

February 26, 2015

Assistant Director for Permitting West Virginia Department of Environmental Protection 601 57th Street, SE Charleston, WV 25304

via FedEx 7730 0620 1943

Re: R-13 Permit Application Sherwood Compressor Station Smithburg, Doddridge County, West Virginia

To Whom It May Concern:

Rover Pipeline LCC (Rover) is submitting this R-13 Permit Application to the West Virginia Department of Environmental Protection (WVDEP) for authorization of the Sherwood Compressor Station (the Station) located near Smithburg in Doddridge County, West Virginia. This application has been prepared in accordance with requirements of the WVDEP 45 Code of State Rules (CSR) 13 for permits to construct and operate.

Enclosed please find one hard copy and 2 CDs containing electronic copies of the application and related documents.

We would like to thank you in advance for your review and concurrence with this R-13 Permit Application. If you have any questions regarding the information presented in this letter and attachments, please do not hesitate to contact Mr. Weston Threeton at (713) 989-7733 or via email at Weston.Threeton@EnergyTransfer.com.

Sincerely, Apex TITAN, Inc.

Kathry J. Domell

Kathryn Donnell, P.E. Senior Managing Engineer

Attachments

cc: Mr. Weston Threeton, Environmental Specialist, Energy Transfer Company, via FedEx 7730 0623 7613 Mr. Thomas Tucker, Senior Air Quality Engineer, Apex Companies LLC via e-mail

SHERWOOD COMPRESSOR STATION R-13 PERMIT APPLICATION

Prepared for:

ROVER PIPELINE LLC

Sherwood Compressor Station

Smithburg, Doddridge County, West Virginia

February 2015

Apex TITAN Inc. Job No: 1200413.001

Prepared by:

Apex TITAN, Inc., a Subsidiary of Apex Companies, LLC 2801 Network Boulevard, Suite 200 Frisco, TX 75034 T 469.365.1100 • F 469.365.1199 apexcos.com

TABLE OF CONTENTS

Section Introduction	<u>Page</u> 1
Application for Air Permit	2
Proof of Application Fee	6

Attachments

Attachment A:	Business Certificate	A-1
Attachment B:	Map	B- 1
Attachment C:	Installation and Start-up Schedule	C-1
Attachment D:	Regulatory Discussion	D-1
Attachment E:	Plot Plan	E-1
Attachment F:	Process Flow Diagram	F-1
Attachment G:	Process Description	G-1
Attachment I:	Emission Units Table	I-1
Attachment J:	Emission Points Data Summary Sheet	J -1
Attachment K:	Fugitive Emissions Data Summary Sheet	K- 1
Attachment L:	Emissions Unit Data Sheets	L-1
Attachment N:	Supporting Emissions Calculations	N-1
Attachment O:	Monitoring, Recordkeeping, Reporting and Testing Plans	0-1
Attachment P:	Public Notice	P-1

Introduction

Rover Pipeline LLC (Rover) is submitting this R-13 Permit Application to the West Virginia Department of Environmental Protection (WVDEP) to authorize emissions from the installation of equipment at the Sherwood Compressor Station (the Station) located in Doddridge County, West Virginia. The Station will consist of the following:

- Three (3) compressor engines and associated startup and blowdown emissions;
- One (1) Catalytic Industrial Group (CIG) flameless gas infrared catalytic heater;
- One (1) emergency generator;
- One (1) slop storage tank and associated loading;
- Two (2) wastewater tanks and associated loading;
- One (1) new oil tank;
- One (1) used oil tank;
- One (1) new coolant tank;
- One (1) used coolant tank;
- Pigging operations;
- Fugitive components; and,
- Unpaved roads.

The proposed facility will emit carbon monoxide (CO), oxides of nitrogen (NO_X), particulate matter (PM), including PM with aerodynamic diameters of 10 and 2.5 microns or less (PM₁₀ and PM_{2.5}, respectively), sulfur dioxide (SO₂), volatile organic compounds (VOC), hazardous air pollutants (HAPs), and Greenhouse Gases (GHG).

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 Www.dep.wv.gov/dag		LICATION FOR NSR PERMIT AND TLE V PERMIT REVISION (OPTIONAL)	
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN	I): PLEASE CHECK	TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):	
☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION			
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT		OVE IS CHECKED, INCLUDE TITLE V REVISION AS ATTACHMENT S TO THIS APPLICATION	
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revi (Appendix A, "Title V Permit Revision Flowchart") and abilit			
Section	n I. General		
1. Name of applicant (as registered with the WV Secretary of Rover Pipeline LLC	2. Federal Employer ID No. (FEIN): 47-1958303		
3. Name of facility (if different from above):		4. The applicant is the:	
Sherwood Compressor Station		OWNER OPERATOR BOTH	
5A. Applicant's mailing address: Energy Transfer Company 1300 Main Street Houston, Texas 77002 5B. Facility's present physical address: Sherwood Compressor Station			
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 			
7. If applicant is a subsidiary corporation, please provide the name of parent corporation: Energy Transfer Company			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Applicant is owner of the site. If NO, you are not eligible for a permit for this source. 			
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility 486210 			
11A. DAQ Plant ID No. (for existing facilities only): 11B. -	11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):		
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone			

12A.

 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 				
	- For Construction or Relocation permits , please provide directions to the <i>proposed new site location</i> from the nearest state			
From the intersection of US Hwy 50 and Snowbird Road WV-18 for 1.2 miles. Turn Left on Eibscamp Road		Road for 1.8 miles. Turn Left on		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
	Smithburg, WV	Doddridge		
12.E. UTM Northing (KM): 4346.439	12F. UTM Easting (KM): 526.395	12G. UTM Zone: 17S		
13. Briefly describe the proposed change(s) at the facilit The proposed station will included the installation of thre- tanks, loading, heater, pigging operations, unpaved road	e new compressor engines, an emerger emissions, and piping and fugitives cor			
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, providence and the providence of the pr		14B. Date of anticipated Start-Up if a permit is granted: 06/01/2017		
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).				
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52				
16. Is demolition or physical renovation at an existing facility involved? YES NO				
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed				
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the				
proposed process (<i>if known</i>). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance <i>(if known)</i> . Provide this				
information as Attachment D.				
Section II. Additional attachments and supporting documents.				
 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 				
20. Include a Table of Contents as the first page of your application package.				
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 				
- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). See Attachment B.				
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.				
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.		
- For chemical processes, provide a	MSDS for each compound emitted	to the air.
25. Fill out the Emission Units Table	and provide it as Attachment I.	
26. Fill out the Emission Points Data	a Summary Sheet (Table 1 and Ta	able 2) and provide it as Attachment J.
27. Fill out the Fugitive Emissions D	ata Summary Sheet and provide	it as Attachment K.
28. Check all applicable Emissions L	Init Data Sheets listed below:	
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	🛛 Indirect Heat Exchanger	🛛 Storage Tanks
General Emission Unit, specify Co	mpressor Engines (3)	
Fill out and provide the Emissions Un	it Data Sheet(s) as Attachment L	•
29. Check all applicable Air Pollution	Control Device Sheets listed be	ow:
Absorption Systems	Baghouse	Flare
Adsorption Systems		Mechanical Collector
	Electrostatic Precipit	ator
Other Collectors, specify		
Fill out and provide the Air Pollution (
 Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31. 		
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.		
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.		
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general		
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal		
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.		
33. Business Confidentiality Claims	s. Does this application include co	nfidential information (per 45CSR31)?
🗌 YE	S 🛛 NO	
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.		
Section III. Certification of Information		
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:		
Authority of Corporation or Other Business Entity		
Authority of Governmental Agency Authority of Limited Partnership		
Submit completed and signed Authority Form as Attachment R.		
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.		

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE) Jog blue ink)	ATE: <u>Z-12 ZOIS</u> (Please use blue ink)
35B. Printed name of signee: Mark Ryan		35C. Title: VP Operations, Midwest Division
35D. E-mail: mark.ryan@energytransfer.com	36E. Phone: 317-879-3011	36F. FAX:
36A. Printed name of contact person (if differe	nt from above):	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	ED WITH THIS PERMIT APPLICATION:	
	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information ⊠ Application with the signature(s) to the DAQ, Permitting Section, at the sapplication. Please DO NOT fax permit applications. 	
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:		
Forward 1 copy of the application to the Title V Permitting Group and:		
-		
NSR permit writer should notify Title V permit writer of draft permit,		
For Title V Minor Modifications:		

□ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- SR permit writer should notify a Title V permit writer of draft permit,
- Dublic notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

CASH ONLY IF ALL CheckLock M SECURITY FEATURE	S LISTED ON BACK INDICATE NO TAMPERING OR COPYING
APEX TITAN, INC. 2801 NETWORK BLVD, SUITE 200 FRISCO, TX 75034	BANK OF TEXAS, NA DALLAS, TX 32-1432/1110 2/17/2015
PAY TO THE WV DEP Division of Air Quality	\$ **2,000.00
Two Thousand and 00/100*********************************	************
West VA Dept. of Environmental Protection Division of Air Quality 601 57th Street SE Charleston, WV 25304 MEMO Agency Fee 1200413.001	DOLLARS VOID AFTER 90 DAYS Buddhull №
TITAN ENGINEERING, INC. WV DEP Division of Air Quality Date Type Reference Ori 2/17/2015 Bill 1200413.001	2/17/2015 ginal Amt. Balance Due Discount Payment 2,000.00 2,000.00 Check Amount 2,000.00

ATTACHMENT A: BUSINESS CERTIFICATE

SHERWOOD COMPRESSSOR STATION

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ROVER PIPELINE LLC

Control Number: 9A6D4

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of July 10, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of July 10, 2014

Waterie Eyern

Secretary of State

FILED

JUL 1 0 2014

Penney Barker, Manager IN THE OFFICE OF Corporations Division V SECRETARY OF STATE Fax: (304)558-8381 Website: <u>www.wvsos.com</u> E-mail: business@wvsos.com

WV APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

Office Hours: Monday - Friday 8:30 a.m. - 5:00 p.m. ET Control # GAUDY

1. The name of the company as registered in its home state is: and the state or country of organization is:

3. The company will be a: [See instructions for limitations

Authorization/Approval from the appropriate State Licensing Board is required to process the application.]

on professions which may form P.L.L.C. in WV. All members must have WV professional license. In most cases, a Letter of

Natalie E. Tennant

Secretary of State

1900 Kanawha Blvd E Bidg I, Suite 157-K

Charleston, WV 25305

FILE ONE ORIGINAL

(Two if you want a filed

FEE: \$150

stamped copy returned to you)

Delaware

Rover Pipeline LLC

CHECK HERE to indicate you have obtained and submitted with this application a <u>CERTIFICATE OF</u> EXISTENCE (GOOD STANDING), dated during the current tax year, from your home state of original organization as <u>required</u> to process your application. The certificate may be obtained by contacting the Secretary of State's Office in the home state of original organization.

- - Home State name as listed above, if available in WV (If name is not available, check DBA Name box below and follow special instructions in Section 2. attached.)

(See special instructions in Section 2. Regarding the Letter of Resolution attached to this application.)

regular L.L.C.

Professional L.L.C. for the profession of

4.	The street address of the principal office	No. & Street:	3738 Oak Lawn Ave.
	is:	City/State/Zip:	Dallas, TX 75219
	and the mailing address (if different) is:	Street/Box:	
		City/State/Zip:	
5.	The address of the designated office of the company in WV, if any, will be:	No. & Street:	
		City/State/Zip:	
6.	Agent of Process: Properly designated	Name:	Corporation Service Company
	person to whom notice of legal process may be sent, if any:	Address:	209 West Washington Street
		City/State/Zip:	Charleston, WV 25302

Form LLF-1

Issued by the Office of the Secretary of State

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 2

7.	7. E-mail address where business correspondence may be received:peggy.harrison@energytransfer.com			
8.	8. Website address of the business, if any:			
9.	The company is:	an at-will compan a term compa which will exp	ny, for the t	definite period term of years,
10.	The company is:	member-managed	. [List the nam	nes and addresses of <u>all</u> members.] he names and addresses of <u>all</u>
	managers.]		allogi feist a	
	List the Name(s) and Address(es) of pages if necessary).	of the Member(s)/Manag	ger(s) of the	e company (attach additional
	Name	Street Addre	SS	City. State, Zip
	ET Rover Pipeline LLC	3738 Oak Lawn Ave.		Dallas, TX 75219
	All or specified members of a limited company are liable in their capacity a for all or specified debts, obligations of the company.	as members	of the comp s-Those per capacity as or liability of writing to the	obligations and liabilities are those pany sons who are liable in their members for all debts, obligations of the company have consented in he adoption of the provision or to y the provision.
	12. The purpose for which this limited liability company is formed are as follows: (Describe the type(s) of business activity which will be conducted, for example, "real estate," "construction of residential and commercial buildings," "commercial printing," "professional practice of architecture.")			
1	Pipeline transportation services		-	
	Is the business a Scrap Metal Dealer Yes [If "Yes," you must complete and proceed to question 14. No [Proceed to question 14.] The number of pages attached and inc	e the Scrap Metal Dealer R .].	5 • 1	Form (<u>Form SMD-1</u>)

Form LLF-1

.

Issued by the Office of the Secretary of State

Revised \$/13

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3

15. The requested effective date is: [Requested date may not be earlier than	\checkmark	the date & time of filing in	the Secretary of State's Office
filing nor later than 90 days after filing in our office.]		the following date	and time

16. Contact and Signature Information* (See below Important Legal Notice Regarding Signature):

a.	Peggy J Harrison	(918) 794-4559
	Contact Name	Phone Number
b.	Peggy J Harrison	Manager Corporate Governance
	Print or type name of signer	Title / Capacity of Signer
c.	Signed Harrison	6/27/2014
	Signature V	Date

*Important Legal Notice Regarding Signature: Per West Virginia Code <u>§31B-2-209</u>. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

.

Delaware

PAGE 1

The First State

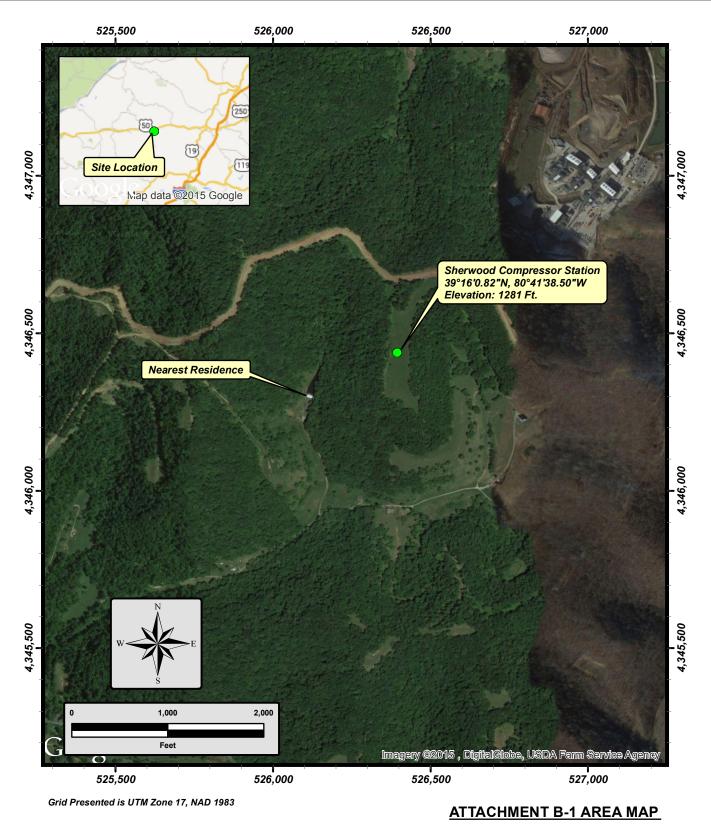
I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ROVER PIPELINE LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE NINTH DAY OF JULY, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

AND I DO HEREBY FURTHER CERTIFY THAT THE SAID "ROVER PIPELINE LLC" WAS FORMED ON THE TWENTY-SIXTH DAY OF JUNE, A.D. 2014.

5559285 8300

140934897 You may verify this certificate online at corp.delaware.gov/authver.shtml


Jeffrey W. Bullock, Secretary of State

AUTHENTICATION: 1520626

DATE: 07-09-14

ATTACHMENT B: MAP

SHERWOOD COMPRESSSOR STATION

Rover Pipeline LLC Sherwood Compressor Station Doddridge County, West Virginia Apex-Project No. 1200413.001.00 February 2015 from USGS Quadrangle Smithburg, WV

from USGS Quadrangle Smithburg, WV Ground Condition Depicted June 2013 Digital Data Courtesy of Google Earth

Apex TTIAN, Inc.

2801 Network Boulevard, Suite 200 Frisco, Texas 75034 Phone: (469) 365-110 • Fax: (469) 365-1199

A Subsidiary of Apex Companies, LLC

APEX

ATTACHMENT C: INTSTALLATION AND START-UP SCHEDULE

SHERWOOD COMPRESSSOR STATION

INSTALLATION AND START-UP SCHEDULE

Upon permit submittal, Rover Pipeline LLC (Rover) intends to commence construction on those activities allowed by the WVDEP, at the sole risk of Rover. Rover anticipates that construction will require approximately eight to twelve months to complete, with operation commencing June 1, 2017.

ATTACHMENT D: REGULATORY DISCUSSION

SHERWOOD COMPRESSSOR STATION

REGULATORY DISCUSSION

This Attachment D discusses the federal and state regulations that apply to the Rover Pipeline LLC (Rover) Sherwood Compressor Station (the Station).

45 CSR 2: To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2-3 limits opacity from fuel burning equipment to ten percent (10 %) opacity, based on a six minute block average, except during periods of startup, shutdown, or malfunction (SSM). At all times, including periods of start-ups, shutdowns and malfunctions, the Station will, to the extent practicable, maintain and operate the site's fuel burning unit in a manner consistent with good air pollution control practice for minimizing emissions. Attachment O presents the Station's monitoring methods for demonstrating compliance with this rule.

45 CSR 2-4 contains weight-based PM emissions standards for fuel burning units. The Station's heater is a type "b" unit, as defined in the rule. For type "b" fuel burning units, the PM emission limit is the product of 0.09 and the total design heat input for such units in million British thermal units per hour (MMBtu/hr), not to exceed 600 lb/hr PM from all such units. Per 45 CSR 2-11, Exemptions, fuel burning units with a heat input less than 10 MMBtu/hr are exempt from this rule. The proposed heater (Emission Unit ID: HTR-1) has a heat input below 10 MMBtu/hr; therefore, the heater is not subject to this rule. Per 45 CSR 2-11, the heater is also not subject to 45 CSR 2-5, 2-6, 2-8, or 2-9.

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

This rule prohibits the discharge of air contaminants that cause or contribute to an objectionable odor. The Station will be operated to comply with this requirement.

45 CSR 6: Control of Air Pollution from Combustion of Refuse

This rule also prohibits (with limited exception) open burning and sets forth the registration, permitting, reporting, testing, emergency, natural disaster and exemption provisions for activities involving the combustion of refuse and land clearing debris. The Station will comply with the open burning provisions of this rule.

45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule establishes weight-based emission standards for SO_2 from fuel burning units. Per 45 CSR 10-10, Exemptions, since the heater at the Station is fired on sweet natural gas and has a design heat input less than 10 MMBtu/hr, it is exempt from 45 CSR 10-2 and 10-6 through 10-8. Therefore, this rule does not apply.

45 CSR 13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation

Rover Pipeline is applying for the installation and operation of a new station that is not a major source and is subject to, and will comply with, the permitting requirements of this rule. Detailed emission rate calculations are included in Attachment N to this application.

45 CSR 14: Permits for Construction and Major Modification of Major Stationary Sources for the Prevention of Significant Deterioration of Air Quality

The Station is a minor source. As mentioned above, detailed emission rate calculations are included in Attachment N to this application.

45 CSR 16: Standards of Performance for New Stationary Sources

This rule incorporates by reference the New Source Performance Standards (NSPS) codified in Title 40 of the Code of federal Regulations (40 CFR) Part 60. The following sections address the NSPS applicable to the Station, which include:

NSPS JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engine. According to 40 CFR §60.4230(a)(4)(i), spark ignition internal combustion engines with a maximum engine power greater than or equal to 500 horsepower (HP) and manufactured after January 1, 2007 are subject to these standards. The Station's compressor engines (Emission Unit IDs: CE-1S, CE-2S, and CE-3S) are subject to, and will comply with, these emission standards, testing, and reporting requirements, since they were manufactured after the applicable date.

NSPS IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines. According to 40 CFR §60.4200(a)(2)(i), stationary CI ICE manufactured after April 1, 2006 are subject to these standards. The Station's new emergency diesel generator (Emission Unit ID: GE-1) is subject to, and will comply with, these standards, since the engine was manufactured after the applicable date.

NSPS OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution.

The emission sources affected by this subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011.

For natural gas transmission compressor stations, standards apply to storage vessels constructed, modified or reconstructed after August 23, 2011, with VOC emissions equal to or greater than 6 tons per year (T/yr). The proposed storage tanks have an uncontrolled potential to emit less than 6 T/yr of VOC; therefore, this section does not apply.

The Station is not currently planned to have natural gas processing, sweetening units, or centrifugal compressors with wet gas seals and will not be subject to the requirements of NSPS OOOO for those affected facilities.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive Particulate Matter

Rover Pipeline will utilize dust control measures to prevent fugitive PM from being emitted beyond the property line during the construction of the Station. Rover will maintain the Station's roads in a manner consistent with this rule.

45 CSR 19: Permits for Construction and Major Modification of Major Stationary Sources Which Cause or Contributes to Nonattainment Areas

The Station is located in Doddridge County, West Virginia, which is designated as attainment. Therefore, this rule does not apply.

45 CSR 20: Good Engineering Practices as Applicable to Stack Heights

The Station does not include any proposed stacks that exceed the Good Engineering Practice height.

40 CSR 21: Regulation to Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

The Station is not located in Putnam County, Kanawha County, Cabell County, Wayne County, or Wood County; therefore, this rule does not apply.

45 CSR 22: Air Quality Management Fee Program

This rule contains fee structure information for permits to construct and operate. In accordance with 45 CSR 22-3, Rover is submitting an application fee with this 45 CSR 13 applications as follows:

- 45 CSR 13 Application Fee: \$ 1,000
- NSPS Source: <u>\$ 1,000</u>
 - \$ 2,000

45 CSR 27: To Prevent and Control the Emissions of Toxic Air Pollutants

Per 45 CSR 27-2.4, this rule does not apply because the equipment used in the production and/or distribution of petroleum products is exempt, provided that the equipment does not produce or contact materials containing more than 5% benzene by weight.

45 CSR 29: Rule Requiring the Submission of Emissions Statements for Volatile Organic Compound Emissions and Oxides of Nitrogen Emissions

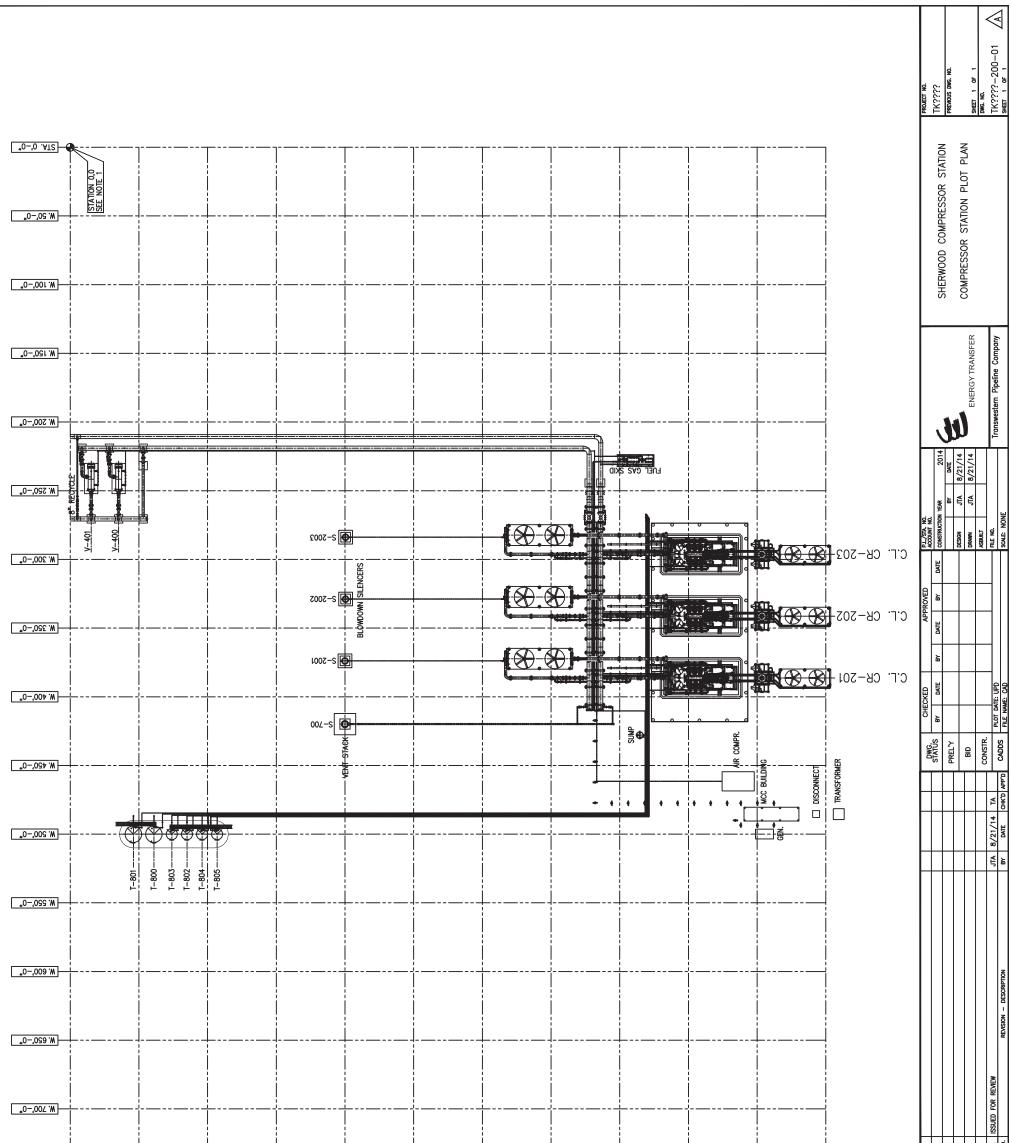
The Station is not located in Putnam County, Kanawha County, Cabell County, Wayne County, Wood County, or Greenbrier County; therefore, this rule does not apply.

45 CSR 30: Requirements for Operating Permits

The Station is not a major source with respect to Title V; therefore, this rule does not apply.

45 CSR 34: Emission Standards for Hazardous Air Pollutants

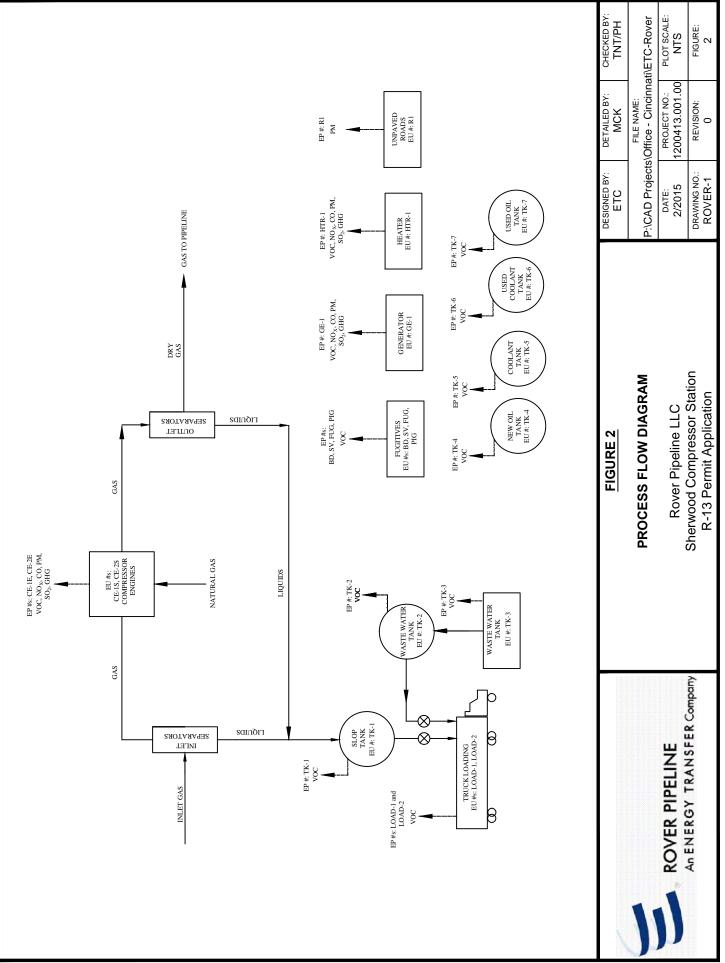
This rule incorporates by reference the National Emissions Standards for Hazardous Air Pollutants (NESHAPs) codified in 40 CFR Part 61 and in 40 CFR Part 63 (MACTs).


40 CFR Part 61 contains standards for various materials, including radon, beryllium, mercury, vinyl chloride, radionuclides, benzene, asbestos, and inorganic arsenic emissions from various types of sources. The Station is not subject to any NESHAPs listed in 40 CFR Part 61.

40 CFR Part 63 contains MACT standards for various source categories and/or industries. The Station is an area source of HAPs. The following sections address the MACT standards that potentially apply to the Station, including:

 MACT ZZZZ – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines. The proposed engines (Unit Emissions IDs: CE-1S, CE-2S, CE-3S, and GE-1) are classified as new ICE at an area source because they were constructed after June 12, 2006, as that term is defined in MACT ZZZZ. According to §63.6590(c)(1), new Spark Ignited ICE must meet the requirements of this rule by complying with NSPS JJJJ or NSPS IIII.

