APPALACHIA MIDSTREAM SERVICES, L.L.C.

SAND HILL COMPRESSOR STATION

MODIFICATION PERMIT APPLICATION

SUBMITTED TO WVDEP DIVISION OF AIR QUALITY MARCH 2016

TABLE OF CONTENTS

TABLE OF CONTEN	TS	i
INTRODUCTION		1
Proposed Emissi	ions	1
WVDEP APPLICATI	ON FOR NSR PERMIT	1
ATTACHMENT A:	BUSINESS REGISTRATION CERTIFICATE	8
ATTACHMENT B:	MAP	
ATTACHMENT C:	INSTALLATION/START-UP SCHEDULE	
ATTACHMENT D:	REGULATORY DISCUSSION	13
ATTACHMENT E:	PLOT PLAN	16
ATTACHMENT F:	PROCESS FLOW DIAGRAM	17
ATTACHMENT G:	PROCESS DESCRIPTION	
ATTACHMENT H:	MATERIAL SAFETY DATA SHEETS (MSDS)	21
ATTACHMENT I:	EMISSION UNITS TABLE	22
ATTACHMENT J:	EMISSION POINTS DATA SUMMARY SHEET	25
ATTACHMENT K:	FUGITIVE EMISSIONS DATA SUMMARY SHEET	
ATTACHMENT L:	EMISSION UNIT DATA SHEETS	41
ATTACHMENT M:	AIR POLLUTION CONTROL DEVICE SHEET	67
ATTACHMENT N:	SUPPORTING EMISSIONS CALCULATIONS	75
ATTACHMENT O:	MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
ATTACHMENT P:	PUBLIC NOTICE	
ATTACHMENT R:	AUTHORITY OF CORPORATION	
APPENDIX A: SUPP	ORT DOCUMENTS	

CATERPILLAR G3516B AND OXIDATION CATALYST SPECIFICATION SHEETS	114
GRI-GLYCALC REPORTS	114
REPRESENTATIVE FUEL GAS ANALYSIS	114
REPRESENTATIVE GAS ANALYSIS	114

INTRODUCTION

Appalachia Midstream Services, L.L.C. (AMS), operates the Sand Hill Compressor Station (Sand Hill) in Marshall County under Permit No. R13-2913 issued on July 23, 2012. AMS submitted an application in September 2015 to update emissions at the facility using a recent gas analysis and the most recent Global Warming Potential multipliers as well as decrease the carbon monoxide and volatile organic compound control efficiencies. Per the request of WVDEP, AMS is submitting this updated application as an amendment to the September 2015 application. With this application, emissions from the dehydration units (renamed from EPSTL-1, -2, -3 to EPDEHY-1, -2, -3) have been updated to account for emissions from the flash tank streams being routed to the dehydrator reboilers as fuel. The control efficiency of the flash tank streams has been revised from 100% control to 98% control. Additionally the dehydrator pump rates have been reduced to 7.5 gallons per minute in both the electric pump and gas pump scenarios. Condensate tank emissions and condensate loading emissions have also been updated to reflect a lower throughput rate of 60,000 barrels per year total.

Sand Hill is authorized to operate twelve (12) 1,380-hp Caterpillar G3516B ultra lean-burn compressor engines equipped with oxidation catalysts, one (1) 805-hp Capstone C600 microturbine generator, three (3) 55.0-MMSCFD triethylene glycol (TEG) dehydration units equipped with condenser controls, three (3) 1.0-mmBtu/hr TEG reboilers, two (2) 0.5-mmBtu/hr heater treater burners, eight (8) 400-bbl condensate storage tanks, two (2) 400-bbl produced water storage tanks, condensate and produced water truck loading, compressor blowdowns, and fugitive emissions.

Note that other storage tanks may be present on site (i.e., methanol, TEG, lube oil) but are considered de minimis sources per Table 45-13B and are not addressed further in this application.

Proposed Emissions

Emissions calculations for criteria air pollutants, hazardous air pollutants, and greenhouse gas emissions from the proposed equipment are presented in Attachment N.

Each ultra-lean-burn natural gas-fired compressor engine is equipped with an oxidation catalyst. Potential emissions were calculated using manufacturer data when available and manufacturer control efficiencies when applicable. Pollutant emissions for which no manufacturer data was available were calculated using the latest AP-42/EPA emission factors. Potential emissions from the microturbine generator were also calculated using available manufacturer data and AP-42/EPA emission factors.

