

Alex Bosiljevac Environmental Coordinator

March 4, 2015

CERTIFIED MAIL # 7014 2120 0002 1164 5181

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70 Permit Application

EQT Production Company

WEU-49 Natural Gas Production Site

Dear Mr. Durham,

Enclosed are one paper copy and two electronic copies of a G70-A General Air Permit Application for WEU-49 Natural Gas Production Well Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-A General Air Permit Application WEU 49 Natural Gas Production Site

West Union, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

March 2015

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-A Class II General Permit application to the WVDEP's Department of Air Quality for the WEU-49 natural gas production site located in Doddridge County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the WEU-49 pad.

FACILITY DESCRIPTION

The EQT WEU-49 natural gas production site operates in Doddridge County, WV and consists of seven (7) natural gas wells. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant seeks to authorize the operation of:

- Seven (7) natural gas wells;
- Seven (7) line heaters each rated at 1.00 MMBtu/hr heat input;
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water.
- Eight (8) 400 barrel (bbl) tanks for storage of produced condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 mmBtu/hr heat input; and
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The WEU-49 pad will be located in Doddridge County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the WEU-49 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The WEU-49 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the WEU-49 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the WEU-49 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

The closest EQT owned or operated site is the WEU production site located 0.85 miles (4,400 ft.) northeast of the WEU-49 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the WEU-49 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the WEU-49 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to WEU-49 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the WEU-49 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the WEU-49 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 10 - To Prevent and Control Air Pollution From the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, And Operation of Stationary Sources of Air Pollutants

This G70-A permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the WEU-49 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-A general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the WEU-49 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-A general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-A permit are not subject to the WEU-49 facility:

- 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

FEDERAL REGULATIONS

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-A permit.

The only affected facilities expected to be subject to Subpart OOOO located at the WEU-49 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at WEU-49 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Any pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, there will not be any pneumatic controller affected facilities located at this site.

Storage vessels: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

The following NSPS included in the G70-A permit are not applicable to the WEU-49 facility:

• 40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).
No additional NSPS are expected to be applicable to this facility.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304

Phone: (304) 926-0475 * www.dep.wv.gov/dag

APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE

	1 Hone. (304) 920-0473 www.dep.wv.	.gov/daq	ASTATI	UNAKT SC	JUNCE OF AIR PULLUTAINTS		
□ CONSTRUCT	TION MODIFICATION	RELOCAT	TION 🔲	CLASS I AD	MINISTRATIVE UPDATE		
				CLASS II AI	DMINISTRATIVE UPDATE		
	CHECK WHICH TYPE OF GENERAL	PERMIT R	REGISTRATIO	N YOU ARE	APPLYING FOR:		
☐ G10-D – Coal	Preparation and Handling				allic Minerals Processing		
☐ G20-B – Hot N	Mix Asphalt		_	D-B – Concrete			
☐ G30-D – Natu	ral Gas Compressor Stations				Emergency Generator		
☐ G33-A - Spar	k Ignition Internal Combustion Engines		G65-C – Class I Emergency Generator				
☐ G35-A – Natu	ral Gas Compressor Stations (Flare/Glycol Deh	ydration Un	it) 🛮 🖂 G70	D-A – Class II (Oil and Natural Gas Production Facility		
li .							
	SECTION I.	GENERA	L INFORMATI	ON			
Name of application	ant (as registered with the WV Secretary of Stat		-		Employer ID No. (FEIN):		
	EQT Production Company				25-0724685		
3. Applicant's mail	ling address:	4	I. Applicant's phy	ysical address	:		
625 Liberty Avenu	•						
Pittsburgh, PA 15	222						
5. If applicant is a	subsidiary corporation, please provide the name	e of parent	corporation:				
6. WV BUSINESS	REGISTRATION. Is the applicant a resident of	f the State of	of West Virginia?	\triangleright	YES NO		
- IF YE	S, provide a copy of the Certificate of Incorpor				p (one page) including any name change		
	amendments or other Business Registration						
- IF NO	provide a copy of the Certificate of Authority amendments or other Business Certificate a			stration (one p	page) including any name change		
	amendments of other business certificate a	15 Allacilli	ent A.				
	SECTION II.	. FACILIT	Y INFORMATI	ON			
7. Type of plant or	r facility (stationary source) to be constructed,	8a. S	tandard Industria	I AND	8b. North American Industry		
modified, relocated	d or administratively updated (e.g., coal	Classi	ification		•		
preparation plant, p	primary crusher, etc.):	Classi	ification (SIC) cod	de: 1311	System (NAICS) code: 211111		
Class II Oil and N	atural Gas Production Facility		,				
0 DAO Blass ID N					ner General Permit numbers associated		
9. DAQ PIANTID N	lo. (for existing facilities only):	with th	nis process (for e	xisting facilitie	s only):		
N/A		N/A					
		"					

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:	
WEU-49 Natural Gas Production Facility	Mailing: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222	
, i	n to buy, or otherwise have control of the propapplicant leases the proposed site. BLE FOR A PERMIT FOR THIS SOURCE.	osed site? XES NO
nearest state road; For Construction or Relocation permits, p MAP as Attachment F. From West Union take WV-18S and then turn right	blease provide directions to the proposed new to take US-50 W. Follow US-50 W for 2.6 mile Continue 0.7 miles, before turning left onto Lef	ft Fork Run Road. Travel for 2.1 miles, and turn onto
15A. Nearest city or town: West Union	16A. County: Doddridge	17A. UTM Coordinates: Northing (KM): 518.413 Easting (KM): 4,345.066 Zone: 17
18A. Briefly describe the proposed new operation The WEU-49 Natural Gas Production Facility will be in production in June 2015.		19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.25473 Longitude: -80.78660

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).
24. Include a Table of Contents as the first page of your application package.
All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.
25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE ATTACHMENT B: PROCESS DESCRIPTION ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS ATTACHMENT D: PROCESS FLOW DIAGRAM ATTACHMENT E: PLOT PLAN ATTACHMENT F: AREA MAP ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS ATTACHMENT I: EMISSIONS CALCULATIONS ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT ATTACHMENT K: ELECTRONIC SUBMITTAL (NOT APPLICABLE) ATTACHMENT M: SITING CRITERIA WAIVER (NOT APPLICABLE) ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (NOT APPLICABLE) ATTACHMENT N: MATERIAL SAFETY DATA SHEETS OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.) (NOT APPLICABLE)
Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also

Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

	FOR A CORPORATION (domestic or foreign) I certify that I am a President, Vice President, Secretary, To corporation	reasurer or in charge of a principal business function of the
	FOR A PARTNERSHIP I certify that I am a General Partner	
	FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager	
	FOR AN ASSOCIATION I certify that I am the President or a member of the Board of	of Directors
	FOR A JOINT VENTURE I certify that I am the President, General Partner or General	ıl Manager
	FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor	
is an A Liability change I hereb hereto	ertify that (please print or type) uthorized Representative and in that capacity shall represent the interex Company, Association Joint Venture or Sole Proprietorship) and may see its Authorized Representative, a Responsible Official shall notify the sy certify that all information contained in this General Permit Registrati is, to the best of my knowledge, true, accurate and complete, and that when sive information possible	obligate and legally bind the business. If the business Director of the Office of Air Quality immediately, and/or, on Application and any supporting documents appended
Signature(please use blue ink)	Responsible Official	03/04/15 Date
Name & Title Leglesse print or type)	Kenneth Kirk, Executive Vice President	
Signature(please use blue ink)	Authorized Representative (if applicable)	Date
Applicant's Nar	me R. Alex Bosiljevac Environmental Coordinator	
Phone & Fax _	(412) 395-3699 Phone	Fax
Email	abosiljevac@eqt.c	com

Table of Contents

ATTACHMENT A BUSINESS CERTIFICATE

ATTACHMENT B PROCESS DESCRIPTION

ATTACHMENT C DESCRIPTION OF FUGITIVE EMISSIONS

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E PLOT PLAN

ATTACHMENT F AREA MAP

ATTACHMENT G EQUIPMENT DATA SHEETS AND REGISTRATION SECTION

APPLICABILITY FORM

ATTACHMENT H AIR POLLUTION CONTROL DEVICE SHEETS

ATTACHMENT I EMISSION CALCULATIONS

ATTACHMENT J CLASS I LEGAL ADVERTISEMENT

ATTACHMENT K ELECTRONIC SUBMITTAL (NOT APPLICABLE)

ATTACHMENT L GENERAL PERMIT REGISTRATION APPLICATION FE

ATTACHMENT M SITTING CRITERIA WAIVER (NOT APPLICABLE)

ATTACHMENT N MATERIAL SAFETY DATA SHEETS (MSDS) (NOT APPLICABLE)

ATTACHMENT O EMISSION SUMMARY SHEETS

OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE

(NOT APPLICABLE)

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

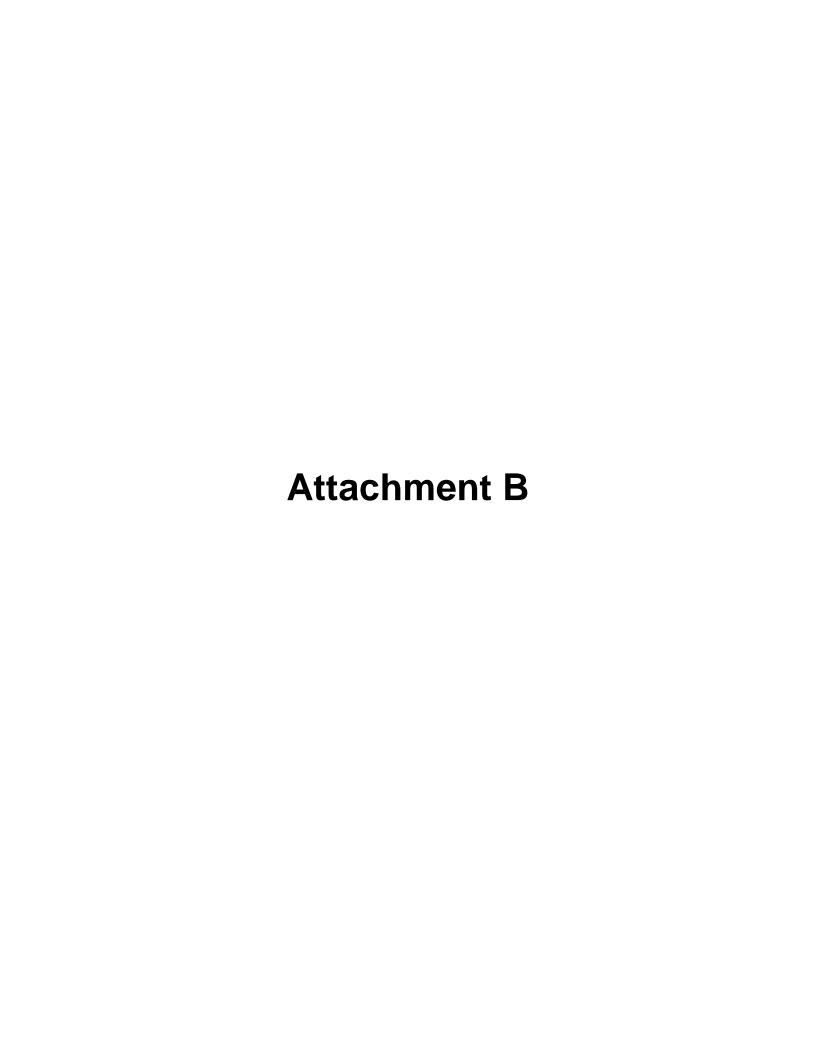
BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

