

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

February 22, 2016

CERTIFIED MAIL # 7015 0640 0000 9694 3062

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-B General Permit Registration Application

EQT Production Company

SHR-60 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-B General Permit Registration Application for the SHR-60 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosilievac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Application

SHR 60 Natural Gas Production Site

Shirley, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

February 2016

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

February XX, 2016

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-B General Permit Registration Application EQT Production Company SHR-60 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-B General Permit Registration Application for the SHR-60 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-B Class II General Permit application to the WVDEP's Department of Air Quality for the SHR-60 natural gas production site located in Tyler County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the SHR-60 pad.

FACILITY DESCRIPTION

The EQT SHR-60 natural gas production site will operate in Tyler County, WV and consists of ten (10) permitted natural gas wells. Five (5) wells are in operation and five (5) future wells are planned. Natural gas and liquids (including water and condensates) will be extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids will be stored in storage vessels.

The applicant seeks to authorize the operation of:

- Ten (10) natural gas wells (Five (5) wells are currently operating, five (5) wells are planned);
- Ten (10) line heaters each rated at 1.54 MMBtu/hr heat input;
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water;
- Ten (10) 400 barrel (bbl) tanks for storage of condensate and water;
- Three (3) thermoelectric generators (TEG) each rated at 0.013 MMBtu/hr heat input;
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input;
- One (1) line heater rated at 0.75 MMBtu/hr heat input;
- One (1) Produced Fluids Loading Operation; and
- One (1) 110 hp natural gas compressor engine.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The SHR-60 pad will be located in Tyler County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the SHR-60 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission

sources because these sites do not meet the definition of contiguous or adjacent facilities.

The SHR-60 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the SHR-60 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the SHR-60 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

There are no EQT owned or operated sites within a one (1) mile radius of the SHR-60 pad. EQT's CPT-11 Natural Gas Production site is 4.7 miles southeast of the SHR-60 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the SHR-60 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On August 18, 2015 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice is to clarify how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within 1/4 mile of one another.

The SHR-60 and CPT-11 pads are located on surface sites located greater than EPA's ¼ mile proposed ruling. Although the applicant notes the proposed status of this adjacency determination, it is the only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack of finalized guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the SHR-60 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to SHR-60 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the SHR-60 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the SHR-60 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = $F \times Incinerator Capacity (tons/hr)$

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

NG = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{140,000 \ scf}{day} * \frac{1 \ day}{24 \ hours} * \frac{0.042 \ lb}{scf} = \frac{245 \ lb}{hr} = \frac{1,073 \ tons}{year}$$

If the Incinerator Capacity is less than $15,000 \, lbs/hr$, then F = 5.43

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 - To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the SHR-60 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45CSR 16 applies to registrants that are subject to NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a stationary spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the SHR-60 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 - Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of combination of HAPs, and 100 tpy of regulated pollutants.

The potential emissions of regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 applies to registrants that are subject to NESHAP requirements. Excluded from G70-B general permit eligibility are sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the SHR-60 facility:

 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. Per 40 CFR 60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40 CFR 60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the SHR-60 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at SHR-60 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers</u>: Pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, the facility will not qualify as a pneumatic controller affected facility.

<u>Storage vessels</u>: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GAS PROD	DUCTION FACIL	ITIES LOCA	TED AT THE WEI	LL SITE				
⊠CONSTRUCTION □MODIFICATION □RELOCATION	□ MODIFICATION □ CLASS II ADMINISTRATIVE UPDATE							
SE	CTION 1. GENER	RAL INFORM	ATION					
Name of Applicant (as registered with the V	VV Secretary of St	ate's Office):	EQT Production	Company				
Federal Employer ID No. (FEIN): 25-0724	685							
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 1	700						
City: Pittsburgh	State: PA			ZIP Code: 15222				
Facility Name: SHR-60 Natural Gas Pro	duction Facility							
Operating Site Physical Address: None If none available, list road, city or town and	l zip of facility. J e	efferson Run	, Shirley, WV 264	34				
City: Shirley, WV	Zip Code: 26434	ļ		County: Tyler				
Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.39473 Longitude: -80.81124								
SIC Code: 1311				DAQ Facility ID No. (For existing facilities) None				
NAICS Code: 211111								
	ERTIFICATION (
This G70-B General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dail compliance certifications and all requir Representative. If a business wishes to certifoff and the appropriate names and signs unsigned G70-B Registration Application utilized, the application will be	retary, Treasurer, structure. A busing treship, Limited by throughput, housed notifications may be adure a cuttered. An will be returned	General Partne ness may certif Liability Com rs of operation ust be signed Representative y administration the application the application	er, General Manager fy an Authorized Re pany, Association, and maintenance, a by a Responsible Of the official agreen ively incomplete or at. Furthermore.	r, a member of the Board of presentative who shall have Joint Venture or Sole general correspondence, fficial or an Authorized nent below shall be checked improperly signed or if the G70-B forms are not				
I hereby certify that is an Authorize business (e.g., Corporation, Partnership, Limmay obligate and legally bind the business. shall notify the Director of the Division of A. I hereby certify that all information contains documents appended hereto is, to the best of have been made to provide the most compress.	nited Liability Con If the business cha Air Quality immed ed in this G70-B C f my knowledge, to	mpany, Associ anges its Autho iately. General Permit rue, accurate a on possible.	ation Joint Venture orized Representativ Registration Applic nd complete, and th	e, a Responsible Official cation and any supporting at all reasonable efforts				
Responsible Official Signature: Name and Title: Kenneth Kirk - Executive Email:	e Vice Presiden Date:	Phone:	12-553-571 16	Fax:				
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:		Fax:					
If applicable: Environmental Contact_Alex Bosilievac Name and Title: Environmental Coordina Email: abosilievac@eqt.com	ator Phone: [41] Date:	2) 395-3699	F	ax:				

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: The SHR-60 Natural Gas Production Facility will be a new production site expected to be in production in June 2016.

Directions to the facility: Travel on 1-79 to exit 119 at Clarksburg. Go West on RT 50 for +/-19.1 miles and turn right onto Tarkiln Road exit. Take immediate left and go 0.2 miles to Big Flint Road (CR 3). Continue 11.8 miles to RT 23 and turn left. Drive 4.3 miles then turn left onto Pratt's Run. Continue 1.55 miles on Pratt's Run and keep left at fork to 60/1 (Jefferson Run). Continue 0.4 miles up hill to access road on right.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:						
Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).						
□ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): □ I wish to pay by credit card. Contact for payment (incl. name and email address): □ Solution Alex Bosiljevac -						
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified.						
☐ Responsible Official or Authorized Representative Signatu	re (if applicable)					
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A					
☐ Siting Criteria Waiver (if applicable) – Attachment B	☐ Current Business Certificate – Attachment C					
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E					
□ Plot Plan – Attachment F	⊠ Area Map – Attachment G					
□ G70-B Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I					
☐ Fugitive Emissions Summary Sheet – Attachment J						
☐ Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K					
Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) − Attachment L						
Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) − Attachment M						
☐ Tanker Truck Loading Data Sheet (if applicable) - Attachment O						
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P						
☐ Pneumatic Controllers Data Sheet – Attachment Q						
\boxtimes Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R						
⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S						
☐ Facility-wide Emission Summary Sheet(s) – Attachment T						
☐ Class I Legal Advertisement – Attachment U						
☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments						

All attachments must be identified by name, divided into sections, and submitted in order.

Table of Contents

ATTACHMENT A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT B CITING CRITERIA WAIVER – (NOT APPLICABLE)

ATTACHMENT C BUSINESS CERTIFICATE

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E PROCESS DESCRIPTION

ATTACHMENT F PLOT PLAN

ATTACHMENT G AREA MAP

ATTACHMENT H APPLICABILITY FORM

ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT L STORAGE VESSEL DATA SHEET

ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET – (NOT APPLICABLE)

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION

DEVICE (ERD) SHEET

ATTACHMENT S EMISSION CALCULATIONS

ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states: "Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3). Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No X If Yes, please complete the questionnaire on the following page (Attachment A). Please provide a source aggregation analysis for the proposed facility below: See Introduction for additional source aggregation analysis.

Attachment B CITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

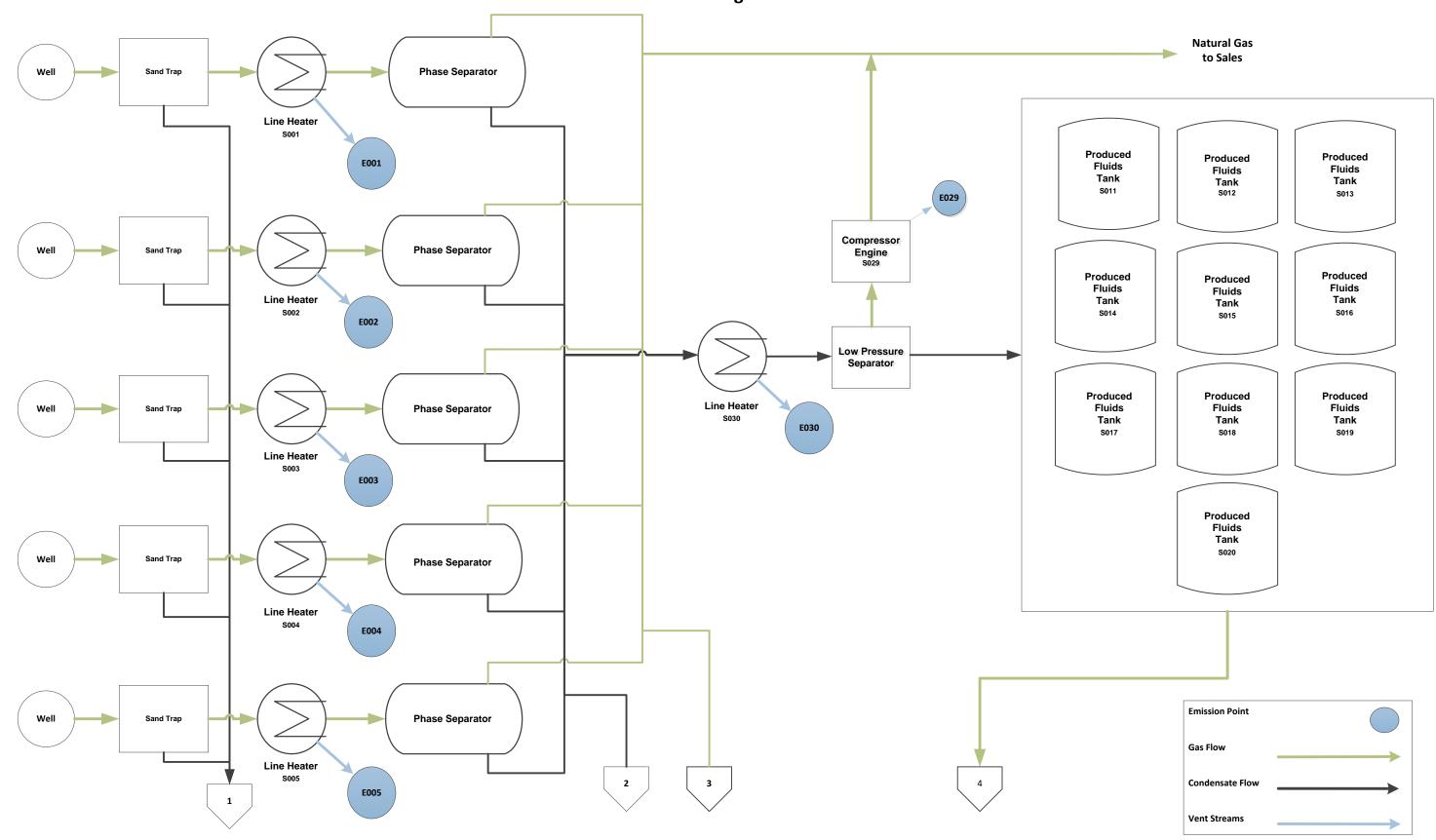
This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

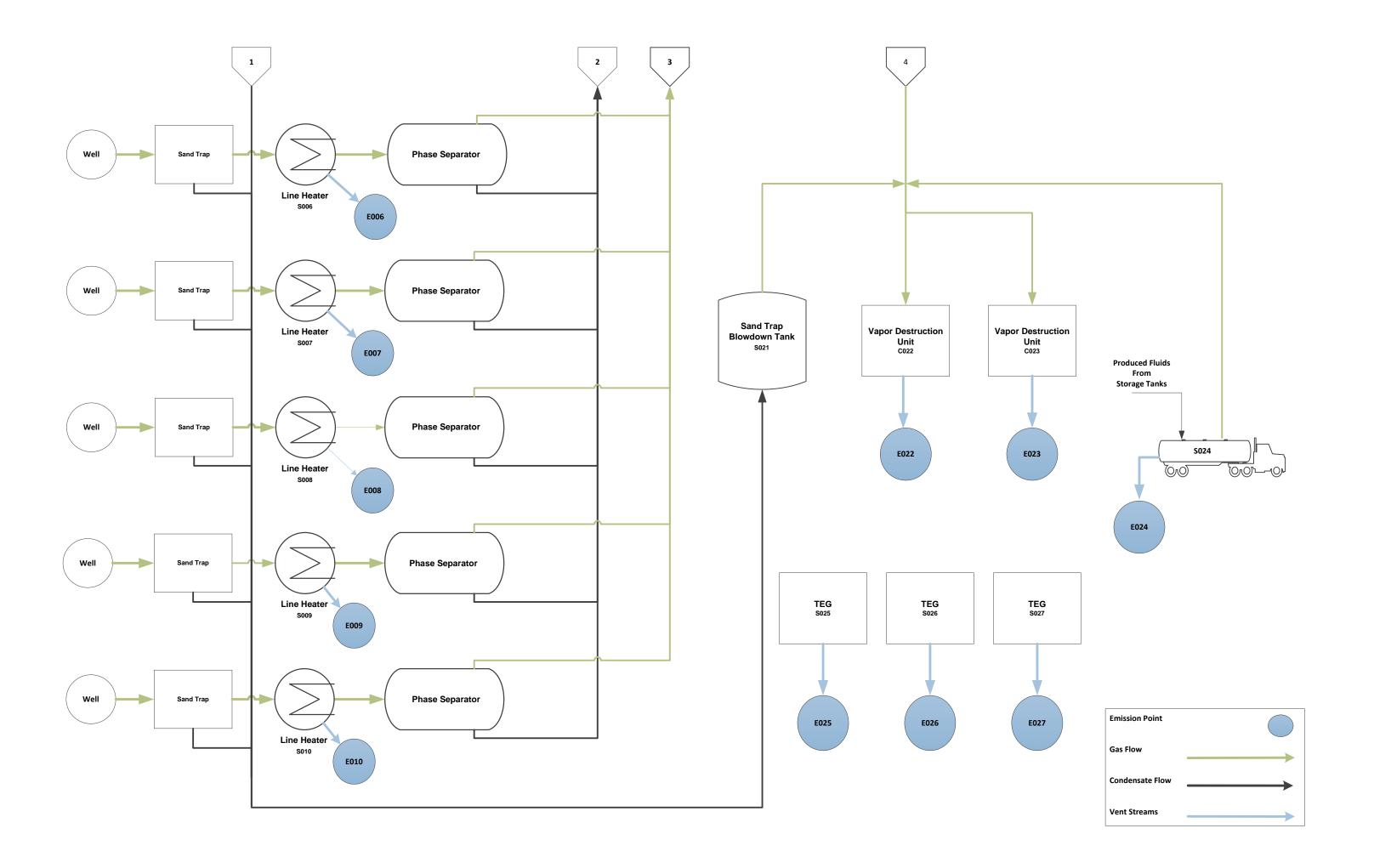
The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.