ATTACHMENT E: PLOT PLAN


SHERWOOD COMPRESSSOR STATION

 					 						V V	
 	S. 100'-0"	S. 150'-0"	<u>S. 200'-0"</u>	S. 250 ^{°-0"}	 S. 350'-0"	S. 400 ^{°-0} "	S. 450 ^{°-0} "	S. 500 ⁰ "	S. 550 [°] -0"		REFERENCE DRAWING TITLE	
STATION NORTH										-		
											DWG. NO.	DR0- 11

ATTACHMENT F: PROCESS FLOW DIAGRAM

SHERWOOD COMPRESSSOR STATION

ATTACHMENT G: PROCESS DESCRIPTION

SHERWOOD COMPRESSSOR STATION

PROCESS DESCRIPTION

This R-13 permit application is being submitted to authorize three (3) compressor engines and associated blowdowns and start-ups, one (1) emergency diesel generator, one (1) atmospheric aboveground slop storage tank, two (2) waste water tanks, four (4) associated engine/miscellaneous equipment tanks, one (1) line heater, truck loading operations, fugitive emissions from unpaved roads, pigging operations, and fugitive emissions from piping components (the Project). These activities/equipment are located at the Sherwood Compressor Station (the Station) near Smithburg in Doddridge County, West Virginia.

The new compressor engines (Emission Unit IDs: CE-1S, CE-2S, and CE-3S) will be used to increase the pressure of the natural gas to transmission pipeline's pressure. The compressors are natural gas fired and have associated engine blowdowns (Emission Unit ID: BD) and start-ups (Emission Unit ID: SV). Pigging operations (Emission Unit ID: PIG) of the pipeline are conducted periodically to clean the pipeline. Liquids from the pipeline are purged into the slop tank (Emission Unit ID: TK-1). The slop tank contents are loaded via trucks (Emission Unit ID: LOAD-1) for off-site disposal.

The two waste water tanks (Emission Unit IDs: TK-2 and TK-3) operate in series. TK-3 is an underground storage tank (UST) which collects cleanup and sump water. TK-3 is pumped to TK-2. TK-2 contents are loaded via trucks (Emission Unit ID: LOAD-2)) for off-site disposal.

The station also has a small natural gas fired heater (Emission Unit ID: HTR-1), emergency generator (Emission Unit ID: GE-1), and associated engine/miscellaneous equipment tanks (Emission Unit IDs: TK-4, TK-5, TK-6, and TK-7). There are also emissions from equipment component leaks (Emission Unit ID: FUG), as well as fugitive emissions from unpaved roads (Emission Unit ID: R1).

ATTACHMENT I: EMISSION UNITS TABLE

SHERWOOD COMPRESSSOR STATION

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1S	CE-1E	Caterpillar G3616 4SLB Catalyst	2016	4735 hp	New	CC-1
CE-2S	CE-2E	Caterpillar G3616 4SLB Catalyst	2016	4735 hp	New	CC-2
CE-3S	CE-3E	Caterpillar G3616 4SLB Catalyst	2016	4735 hp	New	CC-3
GE-1	GE-1	Caterpillar C15 ACERT	2016	957 hp	New	None
FUG	FUG	Site Fugitives	2016	N/A	New	None
TK-1	TK-1	Slop Tank 1 (300 bbl)	2016	300 bbl	New	None
TK-2	TK-2	Waste Water Tank 1 (300 bbl)	2016	300 bbl	New	None
TK-3	TK-3	Waste Water Tank 2 (2500 gal)	2016	2500 gal	New	None
TK-4	TK-4	New Oil Tank (100 bbl)	2016	100 bbl	New	None
TK-5	TK-5	Coolant Tank (100 bbl)	2016	100 bbl	New	None
TK-6	TK-6	Used Coolant Tank (100 bbl)	2016	100 bbl	New	None
TK-7	TK-7	Used Oil Tank (100 bbl)	2016	100 bbl	New	None
LOAD-1	LOAD-1	Slop Truck Loading	2016		New	None
LOAD-2	LOAD-2	Waste Water Truck Loading	2016		New	None
HTR-1	HTR-1	CIG Flameless Gas Infrared Heater	2016	0.51MMB/h	New	None
BD	BD	Compressor Blowdowns	2016	N/A	New	None
SV	SV	Engine Starter Vents	2016	N/A	New	None
PIG	PIG	Pigging Operations	2016	N/A	New	None
R1	R1	Unpaved Road Emissions	2016	N/A	New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

SHERWOOD COMPRESSSOR STATION

Attachment J EMISSION POINTS DATA SUMMARY SHEET

1								t															-						
	Emission Concentration ⁷ (ppmv or mg/m ⁴)		N/A						N/A							N/A							V/N						
	Est. Method Used ⁶		Vendor Specification	Sheets					Vendor	Specification Sheets						Vendor	Specification Sheets						Vendor	Specification Sheets					
	Emission Form or Phase (At exit conditions, Solid, Liquid or	Gas/Vapor)	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas
	Maximum Potential Controlled Emissions ⁵	ton/yr	22.86 ° en	0.00 14.40	1.55	0.09	18,178	4.36	22.86	8.80	14.40	1.55	0.09	18,178	4.36	22.86	8.80	14.40	1.55	0.09	18,178	4.36	3.03	0.21	0.01	0.01	0.10	146.68	0.001
	Max Pot Emis	lb/hr	5.74 2.1	2.21 3.62	0.39	0.02	1	1.06	5.74	2.21	3.62	0.39	0.02	1	1.06	5.74	2.21	3.62	0.39	0.02	ł	1.06	13.32	0.93	0.02	0.04	0.43	1	0.01
	Maximum Potential Uncontrolled Emissions ⁴	ton/yr	22.86 175 75	28.81	1.55	0.09	18,178	14.90	22.86	125.75	28.81	1.55	0.09	18,178	14.90	22.86	125.75	28.81	1.55	0.09	18,178	14.90	3.03	0.21	0.01	0.01	0.10	146.68	0.001
Data	Max Pote Uncor Emiss	lb/hr	5.74 21 50	7.23	0.39	0.02	ł	3.67	5.74	31.58	7.23	0.39	0.02	ł	3.67	5.74	31.58	7.23	0.39	0.02	ł	3.67	13.32	0.93	0.02	0.04	0.43	1	0.01
Table 1: Emissions Data	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		NOx	VOC	ΡM	SO_2	$CO_{2e}(^1)$	$HAPs(^2)$	NOx	CO	VOC	ΡM	SO_2	$CO_{2e}(^1)$	$HAPs(^2)$	NOx	CO	VOC	PM	SO_2	$CO_{2e}(^{1})$	$HAPs(^2)$	NOx	CO	VOC	PM	SO_2	$CO_{2e}(^{1})$	$HAPs(^{2})$
Table 1:	Vent Time for Emission Unit (chemical processes only)	Max (hr/yr)	N/A						N/A	T 7 / 1						N/A	T 7 / 1						N/A						
-	Vent Time for Emission Unit (chemical process only)	Short Term²	N/A						N/A							N/A	T 7 / 1 T						N/A						
	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)	Device Type	Oxidation	Cataryst					Oxidation	Catalyst						Oxidation	Catalyst						N/A						
	Air Pc Control <i>(Nust Emissic</i> Table & .	ID No.	CC-1						<u>2-77</u>)						ະ-ບບ							V/V	U M					
	Emission Unit Vented Through This Point (<i>Must match</i> <i>Emission Units</i> able & Plot Plan)	Source	Compressor Engine 1						Compressor Engine 2)						Compressor Engine 3	6						Emergency	Generator					
	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)	ID No.	CE-1S						CE-2S							CF-3S							GE_1	1-10					
	Emission Point Type ¹		Vertical	Stack					Vertical	Stack						Vertical	Stack						Vertical	Stack					
	Emission Point ID No. (<i>Must match Emission Units Table</i> & Plot Plan)		CE-1E						CE-2E							CE-3F							GF_1	7-70					

WVDEP-DAQ Revision 2/11

page _1_ of _5_

N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TCEQ Guidance for equipment leak fugitives	Tanks 4.09d	Tanks 4.09d	Tanks 4.09d	Tanks 4.09d	Tanks 4.09d	Tanks 4.09d	Tanks 4.09d	AP-42	AP-42	AP-42
Gas Gas Gas	Slop	Waste Water	Waste Water	Lube Oil	Coolant	Coolant	Lube Oil	Slop	Waste Water	Gas Gas Gas Gas Gas Gas
1.54 289 0.01	0.001	0.001	0.001	<0.01	<0.01	<0.01	<0.01	0.001	0.001	0.22 0.19 0.01 0.02 0.001 264 0.004
0.35 0.001	0.32	0.31	0.07	<0.01	0.01	0.01	<0.01	0.67	0.67	0.05 0.04 0.003 0.004 0.0003
1.54 289 0.01	0.001	0.001	0.001	<0.01	<0.01	<0.01	<0.01	0.001	0.001	0.22 0.19 0.01 0.02 0.001 264 0.004
0.35 0.001	0.32	0.31	0.07	<0.01	0.01	0.01	<0.01	0.67	0.67	0.05 0.04 0.003 0.003 0.0003
VOC CO2e (¹) HAPs(²)	VOC	VOC	VOC	VOC	VOC	VOC	VOC	VOC	VOC	NO _x CO VOC PM SO ₂ CO _{2e} (¹) HAPs(²)
C	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fugitives	Slop Tank	Waste Water Tank	Waste Water Tank	New Oil Tank	Coolant Tank	Used Coolant Tank	Used Oil Tank	Slop Truck Loading	Waste Water Truck Loading	CIG Flameless Gas Infrared Catalytic Heater
FUG	TK-1	TK-2	TK-3	TK-4	TK-5	TK-6	TK-7	LOAD-1	LOAD-2	HTR-1
N/A	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical Stack
FUG	TK-1	TK-2	TK-3	TK-4	TK-5	TK-6	TK-7	LOAD-1	LOAD-2	HTR-1

WVDEP-DAQ Revision 2/11

i	i		;
N/A	N/A	N/A	N/A
E	EE	EE	AP-42
Gas Gas Gas	Gas Gas Gas	Gas Gas Gas	Solid Solid Solid
0.12 132 0.003	0.15 174 0.004	0.07 77.11 0.002	0.65 0.19 0.02
6.53 0.16	2.94 0.07	45.68 1.14	1.39 0.41 0.04
0.12 132 0.003	0.15 174 0.004	0.07 77.11 0.002	1.30 0.38 0.04
6.53 0.16	2.94 0.07	45.68 1.14	2.79 0.82 0.08
VOC CO _{2e} (¹) HAPs(²)	VOC CO _{2e} (¹) HAPs(²)	VOC CO2e ⁽¹) HAPs(²)	PM PM10 PM2.5
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
Compressor Blowdowns	Engine Starter Vents	Pigging	Unpaved Roads
BD	SV	PIG	RI
Vertical Stack	Vertical Stack	Vertical Stack	Fugitive
BD	SV	PIG	RI

Notes: (1) (2) (2) (2) (3)

- (1) Hourly emissions could not be quantified. CO₂e emissions include CO₂, CH₄, and N₂O.
- (2) Individual HAPs are provided in Attachment N. This column shows the total amount of HAPs.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

O = other (specify) Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate;

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10)

	es (km)	Easting	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395	526.395
	UTM Coordinates (km)	Northing	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439	4346.439
Table 2: Release Parameter Data	evation (ft)	Stack Height ² (Release height of emissions above ground level)	54	54	54	20										
	Emission Point Elevation (ft)	Ground Level (Height above mean sea level)	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft	1281 ft				
		Velocity (fps)	108.74	108.74	108.74	77.56										
Table 2: Rele	Exit Gas	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	32027	32027	32027	3655	Not Applicable									
		Temp. (°F)	856	856	856	910	N/A									
	Inner	Ularmeter (ft.)	2.5	2.5	2.5	1	N/A									
	Emission	Point ID No. (Must match Emission Units Table)	CE-1S	CE-2S	CE-3S	GE-1	FUG	TK-1	TK-2	TK-3	TK-4	TK-5	TK-6	TK-7	LOAD-1	LOAD-2

Attachment J EMISSION POINTS DATA SUMMARY SHEET

2/11

WVDEP-DAQ Revision

page _4_ of _5_

HTR-1	0.5	800		1281 ft	t 20	4346.439	526.395
BD				1281 ft		4346.439	526.395
SV				1281 ft		4346.439	526.395
PIG				1281 ft	t	4346.439	526.395
R1	N/A	N/A	Not Applicable	1281 ft	t	4346.439	526.395

¹ Give at operating conditions. Include inserts. ² Release height of emissions above ground level.

WVDEP-DAQ Revision

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

SHERWOOD COMPRESSSOR STATION

ROVER PIPELINE LLC

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS					
1.)	Will there be haul road activities?					
	Yes No					
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.					
2.)	Will there be Storage Piles?					
	□ Yes					
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.					
3.)) Will there be Liquid Loading/Unloading Operations?					
	Yes No					
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.					
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?					
	Yes INO					
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.					
6.)	Will there be General Clean-up VOC Operations?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
7.)	Will there be any other activities that generate fugitive emissions?					
	□ Yes					
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.					
	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."					

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²	Potential Emissions ²	Maximum Potential Controlled Emissions ³	otential iissions ³	Est. Method
	Unernical Name/UAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	Not Applicable					
Unpaved Haul Roads	PM PM ¹⁰ PM _{2.5}	2.79 0.82 0.08	1.30 0.38 0.04	1.39 0.41 0.04	0.65 0.19 0.02	AP-42
Storage Pile Emissions	Not Applicable					
Loading/Unloading Operations	VOC	LOAD-1 0.67 LOAD-2 0.67	LOAD-1 0.001 LOAD-2 0.001	LOAD-1 0.67 LOAD-2 0.67	LOAD-1 0.001 LOAD-2 0.001	AP-42
Wastewater Treatment Evaporation & Operations	Not Applicable					
Equipment Leaks	VOC (Refer to Attachment N for emission speciation)	0.35	1.54	0.35	1.54	EPA
General Clean-up VOC Emissions	Not Applicable					
Other	Not Applicable					
¹ List all regulated air pollutants. Speciate VOCs, including all	ing all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS ₂ ,	me with Chemical	Abstracts Servic	e (CAS) number. I	LIST Acids, C	o, cs ₂ .

VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute ³). batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L: EMISSIONS UNIT DATA SHEETS

SHERWOOD COMPRESSSOR STATION

ROVER PIPELINE LLC

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on *Equipment List Form*):LOAD-1, LOAD-2

1. Loading Area Name: Slop and Waste Water Truck Loading

2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):

Drums Marine Vessels Rail Tank Cars X Tank Trucks

3. Loading Rack or Transfer Point Data:

Number of pumps	TBD
Number of liquids loaded	Slop and Waste Water
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	TBD

4. Does ballasting of marine vessels occur at this loading area? Yes No ×Does not apply

5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:

6. Are cargo vessels pressure tested for leaks at this or any other location? Yes No

If YES, describe:

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):

Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.
hours/day	1	1	1	1
days/week	7	7	7	7

page __ of __

WVDEP-OAQ Revision 03-

weeks/quarter 2			2		2		2	
8. Bulk Liquid Data (add pages as necessary):								
Pump ID No.			TBD	TBD				
Liquid Name			Slop	Waste Water				
Max. daily throughput (1000 gal/day)								
Max. annual throughput (1000 gal/yr)								
Loading Method ¹			BF	BF				
Max. Fill Rate (gal/min) Average Fill Time (min/loading) Max. Bulk Liquid Temperature (°F) True Vapor Pressure ²								
		55.86	55.86					
		0.20	0.20					
Cargo Vessel Condition ³		U	U					
Control Equipment or Method ⁴			None	None				
Minimum control efficiency (%)		0	0					
Maximum	Lo	ading (lb/hr)	0.67	0.67				
Emission Rate	An	nual (lb/yr)	1.90	1.90				
Estimation Method ⁵			EPA	EPA				
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill								
² At maximum bulk liquid temperature								
3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)								
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption ⁶ LOA = Lean Oil AdsorptionCO = Condensation ⁷ SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption ⁸ TO = Thermal Oxidation or Incineration ⁹ CRC = Compression-Refrigeration-Condensation ⁹ VB = Dedicated Vapor Balance (closed system) 								

page __ of __

WVDEP-OAQ Revision 03-

⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

- TM = Test Measurement based upon test data submittal
- O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
Refer to Regulatory Discussion in Attachment O	Refer to Regulatory Discussion in Attachment O
REPORTING	TESTING
Refer to Regulatory Discussion in Attachment O	Refer to Regulatory Discussion in Attachment O

page __ of __ WVDEP-OAQ Revision 03-

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

N/A

page ___ of ___ WVDEP-OAQ Revision 03-

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.					
	 Emergency Vent Summary Sheet Leak Sources Data Sheet Toxicology Data Sheet Reactor Data Sheet Distillation Column Data Sheet 					
1.	Chemical process area name and equipment ID number (as shown in <i>Equipment List Form</i>) Fugitives FUG					
2.	 Standard Industrial Classification Codes (SICs) for process(es) 4922 					
3.	 List raw materials and attach MSDSs Natural Gas 					
4.	List Products and Maximum Products	uction and 🗌 attach MSDSs				
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)			
5.		ummary Sheet for all emergency relief of				
6.						
7.	Clearly describe below or attach to spill or release.	o application Accident Procedures to be	followed in the event of an accidental			

8A.	Complete the Toxicology Data Sheet or attach to application a toxicology report (an up-to-date material safety data
	sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or
	chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS
	sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity,
	teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references.

- 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).
- 9. Waste Products Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.)

9A. Types and amounts of wastes to be disposed:

9B. Method of disposal and location of waste disposal facilities: Carrier: Phone:

9C. Check here if approved USEPA/State Hazardous Waste Landfill will be used

10. Maximum and Projected Typical Operating Schedule for process or project as a whole (circle appropriate units).

ciro	circle units: (hrs/day) (hr/batch)		(days), (batches/day), (batches/week)	(days/yr), (weeks/year)
10A.	Maximum	24 hrs/day	7 days/week	365 days/year
10B.	Typical	24 hrs/day	7 days/week	365 days/year

11. Complete a *Reactor Data Sheet* for each reactor in this chemical process.

12. Complete a Distillation Column Data Sheet for each distillation column in this chemical process.

13. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions

limits.	
MONITORING	RECORDKEEPING
See Attachment O	See Attachment O
REPORTING	TESTING
See Attachment O	See Attachment O

MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. **RECORDKEEPING.** Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.

TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.

14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty $N\!/\!A$

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- 2. Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - b. 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all batch processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

EMERGENCY VENT SUMMARY SHEET

List below all emergency relief devices, rupture disks, safety relief valves, and similar openings that will vent only under abnormal conditions.

Emission Point ID ¹	Equipment to Relief Vent (type, ID if available) ²	Relief Vents (type) & Set Pressure (psig)	Name of Chemical(s) or Pollutants Controlled	Worst Case Emission per Release Event (Ibs)

All routine vents (non-emergency) should be listed on the Emission Points Data Summary Sheet.

¹ Indicate the emission point, if any, to which source equipment normally vents. Do <u>not</u> assign emission point ID numbers to each emergency relief vent or device.

² List all emergency relief devices next to the piece of equipment from which they control releases.

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days)³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps ⁵	light liquid VOC 6,7				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC				
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC	See Attachment N for			
Open-ended Lines ¹²	VOC	approximate component counts			See Attachment N for estimated emissions.
	Non-VOC	and service.			
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other	VOC				
	Non-VOC				

LEAK SOURCE DATA SHEET

Revision 03/2007

^{1 - 13} See notes on the following page.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

References Irritation⁵ Chronic⁴ **Acute³** TC_{LO} - Animal LC_{LO} - Animal LC₅₀ - Animal Ч **OSHA** Limits² TWA **Descriptor Name/CAS** Number

TOXICOLOGY DATA SHEET¹

¹ Indicate by "ND" where no data exists, in company's knowledge.

² Time Weighted Average, Ceiling Limit, or other, with units. ³ If inhalation data is not available, provide other data as available. ⁴ Relying on animal or human studies, indicate if any data suggests: C = carcinogenicity, M = mutagenicity, T = teratogenecity, O = oncogenicity. ⁵ Indicate if there are dermal or eye irritation effects and whether they are considered to be low, moderate, or severe.

Page 7 of 13

REACTOR DATA SHEET

Provide the following information for <u>each</u> piece of equipment that is a potential or actual source of emissions as shown on the *Equipment List Form* and other parts of application.

Identification Number (as shown on Equipment List Form):										
1. Nar	1. Name and type of equipment (e.g. CSTR, plug flow, batch, etc.)									
2. Тур	e of operation	n 🗌 Ba	atch [6	□s	emi-batch	1		
3. Proj	 Projected Actual Equipment Operating Schedule (complete appropriate lines): 									
	hrs/day		days/v	veek			weeks/y	year		
	hrs/batch			es/day, weeks e one)	3		day,we (Circle			
4. Feed Data Flow In = gal/hr, or gal/batch										
Material Name & Phase ^a CAS No.			Specific Gravity	Vapor Pressure⁵		harge Ra Max	te Units	Fill Time (min/batch, run) ^c		
CAS No. These Opcome Sharky Pressureb Normal Max Units (min/batch, run Image: Second Sharky Pressureb Normal Max Units (min/batch, run Image: Second Sharky Pressureb Normal Max Units (min/batch, run Image: Second Sharky Pressureb Normal Max Units (min/batch, run Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Image: Second Sharky Ima										
	eed condition al time that e		lling per batch or run	(start-up), fo	r tank or v	essel-typ	e equipme	ent.		
5. Pro										

 Provide all chemical reactions that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic.

6. Maximum Temperature				7A. Maximum Pressure7B. Max. Set Pressure for venting					
c	°C				mmHg	-		mmHg	
	°F				psig			psig	
8. Output Data Flow	Out =				gal/hr or gal/batch				
Material Name and CAS								t Rate	
No.	Thase	Gravity	P	Pressure	Normal	Max	imum	Units	
9. Complete the followir	na emiss	ion data fc	or eq	auinment	t connected to a h	eader exh	aust syste	em aiving emissions	
levels <u>before</u> entering	j header	system (i.e	e. be	efore cor	ntrol equipment).			, gring enneelene	
Check here if not a	applicab	le							
Emission Point ID (exhau		1	-				1		
Material Name and CAS	No.	M	laxiı	mum Pot	ential Emission Ra	ate (lb/hr)		Method **	
** MB - material balance: EE - Engineering Estimate: TM - Test Measurement (submit test data): O - other (Explain)									

6	additior		han one condenser is used	hat may be attached to this reactor. Attach for this reactor. Complete the Condenser Air					
	_ Che	ck here if not applicable							
1	10A.	Cooling material							
1	10B.	Minimum and Maximum flowra	te of cooling material (gal/h	r)					
1	10C.	Inlet temperature of cooling ma	aterial (°F)						
1	10D.	Outlet temperature of cooling n	naterial (°F)						
1	10E.	Pressure drop of gas to be con	idensed from inlet to outlet	(psig)					
1	10F.	Inlet temperature of gas stream	n (°F)						
1	10G.	Outlet temperature of gas stream	am (°F)						
1	10H.	Number of passes							
1	101.	Cooling surface area							
11. F	1. Provide the following pertaining to auxiliary equipment that burns fuel (heaters, dryers, etc.):								
	11B.	Provide maximum percent sulfu	rr (S) ash content of fuel ar	nd the energy content using appropriate units:					
	110.								
		%S	% Ash	BTU/lb, std. ft³/day, gal					
				(circle one)					
1	11C.	Theoretical combustion air requestion air requestio	uirement in SCFD per unit of	fuel (circle appropriate unit) @ 70°F and 14.7					
		SCFD/lb, \$	SCFD, gal (circle one)						
1	11D.	Percent excess air:	%						
1	11E.	Type, amount, and BTU rating	of burners and all other firir	ng equipment that are planned to be used:					
1	11F.	Total maximum design heat inp	out:	×10 ⁶ BTU/hr.					

12. Proposed Monitoring, Recordkeeping, Rep	porting, and Testing
Please propose monitoring, recordkeeping, ar	nd reporting in order to demonstrate compliance with the proposed
operating parameters. Please propose testing	g in order to demonstrate compliance with the proposed emissions
limits.	
MONITORING	RECORDKEEPING

MONITORING	RECORDREEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.

13. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

DISTILLATION	COLUMN	DATA SHEET
--------------	--------	------------

lde	ntification Number (as assigned on E	quipment List Form):	
1.	Name and type of equipment		
#.	Projected actual equipment operatin	g schedule (complete appropriate lines):	
	hrs/day	days/week	weeks/year
	hrs/batch	batches/day, batches/week (circle one)	days/yr, weeks/yr (circle one)
2.	Number of stages (plates), excluding	g condenser	
3.	Number of feed plates and stage loc	ation	
4.	Specify details of any reheating, recy	ycling, or stage conditioning along with the stage	elocations
5.	Specify reflux ratio, R (where R is def R=L/D, where L = liquid down colum	fined as the ratio of the reflux to the overhead pro n, D = distillation product)	duct, given symbolically as
6.	Specify the fraction of feed which is v continuously as vapor).	aporized, f (where f is the molal fraction of the fee	ed that leaves the feed plate
	Type of condenser used: total For each condenser provide process compositions.	partial multiple operating details including all inlet and outlet ter	☐ other nperatures, pressures, and
8.	 Feed Characteristics A. Molar composition B. Individual vapor pressure of eac C. Total feed stage pressure D. Total feed stage temperature E. Total mass flow rate of each street 		
9.	Overhead Product A. Molar composition of components B. Vapor pressure of components C. Total mass flow rate of all stream	ts ns leaving the system as overhead products	
10.	Bottom Product A. Molar composition of all compon B. Total mass flow rate of all steam	ents is leaving the system as bottom products	

11 Concret Information								
11. General Information A. Distillation column diameter								
B. Distillation column height								
C. Type of plates								
D. Plate spacing								
E. Murphree plate efficiency	an antian of this distillation column							
 F. Any other information necessary of describe the operation of this distillation column. 12. Proposed Monitoring, Recordkeeping, Reporting, and Testing 								
Please propose monitoring, recordkeeping, and report	ting in order to demonstrate compliance with the proposed or to demonstrate compliance with the proposed emissions							
MONITORING								
REPORTING	TESTING							
	SS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE HTHE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR							
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	CORDKEEPING THAT WILL ACCOMPANY THE MONITORING.							
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCE								
	TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION							
13. Describe all operating ranges and maintenance proce	dures required by Manufacturer to maintain warranty							
13. Describe all operating ranges and maintenance proce								

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this distillation column.

NATURAL GAS-FIRED COMPRESSOR ENGINE (RICE) EMISSION UNIT DATA SHEET

Emission U	nit (Source) ID No. ¹		-1S	-	2-2S		2-38	
Emissio	n Point ID No. ²	CE	-1E	CF	C-2E	CE	-3E	
Engine Man	ufacturer and Model	Caterpill	ar G3616	Caterpil	ar G3616	Caterpil	ar G3616	
Manufactur	er's Rated bhp/rpm	47	/35	47	735	47	35	
Sοι	N	IS	ľ	IS	Ν	IS		
Date Installed/Modified/Removed ⁴		20)16	20)16	20)16	
Engine Manufactu	1/1/2	2016	1/1/	2016	1/1/	2016		
Is this engine sub JJJJ?	Y	es	Y	es	Y	es		
Is this a Certified Engine according t (Yes or No) ⁶	N	lo	1	No	1	ło		
Is this engine subject to 40CFR63, Subpart ZZZ2? (yes or no)		Y	es	Y	'es	Y	es	
	Engine Type ⁷	LI	34S	L	34S	Ll	34S	
	APCD Type ⁸	C	АT	C	АТ	C.	АТ	
	Fuel Type ⁹	Р	Q	F	PQ	P	Q	
Engine, Fuel and	H ₂ S (gr/100 scf)	0.0		0.0		0.0		
Combustion Data	Operating bhp/rpm	4,735 hp at 1,000 rpm		4,735 hp at 1,000 rpm		4,735 hp at 1,000 rpm		
	BSFC (Btu/bhp-hr)	7,491		7,491		7,491		
	Fuel throughput (ft ³ /hr)	32,100 281		32,100 281		32,100 281		
	Fuel throughput (MMft ³ /yr)							
	Operation (hrs/yr)	8,7	760	8,	8,760		8,760	
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD	NOx	5.74	22.86	5.74	22.86	5.74	22.86	
MD	СО	2.21	8.80	2.21	8.80	2.21	8.80	
MD	VOC	3.62	14.40	3.62	14.40	3.62	14.40	
AP	SO ₂	0.02	0.09	0.02	0.09	0.02	0.09	
AP	PM ₁₀	0.39	1.55	0.39	1.55	0.39	1.55	
MD	Formaldehyde	0.72	2.85	0.72	2.85	0.72	2.85	
MRR ¹²	Proposed Monitoring:	See Attack	nment O	See Attachment O		See Atta	chment O	
	Proposed Recordkeeping:	See Attacl	nment O	See Atta	chment O	See Atta	chment O	
	Proposed Reporting:	See Attack	nment O	See Atta	chment O	See Atta	chment O	

Complete this section for any natural gas-fired reciprocating internal combustion engine.

Instructions for completing the Engine Emission Unit Data Sheet:

- ¹ Enter the appropriate Emission Unit (Source) identification number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the production pad. Multiple compressor engines should be designated CE-1<u>S</u>, CE-2<u>S</u>, etc. or other appropriate designation. Generator engines should be designated GE-1<u>S</u>, GE-2<u>S</u>, etc. or other appropriate designation. If more than three (3) engines exist, please use additional sheets.
- ² For Emission Points, use the following numbering system: 1E, 2E, etc. or other appropriate designation.
- ³ Enter the Source Status using the following codes: NS = Construction of New Source (installation); ES = Existing Source; MS = Modification of Existing Source; and RS = Removal of Source
- ⁴ Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- ⁵ Enter the date that the engine was manufactured, modified or reconstructed.
- ⁶ Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate. *Provide a manufacturer's data sheet for all engines being registered and a manufacturer's EPA certification of conformity sheet.*
- ⁷ Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke, RB4S = Rich Burn Four Stroke, and LB4S =Lean Burn Four Stroke.
- ⁸ Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: NSCR = Rich Burn & Non-Selective Catalytic Reduction, PSC = Rich Burn & Prestratified Charge, SCR = Lean Burn & Selective Catalytic Reduction, or CAT = Lean Burn & Catalytic Oxidation
- ⁹ Extended Erect Terms using the faller
- ⁹ Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas, or RG = Raw Natural Gas
- ¹¹ Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet as Attachment O*.
- ¹² Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the operation of this engine operation and associated air pollution control device. Include operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.