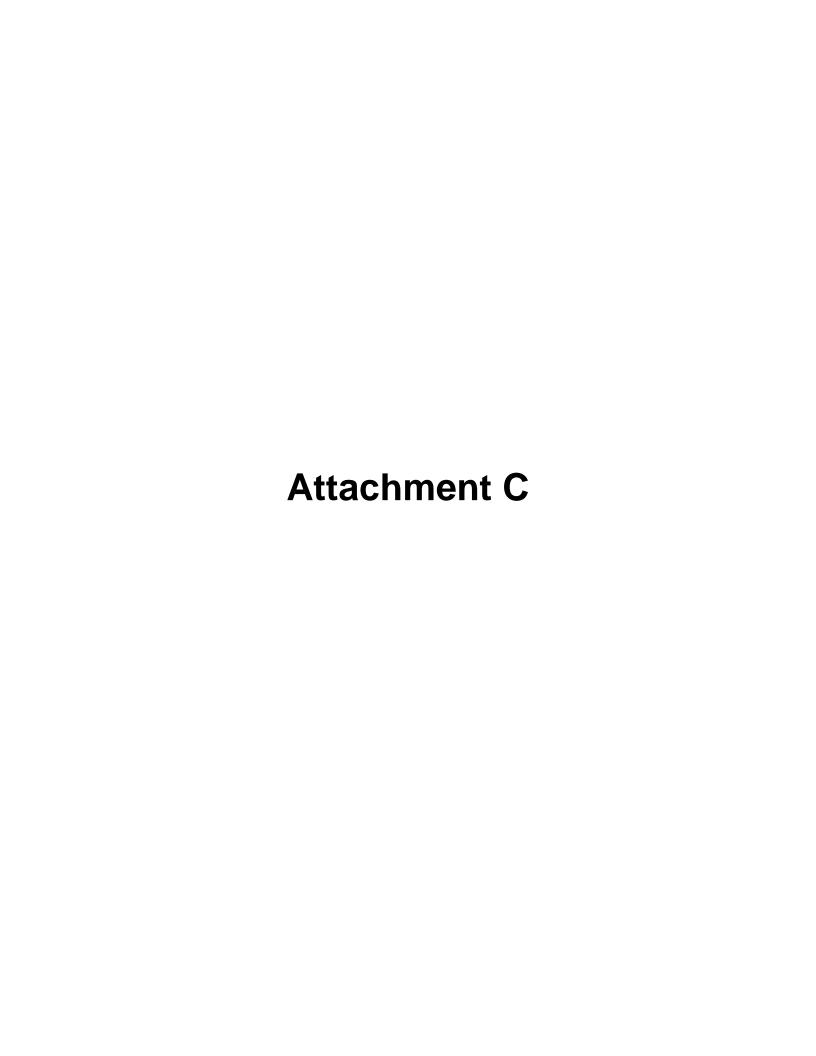

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664



Attachment B Process Description

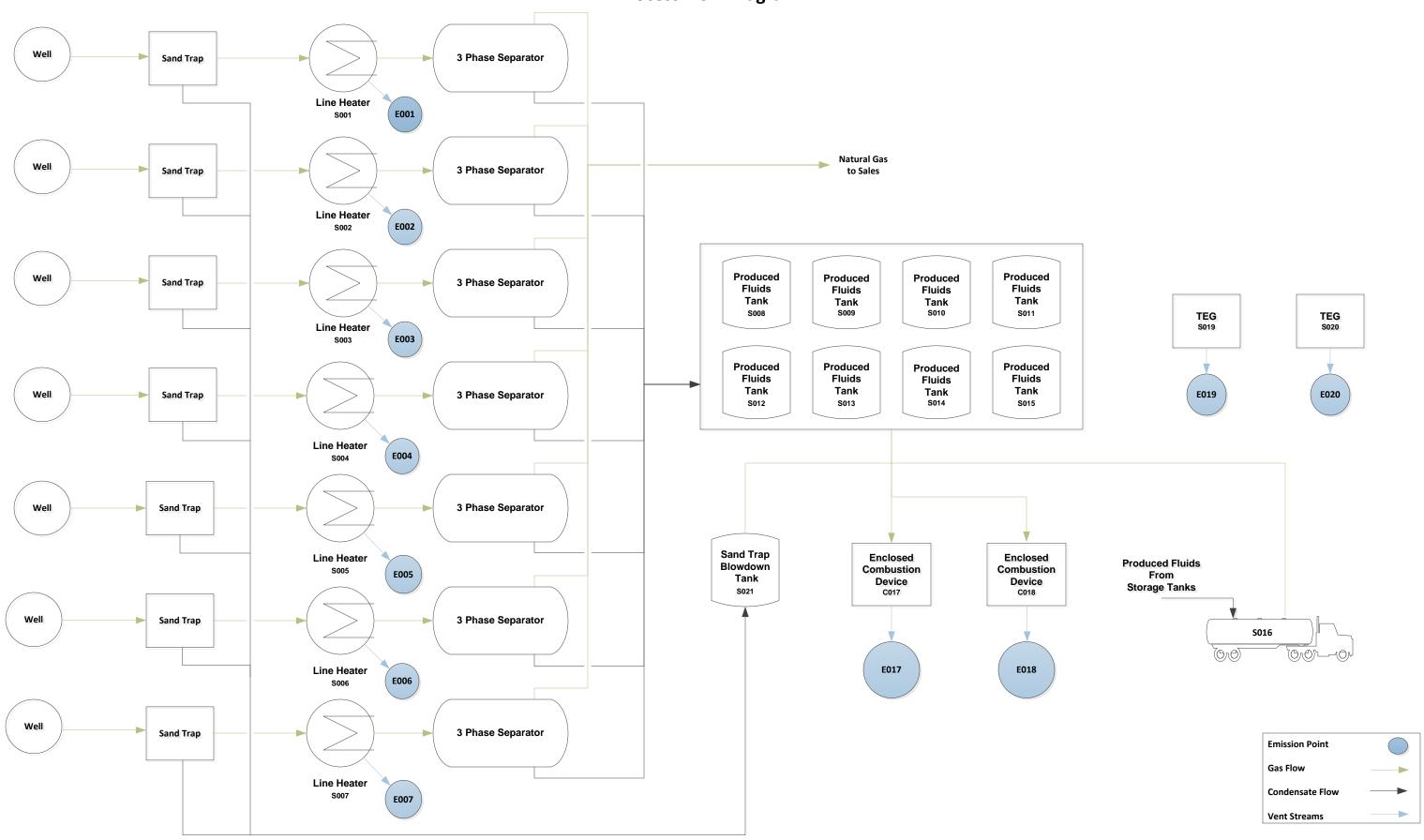
This permit application is being filed for EQT Production Company and addresses operational activities associated with the WEU-49 natural gas production site. Incoming raw natural gas from the seven (7) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blowdown to the sand trap blowdown tank (S021), as needed. From the sand traps, raw gas is routed through line heaters (S001-S007) to assist with the phase separation process in the downstream three-phase separators. In the separator, produced fluids are removed from the raw gas and transferred to the produced fluids storage tanks (S008-S015). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion units (C017, C018) and burnt. Produced fluids are pumped into a tank truck (S016) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion units.

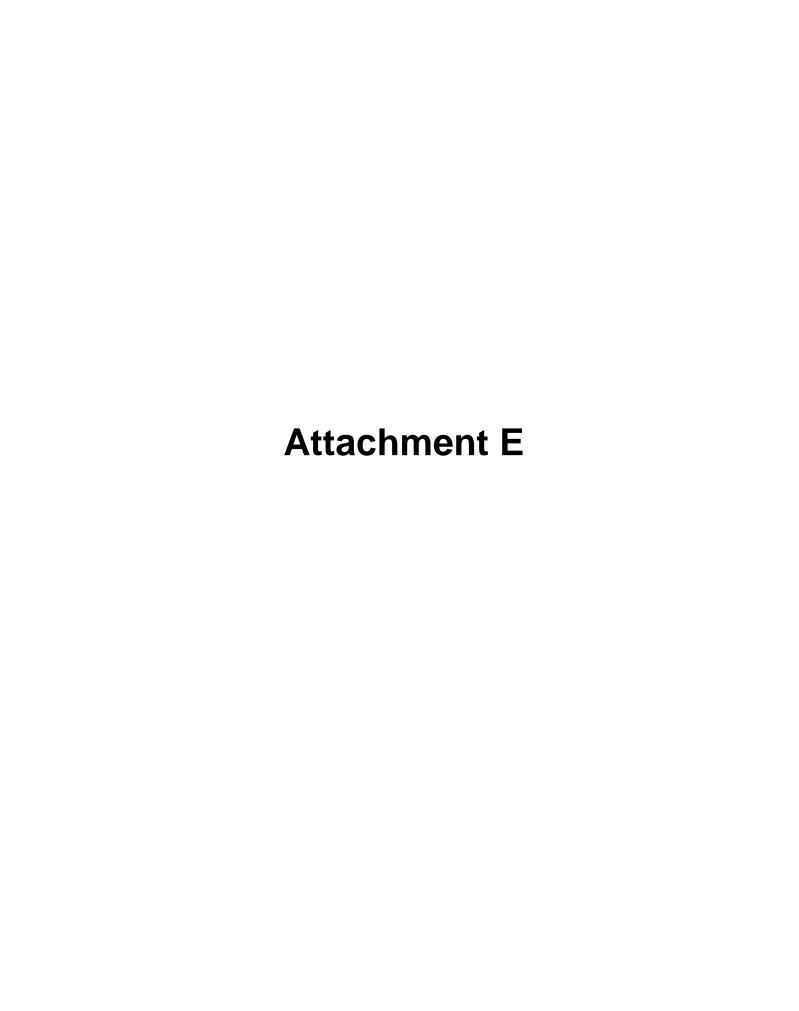
Two thermoelectric generation units (S019, S020) are operated and provide power to the WEU-49 natural gas production site.

A process flow diagram is included as Attachment D.

Attachment C

G70-A General Permit Description of Fugitive Emissions

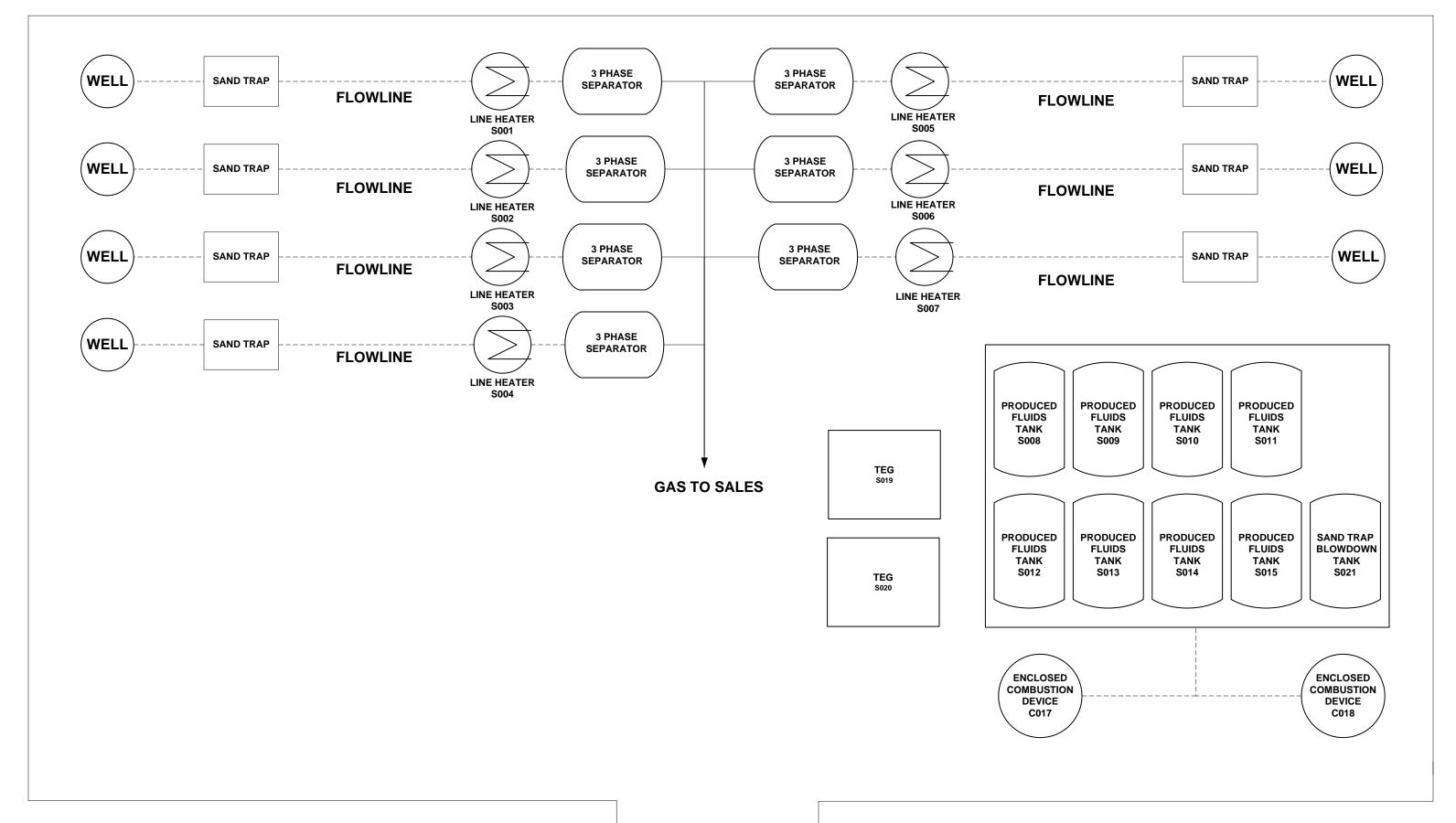

This permit application is being filed for EQT Production Company and addresses operational activities associated with the WEU-49 natural gas production site. Fugitive emissions on the site are generated from a number of sources, including an unpaved haul road and equipment leaks. These fugitive emission sources cannot be controlled by air pollution control devices. Emission levels for fugitive emissions were calculated using AP-42 emission factors, results of a gas analysis, and 40 CFR 98 Subpart W factors and equipment counts. A summary of the fugitive emissions on the WEU-49 natural gas production site can be found in Attachment O – Emissions Summary Sheet.



Attachment D

WEU 49 Natural Gas Production

Process Flow Diagram



Attachment E

Plot Plan

LAT. 39.25473 LON. -80.78660 CITY OF WEST UNION DODDRIDGE COUNTY **o** WEST VIRGINIA

0 2000

SCALE (IN FEET)

SITE LOCATION MAP

ADAPTED FROM USGS

REVISIONS ARE TO BE MADE ON THE CADD FILE ONLY

	EQT PRODUCTION COMPANY WEU-49 WELL PAD	CADD Review CHK'D MC
ERM _®	WEST UNION, WEST VIRGINIA	0250395
Drawn By MLB/9-19-14	Environmental Resources Management	ATTACHMENT F

G:\CAD\Drawings\EQT Production\0250395\C107.dwg

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	
Section 6	Storage Vessels*	
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol Dehydration Reboilers	l
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
~		_
Section 9	Reserved	Ш
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants	
	for Stationary Reciprocating Internal Combustion Engines	
	(40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	_
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	П
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	_
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	П
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
Section 17	and Located Within an UA/UC (40CFR63, Subpart HH)	П
	and Localed Within an OTY OC (10011005, Subpart 1111)	ш

^{*} Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

^{**} Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

^{***} Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Line Heater	2015	1.00 mmBtu/hr	New	NA
S002	E002	Line Heater	2015	1.00 mmBtu/hr	New	NA
S003	E003	Line Heater	2015	1.00 mmBtu/hr	New	NA
S004	E004	Line Heater	2015	1.00 mmBtu/hr	New	NA
S005	E005	Line Heater	2015	1.00 mmBtu/hr	New	NA
S006	E006	Line Heater	2015	1.00 mmBtu/hr	New	NA
S007	E007	Line Heater	2015	1.00 mmBtu/hr	New	NA
S008	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S009	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S010	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S011	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S012	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S013	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S014	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S015	E017 E018	Produced Fluid Tank	2015	400 bbl	New	C017 C018
S016	E017 E018	Tank Truck Loading Rack	2015	15,965 gal/day	New	NA
C017	E017	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
C018	E018	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
S019	E019	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA
S020	E020	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA
S021	E017 E018	Sand Trap Blow Tank	2015	140 bbl	New	C017 C018

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

New, modification, removal

For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment G Emission Source Data Sheets NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at
this facility:
API Number
047-017-06443
047-017-06444
047-017-06445
047-017-06446
047-017-06447
047-017-06448
047-017-06449

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where.

 $047 = State\ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment G Emission Source Data Sheets STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERAI	L INF	ORMA	ATION	(required)
----	---------	-------	------	-------	------------

1. GENERAL INFORMATION (required)	
1. Bulk Storage Area Name	2. Tank Name
WEU-49 Storage Tank Area	Produced Fluid Tanks (S008-S015)
3. Emission Unit ID number	4. Emission Point ID number
S008-S015	E017 or E018
5. Date Installed or Modified (for existing tanks)	6. Type of change:
6/1/2015 (anticipated)	New construction ☐ New stored material ☐
	Other
7A. Description of Tank Modification (if applicable): NA	
7B. Will more than one material be stored in this tank? If	so, a separate form must be completed for each material.
☐ Yes	
7C. Provide any limitations on source operation affecting	emissions. (production variation, etc.) NA
	-
II. TANK INFORMATION (required)	
8. Design Capacity (specify barrels or gallons). Use the i	nternal cross-sectional area multiplied by internal height.
16,800 gallons	
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This i	s also known as "working volume. 16,800 gallons
13A. Maximum annual throughput (gal/yr) 7,361,159	13B. Maximum daily throughput (gal/day) 20,168
14. Number of tank turnovers per year 439	15. Maximum tank fill rate (gal/min) 14.01
16. Tank fill method ☐ Submerged ☐ Splash	☐ Bottom Loading
17. Is the tank system a variable vapor space system?	Yes No
If yes, (A) What is the volume expansion capacity of the s	ystem (gal)?
(B) What are the number of transfers into the system	n per year?
18. Type of tank (check all that apply):	
Fixed Roof X vertical horizontal X	_ flat roof cone roof dome roof other
(describe)	
External Floating Roof pontoon roof	_ double deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof vertical column su	pport self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ di	iaphragm
Pressurized spherical cy	lindrical
Underground	
Other (describe)	
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)
Refer to enclosed TANKS Summary Sheets	
Refer to the responses to items 19 – 26 in section V	TI

IV. SITE INFORMAT	ION (c	heck whic	ch one ap	plies)					
Refer to enclosed TA									
Refer to the respon	ses to it	ems 27 –	33 in se	ction VII	[
V. LIQUID INFORMA Refer to enclosed TA Refer to the response	ANKS S	ummary	Sheets		[
Z Refer to the respons	ses to it	CIII3 54	37 III 3C	ction vii					
VI. EMISSIONS AND					quired))			
40. Emission Control De	evices (check as i	many as a	apply):					
Does Not Apply					-	e Disc (psi	•		
Carbon Adsorption ¹		1 .				s Blanket			_
Vent to Vapor Comb	oustion I	Device' (vapor coi						
Condenser ¹						ration Ven		a	
Other ¹ (describe)						Setting		ssure Setti	ing
101	D . 11	C	1D		Emerg	ency Relie	f Valve (psig)	
Complete appropriate AExpected Emission I					1	1	la aa . i .a . 41a	1:	4:)
Material Name and	,							е аррпса	,
	Flashi	ng	Breath	ıng	work	ing Loss	Total		Estimation Method ¹
CAS No.	Loss		Loss				Emissi	ons	Metnoa
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Loss lb/hr	4	
	1 119/111								
								tpy	
						ed in Atta		1	
								1	
								1	
								1	
								1	
								1	
								1	
								1	
								1	
								1	
								1	
								1	
TEDA - EDA Emission Fostor	Ple	ase Refe	r to Calc	eulations	Provide	ed in Atta	chment		oto O - Other (modifi)
¹ EPA = EPA Emission Factor, Remember to attach emissions	Ple	ase Refe	nce, SS = S	culations Similar Sour	Provide	ed in Atta	chment	roughput Da	
Remember to attach emissions SECTION VII (require	Ple , MB = M calculation	ase Refe	nce, SS = S	Similar Sour	Provide a series of the series and series are series and series and series are series and series and series are series are series are series and series are series ar	Similar Sourother modeli	chment	roughput Da	
Remember to attach emissions SECTION VII (require TANK CONSTRUCTION	Ple , MB = M , calculation ed if did ON AN	ase Refe	nce, SS = S	Similar Sour	Provide a series of the series and series are series and series and series are series and series and series are series are series are series and series are series ar	Similar Sourother modeli	chment	roughput Da	
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction	Ple MB = M calculation d if did ON AN	ase Refe	nce, SS = S ng TANKS.	Similar Sour Summary Sour	Provide A service of the service of	Similar Souroother modeli	chment	roughput Da	
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction Riveted Guni	Ple , MB = M calculation ed if did ON AN tion:	ase Refe	nce, SS = S ng TANKS vide TAN ATION	Similar Sour Summary Standard Summary Standard S	Provide rce, ST = heets and mmary S MATIO	Similar Sourother modeli	chment	roughput Day sheets if a	pplicable.
SECTION VII (require TANK CONSTRUCTION 19. Tank Shell Construction	Ple MB = M calculation dif did ON AN tion: te lined	ase Refe	nce, SS = S reg TANKS vide TAN ATION DXy-coate OB. Root	Similar Sour Summary Standard Summary Standard S	Provide A service of the service of	Similar Souroother modeli	chment	roughput Day sheets if a	