atL006 v.3 L0553297664


Attachment D PROCESS FLOW DIAGRAM

Attachment D

SHR 60 Natural Gas Production

Process Flow Diagram

Attachment E PROCESS DESCRIPTION

Attachment E Process Description

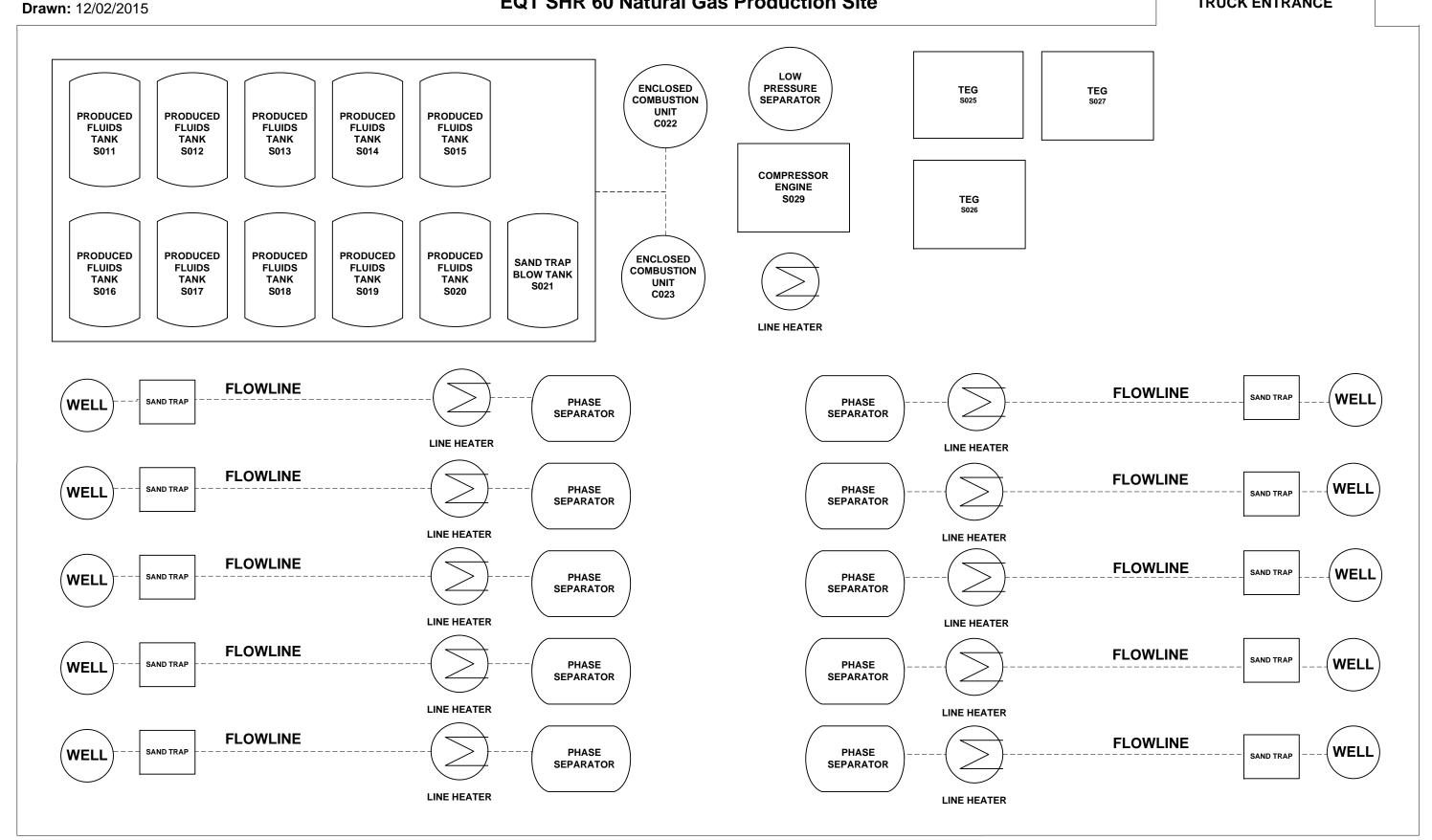
This permit application is being filed for EQT Production Company and addresses operational activities associated with the SHR-60 natural gas production site. Incoming raw natural gas from the ten (10) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (S021), as needed. From the sand traps, raw gas is routed through line heaters (S001-S010) to assist with the phase separation process in the downstream high pressure phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (\$030) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from 307 psig to 30 psig. Vapors realized at the low pressure separator are directed to a 110 bhp compressor engine (S029) and routed to the sales pipeline. Produced fluids from the low pressure separator are routed to the produced fluids storage tanks (S011-S020). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C022, C023) and combusted. Produced fluids are pumped into a tank truck (S024) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

Three thermoelectric generation units (S025, S026, S027) are operated and provide power to the SHR-60 natural gas production site.

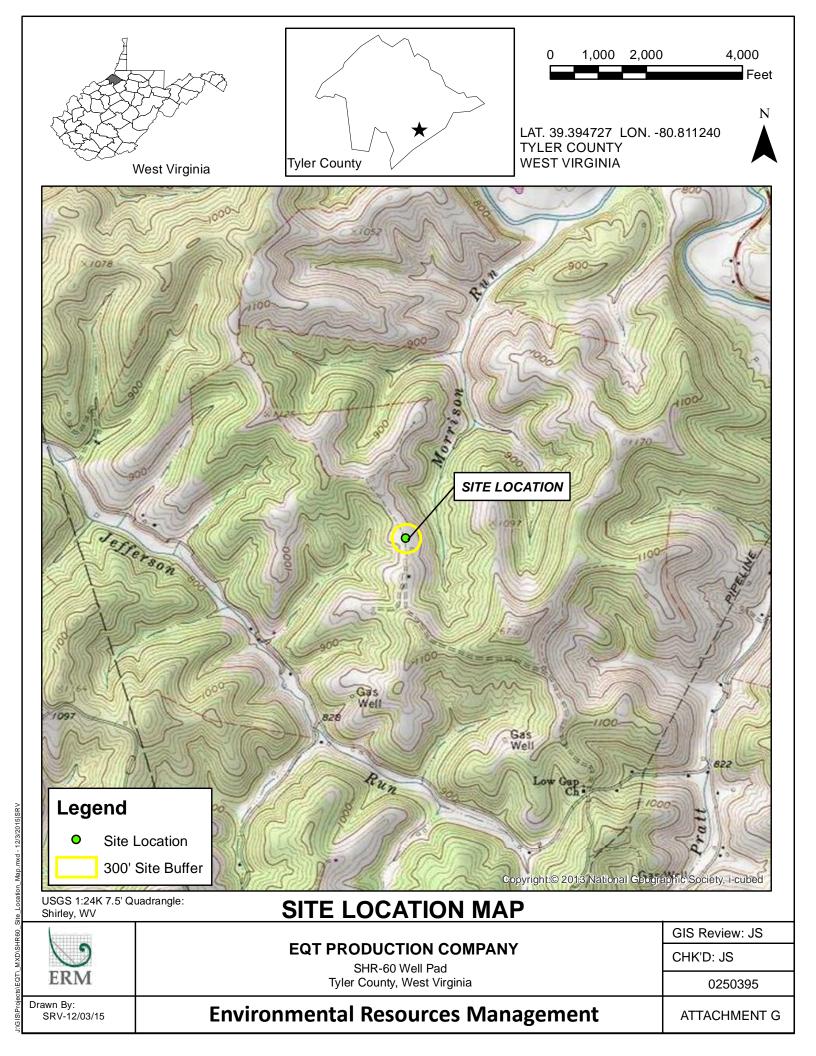
A process flow diagram is included as Attachment D.

Attachment F PLOT PLAN

Coordinates


Latitude: 39.39473 Longitude: -80.81124 Elevation: 1,020 ft

Attachment F


Plot Plan

EQT SHR 60 Natural Gas Production Site

TRUCK ENTRANCE

Attachment G AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-B APPLICABLE SECTIONS					
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)				
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines				
X Section 14.0	Tanker Truck Loading ³				
□Section 15.0	Glycol Dehydration Units ⁴				

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S002	E002	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S003	E003	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S004	E004	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S005	E005	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S006	E006	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S007	E007	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S008	E008	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S009	E009	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S010	E010	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
S011	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S012	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S013	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S014	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S015	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S016	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S017	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S018	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S019	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S020	E022 E023	Produced Fluid Tank	2016	2015	400 bbl	New	C022 C023	NA
S021	E022 E023	Sand Trap Blowdown Tank	2016	2015	140 bbl	New	C022 C023	NA
C022	E022	Enclosed Combustion Device	2016	2015	11.66 MMBtu/hr	New	NA	NA

C023	E023	Enclosed Combustion Device	2016	2015	11.66 MMBtu/hr	New	NA	NA
S024	E022 E023 E024	Tank Truck Loading Rack	2016	2015	61,786 gal/day	New	C022 C023	NA
S025	E025	Thermal Electric Generator	2016	2015	0.013 MMBtu/hr	New	NA	NA
S026	E026	Thermal Electric Generator	2016	2015	0.013 MMBtu/hr	New	NA	NA
S027	E027	Thermal Electric Generator	2016	2015	0.013 MMBtu/hr	New	NA	NA
S029	E029	Natural Gas Compressor Engine	2016	2015	110 hp	New	Non-Selective Catalytic Reduction	NA
S030	E030	Line Heater	2016	2015	0.75 MMBtu/hr	New	NA	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing
⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J FUGITIVE EMISSIONS SUMMARY SHEET

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET									
	Source/Equipment: Facility Wide									
	Leak Detecti Method Used		☐ Audible, visual, and ☐ Infrared (FLIR) cameras		☐ Other (please describe) Permittee will follow section 4.1.4 in issued permit.			☐ None required		
Compone	Closed		Source of Leak Factors		Stream type (gas, liquid,	Estimated Emissions (tpy)				
Туре		Count		(EPA, other (specify))		VOC	HAP	GHG (CO ₂ e)		
Pumps	☐ Yes ☐ No									
Valves	☐ Yes ⊠ No	401	EPA, 40 CF	EPA, 40 CFR 98 Subpart W		0.51	0.05	38.67		
Safety Rel Valves	ief ☐ Yes ⊠ No	11	EPA, 40 CF	EPA, 40 CFR 98 Subpart W		0.02	<0.01	1.57		
Open Endo Lines	ed □ Yes ⊠ No	27	EPA, 40 CF	EPA, 40 CFR 98 Subpart W		0.08	<0.01	5.88		
Sampling Connectio	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both					
Connectio (Not sample		1758	EPA, 40 CFR 98 Subpart W		⊠ Gas □ Liquid □ Both	0.25	0.02	18.84		
Compresso	☐ Yes ☒ No	1	component counts are Compressor components (V Table W-1B: Default average used for major equipment. 12 valves and 57 connections) and connection counts.	⊠ Gas □ Liquid □ Both					
Flanges	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both					
Other ¹	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both					
Other eq	uipment types	may includ	e compressor seals, relief valves,	diaphragms, drains, meters, etc.						

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):

Fugitive emissions occur from sealed surfaces associated with production equipment, including equipment leaks.

Please indicate if there are any closed vent bypasses (include component):

NA

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

NA

Attachment K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET						
API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device			
47-95-02220	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			
TBD	TBD	TBD	Green			

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)	2 7 1 1
Bulk Storage Area Name SHR-60 Storage Tank Area	2. Tank Name Broduced Fluid Tanks (\$011 \$020)
3. Emission Unit ID number S011-S020	Produced Fluid Tanks (S011-S020) 4. Emission Point ID number E022 or E023
3. Emission out in humber 3011-3020	4. Emission Form ID humber E022 of E023
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
06/2016* Anticipated	 ✓ New construction ✓ New stored material ✓ Other
Was the tank manufactured after August 23, 2011?	□ Relocation
⊠ Yes □ No	Relocation
7A. Description of Tank Modification (if applicable) NA	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
□ Yes ⊠ No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes ⊠ No	
If Yes, please provide the appropriate documentation and item	s 8-42 below are not required.
J I II III II II II II II II II II III	
TANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the internal	al cross-sectional area multiplied by internal height.
16,800 gallons	
9A. Tank Internal Diameter (ft.) 12	9A. Tank Internal Diameter (ft.) 12
10A. Maximum Liquid Height (ft.) 20	10A. Maximum Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11A. Maximum Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 16,800 gallons
13A. Maximum annual throughput (gal/yr) 20,405,863	13B. Maximum annual throughput (gal/day) 55,906
14. Number of tank turnovers per year 1,215	15. Maximum tank fill rate (gal/min) 38.82
16. Tank fill method ☐ Submerged ☐ Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	ı (gal)?
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
⊠ Fixed Roof	f \boxtimes cone roof \square dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ double	e deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	**
☐ Pressurized ☐ spherical ☐ cylindrical	
☐ Other (describe)	
Other (describe)	
PRESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	ture Disc (psig)
	bon Adsorption ¹
☐ Inert Gas Blanket of ☐ Cart ☑ Vent to Vapor Combustion Device¹ (vapor combustors, flare	•
_ · · · · · · · · · · · · · · · · · · ·	denser.
-0.5 oz Vacuum Setting 14.0 oz Pressure Setting	
☐ Emergency Relief Valve (psig)	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☒ No - A lock down screw	hatch will be installed instead of Thief Hatch.
¹ Complete appropriate Air Pollution Control Device Sheet	

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing	Loss	Breathing Loss		Working Loss		Total Emissions		Estimation
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (Pre- Control)	105.91	463.88	0.03	0.12	0.05	0.23	105.99	464.23	EPA - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
☐ Riveted ☐ Gunite lined ☐ Epox							
21A. Shell Color: Green	21A. Shell Color: Gr	een	21A. Shel	l Color: Green			
22. Shell Condition (if metal and unlined):							
	e Rust □ Not applic						
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	temperature:	22C. If ye	s, how is heat provided to tank?			
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with closed vent system.							
24. Is the tank a Vertical Fixed Roof Tank ?	-	roof provide radius (ft):	-	s, for cone roof, provide slop (ft/ft):			
⊠ Yes □ No	5 ft		NA				
25. Complete item 25 for Floating Roof Tank	$\mathbf{s} \square$ Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Me	tallic (mechanical) sho	e seal 🔲 Liquid mo	unted resili	ent seal			
□ Vaj	por mounted resilient s	eal Other (des	scribe):				
25C. Is the Floating Roof equipped with a second	ondary seal? Yes	□ No					
25D. If yes, how is the secondary seal mounted	d? (check one) 🗆 Sho	oe 🗆 Rim 🗆 Ot	her (describ	pe):			
25E. Is the floating roof equipped with a weath	ner shield?	□ No					
25F. Describe deck fittings:							
26. Complete the following section for Interna	al Floating Roof Tanks	□ Does not appl □	y				
26A. Deck Type: ☐ Bolted ☐ V	Velded	26B. For bolted decks	, provide dec	k construction:			
26C. Deck seam. Continuous sheet construction	on:	l					
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide	le \Box 5 x 7.5 ft. wide	\square 5 x 12 ft. wide \square	other (de	escribe)			
26D. Deck seam length (ft.): 26E. Area	a of deck (ft²):	**		26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? ☐ Yes	⊠ No						
28. Closed Vent System with Enclosed Combu							
SITE INFORMATION							
29. Provide the city and state on which the data	a in this section are based	: Charleston, WV					
30. Daily Avg. Ambient Temperature (°F): 70.0 31. Annual Avg. Maximum Temperature (°F): 65.5							
32. Annual Avg. Minimum Temperature (°F):	32. Annual Avg. Minimum Temperature (°F): 44.0 33. Avg. Wind Speed (mph): 18 mph						
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,123 35. Atmospheric Pressure (psia): 14.7 (Atmosphere)							
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 1	110	36B. Max	imum (°F): 110			
liquid (°F): 110							
37. Avg. operating pressure range of tank (psig): 0.0 (Atmosphere)	37A. Minimum (psig)	: 0.0 (Atmosphere)	37B. Max	imum (psig): 0.0 (Atmosphere)			
38A. Minimum liquid surface temperature (°F)): 110	38B. Corresponding v	anor pressure	e (nsia): 0.33			
39A. Avg. liquid surface temperature (°F): 110							
39A. Avg. liquid surface temperature (°F): 110 39B. Corresponding vapor pressure (psia): 0.33							

40A. Maximum liquid surface temperature (°F):	110	40B. Corresponding vapor pressure (psia): 0.33
41. Provide the following for each liquid or gas	to be stored in the tank.	Add additional pages if necessary.
41A. Material name and composition:	Produced Fluid	i
41B. CAS number:		
41C. Liquid density (lb/gal):	7.97	
41D. Liquid molecular weight (lb/lb-mole):	19.31	
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.	From: January To: December	
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	110 F 30 psia	

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA
	· ·		

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following:
- 2.