Each TEG dehydration unit has a capacity of 55.0 million standard cubic feet per day (MMSCFD) and has one (1) 1.0-mmBtu/hr TEG reboiler for glycol regeneration. Each unit is equipped with a primary electric glycol pump with a maximum capacity of 22 gallons per minute (gpm). In addition, each TEG dehydration unit has two (2) gas injection glycol pumps, each with a maximum capacity of 7.5 gpm, for a total maximum capacity of 15 gpm. The pump rate will be limited to 7.5 gpm in both the electric pump and gas pump operating scenarios. Still vent vapors from each TEG dehydration unit will be controlled by an air-cooled condenser. Non-condensables from the regenerator overheads will be routed to the reboiler and burned with 98% destruction efficiency. Flash tank off-gases from each unit will be routed to their respective TEG reboiler to be burned as fuel. Any excess flash tank vapors not burned as fuel will be recycled/recompressed. As a conservative measure, emissions have been calculated using a 98% control efficiency to account for the flash gas stream routed to the reboiler as fuel. The TEG reboilers will be equipped with a burner management system to ensure a constant flame for combustion of the vapors. Potential emissions from the TEG dehydration units were based on the GRI-GLYCalc[™] results for the gas pumps since the emissions were higher than those using the electric pumps. A 10% safety factor was added to GRI-GLYCalc[™] results to account for potential fluctuations in gas composition. GRI-GLYCalc[™] Input Summary and Aggregate Calculations reports for both the electric and gas pump scenarios are enclosed.

TEG reboiler and heater treater burner emissions were calculated using AP-42/EPA emission factors for natural gas combustion.

Working and breathing emissions from the condensate and produced water tanks were calculated using EPA TANKS 4.0.9d software. Flashing emissions were estimated using ProMax process simulation software. Emissions from the tanks are controlled by electric-driven vapor recovery compressor units. Gasoline RVP 15 was selected as representative of tank contents and used to model emissions. Although the produced water tanks are presumed to have negligible hydrocarbons, 1% of the total produced water throughput was modeled as Gasoline RVP 15 to conservatively estimate emissions.

Condensate and produced water truck loading emissions were calculated using AP-42 Section 5.2-4 Equation 1 for Petroleum Liquid Loading Losses and the physical properties of Gasoline RVP 15 from EPA TANKS 4.0.9d data.

Fugitive emissions for the facility are based on calculation methodologies presented in EPA-453/R-95-017, Protocol for Equipment Leak Emissions Estimates and a representative gas analysis. Documentation supporting the emissions calculations, including manufacturer specification sheets, a catalyst specification sheet, GRI-GLYCalc reports, Tanks 4.09d report, and a gas analysis are included in Appendix A.

WVDEP APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/daq		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)										
	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION On Guidance" in order to determine your Title V Revision options											
(Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.												
 Name of applicant (as registered with the WV Secret Appalachia Midstream Services, L.L.C. 			2. Federal 26-3678972	Employer ID No. <i>(FEIN):</i>								
3. Name of facility <i>(if different from above):</i> Sand Hill Compressor Station			4. The applicant is the:									
5A. Applicant's mailing address: P.O. Box 18312 Oklahoma City, OK 73154-0312	1	5B. Facility's present physical address: From Dallas: 3 miles west on Stone Church Road, 1.3 miles south on Golden Road, east into location.										
 6. West Virginia Business Registration. Is the applicat If YES, provide a copy of the Certificate of Incorpo change amendments or other Business Registration If NO, provide a copy of the Certificate of Authority amendments or other Business Certificate as Attack 	oration/O Certifica y/Author	Drganization/Limi ate as Attachmen rity of L.L.C./Reg	ted Partners t A.	hip (one page) including any name								
7. If applicant is a subsidiary corporation, please provide	e the nan	ne of parent corpo	ration:									
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: The site is owned by the applicant. If NO, you are not eligible for a permit for this source. 												
 Type of plant or facility (stationary source) to be con administratively updated or temporarily permittee crusher, etc.): Natural Gas Compressor Station 												
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit number associated with this process (for existing facilities only): 051-00145 R13-2913												