Source Identification Number ¹		GE-1					
Engine Man	ufacturer and Model	Caterpillar	C15 ACERT				
Manufactur	rer's Rated bhp/rpm	957@	1800 rpm				
Source Status ²		NS					
Date Installed/Modified/Removed ³		1/1/2016					
Engine Manufact	ured/Reconstruction Date4	2016					
Is this a Certified Stationary Spark Ignition Engine according to 40CFR60 Subpart IIII? (Yes or No) ⁵		Yes					
Is this a Certified Stationary Spark Ignition Engine according to 40CFR60 Subpart JJJJ? (Yes or No) ⁶		1	No				
	Engine Type ⁷	N	I/A				
	APCD Type ⁸	N	V/A				
	Fuel Type ⁹	2	FO				
Engine, Fuel and	H ₂ S (gr/100 scf)	().0				
Combustion Data	Operating bhp/rpm	957 @	1800 rpm				
Data	BSFC (Btu/bhp-hr)	5,239					
	Fuel throughput (ft ³ /hr)						
	Fuel throughput (MMft ³ /yr)						
	Operation (hrs/yr)	5	00				
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	13.32	3.03				
MD	СО	0.93	0.21				
MD	VOC	0.02	0.01				
AP	SO ₂	0.43	0.10				
MD	PM10	0.04	0.01				
AP	Formaldehyde	0.0004	0.0001				
	Į		<u> </u>		<u> </u>		I

EMERGENCY GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each emergency generator. Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

MS

- NS Construction of New Source (installation)
- ES Existing Source RS Removal of Source
- Modification of Existing Source RS

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7. Enter the Engine Type designation(s) using the following codes:

9.

LB2S	Lean Burn Two Stroke	RB4S	Rich Burn Four Stroke
LB4S	Lean Burn Four Stroke		

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F HEIS PSC NSCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction	IR SIPC LEC SCR	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Lean Burn & Selective Catalytic Reduction
Enter the F PQ	Fuel Type using the following codes: Pipeline Quality Natural Gas	RG	Raw Natural Gas
2FO	#2 Fuel Oil	LPG	Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): BD

1. Name or type and model of proposed affected source:
Compressor Blowdowns
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
1 Blowdown event per hour, 12 Blowdowns per engine per year.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Blowdown volume per Event, scf 6887 scf/event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applic	6. Combustion Data (if applicable):		
(a) Type and amount in appropriate units of fuel(s) to be burned:			
1 Blowdown event per hour, 12 Bl	1 Blowdown event per hour, 12 Blowdowns per engine per year.		
(b) Chemical analysis of p and ash:	roposed fuel(s), excluding coal, ir	cluding maximum percent sulfur	
(c) Theoretical combustion	n air requirement (ACF/unit of fue	l):	
@	°F and	psia.	
(d) Percent excess air:			
(e) Type and BTU/hr of burners and all other firing equipment planned to be used:			
(f) If coal is proposed as a coal as it will be fired:	a source of fuel, identify supplier a	and seams and give sizing of the	
(g) Proposed maximum de	esign heat input:	× 10 ⁶ BTU/hr.	
7. Projected operating sched	ule:		
Hours/Day 36 hrs/yr	Days/Week	Weeks/Year	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:		
@		°F and	psia
a.	NOx	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	со	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	6.53 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	HAPs	0.16 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING			
Discussed in Attachment O.	Discussed in Attachment O.		
2720270			
REPORTING Discussed in Attachment O.	TESTING Discussed in Attachment O.		
Discussed in Attachment O.	Discussed in Attachment O.		
	I E PROCESS PARAMETERS AND RANGES THAT ARE		
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS		
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION			
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.			
TESTING PLEASE DESCRIBE ANY PROPOSED EMIL	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
POLLUTION CONTROL DEVICE.			
	nance procedures required by Manufacturer to		
maintain warranty			
N/A			

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): SV

1. Name or type and model of proposed affected source:
Engine Starter Vents
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
1 Start-up per hour, 35 Start-ups per engine per year.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Starter vent volume per Event, scf 3099 scf/event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applicable):		
(a) Type and amount in appropriate units of fuel(s) to be burned:		
1 Start-up per hour, 35 Start-ups per	er engine per year.	
(h) Ohansiaalaa ahasia afa		
(b) Chemical analysis of p and ash:	roposed fuel(s), excluding coal, in	cluding maximum percent sulfur
(c) Theoretical combustion	n air requirement (ACF/unit of fue	l):
@	°F and	psia.
		•
(d) Percent excess air:		
(e) Type and BTU/hr of burners and all other firing equipment planned to be used:		
(f) If coal is proposed as a	a source of fuel, identify supplier a	and seams and give sizing of the
coal as it will be fired:		
(g) Proposed maximum de	esign heat input:	× 10 ⁶ BTU/hr.
7. Projected operating sched	ule:	
Hours/Day 105 hrs/yr	Days/Week	Weeks/Year

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:		
@		°F and	psia
a.	NOx	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	со	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	2.94 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	HAPs	0.07 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING			
Discussed in Attachment O.	Discussed in Attachment O.		
2720270			
REPORTING Discussed in Attachment O.	TESTING Discussed in Attachment O.		
Discussed in Attachment O.	Discussed in Attachment O.		
	I E PROCESS PARAMETERS AND RANGES THAT ARE		
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS		
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION			
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.			
TESTING PLEASE DESCRIBE ANY PROPOSED EMIL	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
POLLUTION CONTROL DEVICE.			
	nance procedures required by Manufacturer to		
maintain warranty			
N/A			

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): PIG

1. Name or type and model of proposed affected source:
Pigging Operations
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
1 Pigging event per hour, 3 Pigging events per year.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Pigging volume per Event, scf 48,206 scf/event
5 Oive chamical reactions, if applicable, that will be involved in the generation of six pollutants.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applied	cable):	
(a) Type and amount in a	opropriate units of fuel(s) to be bu	irned:
1 Pigging event per hour, 3 Piggin	g events per year.	
(b) Chamical analysis of a	repeased fuel(a) evaluating applicing	aluding maximum paraant aultur
and ash:	roposed fuel(s), excluding coal, ir	icidaling maximum percent sultar
(c) Theoretical combustio	n air requirement (ACF/unit of fue	el):
@	°F and	psia.
(d) Percent excess air:		
(e) Type and BTU/hr of bu	urners and all other firing equipme	ent planned to be used:
(f) If coal is proposed as a coal as it will be fired:	a source of fuel, identify supplier a	and seams and give sizing of the
(g) Proposed maximum d	esign heat input:	× 10 ⁶ BTU/hr.
7. Projected operating scheo	lule:	
Hours/Day 3 hrs/yr	Days/Week	Weeks/Year

8.	Projected amount of polluta devices were used:	ants that would be emitted fro	om this affected source if no control
@		°F and	psia
a.	NOx	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	со	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	45.68 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	HAPs	1.14 lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF
		lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Report Please propose monitoring, recordkeeping, a with the proposed operating parameters. compliance with the proposed emissions line 	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	
Discussed in Attachment O.	Discussed in Attachment O.
2720270	
REPORTING Discussed in Attachment O.	TESTING Discussed in Attachment O.
Discussed in Attachment O.	Discussed in Attachment O.
	I E PROCESS PARAMETERS AND RANGES THAT ARE
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
TESTING PLEASE DESCRIBE ANY PROPOSED EMIL	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	
	nance procedures required by Manufacturer to
maintain warranty	
N/A	

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

		- 1- 1-		· · · · /	,	PM		, -	PM-1	0
k =	Particle size multiplier					4.9			1.5	
s =	Silt content of road surface ma	aterial (%)				10			10	
p =	Number of days per year with	precipitati	on >0.01 i	n.		171			171	
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maxii Trips Ye	per	Control Device ID Number	Control Efficiency (%)
1	Average Truck	18	40	5					N/A	50
2										
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	4.9	1.5
s =	Silt content of road surface material (%)	10	10
S =	Mean vehicle speed (mph)	5	5
W =	Mean vehicle weight (tons)	40	40
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	171	171

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	Μ			PM	-10	
Item No.	Uncon	trolled	Cont	rolled	Uncor	ntrolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	2.79	1.30	1.39	0.65	0.82	0.38	0.41	0.19
2								
3								
4								
5								
6								
7								
8								
TOTALS	2.79	1.30	1.39	0.65	0.82	0.38	0.41	0.19

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor	(dimensionle	ess)				
n =	Number of traffic lanes						
s =	Surface material silt content (9	%)					
L =	Surface dust loading (lb/mile)						
ltem Numbe	r Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

Ib/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

Item No.		trolled		rolled
	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form):

Equipment	Information
1. Manufacturer: CIG Flameless Gas Infrared Catalytic Heater HC2100	2. Model No. HC2100 Serial No.
3. Number of units: 1	4. Use
5. Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7. Date constructed: 2016	8. Date of last modification and explain:
9. Maximum design heat input per unit:	10. Peak heat input per unit:
9. Maximum design heat input per unit. 0.51 ×10 ⁶ BTU/hr	0.51 x106 BTU/hr
11. Steam produced at maximum design output: LB/hr psig	12. Projected Operating Schedule: Hours/Day 24 Days/Week 7 Weeks/Year 52
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15. Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
Stack or V	Vent Data
19. Inside diameter or dimensions:0.5ft.	20. Gas exit temperature: 800 °F
21. Height: 20 ft.	22. Stack serves:
23. Gas flow rate: ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this stack or vent)
24. Estimated percent of moisture: %	

			Fuel Requi	irements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	ft ³ /hr	ТРН	
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1106 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source					
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o		comatic hi-low	27. Gas burner mar	ufacture:	
	Automatic full n			28. Oil burner manu	ıfacture:	
29.	If fuel oil is used, h	iow is it atomized?	 Oil Pressu Compresso Other, spe 	ed Air 🗍 Rotary Cι		
	Fuel oil preheated:			31. If yes, indicate t		°F
		lated theoretical ail c feet (ACF) per uni		or combustion of th	e fuel or mixture o	of fuels described
	@	°F,	PSIA,	, % m	oisture	
	Emission rate at ra		DC = 0.003 lb/hr			
34.	Percent excess air	r actually required for			%	
35	Seams:		Coal Chara	cteristics		
55.	Seams.					
36.	Proximate analysis		Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	0.04			
Hydrocarbons				
NOx	0.05			
Pb				
PM ₁₀	0.004			
SO ₂	0.0003			
VOCs	0.003			
Other (specify)	0.001(HAPs)			
What quantities of poll Pollutant	utants will be emitted from t Pounds per Hour Ib/hr	he boiler after contro grain/ACF	ols? @ °F	PSIA
СО	0.04			
CO Hydrocarbons	0.04			
	0.04			
Hydrocarbons NO _x				
Hydrocarbons NO _x Pb				
Hydrocarbons NO _x Pb	0.05			
NO _x Pb PM ₁₀	0.05			
Hydrocarbons NOx Pb PM ₁₀ SO ₂	0.05 0.004 0.0003			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	0.05 0.004 0.0003 0.003			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	0.05 0.004 0.0003 0.003	trol equipment be dis	sposed of?	

42.	Pro	posed	Monitoring,	Recordkee	ping, Re	porting.	and T	esting

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. See Attachment O

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. See Attachment O

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. See Attachment O

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. See Attachment O

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2.	Tank Name
			Slop Tank
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-1	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) TK-1
5.	Date of Commencement of Construction (for existing	tank	
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.):	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.	the 00 bl	
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	12		15
10A	A. Maximum Liquid Height (ft)	10	Average Liquid Height (ft)
	15		7.5
11 <i>A</i>	A. Maximum Vapor Space Height (ft)	11E	 Average Vapor Space Height (ft)
12.	Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is als	so known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
30,000 14. Number of Turnovers per year (annual net throughp	ut/maximum tank liquid volume)			
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): □ Fixed Roof X verticalhorizontalflat roofcone roofdome roofother (describe) □ External Floating Roofpontoon roofdouble deck roof □ Domed External (or Covered) Floating Roof				
 Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground Other (describe) 				
	IATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate				
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted			
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense F	Rust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type: Metallic (Mechanical (check one) Vapor Mounted Res				
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (ch	neck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather sh	ield? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
			1	
BOLT COVER, GASKETED:		JGE FLOAT WELL	UNBOLTED COVER, UNGASKETED:	
BOET COVER, GASRETED.		LIN, GAGNETED.	UNBOLTED COVER, UNGASKETED.	
	COLUM	N WELL		
			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:	
	LADDE	R WELL		
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
	0.0000000000000000000000000000000000000			
		SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
	ROOF LEG OR	HANGER WELL		
	WEIGHTED		SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UNG	GASKETED:	(10% OPEN AREA)	
	- - - -			
	VACUUM	BREAKER		
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:	
		1 1 1		
		VENT		
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:		ANICAL ACTUATION, UNGASKETED:	
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:	- (-	90% CLOSED:		
	STUB	DRAIN		
1-INCH DIAMETER:				
OTHER (DESCR	RIBE, ATTACH ADD	DITIONAL PAGES I	IF NECESSARY)	
		_	,	

26. Complete the following section for Internal Floating Roof Tanks 🛛 🖾 Does Not Apply				
26A. Deck Type: Bolted Welded				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
 Continuous sheet construction 5 x 7.5 feet wide Continuous sheet construction 5 x 12 feet wide 				
Other (describe)				
26D Dock coom longth /#)	26E Area of deals (#2)			
26D. Deck seam length (ft)	26E. Area of deck (ft²) 26G. Diameter of each column:			
For column supported tanks: 26F. Number of columns:				
	i providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in this s				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	ay))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (optiona	l if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be sto	pred in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press	sure				
39F. True (psia)					
<u>39G.</u> Reid (psia) Months Storage per Y	oor				
39H. From	eai				
39I. To					
	VI. EMISSIONS A			E DATA (required)	
40. Emission Control I	Devices (check as many			· · · ·	
Carbon Adsorp					
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S			Pressure Se	etting	
	lief Valve (psig)			0	
Inert Gas Blan					
Insulation of Ta	ank with				
 Liquid Absorpti	ion (scrubber) ¹				
Refrigeration o					
Rupture Disc (
Vent to Inciner					
☐ Other ¹ (describ	be):				
		rol Device S	Sheet.		
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 					
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcul	ations here	or elsewhere in the a	oplication).
-	· · · ·				
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)		ations here g Loss Units	or elsewhere in the a Annual Loss (lb/yr)	pplication).
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2.	Tank Name
			Waste Water Tank
3.	Tank Equipment Identification No. (as assigned on	4.	(5
	Equipment List Form)		Equipment List Form)
	TK-2		TK-2
5.	Date of Commencement of Construction (for existing	tan	ks) 1/1/2016
6.	. Type of change 🛛 New Construction 🗌 N		V Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
1			
		~	
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		Yes No
7B			by this application (Note: A separate form must be
1D.	completed for each mode).	eu i	by this application (note. A separate form must be
İ	completed for each mode).		
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. proc		
	variation, etc.):		
-	II. TANK INFORM		
8.		the	e internal cross-sectional area multiplied by internal
	height.	00 L	.1.1
0.4		00 t	
9A.	Tank Internal Diameter (ft)	95	3. Tank Internal Height (or Length) (ft)
	12		15
10A	 Maximum Liquid Height (ft) 	10	B. Average Liquid Height (ft)
	15		7.5
11A	A. Maximum Vapor Space Height (ft)	11	B. Average Vapor Space Height (ft)
12.	Nominal Capacity (specify barrels or gallons). This	is a	lso known as "working volume" and considers design
	liquid levels and overflow valve heights.		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
30,000					
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)					
15. Maximum tank fill rate (gal/min)					
16. Tank fill method Submerged	Splash Bottom Loading				
17. Complete 17A and 17B for Variable Vapor Space Ta					
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
18. Type of tank (check all that apply):					
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)				
19. Tank Shell Construction:	d				
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Color					
21. Shell Condition (if metal and unlined):					
□ No Rust □ Light Rust □ Dense R	Rust 🗌 Not applicable				
22A. Is the tank heated? YES NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to t	tank.				
23. Operating Pressure Range (psig): to					
24. Complete the following section for Vertical Fixed Ro	Does Not Apply				
24A. For dome roof, provide roof radius (ft)	24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Ta	25. Complete the following section for Floating Roof Tanks Does Not Apply				
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type:	· ·				
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO				

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	В НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		JGE FLOAT WELL	:		
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
COVER, GASRETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.		
		RWELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:		
		HANGER WELL			
	ACTUATION, UN		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
	-		:		
		BREAKER			
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	RIM	/ENT			
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
OPEN:	DECK DRAIN (3-I	NCH DIAMETER) 90% CLOSED:			
OF EN.		30% CLOGLD.			
	STUB DRAIN				
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Float	ting Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Deck Type: Welded	1
26B. For Bolted decks, provide deck construction	n:
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet w ☐ Continuous sheet construction 5 × 12 feet w	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
IV. SITE INFORMANTION (opti	ional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in t	this section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(f	t²·day))
33. Atmospheric Pressure (psia)	
	ional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39 Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure				
39F. True (psia)					
<u>39G. Reid (psia)</u> Months Storage per Y	oor				
39H. From	eai				
39I. To					
	VI. EMISSIONS A			E DATA (required)	
40. Emission Control I	Devices (check as many			· · · ·	
Carbon Adsorp					
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S			Pressure Se	etting	
	lief Valve (psig)			0	
Inert Gas Blan					
Insulation of Ta	ank with				
 Liquid Absorpti	ion (scrubber) ¹				
Refrigeration o					
Rupture Disc (
Vent to Inciner	- - ,				
Other ¹ (describ	be):				
		rol Device S	Sheet.		
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 					
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcul	ations here	or elsewhere in the a	oplication).
-	· · · ·				
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)		ations here g Loss Units	or elsewhere in the a Annual Loss (lb/yr)	pplication).
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name	
	Waste Water Tank	
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-3 	 Emission Point Identification No. (as assigned on Equipment List Form) TK-3 	
5. Date of Commencement of Construction (for existing	tanks) 1/1/2016	
6. Type of change 🛛 New Construction	New Stored Material	
7. Description of Tank Modification (if applicable)		
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar		
7B. If YES, explain and identify which mode is cover completed for each mode).	ed by this application (Note: A separate form must be	
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):		
NOTE: De Minimis Source No. 58		
II TANK INFORM	IATION (required)	
	the internal cross-sectional area multiplied by internal	
height.		
	500 gal	
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)	
8	7.5	
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)	
7.5	3.75	
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)	
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
30,000			
14. Number of Turnovers per year (annual net throughpu	ıt/maximum tank liquid volume)		
15. Maximum tank fill rate (gal/min)			
16. Tank fill method Submerged	Splash Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof 	upport self-supporting		
 Variable vapor spaceinter roon Pressurized spherical cylindrica Underground Other (describe) 			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:			
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Colo			
20A.Shell Color20B.Roof Colo21.Shell Condition (if metal and unlined):	or 20C. Year Last Painted		
☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable		
22A. Is the tank heated?			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to tank.			
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply		
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Ta	nks Does Not Apply		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resi	· ·		
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO		

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	, , , ,			
		JGE FLOAT WELL		
BOLT COVER, GASKETED:			UNBOLTED COVER, UNGASKETED:	
BOET OOVER, ONORETED.		ER, GAORETED.	SNBOLTED GOVER, SNGAGRETED.	
	COLUM	N WELL		
			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:	
	2 2 2			
	LADDE	R WELL		
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
		SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
	ROOF LEG OR	HANGER WELL		
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)	
	2 4 4		4 • •	
	VACUUM	BREAKER		
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:	
		VENT		
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				
	_,		,	

26. Complete the following section for Internal Floating	Roof Tanks 🛛 🖂 Does Not Apply			
26A. Deck Type: Bolted Welded				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
 Continuous sheet construction 5 x 7.5 feet wide Continuous sheet construction 5 x 12 feet wide 				
Other (describe)				
26D Dock coom longth /#)	26E Area of deals (#2)			
26D. Deck seam length (ft)	26E. Area of deck (ft²) 26G. Diameter of each column:			
For column supported tanks: 26F. Number of columns:				
	i providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in this s				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	ay))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (optiona	l if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be sto	pred in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press	sure					
39F. True (psia)						
<u>39G.</u> Reid (psia) Months Storage per Y	oor					
39H. From	eai					
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
40. Emission Control I	Devices (check as many			· · · ·		
Carbon Adsorp						
Condenser ¹						
Conservation \	/ent (psig)					
Vacuum S			Pressure Se	etting		
	lief Valve (psig)			0		
Inert Gas Blan						
Insulation of Ta	ank with					
 Liquid Absorpti	ion (scrubber) ¹					
Refrigeration o						
Rupture Disc (
Vent to Inciner	- - ,					
Other ¹ (describ	be):					
		rol Device S	Sheet.			
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 						
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcul	ations here	or elsewhere in the a	oplication).	
-	· · · ·					
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)		ations here g Loss Units	or elsewhere in the a Annual Loss (lb/yr)	pplication).	
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹	

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name			
	New Oil Tank			
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-4 	 Emission Point Identification No. (as assigned on Equipment List Form) TK-4 			
5. Date of Commencement of Construction (for existing tanks) 1/1/2016				
6. Type of change \square New Construction \square N	New Stored Material Other Tank Modification			
7. Description of Tank Modification (if applicable)				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan				
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be			
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
NOTE: De Minimis Source No. 58				
II. TANK INFORM	ATION (required)			
	the internal cross-sectional area multiplied by internal			
height.				
	00 bbl			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
10	8			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
8	4			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	s also known as "working volume" and considers design			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
50,400 14. Number of Turnovers per year (annual net throughput	ut/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems 🛛 Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roof X vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column set Variable Vapor Space lifter roof 	double deck roof upport self-supporting diaphragm
 Pressurized spherical cylindrica Underground Other (describe) 	રા
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Color	
21. Shell Condition (if metal and unlined):	
🗌 No Rust 👘 🗌 Light Rust 🌷 🗌 Dense F	Rust 🗌 Not applicable
22A. Is the tank heated?	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to	tank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	Inks Does Not Apply
25A. Year Internal Floaters Installed:	
25B.Primary Seal Type:Image: Metallic (Mechanical (check one)(check one)Image: Vapor Mounted Resident Control	
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S HATCH		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
		JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	COLUM	N WELL	1	
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:	
		R WELL		
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:	
	NORE LED.		CEIDING COVER, CNOACKETED.	
	GAUGE-HATCH	/SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
		HANGER WELL		
	ACTUATION, UN		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)	
ACTORTION, CASILETED.	ACTOATION, ON	DAGRETED.		
VACUUM BREAKER				
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	NICAL ACTUATION, UNGASKETED:	
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
	ION GASKETED.			
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				
			0 _ 0 ,	

26. Complete the following section for Internal Flo	Dating Roof Tanks 🛛 🖾 Does Not Apply				
26A. Deck Type: Deck Type: Welde	ed				
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide					
Continuous sheet construction 7 feet wide					
Continuous sheet construction 5 × 7.5 feet					
Other (describe)	Wide				
26D. Deck seam length (ft)	26E. Area of deck (ft ²)				
For column supported tanks:	26G. Diameter of each column:				
26F. Number of columns:	ptional if providing TANKS Summary Sheets)				
27. Provide the city and state on which the data in					
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/	/(ft²·day))				
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (or	ptional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid	:				
34A. Minimum (°F)	34B. Maximum (°F)				
35. Average operating pressure range of tank:					
35A. Minimum (psig)	35B. Maximum (psig)				
36A. Minimum Liquid Surface Temperature (°F	 36B. Corresponding Vapor Pressure (psia) 				
37A. Average Liquid Surface Temperature (°F)) 37B. Corresponding Vapor Pressure (psia)				
38A. Maximum Liquid Surface Temperature (°F	F) 38B. Corresponding Vapor Pressure (psia)				
39 Provide the following for each liquid or gas to	39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.				
39A. Material Name or Composition					
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					
39E. Vapor Molecular Weight (lb/lb-mole)					

39F. True (psia) 39G. Reid (psia)					
Months Storage per Y 39H. From	ear				
391. To					
591. 10	VI. EMISSIONS A				
40 Emission Control	Devices (check as many			· · · /	
Carbon Adsorp		y as apply).		а дрргу	
Conservation \	(ont (neig)				
Vacuum S			Drocouro Sc	otting	
	elief Valve (psig)		Pressure Se	etting	
Inert Gas Blan					
Liquid Absorpt	. ,				
Refrigeration o					
Rupture Disc (
Vent to Inciner					
Other ¹ (describ					
	priate Air Pollution Cont				
41. Expected Emissio	n Rate (submit Test Dat		1	or elsewhere in the app	plication).
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	Fatimatian Mathad
CAS No.	(lb/hr)	Amount			Estimation Method.
		/ inouni	Units	(lb/yr)	Estimation Method ¹
See Attachment N		, and and	Units	(lb/yr)	Tanks 4.09
See Attachment N			Units	(lb/yr)	
See Attachment N			Units	(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(Ib/yr)	
See Attachment N				(lb/yr)	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name			
	Coolant Tank			
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-5 	 Emission Point Identification No. (as assigned on Equipment List Form) TK-5 			
5. Date of Commencement of Construction (for existing tanks) 1/1/2016				
6. Type of change 🛛 New Construction 🗌 N	New Stored Material Other Tank Modification			
7. Description of Tank Modification (if applicable)				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan				
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be			
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production			
NOTE: De Minimis Source No. 58				
	ATION (required)			
	the internal cross-sectional area multiplied by internal			
height.				
1	00 bbl			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
10	8			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
8	4			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
50,400				
14. Number of Turnovers per year (annual net throughpu	it/maximum tank liquid volume)			
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
 18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof	double deck roof			
Validatic Vapor Opace inter roor Pressurized spherical cylindrical Underground Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets)				
19. Tank Shell Construction:	d -ii (doooribo)			
Riveted Gunite lined Epoxy-coated 20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
🗌 No Rust 👘 🗌 Light Rust 👘 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)	22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tail	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	•			
25C. Is the Floating Roof equipped with a Secondary S	Seal? 🗌 YES 🔄 NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	, , , ,			
		JGE FLOAT WELL		
BOLT COVER, GASKETED:			UNBOLTED COVER, UNGASKETED:	
BOET OOVER, ONORETED.		ER, OAORETED.	SNBOLTED GOVER, SNGAGRETED.	
	COLUM	N WELL		
			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:	
	2 2 2			
	LADDE	R WELL		
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
		SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
	ROOF LEG OR	HANGER WELL		
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)	
	2 4 4		4 • •	
	VACUUM	BREAKER		
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:	
		VENT		
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				
	_,		,	

26. Complete the following section for Internal Floating Roof Tanks 🛛 Does Not Apply					
26A. Deck Type: Bolted Welded					
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide					
Continuous sheet construction 7 feet wide					
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide					
Other (describe)					
26D. Deck seam length (ft) 26E. Area of deck (ft²)					
For column supported tanks:26G.Diameter of each column:26F.Number of columns:					
IV. SITE INFORMANTION (optional if providing TANKS Summary Sheets)					
27. Provide the city and state on which the data in this section are based.					
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))					
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)					
34. Average daily temperature range of bulk liquid:					
34A.Minimum (°F)34B.Maximum (°F)					
35. Average operating pressure range of tank:					
35A. Minimum (psig) 35B. Maximum (psig)					
36A. Minimum Liquid Surface Temperature (°F) 36B. Corresponding Vapor Pressure (ps	ia)				
37A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (ps	ia)				
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (ps	ia)				
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.					
39A. Material Name or Composition	,.				
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					

39F. True (psia) 39G. Reid (psia)	sure				
20C Doid (poid)					
	,				
Months Storage per Y 39H. From	ear				
391. To					
591. 10	VI. EMISSIONS A				
40 Emission Control	Devices (check as many				
Carbon Adsorp		as apply).		кирріу	
	Juon				
	(ont (neig)				
	Conservation Vent (psig)				
	Vacuum Setting Pressure Setting				
	Emergency Relief Valve (psig) Inert Gas Blanket of				
Liquid Absorpt	· ,				
Refrigeration o					
Rupture Disc (
Vent to Inciner					
Other ¹ (describ					
	priate Air Pollution Cont				
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).					
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	Estimation Method ¹
CAS No.	(lb/hr)	Amount	Units	(lb/yr)	Estimation method
See Attachment N					Tanks 4.09

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name				
	Used Coolant Tank				
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	Equipment List Form)				
TK-6	TK-6				
5. Date of Commencement of Construction (for existing tanks) 1/1/2016					
. Type of change 🛛 New Construction 🗌 New Stored Material 🗌 Other Tank Modification					
7. Description of Tank Modification (if applicable)					
7A. Does the tank have more than one mode of operation? (e.g. Is there more than one product stored in the tank?)					
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):					
NOTE: De Minimis Source No. 58					
II. TANK INFORMATION (required)					
8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
100 bbl					
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)				
10	8				
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)				
8	4				
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.					