EXIST Existing Equipment
NEW Installation of New Equipment

REM Equipment Removed

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)

TO U.S. A. M. GHD (A.S.)	2 T 1 Y C 1 T D1 1 T 1 (CO21)
1. Bulk Storage Area Name SHR-60 Storage Tank	2. Tank Name Sand Trap Blowdown Tank (S021)
Area	
3. Emission Unit ID number S021	4. Emission Point ID number E022 or E023
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
06/2016 Anticipated Installation	New construction □ New stored material □ Other
Was the tank manufactured after August 23, 2011?	☐ Relocation
⊠ Yes □ No	Refocution
7A. Description of Tank Modification (if applicable) NA	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
□ Yes ⊠ No	
7C. Was USEPA Tanks simulation software utilized?	
□ Yes ⊠ No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.
TANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the internal	d cross-sectional area multiplied by internal height.
5,880 gallons	
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 5,880 gallons
13A. Maximum annual throughput (gal/yr) 306,600	13B. Maximum daily throughput (gal/day) 840
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 4.1
16. Tank fill method ☐ Submerged ☐ Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat root	f \square cone roof \square dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	\square self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	
☐ Pressurized ☐ spherical ☐ cylindrical	
☐ Other (describe)	
PRESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	rure Disc (psig)
	oon Adsorption ¹
□ Vent to Vapor Combustion Device¹ (vapor combustors, flare)	
☐ Conservation Vent (psig) ☐ Cond	lenser ¹
Vacuum Setting Pressure Setting	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☐ No - Two 16 oz. weighte	d emergency hatches.
¹ Complete appropriate Air Pollution Control Device Sheet	

Material Name	Flashi	ng Loss	Breath	Breathing Loss	Breathing Loss		Breathing Loss		Breathing Loss		Breathing Loss Workin		Working Loss		Working Loss		Working Loss		ons Loss	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy												
Produced Fluid (Pre-Control)	6.89	1.26	<0.01	<0.01	<0.01	<0.01	6.89	1.26	EPA - ProMax											

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) WELDED							
21A. Shell Color: Green	21B. Roof Color: Gr	een	21C. Year	Last Painted: NA			
22. Shell Condition (if metal and unlined):							
☑ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable							
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?			
23. Operating Pressure Range (psig):			•				
Must be listed for tanks using VRUs with							
24. Is the tank a Vertical Fixed Roof Tank ?	*	roof provide radius (ft):	•	s, for cone roof, provide slop (ft/ft):			
⊠ Yes □ No	5 ft.		NA				
25. Complete item 25 for Floating Roof Tanks	s \square Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
□ Va _I	oor mounted resilient s	eal	scribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal?	□ No					
25D. If yes, how is the secondary seal mounted	1? (check one) \Box Sho	e 🗆 Rim 🗆 Otl	her (describ	oe):			
25E. Is the floating roof equipped with a weath	er shield? Yes	□ No					
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply	y				
26A. Deck Type: Bolted V	Velded	26B. For bolted decks.	, provide dec	k construction:			
26C. Deck seam. Continuous sheet construction:							
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.5 ft. wide \square 5 x 12 ft. wide \square other (describe)							
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²): 26F. For column supported 26G. For column supported			26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? ☐ Yes ☒ No							
28. Closed Vent System with Enclosed Combustor? ⊠ Yes □ No							
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based	Charleston, WV					
30. Daily Avg. Ambient Temperature (°F): 70 ° F 31. Annual Avg. Maximum Temperature (°F): 65.5 ° F							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

32. Annual Avg. Minimum Temperature (°F): 44 ° F		33. Avg. Wind Speed (mph): 18 mph					
34. Annual Avg. Solar Insulation Factor (BTU)	/ft ² -day): 1,123	35. Atmospheric Pressure (psia): 14.70					
LIQUID INFORMATION		ı					
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 8	35.4		36B. Maximum (°F): 85.4			
liquid (°F): 85.4							
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0.0		37B. Maximur	m (psig): 0.0		
(psig): 0.0 (Atmosphere)	(Atmosphere)			(Atmosphere)			
38A. Minimum liquid surface temperature (°F)): 85.4 3		Corresponding v	responding vapor pressure (psia): 0.32			
39A. Avg. liquid surface temperature (°F): 85 .	9A. Avg. liquid surface temperature (°F): 85.4			39B. Corresponding vapor pressure (psia): 0.32			
40A. Maximum liquid surface temperature (°F): 85.4		40B. Corresponding vapor pressure (psia): 0.32					
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if	necessary.			
41A. Material name and composition:	Produced Flu	id					
41B. CAS number:							
41C. Liquid density (lb/gal):	8.03						
41D. Liquid molecular weight (lb/lb-mole):	19.28						
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.	From: January To: December						
42. Final maximum gauge pressure and	85 F						
temperature prior to transfer into tank used as	307 psig						
inputs into flashing emission calculations.							

LAFAYETTE AREA LABORATORY

4790 N.E, EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13060035-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well: Field: Oxford 21 Pad EQT Midstream

Alan Ball

Sample of:

Condensate-Spot

PO Box 1028

Conditions:

393 @ N.G.

Sampled by:

RM-GAS

Bridgeport, WV, 26330

Sample date:

5/28/2013

Report Date:

6/27/2013

Remarks:

Cylinder No.: GAS

Remarks:

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	12.131	16.043	2.159	0.3000	4.855
Carbon Dioxide	0.087	44.010	0.042	0.8180	0.035
Ethane	10.145	30.070	3.384	0.3562	6.403
Propane	9.322	44.097	4.560	0.5070	6.061
Iso-butane	2.446	58.123	1.577	0.5629	1.889
N-butane	6.995	58.123	4.510	0.5840	5.207
Iso-pentane	3.988	72.150	3.191	0.6244	3.446
N-pentane	5.018	72.150	4.016	0.6311	4.291
i-Hexanes	. 4.263	86.177	4.026	0.6795	4.092
n-Hexane	4.311	85.713	4.125	0.6640	4.172
2,2,4 trimethylpentane	0.025	114.231	0.032	0.6967	0.031
Benzene	0.136	78.114	0.102	0.8846	0.090
Heptanes	11.691	97.742	12.715	0.7030	12.206
Toluene	0.717	92.141	0.630	0.8719	0.569
Octanes	9.741	106.996	11.781	0.7535	10.540
E-benzene	0.074	106.167	0.040	0.8718	0.068
M-,O-,P-xylene	0.878	106.167	1.032	0.8731	0.803
Nonanes	4.769	122.539	6.704	0.7576	6.051
Decanes Plus	13.263	240.460	35.374	0.8174	29.191
•	100.000		100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6744	0.8174
Api Gravity at 60 °F	78.317	41.616
Molecular Weight	90.157	240.460
Pounds per Gallon (in Vacuum)	5.623	6.815
Pounds per Gallon (in Air)	5.617	6.807
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.722	10.730

Southern Petroleum Laboratories, Inc.

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2016	New	1.54	1,088
S002	E002	Line Heater	2016	New	1.54	1,088
S003	E003	Line Heater	2016	New	1.54	1,088
S004	E004	Line Heater	2016	New	1.54	1,088
S005	E005	Line Heater	2016	New	1.54	1,088
S006	E006	Line Heater	2016	New	1.54	1,088
S007	E007	Line Heater	2016	New	1.54	1,088
S008	E008	Line Heater	2016	New	1.54	1,088
S009	E009	Line Heater	2016	New	1.54	1,088
S010	E010	Line Heater	2016	New	1.54	1,088
S025	E025	TEG	2016	New	0.013	1,088
S026	E026	TEG	2016	New	0.013	1,088
S027	E027	TEG	2016	New	0.013	1,088
S030	E030	Line Heater	2016	New	0.75	1,088

Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTAC	CHMENT N	– INTER	NAL COM	IBUSTIO	N ENGINE	DATA S	HEET
Emission Unit I	D#1	SO	129				
Engine Manufac	cturer/Model	Ford / (CSG-637				
Manufacturers I	Rated bhp/rpm	110 /	3200				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	06/2	2016				
Engine Manufac		20	015				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include			□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJ. □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZ □ NESHAP ZZZZ/ NSF JJJJ Window □ NESHAP ZZZZ Rem Sources	
Engine Type ⁶		4S	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		P	Q				
H ₂ S (gr/100 scf)	0.	25				
Operating bhp/r	pm	110 /	3,200				
BSFC (BTU/bhj	o-hr)	6,5	52.9				
Hourly Fuel Thi	oughput	686.5 ft³/hr gal/hr		ga	/hr l/hr	ga	hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	6.01 MMf	t ³ /yr l/yr	MMft ³ /yr gal/yr			Mft ³ /yr l/yr
Fuel Usage or H Operation Meter		Yes ⊠	No 🗆	Yes □	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NO _x	0.42	1.85				
MD	CO	0.88	3.85				
MD	VOC	0.29	1.29				
AP	SO ₂	<0.01	<0.01				
AP	PM-Filterable	<0.01	0.01				
AP	PM- Condensable	<0.01	0.03				
AP	Formaldehyde	0.01	0.06				
AP	Total HAPs	0.02	0.07				
AP	GHG (CO ₂ e)	95.79	419.54				

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

 REM
 Removal of Source

³ Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

⁴ Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction

OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# S029, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Sequential Multipart **Fuel Injection** Manufacturer: Ford Model #: CSG-637 Design Operating Temperature: 1,600 °F Design gas volume: scfm Service life of catalyst: 5000 hours Provide manufacturer data? ⊠Yes \square No Volume of gas handled: 444.9 cfm at 1,600 °F Operating temperature range for NSCR/Ox Cat: °F to From Reducing agent used, if any: Reducing agent used, if any: Pressure drop against catalyst bed (delta P): 6" inches of H2O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? 5000 hours How often is performance test required? ☐ Initial ☐ Annual Every 8,760 hours of operation ☐ Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 40CFR60.4243(a)(1) - EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

EDI Ford Industrial LSI Fuel and Power Figures

CSG637

		Coo	alina				DC				NC		
		Gas	soline			L	PG				NG		
RPM	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [ft^3/hp- hr]	Fuel Consumption [ft^3/hr]	Fuel Consumption [btu/hr]
1500	42.3	47.0	0.48	3.7	52.1	57.9	0.34	4.1	47.8	53.1	6.81	361.8	379,914
1600	47.7	53.0	0.45	3.9	56.8	63.2	0.33	4.3	52.4	58.2	6.54	380.9	399,966
1700	52.2	58.0	0.43	4.1	60.0	66.7	0.33	4.6	54.7	60.8	6.58	400.0	420,019
1800	55.0	61.1	0.43	4.2	63.1	70.2	0.33	4.8	57.0	63.3	6.62	419.1	440,071
1900	58.5	65.0	0.42	4.4	66.3	73.7	0.33	5.0	60.1	66.7	6.57	438.2	460,124
2000	61.2	68.0	0.41	4.6	69.5	77.2	0.33	5.2	63.1	70.2	6.52	457.3	480,176
2100	65.7	73.0	0.40	4.7	73.1	81.2	0.33	5.5	66.0	73.4	6.49	476.4	500,229
2200	70.2	78.0	0.39	4.9	76.7	85.2	0.33	5.7	68.9	76.6	6.47	495.5	520,281
2300	74.7	83.0	0.37	5.0	81.1	90.1	0.32	5.9	73.0	81.1	6.34	514.6	540,334
2400	79.2	88.0	0.36	5.2	85.4	94.9	0.32	6.2	77.1	85.6	6.23	533.7	560,386
2500	82.8	92.0	0.35	5.3	89.4	99.3	0.31	6.4	80.7	89.6	6.17	552.8	580,439
2600	85.5	95.0	0.35	5.4	93.3	103.7	0.31	6.6	84.3	93.6	6.11	571.9	600,491
2700	87.3	97.0	0.35	5.5	95.9	106.6	0.31	6.9	87.0	96.6	6.12	591.0	620,544
2800	88.2	98.0	0.35	5.7	98.6	109.5	0.31	7.1	89.7	99.6	6.12	610.1	640,596
2900	89.1	99.0	0.36	5.8	101.0	112.3	0.32	7.3	92.6	102.9	6.11	629.2	660,649
3000	90.9	101.0	0.36	5.9	103.5	115.0	0.32	7.5	95.5	106.1	6.11	648.3	680,701
3100	93.6	104.0	0.35	6.0	104.8	116.5	0.32	7.8	97.3	108.1	6.17	667.4	700,754
3200	96.3	107.0	0.35	6.1	106.1	117.9	0.33	8.0	99.0	110.0	6.24	686.5	720,806

^{*}Fuel Consumption and BSFC listed is 100% Intermittent Load

^{*}Figures are Gross; Fan losses not accounted for.

Attachment O TANKER TRUCK LOADING DATA SHEET

\mathbf{A}'	TTACI	HME	ENT O - TA	NKER T	RUCK L	OAD]	ING DA	TA S	HEET
Emission Unit	ID#: S02	4	Emissi E024	on Point ID#	: E022, E02	3,	Year Inst	alled/Mo	dified: 2016
Emission Unit	Description	on: Ta	ank Truck Loadi	ng Rack					
				Loading A	Area Data				
Number of Pu	mps: 1		Numbe	r of Liquids	Loaded: 1		Max num (1) time:		ucks loading at one
Are tanker true If Yes, Please		re test	ed for leaks at this	or any other	r location?	□ Yes	⊠ No	□ No	t Required
Provide descri	ption of cl device. E	losed v	vent system and an s is not availabl	y bypasses.	Emissions	collecte	d and co	ntrolled	by enclosed
☐ Closed Sys	stem to tan	iker tri iker tri	loadout systems u lick passing a MAC lick passing a NSP: lick not passing an	CT level annu S level annua	al leak test?	apor reti	urn?		
	Proj	ected	Maximum Operat	ing Schedul	e (for rack o	r transf	er point as	a whole	2)
Time			Jan – Mar	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day			As needed	As ne	eeded	A	s needed		As needed
Days/week			As needed	As ne	eeded	A	s needed		As needed
			Bulk Liquid	Data (use e	xtra pages as	necess	ary)		
Liquid Name			Produced F	Fluids					
Max. Daily Th (1000 gal/day)			61.79						
Max. Annual 7 (1000 gal/yr)	Γhroughpu	t	22,551.9						
Loading Method ¹			SP						
Max. Fill Rate	(gal/min)		42						
Average Fill T (min/loading)	ime		100 mi	n					
Max. Bulk Liq Temperature (85 °F						
True Vapor Pr	essure ²		NA						
Cargo Vessel	Condition ³		U						
Control Equip Method ⁴	ment or		Enclosed Con Device (C022 or C	•					
Max. Collection (%)	on Efficien	псу	70 %						
Max. Control (%)	Efficiency		98 %						
Max.VOC Emission	Lb/hr		0.04						
Rate	Ton/yr		0.18						
Max.HAP Emission	Lb/hr		<0.01						
Rate Estimation Me	Ton/yr		<0.01 EPA AP-42,	ProMay					
1 BF	Bottom	Fill	SI SI		h Fill		SUB	Subme	rged Fill
2 At max 3 B O	aimum bulk Ballasto Other (liquid t ed Vess describe	temperature sel C	Clear	ned	ion Cont	U	Unclea	ned (dedicated service)
CA ECD TO 5 EPA	Carbon Enclos Therm EPA E	n Adso sed Cor al Oxi missio		VB F ation	Dedicate Flare		Balance (closed sy l Balanc	

Attachment Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q - PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011? ⊠ No ☐ Yes Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? ☐ Yes No No Please list approximate number.