No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable								
22A. Is the tank heated?	Yes 22B. If yes, operate	ing temperature:	22C. If yo	es, how is heat prov	vided to			
⊠ No		tank?						
23. Operating Pressure Range (psig): -0.05 oz. to 10 oz.								
24. Is the tank a Vertical Fix	24A . If yes, for do	ome roof provide	24B. If yes, for cone roof, provide					
Roof Tank?		slope (ft/ft):						
∑ Yes □No								
25. Complete item 25 for Flo		es not apply 🛚						
	25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (che	25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
	☐ Vapor mounted res		Other (desci	ribe):				
25C. Is the Floating Roof equ	**							
¥	25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):							
25E. Is the floating roof equi	pped with a weather shield?	☐ Yes ☐ 1	No					
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Roof Tanks Does not apply								
26A. Deck Type: Bol	ted Welded	26B. For bolted de	ecks, provid	de deck constructio	n:			
26C. Deck seam. Continuous sheet construction:								
☐ 5 ft. wide ☐ 6 ft. wide ☐ 7 ft. wide ☐ 5 x 7.5 ft. wide ☐ 5 x 12 ft. wide ☐ other (describe) 26D. Deck seam length								
	26F. For column		26G. For column					
(ft.):		supported tanks, # of		supported tanks, di	ameter			
		columns:		of column:				
SITE INFORMATION:								
27. Provide the city and state on which the data in this section are based: Charleston, WV								
28. Daily Avg. Ambient Tem	•	29. Annual Avg. Maximum Temperature (°F): 65.5 °F						
30. Annual Avg. Minimum T	÷	31. Avg. Wind Speed (mph): 18 mph						
32. Annual Avg. Solar Insula	ntion Factor (BTU/ft ² -day):	33. Atmospheric Pressure (psia): 14.70						
1,123								
LIQUID INFORMATION: Refer to ProMax Simulation Sheets in Attachment I.								

Attachment G Emission Source Data Sheets STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERAI	L INF	ORMA	ATION	(required)
----	---------	-------	------	-------	------------

1. GENERAL INFORMATION (required)				
1. Bulk Storage Area Name	2. Tank Name			
WEU-49 Storage Tank Area	Sand Trap Blowdown Tank			
3. Emission Unit ID number	4. Emission Point ID number			
S021	E017 or E018			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
6/1/2015 (anticipated)	New construction ☐ New stored material ☐			
	Other			
7A. Description of Tank Modification (if applicable): NA				
7B. Will more than one material be stored in this tank? <i>If</i>	so, a separate form must be completed for each material.			
☐ Yes No				
7C. Provide any limitations on source operation affecting	emissions. (production variation, etc.) NA			
II. TANK INFORMATION (required)				
8. Design Capacity (specify barrels or gallons). Use the i	nternal cross-sectional area multiplied by internal height.			
16,800 gallons				
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20			
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10			
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10			
12. Nominal Capacity (specify barrels or gallons). This is	s also known as "working volume. 5,800 gallons			
13A. Maximum annual throughput (gal/yr) 305,760	13B. Maximum daily throughput (gal/day) 838			
14. Number of tank turnovers per year 52 15. Maximum tank fill rate (gal/min) 14				
16. Tank fill method ☐ Submerged ☐ Splash	☐ Bottom Loading			
17. Is the tank system a variable vapor space system?	Yes No			
If yes, (A) What is the volume expansion capacity of the s	ystem (gal)?			
(B) What are the number of transfers into the system	n per year?			
18. Type of tank (check all that apply):				
∑ Fixed Roof X vertical horizontal	flat roof cone roof _ <u>X</u> _ dome roof other			
(describe)				
External Floating Roof pontoon roof	_ double deck roof			
☐ Domed External (or Covered) Floating Roof				
☐ Internal Floating Roof vertical column sup	pport self-supporting			
☐ Variable Vapor Space lifter roof di	aphragm			
Pressurized spherical cyl	lindrical			
Underground				
Other (describe)				
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)			
Refer to enclosed TANKS Summary Sheets				

□ Refer to the responses to items 19 – 26 in section VII									
IV SITE INFORMATION (check which one applies)									
IV. SITE INFORMATION (check which one applies) Refer to enclosed TANKS Summary Sheets									
 ☑ Refer to the responses to items 27 – 33 in section VII 									
Ly reserve to the responded to hemb 2. We in section 12									
V. LIQUID INFORMATION (check which one applies) Refer to enclosed TANKS Summary Sheets									
Refer to the respon				ection VI	ī				
Keier to the respon	scs to 10	- CIIIS 34 -	37 III SC	ction vi					
VI. EMISSIONS AND	CONT	ROL DE	EVICE D	OATA (re	equired))			
40. Emission Control D	evices (check as	many as	apply):					
☐ Does Not Apply					Ruptur	e Disc (ps	ig)		
Carbon Adsorption ¹						s Blanket			_
☐ Vent to Vapor Comb	oustion	Device ¹ (vapor co						
Condenser ¹				· 		ation Ven		_	
Other ¹ (describe)						Setting		ssure Sett	ing
	· · · D 11		. 15		·	ency Relie	f Valve	(psig)	
¹ Complete appropriate A						1 1		1.	
41. Expected Emission								ie applica	
Material Name and CAS No.	Flash	ıng	Breath	ung	Work	ing Loss	Total Emissi	oma	Estimation Method ¹
CAS No.	Loss		Loss Loss						Method
							Togg		
	lh/hr	tny	lb/hr	tny	lb/hr	tny	Loss lb/br	fny	
	lb/hr Ple	tpy ease Refe	lb/hr r to Calo	tpy culations	lb/hr Provide	tpy ed in Atta	lb/hr	tpy I.	
		2.0				tpy ed in Atta	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
		2.0				2.0	lb/hr	2.0	
¹ EPA = EPA Emission Factor	Ple	aterial Bala	r to Cald	culations Similar Sou	Provide	Similar Source	lb/hr chment	I.	
¹ EPA = EPA Emission Factor Remember to attach emissions	Ple	aterial Bala	r to Cald	culations Similar Sou	Provide	Similar Source	lb/hr chment	I.	
Remember to attach emissions	Ple	aterial Bala	r to Cald	Similar Sou Summary S	Provide	Similar Sour	lb/hr chment	I.	
Remember to attach emissions SECTION VII (require	Ple MB = M calculation	aterial Bala	nce, SS = S	Similar Sou Summary S	Provide	Similar Sour	lb/hr chment	I.	
Remember to attach emissions SECTION VII (require TANK CONSTRUCTI	Ple	aterial Bala	nce, SS = S	Similar Sou Summary S	Provide	Similar Sour	lb/hr chment	I.	
SECTION VII (require TANK CONSTRUCTI 19. Tank Shell Construct	Ple MB = M calculation od if did ON AN etion:	aterial Balaons, includi	nce, SS = S ng TANKS vide TAI	Similar Sou Summary S NKS Sun	Provide	Similar Souroother modeli	lb/hr chment	I.	
SECTION VII (require TANK CONSTRUCTI 19. Tank Shell Construct	MB = M calculation: te lined	aterial Bala ons, includi I not pro	nce, SS = S ng TANKS vide TA	Similar Sou Summary S NKS Sun	Provide Provide Tree, ST = Sheets and Shee	Similar Sour	lb/hr chment chment ce Test, Th ng summa	T.	

21. Shell Condition (if metal and unlined):								
No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable								
22A. Is the tank heated?	22A. Is the tank heated? Yes 22B. If yes, operating temperature: 22C. If yes, how is heat provided to							
⊠ No			tank?					
23. Operating Pressure Range (psig): -0.05 oz. to 10 oz.								
24. Is the tank a Vertical Fi	xed 24A. If ye	s, for dome roof provide	24B. If yes, for cone roof, provide					
Roof Tank?	radius (ft):	5 ft.	slope (ft/ft):					
⊠ Yes □No								
25. Complete item 25 for Fl	oating Roof Tanks 🗌	☐ Does not apply ☐						
25A. Year Internal Floaters	Installed:							
25B. Primary Seal Type (ch	25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
	☐ Vapor mou	nted resilient seal	Other (describe):					
25C. Is the Floating Roof eq		<u> </u>)					
25D. If yes, how is the second	•		Rim Other (describe):					
25E. Is the floating roof equ	25E. Is the floating roof equipped with a weather shield? Yes No							
25F. Describe deck fittings:								
	26. Complete the following section for Internal Floating Roof Tanks							
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:								
26C. Deck seam. Continuous sheet construction:								
☐ 5 ft. wide ☐ 6 ft. wide ☐ 7 ft. wide ☐ 5 x 7.5 ft. wide ☐ 5 x 12 ft. wide ☐ other (describe)								
26D. Deck seam length	26E. Area of deck (f	, and the second	26G. For column					
(ft.):		supported tanks, #						
		columns:	of column:					
SITE INFORMATION:								
27. Provide the city and state on which the data in this section are based: Charleston, WV								
28. Daily Avg. Ambient Ter	•		29. Annual Avg. Maximum Temperature (°F): 65.5 °F					
30. Annual Avg. Minimum			31. Avg. Wind Speed (mph): 18 mph					
32. Annual Avg. Solar Insul	ation Factor (BTU/ft ² -	-day): 33. Atmospheric	33. Atmospheric Pressure (psia): 14.70					
1,123								
LIQUID INFORMATION: Refer to ProMax Simulation Sheets in Attachment I.								

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
S001	E001	Line Heater	2015	New	NA	1.00	1,088
S002	E002	Line Heater	2015	New	NA	1.00	1,088
S003	E003	Line Heater	2015	New	NA	1.00	1,088
S004	E004	Line Heater	2015	New	NA	1.00	1,088
S005	E005	Line Heater	2015	New	NA	1.00	1,088
S006	E006	Line Heater	2015	New	NA	1.00	1,088
S007	E007	Line Heater	2015	New	NA	1.00	1,088
S019	E019	TEG	2015	New	NA	0.013	1,088
S020	E020	TEG	2015	New	NA	0.013	1,088

Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

New, modification, removal

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

Attachment G Emission Source Data Sheets

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad.

This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:	. Emission Unit ID: S016 2. Emission Point ID: E017/E018 3. Year Installed/ Modified: 2015										
4. Emission Unit Description: Tank Truck Loading Rack											
5. Loading Area Data:											
5A. Number of pumps: 1 5B. Number of liquids loaded: 1 5C. Maximum number of tank trucks loading at one time:											
6. Describe cleaning location, compounds and procedure for tank trucks: NA											
7. Are tank trucks pre Yes No If YES, describe: NA	If YES, describe:										
8. Projected Maximum Operating Schedule (for rack or transfer point as a whole):											
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.							
hours/day	As needed	As needed	As needed	As needed							
days/week	As needed	As needed	As needed	As needed							

Liquid Name	Produced Fluids
Max. daily throughput (1000 gal/day)	21.01
Max. annual throughput (1000 gal/yr)	7,667
Loading Method ¹	SP
Max. Fill Rate (gal/min)	100
Average Fill Time (min/loading)	42 min
Max. Bulk Liquid Temperature (°F)	85 °F
True Vapor Pressure ²	NA
Cargo Vessel Condition ³	U
Control Equipment or Method ⁴	Enclosed Combustion Device
	(C017 or C018)
Minimum collection efficiency (%)	70 %
Minimum control efficiency (%)	98 %

Attachment G Emission Source Data Sheets

Loading (lb/hr)	0.04
Annual (ton/yr)	0.17
l ⁵	EPA AP-42, ProMax
SP = Splash Fill SUB = Subme	rged Fill
iquid temperature	
el, C = Cleaned, U = Uncleaned (dedica	ated service), O = other (describe)
ly (complete and submit appropriate A	ir Pollution Control Device Sheets as Attachment "H"):
otion	
or Balance (closed system)	
mbustion Device	
tion or Incineration	
ion Factor as stated in AP-42	
ance	
ement based upon test data submittal	
	Annual (ton/yr) SP = Splash Fill SUB = Subme iquid temperature I, C = Cleaned, U = Uncleaned (dedictly (complete and submit appropriate Aution or Balance (closed system) mbustion Device tion or Incineration ion Factor as stated in AP-42 ance

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation/air pollution control device.

O = other (describe)

RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring.

EQT will comply with all monitoring requirements set forth in the permit that is issued.

EQT will comply with all recordkeeping requirements set forth in the permit that is issued.

REPORTING Please describe the proposed frequency of reporting of the recordkeeping.

TESTING Please describe any proposed emissions testing for this process equipment/air pollution control device.

EQT will comply with all reporting requirements set forth in the permit that is issued.

EQT will comply with all testing requirements set forth in the permit that is issued.

11. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty: $\mathbf{N}\mathbf{A}$

Attachment G Emission Source Data Sheets LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC8				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	257	N/A	N/A	650.14
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	7	N/A	N/A	26.23
Valvoo	Non VOC				
Open-ended Lines ¹²	VOC	18	N/A	N/A	100.02
	Non-VOC				
Sampling Connections ¹³	voc				
Connections	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC	1123	N/A	N/A	315.65
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Attachment G Emission Source Data Sheets

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).

EPA emission factor and component counts as specified in 40 CFR Part 98, subpart W

- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \$\square\$51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Attachment G

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

_		FIVI	PIVI-1U
k =	Particle size multiplier	4.9	1.5
s =	Silt content of road surface material (%)	4.8	4.8
p =	Number of days per year with precipitation >0.01 in.	150	150

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Liquids Hauling	14	30	10	1.72	1	1,826	NA	NA
2	Employee Vehicles	4	3	10	1.72	1	200	NA	NA
3									
4									

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		P	M	PM	l-10
k =	Particle size multiplier	4.9		1	.5
s =	Silt content of road surface material (%)	4.8		4.8	
S =	Mean vehicle speed (mph)	10		10	
W =	Mean vehicle weight (tons)	30	3	30	3
w =	Mean number of wheels per vehicle	14	4	14	4
p =	Number of days per year with precipitation >0.01 in.	150		1:	50

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M		PM-10			
Item No.	Uncon	trolled	Cont	rolled	Uncor	ntrolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	7.37	6.73	7.37	6.73	1.88	1.71	1.88	1.71
2	2.61	0.26	2.61	0.26	0.67	0.07	0.67	0.07
3								
4								
5	Note: AP-4	2 has been ເ	pdated sinc	e the last re	vision of thi	s form. The	most recent	ly
6	published f	actors were	used in pre	paring these		alculations.		
7	detailed ca	Iculation me	thodologies) <u>.</u>				
8								
TOTALS:	9.98	6.99	9.98	6.99	2.54	1.78	2.54	1.78

Page 1 of 1

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.								
		General In	formation					
1. Control Device ID#: C017			2. Installation Dat	e: 2015		⊠ New		
3. Maximum Rated Total Flow ~7,800 scfh 188,000		4. Maximum D 11.66 MMB	esign Heat Input: tu/hr	5. Design 1,088	Heat Cor BTU/scf			
		Control Devi	ce Information					
6. Select the type☐ Elevated Flare	_ `		vice being used: 🗵 nal Oxidizer 🔲 (Enclosed Completion C				
7. Manufacturer: LEED Fabri Model No.: Enclosed Combus		8. Hours of opera 8,760	ation per year:					
9. List the emission units whose emissions are controlled by this vapor combustion control device: Emission Units: S008-S015, S016, S021								
10. Emission Unit ID#	Emission So	urce Description:	Emission U	nit ID#	Emission Source Description:			
S008-S015		Fluids Tanks	S016		Tank Truck Loading Rack			
S021	•	Blowdown Tank		•. 1	. 1 1:	1		
If this vapor combusto	r controls emi	ssions from more		nits, please at	tach ada	1		
11. Assi	st Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?		
Steam - Air - F	Pressure - 🛛	Non -	~6 ft	4 ft		□Yes □No NA		
		Waste Gas	Information					
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions stream			Exit Velocity of the ssions stream (ft/s)		
450 lb/hr	Va	riable	70					
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	rned.				

