1] Streams!Produced Water!	Phases!Total!!	O Active False Properties!Std Liquid Volumetric Flow
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker	ProMax:ProMa 590.367 bbl/d	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch e Solver 2 ce Code Variable [CV1] Streams!Produced Water!	Phases!Total!!	O Active False
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch e Solver 2 ce Code Variable [CV1] Streams!Produced Water!	Phases!Total!!	O Active False Properties!Std Liquid Volumetric Flow
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker	ProMax:ProMa 590.367 bbl/d	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch e Solver 2 ce Code Variable [CV1] Streams!Produced Water!	Phases!Total!!	O Active False Properties!Std Liquid Volumetric Flow
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch Priority Solver Active Group Skip Dependency Ch Priority Skip Dependency Ch Prior	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value Unit	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch Skip Dependency Ch Stip Dependency C	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value Unit Error	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default IX!Project!Flowshee IX!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps	Priority Solver Active Group Skip Dependency Ch Properties Iterations	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved 3
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default x!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps Solver sgpm	Priority Solver Active Group Skip Dependency Ch Properties Iterations Max Iterations	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved 3 20
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default IX!Project!Flowshee IX!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps Solver sgpm sgpm	Priority Solver Active Group Skip Dependency Ch Properties Iterations Max Iterations Weighting	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved 3
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default IX!Project!Flowshee IX!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps Solver sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Ch Properties Iterations Max Iterations Weighting Priority Priority Priority Priority Properties Research Rese	Phases!Total!!	Active False False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved 3 20 1 0
Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound	ProMax:ProMa 590.367 bbl/d ProMax:ProMa	Default IX!Project!Flowshee IX!Project!Flowshee	Simple Sour Calculated ets!Flowsheet1!Ps Measured ets!Flowsheet1!Ps Solver sgpm sgpm	Priority Solver Active Group Skip Dependency Ch Properties Iterations Max Iterations Weighting	Phases!Total!!	Active False Properties!Std Liquid Volumetric Flow d. Liquid Volumetric Fraction!Water Status: Solved 3 20 1

Simulation Initiated on 4/15/2015 10:37:46 AM

		Jser Value S	Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 159 Adjusted Contingency				
		Cn+ Flov	v/Frac		
		User Value [C			
* Parameter	538.636 I	b/h	Upper Bound		
Lower Bound			* Enforce Bounds		False
	·				
Remarks This User Value Set	was programmatically generated. Gl	JID={E867C485-3I	D3C-49CB-BC24-EA1609	96DB2B1}	
		Tank Lo	neses		
		User Value [S			
* Parameter	20 f		Upper Bound		
* Lower Bound	0 f		* Enforce Bounds		False
	0 1	-			. 4.60
		User Value [ShellDiam1		
* Parameter	12 f		Upper Bound		
* Lower Bound	0 f		* Enforce Bounds		False
		User Value [E	BreatherVP1		
* Parameter	0.03 g		Upper Bound		
Lower Bound	<u>-</u>		* Enforce Bounds		False
	l	Jser Value [Br	eatherVacP]		
* Parameter		osig	Upper Bound		
Lower Bound		*	* Enforce Bounds		False
		User Value [D			
Parameter	f		Upper Bound		ft
Lower Bound	f	t '	* Enforce Bounds		False
		User Value			
* Parameter	0 p	osig	Upper Bound		Foloo
Lower Bound			* Enforce Bounds		False
	-	Iser Value [Av	aParcentl is1		
* Parameter	50 9		Upper Bound		
Lower Bound		%	* Enforce Bounds		False
Lower Bound		70	Efficied Bourius		i disc
	1	ser Value [Ma	vPercentlial		
* Parameter	90 9		Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value [AnnNetTP1		
* Parameter	669.011 t		Upper Bound		
* Lower Bound		obl/day '	* Enforce Bounds		False
		User Value	[OREff]		
* Parameter	0 9		Upper Bound		
Lower Bound		%	* Enforce Bounds		False
		User Value [A	tmPressure]		
* Parameter	14.1085 բ	osia	Upper Bound		
Lower Bound		F.	* Enforce Bounds		False

		333. 74.	ue Sets Report	
ent Name:	EQT	ad Contingor	Jo	ob:
cation:	OXF 159 Adjuste	ed Contingency		
		Hoo	· Value [TVD]	
Parameter		0.358189 psia	Value [TVP] Upper Bound	
_ower Bound		·	* Enforce Bounds	False
		User Value	e [AvgLiqSurfaceT]	
Parameter		57.7675 °F	Upper Bound	
_ower Bound			* Enforce Bounds	False
		User Value	[MaxLiqSurfaceT]	
Parameter		66.3119 °F	Upper Bound	Falsa
ower Bound			* Enforce Bounds	False
			ue [TotalLosses]	
Parameter Lower Bound		0.142648 lb/h lb/h	Upper Bound * Enforce Bounds	False
LOWER BOUNG		10/11	Emoree Bounds	i disc
			e [WorkingLosses]	
Parameter Lower Bound		0.0825046 ton/yr ton/yr	Upper Bound * Enforce Bounds	False
LOWER Bound		tornyi	Emoree Bounds	i disc
			[StandingLosses]	
Parameter Lower Bound		0.0216283 ton/yr ton/yr	Upper Bound * Enforce Bounds	False
		,		
Parameter		User Value 0 ton/yr	e [RimSealLosses] Upper Bound	
Lower Bound		U tori/yi	* Enforce Bounds	False
Parameter		User Value 0 ton/yr	[WithdrawalLoss] Upper Bound	
Lower Bound		O tornyr	* Enforce Bounds	False
		Ha an Wales	. Fl. a. Parel and a	
Parameter		0.158037 lb/h	e [LoadingLosses] Upper Bound	
ower Bound		lb/h	* Enforce Bounds	False
		Hear Value	[DeckFittingLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound		•	* Enforce Bounds	False
		User Value	[DeckSeamLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User Value	[FlashingLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User Value	e [GasMoleWeight]	
Parameter		0.0260834 kg/mol	Upper Bound	Foles
Lower Bound			* Enforce Bounds	False