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.											
12A.											
 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 											
From Dallas: 3 miles west on Stone Church Road, 1.3 miles south on Golden Road, then east into location.											
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:									
N/A	Dallas	Marshall									
12.E. UTM Northing (KM): 4,426.286	12F. UTM Easting (KM): 537.993	12G. UTM Zone: 17S									
	ng a recent gas analysis and the mos monoxide and volatile organic compo	ound control efficiencies.									
Potential multipliers as well as decrease the carbon monoxide and volatile organic compound control efficiencies. Emissions from the dehydration units (renamed from EPSTL-1, -2, -3 to EPDEHY-1, -2, -3) have been updated to account for emissions from the flash tank streams being routed to the dehydrator reboilers as fuel. The control efficiency of the flash tank streams has been revised from 100% control to 98% control. Additionally the dehydrator pump rates have been reduced to 7.5 gallons per minute in both the electric pump and gas pump scenarios. Condensate tank emissions and											
condensate loading emissions have also been updat	ted to reflect a lower throughput rate										
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide 	•	14B. Date of anticipated Start-Up									
change did happen: 02/26/2015 (gas analysis date		if a permit is granted: N/A									
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit		units proposed in this permit									
15. Provide maximum projected Operating Schedule o Facility: Hours Per Day 24 Days Per W		ation:									
16. Is demolition or physical renovation at an existing factor	acility involved? 🗌 YES 🛛 🕅 NO										
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	ne subject due to proposed									
changes (for applicability help see www.epa.gov/cepp	po), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.									
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the									
proposed process (if known). A list of possible application	able requirements is also included in Attr	achment S of this application									
(Title V Permit Revision Information). Discuss applica	ability and proposed demonstration(s) of	compliance (if known). Provide this									
information as Attachment D.											
Section II. Additional att	tachments and supporting de	ocuments.									
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	n fee (per 45CSR22 and									
45CSR13).											
20. Include a Table of Contents as the first page of you	ur application package.										
21. Provide a Plot Plan , e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Re		erty on which the stationary									
 Indicate the location of the nearest occupied structure 	∋ (e.g. church, school, business, residen	ice). ¼ mile									
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	wing each proposed or modified emission	ns unit, emission point and control									

23. Provide a Process Description as Attachment G.											
 Also describe and quantities 	tify to the extent possible all chang	ges made to the fa	cility since the last permit review (if applicable).								
All of the required forms and ad	ditional information can be found u	nder the Permitting	Section of DAQ's website, or requested by phone.								
-		-	ed or produced as Attachment H.								
	ovide a MSDS for each compound										
25. Fill out the Emission Units Table and provide it as Attachment I.											
26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.											
	sions Data Summary Sheet and		chment K.								
	sions Unit Data Sheets listed be										
Bulk Liquid Transfer Operat			-								
Chemical Processes	Hot Mix Asphalt I	Plant 🔄 So Facilit	blid Materials Sizing, Handling and Storage								
Concrete Batch Plant			orage Tanks								
Grey Iron and Steel Foundr		liangei									
•	cify: Engines, Turbine, TEG Dehy ons Unit Data Sheet(s) as Attac		ter Treaters, and Blowdowns								
·	ollution Control Device Sheets										
Absorption Systems		isted below.	☐ Flare								
Adsorption Systems	☐ Baghouse ⊠ Condenser		Mechanical Collector								
		Precipitator									
Other Collectors, specify											
Fill out and provide the Air Pol	lution Control Device Sheet(s) a	as Attachment M									
			the calculations directly to the forms listed in								
Items 28 through 31.											
testing plans in order to de			ed monitoring, recordkeeping, reporting and limits and operating parameters in this permit								
measures. Additionally, th		all measures prop	ot the applicant chooses to propose such bosed by the applicant. If none of these plans in the permit.								
32. Public Notice. At the tim	e that the application is submitted	, place a Class I L	egal Advertisement in a newspaper of general								
circulation in the area whe	re the source is or will be located	(See 45CSR§13-8	3.3 through 45CSR§13-8.5 and <i>Example Legal</i>								
Advertisement for details). Please submit the Affidavit of	Publication as At	tachment P immediately upon receipt.								
33. Business Confidentiality	Claims. Does this application in YES	clude confidential i	nformation (per 45CSR31)?								
segment claimed confiden	ent of information on each page t	SCSR§31-4.1, and	s confidential and provide justification for each in accordance with the DAQ's " <i>Precautionary</i> <i>fons</i> as Attachment Q.								
	Section III. Certification of Information										
34. Authority/Delegation of A Check applicable Authorit		omeone other than	the responsible official signs the application.								
Authority of Corporation or	Other Business Entity		y of Partnership								
Authority of Governmental	Agency		y of Limited Partnership								
Submit completed and signed	Authority Form as Attachment F	۶.									
All of the required forms and ac	ditional information can be found ι	under the Permitting	Section of DAQ's website, or requested by phone.								

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned \square **Responsible Official** / \boxtimes **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	D	DATE:				
35B. Printed name of signee: Paul Hunter	use blue ink)	<i>(Please use blue ink)</i> General Manager, Ohio River 35C. Title: Supply Hub				
35D. E-mail: Paul.Hunter@williams.com	36E. Phone: 412-787-5561	36F. FAX:				
36A. Printed name of contact person (if different David Morris	nt from above):	36B. Title: Environmental Specialist				
36C. E-mail: Dave.Morris@williams.com	36D. Phone: 304-843-3125	36E. FAX:				

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:										
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 									
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.										