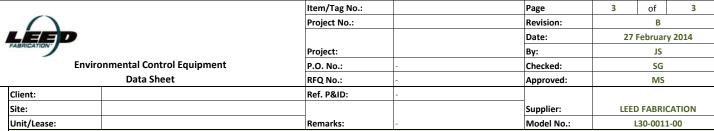
		Pilot	Information									
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	pilot fla	el flow rate to nme per pilot scf/hr):	23. Heat pilot (B'			utomatic re- be used?					
Pipeline quality Natural Gas	1		~30	0.03 MME	3tu/hr	☐ Yes	⊠ No					
25. If automatic re-ignition will be used, describe the method: N/A												
26. Describe the method of controlling flame:												
There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.												
	quipped with a monitor	28. If yes	s, what type?	Thermocou	ple Infra	a-Red 🔲 U	Jltra Violet					
•	esence of the flame?	☐ Came	era with monitorin	ng control ro	om 🗌 Othe	er, describe:						
∑ Yes	S No											
29. Pollt	utant(s) Controlled	3(0. % Capture Effi	iciency		facturer's G						
	НС		100			>98						
	VOC		100			>98						
	HAP		100			>98						
32. Has the control of	device been tested by the ma	anufacture	and certified?		<u> </u>							
	•											
Yes												
33. Describe all oper	rating ranges and maintenan	ice procedi	ures required by the	he manufact	urer to mainta	ain warranty:	:					
See Attached												
34. Additional Inform	mation Attached?	YES	□NO									
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.												

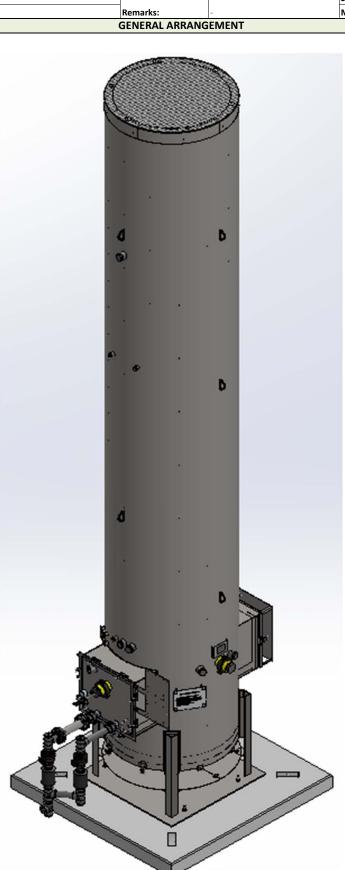
AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.								
		General In	formation					
1. Control Device ID#: C018			2. Installation Dat	te: 2014		⊠ New		
3. Maximum Rated Total Flow ~7,800 scfh 188,000		4. Maximum D 11.66 MMB	esign Heat Input: tu/hr	5. Design 1,088	Heat Cor BTU/scf			
		Control Devi	ce Information					
6. Select the type ☐ Elevated Flare	_ `		vice being used: 🔀	Enclosed Completion C				
7. Manufacturer: LEED Fabrication 8. Hours of operation per year: 8,760								
9. List the emission units whose emissions are controlled by this vapor combustion control device: Emission Units: S008-S015, S016								
10. Emission Unit ID#	Emission So	urce Description:	Emission Unit ID# En			Emission Source Description:		
S008-S015		Fluids Tanks	S016		Tank Truck Loading Rack			
S021	-	Blowdown Tank	<u> </u>					
If this vapor combusto	or controls emi	issions from more		nits, please at	tach ada	litional pages.		
11. Ass	ist Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?		
Steam - Air - I	Pressure - 🛚	Non -	~6 ft	4 ft		□Yes □No NA		
		Waste Gas	Information					
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions stre			Exit Velocity of the ssions stream (ft/s)		
450 lb/hr	Va	riable	70					
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	ırned.				

		Pilot Ir	nformation										
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	pilot flam	low rate to e per pilot //hr):	23. Heat pilot (B'			utomatic re- be used?						
Pipeline quality Natural Gas	1	~;	~30 0.03 MMBtu/hr ☐ Yes ☒ No										
25. If automatic re-ig	25. If automatic re-ignition will be used, describe the method: N/A												
26. Describe the met	26. Describe the method of controlling flame:												
There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.													
	quipped with a monitor	28. If yes, v	what type?	Thermocou	ple 🗌 Infra	a-Red 🔲 U	Jltra Violet						
_	esence of the flame?	☐ Camera	with monitorin	g control ro	om 🗌 Othe	er, describe:							
∑ Yes	∑ Yes □ No												
29. Pollu	utant(s) Controlled	30.	% Capture Effic	ciency		ifacturer's G							
	НС		100			>98							
	VOC		100			>98							
	HAP		100			>98							
32. Has the control of	device been tested by the ma	l anufacturer a	nd certified?										
	•												
Yes													
33. Describe all oper	rating ranges and maintenan	ce procedure	es required by the	ne manufacti	urer to mainta	ain warranty:	:						
See Attached													
34. Additional Inform	mation Attached?	YES	NO										
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.													


Battery Pack


Item/Tag No.:	Page	1	of	2			
Project No.:	Revision:	В					
	Date:	27 February 2014					
Project:	Ву:	JS					
P.O. No.: -	Checked:		SG				

1	FABRICATION"						Date:		27 February 2014		
,	PABRICATION			Project:			By:		JS		
	Enviro	mental Control Equipment		P.O. No.:	-		Checked	d:	SG		
		Data Sheet		RFQ No.:	_		Approv		MS		
	a	Data Silect					Арргои	cu.	1913		
	Client:			Ref. P&ID:	-						
	Site:						Supplie	r:	LEED FABRICATION		
	Unit/Lease:			Remarks:	-		Model I	No.:	L30-0011-00		
				GENE	RAL						
1	Design Code:					NDE:		LEE	D Fabrication Standards		
									_		
2	Service:					Customer Spec	s:	L	Yes		
3	Description:	Standard Dual	Stage 48 High Effi	ciency Combusto	r			_	/ No		
				PROCES:	S DATA						
				Pi	rocess Conditions:						
	Gas Composition:			mol %	Variable		Value	Limita			
								Units			
4	Methane				Flow Rate	U	p to 140	Mscfd			
5	Ethane				Pressure	l	lp to 12	oz/in2			
6	Propane				Temperature	e		٥F			
7	I-Butane				Molecular Wei						
							2				
8	n-Butane				Process/Waste St		Gas		iquid		
9	I-Pentane				etailed Process De						
0	n-Pentane			1.	. Turndown 10:1. B	ased on an exp	ected normal	operating r	rate indicated above.		
1	n-Hexane			2.	. DRE: 98 % operat	ting at design co	nditions				
2					Burner Pressure D	-					
	CO2										
.3	N2										
4	Helium										
.5	H ₂ O										
.6	C7										
.7											
	C8										
8	C9										
9	C10										
20	C11+										
11		TOTAL									
	Other Components		•	PPMV A	vailable Utilities:						
	Other Components:			PPIVIV A							
22	H2S				Fuel / Pilot G		Mir	n. 30psig Na	atural Gas /Propane 40-50 SCFH		
23	Benzene				Instrument A	ir	NA				
24	Toluene				Power		120	V / 60 Hz c	or Solar Power		
25	E-Benzene				Steam		NA				
26	Xylene				Purge Gas						
.0	Aylelle			DECICN							
				DESIGN							
27	Ambient Temperatures:	<u> </u>		N	oise Performance	Requirements:			Under 85 dBA		
8.		Low, ^o F	-20	St	tructural Design Co	ode:					
29		High, ⁰F	120) W	/ind Design Code:			ASCE			
30	Design Conditions:	Pressure/Temperature			-						
	Max. Relative Humidity		90			Droccuro/Spoo			100 mph		
		, 70	90			Pressure/Spee	,		100 mpn		
	Elevation (ASL), ft					Category					
13	Area Classification:		Class I	Div 2	eismic Design Code	<u> </u>					
34	Electrical Design Code:		NEG	С		Location					
	-			EQUIPMENT SI	PECIFICATION						
15	Туре:	Elevated 🗸	Enclosed	-	quipment Design:						
	7F 75							84.1	sial / Cina / Bakina / Other		
86		Above Ground				omponent		Mate	rial / Size / Rating / Other		
37			Multiple Stack	В	urner						
88		Portable / Trailer			Burner Tip	/ Assist Gas Bu	ner		304 SS		
19					B	urner Body			Carbon Steel		
10	Smokeless By:	Steam	Assist Air	D	ilot	1					
						Dilot Tin		<u> </u>	204 55		
11		☐ nas Assist []	Staging			Pilot Tip		 	304 SS		
12					P	ilot Line(s)			Carbon Steel		
13	Stack:	✓ Self Supporting		Fi	irebox / Stack						
14	Flare Burner:	☐ Non-Smokeless ✓	Smokeless	Gas Assist		Shell		1	Carbon Steel		
15	Pilot:	✓ Intermittent	Continuous			Piping		İ	Carbon Steel		
								t	Carbon Steel		
				nla)		Nozzles		1			
Pilot Flame Control: No Yes (Thermocouple)			pie)		Flanges			Carbon Steel			
18						Insulation			Blanket		
19	Pilot Ignition:	Flamefront Generator] Inspirating Ignite	or	Insulation Pins			304 SS			
0		Electronic	Automatic	Manual	-	Refractory		NA			
1		With Pilot Flame Control	<u> </u>			ctory Anchors					
			`			-		1	NA		
52		With Auto Pilot Re-Ignition	I		Ladder	s and Platforms		NA			
					Ladders and Platforms						
3					Stack Sa	mple Connectio	ns	F	Per EPA requirements		

Other

				Item/Tag No.:			Page	2 of 3			
					Project No.:			Revision	1:	В	
9	LEED							Date:		27 February 2014	
	FABRICATION -				Project:			Ву:		JS	
	Environ	mental	Control Equip	ment	P.O. No.:		_	Checked	ı.	SG	
	LIIVIIOII		ta Sheet	mem							
	olt	Dat	a sileet		RFQ No.:		-	Approve	eu:	MS	
	Client:				Ref. P&ID:		-				
	Site:							Supplier		LEED FABRICATION	
	Unit/Lease:				Remarks:		-	Model N	lo.:	L30-0011-00	
					EQUIPMENT	SPECIF	ICATION				
56	Flame Detection:	The	ermocouple	✓ Ionization Ro	od	Auxilia	y Equipment				
57		Πuv	' Scanner				Valves			NA	
58	General Configuration:						Blowers			NA	
59	_		6				Dampers			NA NA	_
60			1								
							Inlet KO / Liquid Seal			NA	
61			á	b		-	Flame / Detonation Arrestor			Yes	
62			•			Instrum	entation & Controls				
63			100				Solenoids / Shut-Off Valves		Check	with Sales for available config	z .
64							Flow Meters			NA	
65				. 6			Calorimeter			NA	
66							Pressure Switches/Transmitters			NA	
67							Thermocouples		Check	with Sales for available config	g.
68			4			7	Temperature Switches/Transmitte	rs		NA	_
69			20	14 K				.13	Chock	with Sales for available config	_
70			. 7		-	BMS		CHECK		5*	
			100				CEMS			NA	
71			10				Other			NA	
72			Pi								
73											
74				0							
75											
					FABRICATION	AND IN	ISPECTION				
76	Special requirements		Skid Mounted	✓ Concrete Pad			Eq	uipment	Info		
77			Other				Component			Weight / Dimensions	
78						Burner					
79		V	Vendor Standa	nrd			Burner Assembly			-	
80		౼౼	Other. Specify:			Stack	burner Assembly				
81			Vendor Standa			Stack	Stack Assembly			40 " OD v 25 ! H	
				ii u			Stack Assembly			48 " OD x 25 ' H	
82		<u> </u>	MTR				Pilot Tip				
83		<u> </u>	Certificate of C				Pilot Line(s)				
84		<u> </u> _	Other (Specify)				Stack Assembly				
85	NDE	✓	Vendor Standa	nrd		Auxilia	y Equipment				
86			Radiography. S	Specify:			Blowers				
87			Ultrasonic. Spe	ecify:			Inlet KO / Liquid Seal				
88			Liquid Penetrar	nt.			Flame / Detonation Arrestor				
89			Magnetic Partic	cles.	·		Skid				
90			PMI. Specify:			Instrumentation & Controls					
91			Other. Specify:			Ī	BMS				_
92			Vendor Standa			1	Control Panel				_
93			Other. Specify:			1	25.16.51.1 3.1101				
94			Vendor Standa			1					
95						+					
96			Other. Specify: Vendor Standa			1					
						-					
97			Other. Specify:	:							
98											
99											
	Additional Notes:										

Line Heaters S001 - S007

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088 8,760		0.005	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	2 Chapter 1.4 1.00 1,088 8,760		8,760	0.002	0.007
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	<0.001
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.08	0.34
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.09	0.40
PM	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	0.007	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,088	8,760	<0.001	0.002
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR 98 Subpart C	1.00	1,088	8,760	116.98	512.36
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR 98 Subpart C	1.00	1,088	8,760	0.002	0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR 98 Subpart C	1.00	1,088	8,760	<0.001	<0.001
Total HAPs							0.002	0.008
Total CO ₂ e							117.10	512.89

Notes

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 7 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Thermoelectric Generators S019 - S020

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.004
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.005
PM	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR 98 Subpart C	0.013	1,088	8,760	1.52	6.66
CH₄	0.001	kg CH₄ / MMBtu	40 CFR 98 Subpart C	0.013	1,088	8,760	<0.001	<0.001
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR 98 Subpart C	0.013	1,088	8,760	<0.001	<0.001
Total HAPs							<0.001	<0.001
Total CO₂e							1.52	6.67

Notes:

- -Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- -Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- $-CO_2$ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Produced Fluids S008 - S015

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)			
VOCs	158.97	696.27			
HAPs	7.65	33.52			
CO ₂	0.80	3.50			
CH₄	32.76	143.49			
Total CO₂e	819.80	3,590.71			

Notes:

- -Emission rates for Produced Fluid Tanks S008 S015 were calculated using ProMax software. ProMax output sheets for the WEU-49 Pad are attached.
- -The emission rates displayed above are pre-control device emissions.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.
- -For emission calculation purposes, the total throughput for tanks S008 S015 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blowdown Tank S021

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)			
VOCs	6.62	28.98			
HAPs	0.32	1.40			
CO ₂	0.03	0.15			
CH₄	1.36	5.98			
Total CO₂e	34.15	149.56			

Notes:

- -Blowdown operations are conducted on the WEU-49 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- -Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates.
- -Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the WEU-49 Pad are attached.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Truck Loading Rack S016

Total Emissions from Tank Unloading Operations

Pollutant	Max. Uncontrolled Hourly Emissions (lb/hr)	Max. Uncontrolled Annual Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Annual Emissions (lb/hr)	Post-Control Max. Annual Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)	Total Max. Hourly Emissions (lb/hr)	Total Max. Annual Emissions (tons/yr)
VOCs	0.12	0.54	70%	98%	0.002	0.008	0.04	0.16	0.04	0.17
HAPs	< 0.001	0.002	70%	98%	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
CO ₂	0.001	0.005	70%	98%	0.43	1.87	<0.001	0.002	0.43	1.87
CH ₄	0.01	0.04	70%	98%	<0.001	<0.001	0.003	0.01	0.003	0.01
Total CO₂e	0.25	1.09			0.43	1.89	0.075	0.33	0.51	2.22

⁻CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Gas Composition of Vent Gas

Gas Stream	Mole Fraction
Methane	0.32
Ethane	0.23
Propane	0.17
Butane	0.13
Pentanes	0.07
Carbon Dioxide	0.003

Vent Gas Properties

Mass Flowrate (lb/hr)	Density (lb/ft ³)
0.24	0.10

Notes:
-Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached. The emission rates displayed above a pre-control emission rates.