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
50,400 14. Number of Turnovers per year (annual net throughput	ut/maximum tank liquid volume)			
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
 18. Type of tank (check all that apply): Fixed Roof X vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof 	upport self-supporting			
Pressurizedsphericalcylindrica Underground Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Color				
21. Shell Condition (if metal and unlined):				
□ No Rust □ Light Rust □ Dense Rust □ Not applicable				
22A. Is the tank heated?				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type: Metallic (Mechanical (check one) Vapor Mounted Resi	· ·			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO			

25F. Describe deck fittings; indicate	e the number of eac	ch type of fitting:	
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	, , , ,		
		JGE FLOAT WELL	
BOLT COVER, GASKETED:			UNBOLTED COVER, UNGASKETED:
BOET OOVER, ONORETED.		ER, GAORETED.	SNBOLTED GOVER, SNGAGRETED.
	COLUM	N WELL	
			PIPE COLUMN – FLEXIBLE
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:
	2 2 2		
	LADDE	R WELL	
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
		SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
	ROOF LEG OR	HANGER WELL	
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)
	2 4 4		4 • •
	VACUUM	BREAKER	
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:
		VENT	
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
OTHER (DESCF	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)
	_,		,

26. Complete the following section for Internal Floating F	Roof Tanks 🛛 🖾 Does Not Apply
26A. Deck Type: Deck Type: Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this s	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·da	y))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stor	red in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

39F. True (psia) 39G. Reid (psia)					
Months Storage per Y 39H. From	ear				
391. To					
591. 10	VI. EMISSIONS A				
40 Emission Control	Devices (check as many			· · · /	
Carbon Adsorp		y as apply).		а дрргу	
Conservation \	(ont (neig)				
Vacuum S			Drocouro Sc	otting	
	elief Valve (psig)		Pressure Se	etting	
Inert Gas Blan					
Liquid Absorpt	. ,				
Refrigeration o					
Rupture Disc (
Vent to Inciner					
Other ¹ (describ					
	priate Air Pollution Cont				
41. Expected Emissio	n Rate (submit Test Dat		1	or elsewhere in the app	plication).
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	Fatimatian Mathad
CAS No.	(lb/hr)	Amount			Estimation Method.
		/ inouni	Units	(lb/yr)	Estimation Method ¹
See Attachment N		, and and	Units	(lb/yr)	Tanks 4.09
See Attachment N			Units	(lb/yr)	
See Attachment N			Units	(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	
See Attachment N				(lb/yr)	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
	Used Oil Tank
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	Equipment List Form)
TK-7	TK-7
5. Date of Commencement of Construction (for existing	tanks) 1/1/16
6. Type of change 🛛 New Construction 🗌 I	New Stored Material Other Tank Modification
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
NOTE: De Minimis Source No. 58	
II. TANK INFORM	IATION (required)
	the internal cross-sectional area multiplied by internal
height.	
1	00 bbl
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
10	8
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
8	4
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
50,400	
14. Number of Turnovers per year (annual net throughpu	ut/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	□ Splash ⊠ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
other (describe) Description Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su	upportself-supporting
 Variable Vapor Space lifter roof Pressurized spherical cylindrica Underground Other (describe) 	
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d rivete
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Color	
21. Shell Condition (if metal and unlined):	
No Rust Light Rust Dense R	Rust 🗌 Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	tank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resi	
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO

25F. Describe deck fittings; indicate	e the number of eac	ch type of fitting:	
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	, , , ,		
		JGE FLOAT WELL	
BOLT COVER, GASKETED:			UNBOLTED COVER, UNGASKETED:
BOET OOVER, ONORETED.		ER, GAORETED.	SNBOLTED GOVER, SNOAGRETED.
	COLUM	N WELL	
			PIPE COLUMN – FLEXIBLE
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:
	2 2 2		
	LADDE	R WELL	
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
		SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
	ROOF LEG OR	HANGER WELL	
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)
	2 4 4		4 • •
	VACUUM	BREAKER	
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:
		VENT	
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
OTHER (DESCF	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)
	_,		,

26. Complete the following section for Internal Floating	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Delted Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 	
Continuous sheet construction 7 feet wide	
 Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide 	
Other (describe)	
	205 Area of deals (42)
26D. Deck seam length (ft) For column supported tanks:	26E. Area of deck (ft²) 26G. Diameter of each column:
26F. Number of columns:	
	I if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	ay))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optiona	I if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for <u>each</u> liquid or gas to be sto	pred in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure				
39F. True (psia)					
<u>39G.</u> Reid (psia) Months Storage per Y	oor				
39H. From	eai				
39I. To					
	VI. EMISSIONS A			E DATA (required)	
40. Emission Control I	Devices (check as many			· · · ·	
Carbon Adsorp					
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S			Pressure Se	etting	
	lief Valve (psig)			0	
Inert Gas Blan					
Insulation of Ta	ank with				
 Liquid Absorpti	ion (scrubber) ¹				
Refrigeration o					
Rupture Disc (
Vent to Inciner	- - ,				
☐ Other ¹ (describ	be):				
	oriate Air Pollution Cont	rol Device S	Sheet.		
1 11 1					
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcul	ations here	or elsewhere in the a	oplication).
-	n Rate (submit Test Dat				
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)		ations here g Loss Units	or elsewhere in the a Annual Loss (lb/yr)	pplication).
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

SHERWOOD COMPRESSSOR STATION

ROVER PIPELINE LLC

SUMMARY OF PROPOSED ALLOWABLE EMISSION RATES NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION) SHERWOOD COMPRESSOR STATION ROVER PIPELINE LLC

										Detentio	1 to Durit							
Motorial problem state in the state i		•	Λ	C	ON	x	00		Md			0	M	5	SO		C	0.26
ID Description Otho	Emission	- 	Hourly	Annual	Hourly						Hourly	Annual	Hourly	Annual	Hourly			Annual
Composed Equel 13 1726 574 2286 221 800 039 155 039 155 030 039	Unit ID		(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Comprescription: 1 12 (19) (12) (12) (12) (12) (12) (12) (12) (12	CE-1S	Compressor Engine 1	4.33	17.26	5.74	22.86	2.21	8.80	0.39	1.55	0.39	1.55	0.39	1.55	0.02	60.0	:	18,178.25
ComponentEngine 3 (13) (12) (24) (22) (20) (23) <td>CE-2S</td> <td>Compressor Engine 2</td> <td>4.33</td> <td>17.26</td> <td>5.74</td> <td>22.86</td> <td>2.21</td> <td>8.80</td> <td>0.39</td> <td>1.55</td> <td>0.39</td> <td>1.55</td> <td>0.39</td> <td>1.55</td> <td>0.02</td> <td>60.0</td> <td>:</td> <td>18,178.25</td>	CE-2S	Compressor Engine 2	4.33	17.26	5.74	22.86	2.21	8.80	0.39	1.55	0.39	1.55	0.39	1.55	0.02	60.0	:	18,178.25
Heregeny Generation 002 010 132 303 023 024 024 010 034 010 034 010 034 010 034 010 034 010 034 010 034 010 034 010 034 010 034	CE-3S	Compressor Engine 3	4.33	17.26	5.74	22.86	2.21	8.80	0.39	1.55	0.39	1.55	0.39	1.55	0.02	60.0	;	18,178.25
StePagitive 0.33 1.44 0.2 0.31 0.34	GE-1	Emergency Generator 1	0.02	0.01	13.32	3.03	0.93	0.21	0.04	0.01	0.04	0.01	0.04	0.01	0.43	0.10	;	146.68
Step Task (300b) 023 0001 12 <td>FUG</td> <td>Site Fugitives</td> <td>0.35</td> <td>1.54</td> <td>;</td> <td>;</td> <td>1</td> <td>I</td> <td>I</td> <td>;</td> <td>;</td> <td>;</td> <td>1</td> <td>;</td> <td>;</td> <td>;</td> <td>;</td> <td>288.83</td>	FUG	Site Fugitives	0.35	1.54	;	;	1	I	I	;	;	;	1	;	;	;	;	288.83
Wase WarTank 1(300bi) 031 001	TK-1	Slop Tank (300 bbl)	0.32	0.001	:	:		-	-	:	:	:	:	:	:	:		
Wate Wate Tank 2(300 at) 007 001 <td>TK-2</td> <td>Waste Water Tank 1 (300 bbl)</td> <td>0.31</td> <td>0.001</td> <td>;</td> <td>;</td> <td>1</td> <td>I</td> <td>I</td> <td>;</td> <td>1</td> <td>;</td> <td>1</td> <td>;</td> <td>;</td> <td>;</td> <td>;</td> <td>I</td>	TK-2	Waste Water Tank 1 (300 bbl)	0.31	0.001	;	;	1	I	I	;	1	;	1	;	;	;	;	I
New OIT Tank (100 bb) < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 001 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01 <	TK-3	Waste Water Tank 2 (2500 gal)	0.07	0.001	:	:		-	-	:	:	:	:	:	:	:		
CoolartTark (100 bi) 00 0.01 <td>TK-4</td> <td>New Oil Tank (100 bbl)</td> <td><0.01</td> <td><0.01</td> <td>:</td> <td>:</td> <td>:</td> <td>1</td> <td></td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>1</td>	TK-4	New Oil Tank (100 bbl)	<0.01	<0.01	:	:	:	1		:	:	:	:	:	:	:	:	1
UsedCoolart Tark (100 b) 0.01 0	TK-5	Coolant Tank (100 bbl)	0.01	<0.01	:	ı	;	:	ı	:	;	:	;	;	;	ı	:	1
Uedoli Tank (100 b) (00) (01) (00) (0) (01) (0) $(0$	TK-6	Used Coolant Tank (100 bbl)	0.01	<0.01	:	I	:	:		:	:	:	:	:	:	I		1
1 Righ Track Loading 067 001 \cdots	TK-7	Used Oil Tank (100 bbl)	<0.01	<0.01	:	I	:	:		:	:	:	:	:	:	I		I
22 Water Truck Loading 0.67 0.001 -	LOAD-1	Slop Truck Loading	0.67	0.001	:	-		:		:		:		-	-	-		
CIG Flameless Gas Infrared Catalytie Heater 0.003 0.01 0.05 0.02 0.004 0.02 0.004 0.02 0.004 0.02 0.004 0.02 0.003 0.001 HC2100 6.53 0.12 <t< td=""><td>LOAD-2</td><td>Waste Water Truck Loading</td><td>0.67</td><td>0.001</td><td>;</td><td>I</td><td>ı</td><td>;</td><td>;</td><td>;</td><td>:</td><td>;</td><td>:</td><td>;</td><td>;</td><td>I</td><td>ı</td><td>I</td></t<>	LOAD-2	Waste Water Truck Loading	0.67	0.001	;	I	ı	;	;	;	:	;	:	;	;	I	ı	I
Compresor Blowdowns 6.53 0.12	HTRI	CIG Flameless Gas Infrared Catalytic Heater HC2100	0.003	0.01	0.05	0.22	0.04	0.19	0.004	0.02	0.004	0.02	0.004	0.02	0.0003	0.001	-	263.58
Engine Starter Vents 2.94 0.15 -	BD	Compressor Blowdowns	6.53	0.12	;	I	:	1	ı	;	:	;	:	;	;	I	ı	132.20
Pigring Openations 45.68 0.07 - <td>SV</td> <td>Engine Starter Vents</td> <td>2.94</td> <td>0.15</td> <td>:</td> <td>I</td> <td></td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>I</td> <td></td> <td>173.52</td>	SV	Engine Starter Vents	2.94	0.15	:	I		:	:	:	:	:	:	:	:	I		173.52
Unpred Road Emissions	PIG	Pigging Operations	45.68	0.07		-	-	1			-		-	-		-		77.11
76.58 53.67 30.60 71.83 7.60 26.80 2.61 5.33 1.63 4.87 1.26 4.70 0.50 0.37 - 1	RI	Unpaved Road Emissions	;	;	;	I	ı	1	1.39	0.65	0.41	0.19	0.04	0.02	;	I	ı	I
		Totals:	70.58	53.67	30.60	71.83	09.7	26.80	2.61	5.33	1.63	4.87	1.26	4.70	0.50	0.37		55,616.67

SUMMARY OF POTENTIAL HAP EMISSION RATES	NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)
---	---

NOIL	
SHERWOOD COMPRESSOR STATION	ROVER PIPELINELLC
SHERWOOI	ROV

Mtehnnot Methnuot S.He.sume Hourity Amunal Hourity Mutual Hou Hou <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Potential to Emit</th><th>to Emit</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												Potential to Emit	to Emit									
implyies the probability of the properties of the properise of the properties of the properties of the properties of the			CB	f_2^{-1}	Acetal	dehyde	Acro	lein	Benz	ene	Tolue		Ethylben	zene	Methai	lor	N-Hex	xane	Other	Other HAPs	Total	Total HAPs
	Emission	SI	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Amual	Hourly	Amual	Hourly	Amual	Hourly	Amual	Hourly	Amual	Hourly	Annual	Hourly	Annual
i Composed Englie1 0.2 3.8 0.15 0.66 0.06 0.01	Unit ID		(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
3 ComparerEngine 07 236 013 036 <th< th=""><td>CE-1S</td><td>Compressor Engine 1</td><td>0.72</td><td>2.85</td><td>0.15</td><td>0.65</td><td>0.09</td><td>0.40</td><td>0.01</td><td>0.03</td><td>0.01</td><td>0.03</td><td>0.001</td><td>0.003</td><td>0.04</td><td>0.19</td><td>0.02</td><td>0.09</td><td>0.02</td><td>0.09</td><td>1.06</td><td>4.35</td></th<>	CE-1S	Compressor Engine 1	0.72	2.85	0.15	0.65	0.09	0.40	0.01	0.03	0.01	0.03	0.001	0.003	0.04	0.19	0.02	0.09	0.02	0.09	1.06	4.35
i Comparestration 0.2 2.8 0.10 0.00	CE-2S	Compressor Engine 2	0.72	2.85	0.15	0.65	0.09	0.40	0.01	0.03	0.01	0.03	0.001	0.003	0.04	0.19	0.02	0.09	0.02	0.09	1.06	4.35
Image: Generation 0001 0001 0001 0001 0001 0001 0001 0001 000 <td>CE-3S</td> <td>Compressor Engine 3</td> <td>0.72</td> <td>2.85</td> <td>0.15</td> <td>0.65</td> <td>0.09</td> <td>0.40</td> <td>0.01</td> <td>0.03</td> <td>0.01</td> <td>0.03</td> <td>0.001</td> <td>0.003</td> <td>0.04</td> <td>0.19</td> <td>0.02</td> <td>0.09</td> <td>0.02</td> <td>0.09</td> <td>1.06</td> <td>4.35</td>	CE-3S	Compressor Engine 3	0.72	2.85	0.15	0.65	0.09	0.40	0.01	0.03	0.01	0.03	0.001	0.003	0.04	0.19	0.02	0.09	0.02	0.09	1.06	4.35
3 Star fluid (3) 1	GE-1	Emergency Generator 1	0.0004	0.0001	0.00013	0.00003	0.0004	0.00001	0.004	0.001	0.001	0.000									0.01	0.001
1 Skyfrakl (300k) a	FUG	Site Fugitives	ł	-		-		•	0.001	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.001	0.01
2 Skyfrak 3 (30 kb) 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	TK-1	Slop Tank 1 (300 bbl)														-						
3 Wate Vaer Tank (250 gal) i <i i<="" th=""><td>TK-2</td><td>Slop Tank 2 (300 bbl)</td><td>1</td><td>ı</td><td>1</td><td>ı</td><td>,</td><td>,</td><td>,</td><td>ı</td><td>,</td><td>ı</td><td>,</td><td>,</td><td>ı</td><td>1</td><td>1</td><td>ı</td><td>1</td><td></td><td>,</td><td>ı</td></i>	TK-2	Slop Tank 2 (300 bbl)	1	ı	1	ı	,	,	,	ı	,	ı	,	,	ı	1	1	ı	1		,	ı
4 NewOil Tank (100 bi)	TK-3	Waste Water Tank (2500 gal)	;	;	;	;	;	;	;	;	;	;	;	,	;	,		;	1	,	,	;
5 Colart Tark (100 bb) is is <td>TK-4</td> <td>New Oil Tank (100 bbl)</td> <td></td> <td>;</td> <td></td> <td>;</td> <td>;</td> <td>,</td> <td>;</td> <td>;</td> <td>,</td> <td>;</td> <td>,</td> <td>,</td> <td>;</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>;</td>	TK-4	New Oil Tank (100 bbl)		;		;	;	,	;	;	,	;	,	,	;	,					,	;
6 Ued Goolan Tank (100 bb) 1 <td>TK-5</td> <td>Coolant Tank (100 bbl)</td> <td>,</td> <td>ı</td> <td>,</td> <td>ı</td> <td>1</td> <td></td> <td></td> <td>ı</td> <td>,</td> <td>ı</td> <td>,</td> <td></td> <td>ı</td> <td>1</td> <td>,</td> <td>ı</td> <td>1</td> <td>ŀ</td> <td>1</td> <td>ı</td>	TK-5	Coolant Tank (100 bbl)	,	ı	,	ı	1			ı	,	ı	,		ı	1	,	ı	1	ŀ	1	ı
7 UedO1Tank (100b)	TK-6	Used Coolant Tank (100 bbl)	;	;	;	;	;	;	;	;	;	;	;	,	;	,		;	1	,	,	;
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	TK-7	Used Oil Tank (100 bbl)													;							:
AD-2 Water Water Truck Loading <	LOAD-1	Slop Truck Loading		;		;	;	,	;	;	,	;	,	,	;	,					,	;
c1 CG Flameles Gas Infrared Catalytic Hater H2100 0.0004 0.0002 0.00002 0.0001 0.00002 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0	LOAD-2	Waste Water Truck Loading	ı	ı	ı	ı	:	:		ı		ı			ı	1	ı	ı	ı	1		ı
Compressor Blow downs - - - - - - - - - - - - - - - - 0.00 <td>HTR-1</td> <td>CIG Flameless Gas Infrared Catalytic Heater HC2100</td> <td>0.00004</td> <td>0.0002</td> <td>;</td> <td>;</td> <td>;</td> <td>;</td> <td>0.00001</td> <td>0.000005</td> <td>0.00002</td> <td>0.00001</td> <td>;</td> <td>,</td> <td>;</td> <td>,</td> <td>0.001</td> <td>0.004</td> <td>0.00001</td> <td>0.00004</td> <td>0.001</td> <td>0.004</td>	HTR-1	CIG Flameless Gas Infrared Catalytic Heater HC2100	0.00004	0.0002	;	;	;	;	0.00001	0.000005	0.00002	0.00001	;	,	;	,	0.001	0.004	0.00001	0.00004	0.001	0.004
Engine Starter Vents - - - - - - - - - - - - - - - 0.01 0.00 </th <td>BD</td> <td>Compressor Blowdowns</td> <td></td> <td>;</td> <td></td> <td>;</td> <td>;</td> <td>;</td> <td>0.16</td> <td>0.003</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.16</td> <td>0.003</td>	BD	Compressor Blowdowns		;		;	;	;	0.16	0.003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.16	0.003
Pigging Operations - - - - - - - - 0.00 <td>SV</td> <td>Engine Starter Vents</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>:</td> <td>:</td> <td>0.07</td> <td>0.004</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0:00</td> <td>ı</td> <td>1</td> <td>0.07</td> <td>0.004</td>	SV	Engine Starter Vents	ı	ı	ı	ı	:	:	0.07	0.004	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	ı	1	0.07	0.004
Unpaved Road Emissions	PIG	Pigging Operations	ı	1	ı	1	:	:	1.14	0.002	0.00	0.00	0.00	0.00	0.00	0:00	0.00	0.00	:	:	1.14	0.002
2.15 8.56 0.44 1.95 0.27 1.20 1.41 0.12 0.02 0.10 0.002 0.01 0.13 0.58 0.06 0.26	RI	Unpaved Road Emissions	;	;	;	;	;	;	;	;	;	;	;	;	;	;	;	;	:	;	;	;
		Totals:		8.56	0.44	1.95	0.27	1.20	1.41	0.12	0.02	0.10	0.002	0.01	0.13	0.58	0.06	0.26	0.06	0.28	4.56	13.06

CALCULATION OF COMPRESSOR ENGINE CRITERIA POLLUTANT POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION ROVER PIPELINE LLC

														I
		Eng	Engine Ratings		Fuel Gas	Annual								
			Rated	Fuel	Heating	Operating		Uncontrolled		Catalyst	Post-Control		Potential to Emit (PTE)	Emit (PTE)
Emission			Horsepower	Consumption	Value	Hours		Emission		Control	Emission		Hourly ^a	Annual ^b
Unit ID	Description	Type	(du)	(Btu/hp-hr)	(Btu/scf)	(hr/yr)	Pollutant	Factors ^a	Units	Efficiency	Factors ^a	Units	(lb/hr)	(T/yr)
Proposed Operations	rations													
CE-1S	Compressor Engine 1	Caterpillar G3616	4,735	7,491	1,106	8,760	CO	2.75	g/hp-hr	93%	0.19	g/hp-hr	2.21	8.80
		4 Stroke Lean Burn					NOX	0.50	g/hp-hr	%0	0.50	g/hp-hr	5.74	22.86
		Oxidation Catalyst					PM/PM10/PM25	0.0099871	1b/MMBtu	0%	0.009987	lb/MMBtu	0.39	1.55
							SO_2	0.0005880	1b/MMBtu	0%	0.000588	lb/MMBtu	0.02	0.09
							VOC	0.63	g/hp-hr	50%	0.32	g/hp-hr	3.62	14.40
CE-2S	Compressor Engine 2	Caterpillar G3616	4,735	7,491	1,106	8,760	C0	2.75	g/hp-hr	93%	0.19	g/hp-hr	2.21	8.80
		4 Stroke Lean Burn					NOX	0.50	g/hp-hr	%0	0.50	g/hp-hr	5.74	22.86
		Oxidation Catalyst					PM/PM ₁₀ /PM ₂₅	0.0099871	1b/MMBtu	0%	0.0099871	lb/MMBtu	0.39	1.55
							SO_2	0.0005880	1b/MMBtu	0%	0.000588	lb/MMBtu	0.02	0.09
							VOC	0.63	g/hp-hr	50%	0.32	g/hp-hr	3.62	14.40
CE-3S	Compressor Engine 3	Caterpillar G3616	4,735	7,491	1,106	8,760	CO	2.75	g/hp-hr	93%	0.19	g/hp-hr	2.21	8.80
		4 Stroke Lean Burn					NOX	0.50	g/hp-hr	9%0	0.50	g/hp-hr	5.74	22.86
		Oxidation Catalyst					PM/PM ₁₀ /PM _{2.5}	0.0099871	1b/MMBtu	9%0	0.0099871	1b/MMBtu	0.39	1.55
							SO_2	0.0005880	1b/MMBtu	0%	0.000588	lb/MMBtu	0.02	0.09
							VOC	0.63	g/hp-hr	50%	0.32	g/hp-hr	3.62	14.40

^a The Emission Factors for CO, NO_x, and VOC are from vendor specification sheets (engine and catalyst). VOC emissions do not include formaldehyde. A 10% safety factor has been added to hourly emissions to account for potential fluctuations for gas-fired engines. An example calculation for hourly CO emissions for Emission Unit ID CE-1S follows:

CO (lb/hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)*(1 lb/453.59 g)*(Safety Factor, 10%)

CO (lb/hr) = (4,735 hp)*(0.19 g/hp-hr)*(1 lb/453.59 g)*(1.10)

= 2.21 1b/hr CO

The PM/PM₁₂ and SO₂ Emission Factors are from AP-42 Table 3.2-2 for Four-Stroke Lean Burn Engines (dated 7/00). A 10% safety factor has been added to hourly emissions to account for potential fluctuations for gas-fired engines. An example calculation for hourly PM/PM₁₂, emissions for Emission for Emission Functional PM/PM₁₂, emissions for Emission for Botting fluctuations for gas-fired engines.

VPM₁₀/PM₁₂ (lb/hr) = (Fuel Consumption, Buthp-hr)*(Rated Horsepower, hp)*(1 MMBut/10^6 But)*(Post Control Emission Factor, lb/MMBut)*(Safety Factor, 10%)

 $I/PM_{10}/PM_{2.5}\ (lb/hr) = (7,491\ Btu/hp-hr)^{*}(4,735\ hp)^{*}(1\ MMBtu/l0^{*}6\ Btu)^{*}(0.0099871\ lb/MMBtu)^{*}(1.10)$

= 0.39 Ib/hr PM

^b An example calculation for annual CO emissions for Emission Unit ID CE-1S follows:

CO (T/yr) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)*(1 1b/453.59 g)*(Annual Operating Hours, hr/yr)*(1 T/2,000 1b)

 $CO (T/yr) = \ (4.735 \ hp)^{*} (0.19 \ g/hp-hr)^{*} (1 \ lb/453.59 \ g)^{*} (8.760 \ hr/yr)^{*} (1 \ T/2,000 \ lb)$

8.80 T/yr CO

CALCULATION OF COMPRESSOR ENGINE HAP POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION ROVER PIPELINE LLC

a manufacture of		D	Rated	Fuel	Lower Heating	Operating				Catalyst			Potential to Emit (PTE)	Emit (PTE)
Unit ID	Description	Type	(du)	(Btu/hp-hr)	(Btu/scf)	(hr/yr)	Pollutant	Factors ^a	Units	Efficiency	Factors ^a	Units	(lb/hr)	(T/yr)
Proposed Operations	<u>itions</u> Commence Bacino 1	Catomillion 0.3616	201 1	7 401	1 106	092.0	Econoldohudo	96.0	ad a da	7091	0.060	ad ad a	<i>62</i> .0	20 C
C12	compressor ranging 1	4 Stroke Lean Burn	00/ t	1641	1,100	00/100	Acetaldehvde	0.008360	B/MMBtu	50%	0.004180	g/up/m lb/MMBtu	0.15	0.65
		Oxidation Catalyst					Acrolein	0.005140	lb/MMBtu	50%	0.002570	lb/MMBtu	0.09	0.40
							Methanol	0.002500	lb/MMBtu	50%	0.001250	Ib/MMBtu	0.04	0.19
							Benzene	0.000440	lb/MMBtu	50%	0.000220	lb/MMBtu	0.01	0.03
							n-Hexane	0.001110	Ib/MMBtu	50%	0.000555	lb/MMBtu	0.02	0.09
							Toluene	0.000408	lb/MMBtu	50%	0.000204	Ib/MMBtu	0.01	0.03
							Ethvlbenzene	0.0000397	lb/MMBtu	50%	0.0000199	Ib/MMBtu	0.001	0.003
							Xvlene	0.000184	lb/MMBtu	50%	0.000092	Ib/MMBtu	0.003	0.01
							Other HAP	0.001214	lb/MMBtu	50%	0.000607	lb/MMBtu	0.02	0.09
CE-2S	Compressor Engine 2	Caterpillar G3616	4,735	7,491	1,106	8,760	Formaldehyde	0.26	g/hp-hr	76%	0.062	g/hp-hr	0.72	2.85
		4 Stroke Lean Burn					Acetaldehyde	0.008360	lb/MMBtu	50%	0.004180	Ib/MMBtu	0.15	0.65
		Oxidation Catalyst					Acrolein	0.005140	lb/MMBtu	50%	0.002570	Ib/MMBtu	0.09	0.40
							Methanol	0.002500	lb/MMBtu	50%	0.001250	Ib/MMBtu	0.04	0.19
							Benzene	0.000440	lb/MMBtu	50%	0.000220	lb/MMBtu	0.01	0.03
							n-Hexane	0.001110	lb/MMBtu	50%	0.000555	lb/MMBtu	0.02	0.09
							Toluene	0.000408	lb/MMBtu	50%	0.000204	Ib/MMBtu	0.01	0.03
							Ethylbenzene	0.0000397	Ib/MMBtu	50%	0.0000199	lb/MMBtu	0.001	0.003
							Xylene	0.000184	lb/MMBtu	50%	0.000092	Ib/MMBtu	0.003	0.01
							Other HAP	0.001214	lb/MMBtu	50%	0.000607	lb/MMBtu	0.02	0.09
CE-3S	Compressor Engine 3	Caterpillar G3616	4,735	7,491	1,106	8,760	Formaldehyde	0.26	g/hp-hr	76%	0.062	g/hp-hr	0.72	2.85
		4 Stroke Lean Bum					Acetaldehyde	0.008360	lb/MMBtu	50%	0.004180	lb/MMBtu	0.15	0.65
		Oxidation Catalyst					Acrolein	0.005140	lb/MMBtu	50%	0.002570	Ib/MMBtu	0.09	0.40
							Methanol	0.002500	lb/MMBtu	50%	0.001250	lb/MMBtu	0.04	0.19
							Benzene	0.000440	Ib/MMBtu	50%	0.000220	lb/MMBtu	0.01	0.03
							n-Hexane	0.001110	lb/MMBtu	50%	0.000555	lb/MMBtu	0.02	0.09
							Toluene	0.000408	Ib/MMBtu	50%	0.000204	lb/MMBtu	0.01	0.03
							Ethylbenzene	0.0000397	lb/MMBtu	50%	0.0000199	lb/MMBtu	0.001	0.003
							Xvlene	0.000184	lb/MMBtu	50%	0.000092	lb/MMBtu	0.003	0.01
							Other HAP	0.001214	Ib/MMBtu	50%	0.000607	lh/MMBtu	0.02	0.09

* HAP Emission Factors are from AP-42 Table 3.2-2 for Four-Stroke Lean Burn Engines (dated 7/00). Formaldehyde emission factor taken from engine manufacturer specifications with credit from catalyst control applied, with a 10% safety factor. An example calculation for hourly Acetaldehyde and Formaldehyde emissions for Emission Unit ID CE-15 follows:

 $\label{eq:action} Acctaldehyde~(lb/hr) = (Fuel~Consumption, Btu/hp-hr)^*(Rated~Horsepower, hp)^*(1~MMBtu/l0^{6}~Btu)^*(Emission~Factor, lb/MMBtu) = (Fuel~Consumption, Btu/hp-hr)^*(Rated~Horsepower, hp)^*(1~MMBtu/l0^{6}~Btu)^*(Emission~Factor, lb/hb-hr) = (Fuel~Consumption, Btu/hp-hr)^*(Btu)^*(B$

 $\label{eq:action} Acetaldehyde \ (lb/hr) = \ (7,491 \ Btu/hp-hr)^* (4,735 \ hp)^* (1 \ MMBtu/10^{\Lambda} 6 \ Btu)^* (0.008360 \ lb/MMBtu) = \ (0.008360 \ lb/MMtu) = \ (0.008360 \ l$

Ib/hr Acetaldehyde 0.15

An example calculation for hourly Formaldehyde emissions for Emission Unit ID CE-1S follows:

 $Formaldehyde\ (lb/hr) = (Rated Horsepower, hp)*(Post\ Control\ Emission\ Factor,\ g/hp-hr)(453.59\ g/lb)*(Safety\ Factor,\ 10\%) = (Rated Horsepower,\ hb)*(Post\ Control\ Emission\ Factor,\ g/hp-hr)(453.59\ g/lb)*(Safety\ Factor,\ 10\%) = (Rated Horsepower,\ hb)*(Post\ Control\ Emission\ Factor,\ g/hp-hr)(453.59\ g/lb)*(Safety\ Factor,\ 10\%) = (Rated Horsepower,\ hb)*(Post\ Control\ Emission\ Factor,\ g/hp-hr)(453.59\ g/lb)*(Safety\ Factor,\ 10\%) = (Rated Horsepower,\ hb)*(Post\ Control\ Emission\ Factor,\ hb)*(Post\ Emission\ Emissio$

Formaldehyde (lb/hr) = (4,735 hp)*(0.062 g/hp-hr)/(453.59 g/lb)*1.10

lb/hr Formaldehyde 0.72 ^b An example calculation for annual Acetaldehyde emissions for Emission Unit ID CE-1S follows:

 $Acetaldehyde (Tyyr) = (Hourly Emissions, lb/hr)*(Annual Operating Hours, hr/yr)*(1 T/2,000 \ lb)$

Acetaldehyde (T/yr) = $(0.15 \text{ lb/hr})^{*}(8,760 \text{ hr/yr})^{*}(1 \text{ T/2},000 \text{ lb})$

T/yr Acetaldehyde 0.65

An example calculation for annual Formaldehyde emissions for Emission Unit ID CE-1S follows:

Formaldehyde (T/yt) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)/(453.59 g/lb)*(A mual Operating Hours, hr/yr)*(1 TO,000 lb) = (Rated Horsepower, hp)*(1 TO,00

 $Formaldehyde \ (T/yr) = (4,735 \ hp)^* (0.06 \ g/hp-hr)/(453.59 \ g/lb)^* (8,760 \ hr/yr)^* (1T/2,000 \ lb)$

T/yr Formaldehyde 2.85

CALCULATION OF EMERGENCY GENERATOR CRITERIA POLLUTANT POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Potential to Emit (PTE) (T/yr) Annual ¹ 0.21 3.03 0.01 0.10 0.01 Hourly ^a (lb/hr) 0.93 13.32 0.04 0.43 0.02 lb/hp-hr g/hp-hr g/hp-hr g/hp-hr g/hp-hr Units Post-Control Factors ^b Emission 0.40 5.74 0.018 0.004 0.01 Catalyst Efficiency Control \$ \$ \$ \$ \$ \$ g/hp-hr lb/hp-hr g/hp-hr g/hp-hr g/hp-hr Units Uncontrolled Factors ^b Emission 0.405.740.0180.00040.01PM/PM₁₀/PM₂₅ Pollutant SO₂ VOC NO_x Operating (hr/yr)^a Annual Hours 500 Lower Heating Fuel Gas (Btu/scf) Value 1,106 Consumption (Btu/hp-hr) Fuel 5,239 Horsepower Rated (dq) Engine Ratings 957 Caterpillar C15 ACERT Diesel Type Proposed Operations GE-1 Emergency Generator 1 Description Unit ID Emission

worst case (potential to emit), based on the sum of both emergency hours in any given year. Each engine will not be operated more than 100 hours in non-emergency use (combination of maintenance and testing, emergency and "other" non-emergency use), non-emergency use (potential to emit), based on the sum of both emergency hours in any given year. Each engine will not be operated more than 100 hours in non-emergency use (combination of maintenance and testing, emergency demand response and "other" non-emergency use), non-emergency use (potential to emit), based on the sum of both emergency hours in any given year. Each engine will not be operated more than 100 hours in non-emergency use (combination of maintenance and testing, emergency demand response and "other" non-emergency use). ^a The Emission Factors for CO, NQ, PMPM₁₀/PM2₃₅ and VOC are from vendor specification sheets. A 10% safety factor has been added to the CO, NQ, PMPM₁₀/PM2₃₅ and VOC hourly emissions to account for potential fluctuations for disselengines. 500 hours of pretration is used as

CO (lb/th) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)*(1 lb/453.59 g)*(Safety Factor, 10%)

 $CO (lb/hr) = (957 hp)^{*}(0.40 g/hp-hr)^{*}(1 lb/453.59 g)^{*}(1.10)$

lb/hr CO 0.93

The SO₂ Emission Factors are from AP-42 Table 34-1 for Large Stationary Discel Engines. A 10% safety factor has been added to the SQ outly emissions to account for potential fluctuations for discel engines. An example calculation for hourly § mission Unit ID GE-1 follows:

 $SO_2 \ (lb/hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr)*(Safety Factor, 10\%) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr)*(Safety Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr)*(Safety Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr)*(Safety Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr)*(Safety Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr) = (Rated Horsepower, hp)*(Post Control Emission Factor, lb/hp-hr) = (Rated Horsepower, hp) =$

 $SO_2 (lb/hr) = (957 hp)^* (0.0004 lb/hp-hr)^* (1.10)$

 $lb/hr SO_2$ 0.43

^b An example calculation for annual CO emissions for Emission Unit ID GE-1 follows:

CO (T/yr) = (Rated Horsepower, hp)*(Post Control Emission Factor, g/hp-hr)*(1 lb/453.59 g)*(Amnual Operating Hours, hr/yr)*(1 T/2,000 lb)

 $CO (T/yr) = (957 hp)^{*} (0.40 g/hp-hr)^{*} (1 lb/455.59 g)^{*} (500 hr/yr)^{*} (1 T/2,000 lb)^{*}$

	T/yr CO
	0.21
ļ	11

CALCULATION OF EMERGENCY GENERATOR HAP POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION ROVER PIPELINE LLC

	Ð	Engine Ratings		Fuel Gas	Annual								
		Rated	Fuel	Heating	Operating				Catalyst	Post Control		Potential to	Emit (PTE)
		Horsepower	Consumption	Value	Hours		Emission		Control	Emission		Hourly ^a	Annual ^b
Description	Type	(dų)	(Btu/hp-hr)	(Btu/scf)	(hr/yr)	Pollutant	Factors ^a	Units	Efficiency	Factors ^a	Units	(lb/hr) (T/yr)	(T/yr)
Emergency Generator 1	1 Caterpillar C15 ACERT	Г 957	5,239	1,106	500	Formaldehyde	0.0000789	lb/MMBtu	%0	0.0000789	lb/MMBtu	0.0004	0.0001
						Acetaldehyde	0.0000252	lb/MMBtu	%0	0.0000252	lb/MMBtu	0.0001	0.00003
						Acrolein	0.00000788	lb/MMBtu	%0	0.00000788	1b/MMBtu	0.00004	0.00001
						Benzene	0.000776	lb/MMBtu	%0	0.000776	lb/MMBtu	0.004	0.001
						Toluene	0.000281	lb/MMBtu	%0	0.000281	lb/MMBtu	0.001	0.0004

^a HAP Emission Factors are from AP-42 Table 3.4-3 for Uncontrolled Stationary Diesel Engines (dated 7/00). An example calculation for hourly Acetaldehyde emissions for Emission Unit ID GE-1 follows:

0.0002

0.001

0.000193 lb/MMBtu

%0

0.000193 lb/MMBtu

Xylene

 $\label{eq:constraint} Acctadehyde (lb/hr) = (Fuel Consumption, Bu/hp-hr)*(Rated Horsepower, hp)*(1 MMBu/10^{6} Btu)*(Emission Factor, lb/MMBu) \\ Acctadehyde (lb/hr) = (5.239 Btu/hp-hr)*(957 hp)*(1 MMBu/10^{6} Btu)*(0.0000252 lb/MMBu) \\ Acctadehyde (lb/hr) = (5.239 Btu/hp-hr)*(957 hp)*(1 MMBu/10^{6} Btu)*(0.0000252 lb/MMBu) \\ Acctadehyde (lb/hr) = (5.239 Btu/hp-hr)*(957 hp)*(1 MMBu/10^{6} Btu)*(10^{6} Bt$

Ib/hr Acetaldehyde 0.0001 Ш

^b An example calculation for annual Acetaldehyde emissions for Emission Unit ID GE-1 follows: $A cetaldehyde (Tyr) = (Hourly PTE, lb/hr)^{*}(Annual Operating Hours, hr/yr)^{*}(1 T/2,000 lb)$

 $Acetaldehyde \ (T/yr) = \ (0.0001 \ lb/hr)^{*}(500 \ hr/yr)^{*}(1 \ T/2,000 \ lb)$

T/yr Acetaldehyde 0.00003 П CALCULATION OF SITE FUGITIVES (EMISSION UNIT ID FUG) POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Number of ComponentNumber of ComponentsValvesComponentsValves184Gas Streams184Vater/Light Oil Streams37Heavy Liquid30Relief Valves38Gas Streams28	Emission Factors ^a (lb/hr-component)							1		4.4
onent Di Streams am	Factors " (lb/hr-component)	Operating	Maximum	Maximum	Maximum	Reduction	Ž	<u>koc</u>	Methane	co_2
am am		Hours (hr/yr)	VOC (wt%)	Methane (wt%)	CO ₂ (wt%)	Credit ^a (wt%)	Hourly " (lb/hr)	Annual ' (T/yr)	Annual ' (T/yr)	Annual ' (T/yr)
bil Streams am										
oil Streams am	0.00992	8,760	2.00%	%00.06	1.00%	0%0	0.0365	0.1599	7.1953	0.0799
m	0.000216	8,760	100.00%	0.00%	0.00%	0%	0.0035	0.0151	0.0000	0.0000
	0.005500	8,760	100.00%	0.00%	0.00%	%0	0.2035	0.8913	0.0000	0.0000
	0.0000185	8,760	100.00%	0.00%	0.00%	%0	0.0006	0.0024	0.0000	0.0000
	0.0194	8,760	2.00%	90.00%	1.00%	%0	0.0109	0.0476	2.1413	0.0238
Compressor Seals										
Gas Streams 12	0.0194	8,760	2.00%	90.00%	1.00%	%0	0.0047	0.0204	0.9177	0.0102
Flanges										
Gas Streams 112	0.00086	8,760	2.00%	90.00%	1.00%	%0	0.0019	0.0084	0.3797	0.0042
Water/Light Oil Streams 22	0.00006	8,760	100.00%	0.00%	0.00%	%0	0.0001	0.0006	0.0000	0.0000
Light Oil Streams 22	0.000243	8,760	100.00%	0.00%	0.00%	%0	0.0053	0.0234	0.0000	0.0000
Connectors										
Gas Streams 527	0.00044	8,760	2.00%	90.00%	1.00%	%0	0.0046	0.0203	0.9141	0.0102
Water/Light Oil Streams 55	0.000243	8,760	100.00%	0.00%	0.00%	0%	0.0134	0.0585	0.0000	0.0000
Light Oil Streams 139	0.000463	8,760	100.00%	0.00%	0.00%	%0	0.0644	0.2819	0.0000	0.0000
Heavy Liquid 189	0.0000165	8,760	100.00%	0.00%	0.00%	%0	0.0031	0.0137	0.0000	0.0000
						Total:	: 0.35	1.54	11.55	0.13

^a Fugitive Emission Factors and Reduction Credits are per TCEQ Technical Guidance Document for Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydrocarbon.

(184 components) * (0.00992 lb/hr-component) * (2.00 % VOC) * (100% - 0.0 % reduction credit) = 0.0365 lb/hr^b Hourly VOC emission rates are calculated as follows:

^c Annual VOC emission rates are calculated as follows: (184 component) * (0.00992 lb/hr-component) * (8,760 hr/yr) * (2.00 % VOC) * (100% - 0.0 % reduction credit) / (2,000 lb/T) = 0.1599 T/yr

CALCULATION OF SITE FUGITIVES (EMISSION UNIT ID FUG) HAP POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION) SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

			Annual											Potential To Emit	To Emit				
		Emission	Operating	Maximum					Reduction	Benzene	ne	Toluene	ne	Ethylbenzene	rzene	Xylene	ne	n-Hexane	ane
Component	Number of Components	Factors ^a (lb/hr-component)	Hours (hr/yr)	Benzene (wt%)	Toluene (wt%)	Ethylbenzene (wt%)	Xylene (wt %)	n-Hexane (wt%)	Credit ^a (wt%)	Hourly ^b (lb/hr)	Annual ^c (T/yr)								
Valves																			
Gas Streams	184	0.00992	8,760	0.05%	0.0000%	0.000%	%0000.0	0.000%	960	6000.0	0.0040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water/Light Oil Streams	16	0.000216	8,760	0.00%	0.0000%	0.000%	0.0000%	0.0000%	9%0	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Oil Streams	37	0.005500	8,760	0.00%	0.0000%	0.000%	0.0000%	0.000%	960	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Liquid	30	0.0000185	8,760	0.00%	0.0000%	0.0000%	%0000.0	0.000%	9%0	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Relief Valves																			
Gas Streams	28	0.0194	8,760	0.05%	0.0000%	0.0000%	0.0000%	0.0000%	9%0	0.0003	0.0012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Compressor Seals Gas Streams	12	0.0194	8.760	0.05%	%0000%	0.000%	0.0000%	0.0000%	%0	0.0001	0.0005	0.00	0.00	0.0	0.00	0.00	0.00	0.00	00.0
Flanges																			
Gas Streams	112	0.00086	8,760	0.05%	0.0000%	0.000%	0.0000%	0.000%	9%0	0.0000	0.0002	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Oil Streams	22	0.000243	8,760	0.00%	0.0000%	0.000%	0.0000%	0.000%	960	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water/Light Oil Streams	22	0.00006	8,760	0.00%	0.0000%	0.000%	0.0000%	0.0000%	%0	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Connectors																			
Gas Streams	527	0.00044	8,760	0.05%	0.0000%	0.000%	%0000.0	0.000%	9%0	0.0001	0.0005	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Water/Light Oil Streams	55	0.000243	8,760	0.00%	0.0000%	0.000%	0.0000%	0.0000%	9%0	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Light Oil Streams	139	0.000463	8,760	0.00%	0.0000%	0.000%	%0000.0	0.0000%	960	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Heavy Liquid	189	0.0000165	8,760	0.00%	%0000.0	0.0000%	0.0000%	0.0000%	960	0.0000	0.0000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
									Total:	0.001	0.01	0.00	0.00	00.0	000	0.00	0.00	0.00	0.00

^a Fugitive Enission Factors and Reduction Credits are per TCEQ Technical Guidance Document for Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydrocarbon.

^b Hourly Benzene emission mues are calculated as follows: (184 components) * (0.0092 lb/hr-component) * (0.05 % Benzene) * (100% - 0.0 % reduction credit) = 0.0009 lb/hr ^c Amual Benzene emission rates are calculated as follows: (184 components) * (0.0092 lb/hr-component) * (8,760 hr/y) * (0.05 % Benzene) * (100% - 0.0 % reduction credit) / (2,000 lb/T) = 0.0040 T/yr

SUMMARY OF STORAGE TANK EMISSIONS POTENTIAL TO EMIT		
Č A	UMMARY OF STORAGE TANK EMISSIONS POTENTIAL TO EMIT	
	to.	

NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION) SHERWOOD COMPRESSOR STATION

ROVER PIPELINES LLC

		Tanks 4.0.9	Tanks 4.0.9d Program ^a		Annual	Minimum	Breathing Emissions	Breathing Emissions
Emission Unit ID	Tank Name	Working Loss (lb/yr)	Working LossBreathing LossNumber of(lb/yr)(lb/yr)Tanks	Number of Tanks	Turnovers (turnovers/yr)	Turnovers Turnover Time (turnovers/yr) (hr/turnover)	Hourly (lb/hr)	Annual (T/yr)
TK-1	Slop Tank (300 bbl)	0.75	2.09	1	2	1	0.32	0.001
TK-2	Waste Water Tank 1 (300 bbl)	0.74	2.04	1	2	1	0.31	0.001
TK-3	Waste Water Tank 2 (2500 gal)	0.74	0.47	1	11	1	0.07	0.001
TK-4	New Oil Tank (100 bbl)	0.02	0.01	1	11	1	<0.01	<0.01
TK-5	Coolant Tank (100 bbl)	0.14	0.09	1	11	1	0.01	<0.01
TK-6	Used Coolant Tank (100 bbl)	0.14	0.09	1	11	1	0.01	<0.01
TK-7	Used Oil Tank (100 bbl)	0.02	0.01	1	11	1	<0.01	<0.01

^a The tank emissions are calculated using the EPA Tanks 4.0.9d program. This program calculates the working and breathing losses and these losses are used to calculate the hourly and annual emissions below. The slop tank is not expected to have flash emissions, since it stores mostly water with minimal amounts of heavy oils.

An example calculation of the hourly emissions for Emission Unit ID TK-1 follows:

 $VOC (lb/hr) = (((Breathing Loss, lb/yr)/(8,760 hr/yr)) + ((Working Loss, lb/yr)/(Number of Turnovers/yr)/(Number of hrs/turnover)))*(number of tanks) \\ VOC (lb/hr) = (((2.09 lb/yr)/(8.760 hr/yr)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover)))*(1 tank) \\ VOC (lb/hr) = ((0.09 lb/yr)/(8.760 hr/yr)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover))) \\ = ((0.09 lb/yr)/(8.760 hr/yr)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover))) \\ = ((0.09 lb/yr)/(8.760 hr/yr)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover))) \\ = ((0.09 lb/yr)/(8.760 hr/yr)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover)) + ((0.75 lb/yr)/(2 turnover)) + ((0.75 lb/yr)/(2 turnovers/yr)/(1 hr/turnover)) + ((0.75 lb/yr)/(2 turnovers/yr)/(2 turnover)) + ((0.75 lb/yr)/(2 turnover)) + ((0.75 lb/yr$

 $OC (Ib/hr) = \frac{((2.09 Ib/yr)/(8,/60 hr/yr))+((0.75 Ib/yr)/(2 turnovers/yr)/(1 hr/turnover)}{0.32 Ib/hr}$

An example calculation of the annual emissions for Emission Unit ID TK-1 follows:

VOC (T/yr) = (((Working Loss, lb/yr)+(Breathing Loss, lb/yr))/(2,000 ton/yr))*(Number of Tanks))

VOC (T/yr) = ((0.75 lb/yr)+(2.09 lb/yr)/(2.000 lb/ton))*(1 tank))= 0.001 T/yr

See the following pages for a printout of the emissions reports.

CALCULATION OF TRUCK LOADING POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION) SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Sample Calculations:

 $\label{eq:maximum} Maximum Loading Loss = 12.46 * (Saturation Factor) * (Max. Vapor Pressure, psia) * (Vapor MW, lb/lb-mol) / (Max. Temp., R) Maximum Loading Loss = 12.46 * (0.60) * (0.23 psia) * (21.93 lb/lb-mol) / (55.86 + 460) R = 0.0740 lb/Mgal$

 $\label{eq:average Loading Loss = 12.46 * (Saturation Factor) * (Avg. True Vapor Pressure, psia) * (Vapor MW, lb/lb-mol) / (Avg. Temp, R) Average Loading Loss = 12.46 * (0.60) * (0.20 psia) * (21.93 lb/lb-mol) / (51.17 + 460) R = 0.0633 lb/Mgal$

Hourly PTE = (Hourly Throughput, Mgal/hr) * (Max. Loading Loss, lb/Mgal) * (VOC Fraction) Hourly PTE = $(9.00\,Mgal/hr)$ * $(0.0740\,lb/Mgal)$ * (1.00) = $0.67\,lb/hr$

 $\label{eq:annual PTE} Annual Throughput, Mgal/yr) * (Avg. Loading Loss, lb/Mgal) / (2,000 lb/T) * (VOC Fraction) Annual PTE = (30.0 Mgal/yr) * (0.0633 lb/Mgal) / (2,000 lb/T) * (1.00) = 0.001 T/yr$

Annual VOC PTE (T/yr)	0.001	0.001
Hourly VOC PTE (lb/hr)	0.67	0.67
Avg. Loading Loss (lb/Mgal)	0.0633	0.0638
Max. Loading Loss (lb/Mgal)	0.0740	0.0747
VOC Fraction	1.00	1.00
Annual Throughput (Mgals/yr)	30.0	30.0
Hourly Throughput (Mgals/hr)	00.6	9.00
Avg. Temp (F)	51.17	51.17
Max. Temp. (F)	55.86	55.86
Vapor Molecular Weight Temp, Temp (Ib/mole)	21.93	21.78
Avg. Vapor Pressure (psia)	0.20	0.20
Max. Vapor Pressure (psia)	0.23	0.24
Emission Point Saturation Number Factor 1 (EPN)	0.60	0.60
Emission Point Number (EPN)	LOAD-1	LOAD-2
Facility Name	Slop Truck Loading	Waste Water Truck Loading
Facility ID Number (FIN)	LOAD-1	LOAD-2

1. Calculation method and factors per AP-42, Section 5.2, dated June 2008.

2. Vapor pressure, temperature, and vapor molecular weight are from the TANKS 4.09d program reports for the stored liquids.

			SHERWOOD COMPRESSOR STATION	VOOD COMI	SHERWOOD COMPRESSOR STATION	VIION				
				ROVER PIP	ROVER PIPELINE LLC					
			Fuel Higher Heating	Annual Operating					Potential to Emit (PTE)	Emit (PTE)
Emission Unit ID	Description	Rated Duty (MMBtu/hr)	Value (Btu/scf)	Hours (hr/yr)	Correction Factor	Pollutant	Emission Factor ^a	Unit	Hourly ^b (lb/hr)	Annual ^c (T/yr)
HTR-1	CIG Flameless Gas Infrared	0.51	1,106	8,760	1.08	CO	84	lb/MMscf	0.04	0.19
	Catalytic Heater HC2100					NO_X	100	lb/MMscf	0.05	0.22
						PM/PM ₁₀ /PM _{2.5} ^d	7.6	lb/MMscf	0.004	0.02
						SO_2	0.6	lb/MMscf	0.0003	0.001
						VOC	5.5	lb/MMscf	0.003	0.01
						CH_2O	0.075	lb/MMscf	0.00004	0.0002
						Benzene	0.0021	lb/MMscf	0.000001	0.000005
						Toluene	0.0034	lb/MMscf	0.00002	0.00001
						n-Hexane	1.8	lb/MMscf	0.001	0.004
						Other HAP	0.0019	lb/MMscf	0.00001	0.000004

CALCULATION OF HEATER POTENTIAL TO EMIT

^a Unless otherwise noted, emission factors are from AP-42 Tables 1.4-1, 1.4-2, and 1.4-3 (dated 7/98).

^b An example calculation for hourly PTE CO and SO₂ for Emission Unit ID HTR1 follows:

CO (lb/hr) = (Rated Duty, MMBtu/hr)*(Correction Factor)/(Fuel Heating Value, Btu/scf)*(Emission Factor, lb/MMscf)

 $CO (lb/hr) = \frac{(0.51 \text{ MMBtu/hr})*(1.08)/(1106 \text{ Btu/scf})*(84 \text{ lb/MMscf})}{(1000 \text{ Btu/scf})*(1000 \text{ Btu/scf})}$

= 0.04 lb/hr CO

 $^\circ$ An example calculation for annual PTE CO for Emission Unit ID HTR1 follows: CO (T/yr) = (Hourly PTE, lb/hr)*(Annual Operating Hours, hr/yr)/(2,000 lb/T)

 $CO (T/yr) = (0.04 lb/hr)^{*}(8,760 hr/yr)/(2,000 lb/T)$

 $= \underbrace{0.19 T/yr CO}_{d \text{ All PM is assumed to be less than 2.5 microns in diameter per footnote "c" of AP-42 Table 1.4-2.$

CALCULATION OF COMPRESSOR ENGINE BLOWDOWNS POTENTIAL TO EMIT

NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

	Co	ombined Emission Unit II	BD
Description	CE-1S	CE-2S	CE-3S
Number of Blowdowns per Year	12	12	12
Number of Blowdowns per Hour	1	1	1
Blowdown Volume per Event, scf	6,887	6,887	6,887
Gas Stream Specific Gravity	0.6200	0.6200	0.6200
Air MW, lb/mole	28.96	28.96	28.96
Gas Stream Density, lb/scf ^a	0.047	0.047	0.047
Max VOC Percentage in Gas Stream, wt%	2.00%	2.00%	2.00%
Max Benzene Percentage in Gas Stream, wt%	0.05%	0.05%	0.05%
Max Methane Percentage in Gas Stream, wt%	90.00%	90.00%	90.00%
Max CO ₂ Percentage in Gas Stream, wt%	1.00%	1.00%	1.00%
Toluene Percentage in Gas Stream, wt%	0.0000%	0.0000%	0.0000%
Ethylbenzene Percentage in Gas Stream, wt%	0.0000%	0.0000%	0.0000%
Xylene Percentage in Gas Stream, wt%	0.0000%	0.0000%	0.0000%
n-Hexane Percentage in Gas Stream, wt%	0.0000%	0.0000%	0.0000%
Hourly VOC Emission Rates (lb/hr): b	6.53	6.53	6.53
Annual VOC Emission Rates (T/yr): °	0.04	0.04	0.04
Hourly Benzene Emission Rates (lb/hr): ^b	0.16	0.16	0.16
Annual Benzene Emission Rates (T/yr): ^c	0.001	0.001	0.001
Annual Methane Emission Rates (T/yr): ^c	1.76	1.76	1.76
Annual CO ₂ Emission Rates (T/yr): ^c	0.02	0.02	0.02
Hourly Toluene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Toluene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly Ethylbenzene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Ethylbenzene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly Xylene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Xylene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly n-Hexane Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual n-Hexane Emission Rates (T/yr): ^c	0.00	0.00	0.00

ROVER PIPELINE LLC

^a Gas stream density is calculated as follows:

(28.96 lb/mole) / (379 scf/mole) * (0.6200) = 0.047 lb/scf

^b Hourly blowdown VOC emission rates are calculated as follows:
(1 blowdown/hr) * (6,887 scf/blowdown) * (0.047 lb/scf) * (2.00 % VOC) = 6.53 lb/hr

^c Annual blowdown VOC emission rates are calculated as follows:

 $(12 \ blowdowns/yr) * (6,887 \ scf/blowdown) * (0.047 \ lb/scf) * (2.00 \ \% \ VOC) / (2,000 \ lb/T) = 0.04 \ T/yr$

CALCULATION OF COMPRESSOR ENGINE STARTER VENTS (EMISSION UNIT ID SV) POTENTIAL TO EMIT NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Number of Starts per Hour per Engine: Number of Starts per Year Site-Wide: MW of Air. Ib/Ibmol:	Gas Stream Specific Gravity: Gas Stream Density, lb/scf : ^a	Max VOC wt%: Max Benzene wt%:	Max Carbon Dioxide wt%:
---	---	----------------------------------	-------------------------

 $\begin{array}{c} 1 \\ 105 \\ 28.96 \\ 0.6200 \\ 0.047 \\ 0.047 \\ 2.00\% \\ 1.00\% \\ 90.0\% \end{array}$

0.0000% 0.0000% 0.0000%

Toluene wt%:

Ethylbenzene wt%: Xylene wt%: n-Hexane wt%:

Max Methane wt%:

0.0000%

	Starter Vent			Emissio	Emission Rates		
Compressor Engine	Volume	DA	VOC	Ben	Benzene	CO_2	Methane
Starter Vents	scf/event	lb/hr ^b	T/yr °	lb/hr ^b	T/yr °	ton/yr ^c	T/yr °
CE-1S	3,099	2.94		0.07			I
CE-2S	3,099	2.94		0.07			I
CE-3S	3,099	2.94	I	0.07		-	-
TOTAL	3,099	2.94	0.15	0.07	0.004	0.08	6.94

	Starter Vent				Emissio	Emission Rates			
Compressor Engine	Volume	Toluene	ene	Ethylbenzene	enzene	Xyl	Kylene	oH-n	n-Hexane
Starter Vents	scf/event	lb/hr ^b	T/yr °	lb/hr ^b	T/yr ^c	lb/hr ^b	T/yr ^c	lb/hr ^b	T/yr °
CE-1S	3,099	0.00	1	0.00	1	0.00		0.00	I
CE-2S	3,099	0.00		0.00	1	0.00	1	0.00	I
CE-3S	3,099	0.00	1	0.00	-	0.00		0.00	
TOTAL	3,099	0.00	0.00	0.00	0.00	00.0	00.0	00.0	00.0

^a Gas stream density is calculated as follows:

(28.96 lb/mole) / (379 scf/mole) * (0.6200) = 0.047 lb/scf

^b Hourly starter vent emission rates are calculated as follows:

(1 starts/hr) * (3099 scf/start) * (0.047 lb/scf) * (2 % VOC) = 2.94 lb/hr

 c Annual starter vent emission rates are calculated as follows: (105 starts/yr) * (3099 scf/start) * (0.047 lb/scf) * (2 % VOC) / (2,000 lb/T) = 0.15 T/yr

Note - assumes 35 starts per engine per year.