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / **EMISSION REDUCTION DEVICE SHEETS** VAPOR COMBUSTION (Including Enclosed Combustors) **General Information** Installation Date: 2016 Control Device ID#: C022 New New ☐ Modified Relocated Maximum Design Heat Input (from Maximum Rated Total Flow Capacity Design Heat Content mfg. spec sheet) ~7,800 scfh **188,000** scfd 1,088 BTU/scf 11.66 MMBTU/hr **Control Device Information** Type of Vapor Combustion Control? Elevated Flare ☐ Ground Flare Thermal Oxidizer Manufacturer: LEED Fabrication Hours of operation per year? 8,760 Model: Enclosed Combustor 48" List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# \$011-\$020, S021, S024) Emission Emission **Emission Source Description Emission Source Description** Unit ID# Unit ID# S011-**Produced Fluid Tanks** S020 S021 Sand Trap Blowdown Tank S024 Tank Truck Loading Rack If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages. Tip Diameter Assist Type (Flares only) Flare Height Was the design per §60.18? ~25 feet 4 feet ☐ Steam □ Air ☐ Yes \square No Pressure Non Non Provide determination. Waste Gas Information Maximum Waste Gas Flow Rate Heat Value of Waste Gas Stream Exit Velocity of the Emissions Stream 63.94 (lb/hr) Variable BTU/ft3 Provide an attachment with the characteristics of the waste gas stream to be burned. **Pilot Gas Information** Number of Pilot Lights Fuel Flow Rate to Pilot Heat Input per Pilot Will automatic re-ignition Flame per Pilot be used? 0.03 BTU/hr ~30 scfh ☐ Yes ⊠ No If automatic re-ignition is used, please describe the method. Is pilot flame equipped with a monitor to detect the If Yes, what type? ⊠ Thermocouple ☐ Infrared presence of the flame? \square No ☐ Ultraviolet ☐ Camera \square Other: Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached manufacture specification sheet.

□ No

Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and

Additional information attached? ⊠ Yes

performance testing.

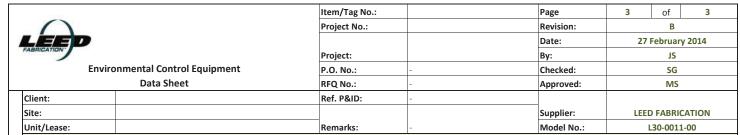
	VAPOR COMBUSTION (Including Enclosed Combustors)										
			General In								
Control De	vice ID#: C023			Installation New		016 Modified	Relocated				
Maximum 1 ~7,800 sc	Rated Total Flow Ca			Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr Design Heat Content 1,088 BTU/scf							
	Control Device Information										
Type of Vapor Combustion Control? Enclosed Combustion Device Thermal Oxidizer Ground Flare Ground Flare											
Manufacturer: LEED Fabrication Model: Enclosed Combustor 48" Hours of operation per year? 8,760											
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S011-S020 , S021 , S024)											
Emission Unit ID# Emission Source Description Emission Unit ID# Emission Source Description											
S011- S020	Produ	ced Flui	d Tanks								
S021	Sand Tra	p Blowd	lown Tank								
S024	Tank Tr	ıck Loa	ding Rack								
If this	vapor combustor c	ontrols en	nissions from more the	an six (6) em	iission ur	iits, please					
Assist Type	e (Flares only)		Flare Height	Tip Diameter Was the design per §60				er §60.18?			
Steam Pressur	e Air		~25 feet	4 feet ☐ Yes Provide determ			☐ Yes Provide determ	□ No ination.			
			Waste Gas 1	Information	l						
Maximu	ım Waste Gas Flow 63.94 (lb/hr)	Rate	Heat Value of W Variable		eam	Exit Velo	ocity of the Emissio (ft/s)	ons Stream			
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.				
			Pilot Gas I	nformation							
Number of Pilot Lights 1 Fuel Flow Rate to Pilot Flame per Pilot ~ 30 scfh Fuel Flow Rate to Pilot ~ 30 scfh Heat Input per Pilot ~ 30 BTU/hr be used? ~ 30 Yes ~ 30 No											
If automati	If automatic re-ignition is used, please describe the method.										
	ne equipped with a the flame?	monitor t Yes	o detect the No	If Yes, who		⊠ Thermoo	couple	d			
			enance procedures req ched manufacture s				intain the warranty	. (If			
Please attac	Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per \$60.18 or \$63.11(b) and performance testing.										

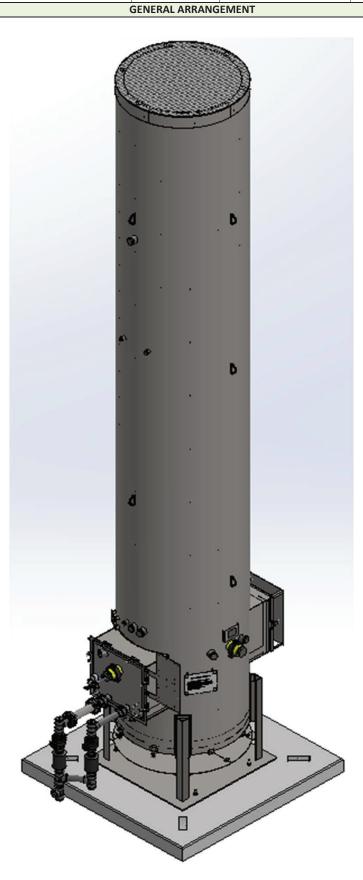
§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

Battery Pack


age	1	of	2
evision:		В	
ate:	27 1	ebruar	y 2014
v:		JS	


					Project No.:				F	Revision:		В	
1	LEED								ı	Date:		27 February 2014	
-	FABRICATION -				Project:				1	Ву:		JS	
	Enviro	ment	tal Control Equipment		P.O. No.:					Checked:		SG	_
	2.1111101		Data Sheet		RFQ No.:					Approved		MS	-
	au .	-	Data Silect							Approved		IVIS	_
	Client:				Ref. P&ID:	-							
	Site:				_				-	Supplier:		LEED FABRICATION	_
	Unit/Lease:				Remarks:	-				Model No	.:	L30-0011-00	_
					GEN	IERAL							
1	Design Code:							NDE:			LEED	D Fabrication Standards	
2	Service:							Custom	er Specs:			Yes	
3	Description:		Standard Dual	Stage 48 High Effic	ciency Combust	tor					✓	No No	
					PROCE	SS DATA							
	Con Commonition				al 0/	Process Condit	ions:						
	Gas Composition:				mol %	Varia	able		Value		Units		
4	Methane					Flow I	Rate		Up to 1	40	Mscfd		_
5	Ethane					Press	sure		Up to 1	.2	oz/in2		_
6	Propane					Temper		<u> </u>			°F		_
7	I-Butane					Molecular					•		_
8	n-Butane					Process/Wa			✓ Gas			quid	_
l	I-Pentane											quiu	-
9						Detailed Proce						ata indicatad abaya	_
10	n-Pentane					2. DRE: 98 % o					verauring f	ate indicated above.	
11	n-Hexane					3. Burner Press	•	•	Ü				
12	CO2							pr 1411	0.20 02/1112				
13	N2												
14	Helium												
15	H ₂ O												
16	C7												
17	C8												
18	С9												
19	C10												
20	C11+												
21			TOTAL										
	Other Components:				PPMV	Available Utilit	ties:						
22	H2S					Fuel / Pi	ilot Ga	as		Min.	30psig Na	tural Gas /Propane 40-50 SC	F
23	Benzene					Instrum	ent Ai	ir		NA			
24	Toluene					Pow	ver			120 V	/ 60 Hz o	r Solar Power	
25	E-Benzene					Stea	am			NA			_
26	Xylene					Purge	Gas						_
				<u> </u>	DESIG	N DATA							
27	Ambient Temperatures:					Noise Performa	ance F	Require	ments:			Under 85 dBA	_
28	•	L	.ow, °F	-20		Structural Desi	ign Co	de:					_
29			igh, °F	120		Wind Design Co	_					ASCE	_
	Design Conditions:		ressure/Temperature										_
l	Max. Relative Humidity,		· · · · · · · · · · · · · · · · · · ·	90				Pressur	e/Speed			100 mph	_
l	Elevation (ASL), ft	-						Categor				r	_
	Area Classification:			Class I I	Div 2	Seismic Design			•				_
	Electrical Design Code:			NEC		2001811		Locatio	n				-
-				l .	QUIPMENT	SPECIFICATION		2000110					
35	Type:		☐ Elevated ✓ E	Enclosed	·	Equipment Des							-
36	15-1		Above Ground			Equipment Des		ompone	int		Mata	rial / Size / Rating / Other	_
37			= -	1ultiple Stack		Rurner	C	ompone			iviater	nai / Size / Nating / Other	_
			Portable / Trailer	.a.upic Stuck		Burner	or T:-	/ Acc:	Cac Power			204 55	_
38 39			rorable / rrailer			Burne		-	Gas Burner	+		304 SS	_
40	Smokeless By:		□ Stoom □ A	Assist Air		Dilat	Bu	urner Bo	uy			Carbon Steel	_
41	omoreiess by.					Pilot		Dilet T		+		204.00	_
			☐ Gas Assist ✓ S	Staging				Pilot Tip				304 SS	_
42	Cto also		Colf Cupporting			etb. 7 m ·		ilot Line	(5)			Carbon Steel	_
	Stack:		Self Supporting	'makalass 🗆		Firebox / Stack	(61				A 1 1	_
	Flare Burner:			Smokeless	Gas Assist			Shell				Carbon Steel	_
	Pilot:	=	Intermittent	Continuous				Piping				Carbon Steel	_
46	Pilot Air Inspirator:	<u> </u>	Local	Remote	-1-1			Nozzles				Carbon Steel	_
47	Pilot Flame Control:	Ш	No 🗸	Yes (Thermocoup	pie)			Flanges				Carbon Steel	_
48		_		1				nsulatio				Blanket	_
49	Pilot Ignition:	<u> </u>	Flamefront Generator	Inspirating Ignito				ulation I				304 SS	
50		<u> </u>	Electronic 🗸	Automatic	Manual			Refracto				NA	
51 With Pilot Flame Control					Refractory Anchors				NA	_			
					- I	Ladders and Platforms							
52						La	adder	s and Pl	atforms			NA	_
52 53	Pilot Ignition Backup:								atforms nnections		P	NA er EPA requirements	_

Other

Item/Tag No.:

					Item/Tag No	.:		Page		2 of 3	
					Project No.:			Revision	1:	В	
	LEED							Date:		27 February 2014	
	FABRICATION"				Project:			Ву:		JS	
	Environr	mental	Control Equip r	ment	P.O. No.:		-	Checked	l:	SG	
			ta Sheet		RFQ No.:		-	Approve		MS	
	Client:				Ref. P&ID:		-			1	
	Site:							Supplier	r:	LEED FABRICATION	
	Unit/Lease:				Remarks:		_	Model N			
	C, 200001				EQUIPMENT	SPECIF	ICATION			100 0011 00	
56	Flame Detection:	The	ermocouple	✓ Ionization Ro		1	ry Equipment				
57			' Scanner	20111244011114		Auxiliai	Valves			NA	
58		<u> </u>	Scarrier			+	Blowers				
59	_									NA NA	
						-	Dampers		-	NA	
60							Inlet KO / Liquid Seal			NA	
61			a	0			Flame / Detonation Arrestor			Yes	
62			•	*		Instrum	nentation & Controls				
63							Solenoids / Shut-Off Valves		Check	with Sales for available config.	
64						-	Flow Meters			NA	
65							Calorimeter			NA	
66							Pressure Switches/Transmitters		<u> </u>	NA	
67						<u> </u>	Thermocouples		Check	with Sales for available config.	
68				4		<u></u>	Temperature Switches/Transmitte	ers	<u> </u>	NA	
69							BMS		Check	with Sales for available config.	
70			100	Se E			CEMS			NA	
71				E) h			Other			NA	
72											
73											
74											
75											
					FABRICATION	AND IN	ISPECTION				
76	Special requirements		Skid Mounted	✓ Concrete Pad			Eq	uipment	Info		
77			Other				Component			Weight / Dimensions	
78						Burner					
79	Inspection	✓	Vendor Standar	d			Burner Assembly				
80			Other. Specify:			Stack					
81	Material Certification	✓	Vendor Standar	d			Stack Assembly			48 " OD x 25 ' H	
82			MTR				Pilot Tip				
83			Certificate of Co	ompliance			Pilot Line(s)				
84			Other (Specify):				Stack Assembly				
85	NDE	✓	Vendor Standar	d		Auxilia	ry Equipment				
86			Radiography. Sp	pecify:			Blowers				
87			Ultrasonic. Spe	cify:			Inlet KO / Liquid Seal				
88			Liquid Penetrant	t.			Flame / Detonation Arrestor				
89			Magnetic Particl	es.			Skid				
90			PMI. Specify:			Instrum	nentation & Controls				
91			Other. Specify:				BMS				
92		<u> </u>	Vendor Standar	d			Control Panel				
93	-		Other. Specify:								
94		<u> </u>	Vendor Standar	d							
95			Other. Specify:								
96	Finished Color		Vendor Standar	d							
97			Other. Specify:								
98			-								
99											
	Additional Notes:					1					

Attachment S EMISSION CALCULATIONS

Thermoelectric Generators S025, S026, & S027

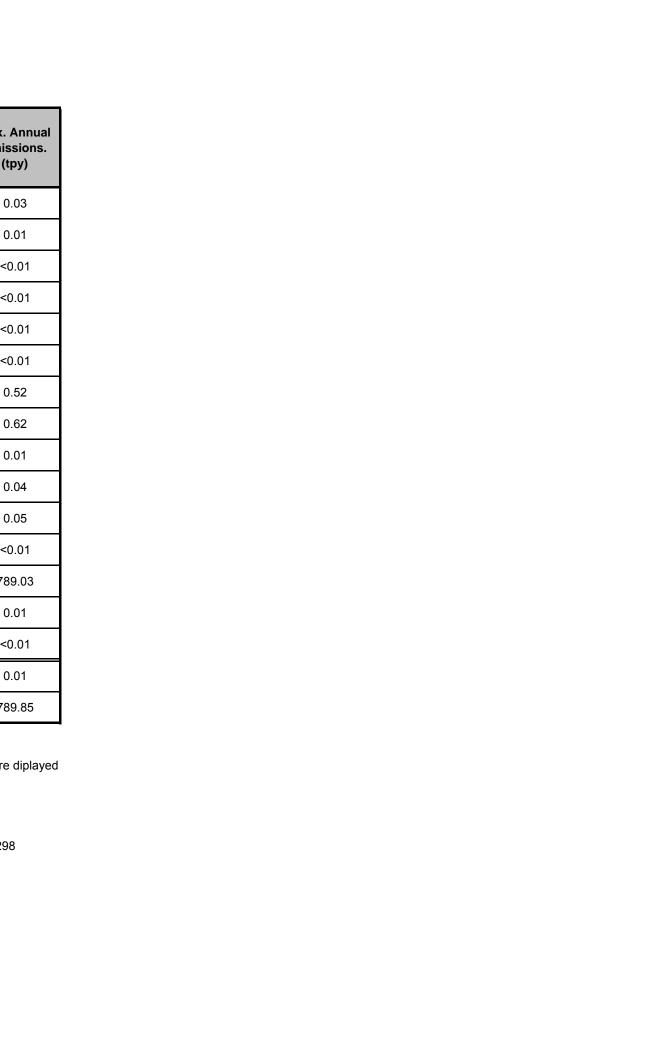
Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	1.52	6.66
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.01	<0.01
Total HAPs					1		<0.01	<0.01
Total CO₂e							1.52	6.67

Notes:

- -Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- -Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)


Line Heaters S001 - S010

Pollutant	Emission Factor	ctor Units Basis / Source (MMBtu/hr) Natural Gas (Btu/scf)		Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)		
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.12	0.52
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.14	0.62
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.04
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.01	0.05
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	180.14	789.03
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	<0.01	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO₂e							180.33	789.85

Notes:

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 10 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

^{*}Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Line Heaters S030

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	0.06	0.25
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	0.07	0.30
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	0.02
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.75	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.75	1,088	8,760	87.73	384.27
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.75	1,088	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.75	1,088	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO₂e							87.82	384.67

Notes

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for this line heaters is diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

^{*}Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Produced Fluids Tanks S011 - S020

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)	
VOCs	105.99	464.23	
Total HAPs	5.76	25.22	
Hexane	5.14	22.50	
Benzene	0.77	3.38	
Toluene	0.30	1.29	
Ethylbenzene	0.02	0.07	
Xylene	0.14	0.62	
CO ₂	0.06	0.28	
CH₄	1.35	5.92	
Total CO₂e	33.87	148.35	

Notes:

- -Emission rates for Produced Fluid Tanks S011 S020 were calculated using ProMax software. ProMax output sheets for the SHR-60 Pad are attached.
- -The emission rates displayed above are pre-control device emissions.
- $-CO_2$ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298
- -CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.
- -For emission calculation purposes, the total throughput for tanks S011 S020 is modeled as being received through a single tank. The throughput value represents the total throughput for all ten (10) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blowdown Tank S021