Enclosed Combustion Device C017 - C018

Emissions from Tanks

Gas Composition of Vent Gas

Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	79.48	348.14	98%	1.59	6.96	Methane	0.32	
Produced Fluid Tanks S008 - S015	HAPs	3.83	16.76	98%	0.077	0.34	Ethane	0.23	
Floduced Fluid Taliks 3000 - 3015	CO ₂	0.40	1.75	98%	312.44	1,368.49	Propane	0.17	
	CH₄	16.38	71.74	98%	0.33	1.43	Butane	0.13	
Sand Trap Blowdown Tank - S021	VOCs	3.31	14.49	98%	0.07	0.29	Pentanes	0.07	
	HAPs	0.16	0.70	98%	0.003	0.01	Carbon Dioxide	0.003	
Sand Trap Blowdown Tank - Sozi	CO ₂	0.02	0.07	98%	12.65	55.43	Vent C		
	CH₄	0.68	2.99	98%	0.01	0.06		Mass Flow Bate	
	VOCs	0.06	0.27	98%	0.02	0.09	Vent Gas Properties	Mass Flow Rate (lb/hr)	Density (lb/ft ³)
Tank Truck Loading Rack - S016	HAPs	<0.001	0.001	98%	<0.001	<0.001		(10/111)	
Talik Truck Loading Nack - 5010	CO ₂	<0.001	0.003	98%	0.21	0.94	Produced Fluids Tank	119.96	0.09
	CH₄	0.005	0.02	98%	0.002	0.01	Blowdown Tank	5.00	0.10
	VOCs	82.85	362.90		1.68	7.34			
	HAPs	3.99	17.46		0.08	0.35			
Totals	CO ₂	0.42	1.82		325.31	1,424.85			
	CH₄	17.07	74.75		0.34	1.50			
	CO2e	427.10	1,870.68		333.88	1,462.39			

Emissions from Pilot Operations

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Combustion Device Pilot Rating (Btu/hr)	Enclosed Combustion Device Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max. Hourly Emissions (lb/hr)	Burner Max. Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.5		1,088	30,000	11,660,000	<0.001	<0.001			<0.001	<0.001
Hexane	1.8		1,088	30,000	11,660,000	<0.001	<0.001			<0.001	<0.001
Formaldehyde	0.075		1,088	30,000	11,660,000	<0.001	<0.001	<0.001	0.004	<0.001	<0.001
CO	84		1,088	30,000	11,660,000	0.002	0.01	0.90	3.94	0.90	3.95
NO _x	100		1,088	30,000	11,660,000	0.003	0.01	1.07	4.69	1.07	4.71
PM	7.6		1,088	30,000	11,660,000	<0.001	<0.001	0.08	0.36	0.08	0.36
SO ₂	0.6		1,088	30,000	11,660,000	<0.001	<0.001	0.006	0.03	0.006	0.03
CO ₂		53.06	1,088	30,000	11,660,000	3.51	15.37	1,363.95	5,974.12	1,367.46	5,989.49
CH ₄		0.001	1,088	30,000	11,660,000	<0.001	<0.001	0.03	0.11	0.03	0.11
N ₂ O		<0.001	1,088	30,000	11,660,000	<0.001	<0.001	0.00	0.01	0.00	0.01
Total HAPs					·	<0.001	<0.001			<0.001	<0.001
CO ₂ e						3.51	15.39	1,365.36	5,980.29	1,368.88	5,995.67

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1.68	7.34
HAPs	0.08	0.35
CO	0.90	3.95
NOx	1.07	4.71
PM	0.08	0.36
SO ₂	0.01	0.03
CO_2	1,692.77	7,414.34
CH₄	0.37	1.61
N_2O	0.003	0.01
CO ₂ e	1,702.75	7,458.06

Notes:

- -Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO ₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24 Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$E_{a,CH\,4}(un-combusted\)=V_a\ *(1-\eta)\ *\ X_{CH\,4} \eqno(Eq.\ W-19)$$

$$E_{a,CO2} \left(un-combusted \right) = V_a * X_{CO2}$$
 (Eq. W-20)

$$E_{a,CO2} (combusted) = \sum_{i=1}^{5} (\eta * V_a * Y_j * R_j)$$
 (Eq. W-21)

Where

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

 Y_j = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

k Particle size multiplier¹
s 4.8 Silt content of road surface material (%)

p 150 Number of days per year with

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	1.72	1,826	NA	7.37	6.73	1.88	1.71	0.19	0.17
2	Employee Vehicles	4	3	1.72	200	NA	2.61	0.26	0.67	0.07	0.07	0.007
						Totals:	9.98	6.99	2.54	1.78	0.25	0.18

Notes

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$ Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365] Equation 2 from AP-42 13.2.2 - Final Version 11/2006

^{1 -} Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Fugitive Leaks

Default Average Com	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹											
				Pressure Relief								
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Valves								
Wellheads	8	38	0.5	0								
Separators	1	6	0	0								
Meters/Piping	12	45	0	0								
Compressors	12	57	0	0								
In-line Heaters	14	65	2	1								
Dehydrators	24	90	2	2								

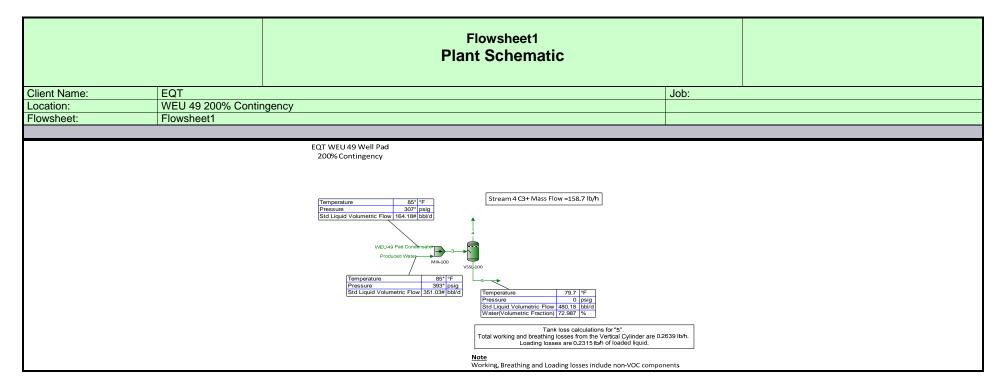
Well Specific Equipment Counts								
Facility Equipment								
Туре	Count on Site							
Wellheads	7							
Separators	7							
Meters/Piping	8							
Compressors	0							
In-line Heaters	7							
Dehydrators	0							

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition														
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	4.16	1.71	0.71	0.22	0.14	0.03	0.009	0.41	0.01	0.014	<0.001	0.007	0.19	78.57
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO₂e (tons/yr)
Valves	257	0.027	8760	0.07	0.33	0.007	0.03	0.001	0.007	0.23	0.99	5.66	24.78
Connectors	1123	0.003	8760	0.04	0.16	0.003	0.01	<0.001	0.003	0.11	0.48	2.75	12.03
Open-ended Lines	18	0.06	8760	0.01	0.05	0.001	0.005	<0.001	0.001	0.03	0.15	0.87	3.81
Pressure Relief Valves	7	0.04	8760	0.003	0.01	<0.001	0.00	<0.001	<0.001	0.01	0.04	0.23	1.00
			Total Emissions:	0.12	0.55	0.01	0.05	0.003	0.01	0.38	1.66	9.50	41.63

²- Table W-1A to 40CFR98 Subpart W


-Gas Composition data for WEU-49 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations:Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Total WEU 49 Site Emission Levels

	VC	OCs	H	APs	C	0	N	IO _x	Р	M	S	02	(.O ₂	С	H ₄	N	l ₂ O	С	O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	< 0.001	0.002	116.98	512.36	0.002	0.01	<0.001	< 0.001	117.10	512.89
Line Heater (S002)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (S003)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	< 0.001	117.10	512.89
Line Heater (S004)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	< 0.001	< 0.001	117.10	512.89
Line Heater (S005)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (S006)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (S007)	0.005	0.02	0.002	0.008	0.08	0.34	0.09	0.40	0.007	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
TEG (S019)	< 0.001	<0.001	< 0.001	<0.001	0.001	0.004	0.001	0.005	<0.001	<0.001	<0.001	< 0.001	1.52	6.66	<0.001	<0.001	<0.001	<0.001	1.52	6.67
TEG (S020)	< 0.001	<0.001	< 0.001	<0.001	0.001	0.004	0.001	0.005	<0.001	<0.001	<0.001	< 0.001	1.52	6.66	<0.001	<0.001	<0.001	<0.001	1.52	6.67
Enclosed Combustion Unit (C017)	1.68	7.34	0.08	0.35	0.90	3.95	1.07	4.71	0.08	0.36	0.006	0.03	1,692.77	7,414.34	0.37	1.61	0.003	0.01	1,702.75	7,458.06
Enclosed Combustion Unit (C018)	1.68	7.34	0.08	0.35	0.90	3.95	1.07	4.71	0.08	0.36	0.006	0.03	1,692.77	7,414.34	0.37	1.61	0.003	0.01	1,702.75	7,458.06
Haul Roads			1		1				9.98	6.99										
Fugitives Leaks	0.12	0.55	0.01	0.05									0.003	0.01	0.38	1.66			9.50	41.63
Totals	3.51	15.38	0.18	0.80	2.35	10.28	2.79	12.24	10.20	7.92	0.02	0.07	4,207.43	18,428.53	1.13	4.96	0.01	0.03	4,237.74	18,561.32

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C017 or C018. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C017 and C018 are additive.

From Block

To Block

5

VSSL-100

4

VSSL-100

3

MIX-100

VSSL-100

Process Streams Report All Streams

Tabulated by Total Phase

Client Name:	EQT	Job:	
Location:	WEU 49 200% Contingency		
Flowshoot:	Flowsheet1		

Connections

WEU 49 Pad

Condensate

MIX-100

Produced

Water

MIX-100

	Stream Co	omposition			
	Produced	WEU 49 Pad	3	4	5
	Water	Condensate			
Mole Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	11.09 *	0.681192	31.7665	0.00738627
Carbon Dioxide	0 *	0.102 *	0.00626524	0.281957	0.00028934
Ethane	0 *	8.288 *	0.509082	22.623	0.029741
Propane	0 *	7.164 *	0.440041	17.0913	0.0791085
i-Butane	0 *	2.232 *	0.137098	4.20264	0.0489735
n-Butane	0 *	5.433 *	0.333716	8.92652	0.147459
i-Pentane	0 *	3.677 *	0.225856	3.56227	0.153536
n-Pentane	0 *	3.866 *	0.237465	3.0488	0.176526
Isohexane	0 *	4.668 *	0.286727	1.80815	0.253749
n-Hexane	0 *	4.11 *	0.252453	1.19369	0.23205
2,2,4-Trimethylpentane	0 *	0.031 *	0.00190414	0.00344008	0.00187085
Benzene	0 *	0.234 *	0.0143732	0.0659844	0.0132545
Heptane	0 *	12.522 *	0.769151	1.28232	0.758028
Toluene	0 *	0.939 *	0.0576771	0.0829814	0.0571286
Octane	0 *	14.608 *	0.897281	0.487976	0.906153
Ethylbenzene	0 *	0.127 *	0.00780084	0.00362186	0.00789143
o-Xylene	0 *	1.159 *	0.0711904	0.0249806	0.072192
Nonane	0 *	7.352 *	0.451589	0.0812802	0.459616
Decane	0 *	12.398 *	0.761534	0.0451695	0.777062
Water	100 *	0 *	93.8576	3.41746	95.818

Produced	WEU 49 Pad	3	4	5
		0/	0/	%
U	•		0	0
0 *	2.12587 *	0.495619	13.6495	0.00545606
0 *	0.0536389 *	0.0125052	0.332358	0.000586324
0 *	2.97785 *	0.694247	18.2199	0.0411774
0 *	3.77472 *	0.880027	20.1858	0.160621
0 *	1.55013 *	0.361394	6.54246	0.131065
0 *	3.77324 *	0.879684	13.8963	0.394635
0 *	3.16997 *	0.739039	6.88386	0.51006
0 *	3.33291 *	0.777027	5.89162	0.586438
0 *	4.8067 *	1.12062	4.17343	1.00686
0 *	4.23212 *	0.986665	2.75519	0.920764
0 *	0.0423126 *	0.00986464	0.0105249	0.00984003
0 *	0.218407 *	0.0509187	0.138049	0.0476719
0 *	14.9928 *	3.49538	3.4415	3.49739
0 *	1.03381 *	0.241019	0.204785	0.242369
0 *	19.9388 *	4.64847	1.49296	4.76606
0 *	0.161108 *	0.0375604	0.0102989	0.0385763
0 *	1.47027 *	0.342776	0.071033	0.352902
0 *	11.2671 *	2.62679	0.279213	2.71427
0 *	21.0782 *	4.91412	0.172136	5.09082
100 *	0 *	76.6863	1.649	79.4824
	Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water Condensate % 0 * 0 * 2.12587 * 0 * 0.0536389 * 0 * 2.97785 * 0 * 3.77472 * 0 * 1.55013 * 0 * 3.77324 * 0 * 3.16997 * 0 * 3.33291 * 0 * 4.8067 * 0 * 0.0423126 * 0 * 0.218407 * 0 * 14.9928 * 0 * 19.9388 * 0 * 0.161108 * 0 * 1.47027 * 0 * 11.2671 * 0 * 21.0782 *	Water Condensate % 0 * 0 * 0 0 * 2.12587 * 0.495619 0 * 0.0536389 * 0.0125052 0 * 2.97785 * 0.694247 0 * 3.77472 * 0.880027 0 * 1.55013 * 0.361394 0 * 3.77324 * 0.879684 0 * 3.16997 * 0.739039 0 * 3.33291 * 0.777027 0 * 4.8067 * 1.12062 0 * 4.23212 * 0.986665 0 * 0.0423126 * 0.00986464 0 * 0.218407 * 0.0509187 0 * 1.03381 * 0.241019 0 * 1.03381 * 0.241019 0 * 1.9388 * 4.64847 0 * 0.161108 * 0.0375604 0 * 11.2671 * 2.62679 0 * 21.0782 * 4.91412	Water % Condensate % % % 0 * 0 * 0 0 0 0 * 2.12587 * 0.495619 13.6495 0 * 0.0536389 * 0.0125052 0.332358 0 * 2.97785 * 0.694247 18.2199 0 * 3.77472 * 0.880027 20.1858 0 * 1.55013 * 0.361394 6.54246 0 * 3.77324 * 0.879684 13.8963 0 * 3.16997 * 0.739039 6.88386 0 * 3.33291 * 0.777027 5.89162 0 * 4.8067 * 1.12062 4.17343 0 * 4.23212 * 0.986665 2.75519 0 * 0.0423126 * 0.00986464 0.0105249 0 * 0.218407 * 0.0509187 0.138049 0 * 1.03381 * 0.241019 0.204785 0 * 1.93388 * 4.64847 1.49296 0 * 0.161108 * 0.0375604 0.0102989 0 * 1.47

	Produced	WEU 49 Pad	3	4	5
Mass Flow	Water Ib/h	Condensate lb/h	lb/h	lb/h	lb/h
141035 1 10W	10/11	10/11	10/11	10/11	10/11
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	33.1004 *	33.1004	32.7491	0.351298

Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job:

Location: Flowsheet: WEU 49 200% Contingency Flowsheet1

	Produced	WEU 49 Pad	3	4	5
Mass Flow	Water lb/h	Condensate lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0 *	0.835174 *	0.835174	0.797422	0.0377515
Ethane	0 *	46.366 *	46.366	43.7147	2.65127
Propane	0 *	58.7735 *	58.7735	48.4316	10.3418
i-Butane	0 *	24.1361 *	24.1361	15.6972	8.43883
n-Butane	0 *	58.7506 *	58.7506	33.3413	25.4092
i-Pentane	0 *	49.3575 *	49.3575	16.5164	32.8411
n-Pentane	0 *	51.8945 *	51.8945	14.1357	37.7588
Isohexane	0 *	74.8418 *	74.8418	10.0133	64.8285
n-Hexane	0 *	65.8954 *	65.8954	6.61049	59.2849
2,2,4-Trimethylpentane	0 *	0.65882 *	0.65882	0.0252524	0.633567
Benzene	0 *	3.40066 *	3.40066	0.33122	3.06944
Heptane	0 *	233.443 *	233.443	8.25716	225.185
Toluene	0 *	16.0967 *	16.0967	0.491338	15.6054
Octane	0 *	310.453 *	310.453	3.58205	306.871
Ethylbenzene	0 *	2.50851 *	2.50851	0.02471	2.4838
o-Xylene	0 *	22.8926 *	22.8926	0.170429	22.7222
Nonane	0 *	175.433 *	175.433	0.669912	174.763
Decane	0 *	328.194 *	328.194	0.413003	327.781
Water	5121.57 *	0 *	5121.57	3.95643	5117.61

Stream Properties						
Property	Units	Produced Water	WEU 49 Pad Condensate	3	4	5
Temperature	°F	85 *	65	85.2654	79.6854	79.6854
Pressure	psia	407.696 *	321.696 *	321.696	14.6959 *	14.6959
Mole Fraction Vapor	%	0	4.04224	0.206281	100	0
Mole Fraction Light Liquid	%	100	95.9578	5.89426	0	4.18135
Mole Fraction Heavy Liquid	%	0	0	93.8995	0	95.8186
Molecular Weight	lb/lbmol	18.0153	83.6887	22.0492	37.3356	21.7179
Mass Density	lb/ft^3	62.1455	31.188	51.2532	0.0958949	57.1012
Molar Flow	lbmol/h	284.29	18.605	302.895	6.42626	296.469
Mass Flow	lb/h	5121.57	1557.03	6678.6	239.929	6438.67
Vapor Volumetric Flow	ft^3/h	82.4124	49.9241	130.306	2502	112.759
Liquid Volumetric Flow	gpm	10.2748	6.2243	16.2459	311.937	14.0582
Std Vapor Volumetric Flow	MMSCFD	2.58921	0.169448	2.75866	0.058528	2.70013
Std Liquid Volumetric Flow	sgpm	10.2384 *	4.7885 *	15.0269	1.02163	14.0052
Compressibility		0.0202195	0.147682	0.0236651	0.988522	0.000965673
Specific Gravity		0.996417			1.2891	0.915538
API Gravity		9.96415				22.2693
Enthalpy	Btu/h	-3.48913E+07	-1.50963E+06	-3.6401E+07	-291597	-3.61094E+07
Mass Enthalpy	Btu/lb	-6812.63	-969.559	-5450.39	-1215.35	-5608.2
Mass Cp	Btu/(lb*°F)	0.981529	0.522577	0.87516	0.423509	0.884264
Ideal Gas CpCv Ratio		1.32512	1.0633	1.25922	1.14462	1.26452
Dynamic Viscosity	cP	0.833816			0.00903325	0.765718
Kinematic Viscosity	cSt	0.837605			5.88068	0.821429
Thermal Conductivity	Btu/(h*ft*°F)	0.353848			0.0126736	0.275947
Surface Tension	lbf/ft	0.00492858				0.00399844 ?
Net Ideal Gas Heating Value	Btu/ft^3	0	4265.11	261.98	1932.24	225.775
Net Liquid Heating Value	Btu/lb	-1059.76	19184.8	3660	19489.1	3070.15
Gross Ideal Gas Heating Value	Btu/ft^3	50.31	4603.87	330.007	2106.31	291.504
Gross Liquid Heating Value	Btu/lb	0	20720.9	4830.81	21258.4	4218.65

Remarks

Simulation Initiated on 2/18/2015 12:00:54 PM WEU49_200%Case_2.18.2015.pmx Page 1 of 1

Blocks MIX-100 Mixer/Splitter Report

Client Name: EQT Job: WEU 49 200% Contingency Flowsheet1 Modified: 2:14 PM, 7/24/2014 Status: Solved 11:53 AM, 2/18/2015 Location: Flowsheet:

Connections						
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block	
Produced Water	Inlet		WEU 49 Pad Condensate	Inlet		
3	Outlet	VSSL-100				

Block Parameters Fraction to PStream 3 100 % 0 psi

Remarks

Pressure Drop

Blocks VSSL-100

Separator Report

Client Name: EQT Job:

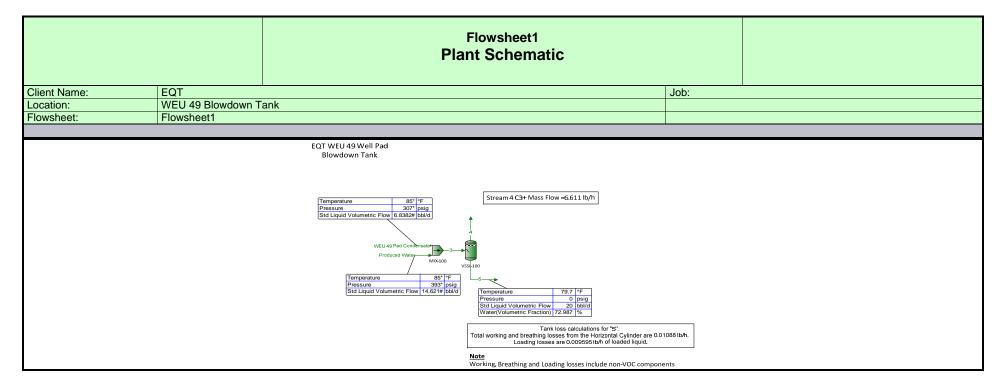
Location: Flowsheet: WEU 49 200% Contingency Flowsheet1 Modified: 1:11 PM, 7/17/2014 Status: Solved 11:53 AM, 2/18/2015

_								
- (-	\mathbf{a}	n	n	Δ,	rt	1	\sim 1	ns
•	v			σ,	u	ж	9	13

Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
3	Inlet	MIX-100	4	Vapor Outlet	
5	Light Liquid Outlet				

	Pa			

	Dioc	K i didilictors	
Pressure Drop	307 psi	Main Liquid Phase	Light Liquid
Mole Fraction Vapor	2.12161 %	Heat Duty	0 Btu/h
Mole Fraction Light Liquid	4.09264 %	Heat Release Curve Type	Plug Flow
Mole Fraction Heavy Liquid	93.7857 %	Heat Release Curve	5
		Increments	


Remarks

Simulation initiated on 2/18	3/2015 12:00:54 PM		WEU49_200%C	ase_2.18.2015.pmx			Page 1 of 1
		F		Environment onment1			
Client Name:	EQT				Job:		
Location:	WEU 49 200% (Contingency					
Flowsheet:	Flowsheet1	3 - 7					
		į.	Environm	ent Settings			
Number of Poyntin	ng Intervals	0		Freeze Out Temperatu Threshold Difference	re	10 °F	
Gibbs Excess Mod Evaluation Tempe		77 °F		Phase Tolerance		1 %	
Evaluation rempe	rature						
			Comr	onents			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
Methane		False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
i-Butane		False	False	Ethylbenzene		False	False
n-Butane		False	False	o-Xylene		False	False
i-Pentane		False	False	Nonane		False	False
n-Pentane		False	False	Decane		False	False
Isohexane		False	False	Water		False	True
n-Hexane		False	False				
				erty Method Sets			
Liquid Molar Volume		COSTALD		Overall Package		Peng-Robinso	
Stability Calculation		Peng-Robins		Vapor Package		Peng-Robinso	
Light Liquid Package	e	Peng-Robins	on	Heavy Liquid Package		Peng-Robinso	วท
Remarks							

		Calcu	llator Report	
Client Name:	EQT		Job:	
Location:	WEU 49 200% C	Contingency	005.	
		70goey		
			ple Solver 1	
		So	urce Code	
Residual Error (for C	V1) = TP / 17526	5 - 1		
		Calculate	ed Variable [CV1]	
SourceMoniker	Volumetric Flov	x!Project!Flowsheets!Flowsheet1	1!PStreams!WEU 49 Pad Condensate	e!Phases!Total!Properties!Std Liquid
/alue	164.177			
Jnit	bbl/d			
		Measure	ed Variable [TP]	
SourceMoniker /alue Jnit	ProMax:ProMa 175266 bbl/yr	x!Project!Flowsheets!Flowsheet	1!PStreams!5!Phases!Total!Properties	s!Std Liquid Volumetric Flow
		Calv	an Duamantina	Status: Solved
F			er Properties	
Error		3.71484E-06	Iterations	8
			May Itarations	20
Calculated Value		4.7885 sgpm	Max Iterations	
Lower Bound		sgpm	Weighting	1
Lower Bound Upper Bound		sgpm sgpm	Weighting Priority	1 0
Lower Bound Upper Bound Step Size		sgpm sgpm sgpm	Weighting Priority Solver Active	1
Lower Bound Upper Bound Step Size Is Minimizer		sgpm sgpm sgpm False	Weighting Priority Solver Active Group	1 0 Active
Lower Bound Upper Bound Step Size		sgpm sgpm sgpm	Weighting Priority Solver Active	1 0
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm sgpm False Default	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm sgpm False Default	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	N/1) - I F /73 - 1	sgpm sgpm sgpm False Default	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	V1) = LF /73 - 1	sgpm sgpm sgpm False Default	Weighting Priority Solver Active Group Skip Dependency Check	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	V1) = LF /73 - 1	sgpm sgpm sgpm False Default	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	,	sgpm sgpm sgpm False Default Sim So	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1]	1 0 Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	,	sgpm sgpm sgpm False Default Sim So	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1]	1 0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Commonwealth) SourceMoniker /alue	ProMax:ProMa	sgpm sgpm sgpm False Default Sim So	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1]	1 0 Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm	ProMax:ProMa 351.03	sgpm sgpm sgpm False Default Sim So	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1]	1 0 Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Communication)	ProMax:ProMa 351.03	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases!	1 0 Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa 351.03 bbl/d	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases!	1 0 Active False Total!Properties!Std Liquid Volumetric Flor
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C	ProMax:ProMa 351.03 bbl/d ProMax:ProMa	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases!	1 0 Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Control of C	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases!	1 0 Active False Total!Properties!Std Liquid Volumetric Flor
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Control of Cource Moniker Value Unit Source Moniker Value Unit	ProMax:ProMa 351.03 bbl/d ProMax:ProMa	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases!	1 0 Active False Total!Properties!Std Liquid Volumetric Flor
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Control of Cource Moniker Value Unit Source Moniker Value Unit	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of Community	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet*	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ded Variable [LF] 1!PStreams!5!Phases!Total!Composit er Properties Iterations	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Company of the Company o	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!Flowsheet*	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit er Properties Iterations Max Iterations	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved 8 20
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C GourceMoniker /alue Jnit Error Calculated Value Lower Bound	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet* ax!Project!Flowsheets!	Weighting Priority Solver Active Group Skip Dependency Check Ple Solver 2 Purce Code Red Variable [CV1] 1!PStreams!Produced Water!Phases! Red Variable [LF] 1!PStreams!5!Phases!Total!Composit Red Variable [LF] 1!PStreams!5!Phases!Total!Composit Weighting	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved 8 20 1
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet*	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit er Properties Iterations Max Iterations Weighting Priority	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved 8 20 1 0
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet*	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit er Properties Iterations Max Iterations Weighting Priority Solver Active	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved 8 20 1
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for Community of the Comm	ProMax:ProMa 351.03 bbl/d ProMax:ProMa 73.0474	sgpm sgpm sgpm sgpm False Default Sim So Calculate ax!Project!Flowsheets!Flowsheet*	Weighting Priority Solver Active Group Skip Dependency Check ple Solver 2 purce Code ed Variable [CV1] 1!PStreams!Produced Water!Phases! ed Variable [LF] 1!PStreams!5!Phases!Total!Composit er Properties Iterations Max Iterations Weighting Priority	Total!Properties!Std Liquid Volumetric Florion!Std. Liquid Volumetric Fraction!Water Status: Solved 8 20 1 0

		User Value	Sets Report		
Client Name: Location:	EQT WEU 49 200% (Contingonal		Job:	
Location.	WEU 49 200% (Contingency			
		Cn+ F	low/Frac.		
		User Value	[CnPlusSum]		
* Parameter		158.711 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value Set	was programmat	cically generated. GUID={E867C48	5-3D3C-49CB-BC24-EA160	96DB2B1}	
			Losses		
* 5			[ShellLength]		
* Parameter		20 ft 0 ft	Upper Bound * Enforce Bounds		False
* Lower Bound		υ π	Enforce Bounds		False
		Hear Value	e [ShellDiam]		
* Parameter		12 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
		User Value	[BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	BreatherVacP]		
* Parameter		-0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
December			[DomeRadius]		
Parameter Lower Bound		ft ft	Upper Bound * Enforce Bounds		ft False
Lower Bound		π	Efficice Bourius		i dise
		Hear Valu	e [OpPress]		
* Parameter		0 psig	Upper Bound		
Lower Bound		G \$6.9	* Enforce Bounds		False
		User Value [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			MaxPercentLiq]		
* Parameter		90 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			ra N. (TDI		
* D .			e [AnnNetTP]		
* Parameter * Lower Bound		478.95 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds		False
LOWEL DOULD		0 bbl/day	Lillorde Bourlus		i aisc
		Hear Va	lue [OREff]		
* Parameter		0 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
		User Value	[AtmPressure]		
* Parameter		14.1085 psia	Upper Bound		
Lower Bound		•	* Enforce Bounds		False

		User Val	lue Sets Report		
Client Name:	EQT			Job:	
Location:	WEU 49 200%	Contingency			
		User	r Value [TVP]		
* Parameter		0.596694 psia	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [AvgLiqSurfaceT]		
* Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds		False
Lower Bouria			Enforce Bourius		Faise
		Hear Value	e [MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	ue [TotalLosses]		
* Parameter		0.263894 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
		Han Mala	- FIA/- al facul I		
* Parameter		0.150369 ton/yr	e [WorkingLosses] Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
Lower Board		tornyi	Emerce Bearing		i dioc
		User Value	e [StandingLosses]		
* Parameter		0.0422738 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
			e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Enforce Bourius		False
		Hear Value	e [WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [LoadingLosses]		
* Parameter		0.231457 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
		Heer Velve	[DealsFitting access]		
* Parameter		0 ton/yr	[DeckFittingLosses] Upper Bound		
Lower Bound		0 1017/y1	* Enforce Bounds		False
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [FlashingLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		Color
Lower Bouria			Enlorce Bounds		False
		Hear Value	e [GasMoleWeight]		
* Parameter		0.0320317 kg/mol	Upper Bound		
Lower Bound		0.0320317 kg/moi	* Enforce Bounds		False
Remarks					
This User Value S	et was programma	tically generated. GUID={B57AF	-C7E-AAE8-4873-921B-7B403	31991004}	