5

VSSL-100

4

VSSL-100

From Block

To Block

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: OXF 159 Blowdown Tank Location: Flowsheet1 Flowsheet:

Connections

Produced

Water

MIX-100

3

MIX-100

VSSL-100

OXF 159 Pad

Condensate

MIX-100

Stream Composition							
	OXF 159 Pad Condensate	Produced Water	3	4	5		
Mole Fraction	%	%	%	%	%		
Nitrogen	0 *	0 *	0	0	0		
Methane	39.036 *	0 *	2.36424	50.0433	0.0051863		
Carbon Dioxide	1.142 *	0 *	0.069166	1.4466	0.00101374		
Ethane	6.932 *	0 *	0.419842	8.8127	0.00458105		
Propane	8.493 *	0 *	0.514385	10.5189	0.0193848		
i-Butane	4.426 *	0 *	0.268064	5.20486	0.0238017		
n-Butane	7.067 *	0 *	0.428018	8.01501	0.0526298		
i-Pentane	5.735 *	0 *	0.347344	5.44875	0.094938		
n-Pentane	5.472 *	0 *	0.331416	4.76808	0.111899		
Isohexane	1.191 *	0 *	0.0721338	0.710835	0.0405322		
n-Hexane	1.113 *	0 *	0.0674096	0.54935	0.0435643		
2,2,4-Trimethylpentane	0.008 *	0 *	0.000484526	0.00185093	0.000416919		
Benzene	0.035 *	0 *	0.0021198	0.0166458	0.00140109		
Heptane	3.893 *	0 *	0.235782	0.845191	0.20563		
Toluene	0.283 *	0 *	0.0171401	0.0531839	0.0153567		
Octane	5.264 *	0 *	0.318818	0.400536	0.314775		
Ethylbenzene	0.048 *	0 *	0.00290715	0.00313521	0.00289587		
o-Xylene	0.627 *	0 *	0.0379747	0.0311151	0.0383141		
Nonane	3.782 *	0 *	0.22906	0.0969675	0.235595		
Decane	5.453 *	0 *	0.330265	0.0457413	0.344342		
Water	0 *	100 *	93.9434	2.98728	98.4437		

	OXF 159 Pad Condensate	Produced Water	3	4	5
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	11.842 *	0 *	1.88444	23.456	0.00428222
Carbon Dioxide	0.950388 *	0 *	0.151238	1.86008	0.00229622
Ethane	3.94155 *	0 *	0.627228	7.74222	0.00708965
Propane	7.08182 *	0 *	1.12695	13.5519	0.0439943
i-Butane	4.86454 *	0 *	0.774106	8.8387	0.0712016
n-Butane	7.76722 *	0 *	1.23602	13.6108	0.15744
i-Pentane	7.8244 *	0 *	1.24512	11.4858	0.352541
n-Pentane	7.46558 *	0 *	1.18802	10.051	0.415523
Isohexane	1.94081 *	0 *	0.308846	1.78974	0.179773
n-Hexane	1.81371 *	0 *	0.288619	1.38315	0.193221
2,2,4-Trimethylpentane	0.0172804 *	0 *	0.00274987	0.00617735	0.00245113
Benzene	0.051698 *	0 *	0.00822682	0.037989	0.00563277
Heptane	7.37648 *	0 *	1.17384	2.47439	1.06048
Toluene	0.493078 *	0 *	0.0784647	0.143172	0.0728248
Octane	11.3705 *	0 *	1.80941	1.33676	1.85061
Ethylbenzene	0.0963632 *	0 *	0.0153345	0.00972491	0.0158234
o-Xylene	1.25874 *	0 *	0.200307	0.0965137	0.209353
Nonane	9.17243 *	0 *	1.45963	0.363361	1.55518
Decane	14.6714 *	0 *	2.3347	0.190149	2.52162
Water	0 *	100 *	84.0868	1.57236	91.2787

OXF 159 Pad Produced 3 4 5 Condensate Water lb/h **Mass Flow** lb/h lb/h lb/h lb/h Nitrogen 0 * 0 0 0 0 Methane 5.76738 * 0 5.76738 5.75532 0.0120551

^{*} User Specified Values ? Extrapolated or Approximate Values

		Process Streams Report All Streams Tabulated by Total Phase		
lient Name:	EQT		Job:	
ocation:	OXF 159 Blowd	own Tank		
owsheet:	Flowsheet1			