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	6.89	1.26
Total HAPs	0.32	0.06
Hexane	0.29	0.05
Benzene	0.043	0.008
Toluene	0.02	0.00
Ethylbenzene	0.001	0.000
Xylene	0.007	0.00
CO ₂	0.01	0.00
CH ₄	0.97	0.18
Total CO₂e	24.25	4.43

Notes:

- -Blowdown operations are conducted on the SHR-60 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- -Emissions from the Sand Trap Blowdown Tank are routed to an enclosed ground flare. The values displayed above a pre-control emission rates.
- -Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the SHR-60 Pad are attached.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -CO $_2$ and CH $_4$ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Unloading Operations S024

Total Emissions from Tank Unloading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.14	0.61	70%	98%	<0.01	<0.01	0.04	0.18
HAPs	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
CO ₂	<0.01	<0.01	70%	98%	0.52	2.29	<0.01	<0.01
CH₄	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
Total CO₂e	0.03	0.15			0.52	2.30	<0.01	0.04

⁻CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes

⁻Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

Natural Gas Compressor Engine S029

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	_	Annual Emissions (tpy)
VOC's	1.21	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.29	1.29
Formaldehyde	2.05E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	0.01	0.06
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Ethylbenze	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Xylene	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
СО	3.62	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.88	3.85
NOx	1.74	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.42	1.85
PM _{Filterable}	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	0.01
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	0.03
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	95.69	419.11
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	<0.01	<0.01
Total HAPs							•	0.02	0.07
Total CO₂e								95.79	419.54

<u>Notes</u>

- -Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.
- -Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 3.2, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- $-CO_2$ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298
- Vendor Guarantee Emissions are listed in Attachment S
- Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Enclosed Combustion Devices C022 - C023

Emissions from Tanks

Gas Composition of Vent Gas

Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/yr)	Enclosed Combustion Device Combustion Efficiency	Enclosed Combustion Device Max. Hourly Emissions (lb/hr)	Enclosed Combustion Device Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	52.99	232.11	98%	1.06	4.64	Methane	0.04	
Ī	HAPs	2.88	12.61	98%	0.06	0.25	Ethane	0.12	
	Hexane	2.57	11.25	98%	0.05	0.22	Propane	0.21	
	Benzene	0.39	1.69	98%	<0.01	0.03	Butane	0.27	
Produced Liquid Tanks S011 - S020	Toluene	0.15	0.65	98%	<0.01	0.01	Pentanes	0.17	
	Ethylbenzene	0.01	0.04	98%	<0.01	<0.01	Carbon Dioxide	0.001	
	Xylene	0.07	0.31	98%	<0.01	<0.01	Ve	nt Gas Properties	
	CO ₂	0.03	0.14	98%	144.88	634.56	Vant Oas Branadias	Mass Flow Rate	D (11 (c.3)
	CH ₄	0.68	2.96	98%	0.01	0.06	Vent Gas Properties	(lb/hr)	Density (lb/ft ³)
	VOCs	3.45	0.63	98%	0.07	0.01	Condensate Tank	59.19	0.13
	HAPs	0.16	0.03	98%	<0.01	<0.01	Blowdown Tank	4.75	0.10
	Hexane	0.14	0.03	98%	<0.01	<0.01			
	Benzene	0.02	0.00	98%	<0.01	<0.01			
Sand Trap Blowdown Tank - S021	Toluene	0.01	0.00	98%	<0.01	<0.01			
	Ethylbenzene	<0.001	<0.001	98%	<0.01	<0.01			
	Xylene	0.00	<0.001	98%	<0.01	<0.01			
	CO ₂	0.01	<0.001	98%	14.59	63.92			
	CH₄	0.48	0.09	98%	<0.01	<0.01			
	VOCs	0.07	0.30	98%	<0.01	<0.01			
Truck Loading C024	HAPs	<0.001	0.001	98%	<0.01	<0.01			
Truck Loading - S024	CO ₂	<0.001	<0.001	98%	0.26	1.15	1		
	CH ₄	<0.001	0.00	98%	<0.01	<0.01	1		
İ	VOCs	56.51	233.04		1.13	4.66	1		
	HAPs	3.04	12.64		0.06	0.25	1		
	Hexane	2.71	11.28		0.05	0.23			
Ţ	Benzene	0.41	1.69		<0.01	0.03	1		
T-4-1-	Toluene	0.16	0.65		<0.01	0.01			
Totals	Ethylbenzene	0.01	0.04		<0.01	<0.01			
	Xylene	0.07	0.31		<0.01	<0.01			
	CO ₂	0.04	0.14		159.73	699.63			
	CH₄	1.16	3.05		0.02	0.06]		
Ī	CO2e	29.08	76.46		160.31	701.15	7		

Emissions from Pilot Operations

						no monin i not operatione					
Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg X/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Yearly Emissions (tons/yr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.5		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.8		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,088	30,000	11,660,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO	84		1,088	30,000	11,660,000	<0.01	0.01	0.90	3.94	0.90	3.95
NO _x	100		1,088	30,000	11,660,000	<0.01	0.01	1.07	4.69	1.07	4.71
PM _{Condensable}	5.7	_	1,088	30,000	11,660,000	<0.01	<0.01	0.06	0.27	0.06	0.27
PM _{Filterable}	1.9	_	1,088	30,000	11,660,000	<0.01	<0.01	0.02	0.09	0.02	0.09
PM _{Total}	7.6		1,088	30,000	11,660,000	<0.01	<0.01	0.08	0.36	0.08	0.36
SO ₂	0.6		1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.03	<0.01	0.03
CO ₂		52	1,088	30,000	11,660,000	3.44	15.08	1226.46	5371.89	1229.90	5386.98
CH ₄		0.001	1,088	30,000	11,660,000	<0.01	<0.01	0.02	0.10	0.02	0.10
N ₂ O		<0.001	1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Total HAPs			<u> </u>	<u> </u>		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO ₂ e						3.45	15.10	1227.75	5377.55	1231.20	5392.65

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1.13	4.66
HAPs	0.06	0.26
Hexane	0.05	0.23
Formaldehyde	<0.01	<0.01
Benzene	<0.01	0.03
Toluene	<0.01	0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO	0.90	3.95
NOx	1.07	4.71
PM _{Condensable}	0.06	0.27
PM _{Filterable}	0.02	0.09
PM_Total	0.08	0.36
SO ₂	<0.01	0.03
CO ₂	1389.64	6086.60
CH₄	0.05	0.16
N ₂ O	<0.01	0.01
CO ₂ e	1,391.51	6,093.80

Notes:

-Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

-Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24

Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus x 1.102 tons/tonnes

$$E_{a,CH,4}(un-combusted) = V_a * (1-\eta) * X_{CH,4}$$
 (Eq. W-19)

$$E_{a,CO2}$$
 (un-combusted) = $V_a * X_{CO2}$ (Eq. W-20)

$$E_{o,CO2}$$
 (combusted) = $\sum_{i=1}^{s} (\eta * V_a * Y_j * R_j)$ (Eq. W-21)

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea.CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

 Y_j = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_j = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial I	Roads	
Constant	PM	PM-10	PM-2.5
k (lb/VMT)	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

where

k Patricle size multiplier¹

s 4.8 Silt content of road surface material (%) p 150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Efficiency (%)	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	1.17	4,932	NA	5.01	12.36	1.28	3.15	0.13	0.31
2	Employee Vehicles	4	3	1.17	200	NA	1.78	0.18	0.45	0.05	0.05	0.005
						Totals:	6.79	12.54	1.73	3.19	0.17	0.32

Notes:

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in 3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Fugitive Leaks

Default Average Co	Default Average Component Counts for Major Onshore Natural Gas Production Equipment 1												
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves									
Wellheads	8	38	0.5	0									
Separators	1	6	0	0									
Meters/Piping	12	45	0	0									
Compressors	12	57	0	0									
In-line Heaters	14	65	2	1									
Dehydrators	24	90	2	2									

Well Specific Equipment Counts										
Facility Equipment Type	Count on Site									
Wellheads	10									
Separators	11									
Meters/Piping	12									
Compressors	1									
In-line Heaters	11									
Dehydrators	0									

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition														
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	4.16	1.71	0.71	0.22	0.14	0.03	0.009	0.41	0.01	0.014	<0.001	0.007	0.19	78.57
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

				Fugitive	Emissions								
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO₂e (lbs/hr)	Total CO₂e (tons/yr)
Valves	401	0.027	8760	0.12	0.51	0.011	0.05	0.002	0.010	0.35	1.55	8.83	38.67
Connectors	1758	0.003	8760	0.06	0.25	0.005	0.02	0.001	0.005	0.17	0.75	4.30	18.84
Open-ended Lines	27	0.06	8760	0.02	0.08	0.002	0.007	<0.001	0.002	0.05	0.24	1.34	5.88
Pressure Relief Valves	11	0.04	8760	0.005	0.02	<0.001	0.002	<0.001	<0.001	0.01	0.06	0.36	1.57
			Total Emissions:	0.19	0.85	0.02	0.08	<0.01	0.02	0.59	2.60	14.83	64.96

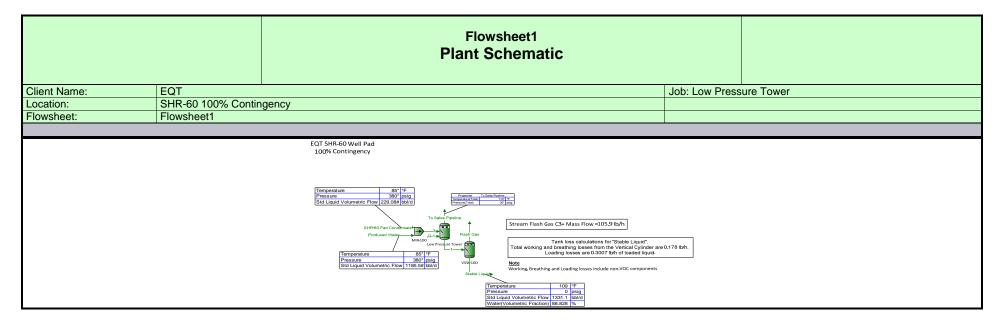
²- Table W-1A to 40CFR98 Subpart W

Notes:

-Gas Composition data for SHR-60 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations:Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Total SHR 60 Site Emission Levels


	VC	Cs	H	APs	С	0	N	O _x	PM (Total)	PM (Fi	terable)	PM (Con	densable)	S	SO ₂	С	O ₂	С	H₄	N	20	C	O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S002)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S003)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S004)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S005)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S006)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S007)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S008)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S009)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S010)	<0.01	0.03	<0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	<0.01	0.01	<0.01	0.04	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.66	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S026)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.66	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.66	<0.01	<0.01	<0.01	<0.01	1.52	6.67
Enclosed Combustion Unit (C022)	1.13	4.66	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	<0.01	0.03	1,389.64	6,086.60	0.05	0.16	<0.01	0.01	1,391.51	6,093.80
Enclosed Combustion Unit (C023)	1.13	4.66	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	<0.01	0.03	1,389.64	6,086.60	0.05	0.16	<0.01	0.01	1,391.51	6,093.80
Tank Truck Loading Activities (E024)	0.04	0.18	<0.01	<0.01													<0.01	<0.01	<0.01	<0.01			<0.01	0.04
Compressor Engine (E029)	0.29	1.29	0.02	0.07	0.88	3.85	0.42	1.85	<0.01	0.03	<0.01	0.01	<0.01	0.03	<0.01	<0.01	95.69	419.11	<0.01	<0.01	<0.01	<0.01	95.79	419.54
Line Heater (S030)	<0.01	0.02	<0.01	<0.01	0.06	0.25	0.07	0.30	<0.01	0.02	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	87.73	384.27	<0.01	<0.01	<0.01	<0.01	87.82	384.67
Haul Roads									6.79	12.54	6.79	12.54												
Fugitives Leaks	0.19	0.85	0.02	0.08			-										<0.01	0.02	0.59	2.60			14.83	64.96
Totals	2.79	12.00	0.16	0.78	3.93	17.21	4.06	17.76	7.06	13.78	6.83	12.84	0.12	0.94	0.01	0.06	4,768.70	20,886.92	0.69	3.08	<0.01	0.02	4,789.34	20,975.31

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluid tanks, sand trap blowdown tanks, and tank truck loading are routed to either C022 or C023. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C022 and C023 are additive.

Total SHR-60 Site Emission Levels - HAP Speciation

							·							
	Total	HAPs	Forma	ldehyde	He	kane	Ben	zene	Toluene		Ethylb	enzene	Xy	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S002)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S003)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S004)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S005)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S006)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S007)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S008)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S009)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S010)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S026)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C022)	0.06	0.26	<0.01	<0.01	0.05	0.23	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C023)	0.06	0.26	<0.01	<0.01	0.05	0.23	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E029)	0.02	0.07	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S030)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	0.02	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.16	0.78	0.01	0.06	0.11	0.56	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluid tanks, sand trap blowdown tanks, and tank truck loading are routed to either C022 or C023. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C022 and C023 are additive.

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: Low Pressure Tower SHR-60 100% Contingency Location:

Flowsheet1 Flowsheet:

Connections Flash Gas Produced SHR-60 Pad Stable Liquid To Sales Water Condensate Pipeline From Block VSSL-100 VSSL-100 Low Pressure Tower To Block MIX-100 MIX-100 ----

	Stream C	omposition			
Mole Fraction	Flash Gas	Produced Water %	SHR-60 Pad Condensate %	Stable Liquid %	To Sales Pipeline %
Nitrogen	76	0 *	0 *	0	0
Methane	3.78482	0 *	13.84 *	0.000328972	30.5349
Carbon Dioxide	0.0655574	0 *	0.056 *	3.44258E-05	0.112194
Ethane	11.5139	0 *	11.604 *	0.00439144	23.8221
Propane	21.2452	0 *	10.834 *	0.0248923	18.8025
Isobutane	7.73392	0 *	3.233 *	0.0211139	4.31487
n-Butane	19.1241	0 *	8.093 *	0.0723521	9.34454
Isopentane	8.44747	0 *	4.712 *	0.0763769	3.28075
n-Pentane	8.39868	0 *	5.407 *	0.0989041	3.1266
Isohexane	4.2673	0 *	4.842 *	0.113496	1.45574
n-Hexane	2.68024	0 *	3.864 *	0.0956357	0.89988
Benzene	0.0970732	0 *	0.148 *	0.00369736	0.0328125
Cyclohexane	0.412058	0 *	0.738 *	0.0189396	0.137628
Heptane	2.41844	0 *	8.689 *	0.239249	0.798056
Toluene	0.14405	0 *	0.609 *	0.0169386	0.0473435
Octane	0.980909	0 *	9.628 *	0.276271	0.32448
Ethylbenzene	0.00709696	0 *	0.081 *	0.00233188	0.0023474
o-Xylene	0.059972	0 *	0.882 *	0.025505	0.0198783
Nonane	0.170848	0 *	4.579 *	0.13334	0.0566006
Decane	0.070007	0 *	5.147 *	0.150677	0.0237685
C11	0.00627989	0 *	1.371 *	0.0402182	0.00216188
C12	0.00162062	0 *	0.834 *	0.0244801	0.000565373
C13	0.000161017	0 *	0.255 *	0.00748719	5.74627E-05
C14	0.000111588	0 *	0.554 *	0.0162679	4.06919E-05
Water	8.37016	100 *	0 *	98.5371	2.86024