From Block

To Block

5

VSSL-100

4

VSSL-100

3

MIX-100

VSSL-100

Process Streams Report All Streams

Tabulated by Total Phase

Client Name:	EQT	Job:	
Location:	WEU 49 Blowdown Tank		
Flowsheet:	Flowsheet1		

Connections

WEU 49 Pad

Condensate

MIX-100

Produced

Water

MIX-100

Stream Composition						
	Produced Water	WEU 49 Pad Condensate	3	4	5	
Mole Fraction	%	%	%	%	%	
Nitrogen	0 *	0 *	0	0	0	
Methane	0 *	11.09 *	0.681199	31.7665	0.00738634	
Carbon Dioxide	0 *	0.102 *	0.00626531	0.281957	0.000289342	
Ethane	0 *	8.288 *	0.509087	22.623	0.0297413	
Propane	0 *	7.164 *	0.440046	17.0913	0.0791094	
i-Butane	0 *	2.232 *	0.1371	4.20264	0.048974	
n-Butane	0 *	5.433 *	0.33372	8.92652	0.14746	
i-Pentane	0 *	3.677 *	0.225858	3.56227	0.153537	
n-Pentane	0 *	3.866 *	0.237467	3.0488	0.176528	
Isohexane	0 *	4.668 *	0.28673	1.80814	0.253751	
n-Hexane	0 *	4.11 *	0.252455	1.19369	0.232053	
2,2,4-Trimethylpentane	0 *	0.031 *	0.00190416	0.00344008	0.00187087	
Benzene	0 *	0.234 *	0.0143734	0.0659843	0.0132546	
Heptane	0 *	12.522 *	0.769159	1.28232	0.758035	
Toluene	0 *	0.939 *	0.0576777	0.0829813	0.0571292	
Octane	0 *	14.608 *	0.89729	0.487975	0.906163	
Ethylbenzene	0 *	0.127 *	0.00780092	0.00362186	0.00789151	
o-Xylene	0 *	1.159 *	0.0711911	0.0249805	0.0721928	
Nonane	0 *	7.352 *	0.451594	0.08128	0.459621	
Decane	0 *	12.398 *	0.761542	0.0451694	0.77707	
Water	100 *	0 *	93.8575	3.41746	95.8179	

	Produced	WEU 49 Pad	3	4	5
	Water	Condensate			
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	2.12587 *	0.495623	13.6495	0.00545611
Carbon Dioxide	0 *	0.0536389 *	0.0125053	0.332358	0.000586327
Ethane	0 *	2.97785 *	0.694253	18.2199	0.0411777
Propane	0 *	3.77472 *	0.880034	20.1858	0.160622
i-Butane	0 *	1.55013 *	0.361397	6.54246	0.131066
n-Butane	0 *	3.77324 *	0.879691	13.8963	0.394639
i-Pentane	0 *	3.16997 *	0.739045	6.88386	0.510065
n-Pentane	0 *	3.33291 *	0.777033	5.89162	0.586443
Isohexane	0 *	4.8067 *	1.12063	4.17343	1.00687
n-Hexane	0 *	4.23212 *	0.986674	2.75519	0.920772
2,2,4-Trimethylpentane	0 *	0.0423126 *	0.00986472	0.0105249	0.00984012
Benzene	0 *	0.218407 *	0.0509192	0.138049	0.0476723
Heptane	0 *	14.9928 *	3.49541	3.4415	3.49742
Toluene	0 *	1.03381 *	0.241021	0.204785	0.242371
Octane	0 *	19.9388 *	4.64851	1.49296	4.7661
Ethylbenzene	0 *	0.161108 *	0.0375607	0.0102989	0.0385766
o-Xylene	0 *	1.47027 *	0.342778	0.0710329	0.352905
Nonane	0 *	11.2671 *	2.62681	0.279213	2.71429
Decane	0 *	21.0782 *	4.91416	0.172135	5.09087
Water	100 *	0 *	76.6861	1.649	79.4823

	Produced	WEU 49 Pad	3	4	5
	Water	Condensate			
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	1.37868 *	1.37868	1.36405	0.0146321

Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job: Location: WEU 49 Blowdown Tank

Flowsheet: Flowsheet1

	Produced	WEU 49 Pad	3	4	5
Mass Flow	Water lb/h	Condensate lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0 *	0.0347863 *	0.0347863	0.0332139	0.0015724
Ethane	0 *	1.93121 *	1.93121	1.82078	0.11043
Propane	0 *	2.448 *	2.448	2.01725	0.430754
i-Butane	0 *	1.0053 *	1.0053	0.653813	0.351491
n-Butane	0 *	2.44705 *	2.44705	1.38872	1.05833
i-Pentane	0 *	2.05581 *	2.05581	0.687931	1.36788
n-Pentane	0 *	2.16148 *	2.16148	0.588772	1.57271
Isohexane	0 *	3.11728 *	3.11728	0.417067	2.70021
n-Hexane	0 *	2.74464 *	2.74464	0.275337	2.46931
2,2,4-Trimethylpentane	0 *	0.0274408 *	0.0274408	0.0010518	0.026389
Benzene	0 *	0.141643 *	0.141643	0.0137958	0.127847
Heptane	0 *	9.72324 *	9.72324	0.343923	9.37932
Toluene	0 *	0.670452 *	0.670452	0.0204649	0.649987
Octane	0 *	12.9308 *	12.9308	0.149198	12.7816
Ethylbenzene	0 *	0.104483 *	0.104483	0.00102921	0.103454
o-Xylene	0 *	0.953512 *	0.953512	0.00709859	0.946413
Nonane	0 *	7.30704 *	7.30704	0.0279028	7.27913
Decane	0 *	13.6698 *	13.6698	0.0172021	13.6526
Water	213.319 *	0 *	213.319	0.164791	213.154

Stream Properties						
Property	Units	Produced Water	WEU 49 Pad Condensate	3	4	5
Temperature	°F	85 *	85 *	85.2654	79.6854	79.6854
Pressure	psia	407.696 *	321.696 *	321.696	14.6959 *	14.6959
Mole Fraction Vapor	%	0	4.04224	0.206284	100	0
Mole Fraction Light Liquid	%	100	95.9578	5.89431	0	4.1814
Mole Fraction Heavy Liquid	%	0	0	93.8994	0	95.8186
Molecular Weight	lb/lbmol	18.0153	83.6887	22.0492	37.3356	21.7179
Mass Density	lb/ft^3	62.1455	31.188	51.2531	0.0958949	57.1012
Molar Flow	lbmol/h	11.841	0.774928	12.6159	0.267664	12.3483
Mass Flow	lb/h	213.319	64.8527	278.172	9.99339	268.178
Vapor Volumetric Flow	ft^3/h	3.43257	2.07941	5.4274	104.212	4.69654
Liquid Volumetric Flow	gpm	0.427957	0.259252	0.676663	12.9927	0.585543
Std Vapor Volumetric Flow	MMSCFD	0.107843	0.00705775	0.114901	0.00243778	0.112463
Std Liquid Volumetric Flow	sgpm	0.42644 *	0.199448 *	0.625888	0.0425526	0.583335
Compressibility		0.0202195	0.147682	0.0236652	0.988522	0.000965675
Specific Gravity		0.996417			1.2891	0.915538
API Gravity		9.96415				22.2694
Enthalpy	Btu/h	-1.45326E+06	-62878.5	-1.51614E+06	-12145.5	-1.50399E+06
Mass Enthalpy	Btu/lb	-6812.63	-969.559	-5450.38	-1215.35	-5608.19
Mass Cp	Btu/(lb*°F)	0.981529	0.522577	0.875159	0.423509	0.884263
Ideal Gas CpCv Ratio		1.32512	1.0633	1.25922	1.14462	1.26452
Dynamic Viscosity	cP	0.833816			0.00903325	0.765717
Kinematic Viscosity	cSt	0.837605			5.88068	0.821429
Thermal Conductivity	Btu/(h*ft*°F)	0.353848			0.0126736	0.275946
Surface Tension	lbf/ft	0.00492858				0.00399843 ?
Net Ideal Gas Heating Value	Btu/ft^3	0	4265.11	261.983	1932.24	225.778
Net Liquid Heating Value	Btu/lb	-1059.76	19184.8	3660.04	19489.1	3070.18
Gross Ideal Gas Heating Value	Btu/ft^3	50.31	4603.87	330.01	2106.31	291.507
Gross Liquid Heating Value	Btu/lb	0	20720.9	4830.84	21258.4	4218.69

Remarks

ominatation militated on 2, 10	2010 12:00:1111		TTEG TO_BIGHTGOIN	Trank_Enroizeroiphik			i ago i	0
Blocks MIX-100 Mixer/Splitter Report								
Client Name:	EQT				Job:			
Location:	WEU 49 Blowdo	wn Tank			Modified: 2:	14 PM, 7/24/2	2014	
Flowsheet:	Flowsheet1					red 12:02 PM		
			Conn	ections				
Stream	Connect	ion Type	Other Block	Stream	Connecti	on Type	Other Block	
Produced Water	Inl	let		WEU 49 Pad Condensate	Inl	et		
3	Ou	tlet	VSSL-100					
			Block P	arameters				
Pressure Drop			0 psi	Fraction to PStream 3			100 %	
Remarks		_	_		_		<u> </u>	

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job:
Location:	WEU 49 Blowdown Tank	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 12:02 PM, 2/18/2015

Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet						

Block Parameters					
Pressure Drop	307 psi	Main Liquid Phase	Light Liquid		
Mole Fraction Vapor	2.12163 %	Heat Duty	0 Btu/h		
Mole Fraction Light Liquid	4.09268 %	Heat Release Curve Type	Plug Flow		
Mole Fraction Heavy Liquid	93.7857 %	Heat Release Curve	5		
		Increments			

Remarks

Simulation Initiated on 2/18	3/2015 12:06:44 PM	W	WEU49_Blowdown Tank_2.18.2015.pmx				Page 1 of
		F		Environment onment1			
Client Name:	EQT				Job:		
Location:	WEU 49 Blowdo	own Tank					
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynting Intervals		0		Freeze Out Temperature Threshold Difference		10 °F	
Gibbs Excess Model Evaluation Temperature		77 °F	77 °F Phase Tolerance		1 %		
			Comp	oonents			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
Methane	<u> </u>	False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
i-Butane		False	False	Ethylbenzene		False	False
n-Butane		False	False	o-Xylene		False	False
i-Pentane		False	False	Nonane		False	False
n Dontono		Foloo	Foloo	Daggara		Гојоо	T-1

False

False

False

False

False

False

Decane

Water

	,	porty moniou coto	
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson

Remarks

n-Pentane

Isohexane

n-Hexane

False

False

False

True

Simulation Initiated on 2/18	/2015 12:06:44 PM		WEU49_Blowdown	ank_2.18.2015.pmx		Page 1 of
			Calculate	or Report		
Client Name:	EQT				Job:	
Location:	WEU 49 Blowdo	wn Tank				
			Simple	Solver 1		
			Source			
Residual Error (for C	V1) = TP / 20 - 1					
			Calculated V	ariable [CV1]		
SourceMoniker	ProMax:ProMa Volumetric Flo		ts!Flowsheet1!PSt	eams!WEU 49 Pad Conde	ensate!Phas	es!Total!Properties!Std Liquid
/alue	6.83823	W				
Jnit	bbl/d					
· · · · · · · · · · · · · · · · · · ·						
			Measured V	ariahla [TP]		
SourceMoniker	ProMay:ProMa	vIProjectIFlowshee	telFlowsheat1IPSt	eams!5!Phases!Total!Pro	nartias Std	iquid Volumetric Flow
alue	20.0001	ix:i Toject:i Iowanee	its:i lowsheett:i St	eams:5:1 mases:10tal:1 10	perties:Sta L	Elquid Volumethe Flow
Init	bbl/d					
			Solver P	operties		Status: Solved
Error		3.66029E-06		Iterations		8
Calculated Value		0.199448	sapm	Max Iterations		20
Lower Bound			sgpm	Weighting		1
Upper Bound			sgpm	Priority		0
Step Size			sgpm	Solver Active		Active
Is Minimizer		False		Group		
Algorithm		Default		Skip Dependency Chec	k	False
Remarks						
			Simple			
			Source	Code		
Residual Error (for C	V1) = LF /73 - 1					
			Calculated V	ariable [CV1]		
SourceMoniker		x!Project!Flowshee	ts!Flowsheet1!PSt	eams!Produced Water!Ph	ases!Total!f	Properties!Std Liquid Volumetric Flov
/alue	14.6208					
Jnit	bbl/d					
			Measured V			
SourceMoniker		x!Project!Flowshee	ts!Flowsheet1!PSt	eams!5!Phases!Total!Con	nposition!Sto	d. Liquid Volumetric Fraction!Water
Value	73.0472					

SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water
Value	73.0472
Unit	%

	Solve	er Properties	Status: Solved
Error	0.000646915	Iterations	8
Calculated Value	0.42644 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

Remarks

	User Value Sets Report lient Name: EQT Job:							
Client Name: Location:	EQT WEU 49 Blowdo	own Tonk		Job:				
Location.	VVLO 49 Blowdo	owii i alik						
Cn+ Flow/Frac.								
		User Value	[CnPlusSum]					
* Parameter		6.61055 lb/h	Upper Bound					
Lower Bound		lb/h	* Enforce Bounds		False			
Remarks This User Value Set	was programmat	ically generated. GUID={E867C48	5-3D3C-49CB-BC24-EA160	96DB2B1}				
		T1	1					
			Losses					
* 5			[ShellLength]					
* Parameter * Lower Bound		10 ft 0 ft	Upper Bound * Enforce Bounds		False			
Lower Bouria		0 it	Enlorce Bounds		raise			
		Hear Valu	e [ShellDiam]					
* Parameter		10 ft	Upper Bound					
* Lower Bound		0 ft	* Enforce Bounds		False			
		User Value	[BreatherVP]					
* Parameter		0.03 psig	Upper Bound					
Lower Bound			* Enforce Bounds		False			
		User Value	[BreatherVacP]					
* Parameter		-0.03 psig	Upper Bound					
Lower Bound			* Enforce Bounds		False			
			TD D !! 1					
December			[DomeRadius]					
Parameter Lower Bound		ft ft	Upper Bound * Enforce Bounds		ft False			
Lower Bouria		it .	Enlorce Bounds		raise			
		Hear Valu	ue [OpPress]					
* Parameter		0 psig	Upper Bound					
Lower Bound		o paig	* Enforce Bounds		False			
		User Value [AvgPercentLiq]					
* Parameter		50 %	Upper Bound					
Lower Bound		%	* Enforce Bounds		False			
			MaxPercentLiq]					
* Parameter		90 %	Upper Bound					
Lower Bound		%	* Enforce Bounds		False			
			e [AnnNetTP]					
* Parameter		19.8551 bbl/day	Upper Bound		Foloo			
* Lower Bound		0 bbl/day	* Enforce Bounds		False			
Hear Value IODE#1								
* Parameter	User Value [OREff] * Parameter 0 % Upper Bound							
Lower Bound		<u> </u>	* Enforce Bounds		False			
		User Value	[AtmPressure]					
* Parameter		14.1085 psia	Upper Bound					
Lower Bound			* Enforce Bounds		False			

		User Va	alue Sets Report			
Client Name:	EQT			Job:		
Location:	WEU 49 Blowdo	own Tank				
		Llor	w Volue ITVD1			
* Parameter		0.596697 psia	er Value [TVP] Upper Bound			
Lower Bound		0.000001 psia	* Enforce Bounds		False	
		User Valu	ie [AvgLiqSurfaceT]			
* Parameter		57.7675 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		User Valu	ie [MaxLiqSurfaceT]			
* Parameter		66.3119 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
			alue [TotalLosses]			
* Parameter		0.010877 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
			PA 1 1 1 1			
* Danasatan		User Valu	ue [WorkingLosses]			
* Parameter Lower Bound		0.0476412 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	
Lower Bouria		tori/yi	Efforce Bounds		False	
		Hear Valu	o [Standing] accord			
* Parameter		0 ton/yr	Ie [StandingLosses] Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
Lower Bound		torny:	Emerce Bearing		1 4,55	
		User Valu	ue [RimSealLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		User Valu	ie [WithdrawalLoss]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		User Valu	ue [LoadingLosses]			
* Parameter		0.00959524 lb/h	Upper Bound		False	
Lower Bound		lb/h	* Enforce Bounds		False	
		Haan Value	[Deal-Fitting] access			
* Parameter		0 ton/yr	[DeckFittingLosses] Upper Bound			
Lower Bound		O tonyi	* Enforce Bounds		False	
Lower Bound			Emerce Bearing		1 4,00	
		User Value	e [DeckSeamLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		User Valu	ıe [FlashingLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound		-	* Enforce Bounds		False	
			ue [GasMoleWeight]			
* Parameter		0.0320318 kg/mol	Upper Bound			
Lower Bound			* Enforce Bounds		False	
Remarks This User Value Set was programmatically generated. GUID={B57AFC7E-AAE8-4873-921B-7B4031991004}						