	OXF 159 Pad Condensate	Produced Water	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.462865 *	0 *	0.462865	0.456401	0.0064642
Ethane	1.91964 *	0 *	1.91964	1.89968	0.0199584
Propane	3.44904 *	0 *	3.44904	3.32519	0.123851
i-Butane	2.36917 *	0 *	2.36917	2.16872	0.200443
n-Butane	3.78285 *	0 *	3.78285	3.33964	0.443216
i-Pentane	3.8107 *	0 *	3.8107	2.81824	0.992456
n-Pentane	3.63595 *	0 *	3.63595	2.46618	1.16976
Isohexane	0.945229 *	0 *	0.945229	0.439142	0.506087
n-Hexane	0.883325 *	0 *	0.883325	0.339379	0.543946
2,2,4-Trimethylpentane	0.00841602 *	0 *	0.00841602	0.00151572	0.0069003
Benzene	0.0251783 *	0 *	0.0251783	0.00932123	0.0158571
Heptane	3.59255 *	0 *	3.59255	0.607133	2.98542
Toluene	0.240143 *	0 *	0.240143	0.0351297	0.205013
Octane	5.53774 *	0 *	5.53774	0.327996	5.20975
Ethylbenzene	0.0469315 *	0 *	0.0469315	0.00238617	0.0445454
o-Xylene	0.613043 *	0 *	0.613043	0.0236813	0.589362
Nonane	4.46723 *	0 *	4.46723	0.0891567	4.37807
Decane	7.1454 *	0 *	7.1454	0.0466563	7.09875
Water	0 *	257.349 *	257.349	0.385806	256.963

Stream Properties						
Property	Units	OXF 159 Pad Condensate	Produced Water	3	4	5
Temperature	°F	85 *	85 *	85.074	75.5791	75.5791
Pressure	psia	356.696 *	356.696 *	356.696	14.6959 *	14.6959
Mole Fraction Vapor	%	42.7382	0	2.53408	100	0
Mole Fraction Light Liquid	%	57.2618	100	3.46859	0	1.55377
Mole Fraction Heavy Liquid	%	0	0	93.9973	0	98.4462
Molecular Weight	lb/lbmol	52.8825	18.0153	20.127	34.2266	19.4294
Mass Density	lb/ft^3	7.0698	62.1427	28.0417	0.0884118	60.0092
Molar Flow	lbmol/h	0.920963	14.2851	15.206	0.716891	14.4891
Mass Flow	lb/h	48.7028	257.349	306.052	24.5367	281.515
Vapor Volumetric Flow	ft^3/h	6.88885	4.14126	10.9142	277.527	4.6912
Liquid Volumetric Flow	gpm	0.85887	0.516313	1.36073	34.6008	0.584877
Std Vapor Volumetric Flow	MMSCFD	0.00838779	0.130103	0.138491	0.00652917	0.131962
Std Liquid Volumetric Flow	sgpm	0.174585 *	0.51446 *	0.689045	0.105567	0.583477
Compressibility		0.456463	0.017691	0.0437943	0.990445	0.000828361
Specific Gravity			0.996371		1.18175	0.962164
API Gravity			9.97032			15.1262
Enthalpy	Btu/h	-55201.2	-1.75326E+06	-1.80846E+06	-32697.7	-1.77576E+06
Mass Enthalpy	Btu/lb	-1133.43	-6812.77	-5909	-1332.61	-6307.88
Mass Cp	Btu/(lb*°F)	0.532877	0.981624	0.910889	0.429221	0.940672
Ideal Gas CpCv Ratio		1.10014	1.32512	1.28618	1.15731	1.29944
Dynamic Viscosity	cР		0.833256		0.00934937	0.875393
Kinematic Viscosity	cSt		0.837081		6.60163	0.902865
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0137758	0.316486
Surface Tension	lbf/ft		0.00492858			0.00457016 ?
Net Ideal Gas Heating Value	Btu/ft^3	2714.32	0	164.395	1753.08	85.7899
Net Liquid Heating Value	Btu/lb	19339.1	-1059.76	2186.36	19303.8	694.421
Gross Ideal Gas Heating Value	Btu/ft^3	2943.02	50.31	225.509	1914.07	141.963
Gross Liquid Heating Value	Btu/lb	20980.3	0	3338.64	21088.8	1791.55

Remarks

Blocks MIX-100

Mixer/Splitter Report

Client Name:	EQT	Job:
Location:	OXF 159 Blowdown Tank	Modified: 2:14 PM, 7/24/2014
Flowsheet:	Flowsheet1	Status: Solved 9:29 AM, 1/14/2015

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Water	Inlet		OXF 159 Pad Condensate	Inlet	
3	Outlet	VSSL-100			

Block Parameters					
Pressure Drop	0 psi	Fraction to PStream 3	100 %		

Remarks

Blocks VSSL-100 Separator Report

Client Name:	EQT	Job:
Location:	OXF 159 Blowdown Tank	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 9:29 AM, 1/14/2015

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
3	Inlet	MIX-100	4	Vapor Outlet	
5	Light Liquid Outlet				

Block Parameters						
Pressure Drop	342 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	4.71452 %	Heat Duty	0 Btu/h			
Mole Fraction Light Liquid	1.48052 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	93.805 %	Heat Release Curve	5			
		Increments				

Remarks

Evaluation Temperature

Flowsheet Environment Environment1 Client Name: EQT Job: OXF 159 Blowdown Tank Location: Flowsheet1 Flowsheet: **Environment Settings** Freeze Out Temperature Threshold Difference Number of Poynting Intervals 0 10 °F Gibbs Excess Model 77 °F Phase Tolerance 1 %

Components					
Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator
Nitrogen	False	False	2,2,4-Trimethylpentane	False	False
Methane	False	False	Benzene	False	False
Carbon Dioxide	False	False	Heptane	False	False
Ethane	False	False	Toluene	False	False
Propane	False	False	Octane	False	False
i-Butane	False	False	Ethylbenzene	False	False
n-Butane	False	False	o-Xylene	False	False
i-Pentane	False	False	Nonane	False	False
n-Pentane	False	False	Decane	False	False
Isohexane	False	False	Water	False	True
n-Hexane	False	False			

Physical Property Method Sets					
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson		
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson		
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson		