	Flash Gas	Produced Water	SHR-60 Pad Condensate	Stable Liquid	To Sales Pipeline
Mass Fraction	%	%	%	%	.%
Nitrogen	0	0 *	0 *	0	0
Methane	1.14071	0 *	3.073 *	0.000273724	13.2396
Carbon Dioxide	0.0542033	0 *	0.0341107 *	7.85802E-05	0.133451
Ethane	6.50431	0 *	4.82929 *	0.00684873	19.3601
Propane	17.6001	0 *	6.61211 *	0.0569303	22.4088
Isobutane	8.445	0 *	2.60078 *	0.0636492	6.77824
n-Butane	20.8824	0 *	6.5104 *	0.21811	14.6794
Isopentane	11.4502	0 *	4.70533 *	0.285808	6.39748
n-Pentane	11.3841	0 *	5.39935 *	0.370106	6.0969
Isohexane	6.90867	0 *	5.77516 *	0.507278	3.39059
n-Hexane	4.33925	0 *	4.60868 *	0.427451	2.09592
Benzene	0.142454	0 *	0.160005 *	0.0149793	0.0692729
Cyclohexane	0.651507	0 *	0.859638 *	0.0826716	0.313053
Heptane	4.5527	0 *	12.0504 *	1.2434	2.16131
Toluene	0.249351	0 *	0.77663 *	0.0809472	0.117899
Octane	2.10504	0 *	15.2218 *	1.63679	1.00177
Ethylbenzene	0.0141551	0 *	0.119021 *	0.0128401	0.00673559
o-Xylene	0.119616	0 *	1.296 *	0.14044	0.0570384
Nonane	0.411664	0 *	8.12833 *	0.886986	0.196202
Decane	0.187132	0 *	10.1358 *	1.11193	0.0914025
C11	0.0184413	0 *	2.96603 *	0.326052	0.00913314
C12	0.00518612	0 *	1.96619 *	0.216272	0.00260283

Process Streams Report All Streams Tabulated by Total Phase

Job: Low Pressure Tower Client Name: EQT Location: SHR-60 100% Contingency

Flowsheet: Flowsheet1

	Flash Gas	Produced Water	SHR-60 Pad Condensate	Stable Liquid	To Sales Pipeline
Mass Fraction	%	%	%	%	%
C13	0.0005577	0 *	0.650678 *	0.0715932	0.000286328
C14	0.000415903	0 *	1.52118 *	0.16739	0.000218188
Water	2.83291	100 *	0 *	92.0712	1.39268

	Flash Gas	Produced	SHR-60 Pad	Stable Liquid	To Sales
Mass Flow	lb/h	Water lb/h	Condensate lb/h	lb/h	Pipeline lb/h
Nitrogen	0	0 *	0 *	0	0
Methane	1.3503	0 *	63.4912 *	0.0513916	62.0895
Carbon Dioxide	0.0641626	0 *	0.70476 *	0.0147534	0.625843
Ethane	7.69941	0 *	99.7778 *	1.28585	90.7925
Propane	20.8339	0 *	136.613 *	10.6887	105.09
Isobutane	9.99669	0 *	53.7346 *	11.9501	31.7878
n-Butane	24.7193	0 *	134.511 *	40.9502	68.8416
Isopentane	13.5541	0 *	97.2167 *	53.6604	30.0022
n-Pentane	13.4758	0 *	111.556 *	69.4874	28.5925
Isohexane	8.17806	0 *	119.32 *	95.2415	15.9008
n-Hexane	5.13654	0 *	95.2197 *	80.2539	9.82921
Benzene	0.168628	0 *	3.30586 *	2.81237	0.324868
Cyclohexane	0.771215	0 *	17.7609 *	15.5216	1.46812
Heptane	5.38921	0 *	248.973 *	233.448	10.1359
Toluene	0.295167	0 *	16.0459 *	15.1978	0.552907
Octane	2.49182	0 *	314.497 *	307.308	4.698
Ethylbenzene	0.0167559	0 *	2.45908 *	2.41074 N	
o-Xylene	0.141594	0 *	26.7767 *	26.3676	0.267492
Nonane	0.487303	0 *	167.939 *	166.532	0.920124
Decane	0.221516	0 *	209.416 *	208.766	0.428649
C11	0.0218297	0 *	61.281 *	61.2163	0.0428315
C12	0.00613901	0 *	40.6234 *	40.605	0.0122064
C13	0.000660171	0 *	13.4436 *	13.4416	0.00134279
C14	0.000492322	0 *	31.4291 *	31.4276	0.00102323
Water	3.35343	17296.3 *	0 *	17286.4	6.53122

	Stream Properties									
Property	Units	Flash Gas	Produced Water	SHR-60 Pad Condensate	Stable Liquid	To Sales Pipeline				
Temperature	°F	108.929	85 *	85 *	108.929	110 *				
Pressure	psia	14.6959 *	394.696 *	394.696 *	14.6959	44.6959 *				
Mole Fraction Vapor	%	100	0	6.42126	0	100				
Mole Fraction Light Liquid	%	0	100	93.5787	1.46255	0				
Mole Fraction Heavy Liquid	%	0	0	0	98.5374	0				
Molecular Weight	lb/lbmol	53.2283	18.0153	72.251	19.2804	36.9992				
Mass Density	lb/ft^3	0.13078	62.1448	27.4167	59.6512	0.278803				
Molar Flow	lbmol/h	2.22389	960.088	28.5961	973.785	12.6751				
Mass Flow	lb/h	118.374	17296.3	2066.1	18775	468.968				
Vapor Volumetric Flow	ft^3/h	905.136	278.322	75.359	314.747	1682.08				
Liquid Volumetric Flow	gpm	112.848	34.6999	9.39541	39.2412	209.714				
Std Vapor Volumetric Flow	MMSCFD	0.0202544	8.74413	0.260442	8.86887	0.11544				
Std Liquid Volumetric Flow	sgpm	0.415757	34.5765 *	6.68145 *	38.824	2.01812				
Compressibility		0.980229	0.019575	0.177948	0.000778441	0.970234				
Specific Gravity		1.83783	0.996405		0.956423	1.27748				
API Gravity			9.96572		14.8718					
Enthalpy	Btu/h	-127101	-1.17834E+08	-2.08335E+06	-1.18729E+08	-558794				
Mass Enthalpy	Btu/lb	-1073.72	-6812.66	-1008.35	-6323.76	-1191.54				
Mass Cp	Btu/(lb*°F)	0.422505	0.981553	0.535379	0.945642	0.444792				
Ideal Gas CpCv Ratio	·	1.09762	1.32512	1.0736	1.29935	1.13978				
Dynamic Viscosity	cР	0.00838817	0.833673		0.607188	0.00957358				
Kinematic Viscosity	cSt	4.00409	0.837472		0.632085	2.14366				
Thermal Conductivity	Btu/(h*ft*°F)	0.0106897	0.353848		0.330572	0.0138941				

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job: Low P	ressure Tower
Location:	SHR-60 100% (Contingency		
Flowsheet:	Flowsheet1			

Stream Properties										
Property	Units	Flash Gas	Produced Water	SHR-60 Pad Condensate	Stable Liquid	To Sales Pipeline				
Surface Tension	lbf/ft		0.00492858		0.00435807 ?					
Net Ideal Gas Heating Value	Btu/ft^3	2677.08	0	3700.05	77.4786	1925.5				
Net Liquid Heating Value	Btu/lb	18903.7	-1059.76	19280.3	536.644	19600				
Gross Ideal Gas Heating Value	Btu/ft^3	2905.34	50.31	3998.81	133.073	2099.08				
Gross Liquid Heating Value	Btu/lb	20531.1	0	20849.4	1630.88	21380.4				

		All St	reams Report treams by Total Phase			
Client Name:	EQT			Job: Low P	ressure Tower	
Location:	SHR-60 100% C	Contingency				
Flowsheet:	Flowsheet1					
				•		
		Conn	ections			
		1	3			
From Block		Low Pressure Tower	MIX-100			
To Block		VSSL-100	Low Pressure			
			Tower			
		Stream C	omposition			
		1	3			
Mole Fraction		%	%			
Nitrogen		0	0			
Methane		0.00895216	0.4003			
Carbon Dioxide		0.000183724	0.00161971			
Ethane	· 	0.0306166	0.335627			
Propane		0.0732441	0.313356			
Isobutane		0.038688	0.0935093			
n-Butane		0.115763	0.234077			
Isopentane		0.095451	0.136287			
n-Pentane		0.117816	0.156389			
Isohexane		0.122961	0.140047			
n-Hexane		0.101525	0.11176			
Benzene		0.00391013	0.00428066			
Cyclohexane		0.0198353	0.0213455			
Heptane		0.244215	0.251315			
Toluene		0.0172283	0.0176143			
Octane		0.277877	0.278474			
Ethylbenzene		0.00234273	0.00234279			
o-Xylene		0.0255836	0.0255104			
Nonane		0.133425	0.13244			
Decane		0.150493	0.148869			
C11		0.0401408	0.0396539			
C12		0.024428	0.0241221			
C13 C14		0.0074705 0.0162311	0.00737546 0.0160235			
Water		98.3316	97.1077			
vvaler		96.3316	97.1077			
				• (
Mana Frantism		1	3			
Mass Fraction		%	%			
Nitrogen		0 00741906	0 227011			
Methane Carbon Dioxide		0.00741896 0.000417692	0.327911 0.00363985			
Ethane		0.000417692	0.00363985			
Propane		0.0475377	0.705558			
Isobutane		0.116161	0.70558			
n-Butane		0.116161	0.694704			
Isopentane		0.34756	0.502091			
n-Pentane		0.333737	0.576148			
Isohexane		0.439113	0.616249			
n-Hexane		0.347383	0.491778		+	
Benzene		0.43190	0.0170737		+	
Cyclohexane		0.0862356	0.0917293		+	
Heptane		1.26413	1.28586			
Toluene		0.0820023	0.0828717			
Octane		1.63972	1.62427			
Ethylbenzene		0.0128484	0.0127003			
o-Xylene		0.140309	0.138292			
Nonane		0.884008	0.867349			
Decane		1.10614	1.08156			
C11		0.324125	0.316496			
C12		0.214949	0.209806			
C13		0.0711482	0.0694318			
C14		0.166344	0.162321			

Olivert Niver			Process Str All St Tabulated b		T.		
	QT	0 6			Job: Low F	Pressure Tower	
	SHR-60 100% (lowsheet1	Contingency					
Flowsneet. F	lowsneeri						
			1	2			
Mass Fraction			%	3 %			
Water			91.5121	89.3293			
VVator			31.0121	03.0230			
			1	3			
Mass Flow			lb/h	lb/h			
Nitrogen			0	0			
Methane			1.40169	63.4912			
Carbon Dioxide			0.0789161	0.70476			
Ethane			8.98526	99.7778			
Propane			31.5226	136.613			
Isobutane n-Butane			21.9468 65.6695	53.7346 134.511			
Isopentane			67.2145	134.511 97.2167			
n-Pentane			82.9632	111.556			
Isohexane			103.42	119.32			
n-Hexane			85.3905	95.2197			
Benzene			2.981	3.30586			
Cyclohexane			16.2928	17.7609			
Heptane			238.837	248.973			
Toluene			15.493	16.0459			
Octane			309.799 2.42749	314.497 2.45908			
Ethylbenzene o-Xylene			26.5092	26.7767			
Nonane			167.019	167.939			
Decane			208.987	209.416			
C11			61.2382	61.281			
C12			40.6112	40.6234			
C13			13.4423	13.4436			
C14			31.4281	31.4291			
Water			17289.7	17296.3			
			Stream I	Properties		,	
Property		Units	1	3			
Temperature		°F	110	85.0985			
Pressure		psia	44.6959	394.696			
Mole Fraction Vapor	d	%	1.66422	0.131056			
Mole Fraction Light Lic Mole Fraction Heavy L		% %	1.66432 98.3357	2.70833 97.1606			
Molecular Weight	iquiu	lb/lbmol	19.3578	19.584			
Mass Density		lb/ft^3	59.3914	55.8162			
Molar Flow		lbmol/h	976.009	988.684			
Mass Flow		lb/h	18893.4	19362.4			
Vapor Volumetric Flow		ft^3/h	318.116	346.895			
Liquid Volumetric Flow		gpm	39.6613	43.2492			
Std Vapor Volumetric I		MMSCFD	8.88913	9.00457			
Std Liquid Volumetric I	IOW	sgpm	39.2398	41.2579			
Compressibility Specific Gravity			0.00238294 0.952258	0.0236879			
API Gravity			15.429				
Enthalpy		Btu/h	-1.18856E+08	-1.19917E+08			
Littiaipy		Btu/lb	-6290.87	-6193.3			
Mass Enthalpy		Btu/(lb*°F)	0.943505	0.934607			
Mass Enthalpy Mass Cp			1.29785	1.29587			
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio			0.504066				
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity		сР	0.594266				
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity		cSt	0.619472				
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity Thermal Conductivity		cSt Btu/(h*ft*°F)	0.619472 0.328064				
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension	Value	cSt Btu/(h*ft*°F) lbf/ft	0.619472 0.328064 0.00431168 ?	107.049			
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension Net Ideal Gas Heating		cSt Btu/(h*ft*°F) lbf/ft Btu/ft^3	0.619472 0.328064 0.00431168 ? 83.402	107.018			
Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension	ue	cSt Btu/(h*ft*°F) lbf/ft	0.619472 0.328064 0.00431168 ?	107.018 1110.66 164.514			

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job: Low Pre	essure Tower
Location:	SHR-60 100% C	Contingency		
Flowsheet:	Flowsheet1			
			•	
Remarks				

Energy Stream Report									
Client Name:	lient Name: EQT Job: Low Pr						essure :	Tower	
Location:	SHR-60	100% Contingency	/						
Flowsheet:	Flowshe	et1							
				Energy Stre	ams				
Energy Stream		Energy R	ate	Power		F	rom Block		To Block
Q-1		502326	Btu/h	197.422	hp				Low Pressure Tower

Blocks Low Pressure Tower

Separator Report

Client Name:	EQT	Job: Low Pressure Tower
Location:	SHR-60 100% Contingency	Modified: 9:42 AM, 1/21/2016
Flowsheet:	Flowsheet1	Status: Solved 10:28 AM, 2/18/2016

Connections									
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block				
3	Inlet	MIX-100	To Sales Pipeline	Vapor Outlet					
1	Light Liquid Outlet	VSSL-100	Q-1	Energy					

Block Parameters					
Pressure Drop	350 psi	Main Liquid Phase	Light Liquid		
Mole Fraction Vapor	1.28202 %	Heat Duty	502326 Btu/h		
Mole Fraction Light Liquid	1.64298 %	Heat Release Curve Type	Plug Flow		
Mole Fraction Heavy Liquid	97.075 %	Heat Release Curve	5		
		Increments			

Simulation Initiated on 2/18	/2016 10:29:14 AM	SHR-60_LowPressur	e1ower_2.18.16.pmx			Page 1 of
		Blo MIX Mixer/Split	-100			
Client Name:	EQT			Job: Low P	ressure Tower	
Location:	SHR-60 100% Contingency			Modified: 2	14 PM, 7/24/20	014
Flowsheet:	Flowsheet1			Status: Solv	ved 10:28 AM,	2/18/2016
		Conne	ctions			
Stream	Connection Type	Other Block	Stream	Connect	ion Type	Other Block
Produced Water	Inlet		SHR-60 Pad Condensate	In	et	
3	Outlet	Low Pressure Tower				
		Block Pa	rameters			
Pressure Drop		0 psi	Fraction to PStream	3		100 %
Remarks						

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job: Low Pressure Tower
Location:	SHR-60 100% Contingency	Modified: 12:29 PM, 12/3/2015
Flowsheet:	Flowsheet1	Status: Solved 10:28 AM, 2/18/2016

	Connections						
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
1	Inlet	Low Pressure Tower	Flash Gas	Vapor Outlet			
Stable Liquid	Light Liquid Outlet						

Block Parameters					
Pressure Drop	30	psi	Main Liquid Phase	Light Liquid	
Mole Fraction Vapor	0.227856	%	Heat Duty	0	Btu/h
Mole Fraction Light Liquid	1.45922	%	Heat Release Curve Type	Plug Flow	
Mole Fraction Heavy Liquid	98.3129	%	Heat Release Curve	5	
, ,			Increments		

Flowsheet Environment Environment1

Client Name: EQT Job: Low Pressure Tower SHR-60 100% Contingency Location: Flowsheet: Flowsheet1

Environment Settings

Freeze Out Temperature Threshold Difference Number of Poynting Intervals 0 10 °F Gibbs Excess Model 77 °F Phase Tolerance 1 %

Evaluation Temperature

C	O	m	n	O	n	ei	nt	S

Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator
Nitrogen	False	False	Heptane	False	False
Methane	False	False	Toluene	False	False
Carbon Dioxide	False	False	Octane	False	False
Ethane	False	False	Ethylbenzene	False	False
Propane	False	False	o-Xylene	False	False
Isobutane	False	False	Nonane	False	False
n-Butane	False	False	Decane	False	False
Isopentane	False	False	C11	False	False
n-Pentane	False	False	C12	False	False
Isohexane	False	False	C13	False	False
n-Hexane	False	False	C14	False	False
Benzene	False	False	Water	False	True
Cyclohexane	False	False		·	