LAFAYETTE AREA LABORATORY

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13110138-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

512512

Alan Ball

Field:

EQT

Sample of:

Liquid-Spot

PO Box 1028

Conditions:

307 psi @ N.G.° F

Bridgeport, WV, 26330

Sampled by:

RM-GAS

Report Date:

11/25/2013

Sample date: Remarks:

11/6/2013 Cylinder No.: GAS

Remarks:

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	11.090	16.043	2.078	0.3000	4.638
Carbon Dioxide	0.102	44.010	0.052	0.8180	0.043
Ethane	8.288	30.070	2.910	0.3562	5.466
Propane	7.164	44.097	3.689	0.5070	4.867
Iso-butane	2.232	58.123	1.515	0.5629	1.801
N-butane	5.433	58.123	3.687	0.5840	4.226
Iso-pentane	3.677	72.150	3.098	0.6244	3.320
N-pentane	3.866	72.150	3.257	0.6311	3.455
i-Hexanes	4.668	86.177	4.639	0.6795	4.680
n-Hexane	4.110	85.609	4.136	0.6640	4.145
2,2,4 trimethylpentane	0.031	114.231	0.042	0.6967	0.041
Benzene	0.234	78.114	0.141	0.8846	0.163
Heptanes	12.522	97.647	14.397	0.7040	13.659
Toluene	0.939	92.141	0.668	0.8719	0.779
Octanes	14.608	108.355	19.003	0.7412	16.985
E-benzene	0.127	106.167	0.073	0.8718	0.122
M-,O-,P-xylene	1.159	106.167	1.437	0.8731	1.112
Nonanes	7.352	123.434	10.940	0.7551	9.804
Decanes Plus	12.398	167.407	24.238	0.7840	20.694
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6693	0.7840
Api Gravity at 60 °F	79.899	48.993
Molecular Weight	85.637	167.407
Pounds per Gallon (in Vacuum)	5.581	6.536
Pounds per Gallon (in Air)	5.575	6.529
Cu. Ft. Vapor per Gallon @ 14.73 psia	24.787	14.782

Southern Petroleum Laboratories, Inc.

Certificate of Analysis

Number: 2030-13070164-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball

Gas Analytical Services

PO Box 1028

Bridgeport, WV 26330

Station Name: 512496

Station Location: EQT Midstream

Sample Point: Wellhead

Cylinder No: GAS Analyzed: 07/16

07/16/2013 11:11:35 by CC

July 17, 2013

Sampled By:

RM-GAS

Sample Of: Sample Date: Gas

Spot 07/08/2013 15:30

Sample Conditions: 402 psig Method: GPA 2286

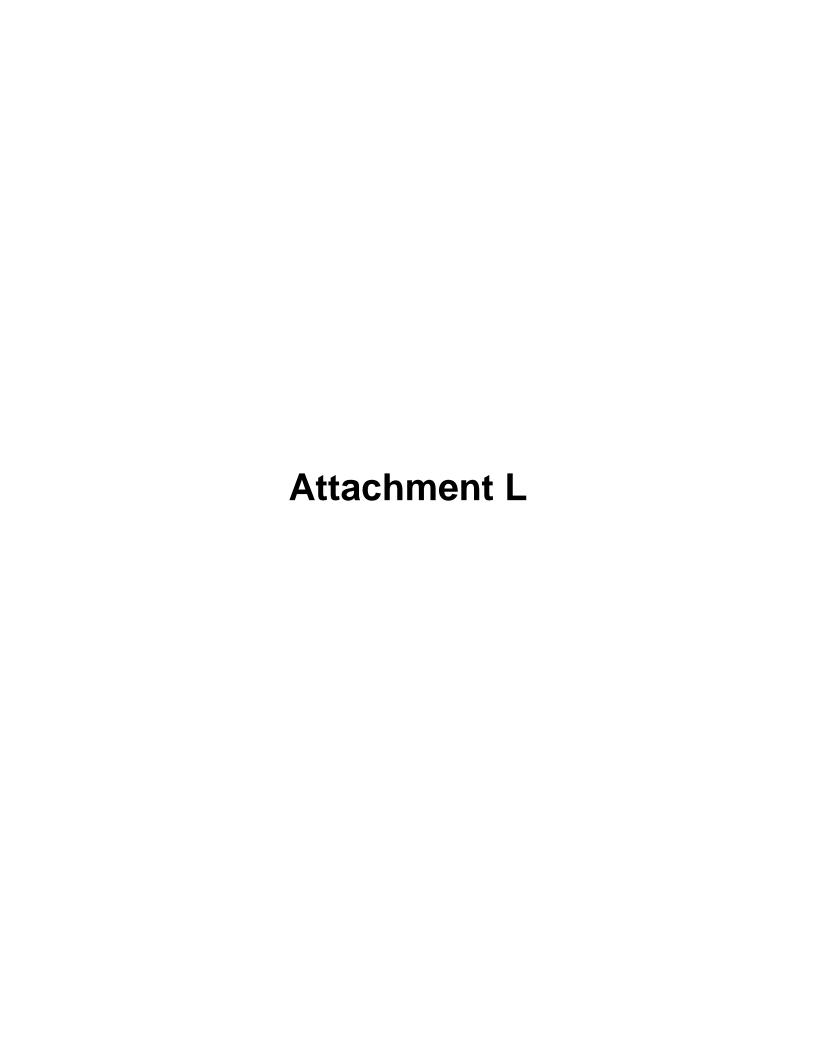
Analytical Data

	Allalytical Data											
Components	Mol. %	Wt. %	GPM at 14.73 psia									
Nitrogen	0.516	0.689		GPM TOTAL C2+	5.887							
Carbon Dioxide	0.188	0.395			0.00.							
Methane	78.571	60.101										
Ethane	13.320	19.097	3.574									
Propane	4.159	8.744	1.150									
Iso-Butane	0.569	1.577	0.186									
n-Butane	1.137	3.151	0.360									
Iso-Pentane	0.353	1.214	0.129									
n-Pentane	0.352	1.211	0.128									
i-Hexanes	0.223	0.913	0.092									
n-Hexane	0.157	0.647	0.065									
Benzene	0.006	0.024	0.002									
Cyclohexane	0.027	0.108	0.009									
i-Heptanes	0.152	0.702	0.068									
n-Heptane	0.066	0.320	0.031									
Toluene	0.014	0.060	0.005									
i-Octanes	0.119	0.618	0.053									
n-Octane	0.021	0.113	0.011									
Ethylbenzene	0.001	0.004	NIL									
Xylenes	0.007	0.037	0.003									
i-Nonanes	0.028	0.161	0.013									
n-Nonane	0.005	0.028	0.003									
Decane Plus	0.009	0.086	0.005									
	100.000	100.000	5.887									

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit for the WEU-49 natural gas production operation located near West Union in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.25473 and -80.78660. Startup of operations is scheduled to begin on June 1, 2015.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:


Particulate Matter (PM) = 7.92 tpy Sulfur Dioxide (SO₂) = 0.07 tpy Volatile Organic Compounds (VOC) = 15.38 tpy Carbon Monoxide (CO) = 10.28 tpy Nitrogen Oxides (NO_x) = 12.24 tpy Hazardous Air Pollutants (HAPs) = 0.80 tpy Carbon Dioxide Equivalents (CO₂e) = 18,561.32 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 5th day of March, 2015.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222

Attachment O G70-A EMISSION SUMMARY SHEET

						COMMINANT					1	1
Emission Point ID No. (Must match Emission Units Table-& Plot	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions.	Est. Method Used ⁶
Plan)		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)	
E001	Upward Vertical Stack	S001	NA	NA	NA	Total VOCs NOx CO PM SO2 Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO2 CH4 N2O CO2e	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 512.89	0.005 0.09 0.08 0.007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 512.89	Gas	AP-42, 40 CFR 63 Subpart C
E002	Upward Vertical Stack	S002	NA	NA	NA	Total VOCs NO _x CO PM SO ₂ Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO ₂ CH ₄ N ₂ O CO ₂ e	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 512.89	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 512.89	Gas	AP-42, 40 CFR 63 Subpart C

						Total VOCs	0.005	0.02	0.005	0.02		
						NO_x	0.09	0.40	0.09	0.40		
						CO	0.08	0.34	0.08	0.34		
						PM	0.007	0.03	0.007	0.03		
						SO ₂	<0.001	0.002	<0.001	0.002	'	
						Pb	<0.001	<0.002	<0.001	<0.002		AP-42,
	Linus									0.008		
	Upward	0000	N.I.A	N. A.	N 1A	Total HAPs	0.002	0.008	0.002			40 CFR
E003	Vertical	S003	NA	NA	NA	Benzene	<0.001	<0.001	<0.001	<0.001	Gas	63
	Stack					Toluene	<0.001	<0.001	<0.001	<0.001		Subpart
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		С
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
						CH₄	0.002	0.01	0.002	0.01		
						N_2O	< 0.001	< 0.001	< 0.001	< 0.001		
						CO₂e	117.10	512.89	117.10	512.89		
	 										 	
						Total VOCs	0.005	0.02	0.005	0.02		
						NO_x	0.09	0.40	0.09	0.40		
			NA	NA	NA	CO	0.08	0.34	0.08	0.34		
	Upward Vertical Stack					PM	0.007	0.03	0.007	0.03		
						SO_2	< 0.001	0.002	< 0.001	0.002	Gas 4	
						Pb	< 0.001	< 0.001	< 0.001	< 0.001		AP-42,
						Total HAPs	0.002	0.008	0.002	0.008		40 CFR
E004		S004				Benzene	< 0.001	< 0.001	< 0.001	<0.001		63
						Toluene	<0.001	< 0.001	< 0.001	< 0.001		Subpart
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		C
						Hexane	0.002	0.007	0.002	0.007		
						CO ₂	116.98	512.36	116.98	512.36		
					CH ₄	0.002	0.01	0.002	0.01	,		
								<0.01	<0.002	<0.01		
						N_2O	<0.001					
						CO ₂ e	117.10	512.89	117.10	512.89		
						Total VOCs	0.005	0.02	0.005	0.02		
						NO_x	0.09	0.40	0.09	0.40	1	
						CO	0.08	0.34	0.08	0.34		
						PM	0.007	0.03	0.007	0.03	1	
						SO_2	<0.001	0.002	<0.001	0.002		
						Pb	<0.001	<0.001	<0.001	< 0.001	1	AP-42,
	Upward					Total HAPs	0.002	0.008	0.002	0.008	1	40 CFR
E005	Vertical	S005	NA	NA	NA	Benzene	<0.002	<0.008	<0.002	<0.008	Gas	63
E005	Stack	3005	INA	INA	INA	Toluene					Gas	
	Stack						<0.001	<0.001	<0.001	<0.001		Subpart
						Formaldehyde	<0.001	<0.001	<0.001	<0.001		С
						Hexane	0.002	0.007	0.002	0.007		
						CO_2	116.98	512.36	116.98	512.36	1	
						CH₄	0.002	0.01	0.002	0.01	1	
						N_2O	< 0.001	< 0.001	< 0.001	<0.001	1	
						CO ₂ e	117.10	512.89	117.10	512.89	1	

				ı	1		T	_		1		
E006	Upward Vertical Stack	S006	NA	NA	NA	Total VOCs NOx CO PM SO2 Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO2 CH4 N2O CO2e	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.007 512.36 0.01 <0.001 512.89	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 512.89	Gas	AP-42, 40 CFR 63 Subpart C
E007	Upward Vertical Stack	S007	NA	NA	NA	Total VOCs NOx CO PM SO2 Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO2 CH4 N2O CO2e	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.007 512.36 0.01 <0.001 50.001 512.89	0.005 0.09 0.08 0.007 <0.001 <0.001 0.002 <0.001 <0.001 0.002 116.98 0.002 <0.001 117.10	0.02 0.40 0.34 0.03 0.002 <0.001 0.008 <0.001 <0.001 <0.001 0.007 512.36 0.01 <0.001 50.001 512.89	Gas	AP-42, 40 CFR 63 Subpart C
E017	Upward Vertical Stack	S008 – S015, S016	Produced Fluid Tanks, Sand Trap Blowdown Tank, Tank Truck Loading Rack	C021	Enclosed Combustion Device	Total VOCs Total HAPs CO NO _x PM SO ₂ CO ₂ CH ₄ N ₂ O CO ₂ e	82.85 3.99 <0.001 <0.001 <0.001 <0.001 0.42 17.07 <0.001 427.10	362.90 17.46 <0.001 <0.001 <0.001 <0.001 1.82 74.45 <0.001 1,870.68	1.68 0.08 0.90 1.07 0.08 0.006 1,692.77 0.37 0.003 1,702.75	7.34 0.35 3.95 4.71 0.63 0.03 7,414.34 1.61 0.01 7,458.06	Gas	ProMax, AP-42, 40 CFR 63 Subpart C
E018	Upward Vertical Stack	S008 – S015, S016	Produced Fluid Tanks, Sand Trap Blowdown Tank, Tank Truck Loading Rack	C022	Enclosed Combustion Device	Total VOCs Total HAPs CO NO _x PM SO ₂ CO ₂ CH ₄ N ₂ O CO ₂ e	82.85 3.99 <0.001 <0.001 <0.001 <0.001 0.42 17.07 <0.001 427.10	362.90 17.46 <0.001 <0.001 <0.001 <0.001 1.82 74.45 <0.001 1,870.68	1.68 0.08 0.90 1.07 0.08 0.006 1,692.77 0.37 0.003 1,702.75	7.34 0.35 3.95 4.71 0.63 0.03 7,414.34 1.61 0.01 7,458.06	Gas	ProMax, AP-42, 40 CFR 63 Subpart C

E019	Upward Vertical Stack	S019	TEG	NA	NA	Total VOCs NO _x CO PM SO ₂ Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO ₂ CH ₄	<0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.52 <0.001	<0.001 0.005 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 0.005 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Gas	AP-42, 40 CFR 63 Subpart C
E020	Upward Vertical Stack	S020	TEG	NA	NA	Total VOCs NO _x CO PM SO ₂ Pb Total HAPs Benzene Toluene Formaldehyde Hexane CO ₂ CH ₄ N ₂ O CO ₂ e	 <0.001 <0.001 1.52 <0.001 0.001 <0.001 <1.52 <0.001 <1.52 <0.001 <1.52 	 <0.001 <0.001 6.67 <0.001 0.005 0.004 <0.001 	 <0.001 <0.001 1.52 <0.001 0.001 <0.001 <1.52 <0.001 <0.001 <1.52 <1.52 	<0.001 <0.001 6.67 <0.001 0.005 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Gas	AP-42, 40 CFR 63 Subpart C

^{*}Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and tank truck loading are routed to either C021 or C022. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C021 and C022 are additive.

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs,

H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O₂, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹	Maximum Potent Emissi		Maximum Po Controlled Em	Est. Method	
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA					
Unpaved Haul Roads	PM PM-10 PM-2.5	9.98 2.54 0.25	6.99 1.78 0.18	9.98 2.54 0.25	6.99 1.78 0.18	AP-42
Loading/Unloading Operations	Total VOC Total HAPs CO₂ CH₄ CO₂e	0.12 <0.001 0.001 0.01 0.25	0.54 0.002 0.01 0.04 1.09	0.04 <0.001 0.43 0.003 0.51	0.17 <0.001 1.87 0.01 2.22	ProMax, AP-42
Equipment Leaks	Total VOC Total HAPs CO₂ CH₄ CO₂e	0.12 0.01 0.003 0.38 9.50	0.55 0.05 0.01 1.66 41.63	0.12 0.01 0.003 0.38 9.50	0.55 0.05 0.01 1.66 41.63	40CFR98 Subpart W
Other	NA	NA	NA	NA	NA	NA

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).