Remarks

Simulation Initiated on 1/14	/2015 9:30:54 AM	OXF159_Blowdow	n Tank_1.14.2015.pmx		Page 1 of
		Calculat	tor Report		
Client Name:	EQT			Job:	
ocation:	OXF 159 Blowdown Tank			000.	
		Cimania	Calvar 4		
			Solver 1 ce Code		
Residual Error (for C	V1) = TP / 20 - 1	- Court			
		Oplantati	(:		
SourceMoniker	ProMax:ProMaxIProjectIFlowsl	calculated veets Flowsheet1 PS	Variable [CV1] StreamsIOXE 159 Pad Cor	ndensatelPha	ases!Total!Properties!Std Liquid
ourcewormer	Volumetric Flow	iccis:i iowsiiccii:i c	Micanis:OXI 100 I ad OOI	idensate:i ne	ases: rotal: roperties:ota Elquia
/alue	5.98577				
Jnit	bbl/d				
		Measured	Variable [TP]		
ourceMoniker	ProMax:ProMax!Project!Flowsh	eets!Flowsheet1!PS	Streams!5!Phases!Total!Pr	operties!Std	Liquid Volumetric Flow
alue	20.0049				
Init	bbl/d				
		Calvani	Properties		Status: Solved
Error	0.0002460		Iterations		
Calculated Value	0.0002469	14 35 sgpm	Max Iterations		<u>2</u> 20
Lower Bound	0.17430	sgpm	Weighting		1
Upper Bound		sgpm	Priority		0
Step Size		sgpm	Solver Active		Active
Is Minimizer	Fal		Group		7101140
Algorithm	Defa		Skip Dependency Ch	eck	False
			<u> </u>		
Remarks					
			Solver 2		
		Source	ce Code		
Residual Error (for C	V1) = LF /88 - 1				
		Calculated	Variable [CV1]		
SourceMoniker	ProMay:ProMayIProjectIFlowel			PhasesITotal	!Properties!Std Liquid Volumetric Flo
/alue	17.6386	ieets:Flowsheet1!F3	nicams:Fibuuceu Walei!F	110505:10101	ii Toperilesisia Liquia voidifietiic Fio
Jnit	bbl/d				
71114	25// G				
		Measured	Variable [LF]		
ourceMoniker	ProMay:ProMayIProject!Flowel			omnositionIS	td. Liquid Volumetric Fraction!Water
	i ioivian.i ioivian:Fioject:Fiowsi	10013:1 10W3116611!F3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	umpualliuli!O	ta. Liquia voiumento Fraction:Water

SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water
Value	88.0391
Unit	%

	Solve	r Properties	Status: Solved
Error	0.000444712	Iterations	2
Calculated Value	0.51446 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