Physical Property Method Sets

	,	porty mountain conc	
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson

Calculator Report

Client Name: EQT Job: Low Pressure Tower
Location: SHR-60 100% Contingency

Simple Solver 1

Source Code

Residual Error (for CV1) = TP / 485854 - 1

Calculated Variable [CV1]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!SHR-60 Pad Condensate!Phases!Total!Properties!Std Liquid Volumetric Flow

Value 229.078
Unit bbl/d

Measured Variable [TP]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Properties!Std Liquid Volumetric Flow Value 485855
Unit bbl/yr

	Solve	er Properties	Status: Solved
Error	2.13973E-06	Iterations	5
Calculated Value	6.68145 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

Remarks

Simple Solver 2 Source Code

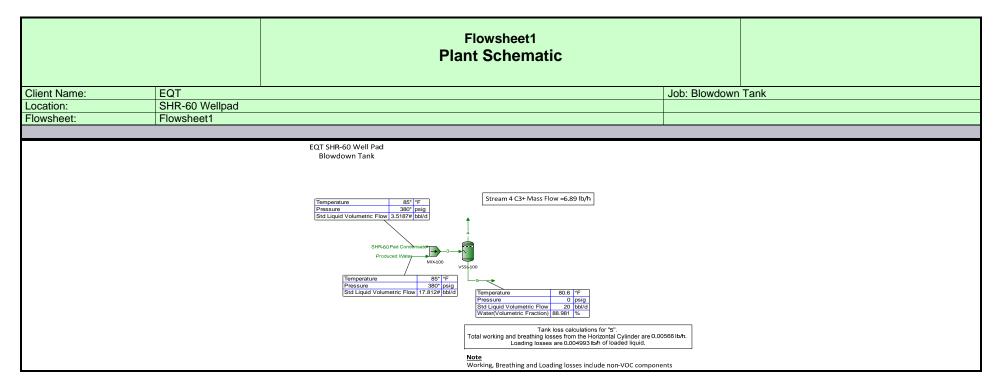
Residual Error (for CV1) = LF /89 - 1

Calculated Variable [CV1]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Flow Value 1185.48
Unit bbl/d

Measured Variable [LF]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water


Value 89.0085
Unit %

	Solve	er Properties	Status: Solved
Error	9.60174E-05	Iterations	5
Calculated Value	34.5765 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

^{*} User Specified Values

Client Name:	EQT	User Val	ue Sets Report	Job: Low P	Pressure Tower
Location:	SHR-60 100% (Contingency			
		Cn+	- Flow/Frac.		
			ue [CnPlusSum]		
* Parameter		105.907 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks					
	et was programma	tically generated. GUID={E867C	:485-3D3C-49CB-BC24-EA16	6096DB2B1}	
		Та	nk Losses		
			ue [ShellLength]		
* Parameter		20 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
* D			lue [ShellDiam]		
* Parameter * Lower Bound		12 ft 0 ft	Upper Bound * Enforce Bounds		False
Lower Bound		U II	Lilloice Bourius		i dise
		User Val	ue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [BreatherVacP]		
* Parameter Lower Bound		-0.03 psig	Upper Bound * Enforce Bounds		False
Lower Bound			Efficied Bourius		i disc
		User Valu	ue [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
			alue [OpPress]		
* Parameter Lower Bound		0 psig	Upper Bound * Enforce Bounds		False
Lower Bound			Emerco Boarido		raioo
		User Value	e [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			THE DOCUMENT		
* D			e [MaxPercentLiq]		
* Parameter Lower Bound		90 %	Upper Bound * Enforce Bounds		False
200. 200110		,,,			. 4100
		User Va	lue [AnnNetTP]		
* Parameter		1330.08 bbl/day	Upper Bound		
* Lower Bound		0 bbl/day	* Enforce Bounds		False
			Value IODE/O		
* Doromotor			Value [OREff]		
* Parameter Lower Bound		0 %	Upper Bound * Enforce Bounds		False
					. 3.00
		User Valu	ue [AtmPressure]		
* Parameter		14.1085 psia	Upper Bound		
Lower Bound			* Enforce Bounds		False

			lue Sets Report		
ent Name:	EQT			Job: Low P	ressure Tower
cation:	SHR-60 100% C	Contingency			
		Usei	r Value [TVP]		
Parameter		0.326766 psia	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Hear Value	e [AvgLiqSurfaceT]		
Parameter		57.7675 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
			744 Li O (T)		
Parameter		User Value 66.3119 °F	E [MaxLiqSurfaceT] Upper Bound		
Lower Bound		00.3119	* Enforce Bounds		False
			ue [TotalLosses]		
Parameter Lower Bound		0.177959 lb/h	Upper Bound * Enforce Bounds		Falsa
Lower Bound		lb/h	" Enforce Bounds		False
		Hsar Value	e [WorkingLosses]		
Parameter		0.108907 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
Doromotor		0.0210027 ton/yr	E [StandingLosses] Upper Bound		
Parameter Lower Bound		0.0210027 ton/yr	* Enforce Bounds		False
		ļ			
		User Value	e [RimSealLosses]		
Parameter		0 ton/yr	Upper Bound		F.I
Lower Bound			* Enforce Bounds		False
		User Value	e [WithdrawalLoss]		
Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Haan Valu	. [] andingland		
Parameter		0.300652 lb/h	e [LoadingLosses] Upper Bound		
Lower Bound			* Enforce Bounds		False
			[DeckFittingLosses]		
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bouria			Efficice Bourius		Faise
		User Value	[DeckSeamLosses]		
Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Heen Velice	[Floobing] access		
Parameter		User value 0 ton/yr	E [FlashingLosses] Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [GasMoleWeight]		
Parameter Lower Bound		0.027359 kg/mol	Upper Bound * Enforce Bounds		False
LOWE! DOUIN			Enlorce bounds		Faise

5

VSSL-100

98.5426

4

VSSL-100

3

MIX-100

From Block

Water

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: Blowdown Tank
Location: SHR-60 Wellpad
Flowsheet: Flowsheet1

Connections

SHR-60 Pad

Condensate

Produced

Water

FIOIII BIOCK			IVII X- 1 UU	V 3 3 L- 100	V 33L-100
To Block	MIX-100	MIX-100	VSSL-100		
	Stream C	omposition			
	Produced Water	SHR-60 Pad Condensate	3	4	5
Mole Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	13.84 *	0.408951	25.7971	0.00246404
Carbon Dioxide	0 *	0.056 *	0.00165471	0.1008	6.7302E-05
Ethane	0 *	11.604 *	0.34288	21.1351	0.00997872
Propane	0 *	10.834 *	0.320128	18.4607	0.0296812
Isobutane	0 *	3.233 *	0.0955302	4.84604	0.0194702
n-Butane	0 *	8.093 *	0.239136	11.1759	0.0640277
Isopentane	0 *	4.712 *	0.139232	4.60122	0.0677918
n-Pentane	0 *	5.407 *	0.159769	4.54045	0.0896299
Isohexane	0 *	4.842 *	0.143074	2.2804	0.108853
n-Hexane	0 *	3.864 *	0.114175	1.41404	0.0933633
Benzene	0 *	0.148 *	0.00437317	0.0519062	0.00361213
Cyclohexane	0 *	0.738 *	0.0218068	0.21807	0.0186644
Heptane	0 *	8.689 *	0.256747	1.20575	0.241552
Toluene	0 *	0.609 *	0.017995	0.0723406	0.0171249
Octane	0 *	9.628 *	0.284493	0.449907	0.281844
Ethylbenzene	0 *	0.081 *	0.00239343	0.00326903	0.00237941
o-Xylene	0 *	0.882 *	0.0260617	0.0269983	0.0260467
Nonane	0 *	4.579 *	0.135302	0.0716677	0.136321
Decane	0 *	5.147 *	0.152086	0.0268376	0.154091
C11	0 *	1.371 *	0.0405109	0.00218499	0.0411246
C12	0 *	0.834 *	0.0246434	0.000525165	0.0250296
C13	0 *	0.255 *	0.00753486	4.66753E-05	0.00765475
C14	0 *	0.554 *	0.0163698	2.89843E-05	0.0166315

	Produced Water	SHR-60 Pad Condensate	3	4	5
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	3.073 *	0.334418	10.1975	0.00205004
Carbon Dioxide	0 *	0.0341107 *	0.00371208	0.10931	0.00015361
Ethane	0 *	4.82929 *	0.525546	15.6594	0.015561
Propane	0 *	6.61211 *	0.719561	20.0584	0.0678767
Isobutane	0 *	2.60078 *	0.283029	6.94034	0.0586891
n-Butane	0 *	6.5104 *	0.708492	16.0058	0.192999
Isopentane	0 *	4.70533 *	0.512056	8.18002	0.253659
n-Pentane	0 *	5.39935 *	0.587582	8.07197	0.335371
Isohexane	0 *	5.77516 *	0.628479	4.84224	0.486483
n-Hexane	0 *	4.60868 *	0.501538	3.00259	0.417256
Benzene	0 *	0.160005 *	0.0174125	0.0999052	0.0146327
Cyclohexane	0 *	0.859638 *	0.0935497	0.452222	0.0814631
Heptane	0 *	12.0504 *	1.31138	2.97704	1.25525
Toluene	0 *	0.77663 *	0.0845165	0.164238	0.08183
Octane	0 *	15.2218 *	1.65651	1.26634	1.66966
Ethylbenzene	0 *	0.119021 *	0.0129524	0.00855169	0.0131007
o-Xylene	0 *	1.296 *	0.141037	0.0706267	0.14341
Nonane	0 *	8.12833 *	0.884562	0.22649	0.906738
Decane	0 *	10.1358 *	1.10303	0.0940903	1.13703
C11	0 *	2.96603 *	0.322777	0.00841555	0.33337
C12	0 *	1.96619 *	0.21397	0.0022042	0.221106
C13	0 *	0.650678 *	0.0708098	0.000212036	0.0731888

100

0

97.0452

3.51878

^{*} User Specified Values

Process Streams Report All Streams **Tabulated by Total Phase** EQT Job: Blowdown Tank Client Name: SHR-60 Wellpad Location: Flowsheet: Flowsheet1 **Produced** SHR-60 Pad 3 4 5 Water Condensate **Mass Fraction** % % % % % 1.52118 0.165542 0.000141687 0.171116 C14 0 Water 100 89.1175 1.56202 92.068 0 **Produced** SHR-60 Pad 3 4 5 Water Condensate **Mass Flow** lb/h lb/h lb/h lb/h lb/h Nitrogen 0 0 0 0 0 Methane 0 0.975237 0.975237 0.969453 0.00578346 Carbon Dioxide 0 0.0108252 0.0108252 0.0103919 0.000433356 0 1.53261 1.53261 1.48871 0.0439 Ethane 0 2.0984 2.0984 1.90691 0.19149 Propane n 0.825374 0.825374 0.659803 0.165571 Isobutane n-Butane 0 2.06612 2.06612 1.52164 0.544478 Isopentane 0 1.49327 1.49327 0.777657 0.715609 0 1.71352 1.71352 0.767385 0.946132 n-Pentane Isohexane 0 1.83278 1.83278 0.460342 1.37244 n-Hexane n 1.46259 1 46259 0.28545 1.17714 0 0.0507787 0.0507787 0.00949777 0.0412809 Benzene 0.22982 Cyclohexane 0 0.272811 0.272811 0.0429918 Heptane 0 3.82427 3.82427 0.283021 3.54125 Toluene 0 0.246468 0.246468 0.0156138 0.230855 Octane 0 4.83074 4.83074 4.71035 0.120388 Ethylbenzene 0 0.037772 0.037772 0.000812991 0.036959 0.40458 0 0.411295 0.411295 0.00671433 o-Xylene Nonane 0 2.57958 2.57958 0.021532 2.55804 Decane 0 3.21667 3.21667 0.00894496 3.20772 C11 0 0.941288 0.941288 0.000800049 0.940488 C12 0 0.623983 0.623983 0.000209549 0.623773 C13 0 0.206497 0.206497 2.01578E-05 0.206477 C14 0.482757 0.482757 1.34699E-05 0.482743 0 Water 259.886 259.886 0.148498 259.738 Λ **Stream Properties Property** Units Produced SHR-60 Pad 3 4 5 Water Condensate ٥F 85.0981 80.6144 Temperature 85 85 80.6144 394.696 394.696 394.696 14.6959 14.6959 Pressure psia Mole Fraction Vapor % 6.42126 0.135129 100 0 0 Mole Fraction Light Liquid % 100 93.5787 2.76684 1.45553 0 Mole Fraction Heavy Liquid 97.098 % 0 0 0 98.5445 40.5834 lb/lbmol Molecular Weight 18.0153 72.251 19.6179 19.2822 Mass Density lb/ft^3 62.1448 27.4167 55.679 0.104264 60.0872 Molar Flow lbmol/h 14.4259 0.439241 14.8651 0.234253 14.6309 Mass Flow 259.886 31.7356 291.622 9.50679 282.115 lb/h Vapor Volumetric Flow ft^3/h 4.18194 1.15753 5.23755 91.1796 4.69509 Liquid Volumetric Flow 0.521385 0.144315 0.652994 11.3679 0.585362 gpm Std Vapor Volumetric Flow MMSCFD 0.131385 0.00400045 0.135386 0.00213349 0.133252 Std Liquid Volumetric Flow sgpm 0.519531 0.102628 0.622159 0.0388152 0.583344 Compressibility 0.019575 0.177948 0.0237874 0.98656 0.000813365 Specific Gravity 0.996405 1.40123 0.963414 **API Gravity** 9.96572 14.7897 Btu/h -1.77052E+06 -32000.6 -1.80252E+06 -11021.9 -1.7915E+06 Enthalpy Mass Enthalpy Btu/lb -6812.66 -1008.35 -6181.01 -1159.38 -6350.23 Btu/(lb*°F) 0.981553 0.535379 0.933661 0.419297 Mass Cp 0.944555 Ideal Gas CpCv Ratio 1.32512 1.0736 1.2953 1.13309 1.30161 сΡ 0.00878561 0.825501 Dynamic Viscosity 0.833673 Kinematic Viscosity cSt 0.837472 5.26036 0.850085 Thermal Conductivity Btu/(h*ft*°F) 0.320988 0.353848 0.0120518

0.00492858

lbf/ft

0.0045653

Page 2 of 3

Surface Tension

* User Specified Values

			Process St All S Tabulated I				
Client Name:	EQT				Job: Blowdo	wn Tank	
Location:	SHR-60 Wellp	oad					
Flowsheet:	Flowsheet1						
			Stream	Properties			
Property		Units	Produced Water	SHR-60 Pad Condensate	3	4	5
Net Ideal Gas Heati	ng Value	Btu/ft^3	0	3700.05	109.331	2096.99	77.5065
Net Liquid Heating \	/alue	Btu/lb	-1059.76	19280.3	1153.73	19452.8	537.086
Gross Ideal Gas He		Btu/ft^3 50.31 3998.81 166.982 2282.96 13					133.103
Gross Liquid Heatin	g Value	Btu/lb 0 20849.4				21191.7	1631.26
Remarks							

Blocks MIX-100

Mixer/Splitter Report

Client Name: EQT Job: Blowdown Tank SHR-60 Wellpad Flowsheet1 Modified: 2:14 PM, 7/24/2014 Status: Solved 10:40 AM, 2/18/2016 Location: Flowsheet:

	Connections								
Stream Connection Type Other Block Stream Connection Type Other Block									
Produced Water	Inlet		SHR-60 Pad Condensate	Inlet					
3	Outlet	VSSL-100							

Block Parameters

Fraction to PStream 3 100 % Pressure Drop 0 psi

Blocks VSSL-100 Separator Report

Client Name:	EQT	Job: Blowdown Tank
Location:	SHR-60 Wellpad	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 10:40 AM, 2/18/2016

Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block	Ī	
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet					Ī	

Block Parameters						
Pressure Drop	380 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	1.57586 %	Heat Duty	0 Btu/h			
Mole Fraction Light Liquid	1.43259 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	96.9916 %	Heat Release Curve	5			
		Increments				