CALCULATION OF PIGGING OPERATIONS POTENTIAL TO EMIT

NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

	Emissio	n Unit ID PIG	
Description	Launcher	Receiver	Combined
Number of Events per Year	3	0	3
Number of Events per Hour	1	0	
Volume per Event, scf	48,206	48,206	
Gas Stream Specific Gravity	0.6200	0.6200	
Air MW, lb/mole	28.96	28.96	
Gas Stream Density, lb/scf ^a	0.047	0.047	
Max VOC Percentage in Gas Stream, wt%	2.00%	2.00%	
Max Benzene Percentage in Gas Stream, wt%	0.05%	0.05%	
Max Methane Percentage in Gas Stream, wt%	90.00%	90.00%	
Max CO ₂ Percentage in Gas Stream, wt%	1.00%	1.00%	
Toluene Percentage in Gas Stream, wt%	0.0000%	0.0000%	
Ethylbenzene Percentage in Gas Stream, wt%	0.0000%	0.0000%	
Xylene Percentage in Gas Stream, wt%	0.0000%	0.0000%	
n-Hexane Percentage in Gas Stream, wt%	0.0000%	0.0000%	
Hourly VOC Emission Rates (lb/hr): ^b	45.68	0.00	45.68
Annual VOC Emission Rates (T/yr): ^c	0.07	0.00	0.07
Hourly Benzene Emission Rates (lb/hr): ^b	1.14	0.00	1.14
Annual Benzene Emission Rates (T/yr): ^c	0.002	0.000	0.002
Annual Methane Emission Rates (T/yr): ^c	3.08	0.00	3.08
Annual CO ₂ Emission Rates (T/yr): c	0.03	0.00	0.03
Hourly Toluene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Toluene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly Ethylbenzene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Ethylbenzene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly Xylene Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual Xylene Emission Rates (T/yr): ^c	0.00	0.00	0.00
Hourly n-Hexane Emission Rates (lb/hr): ^b	0.00	0.00	0.00
Annual n-Hexane Emission Rates (T/yr): ^c	0.00	0.00	0.00

^a Gas stream density is calculated as follows: (28.96 lb/mole) / (379 scf/mole) * (0.6200) = 0.047 lb/scf

^b Hourly VOC emission rates are calculated as follows: (1 event/hr) * (48,206 scf/event) * (0.047 lb/scf) * (2.00 % VOC) = 45.68 lb/hr

^c Annual VOC emission rates are calculated as follows:

(3 events/yr) * (48,206 scf/event) * (0.047 lb/scf) * (2.00 % VOC) / (2,000 lb/T) = 0.07 T/yr

CALCULATION OF FUGITIVE UNPAVED ROAD POTENTIAL TO EMIT

NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

EPA METHOD: AP-42 Section 13.2.2.2 (Miscellaneous Sources: November 2006)

Emission Source ID	R1	UNPAVED QUARRY ROADS
		40-ton Trucks
ID	CALCULATION PARAMETERS	QUARRY ROADS
k _{PM}	AP-42 constant for PM ₃₀ (lb/VMT)	4.9
k _{PM10}	AP-42 constant for PM ₁₀ (lb/VMT)	1.5
k _{PM2.5}	AP-42 constant for PM _{2.5} (lb/VMT)	0.15
S	surface material silt content, %	10
W	mean vehicle weight, tons	40.0
а	AP-42 constant for PM ₃₀	0.7
b	AP-42 constant for PM ₃₀	0.45
a _{PM10} AND a _{PM 2.5}	AP-42 constant for PM ₁₀ and PM _{2.5}	0.9
b _{PM10} AND b _{PM 2.5}	AP-42 constant for PM ₁₀ and PM _{2.5}	0.45
E _{PM}	Calculated Emission Factor	13.84
E _{PM10}	Calculated Emission Factor	4.08
E _{PM2.5}	Calculated Emission Factor	0.41
Р	Avg. Number Days of Rainfall	171.00
E_{PM-EXT}	Calculated Extended EF	7.35
E _{PM10-EXT}	Calculated Extended EF	2.17
E _{PM2.5-EXT}	Calculated Extended EF	0.22
VMT	Vehicle Miles Traveled (per hour)	0.38
VMT	Vehicle Miles Traveled (per year)	353
CF	Control Efficiency (%)	50%
	TCD Enviroing Data (II-/Ira)	1.39
	TSP Emission Rate (lb/hr)	
	PM ₁₀ Emission Rate (lb/hr)	0.41
	PM _{2.5} Emission Rate (lb/hr)	0.04
	TSP Emission Rate (T/yr)	0.65
	$PM_{10} Emission Rate (T/yr)$	0.19
	PM _{2.5} Emission Rate (T/yr)	0.02

Notes:

E = size specific emission factor (lb/VMT)

where:

 $E (lb/VMT) = k * (s/12)^a * (W/3)^b$

s = surface material silt content, from AP-42 Table 13.2.2-1 for Stone Quarrying and Processing

W = mean vehicle weight, tons

 $E_{EXT} = E [(365-P)/365]$

P = Number of days of year with at least 0.01 in of precipitation

VMT conservatively calculated based on the maximum expected daily throughput.

CF = Control Efficiency. Estimated at 50% for periodic watering of unpaved roads.

TSP Emission Rate (lb/hr) = $E_{EXT} * VMT$ (per hour) * (1-Control Eff.)

TSP Emission Rate (tpy) = E_{EXT} * VMT (per year) * (1-Control Eff.) * 1 T / 2000 lb

CALCULATION OF GREENHOUSE GAS POTENTIAL TO EMIT FOR COMBUSTION SOURCES SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Combustion-Related Green House Gas Emissions

36 117	301 1	1401	LV 3C	0.760	210.716	16 101 20	2001101	10 1 50 05
	302.4	101	LV 3C	0750	212.01.0	16 101 20	2002101	10 150 05
CE-23	4,/25	1,491	14.00	8,700	510,/10	10,491.20	18,1/8.23	18,129.80
CE-3S	4.735	7.491	35.47	8.760	310,716	16.491.20	18,178,25	18,159,86
	22:62	5 720	5 01	200	2 507	122.06	116 60	146.52
CE-1	106	6c7,c	10.0	nnc	100,2	00.001	140.00	0.041
HTR-1	-	-	0.51	8,760	4,505	239.12	263.58	263.31
SITE TOTAL			111.94		939.160.95	49.845.78	54.945.00	54.889.41

^aSample calculations:

Greenhouse Gas (GHG) Emission Factors are from 40 CFR 98, Subpart C Tables C-1 and C-2.

a o hun o anno o a ma o a	53.02 kg/MMBtu	0.001 kg/MMBtu	0.0001 kg/MMBtu
tonic and attain and the train of the train of the train and the train a	Carbon Dioxide Emission Factor $(CO_2EF) =$	Methane Emission Factor (CH_4EF) =	Nitrous Oxide Emission Factor (N ₂ OEF) =

CO2e (metric T/yr) = (0.001 metric T/kg) * (310,716 MMBtu/yr) * [(53.02 kg/MMBtu) + (25*0.001 kg/MMBtu) + (298*0.0001 kg/MMBtu)] = 16,491.20 metric T/yr CO₂e (métric T/yr) = (0.001 metric T/kg)*(Fuel usage, MMBtu/yr))*[(CO₂EF + 25*CH₄EF + 298*N₂OEF), kg/MMBtu] An example calculation for carbon dioxide equivalent COs in metric T/yr for Emission Unit ID CE-1S follows:

An example calculation for CO2e in short T/yr for Emission Unit ID CE-1S follows:

CO₂e (short T/yr) = (0.001 metric T/kg) * (Fuel usage, MMBtu/yr)) * [(CO₂EF + 25*CH₄EF + 29*N₂OEP), kg/MMBtu] * (2,204.6 lb/metric T) / (2,000 lb/short T)

CO2e (short T/yr) = (0.001 metric T/kg) * (310,716 MMBtu/yr) * [(53.02 kg/MMBtu) + (25*0.001 kg/MMBtu) + (298*0.0001 kg/MMBtu)] * (2,204.6 lb/metric T) / (2,000 lb/short T) = 18,178.25 short T/yr) = (0.001 metric T/kg) * (0.001 metric T/kg)

An example calculation for GHG Mass in short T/yr for Emission Unit ID CE-1S follows: GHG Mass (short T/yr) = $(0.001 \text{ metric T/kg}) * (Fuel usage, MMBtu/yr) * (CO_2EF+CH_4EF+N_2OEF) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) / (2,000 lb/short T) = (0.001 \text{ metric T/kg}) * (2,204.6 lb/metric T) +

GHG Mass (short T/yr) = (0.001 metric T/kg) * (310,716 MMBuyr) * [(53.02 kg/MMBu) + (0.001 kg/MMBu) + (0.0001 kg/MMBu)] * (2,204.6 lb/metric T) / (2,000 lb/short T) = 18,159.86 short T/yr

G3616

COMBUSTION:

GAS COMPRESSION APPLICATION

NOx EMISSION LEVEL (g/bhp-hr NOx):

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

GAS ENGINE SITE SPECIFIC TECHNICAL DATA **Standard Equipment Company ETC Rover - Sherwood**

73.3

999

100

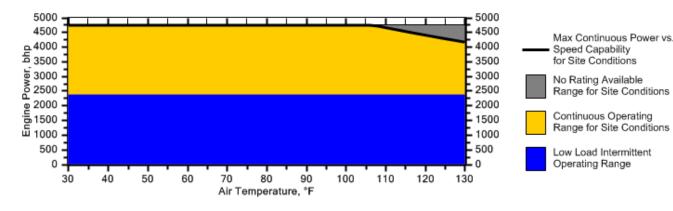
1000 RATING STRATEGY: STANDARD 9.2:1 RATING LEVEL: CONTINUOUS SCAC FUEL SYSTEM: GAV WITH AIR FUEL RATIO CONTROL 130 190 SITE CONDITIONS: ΤA FUEL: ETC Rover - Current Fuel JW, OC+AC FUEL PRESSURE RANGE(psig): 42.8-47.0 FUEL METHANE NUMBER: CIS/ADEM3 DRY FUEL LHV (Btu/scf): LOW EMISSION ALTITUDE(ft): 1100 MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: 0.5 4735 bhp@1000rpm

			MAXIMUM RATING		TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN) (1)	bhp	4735	4735	3551	2368
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6766	6766	7061	7728
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7491	7491	7818	8556
AIR FLOW (@inlet air temp, 14.7 psia) (WET	(3)(4)	ft3/min	12829	12820	9914	6808
AIR FLOW (WET	(3)(4)	lb/hr	54508	54508	42154	28946
FUEL FLOW (60°F, 14.7 psia)		scfm	535	535	419	305
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	73.7	73.7	56.7	40.5
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	856	856	897	974
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(,,,,,,	ft3/min	32010	32010	25543	18581
EXHAUST GAS MASS FLOW (WET	(7)(4)	lb/hr	56022	56022	43339	29810
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	2.75	2.75	2.75	2.75
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.30	6.30	6.57	6.81
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.44	1.44	1.50	1.55
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.63	0.63	0.66	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2	(8)(9)	g/bhp-hr	439	439	458	501
EXHAUST OXYGEN	(8)(11)	% DRY	12.0	12.0	11.8	11.4
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	48327	48327	42089	34463
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	18688	18688	17553	16771
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	24027	24027	22986	22870
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	42675	42675	19377	3989
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	58475			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	Btu/min	81006			
A cooling system safety factor of 10% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

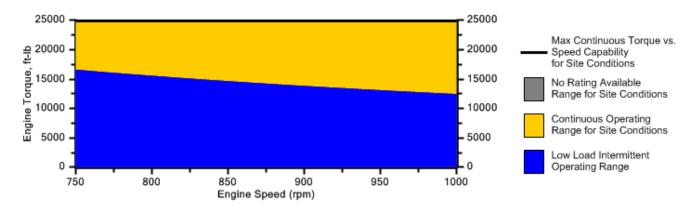

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company ETC Rover - Sherwood

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1100 ft and 1000 rpm

Engine Power vs. Engine Speed


Data represents speed sweep at 1100 ft and 100 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1100 ft and 100 °F

Note: At site conditions of 1100 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company ETC Rover - Sherwood

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 2.5% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value for total flow rate with a tolerance of $\pm 6\%$. Exhaust gas vented through the wastegate flows only to the right exhaust outlet. The total flow through the wastegate may be as great as 15% of the total value for conditions under which the wastegate is open. For installations that use dual exhaust runs this difference must be taken into account when specifying any items to be connected to the exhaust outlets. The flow in the right exhaust outlet must be sized for at least 65% of the total flow to allow for the wastegate closed condition, while the left outlet must be sized for 50% of the total flow for the wastegate closed condition. Both runs must meet the allowable backpressure requirement as described in the Exhaust Systems A&I Guide.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied factory tolerances and an additional cooling system factor of 10%.

CATERPILLAR®

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	86.7670	86.7670	Fuel Makeup:	ETC Rover - Current
Ethane	C2H6	12.4290	12.4290	Unit of Measure:	English
Propane	C3H8	0.2460	0.2460		Ũ
Isobutane	iso-C4H1O	0.0040	0.0040	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0040	0.0040		73.3
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	/3.3
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	999
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1106
Nitrogen	N2	0.4040	0.4040	WOBBE Index (Btu/scf):	1268
Carbon Dioxide	CO2	0.1460	0.1460		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	180.82
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.55%
Hydrogen	H2	0.0000	0.0000		
Oxygen	02	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	10.40
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.78
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.620
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.298
TOTAL (Volume %)		100.0000	100.0000		1.290

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Proposal Number:

JB-14-3195 Rev(4)

Engine Data

Number of Engines: Application: Engine Manufacturer: Model Number: Power Output: Lubrication Oil: Type of Fuel: Exhaust Flow Rate: Exhaust Temperature:

Equipment Specification Report

1 Gas Compression Caterpillar G3616 4,735 bhp 0.6 wt% sulfated ash or less Natural Gas 32,054 acfm (cfm) 856 °F

7.0 inches of WC (Fresh)

27-35 dBA insertion loss

4

2

SP-PTHIT-72S3624x61-18x2/30-XH4B2

RXS-RE-304-3624XH, RXS-RE-3624BLIND

System Details

Housing Model Number: Element Model Number: Number of Catalyst Elements: Number of Spare Catalyst Tracks: System Pressure Loss: Sound Attenuation: Exhaust Temperature Limits:

NSCR Housing & Catalyst Details

Model Number: Material: Approximate Diameter: Inlet Pipe Size & Connection: Outlet Pipe Size & Connection: Overall Length:

SP-PTHIT-72S3624x61-18x2/30-XH4B2 Carbon Steel 72 inches (2) 18 inch FF Flange, 150# ANSI standard bolt pattern 30 inch FF Flange, 150# ANSI standard bolt pattern 355 inches

750 - 1250°F (catalyst inlet); 1350°F (Catalyst Outlet)

Emission Requirements

Exhaust Gases	Engine Outputs (g/bhp-hr)	Reduction (%)	Warranted Converter Outputs (g/bhp-hr)	Requested Emissions Targets
NOx***	0.5	0%		
со	2.75	93%	0.1925	93% Reduction
NMNEHC**	0.63	50%	0.315	50% Reduction
CH2O	0.26	76%	0.062	76% Reduction
02	12.0%			
H2O	17.0%			

† MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

*MW referenced as CH_4 **MW referened as CH_4 ***MW referenced as NO_2

DIESEL GENERATOR SET

Image shown may not reflect actual package.

FEATURES

FUEL/EMISSIONS STRATEGY

• EPA Certified for Stationary Emergency Application (EPA Tier 2 emissions levels)

DESIGN CRITERIA

• The generator set accepts 100% rated load in one step per NFPA 110 and meets ISO 8528-5 transient response.

UL 2200 / CSA - Optional

- UL 2200 listed packages
- CSA Certified
 Certain restrictions may apply.
 Consult with your Cat® Dealer.

FULL RANGE OF ATTACHMENTS

- Wide range of bolt-on system expansion attachments, factory designed and tested
- Flexible packaging options for easy and cost effective installation

SINGLE-SOURCE SUPPLIER

• Fully prototype tested with certified torsional vibration analysis available

WORLDWIDE PRODUCT SUPPORT

- Cat dealers provide extensive post sale support including maintenance and repair agreements
- Cat dealers have over 1,800 dealer branch stores operating in 200 countries
- The Cat® S•O•S[™] program cost effectively detects internal engine component condition, even the presence of unwanted fluids and combustion by-products

STANDBY 500 ekW 625 kVA 60 Hz 1800 rpm 600 Volts

Caterpillar is leading the power generation marketplace with Power Solutions engineered to deliver unmatched flexibility, expandability, reliability, and cost-effectiveness.

CAT® C15 ATAAC DIESEL ENGINE

- Utilizes ACERT™ Technology
- Reliable, rugged, durable design
- Field-proven in thousands of applications worldwide
- Four-stroke diesel engine combines consistent performance and excellent fuel economy with minimum weight
- Electronic engine control

CAT GENERATOR

- Matched to the performance and output characteristics of Cat engines
- Load adjustment module provides engine relief upon load impact and improves load acceptance and recovery time
- UL 1446 Recognized Class H insulation

CAT EMCP 4 CONTROL PANELS

- Simple user friendly interface and navigation
- Scalable system to meet a wide range of customer needs
- Integrated Control System and Communications Gateway

SEISMIC CERTIFICATION

- Seismic Certification available
- Anchoring details are site specific, and are dependent on many factors such as generator set size, weight, and concrete strength.
 IBC Certification requires that the anchoring system used is reviewed and approved by a Professional Engineer
- Seismic Certification per Applicable Building Codes: IBC 2000, IBC 2003, IBC 2006, IBC 2009, CBC 2007
- Pre-approved by OSHPD and carries an OSP-0084-10 for use in healthcare projects in
- N-22 California

STANDBY 500 ekW 625 kVA

60 Hz 1800 rpm 600 Volts

FACTORY INSTALLED STANDARD & OPTIONAL EQUIPMENT

System	Standard	Optional
Air Inlet	• Air cleaner	
Cooling	Package mounted radiator	
Exhaust	Exhaust flange outlet	[] Industrial [] Residential [] Critical Mufflers
Fuel	 Primary fuel filter with integral water separator Secondary fuel filters Fuel priming pump 	
Generator	 Matched to the performance and output characteristics of Cat engines Load adjustment module provides engine relief upon load impact and improves laod acceptance and recovery time IP23 protection 	 [] Oversize and premium generators [] Permanent magnet excitation (PMG) [] Internal excited (IE) [] Anti-condensation space heaters
Power Termination	• Bus bar	[] Circuit breakers, UL listed [] Circuit breakers, IEC compliant
Control Panel	• EMCP 4 Genset Controller	[] EMCP 4.2 [] EMCP 4.3 [] EMCP 4.4 [] Local and remote annuniciator modules [] Load share module [] Digital I/O module [] Remote monitoring software
Mounting	Rubber vibration isolators	
Starting/Charging	• 24 volt starting motor • Batteries	[] Battery chargers [] Oversize batteries [] Jacket water heater [] Heavy duty starting system [] Charging alternator
General	Paint - Caterpillar Yellow except rails and radiators gloss black	The following options are based on regional and product configuration: [] Seismic Certification per Applicable Building Codes: IBC 2000, IBC 2003, IBC 2006, IBC 2009, CBC 2007 [] UL 2200 package [] EU Certificate of Conformance (CE) [] CSA Certification [] EEC Declaration of Conformity [] Narrow, wide or skid base [] Sound attenuated, weather protective or high ambient weather protective enclosures [] Single or dual wall integral fuel tanks [] Single or dual wall sub-base fuel tanks [] Single or dual wall sub-base fuel tanks [] Integral & sub-base UL listed dual wall fuel tanks [] Automatic transfer switches (ATS)

60 Hz 1800 rpm 600 Volts

SPECIFICATIONS

CAT GENERATOR

Frame sizeLC6124F
ExcitationInternal Excitation
Pitch0.6667
Number of poles4
Number of bearings Single bearing
Number of Leads012
Insulation UL 1446 Recognized Class H with
tropicalization and antiabrasion - Consult your Caterpillar dealer for available voltages
IP RatingDrip Proof IP23
AlignmentPilot Shaft
Overspeed capability125
Wave form Deviation (Line to Line)
Voltage regulatorThree phase sensing
Voltage regulationLess than +/- 1/2% (steady state)
Less than +/- ½% (w/ 3% speed change)

CAT DIESEL ENGINE

C15 ATAAC, I-6, 4-Stroke Water-cooled Diesel

Bore	137.20 mm (5.4 in)
Stroke	171.40 mm (6.75 in)
Displacement	15.20 L (927.56 in ³)
Compression Ratio	
Aspiration	Air-to-Air Aftercooled
Fuel System	MEUI
Governor Type Caterpilla	ar ADEM control system

CAT EMCP 4 SERIES CONTROLS

EMCP 4 controls including:

- Run / Auto / Stop Control
- Speed and Voltage Adjust
- Engine Cycle Crank
- 24-volt DC operation
- Environmental sealed front face
- Text alarm/event descriptions
- Digital indication for:
- RPM
- DC volts
- Operating hours
- Oil pressure (psi, kPa or bar)
- Coolant temperature
- Volts (L-L & L-N), frequency (Hz)
- Amps (per phase & average)
- ekW, kVA, kVAR, kW-hr, %kW, PF (4.2 only)
- Warning/shutdown with common LED indication of:
- Low oil pressure
- High coolant temperature
- Overspeed
- Emergency stop
- Failure to start (overcrank)
- Low coolant temperature
- Low coolant level

Programmable protective relaying functions:

- Generator phase sequence
- Over/Under voltage (27/59)
- Over/Under Frequency (81 o/u)
- Reverse Power (kW) (32) (4.2 only)
- Reverse reactive power (kVAr) (32RV)
- Overcurrent (50/51)

Communications:

- Four digital inputs (4.1)
- Six digital inputs (4.2 only)
- Four relay outputs (Form A)
- Two relay outputs (Form C)
- Two digital outputs
- Customer data link (Modbus RTU) (4.2 only)
- Accessory module data link (4.2 only)
- Serial annunciator module data link (4.2 only)
- Emergency stop pushbutton

Compatible with the following:

- Digital I/O module
- Local Annunciator
- Remote CAN annunciator
- Remote serial annunciator

STANDBY 500 ekW 625 kVA

60 Hz 1800 rpm 600 Volts

TECHNICAL DATA

Open Generator Set 1800 rpm/60 Hz/600 Volts		DM8155	
EPA Certified for Stationary Emergency Application			
(EPA Tier 2 emissions levels)			
Generator Set Package Performance			
Genset Power rating @ 0.8 pf	625 kVA		
Genset Power rating with fan	500 ekW		
Fuel Consumption			
100% load with fan	138.5 L/hr	36.6 Gal/hr	
75% load with fan	106.1 L/hr	28.0 Gal/hr	
50% load with fan	88.1 L/hr	23.3 Gal/hr	
Cooling System ¹			
Air flow restriction (system)	0.12 kPa	0.48 in. water	
Air flow (max @ rated speed for radiator arrangement)	822 m³/min	29029 cfm	
Engine Coolant capacity with radiator/exp. tank	57.8 L	15.3 gal	
Engine coolant capacity	20.8 L	5.5 gal	
Radiator coolant capacity	37.0 L	9.8 gal	
Inlet Air			
Combustion air inlet flow rate	39.8 m³/min	1405.5 cfm	
Exhaust System			
Exhaust stack gas temperature	505.6 ° C	942.1 ° F	
Exhaust gas flow rate	108.8 m³/min	3842.2 cfm	
Exhaust flange size (internal diameter)	152.4 mm	6.0 in	
Exhaust system backpressure (maximum allowable)	10.0 kPa	40.2 in. water	
Heat Rejection			
Heat rejection to coolant (total)	189 kW	10748 Btu/min	
Heat rejection to exhaust (total)	505 kW	28719 Btu/min	
Heat rejection to atmosphere from engine	94 kW	5346 Btu/min	
Heat rejection to atmosphere from generator	29.1 kW	1654.9 Btu/min	
Alternator ²			
Motor starting capability @ 30% voltage dip	1714 skVA		
Frame	LC6124F		
Temperature Rise	130 ° C	234 ° F	
Lube System			
Sump refill with filter	60.0 L	15.9 gal	
Emissions (Nominal) ³			
NOx g/hp-hr	5.74 g/hp-hr		
CO g/hp-hr	.4 g/hp-hr		
HC g/hp-hr	.01 g/hp-hr		
PM g/hp-hr	.018 g/hp-hr		

¹ For ambient and altitude capabilities consult your Cat dealer. Air flow restriction (system) is added to existing restriction from factory. ² Generator temperature rise is based on a 40° C (104° F) ambient per NEMA MG1-32. Some packages may have oversized generators with a different temperature rise and motor starting characteristics.

³ Emissions data measurement procedures are consistent with those described in EPA CFR 40 Part 89, Subpart D & E and ISO8178-1 for measuring HC, CO, PM, NOx. Data shown is based on steady state operating conditions of 77°F, 28.42 in HG and number 2 diesel fuel with 35° API and LHV of 18,390 btu/lb. The nominal emissions data shown is subject to instrumentation, measurement, facility and engine to engine variations. Emissions data is based on 100% load and thus cannot be used to compare to EPA regulations which use values based on a weighted cycle.

STANDBY 500 ekW 625 kVA

60 Hz 1800 rpm 600 Volts

RATING DEFINITIONS AND CONDITIONS

Applicable Codes and Standards: AS1359, CSA C22.2 No 100-04, UL142, UL489, UL601, UL869, UL2200, NFPA 37, NFPA 70, NFPA 99, NFPA 110, IBC, IEC60034-1, ISO3046, ISO8528, NEMA MG 1-22, NEMA MG 1-33, 72/23/EEC, 98/37/EC, 2004/108/EC

Standby - Output available with varying load for the duration of the interruption of the normal source power. Average power output is 70% of the standby power rating. Typical operation is 200 hours per year, with maximum expected usage of 500 hours per year.

Ratings are based on SAE J1349 standard conditions. These ratings also apply at ISO3046 standard conditions. **Fuel Rates** are based on fuel oil of 35° API (16° C or 60° F) gravity having an LHV of 42 780 kJ/kg (18,390 Btu/lb) when used at 29° C (85° F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal.). **Additional Ratings** may be available for specific

customer requirements. Consult your Cat representative for details.

60 Hz 1800 rpm 600 Volts

DIMENSIONS

Package Dimensions			
Length	3775.1 mm	148.63 in	
Width	1110.0 mm	43.7 in	
Height	2091.0 mm	82.32 in	

NOTE: For reference only - do not use for installation design. Please contact your local dealer for exact weight and dimensions. (General Dimension Drawing #2781052).

Performance No.: DM8155

Feature Code: C15DE6Q

Gen. Arr. Number: 2351214

Source: U.S. Sourced

April 24 2013

www.Cat-ElectricPower.com

2013 Caterpillar All rights reserved.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow," the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

N-27 6

21646653

SITE DATA

NSR (45 CSR 13) PERMIT APPLICATION (CONSTRUCTION)

SHERWOOD COMPRESSOR STATION

ROVER PIPELINE LLC

Ī	Stre	am 1	Strea	am 2
	Fuel/R	Residue	Inlet	Gas
Component	mole %	wgt. % *	mole %	wgt. % *
Water				
Nitrogen	0.4040%	0.6306%	0.4040%	0.6306%
Carbon Dioxide	0.1460%	0.3580%	0.1460%	0.3580%
Oxygen	0.0000%	0.0000%	0.0000%	0.0000%
Hydrogen Sulfide	0.0000%	0.0000%	0.0000%	0.0000%
Methane	86.7660%	77.5574%	86.7660%	77.5574%
Ethane	12.4290%	20.8237%	12.4290%	20.8237%
Propane	0.2460%	0.6044%	0.2460%	0.6044%
I-Butane	0.0040%	0.0130%	0.0040%	0.0130%
N-Butane	0.0040%	0.0130%	0.0040%	0.0130%
I-Pentane	0.0000%	0.0000%	0.0000%	0.0000%
N-Pentane	0.0000%	0.0000%	0.0000%	0.0000%
i-Hexane	0.0000%	0.0000%	0.0000%	0.0000%
n-Hexane	0.0000%	0.0000%	0.0000%	0.0000%
Benzene	0.0000%	0.0000%	0.0000%	0.0000%
Cyclohexane	0.0000%	0.0000%	0.0000%	0.0000%
i-Heptanes	0.0000%	0.0000%	0.0000%	0.0000%
n-Heptane	0.0000%	0.0000%	0.0000%	0.0000%
Toluene	0.0000%	0.0000%	0.0000%	0.0000%
i-Octanes	0.0000%	0.0000%	0.0000%	0.0000%
n-Octane	0.0000%	0.0000%	0.0000%	0.0000%
E-Benzene	0.0000%	0.0000%	0.0000%	0.0000%
m,o,&p-Xylene	0.0000%	0.0000%	0.0000%	0.0000%
i-Nonanes	0.0000%	0.0000%	0.0000%	0.0000%
n-Nonane	0.0000%	0.0000%	0.0000%	0.0000%
i-Decanes	0.0000%	0.0000%	0.0000%	0.0000%
n-Decane	0.0000%	0.0000%	0.0000%	0.0000%
i-Undecanes+	0.0000%	0.0000%	0.0000%	0.0000%
Totals	100.00%	100.00%	100.00%	100.00%
Totals (C3+)	0.25%	0.63%	0.25%	0.63%
Max VOC Wt% ^a		2.00%		2.00%
Max Benzene Wt% ^a		0.05%		0.05%
Max H ₂ S Wt%		0.000%		0.000%
Max Methane Wt% ^a		90.00%		90.00%
Max CO ₂ Wt% ^a		1.00%		1.00%
Specific Gravity	0.6200		0.6200	

^a Worst case conservative assumption of constituent content.