Remarks

Colent Name: COT Cocasion: DAT Date:						3,000	
Cn+ Flow/Frac. User Value CnP Lissum							
Cn+ Flow/Frac. User Value (CnPlusSum) * Parameter			anna Tank		Job:		
Parameter	Location:	OXF 159 Blowd	own rank				
Parameter							
* Parameter 16.035 bh			Cn+	Flow/Frac.			
Remarks This User Value Set was programmatically generated. GUID=(E867C485-3D3C-49CB-BC24-EA16096DB2B1) Tank Losses Tank Losses User Value [ShellLength] * Parameter 10 ft Upper Bound 10 ft							
Tank Losses							
Tank Losses Tank Losses	Lower Bound		lb/n	^ Enforce Bounds		False	
User Value ShellLength		was programmat	ically generated. GUID={E867C4	485-3D3C-49CB-BC24-EA160	96DB2B1}		
User Value ShellLength			Tar	ak Lossos			
* Parameter 10 ft Upper Bound False * Lower Bound 0 ft * Enforce Bounds False * User Value [ShellDiam] * Parameter 10 ft Upper Bound False * Lower Bound 0 ft * Enforce Bounds False * User Value [BreatherVP] * Parameter 0.03 psig Upper Bound False * User Value [BreatherVacP] * Parameter - 0.03 psig Upper Bound False * User Value [BreatherVacP] * Parameter - 0.03 psig Upper Bound False * User Value [DomeRadius] Parameter ft Upper Bound ft Upper Bound False * User Value [DomeRadius] * Parameter ft * Enforce Bounds False * User Value [Opper Bound ft Upper Bound ft Upper Bound ft * Enforce Bounds False * User Value [Opper Bound False * Parameter Upper Bound False * Parameter Upper Bound False * User Value [Opper Bound False * Parameter Upper Bound False * Parameter Upper Bound False * User Value [MaxPercentLiq] * Parameter So % Upper Bound False * User Value [MaxPercentLiq] * Parameter 90 % Upper Bound False * User Value [MaxPercentLiq] * Parameter 90 % Upper Bound False * User Value [AnnNetTP] * Parameter 19.8551 bbl/day Upper Bound * Cower Bound Dib/day False * User Value [OREff] * Parameter 19.8551 bbl/day Upper Bound * Upper Bound False * User Value [OREff] * Parameter 19.8551 bbl/day Upper Bound * Upper Bound False * User Value [OREff] * Parameter 19.8551 bbl/day Upper Bound * Upper Bound False							
* Lower Bound	* Parameter						
**Parameter						False	
* Parameter * 10 ft							
* Parameter * 10 ft			User Val	ue [ShellDiam]			
* Parameter	* Parameter		10 ft	Upper Bound			
Parameter	* Lower Bound		0 ft	* Enforce Bounds		False	
Parameter							
User Value [BreatherVacP] * Parameter							
* Parameter			0.03 psig			Foloo	
* Parameter	Lower Bouria			Enlorce Bourius		raise	
* Parameter			Hear Value	a [Breather\/acP]			
User Value [DomeRadius] Parameter ft Upper Bound ft Lower Bound ft Upper Bound False User Value [OpPress] Parameter 0 psig Upper Bound Lower Bound * Enforce Bounds False User Value [Aupper Bound False User Value [MaxPercentLiq] False * Parameter 50 % Upper Bound False User Value [MaxPercentLiq] False * Parameter 90 % Upper Bound False User Value [AnnNetTP] * Parameter 19.8551 bbl/day Upper Bound * Lower Bound Debl/day False User Value [AnnNetTP] * Parameter 19.8551 bbl/day Upper Bound False User Value [OREff] * Parameter 0 % Upper Bound False User Value [OREff] * Parameter 0 % Upper Bound False User Value [OREff] * Parameter 0 % Upper Bound False	* Parameter						
Parameter ft Upper Bound ft Lower Bound ft Enforce Bounds False User Value OpPress						False	
Parameter ft Upper Bound ft Lower Bound ft Enforce Bounds False User Value OpPress							
User Value [OpPress] * Parameter			User Valu	e [DomeRadius]			
* Parameter 0 psig Upper Bound * Enforce Bounds False * Value [AvgPercentLiq] * Parameter 50 % Upper Bound * Enforce Bounds False * Parameter 50 % Upper Bound * Enforce Bounds False * User Value [MaxPercentLiq] * Parameter 90 % Upper Bound * Lower Bound % * Enforce Bounds False * Parameter 90 % Upper Bound * Enforce Bounds False * Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day Upper Bound * Lower Bound 0 bbl/day Upper Bound * Enforce Bounds False * Parameter 19.8551 bbl/day Upper Bound * Enforce Bounds False * User Value [OREff] * Parameter 0 % Upper Bound * Enforce Bounds False * User Value [AtmPressure]							
* Parameter 0 psig Upper Bound Lower Bound * Enforce Bounds False User Value [AvgPercentLiq]	Lower Bound		ft	* Enforce Bounds		False	
* Parameter 0 psig Upper Bound Lower Bound * Enforce Bounds False User Value [AvgPercentLiq]							
User Value [AvgPercentLiq] * Parameter 50 % Upper Bound Lower Bound % * Enforce Bounds False User Value [MaxPercentLiq] * Parameter 90 % Upper Bound Lower Bound % * Enforce Bounds False User Value [MaxPercentLiq] * Parameter 90 % Upper Bound Lower Bound % * Enforce Bounds False User Value [AnnNetTP] * Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False User Value [OREff] * Parameter 0 % Upper Bound Lower Bound 5 False User Value [OREff] * Parameter 5 % Upper Bound 5 False User Value [OREff] 5 False	* Danamatan						
Value AvgPercentLiq			0 psig			False	
* Parameter 50 % Upper Bound Lower Bound	Lower Bound			Elliotoc Bodildo		T disc	
* Parameter 50 % Upper Bound Lower Bound			User Value	[AvaPercentLia]			
Lower Bound % * Enforce Bounds False User Value [MaxPercentLiq]	* Parameter						
* Parameter 90 % Upper Bound Lower Bound % * Enforce Bounds False * Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False * User Value [OREff] * Parameter 0 % Upper Bound Lower Bound % * Enforce Bounds False * User Value [OREff] * Parameter 0 % Upper Bound Lower Bound False * User Value [AtmPressure]						False	
* Parameter 90 % Upper Bound Lower Bound % * Enforce Bounds False * Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False * User Value [OREff] * Parameter 0 % Upper Bound Lower Bound % * Enforce Bounds False * User Value [OREff] * Parameter 0 % Upper Bound Lower Bound False * User Value [AtmPressure]							
Lower Bound % * Enforce Bounds False User Value [AnnNetTP] * Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False User Value [OREff] * Parameter 0 % Upper Bound Lower Bound % * Enforce Bounds False User Value [AtmPressure]							
* Parameter 19.8551 bbl/day Upper Bound * Lower Bound User Value [OREff] * Parameter 0 bbl/day Enforce Bounds False User Value [OREff] * Parameter 0 % Upper Bound Lower Bound False User Value [AtmPressure]							
* Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False * Parameter 0 % Upper Bound Lower Bound % Enforce Bounds False * User Value [AtmPressure]	Lower Bound		%	* Enforce Bounds		False	
* Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False * Parameter 0 % Upper Bound Lower Bound % Enforce Bounds False * User Value [AtmPressure]			Haan Wal	Les FAmmNotTD1			
* Lower Bound 0 bbl/day * Enforce Bounds False User Value [OREff] * Parameter 0 % Upper Bound Lower Bound % * Enforce Bounds False User Value [AtmPressure]	* Parameter						
* Parameter 0 % Upper Bound Lower Bound * Enforce Bounds False User Value [AtmPressure]						False	
* Parameter 0 % Upper Bound Lower Bound * Enforce Bounds False User Value [AtmPressure]	I dioo						
* Parameter 0 % Upper Bound Lower Bound * Enforce Bounds False User Value [AtmPressure]	User Value [OREff]						
Lower Bound			0 %	Upper Bound			
	Lower Bound		%			False	
* Parameter 14 1095 pain Upper Pound							
Parameter 14.1085 psia Upper Bound * Enforce Bounds False	* Parameter		14.1085 psia	Upper Bound * Enforce Bounds		Falco	