Flowsheet Environment Environment1

Client Name: EQT Job: Blowdown Tank SHR-60 Wellpad Flowsheet1 Location: Flowsheet:

Environment Settings

Freeze Out Temperature Threshold Difference Number of Poynting Intervals 0 10 °F Gibbs Excess Model 77 °F Phase Tolerance 1 %

Evaluation Temperature

7	$\overline{}$	m	n	<u> </u>	n	Δ	n	ts	

Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator
Nitrogen	False	False	Heptane	False	False
Methane	False	False	Toluene	False	False
Carbon Dioxide	False	False	Octane	False	False
Ethane	False	False	Ethylbenzene	False	False
Propane	False	False	o-Xylene	False	False
Isobutane	False	False	Nonane	False	False
n-Butane	False	False	Decane	False	False
Isopentane	False	False	C11	False	False
n-Pentane	False	False	C12	False	False
Isohexane	False	False	C13	False	False
n-Hexane	False	False	C14	False	False
Benzene	False	False	Water	False	True
Cyclohexane	False	False			

Physical Property Method Sets

	1 11,701001111		
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson

Simulation Initiated on 2/18	3/2016 10:41:25 AM		SHR-60_Blowdowr	Tank_2.18.15.pmx		Page 1 of 1
			Calculate	or Report		
Client Name:	EQT				Job: Blowd	own Tank
Location:	SHR-60 Wellpac	d .			0001 210110	
			0'	0 - 1 4		
				Solver 1		
Residual Error (for C	CV1) = TP / 20 - 1		Source	e Code		
			Calavilated	erichie [CV4]		
SourceMoniker	ProMax:ProMa		ets!Flowsheet1!PSt	ariable [CV1] reams!SHR-60 Pad Cond	ensate!Phas	es!Total!Properties!Std Liquid
Value	3.51868					
Unit	bbl/d					
0	Double Date	JD1- JE		ariable [TP]		to the total
SourceMoniker Value	ProMax:ProMa 20.0004	x!Project!Flowshee	ts!Flowsheet1!PSt	reams!5!Phases!Total!Pro	perties!Std L	Liquia Volumetric Flow
Unit	bbl/d					
			Solver P	roperties		Status: Solved
Error		1.86215E-05		Iterations		5
Calculated Value Lower Bound		0.102628		Max Iterations		20 1
Upper Bound			sgpm sgpm	Weighting Priority		0
Step Size			sgpm	Solver Active		Active
Is Minimizer		False		Group		
Algorithm		Default		Skip Dependency Che	ck	False
			Simple	Solver 2		
				e Code		
Residual Error (for 0	:V1) = L F /89 - 1		Source	e Code		
	77.7 2. 700					
			Calculated V	ariable [CV1]		
SourceMoniker	DroMoviDroMo				IlletoTlease	Properties!Std Liquid Volumetric Flov
Value	Promax.Proma	x!Project!Flowshee	is:riowsneeti:PSt	reams!Produced Water!Pl	lascs: i otal:i	Toperties: Ota Liquia Volumetrie i Tov
	17.8125	x!Project!Flowshee	els:FlowsheetT:P3t	reams!Produced Water!Ph	18303:10181:1	Toportios:Ota Elquia Volumetrio Flov
		x!Project!Flowshee	ets:Flowsneet1!PSI	reams!Produced Water!Pr	iases: i otal:i	Toperaes:ota Eigala volumetrie i lov
	17.8125	x!Project!Flowshee			idoco: i otal:i	Toperties: Sta Eigala Volumetrie Frov
Unit	17.8125 bbl/d	·	Measured V	/ariable [LF]		
Unit SourceMoniker	17.8125 bbl/d ProMax:ProMa	·	Measured V	/ariable [LF]		d. Liquid Volumetric Fraction!Water
Unit SourceMoniker Value	17.8125 bbl/d	·	Measured V	/ariable [LF]		
Unit SourceMoniker Value	17.8125 bbl/d ProMax:ProMa 89.0099	·	Measured V	/ariable [LF]		d. Liquid Volumetric Fraction!Water
Unit SourceMoniker Value	17.8125 bbl/d ProMax:ProMa 89.0099	·	Measured Vets!Flowsheet1!PSt	/ariable [LF] reams!5!Phases!Total!Cor		
SourceMoniker Value Unit Error	17.8125 bbl/d ProMax:ProMa 89.0099	ax!Project!Flowshee	Measured Vets!Flowsheet1!PSt	/ariable [LF] reams!5!Phases!Total!Cor roperties Iterations		d. Liquid Volumetric Fraction!Water Status: Solved
SourceMoniker Value Unit Error Calculated Value	17.8125 bbl/d ProMax:ProMa 89.0099	ax!Project!Flowshee	Measured Vets!Flowsheet1!PSt Solver P	reams!5!Phases!Total!Cor roperties Iterations Max Iterations		d. Liquid Volumetric Fraction!Water Status: Solved 5 20
SourceMoniker Value Unit Error Calculated Value Lower Bound	17.8125 bbl/d ProMax:ProMa 89.0099	ax!Project!Flowshee	Measured Vets!Flowsheet1!PSt Solver P sgpm sgpm	reams!5!Phases!Total!Cor roperties Iterations Max Iterations Weighting		Status: Solved 5 20 1
SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound	17.8125 bbl/d ProMax:ProMa 89.0099	ax!Project!Flowshee	Measured Vets!Flowsheet1!PSt Solver P sgpm sgpm sgpm sgpm	reams!5!Phases!Total!Cor roperties Iterations Max Iterations Weighting Priority		Status: Solved 5 20 1 0
SourceMoniker Value Unit Error Calculated Value Lower Bound	17.8125 bbl/d ProMax:ProMa 89.0099	ax!Project!Flowshee	Measured Vets!Flowsheet1!PSt Solver P sgpm sgpm sgpm sgpm sgpm	reams!5!Phases!Total!Cor roperties Iterations Max Iterations Weighting	mposition!Sto	Status: Solved 5 20 1

Omitaidatori mitaatod ori 2)	10/2010 10.41.25 AW	Or in Co.	0_blowdown fank_2.16.15.pmx	rage 10
		User \	/alue Sets Report	
Client Name:	EQT			Job: Blowdown Tank
Location:	SHR-60 Wellpad			
			Cn+ Flow/Frac.	
		llsar V	Value [CnPlusSum]	
* Parameter		6.88974 lb/h	Upper Bound	
Lower Bound		0.00374 lb/h	* Enforce Bounds	False
Lower Boaria		15/11	Emoreo Boarias	1 dioc
Remarks This User Value Se	et was programmatica	ally generated. GUID={E8	67C485-3D3C-49CB-BC24-EA160	096DB2B1}
			Tank Lagger	
			Tank Losses	
			Value [ShellLength]	
* Parameter	-	10 ft	Upper Bound	
* Lower Bound		0 ft	* Enforce Bounds	False
		User	Value [ShellDiam]	
* Parameter		10 ft	Upper Bound	
* Lower Bound		0 ft	* Enforce Bounds	False
		Hoor	Value [BreatherVP]	
* Danamatan				
* Parameter Lower Bound		0.03 psig	Upper Bound * Enforce Bounds	False
Lower Bouria			Enlorce Bounds	raise
			alue [BreatherVacP]	
* Parameter		-0.03 psig	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User \	/alue [DomeRadius]	
Parameter		ft	Upper Bound	ft
Lower Bound		ft	* Enforce Bounds	False
		Use	r Value [OpPress]	
* Parameter		0 psia		
Lower Bound		5 ps.g	* Enforce Bounds	False
		Hear W	alue [AvgPercentLiq]	
* Parameter		50 %	Upper Bound	
Lower Bound			* Enforce Bounds	False
LOWEI DOUIIG		70	Eniorce Bourius	rais e
			alue [MaxPercentLiq]	
* Parameter		90 %	Upper Bound	
Lower Bound		%	* Enforce Bounds	False
			Value [AnnNetTP]	
* Parameter		19.8551 bbl/day	Upper Bound	
* Lower Bound		0 bbl/day	* Enforce Bounds	False
		Us	er Value [OREff]	
* Parameter		0 %	Upper Bound	
Lower Bound		%	* Enforce Bounds	False
		llear \	/alue [AtmPressure]	
* Parameter		14.1085 psia	Upper Bound	
Lower Bound		14.1000 psia	* Enforce Bounds	False
LOWER BOURIU			Linoice Bourius	i aise

		User Val	lue Sets Report			
Client Name:	EQT			Job: Blowd	lown Tank	
Location:	SHR-60 Wellpad	t				
		User	r Value [TVP]			
* Parameter		0.36902 psia	Upper Bound			
Lower Bound		· ·	* Enforce Bounds		False	
			e [AvgLiqSurfaceT]			
* Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds		False	
LOWEI DOUITO			Ellioide Dounds		l alsc	
		User Value	e [MaxLiqSurfaceT]			
* Parameter		66.3119 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
			ue [TotalLosses]			
* Parameter		0.00565984 lb/h	Upper Bound * Enforce Bounds		Falso	
Lower Bound		lb/h	* Enforce Bounds		False	
		User Value	e [WorkingLosses]			
* Parameter		0.0247901 ton/yr	Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
			[StandingLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
		Hear Value	e [RimSealLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
			[WithdrawalLoss]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Hear Value	The adical accord			
* Parameter			e [LoadingLosses] Upper Bound			
Lower Bound		0.00499288 lb/h lb/h	* Enforce Bounds		False	
		User Value [[DeckFittingLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Uzan Valua				
* Demonstra			[DeckSeamLosses]			
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	
LOWER Dearies			Elliotoo Boarido		1 6100	
		User Value	e [FlashingLosses]			
* Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		., ., .,				
			e [GasMoleWeight]			
* Parameter Lower Bound		0.0269513 kg/mol	Upper Bound * Enforce Bounds		False	
LOWER Doung			Ellioide Dounds		l alsc	
Remarks						
	et was programmat	tically generated. GUID={B57AF	C7E-AAE8-4873-921B-7B403	31991004}		

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2015 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Byron J. Bunker, Division Director

Compliance Division

Certificate Issued To: Engine Distributors, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: FEDIB03.7CSG-006

Effective Date: 06/08/2015

Expiration Date: 12/31/2015

Issue Date: 06/08/2015

Revision Date: N/A

Manufacturer: Engine Distributors, Inc.

Engine Family: FEDIB03.7CSG

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

Gasoline (up to and including 10% Ethanol)

Natural Gas (CNG/LNG)

Emission Standards:

Mobile Part 1048

HC + NOx (g/kW-hr) : 0.8

NMHC + NOx (g/kW-hr) : 0.8

CO (g/kW-hr) : 20.6 Part 60 Subpart JJJJ Table 1

NOx (g/kW-hr): 1.3

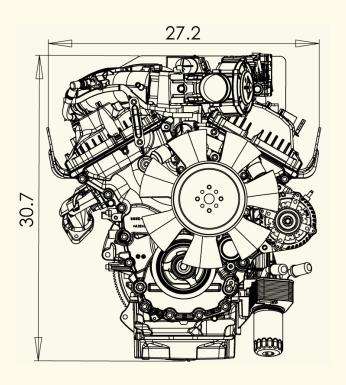
HC + NOx (g/kW-hr): 0.8

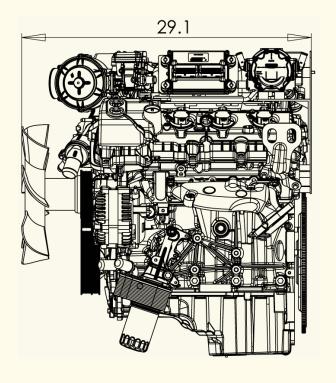
CO (g/kW-hr) : 2.7 CO (g/kW-hr) : 20.6

VOC (g/kW-hr) : 0.9 Emergency Use Only : N

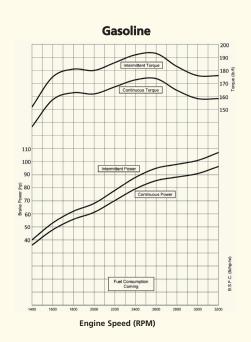
Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048 and produced in the stated model year.

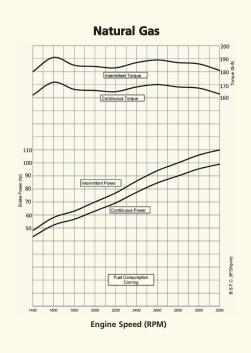
This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

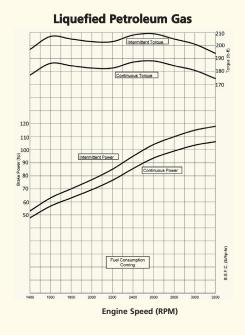

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.


This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Installation Drawings


Front End View


Left Side View



Power Curves (corrected per SAE J1349)

For additional information Contact:

Powertrain Assemblies & Components Provided By Ford Component Sales

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans

- 14" (355mm) diameter suction
- 14" (355mm) diameter pusher

Flywheels

- 11.5" (292mm) SAE over-center clutch
- flat face flywheel

Flywheel Housings

• SAE #3

Exhaust Manifold

• rear dump down

Power Steering Pump
Air Conditioning
Wiring Harnesses
Discrete Speed Switch
Variable Speed Hand Throttle
Variable Speed Foot Pedal
Engine Mounts

- Automotive with insulators
- Open power unit

Electronic Instrument Panel, Gauges Three Way Catalyst / Muffler Standard

Transmissions

6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Power Products

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

V-6
3.7"x 3.4" (94mm x 86mm)
3.7L Liter (225.7 CID)
10.5:1
6 qts. including filter
355 Lbs. with accessories (161 Kgs.)
L 25.4" x W 29.5" x H 29.4"
(646 mm x 751 mm x 748 mm)

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power		(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

Attachment T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

	A'	TTACH	MENT	T – FA	CILITY-	WIDE C	ONTRO	LLED EN	MISSION	S SUMM	IARY SH	HEET			
Emission Point ID#	N	NO _x		СО		VOC		SO ₂		PM 10		PM 2.5		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Line Heater (S001)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S002)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S003)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S004)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S005)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S006)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S007)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S008)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S009)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
Line Heater (S010)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85	
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67	
TEG (S026)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67	
TEG (S027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67	
Enclosed Combustion Unit (C022)	1.07	4.71	0.90	3.95	1.13	4.66	<0.01	0.03	0.02	0.09	0.02	0.09	1,391.51	6,093.80	
Enclosed Combustion Unit (C023)	1.07	4.71	0.90	3.95	1.13	4.66	<0.01	0.03	0.02	0.09	0.02	0.09	1,391.51	6,093.80	
Tank Truck Loading Activities (E024)					0.04	0.18							<0.01	0.04	
Compressor Engine (E029)	0.42	1.85	0.88	3.85	0.29	1.29	<0.01	<0.01	<0.01	0.01	<0.01	0.01	95.79	419.54	
Line Heater (S030)	0.07	0.30	0.06	0.25	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	87.82	384.67	
TOTAL	4.06	17.76	3.93	17.21	2.59	11.14	0.01	0.06	0.04	0.30	0.04	0.30	4,774.51	20,910.34	

A	ГТАСН	MENT 1	Γ – FAC	LITY-	WIDE I	HAP CO	ONTRO	LLED E	EMISSI	ONS SU	MMAR	Y SHE	ET	
5 · · · · · · · · · · · · · · · · · · ·	Formal	dehyde	Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S007)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S008)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S010)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
TEG (S025)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S026)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.23	0.06	0.26
Enclosed Combustion Unit (C023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.23	0.06	0.26
Tank Truck Loading Activities (E024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E029)	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.07
Line Heater (S030)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
TOTAL	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.11	0.56	0.14	0.70

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit Registration for the SHR-60 natural gas production facility located in Shirley, Tyler County, West Virginia. The latitude and longitude coordinates are: 39.39473 and -80.81124.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 17.21 tpy Nitrogen Oxides (NO_x) = 17.76 tpy Particulate Matter (Filterable) = 12.84 tpy Particulate Matter (Condensate) = 0.94 tpy Sulfur Dioxide (SO₂) = 0.06 tpy Volatile Organic Compounds (VOC) = 12.00 tpy Formaldehyde = 0.06 tpy Hexane = 0.56 tpy Hazardous Air Pollutants (HAPs) = 0.78 tpy Carbon Dioxide Equivalents (CO₂e) = 20,975.31 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of February, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222