Fuel Gas Higher Heating Value Fuel Gas Lower Heating Value 1,106 Btu/scf 999 Btu/scf

TANKS 4.0 Report Page 1 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics Identification ntification User Identification: City: State: Company: Type of Tank: Description: Rover Pipeline Slop Tank (TK-1) Cleveland Ohio Ohio Rover Pipeline LLC Vertical Fixed Roof Tank 300 bbl Slop Tank. Contents assumed to be 94% water, 2% oil, 2% amine, and 2% glycol. Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Voiume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): 15.00 12.00 15.00 7.50 12,690.44 2.36 30,000.00 Ν Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition: White/White Good White/White Good **Roof Characteristics** Type: Height (ft) Slope (ft/ft) (Cone Roof) Cone 0.00 0.06 Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03 Meterological Data used in Emissions Calculations: Cleveland, Ohio (Avg Atmospheric Pressure = 14.33 psia) file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm 12/31/2014 TANKS 4.0 Report Page 2 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Liquid Contents of Storage Tank Rover Pipeline Slop Tank (TK-1) - Vertical Fixed Roof Tank Cleveland, Ohio Liquid Bulk Temp (deg F) Daily Liquid Surf. Temperature (deg F) Month Avg. Min. Max. Liquid Mass Fract. Vapor Mass Fract. Vapor Mol Basis for Vapor Pressure Calculations Vapor Pressure (psia) Avg. Min. Max. Mol Mixture/Component Weight. Weight 0.1973 0.0015 0.0019 3.8637 0.1857 18.73 61.09 30.03 92.00 18.02 Slon ΔII 51 17 46 47 55.86 49.58 0 1665 0.2330 21.9289 0.1665 0.0011 0.0019 3.5083 0.1557 0.2330 0.0019 0.0019 4.2476 21.9289 61.0900 62.1000 67.0000 18.0152 Option 2: A=7.456, B=1577.67, C=173.37 Option 1: VP50 = .0019 VP60 = .0019 Option 4: RVP=9, ASTM Slope=3 Option 2: A=8.10765, B=1750.286, C=235 Ethanolamine (mono-) ETHYLENE GLYCOL 0.0200 0.0001 0.0001 0.0003 0.2437 0.7559 0.0200 0.0200 0.0200 0.9400 Gasoline (RVP 9) Water 0.2207

Rover Pipeline Slop Tank (TK-1) - Vertical Fixed Roof Tank Cleveland, Ohio

Annual Emission Calcaulations	
Standing Losses (Ib):	8.5613
Vapor Space Volume (cu ft):	862.3672
Vapor Density (lb/cu ft):	0.0008
Vapor Space Expansion Factor:	0.0372
Vented Vapor Saturation Factor:	0.9202
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft): Tank Diameter (ft):	862.3672
Vapor Space Outage (ft):	7 6250
Tank Shell Height (ft):	15 0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	0.1250
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1250
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	6.0000
/apor Density Vapor Density (lb/cu ft):	0.0008
Vapor Molecular Weight (Ib/Ib-mole):	21.9289
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1973
Daily Avg. Liquid Surface Temp. (deg. R):	510.8367
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.5583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	509.2483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation Factor (Btu/sqft day):	1.189.2337
	1,108.2557
/apor Space Expansion Factor Vapor Space Expansion Factor:	0.0372
Daily Vapor Temperature Range (deg. R):	18.7768
Daily Vapor Pressure Range (psia):	0.0665
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.1973
Surface Temperature (psia):	0.1665
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	0.2330
Daily Avg. Liquid Surface Temp. (deg R):	510.8367
Daily Avg. Liquid Surface Temp. (deg R). Daily Min. Liquid Surface Temp. (deg R):	506.1425
Daily Max, Liquid Surface Temp. (deg R):	515.5309
Daily Ambient Temp. Range (deg. R):	18.2167
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9262
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1973

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

Vapor Space Outage (ft):	7.6250
Working Losses (Ib): Vapor Molecular Weight (Ib/Ib-mole):	3.0900 21.9289
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughout (gal/yr.):	0.1973
Annual Turnovers: Turnover Factor:	2.3640 1.0000
Maximum Liquid Volume (gal): Maximum Liquid Height (ft):	12,690.4443 15.0000 12.0000
Tank Diameter (ft): Working Loss Product Factor:	1.0000
Total Losses (lb):	11.6513

12/31/2014 Page 4 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Rover Pipeline Slop Tank (TK-1) - Vertical Fixed Roof Tank Cleveland, Ohio

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Slop	3.09	8.56	11.65		
Water	2.34	6.47	8.81		
ETHYLENE GLYCOL	0.00	0.00	0.00		
Gasoline (RVP 9)	0.75	2.09	2.84		
Ethanolamine (mono-)	0.00	0.00	0.00		

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

12/31/2014

Page 6 of 6

			ssions Re	KS 4.0.9d port - Detail		tice			
Identification		Tank Indent		nd Physical	unaracteris	ucs			
User Identification: City: State: Company: Type of Tank: Description:	Ohio Rover Pipe	line Waste Water (TK line LLC ed Roof Tank ste Water tank. Conte							
Tank Dimensions	300 bbl Wa		ents assumed to	be 98% water and	2% Oil.				
Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers:		15.00 12.00 15.00 7.50 12,690.44							
Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	N	2.36 30,000.00							
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/Whit Good White/Whit Good								
Roof Characteristics									
Type: Height (ft) Slope (ft/ft) (Cone Roof)		0.00 0.06							
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig))	-0.03 0.03							
Meterological Data used in I		leveland, Ohio (Avg /	Atmospheric Pre	ssure = 14.33 psia					
		20(x86)/Tai			isplay.htm				
		Emi	TAN ssions Re	KS 4.0.9d port - Detail	Format				
TANKS 4.0 Re	port	Emi Liqi	TAN ssions Re uid Conter	KS 4.0.9d	Format				
TANKS 4.0 Re	port	Emi Liqi	TAN ssions Re uid Conter	KS 4.0.9d port - Detail	Format				
TANKS 4.0 Re	eport 9 Water (TK-2) - Ver	Emi Liqı lical Fixed Roof	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail nts of Storag	Format e Tank				
TANKS 4.0 Re	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank Vapor Press	KS 4.0.9d port - Detail nts of Storag	Format	or Mol. ss Mol. 1. Weight	Basis for Vapor Pressure Calculations		
file:///C:/Progra TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Water (Grandhall (OP 9) Water	eport 9 Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail nts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Basis for Vapor Pressure Calculations Option 2: Artil: 10765, B=1750.286, Cri	225	
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (97 9)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3	225	
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (97 9)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3		
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (97 9)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3	225	
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatureComponent Waste Water Gaseline 507 91	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3	225	
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (97 9)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3		
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (97 9)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3	225	
TANKS 4.0 Re Rover Pipeline Waste Cleveland, Ohio MatareComponent Waste Voter Searcher (979)	e Water (TK-2) - Ver	Emi Liqu donf Liquid (donf Liquid (donf) Temp Max. (dog F)	TAN ssions Re uid Conter Tank	KS 4.0.9d port - Detail hts of Storag	Format e Tank	or ss Mol. t. Weight 18.31 2 92.00	Calculations Option 4: RVP=9. ASTM Slope=3	225	

12/31/2014 Page 2 of 5

Rover Pipeline Waste Water (TK-2) - Vertical Fixed Roof Tank Cleveland, Ohio

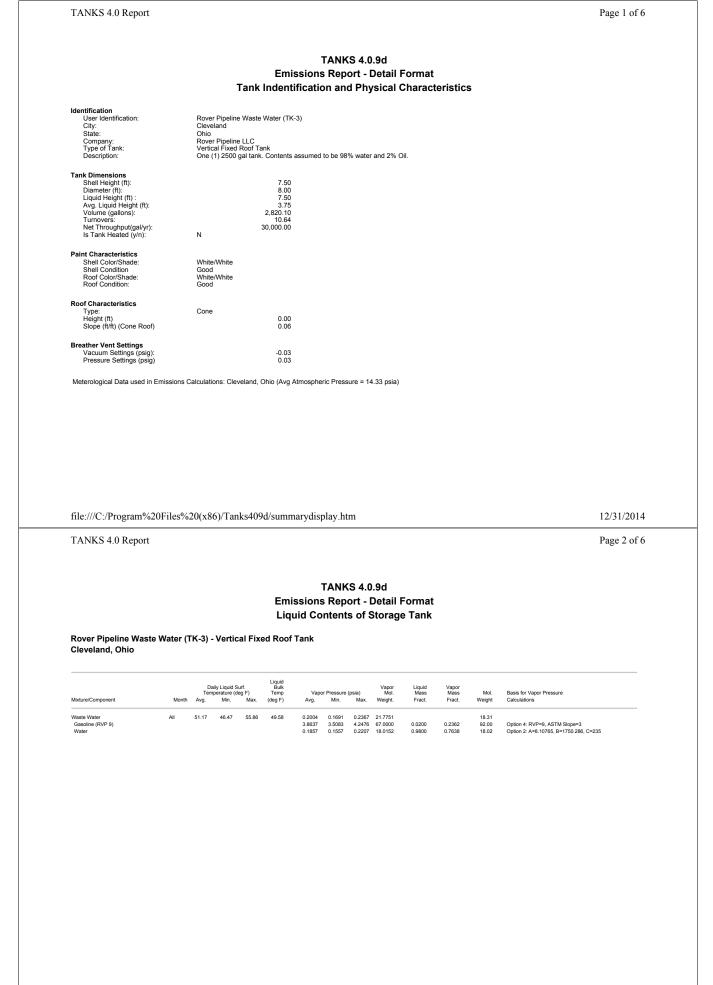
Annual Emission Calcaulations	
Standing Losses (b):	8.643
Vapor Space Volume (cu ft):	862.367
Vapor Density (lb/cu ft):	0.000
Vapor Space Expansion Factor:	0.0373
Vented Vapor Saturation Factor:	0.925
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	862.367
Tank Diameter (ft):	12.000
Vapor Space Outage (ft): Tank Shell Height (ft):	15.000
Average Liquid Height (ft):	7.500
Roof Outage (ft):	0.125
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1250
Roof Height (ft):	0.000
Roof Slope (ft/ft):	0.062
Shell Radius (ft):	6.000
Vapor Density	0.000
Vapor Density (Ib/cu ft): Vapor Molecular Weight (Ib/Ib-mole):	21.775
Vapor Molecular Weight (Ibrio-mole): Vapor Pressure at Daily Average Liguid	21.775
Surface Temperature (psia):	0 2004
Daily Avg. Liquid Surface Temp. (deg. R):	510 836
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.558
(psia cuft / (lb-mol-deg R)):	10.73
Liquid Bulk Temperature (deg. R):	509.248
Tank Paint Solar Absorptance (Shell):	0.170
Tank Paint Solar Absorptance (Roof):	0.170
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,189.233
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.037
Daily Vapor Temperature Range (deg. R):	18,776
Daily Vapor Pressure Range (psia):	0.0676
Breather Vent Press. Setting Range(psia):	0.060
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2004
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.169
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.236
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	510.836
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	506.142 515.530
Daily Ambient Temp. Range (deg. R):	18.216
	10.210
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.925
Vapor Pressure at Daily Average Liquid:	0.925
Surface Temperature (psia):	0.2004
Vapor Space Outage (ft):	7.625
Working Losses (lb):	3.116
Vapor Molecular Weight (Ib/Ib-mole):	21.775
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.200
Annual Net Throughput (gal/yr.): Annual Turnovers:	2.364
Annual Turnovers: Turnover Factor:	2.364
Maximum Liquid Volume (gal):	12.690.444
Maximum Liquid Height (ft):	12,050.444
Tank Diameter (ft):	12.000
Working Loss Product Factor:	1.000
	11.759
Total Losses (lb):	

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

12/31/2014 Page 4 of 5

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals


Emissions Report for: Annual

Rover Pipeline Waste Water (TK-2) - Vertical Fixed Roof Tank Cleveland, Ohio

	Losses(lbs)			
Components	Working Loss	Breathing Loss	Total Emissions	
Waste Water	3.12	8.64	11.76	
Water	2.38	6.60	8.98	
Gasoline (RVP 9)	0.74	2.04	2.78	

file:///C:/Program%20Files%20(x86)/Tanks409d/summary display.htm

12/31/2014

Rover Pipeline Waste Water (TK-3) - Vertical Fixed Roof Tank Cleveland, Ohio

Annual Emission Calcaulations	
Standing Losses (Ib):	2.0059
Vapor Space Volume (cu ft):	192.6843
Vapor Density (lb/cu ft):	0.0008
Vapor Space Expansion Factor:	0.0373
Vented Vapor Saturation Factor:	0.9609
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	192.6843 8 0000
Tank Diameter (ft): Vapor Space Outage (ft):	3 8333
Tank Shell Height (ft):	7.5000
Average Liquid Height (ft):	3.7500
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	4.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0008
Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid	21.7751
Surface Temperature (psia):	0.2004
Daily Avg. Liquid Surface Temp. (deg. R):	510.8367
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.5583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	509.2483
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,189.2337
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0373
Daily Vapor Temperature Range (deg. R):	18.7768
Daily Vapor Pressure Range (psia):	0.0676
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	0.2004
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	0.1691
Vapor Pressure at Daily Maximum Liquid	2.1001
Surface Temperature (psia):	0.2367
Daily Avg. Liquid Surface Temp. (deg R):	510.8367
Daily Min. Liquid Surface Temp. (deg R):	506.1425
Daily Max. Liquid Surface Temp. (deg R):	515.5309
Daily Ambient Temp. Range (deg. R):	18.2167
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9609
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	A
	0 2004

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

Vapor Space Outage (ft):	3.8333
Working Losses (lb):	3.1163
Vapor Molecular Weight (lb/lb-mole):	21.7751
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.2004
Annual Net Throughput (gal/yr.):	30,000.0000
Annual Turnovers:	10.6379
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	2,820.0987
Maximum Liquid Height (ft):	7.5000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	5.1222

12/31/2014 Page 4 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Rover Pipeline Waste Water (TK-3) - Vertical Fixed Roof Tank Cleveland, Ohio

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Waste Water	3.12	2.01	5.12		
Water	2.38	1.53	3.91		
Gasoline (RVP 9)	0.74	0.47	1.21		

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

12/31/2014

Page 6 of 6

TANKS	4.0	Report	
-------	-----	--------	--

Page 1 of 5

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Rover Pipeline New Oil Tank (TK-4) Cleveland Ohio Rover Pipeline LLC Vertical Fixed Root Tank One (1) 100 bbi new oil tank.
Tank Dimensions	
Shell Height (ft):	8.00
Diameter (ft): Liquid Height (ft) :	10.00
Ava, Liquid Height (ft):	4.00
Volume (gallons):	4.700.16
Tumovers:	10.72
Net Throughput(gal/yr):	50.400.00
Is Tank Heated (y/n):	N
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.06
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
Meterological Data used in Emissi	ons Calculations: Cleveland, Ohio (Avg Atmospheric Pressure = 14.33 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

12/31/2014 Page 2 of 5

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Rover Pipeline New Oil Tank (TK-4) - Vertical Fixed Roof Tank Cleveland, Ohio

Mo	ture/Component	Month		ly Liquid Su perature (de Min.				Vapor Pressure (psia) Avg. Min. Max.		Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
LUI	BE OIL	All	51.17	46.47	55.86	49.58	0.0001	0.0001	0.0001	190.0000			387.00	Option 1: VP50 = .0001 VP60 = .0001

12/31/2014

Rover Pipeline New Oil Tank (TK-4) - Vertical Fixed Roof Tank Cleveland, Ohio

Standing Losses (lb):	0.0133
Vapor Space Volume (cu ft):	322.3405
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0326
Vented Vapor Saturation Factor:	1.0000
ank Vapor Space Volume: Vapor Space Volume (cu ft):	322 3405
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	4.1042
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.1042
Roof Outage (Cone Roof) Roof Outage (ft):	0.1042
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	5.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid	190.0000
Surface Temperature (psia):	0.0001
Daily Avg. Liquid Surface Temp. (deg. R):	510.8367
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.5583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell):	509.2483 0.1700
Tank Paint Solar Absorptance (Snei). Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,189.2337
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0326
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	18.7768
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0001
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0001
Surface Temperature (psia):	0.0001
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	510.8367
Daily Min. Liquid Surface Temp. (deg R):	506.1425
Daily Max. Liquid Surface Temp. (deg R):	515.5309
Daily Ambient Temp. Range (deg. R):	18.2167
/ented Vapor Saturation Factor Vented Vapor Saturation Factor:	1.0000
Vapor Pressure at Daily Average Liquid:	1.0000
Surface Temperature (psia):	0.0001
Vapor Space Outage (ft):	4.1042
Vorking Losses (Ib):	0.0228
Vapor Molecular Weight (Ib/Ib-mole):	190.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0001
Annual Net Throughput (gal/yr.):	50,400,0000
Annual Turnovers:	10.7230
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,700.1646
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	10.0000
Working Long Product Easter:	
Working Loss Product Factor:	1.0000

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

12/31/2014 Page 4 of 5

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Rover Pipeline New Oil Tank (TK-4) - Vertical Fixed Roof Tank Cleveland, Ohio

		Losses(lbs)								
Components	Working Loss Breathing Loss Total Emissions									
LUBE OIL	0.02	0.01	0.04							

file:///C:/Program%20Files%20(x86)/Tanks409d/summary display.htm

12/31/2014

TANKS 4.0 Report Page 1 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics Identification ntification User Identification: City: State: Company: Type of Tank: Description: Rover Pipeline Coolant Tank (TK-5) Cleveland Ohio Rover Pipeline LLC Vertical Fixed Roof Tank One (1) - 100 bbl coolant tank. Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Voiume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): 8.00 10.00 8.00 4.00 4,700.16 10.72 50,400.00 Ν Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition: White/White Good White/White Good **Roof Characteristics** Type: Height (ft) Radius (ft) (Dome Roof) Dome 0.00 10.00 Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03 Meterological Data used in Emissions Calculations: Cleveland, Ohio (Avg Atmospheric Pressure = 14.33 psia) file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm 12/31/2014 TANKS 4.0 Report Page 2 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Liquid Contents of Storage Tank Rover Pipeline Coolant Tank (TK-5) - Vertical Fixed Roof Tank Cleveland, Ohio Liquid Bulk Temp (deg F) Daily Liquid Surf. Temperature (deg F) Month Avg. Min. Max. Vapor Mol. Weight. Liquid Mass Fract. Vapor Mass Fract. Mol. Weight Basis for Vapor Pressure Calculations Vapor Pressure (psia) Avg. Min. Max. Mixture/Component ETHYLENE GLYCOL ΔII 51.17 46 47 55.86 49 58 0.0019 0.0019 0.0019 62.1000 30.03 Option 1: VP50 = .0019 VP60 = .0019

Rover Pipeline Coolant Tank (TK-5) - Vertical Fixed Roof Tank Cleveland, Ohio

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0941
Vapor Space Volume (cu ft):	368.0301
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0326
Vented Vapor Saturation Factor:	0.9995
Fank Vapor Space Volume:	
Vapor Space Volume (cu ft):	368.0301
Tank Diameter (ft): Vapor Space Outage (ft):	10.0000
Tank Shell Height (ft):	4.0008
Average Liquid Height (ft):	4 0000
Roof Outage (ft):	0.6859
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.6859
Dome Radius (ft):	10.0000
Shell Radius (ft):	5.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (Ib/Ib-mole):	62.1000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0019
Daily Avg. Liquid Surface Temp. (deg. R):	510 8367
Daily Average Ambient Temp. (deg. F):	49.5583
(psia cuft / (lb-mol-deg R)):	10 731
Liquid Bulk Temperature (deg. R):	509.2483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,189.2337
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0326
Daily Vapor Temperature Range (deg. R):	18.7768
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0019
Vapor Pressure at Daily Minimum Liquid	0.0018
Surface Temperature (psia):	0.0019
Vapor Pressure at Daily Maximum Liquid	0.0010
Surface Temperature (psia):	0.0019
Daily Avg. Liquid Surface Temp. (deg R):	510.8367
Daily Min. Liquid Surface Temp. (deg R):	506.1425
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	515.5309 18 2167
	18.2167
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.9995
Vapor Pressure at Daily Average Liquid:	0.9993
Surface Temperature (psia):	0.0019
	4 6859

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

0.2357

TANKS 4.0 Report

Vorking Losses (lb):	0.1416
Vapor Molecular Weight (lb/lb-mole):	62.1000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0019
Annual Net Throughput (gal/yr.):	50,400.0000
Annual Turnovers:	10.7230
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,700.1646
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000

Total Losses (lb):

12/31/2014 Page 4 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Rover Pipeline Coolant Tank (TK-5) - Vertical Fixed Roof Tank Cleveland, Ohio

	Losses(lbs)									
Components	Working Loss Breathing Loss Total Emission									
ETHYLENE GLYCOL	0.14	0.09	0.24							

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

12/31/2014

Page 6 of 6

TANKS 4.0 Report Page 1 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics Identification ntification User Identification: City: State: Company: Type of Tank: Description: Rover Pipeline Used Coolant (TK-6) Cleveland Ohio Rover Pipeline LLC Vertical Fixed Roof Tank One (1) - 100 bbl used coolant tank. Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Voiume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): 8.00 10.00 8.00 4.00 4,700.16 10.72 50,400.00 Ν Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition: White/White Good White/White Good **Roof Characteristics** Type: Height (ft) Radius (ft) (Dome Roof) Dome 0.00 10.00 Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03 Meterological Data used in Emissions Calculations: Cleveland, Ohio (Avg Atmospheric Pressure = 14.33 psia) file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm 12/31/2014 TANKS 4.0 Report Page 2 of 6 TANKS 4.0.9d **Emissions Report - Detail Format** Liquid Contents of Storage Tank Rover Pipeline Used Coolant (TK-6) - Vertical Fixed Roof Tank Cleveland, Ohio Liquid Bulk Temp (deg F) Daily Liquid Surf. Temperature (deg F) Month Avg. Min. Max. Vapor Mol. Weight. Liquid Mass Fract. Vapor Mass Fract. Mol. Weight Basis for Vapor Pressure Calculations Vapor Pressure (psia) Avg. Min. Max. Mixture/Component ETHYLENE GLYCOL ΔII 51.17 46 47 55.86 49 58 0.0019 0.0019 0.0019 62.1000 30.03 Option 1: VP50 = .0019 VP60 = .0019

Rover Pipeline Used Coolant (TK-6) - Vertical Fixed Roof Tank Cleveland, Ohio

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0941
Vapor Space Volume (cu ft):	368.0301
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0326
Vented Vapor Saturation Factor:	0.9995
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	368.0301
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	4.6859
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.6859
Roof Outage (Dome Roof)	
Roof Outage (Bone Roor)	0.6859
Dome Radius (ft):	10 0000
Shell Radius (ft):	5.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	62.1000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0019
Daily Avg. Liquid Surface Temp. (deg. R):	510.8367
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.5583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	509.2483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,189.2337
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0326
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	18.7768
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	0.0019
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0019
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0019
Daily Avg. Liquid Surface Temp. (deg R):	510.8367
Daily Min. Liquid Surface Temp. (deg R):	506.1425
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	515.5309 18.2167
Vented Vapor Saturation Factor	
	0.9995
	0.3333
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0.0019

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

0.2357

TANKS 4.0 Report

Vorking Losses (lb):	0.1416
Vapor Molecular Weight (lb/lb-mole):	62.1000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0019
Annual Net Throughput (gal/yr.):	50,400.0000
Annual Turnovers:	10.7230
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	4,700.1646
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000

Total Losses (lb):

12/31/2014 Page 4 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Rover Pipeline Used Coolant (TK-6) - Vertical Fixed Roof Tank Cleveland, Ohio

	Losses(lbs)									
Components	Working Loss Breathing Loss Total Emission									
ETHYLENE GLYCOL	0.14	0.09	0.24							

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

12/31/2014

Page 6 of 6

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Rover Pipeline Used Oil (TK-7) Cleveland Ohio Rover Pipeline LLC Vertical Fixed Roof Tank One (1) 100 bbl used oil tank.	
Tank Dimensions Shell Height (ft): Diameter (ft); Liquid Height (ft): Arg. Liquid Height (ft): Volume (gallons): Tumovers: Net Throughput(gal/yr): Is Tank Heated (yhr):	8.00 10.00 8.00 4.700 8 10.72 50,400.00 N	
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good	
Roof Characteristics Type: Height (ft) Siope (ft/ft) (Cone Roof)	Cone 0.00 0.06	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Cleveland, Ohio (Avg Atmospheric Pressure = 14.33 psia)

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

12/31/2014 Page 2 of 5

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Rover Pipeline Used Oil (TK-7) - Vertical Fixed Roof Tank Cleveland, Ohio

Mixture/Component	Month		ly Liquid Su perature (de Min.	e (deg F) Temp		Bulk Temp Vapor Pressure			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mal. Weight	Basis for Vapor Pressure Calculations
LUBE OIL	All	51.17	46.47	55.86	49.58	0.0001	0.0001	0.0001	190.0000			387.00	Option 1: VP50 = .0001 VP60 = .0001