^{*} User Specified Values ? Extrapolated or Approximate Values

		User V	alue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 159 Blowd	own Tank			
				<u> </u>	
		He	or Value (TVD)		
* Parameter		0.357748 psia	Ger Value [TVP] Upper Bound		
Lower Bound		0.557740 psia	* Enforce Bounds		False
					·
		User Val	ue [AvgLiqSurfaceT]		
* Parameter		57.7675 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	ue [MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
			alue [TotalLosses]		
* Parameter		0.00530583 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
* Danasatan			ue [WorkingLosses]		
* Parameter Lower Bound		0.0232395 ton/yr ton/yr	Upper Bound * Enforce Bounds		False
Lower Bouria		tonyi	Efforce Bourius		False
		Hear Val	us [Standing] assas]		
* Parameter		0 ton/yr	ue [StandingLosses] Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
Lower Bound		Congr	Emereo Bearias		1 4.00
		User Val	lue [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	ue [WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	lue [LoadingLosses]		
* Parameter		0.00468059 lb/h	Upper Bound		False
Lower Bound		lb/h	* Enforce Bounds		False
		Heen Value	· [Deal-Fitting]1		
* Parameter		0 ton/yr	e [DeckFittingLosses] Upper Bound		
Lower Bound		O tonyi	* Enforce Bounds		False
Lower Bound			Emereo Bearias		1 4.00
		User Valu	ie [DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	ue [FlashingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			ue [GasMoleWeight]		
* Parameter		0.0260616 kg/mol	Upper Bound		
Lower Bound			* Enforce Bounds		False
Remarks This User Value Set	was programmat	tically generated. GUID={B57	AFC7E-AAE8-4873-921B-7B403	1991004}	

LAFAYETTE AREA LABORATORY

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13120078-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

512456

Alan Ball

Field:

EQT Production

Sample of:

Liquid-Spot

PO Box 1028

Conditions:

342 psi @ N.G.° F

Bridgeport, WV, 26330

Sampled by: Sample date: RM-GAS

Report Date:

12/23/2013

Remarks:

12/3/2013 Cylinder No.: GAS

Remarks:

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	39.036	16.043	11.798	0.3000	22.290
Carbon Dioxide	1.142	44.010	0.947	0.8180	0.656
Ethane	6.932	30.070	3.927	0.3562	6.242
Propane	8.493	44.097	7.055	0.5070	7.879
lso-butane	4.426	58.123	4.846	0.5629	4.877
N-butane	7.067	58.123	7.738	0.5840	7.506
lso-pentane	5.735	72.150	7.795	0.6244	7.071
N-pentane	5.472	72.150	7.437	0.6311	6.677
i-Hexanes	1.191	86.177	1.912	0.6795	1.639
n-Hexane	1.113	85.673	1.807	0.6640	1.527
2,2,4 trimethylpentane	0.008	114.231	0.017	0.6967	0.014
Benzene	0.035	78.114	0.033	0.8846	0.034
Heptanes	3.893	98.270	7.237	0.7004	5.846
Toluene	0.283	92.141	0.315	0.8719	0.322
Octanes	5.264	109.185	11.094	0.7395	8.419
E-benzene	0.048	106.167	0.041	0.8718	0.063
M-,O-,P-xylene	0.627	106.167	1.255	0.8731	0.824
Nonanes	3.782	123.379	9.063	0.7558	6.879
Decanes Plus	5.453	152.673	15.683	0.7908	11.235
		S-			
	100.000		100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.5665	0.7908
Api Gravity at 60 °F	118.270	47.432
Molecular Weight	53.083	152.673
Pounds per Gallon (in Vacuum)	4.723	6.593
Pounds per Gallon (in Air)	4.718	6.586
Cu. Ft. Vapor per Gallon @ 14.73 psia	33.844	16.350

Southern Petroleum Laboratories, Inc.

Attachment J

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit for a natural gas production operation located in West Union, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.20784 and -80.76235.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 5.42 tpy
Sulfur Dioxide (SO2) = 0.08 tpy
Volatile Organic Compounds (VOC) = 49.31 tpy
Carbon Monoxide (CO) = 10.81 tpy
Nitrogen Oxides (NOx) = 12.87 tpy
Hazardous Air Pollutants (HAPs) = 1.34 tpy
Carbon Dioxide Equivalents (CO2e) = 25,831.37 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the XX day of April, 2015.

By: EQT Production Company
Kenneth Kirk
Executive Vice President
625 Liberty Avenue, Suite 1700

Pittsburgh, PA 15222

Attachment L

Attachment L G70-A General Permit Application Fee

Please contact Alex Bosiljevace at 412-395-3699 or abosiljevac@eqt.com for payment of the application fee by credit card.

Attachment O

Attachment O G70-A Emission Summary Sheet

				1	0.07.	ission suilli	,	ı				1
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs &	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used
Plan)		ID No.	Source	ID No.	Device Type	HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)	
						Total VOCs	0.005	0.02	0.005	0.02		
						NO _x	0.09	0.40	0.09	0.40		l l
						CO	0.08	0.34	0.08	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	< 0.001	0.002		
						Pb	<0.001	<0.001	< 0.001	<0.001		
	Upward Vertical			NA		Total HAPs	0.002	0.008	0.002	0.008		AP-42, Subpart
E001	Stack	S001	NA		NA	Benzene	<0.001	<0.001	< 0.001	<0.001	Gas	W W
	Clauk					Toluene	<0.001	<0.001	< 0.001	<0.001		• •
						Formaldehyde	<0.001	<0.001	< 0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
						CH₄	0.002	0.01	0.002	0.01		
						N ₂ O	<0.001	<0.001	< 0.001	<0.001		
						CO ₂ e	117.10	512.89	117.10	512.89		
						Total VOCs	0.005	0.02	0.005	0.02		
						NO _x	0.09	0.40	0.09	0.40		
						CO	0.08	0.34	0.08	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	< 0.001	0.002		
						Pb	<0.001	<0.001	< 0.001	<0.001		
	Upward Vertical					Total HAPs	0.002	0.008	0.002	0.008		AP-42, Subpart
E002	Stack	S002	NA	NA	NA	Benzene	<0.001	<0.001	< 0.001	< 0.001	Gas	W W
	Otdon					Toluene	<0.001	<0.001	< 0.001	< 0.001		• •
						Formaldehyde	<0.001	<0.001	< 0.001	< 0.001		
						Hexane	0.002	0.007	0.002	0.007		
			ĺ			CO_2	116.98	512.36	116.98	512.36		
			ĺ			CH₄	0.002	0.01	0.002	0.01		
			ĺ			N ₂ O	<0.001	<0.001	<0.001	<0.001		
						CO ₂ e	117.10	512.89	117.10	512.89		

Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs &	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used
Plan)		ID No.	Source	ID No.	Device Type	HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/vapor)	
						Total VOCs	0.005	0.02	0.005	0.02		
						NO _x	0.09	0.40	0.09	0.40		
						CO	0.08	0.34	0.08	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	<0.001	0.002		
						Pb	<0.001	<0.001	<0.001	< 0.001		
	Upward Vertical		NA	NA		Total HAPs	0.002	0.008	0.002	0.008		AP-42, Subpart
E003	Stack	\$003			NA NA	Benzene	<0.001	<0.001	<0.001	< 0.001	Gas	W W
						Toluene	<0.001	<0.001	<0.001	<0.001		
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
						CH₄	0.002	0.01	0.002	0.01		
						N ₂ O	<0.001	<0.001	<0.001	<0.001		
						CO ₂ e	117.10	512.89	117.10	512.89		
						Total VOCs	0.005	0.02	0.005	0.02		
						NO _x	0.09	0.40	0.09	0.40		
						CO	80.0	0.34	80.0	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO_2	<0.001	0.002	<0.001	0.002		
						Pb	<0.001	<0.001	<0.001	<0.001		
	Upward Vertical					Total HAPs	0.002	0.008	0.002	0.008		AP-42, Subpart
E004	Stack	S004	NA	NA	NA	Benzene	<0.001	<0.001	<0.001	<0.001	Gas	W W
	Otdon					Toluene	<0.001	<0.001	<0.001	<0.001		
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO_2	116.98	512.36	116.98	512.36		
						CH ₄	0.002	0.01	0.002	0.01		
						N ₂ O	<0.001	<0.001	<0.001	<0.001		
				1		CO ₂ e	117.10	512.89	117.10	512.89		

Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	This Point (Mus Units Table	Vented Through st match Emission & Plot Plan)	match Emission Pl	ntrol Device (Must Units Table & Plot an)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs &	Emis	ntial Uncontrolled sions ⁴	Emis	ential Controlled	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used
,		ID No.	Source	ID No.	Device Type	HAPS)	lb/hr	ton/yr	lb/hr	ton/yr		
						Total VOCs	0.005	0.022	0.01	0.02		
						NO_x	0.09	0.40	0.09	0.40		
						CO	0.08	0.34	80.0	0.34		
						PM ₁₀	0.007	0.03	0.01	0.03		
						SO ₂	<0.001	0.002	<0.001	0.002		
						Pb	<0.001	<0.001	<0.001	<0.001		
	Upward Vertical					Total HAPs	0.002	0.008	0.002	800.0		AP-42, Subpart
E005	Stack	S005	NA	NA	NA	Benzene	<0.001	<0.001	<0.001	<0.001	Gas	W W
						Toluene	<0.001	<0.001	<0.001	<0.001		
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
						CH ₄	0.002	0.010	0.00	0.01		
						N ₂ O	<0.001	<0.001	<0.001	<0.001		
						CO ₂ e	117.10	512.89	117.10	512.89		
						Total VOCs	0.005	0.02	0.005	0.02		
	Upward Vertical Stack		S006 NA	NA		NO _x	0.09	0.40	0.09	0.40	Gas	
						CO	0.08	0.34	0.08	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	<0.001	0.002		
		\$006			NA	Pb	<0.001	<0.001	<0.001	<0.001		
F000						Total HAPs	0.002	0.008	0.002	0.008		AP-42, Subpart
E006						Benzene	<0.001	<0.001	<0.001	<0.001		W
						Toluene	<0.001	<0.001	<0.001	<0.001		
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98 0.002	512.36	116.98 0.002	512.36 0.01		
						CH₄ N₂O	<0.002	0.01 <0.001				
						CO₂e	117.10	512.89	<0.001 117.10	<0.001 512.89		
						Total VOCs	0.005	0.02	0.005	0.02		
						NO _x	0.003	0.40	0.003	0.40		
						CO	0.08	0.34	0.08	0.34		
						PM ₁₀	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	<0.001	0.002		
						Pb	<0.001	< 0.001	<0.001	<0.001		
						Total HAPs	0.002	0.008	0.002	0.008		1
E007	Upward Vertical	S007	NA	NA	NA	Benzene	<0.001	<0.001	<0.001	<0.001	Gas	AP-42, Subpart
	Stack	-				Toluene	<0.001	<0.001	<0.001	<0.001		W
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
						CH ₄	0.002	0.01	0.002	0.01		1
						N ₂ O	<0.001	<0.001	<0.001	<0.001		
						CO ₂ e	117.10	512.89	117.10	512.89		ĺ

Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs &		ntial Uncontrolled sions 4		ential Controlled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used
Plan)		ID No.	Source	ID No.	Device Type	HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)	
						Total VOCs	277.43	1215.14	5.55	24.30		
						NO _x	<0.001	<0.001	1.15	5.02		
						CO	<0.001	<0.001	0.96	4.22		
						PM ₁₀	<0.001	<0.001	0.09	0.38		
						SO ₂	<0.001	<0.001	0.007	0.03		
			Produced Fluids			Total HAPs	7.08	31.03	0.14	0.62		
	Harris and Mandia at	0000 0015	Tanks, Sand			Hexane	5.87	25.69	0.12	0.51		AD 40 Octor and
E018*	Upward Vertical Stack	S008 - S015, S016, S017	Trap Blowdown Tank, Tank	NA	NA	Benzene	0.16	0.71	0.00	0.01	Gas	AP-42, Subpart W
	Stack	3010, 3017	Truck Loading			Toluene	0.61	2.66	0.01	0.05		VV
			Emissions			Ethylbenzene	0.04	0.18	< 0.001	0.004		
			Lillissions			Xylenes	0.41	1.79	0.01	0.04		
						CO ₂	7.90	34.60	2,481.48	10,868.90		
						CH₄	99.55	436.01	2.02	8.83		
						N ₂ O	<0.001	<0.001	0.00	0.01		
						CO ₂ e	2,496.54	10,934.83	2,532.67	11,093.09		
	Upward Vertical	S008 - S015, S016, S017				Total VOCs	277.43	1215.14	5.55	24.30		
						NO_x	<0.001	<0.001	1.15	5.02		
						CO	<0.001	<0.001	0.96	4.22		
						PM ₁₀	<0.001	<0.001	0.09	0.38		
							SO ₂	<0.001	<0.001	0.007	0.03	
			Produced Fluids			Total HAPs	7.08	31.03	0.14	0.62		AP-42, Subpart
			Tanks, Sand Trap Blowdown			Hexane	5.87	25.69	0.12	0.51	Gas	
E019*	Stack		Tank, Tank	NA	NA	Benzene	0.16	0.71	0.00	0.01		
	Otdok		Truck Loading Emissions			Toluene	0.61	2.66	0.01	0.05		
						Ethylbenzene	0.04	0.18	< 0.001	0.004		
						Xylenes	0.41	1.79	0.01	0.04		
						CO_2	7.90	34.60	2,481.48	10,868.90		
						CH₄	99.55	436.01	2.02	8.83		
						N ₂ O	<0.001	<0.001	0.003	0.01		
						CO ₂ e	2,496.54	10,934.83	2,532.67	11,093.09		
						Total VOCs	<0.001	<0.001	<0.001	<0.001		
						NO _x	0.001	0.005	0.00	0.01		
						СО	0.001	0.004	0.00	0.00		
						PM ₁₀	<0.001	<0.001	<0.001	<0.001		
E020	Upward Vertical	S020	NA	NA	NA	SO ₂	<0.001	<0.001	<0.001	<0.001	Gas	AP-42, Subpart
	Stack					Total HAPs	<0.001	<0.001	<0.001	<0.001		W
						CO ₂	1.52	6.66	1.52	6.66		
						CH ₄	<0.001	<0.001	<0.001	<0.001		
						N ₂ O	<0.001	<0.001	<0.001	<0.001		
			1			CO ₂ e	1.52	6.67	1.52	6.67	<u> </u>	<u> </u>

E021	Upward Vertical Stack	S021	NA	NA	NA	Total VOCs NO _x CO PM ₁₀ SO ₂ Total HAPs CO ₂ CH ₄ N ₂ O CO ₂ e	<0.001 0.001 0.001 <0.001 <0.001 <0.001 1.52 <0.001 <0.001 1.52	<0.001 0.01 0.004 <0.001 <0.001 <0.001 6.66 <0.001 <0.001 6.67	<0.001 0.001 0.001 <0.001 <0.001 <0.001 1.52 <0.001 1.52	<0.001 0.01 0.004 <0.001 <0.001 <0.001 6.66 <0.001 <0.001 6.67	Gas	AP-42, Subpart W
E022	Upward Vertical Stack	S022	NA	NA	NA	Total VOCs Total HAPs CO ₂ CH ₄ CO ₂ e	0.02 <0.001 0.002 0.003 0.07	0.004 <0.001 0.007 0.01 0.33	0.02 <0.001 0.002 0.003 0.07	0.004 <0.001 0.007 0.01 0.33	Gas	AP-42, Subpart W

*Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and tank truck loading are routed to either C018 or C019. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C018 and C019 are additive

*Emissions from Tank Truck Loading Operations are routed to the enclosed combustion devices. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the enclosed combustion devices are realized at the Tank Truck

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.) Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases
- 3 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 4 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS 1	Maximum Potent Emissi		Maximum Po Controlled Em	Est. Method	
	Name/OAO	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA					
Unpaved Haul Roads	PM PM-10 PM-2.5	4.65 1.19 0.12	4.44 1.19 0.11	4.65 1.19 0.12	4.44 1.19 0.11	AP-42
Equipment Leaks	Total VOC Total HAPs Hexane CO₂ CH₄ CO₂e	0.12 0.01 0.01 0.003 0.38 9.50	0.55 0.05 0.04 0.01 1.66 41.63	0.12 0.01 0.01 0.003 0.38 9.50	0.55 0.05 0.04 0.01 1.66 41.63	40CFR98 Subpart W
Other	NA	NA	NA	NA	NA	NA

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).