Rover Pipeline Used Oil (TK-7) - Vertical Fixed Roof Tank Cleveland, Ohio

Topol Bases Volume (sult) 122-34 Venter Volume (Sult) 122-34 Venter Volume (Sult) 122-34 Venter Volume (Sult) 120 Venter Volume (Sult) 100 Resolver (Sult) 100 Resolver (Sult) 0.01 Resolver (Sult) 0.01 Resolver (Sult) 0.01 Resolver (Sult) 0.02 Vent Charany 100 Sult	Annual Emission Calcaulations	
Vapor Bener Volume (auf): 122.34 Vapor Stantakon Factor: 0.00 Venter Volume (auf): 100 Venter Volume (auf): 100 Vapor Stantakon Factor: 0.00 Vapor Macadia: Margin Hall	Standing Losses (lb):	0.0133
Waper Special Expension Flacture 0.03 Tark Name Construction Flacture 0.03 Tark Name Special Values 0.00 Average Liques 0.00 Read Caloging (Cone Read) 0.00 Read Caloging (Cone Read) 0.00 Read Caloging (Cone Read) 0.00 Name Sheet Name Special Values 0.00	Vapor Space Volume (cu ft):	322.3405
Veinet Voyen Starutton Factor: 1.00 Veinet Voyen Starutton Factor: 1.00 Vapor Starutton Volter 22.34 Vapor Starutton Volter 22.34 Vapor Starutton Volter 4.00 Red Odage (%): 0.00 Red Odage (%): 0.01 Red Odage (%): 0.01 Red Starutton (%): 0.01 Red Starutton (%): 0.00 Red Starutton (%): 0.00 Red Starutton (%): 0.00 Veget Masse (%): 0.01 Veget Masse (%): 0.01 Veget Masse (%): 0.01 Veget Masse (%): 0.01 Veget Masse (%): 0.02 Veget Masse (%):	Vapor Density (lb/cu ft):	0.0000
Then Vapor Shoes Volume: Vapor Space Volume: Vapor Space Volume: Vapor Space Volume: Name Volume		0.0326
Vapor Space Volume (cult): 22.34 Vapor Space Volume (cult): 22.34 Vapor Space Volume (cult): 20.04 Fack Start Height (f): 0.00 Read Charge (f): 0.00 Read Read (f): 0.00 Read Read (f): 0.00 March Read (f): 0.00 Vapor Mescard (f): 190000 Subtract Temperature (fast): 0.00 March Read (f): 0.01 March Read (f): 0.01 March Read (f): 0.02 March Read (f): 0.01 March Read (f): 0.02 March Read (f): 0.02 March Read (f): 0.02 March Read (f): 0.03 March Read (f): 0.02 March Read (f): <td< td=""><td>Vented Vapor Saturation Factor:</td><td>1.0000</td></td<>	Vented Vapor Saturation Factor:	1.0000
Tack Dimense (b) 10.00 Tack Del Heger, (b) 40.00 Areange Liquid Heger, (b) 40.00 Areange Liquid Heger, (b) 40.00 Areange Liquid Heger, (b) 40.00 Root Outger, (c) 40.00 Start Rates, (c) 40.00 March Dellard, (c) 40.00 Start Rates, (c		
Vapor Specc Dubge (It): 4.0 Name Change (It): 4.00 Read Change (It): 6.00 Read Change (It): 6.00 <td>Vapor Space Volume (cu ft):</td> <td>322.3405</td>	Vapor Space Volume (cu ft):	322.3405
Tank Breider, Bergel, Br. 6.00 Anson Oldager, Br. 6.00 Roor Roor Roor Roor Roor Roor Roor Roor	Vanor Space Outage (ft):	4.1042
Access Liquid Hegh (ft) 4.00 Access Liquid Hegh (ft) 6.10 Rod College (ft) 6.10 Rod College (ft) 0.00 Rod College (ft) 0.00 Rod College (ft) 0.00 Statis Radia (ft) 0.00 Statis Radia (ft) 0.00 Vapor Chensity 0.00 Statis Radia (ft) 0.00 <td>Tank Shell Height (ft):</td> <td>8.0000</td>	Tank Shell Height (ft):	8.0000
Bod C Apage (Care Bod) 0.11 Root Apage (Tare Bod) 0.01 Root Apage (Tare Bod) 0.00 Bod E Apage (Tare Bod) 0.00 Ster Rature (Tare Bod) 0.01 Ster Rature (Tare Bod) 0.00	Average Liquid Height (ft):	4.0000
Red Obage (1): 0.10 Red Obage (1): 0.00 Shell Radit (1): 0.00 Shell Radit (1): 0.00 Shell Radit (1): 0.00 Vacor Detaing (10): 0.00 Vacor Detaing (10): 0.00 Vacor Detaing (10): 0.00 Day Vacor Detaing (10): 0.00 Tarb Detaing (10): 0.00 Your Space Deparations (10): 0.00 Pactor Battarg (10): 0.00 Your Space Deparations (10): 0.00 Day Vacor Space Deparations (10): 0.00 Scheder Demarks (10): 0.00 Scheder Demarks (10): 0.00 Scheder Demarks (10): 0.00 Day Vacor Space Deparation (10): 0.00 Scheder Demarks (10): 0.00 Scheder Demarks (10): 0.00 Scheder Deman	Roof Outage (ft):	0.1042
Root Head (1) 0.00 Sheel Rabia (1): 0.00 Sheel Rabia (1): 0.00 Vapor Densyl (10): (1): 0.00 Vapor Densyl (10): (1): 0.00 Sheel Rabia (1): 0.00 Sheer Temperature (pair) 0.00 Sheer Temperature (pair) 0.00 Day (1): 0.00 Sheer Temperature (pair) 0.00 Day (1): 0.00 Sheer Temperature (pair) 0.00 Day (1): 0.00 Sheer Temperature (pair) 0.01 Day (1): 0.00 Sheer Temperature (pair) 0.01 Day (1): Temperature (pair) 0.01 Casce (hild): 0.01 0.02 Sheer Temperature (pair) 0.00 0.00 Day (pair Sheer temperature (pair) 0.00 0.00 Sheer Temperature (pair) 0.00 0.00 Sheer Temperature (pair) 0.00 0.00 Day (pair Amore tabolic (pair) 0.00 0.00 Sheer Temperature (pair) 0.00	Roof Outage (Cone Roof)	
Roof Back (H): 0.00 Start Ratics (H): 0.00 Start Ratics (H): 0.00 Start Ratics (H): 0.00 Vapor Messach Weigh (Dhrmdr): 19000 Barther Temperature (pair) 0.00 Dark Temperature (pair) 0.00		
Shell Radiu (ft): 5.00 Vaco Density 5.00 Density Marge (Lagot Shrings (Lib Anno)) 1.00.00 Day Ange (Lagot Shrings (Lib Anno)) 1.00.00 Day Ange (Lagot Shrings (Lib Anno)) 1.00.00 Day Ange (Lagot Shrings (Lib Anno)) 1.00 Vaco Density (Lagot Shrings (Lib Anno)) 1.00 Vaco Shrings (Lib Anno) 1.00 Vaco Shrings (Lib Anno) 0.00 Vacor Share (Lib Anno) 0.00 Day Ange (Lib Anno) 0.00 Vacor Share (Lib Anno) 0.00 Vacor Share (Lib Anno) 0.00 Day Ange (Lib Anno) 0.00 Share (Lib Anno) <td></td> <td></td>		
Vapor Density (bits ft) 0.00 Vapor Prezust at Daty (bits reft) 1000 Burkster Emperature (pas) 0.00 Digital data (frequencies (bits) 0.01 Digital data (frequencies (bits) 0.00	Shell Radius (ft):	5.0000
Vapor Devoltary (bits off mode) mode) mode) mode) vapor Pressure of Langerstating (pass) mode) mode) mode) mode) mode and the Competenting (pass) mode) mode) mode) mode) mode and the Competenting (pass) mode) mode) mode) mode) mode and the Competenting (pass) mode) mode) mode) mode) mode and the Competence (pass) mode) mode) mode) mode) mode and the Competence (pass) mode) mode) mode) mode) mode and the Competence (pass) mode) mode) mode) mode and the Competence (pass) mode) mode) mode) mode and the Competence (pass) mode) mode) mode)	Vanor Denrity	
Wager Pressure at Daily Accessed include 0.00 Daily Age Land Graders Ferre, (Eq. 2) 0.01 Daily Age Land Graders Ferre, (Eq. 2) 0.02 Daily Age Land Graders Ferre, (Eq. 2) 0.01 Daily Age Land Graders Ferre, (Eq. 2) 0.02 Daily Vacch Presser, Barger (grad 0.00 Daily Mark Land Barlow Ferre, (Eq. 2) 0.00 Schrifter Temperature (grad) 0.00 Daily Mark Land Barlow Ferre, (Eq. 2) 0.00 Vacor Ferres at D	Vapor Density (lb/cu ft):	0.0000
Surface Temperature (pai): 0.00 Dely Averga Average (pai): 40.05 Dely Average Average (pai): 40.05 Dely Average Average (pai): 40.05 Dely Average Average (pai): <td< td=""><td>Vapor Molecular Weight (Ib/Ib-mole):</td><td>190.0000</td></td<>	Vapor Molecular Weight (Ib/Ib-mole):	190.0000
Dayl Vac, Laud Saftero Term, (edg. P). 49.0.5 Dayl Vac, Laud Saftero Term, (edg. P). 49.0.5 Laud Cas Costant P. 40.0.5 Laud Cas Costant P. 40.0.5 Laud Cas Costant P. 40.0.5 Laud Cas Costant P. 40.0.7 Laud Cas Costant P. 40.0.7 <t< td=""><td>Surface Temperature (pria):</td><td>0.0001</td></t<>	Surface Temperature (pria):	0.0001
Day Arange Anthera Tem, (esp. 1): 49.55 Day Arange Anthera Tem, (esp. 1): 10.72 Ligad AH, Hondrado Kay, D., Sangara, J., Sangara, J., Sangara, J., Sangara, J., Sangara, S., Sangara, Sang	Daily Ava Liquid Surface Terms (deg R):	510.8367
Ligid full dimension (66 g),	Daily Average Ambient Temp. (deg. F):	49.5583
Tank Parro Solar Ascopping (Sel); 0.17 Tank Parro Solar Ascopping (Sel); 0.17 Factor (Bland) Ray) 0.17 Yang Solar Ascopping (Sel); 0.17 Factor (Bland) Ray) 1.182.2 Yang Solar Ascopping (Sel); 0.17 Day Vacor Tencescher Range (Sel); 0.00 Day Vacor Tencescher Range (Sel); 0.00 Vacor Tencescher Range (Sel); 0.00 Sacher Tencescher (Sel); 0.00 Sacher Tencescher (Sel); 0.00 Sacher Tencescher (Sel); 0.00 Sacher Tencescher (Sel); 0.00 Vacor Prescue al Day Acerso (Sel); 0.00 Vacor Sacher (Sel); 0.00 <t< td=""><td>(psia cuft / (lb-mol-deg R)):</td><td>10.731</td></t<>	(psia cuft / (lb-mol-deg R)):	10.731
Tank Pare Solar Absorptione (Reof) 0.17 Partor Bibliogh Appl. 1(8) 22 Partor Silver Absorptione Factor 0.02 Varior Space Expansion Factor 0.02 Daily Vacor Space Expansion Factor 0.00 Daily Vacor Space Expansion Factor 0.00 Daily Vacor Frances at Early Sample Factor 0.00 Daily Vacor Frances at Early Maximum Lugati 0.00 Daily Vacor Frances at Early Maximum Lugati 0.00 Daily Vacor Saturation Factor 100 Daily Vacor Saturation Factor 100 Daily Vacor Saturation Factor 0.00 Vacor Factor at Daily Vacores Daily Vac	Liquid Bulk Temperature (deg. R):	509.2483
Day) Total Solar Instanton Sactor Billung/Bar Sactor Billung/Bar Sactor Billung/Bar Barly Solar Composition Reads Barly Vacor Temeson Barlos (Barl) Barly Vacor Temeson Barlos (Barl) Barly Vacor Temeson Barlos (Barl) Barly Vacor Temeson Barlos (Barl) Barlos (Barlos (Barlos (Barl)) Barlos (Barlos (Barlos (Barl)) Barlos (Barlos (Barlos (Barl)) Barlos (Barlos (Barlos (Barl)) Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barl)) Annal Turrores: Barlos (Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barl)) Annal Turrores: Barlos (Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barl)) Annal Turrores: Barlos (Barlos (Barlos (Barl)) Monto (Barlos (Barlos (Barlos (Barl)) Monto (Barlos		
Faster fibulandt day: 1.188.23 Verse State Expansion Faster 2000 Value Voor Expension Faster 0.00 Scheder Emperature (past) 0.00 Scheder Emperature (past) 0.00 Scheder Emperature (past) 0.00 Scheder Emperature (past) 0.00 Value Voor Paster and Lande Actrace Faster, (long R) 0.02 Value Voor Paster and Lande Actrace Faster, (long R) 0.02 Value Voor Statue Classe Faster, (long R) 0.00 Value Voor Statue Classe Faster, (long R) 0.00 Value Statue Classe Faster, (long R) 0.00 Scheder Emperature (past) 0.00 Scheder Emperature (past) <td>Daily Total Solar Insulation</td> <td>0.1700</td>	Daily Total Solar Insulation	0.1700
Vapor Speece Expension Factor: 0.03 Dely Vapor Temporations Factor III: 10.77 Beather Ver Press, Setting Sampgepaio); 0.00 Beather Ver Press, Setting Sampgepaio); 0.00 Submit Ver Press, Setting Sampgepaio); 0.00 Submit Ver Ver Press, Setting Sampgepaio); 0.00 Vapor Pressue al Daily Mainmun Lugad 0.00 Submit Ver	Factor (Btu/sqft day):	1,189.2337
Dahy Vacor Temperature Range (ging, R); 10,77 Dahy Vacor Temperature Range (ging, R); 10,77 Destruer Vert Press, Berling Kanger, Jong, Berling,	Vapor Space Expansion Factor	
Day Vapor Presson Brang (pag) 0.00 Day Vapor Presson Brang (pag) 0.00 March Presson Bally Average Layah 0.00 Subdice Temperature (pag) 0.00 Subdice Temperature (pag) 0.00 March Presson Bally Average Layah 0.00 Subdice Temperature (pag) 0.00 Day Vapor Head Starb (Pag) 0.00 Day Vapor Head Starb (Pag) 0.00 Day Vapor Head Starb (Pag) 0.00 Day Vapor Starbiton Tempe (pag) 1.01 Vano Starb (Pag) (Pag) 1.02 Subdice Temperature (pag) 0.00 Vano Starb (Pag) (Pag) 1.00 Subdice Temperature (pag) 0.00 Vano Starb (Pag) (Pag) 1.00 Subdice Temperature (pag) 0.00 Vano Starb (Pag) (Pag) 1.00 Vano Starb (Pag) (Pag) 1.00 Vano Starb (Pag) (Pag) 1.00 Annal Hencerrow 10.00 Maximum Layah (Vatheng (pag)) 4.700.16 Maximum Layah (Vatheng (pag)) 4.700.16 Maximum Layah (Vatheng (pag)) 4.700.16 <td>Vapor Space Expansion Factor:</td> <td>0.0326</td>	Vapor Space Expansion Factor:	0.0326
Braisher Verd Press, Setting Fangesprain); 0.06 Subdras Tenger Statute (prigs); 0.06 Subdras Tenger Statute (prigs); 0.06 Vapor Pressure al Dally Mammul, Lugad 0.00 Subdras Tenger Statute (prigs); 0.00 Subdras Tenger Statute; 0.00 Subdras Tenger Statute; 0.00 Subdras Tenger Statute; 0.00 Vertext Vapor Tensous al Dally Anoregis Lugad; 0.00 Vertext Vapor Tensous al Dally Anoregis Lugad; 0.00 Vapor Messure al Dally Anoregis Lugad; 0.00 Annau Her Throopping Light/bitme (gri); 4.700 Maximum Lugad Valorine (gri); 4.700	Daily Vapor Temperature Range (deg. R):	18.7768
Vapor Prezusta d Dah Anisma Liaudi 0.00 Vapor Prezusta d Dah Mismun Liaudi 0.00 Subrita Temperatura (pais) 0.00 Dah Yak Liaudi Anise Tempi Ling (pi temperatura) 0.00 Vestor Subrita Tempi Ling (pi temperatura) 0.00 Subrita Temperatura (pais) 0.00 Maximum Ling (Pais) 4.700 to Maximum Ling (Pais) 8.000 Working Lings Product Fador <td< td=""><td>Daily Vapor Pressure Range (psia):</td><td></td></td<>	Daily Vapor Pressure Range (psia):	
Surface Temperature (pai) 0.00 Surface Temperature (pai) 0.00 Vapor Presence at Data Massimum (pai) 0.00 Surface Temperature (pai) 0.00 Day Massimum (pain) 0.01 Day Massimum (pain) 0.02 Day Massimum (pain) 0.02 Vapor Saunation Factor 1.00 Vapor Saunation Factor 0.00 Surface Temperature (pain) 0.00 Surface Temperature (pain) 0.00 Morein Glassing (tr): 4.10 Marchange (tr): 0.02 Marchange (tr): 0.02 <td></td> <td>0.0600</td>		0.0600
Vapor Pressure 31 Daily (Minimum Liquid) 0.00 Substrate Temperature (pais). 0.00 Devide VML Load Substrate Temp. (pais) (Pi 0.01 Day Max. Load Substrate Temp. (pais) (Pi 10.21 Vapor Messure 31 Day May. Load Substrate Temp. (pais) (Pi 10.21 Vapor Messure 31 Day Mess (pais) (Pi 0.01 Substrate Temperature (pais). 0.01 Substrate Temperature (pais). 0.01 Substrate Temperature (pais). 0.02 Vapor Messure 31 Day Average Laga (Pi 0.02 Armal Temperature (pais): 4.700.16 Maximum Liqued Volume (pai): 1.00 Working Loss (Poist) Fador. 1.02 Working Loss Product Fador. 1.02		0.0001
Surface Temperature (pai) 0.00 Surface Temperature (pai) 0.00 Daly Age, Layd Surface Temp, (pai) 0.01 Daly Age, Mark Temp, Temp (pai) 0.01 Water Vacor Stantanton Factor 0.00 Vacor Stace Outage (tr) 0.00 Armal Microscoper 0.00 Maxemun Liquid Volume (gal): 4.700.16 Maxemun Liquid Volume (gal): 6.00 Maxemun Liquid Volume (gal): 6.00 Working Loss (Product Factor: 1.00		
Surface Temperature (pair): 0.00 Surface Temperature (pair): 0.01 Dely Mai, Lagal Surface Temp (pair): 0.02 Dely Mai, Lagal Surface Temp (pair): 0.02 March Temperature (pair): 0.02 March Temperature (pair): 10.02 Surface Temperature (pair): 0.00 Approximation (pair): 0.00 Approximation (pair): 0.00 Amark Hintongers: 0.00 Amark Hintongers: 10.01 Market Hintongers: 0.00 Amark Hintongers: 10.02 Market Hintongers: 10.02	Surface Temperature (psia):	0.0001
Dayl Vag, Lugid Sufface Term, (log R); 510.83 Dayl Vag, Lugid Sufface Term, (log R); 510.83 Dayl Anal, Lugid Sufface Term, (log R); 510.83 Dayl Anal, Lugid Sufface Term, (log R); 510.83 Dayl Anal, Lugid Sufface Term, (log R); 510.83 Dayl Analy Maximum Factor 510.83 Dayl Analy Marking May Comparison (log R); 120 Varier Starting Name (log R); 0.00 Annual Net Throughng (log N); 50.000 Annual Net Throughng (log N); 50.000 Maximum Lugid Volume (gal); 4.700.16 Maximum Lugid Volume (gal); 4.700.16 Maximum Lugid Volume (gal); 6.000 Working Loss Product Factor: 1.00	Vapor Pressure at Daily Maximum Liquid	
Dayl Mar. Logid Shardson Ferrer, (edg. R): 18.5.5 Wenter Unport Shardson Factor 100 Variout Tamper (edg. R): 100 Sardson Ferrer 100 Sardson Ferrer 100 Sardson Ferrer 100 Variout Tamper (edg. R): 4.00 March March (edg.): 4.00 March March (edg.): 4.00 March March (edg.): 6.00 Arman M (Encodar): 100 March March (edg.): 6.00 Arman M (Encodar): 100.00 March M (edg.): 5.000.00 Arman M (Encoder): 10.20 March M (edg.): 10.20 March M (edg.): 100.00 March M (edg.): 100.00 March M (edg.): 100.00 March M (edg.): 100.00 Working Loss Product Factor: 100.00	Surface Temperature (psia):	
Dayl Mar. Logid Shardson Ferrer, (edg. R): 18.5.5 Wenter Unport Shardson Factor 100 Variout Tamper (edg. R): 100 Sardson Ferrer 100 Sardson Ferrer 100 Sardson Ferrer 100 Variout Tamper (edg. R): 4.00 March March (edg.): 4.00 March March (edg.): 4.00 March March (edg.): 6.00 Arman M (Encodar): 100 March March (edg.): 6.00 Arman M (Encodar): 100.00 March M (edg.): 5.000.00 Arman M (Encoder): 10.20 March M (edg.): 10.20 March M (edg.): 100.00 March M (edg.): 100.00 March M (edg.): 100.00 March M (edg.): 100.00 Working Loss Product Factor: 100.00	Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	
Day's Monter Temp, Range (digs, R) 18.21' Wenter Vacor Saturation Factor 1.00' Venter Vacor Saturation Factor 1.00' Vacor Saturation Factor 0.00' Annual Net Throughout (gibly): 0.000' Annual Net Throughout (gibly): 0.000' Maximum Liquid Volume (gibl): 4.700' Maximum Liquid Volume (gibl): 4.700' Maximum Liquid Volume (gibl): 6.000' Working Loss (Product Factor: 1.00'	Daily Max Liquid Surface Temp. (deg R):	515.5309
Ventel Voor Stauruhon Factor: 1.00 Varor Stauruhon Factor: 0.00 Varor Sanze Outage Rt; 4.10 Varor Sanze Outage Rt; 4.10 Varor Sanze Outage Rt; 1.00 Varor Sanze Outage Rt; 0.00 Varor Sanze Outage Rt; 0.00 Annal Net Processor Ball Anterget (Urb-mole): 100.00 Annal Net Processor Ball Anterget (Urb-mole): 100.00 Maximum Logid Volume (gal): 4.700.16 Maximum Logid Volume (gal): 4.700.16 Maximum Logid Volume (gal): 6.000 Working Loss Product Factor: 1.00		18.2167
Vapor Pressues at Daily Average Layold: 0.00 Standars: Temperative (paid): 0.01 Vapor Space Obsery (1): 4.10 Ward Space Obsery (1): 4.10 Word Space Obsery (1): 0.00 Vapor Space Obsery (1): 0.00 Standars: Temperative (paid): 0.00 Annual NI: Throughout (galr): 50.00 Tumore Fractor: 10.00 Maximum Unpud Voltime (gal): 4.700.16 Tank Diameter (H): 10.00 Word Reserver, 100 0.00 Ward Instruct (galr): 4.700.16 Tank Diameter (H): 10.00 Word Rudrig Loss Product Factor: 1.00	Vented Vapor Saturation Factor	
Surtice Temperature (psis) 0.00 Vanor Speer Classer (b) 4.10 Vanor Speer Classer (b) 0.02 Vanor Speer Classer (b) 0.02 Marce Temperature (psis) 0.02 Autor Present al Class (b) Anoregi Lugal 0.02 Autor Present al Classer (psis) 0.02 Autor (psier Classer) 0.02 Marcen Lugal Valuer (psi): 4.700.16 Maanum Lugal Valuer (psi): 4.700.16 Working Loss Product Fador: 10.02	Vented Vapor Saturation Factor:	1.0000
Vapor Spece Collader (1) 4.10 Vapor Spece Collader (1) 0.02 Vapor Microsoft (1) 0.02 Vapor Microsoft (1) 0.02 Annal Net Throughput (1) 9.00 Annal Net Throughput (1) 9.00 Annal Net Throughput (1) 10.27 Maximum Liquid Volume (1) 10.27 Maximum Liquid Volume (1) 2.00 Working Loss Phoduct Factor: 10.20		p
Maksing Lasses (b): 0.02 Jogor Messaler Weight (b)E-mole): 1990.00 Vapor Messaler (bala): 0.02 Jackner Eineparker (bala): 0.03 Annal Tumorer: 0.04 Annal Tumorer: 0.04 Maximum Eines: 0.04 Maximum Eines: 0.02 Maximum Eines: 0.02 Maximum Lagad: 10.02 Working Loss Phosed: Factor: 1.00	Vapor Space Outage (ft):	4.1042
V spoř Molecular Wogle (Uh-mole): 19000 V spoř Moneura (Uh) Avetegi (Uh-mole): 0,000 Annual Net Throughput (galyr): 0,000 Annual Net Throughput (galyr): 0,000 Maximum Liqué Volume (gal): 4,700 (H Maximum Liqué Volume (gal): 6,000 Maximum Liqué Volume (gal): 6,000 Monting Loss Product Factor: 1,000 Working Loss Product Factor: 1,000		
Vapor Presure at Daily Average Liquid 0.000 Surface Engregenetic (pila) 0.000 Annual Turovers: 0.000 Annual Turovers: 0.000 Massimum Liquid Health (1): 1.00 Tank Diameter (1): 1.00 Massimum Liquid Health (1): 1.00 Tank Diameter (1): 1.00 Working Loss Product Factor: 1.00	Working Losses (ID): Venor Molecular Weight (Ib/Ib-mole):	
Surface Temperature (psia) 0.00 Annual Net Throughput (galy):: 50.400.00 Annual Net Throughput (galy):: 61.72 Maximum Liquid Volume (gal): 4.700.16 Maximum Liquid Volume (gal): 8.000 Maximum Liquid Volume (gal): 8.000 Maximum Liquid Volume (gal): 1.000 Working Loss Product Factor: 1.000		190.0000
Annual Wei Throughput (galyr): 50,4000 Annual Tumores: 10,72 Tumore Factor: 10,02 Maximum Liquel Meight (B): 4,700.16 Maximum Liquel Meight (B): 8,00 Working Loss Product Factor: 1,00	Surface Temperature (psia):	0.0001
Turnover Factor: 1.00 Maximum Liquid Volume (gal): 4,700.16 Maximum Liquid Height (1): 8.00 Tank Diameter (1): 10.00 Working Loss Product Factor: 1.00	Annual Net Throughput (gal/yr.):	50,400.0000
Maximum Liquid Volume (gal): 4,700.16 Maximum Liquid Height (ft): 8.00 Tank Diameter (ft): 10.00 Working Loss Product Factor: 1.00		10.7230
Maximum Liquid Height (#): 8.00 Tank Diameter (#): 10.00 Working Loss Product Factor: 1.00		1.0000
Tank Diameter (it): 10.00 Working Loss Product Factor: 1.00		
Working Loss Product Factor: 1.00		10,0000
	Working Loss Product Factor:	1.0000
Fotal Losses (Ib): 0.03	l'otal Losses (lb):	0.0361

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals 12/31/2014 Page 4 of 5

TANKS 4.0 Report

Emissions Report for: Annual

Rover Pipeline Used Oil (TK-7) - Vertical Fixed Roof Tank Cleveland, Ohio

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
LUBE OIL	0.02	0.01	0.04

file:///C:/Program%20Files%20(x86)/Tanks409d/summary display.htm

12/31/2014

ATTACHMENT O: MONITORING, RECORDKEEPING, REPORTING AND TESTING PLANS

SHERWOOD COMPRESSSOR STATION

ROVER PIPELINE LLC

TABLE O 3 PERMIT APPLICATION

R-13 PERMIT APPLICATION

SHERWOOD COMPRESSOR STATION ROVER PIPELINE LLC

Reporting	Submit an initial notification as required in 860 7(a)(1) The notification must include the	Submit an mittal nontrication as required in $goo./(a)(1)$. The notification must include the information in paragraphs ($c)(1)$ through ($5)$ of this section.	1) Name and address of the owner or operator,	(2) The address of the affected source;	(3) Engine information including make, model, engine family, serial number, model year.	maximum engine power, and engine displacement;		(4) Emission control equipment; and	(5) Fuel used.	Submit a copy of each performance test as conducted in §60.4244 within 60 days after the test	has been completed.											Submit written reports of all performance tests.																						
Recordkeening	on records of the information in		 All notifications submitted to comply with this subpart and all documentation 	 Maintanance conducted on the ancies 		ų	and	information as required in 40 CFR parts 90, 1048, 1054, and 1060, as applicable. (4)	(4) If the stationary SI internal combustion ensine is not a certified ensine or is a certified (5)		nas			Monthly and rolling 12-month total records of natural gas consumed and hours of	operation.							Monthly and rolling 12-month total of diesel fuel burned and hours of operation. Sub		Maintenance records relating to failure and/or repair of fire pump equipment. In the event	of equipment or system failure, these records shall document the permittee's effort to maintain proper and effective operation of such equipment and/or systems.		Maintain manufacturer certification documentation. [§60.4211(c)]		Starting with the model years in Table 5 to this subpart, if the emergency engine does not	meet the standards applicable to non-emergency engines in the applicable model year, the	owner or operator must keep records of the operation of the engine in emergency and non-	emergency service that are recorded through the non-resettable hour meter. The owner must moved the time of convertion of the environment the moves the ansitive two sets to reservice	nust record the time of operation of the engine and the reason the engine was in operation during that time. [860.4214(b)]		If the stationary CI internal combustion engine is equipped with a diesel particulate filter,	the owner or operator must keep records of any corrective action taken after the	backpressure monitor has notified the owner or operator that the high backpressure limit of the anoing is ownerswhad [860.021460]	ot me engine is approached. [800.4214(c)]				Maintain daity records of blowdowns, including duration, volume vented, reason for blowdown (i.e., MSS or upset).	Maintain daily records of starters, including duration, volume vented, reason for	blowdown (i.e., MSS or upset).
Testing	I ner [860 4243/b)/0)/ii)]																Onacity must he determined by 40 CBP Dart 60. Annandix A. Method 9 observations or	Opacity must be determined by 40 CFR Fart 00, Appendix A, Micurou 9 00servations of by measurements from a COMS approved by the Director				Stack testing at the request of the agency.																						
Monitoring																	At such reasonable time as the Servetery may designate conduct 40 CEP Part 60					S					Install a non-resettable hour meter prior to startup of the engine. [§60.4209(a)]	-	If stationary CI internal combustion engine is equipped with a diesel particulate filter to	comply with the emission standards in §60.4204, the diesel particulate filter must be	installed with a backpressure monitor that notifies the owner or operator when the high	backpressure limit of the engine is approached. [§60.4209(b)]						Sau						
Applicable Citations(s) Limitation/Standard	0.7 a/ha-hr VOC		1.0 g up-m 100x [860.4233(e) and Table 1]								MACT ZZZZ Meet MACT ZZZZ by complying with NSPS JJJJ.		NSPS OOOO Not an affected facility, since the Station is a transmission facility.	Maximum heat input:	<= 0.51 MMBtu/hr	<= 0.001 MMscf/hr <= 4.94 MMscf/vr	15CQB 83-3 1 100% conscitute	+3CSR g2-3.1, 10% opacity 45CSR g2-3.2	45CSR§2-11	(exempt for 4,	and 9)	Maximum heat input:	<= 36.6 gal/hr	<= 18,300 gal/yr	Annual operating hours: <= 500 hr/vr	· (IIII Over life of engine:		0.01 g/hp-hr HC	0.40 g/hp-hr CO	0.018 g/hp-hr PM	EPA Tier 3 emissions provided by Vendor	Nonemergency hours (for maintenance checks and readiness testing etc.) limited to	remembered incurs (remained and remained to the second s		Fire diesel that meets 40 CFR §80.510(b) for nonroad diesel fuel. [§60.4207(b)]	Dath and the second	Purchase certified engine and operate per manufacturer's written instructions or procedures developed by the owner or operator that are approved by the engine manufacturer, only	concreption of the concrete supervision and the provision of the concrete supervision	MACT ZZZZ Meet MACT ZZZZ by complying with NSPS IIII. 45 CSR 34	NSPS OOOO Not an affected facility, since the Station is a transmission facility.			
Description	SN	HP) Caterprintar US012 (SSS0 NSPS 116 45 CSR 16									MACT	45 CSR 34	NSPS (CIG Flameless Gas Infrared	Catalytic Heater HC2100	(0.51 MMBtu/hr)	15050	45CSR	45CSR	(exemp	(9,0,8, and 9)	Emergency Generator 1	(957 hp)	T 02.61			IIII SdSN	45 CSR 16												MACT ZZZ 45 CSR 34		Compressor Blowdown Vents	Compressor Starter Vents	
Emission Control Emission Unit Device Point ID ID ID ID	-E-	CE-IS		 										HTR-1 HTR-1								GE-1 GE-1																				BD BD	SV SV	

TABLE O R-13 PERMIT APPLICATION

SHERWOOD COMPRESSOR STAT

HERWOOD COMPRESSOR STATION	ROVER PIPELINE LLC
COM	CR PIP
000	ROVE
HERW	

Testing Recordscepting Recordscepting	Maintain a record of throughput for the storage tanks on a monthly and rolling twelve month total.		Maintain a record of throughput for the storage tunks on a monthly and rolling twelve month totat.	Maintain a record of throughput for the storage tanks on a roonthy and roling twelve month totat.		Manitain a record of throughput for the storage tanks on a monthly and rolling twelve month total.		Maintain a record of throughput for the storage tanks on a monthly and rolling twelve month total.		Maintain a record of throughput for the storage tanks on a monthly and rolling twelve month total.	Maintain a record of throughput for the storage tanks on a monthly and rolling twelve month total.		Maintain monthly and annual records that include the total quantity of material loaded into tank trucks. The annual records shall be calculated on a 12-month rolling total.	Maintuin monthy and annual records that include the total quantity of material loaded into tank tracks. The annual records shall be calculated on a 12-month rolling total.		
Monitoring															ed access	titable dust
Applicable Clation(s) Limitation/Standard	Maximum Capacity: <= 300 BBL Maximum throughput: <= 30.0 Galsyr <=0.32 bhr VOC <= 0.001 T/yr VOC	NSPS 0000 NSPS Kb	Maximum Capacity: <= 300 BBL Maximum froughput: <= 30 MGalsyr <= 0.31 Hbar VOC <= 0.01 T/yr VOC NSPS 0000 Not an affected facility.	NSPS 0000	ONE C ICLT	0000 SASN	NPS Kb	OOOO SdSN	NSPS Kb	NSPS 0000 NSPS Kb		Not an affected facility, since the stor	Maximum throughput: <= 30 MGals/yr		NSPS 0000 Not an affected facility, since the Station is a transmission facility. 45 CSR 17 Maintain PM control of the plant premises, and plant owned, leased or controlled access	
Emission Control Emission Unit Device Point ID ID ID	TK-1 Stop Ta		TK-2 Wase Wate Tank I (300 BBL)	TK-3 TK-3 Waste Water Tank 2 (2,500 gallons)		TK-4 New Oil Tark (100 BBL)		TK-5 TK-5 Coolant Tank (100 BBL)		TK-6 Used Coolant Tank (100 BBL)	TK-7 TK-7 Used Oil Tank (100 BBL)		LOAD-1	D-2 1	FUG FUG Fugitives R1 R1 Unpaved Roads	

ATTACHMENT P: PUBLIC NOTICE

SHERWOOD COMPRESSSOR STATION

ROVER PIPELINE LLC

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Rover Pipeline LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for a Gas Compressor Station located near Smithburg, Doddridge County, West Virginia. The latitude and longitude coordinates are: Latitude 39.266894°, Longitude -80.694028. The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: Volatile Organic Compounds (VOC), 53.67 Tons per year (T/yr); Oxides of Nitrogen (NO_X), 71.83 T/yr; Carbon Monoxide (CO), 26.80 T/yr; Particulate Matter (PM), 5.33 T/yr; Particulate Matter (< 10 microns) (PM₁₀), 4.87 T/yr; Particulate Matter (< 2.5 microns) (PM_{2.5}), 4.70 T/yr; Sulfur Dioxide (SO₂), 0.37 T/yr. Startup of operation is planned to begin on or about the 1st day of Written comments will be received by the West Virginia Department of June. 2017. Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Rover Pipeline LLC Mark Ryan VP Operations, Midwest Division 8910 Purdue Road Indianapolis, IN 46268