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

□ Forward 1 copy of the application to the Title V Permitting Group and:

☐ For Title V Administrative Amendments:

- □ NSR permit writer should notify Title V permit writer of draft permit,
- □ For Title V Minor Modifications:
 - □ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 - □ NSR permit writer should notify Title V permit writer of draft permit.
- □ For Title V Significant Modifications processed in parallel with NSR Permit revision:
 - □ NSR permit writer should notify a Title V permit writer of draft permit,
 - Device a should reference both 45CSR13 and Title V permits,
 - EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: APPALACHIA MIDSTREAM SERVICES, L.L.C. 900 PENNSYLVANIA AVE CHARLESTON, WV 25302-3548

BUSINESS REGISTRATION ACCOUNT NUMBER:

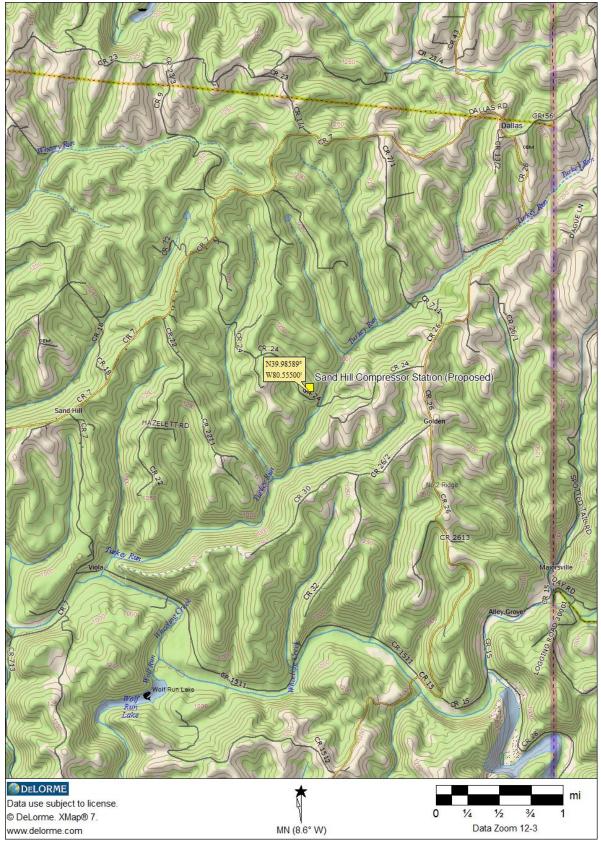
2222-3681

This certificate is issued on: 06/30/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L0250854144

ATTACHMENT B: MAP

Sand Hill Compressor Station Figure 1: Area Map Marshall County, West Virginia March 2016

ATTACHMENT C: INSTALLATION/START-UP SCHEDULE

No new equipment is proposed with this application.

ATTACHMENT D: REGULATORY DISCUSSION

<u>STATE</u>

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

Potential emissions associated with the project are more than the minor source construction permit thresholds of 6 pounds per hour (pph) AND 10 tons per year (tpy) of any regulated air pollutant OR 144 pounds per day (ppd) of any regulated air pollutant OR 2 pph OR 5 tpy of aggregated hazardous air pollutants (HAP) OR 45 CSR 27 toxic air pollutant (TAP) (10% increase if above BAT triggers or increase to Best Available Technology (BAT) triggers) OR subject to applicable Standard or Rule.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility is required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m^3) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The 400-bbl tanks at this facility were constructed after the effective date of this subpart but are less than 75 m^3 (which equals approximately 471 bbl); therefore, this subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

This subpart sets standards for natural gas processing plants, which are defined as any site engaged in the extraction of natural gas liquids from field gas, fractionation of natural gas liquids, or both. The proposed facility is not a natural gas processing plant; therefore, this Subpart is not applicable.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The 1,380-hp Caterpillar G3516B compressor engines are four-stroke, lean-burn natural gas-fired spark ignition (SI) internal combustion engines that were manufactured after July 1, 2010 and are therefore subject to Stage 2 emissions standards in this subpart. AMS will comply with all applicable requirements.

40 CFR PART 60 SUBPART KKKK - STANDARDS OF PERFORMANCE FOR STATIONARY COMBUSTION TURBINES:

This subpart establishes emission standards and compliance schedules for the control of emissions from stationary combustion turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 mmBtu) per hour, based on the higher heating value of the fuel, that commenced construction, modification, or reconstruction after February 18, 2005. The 805-hp Capstone C600 Microturbine generator has a heat input less than 10-mmBtu/hr and is therefore not subject to this subpart.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

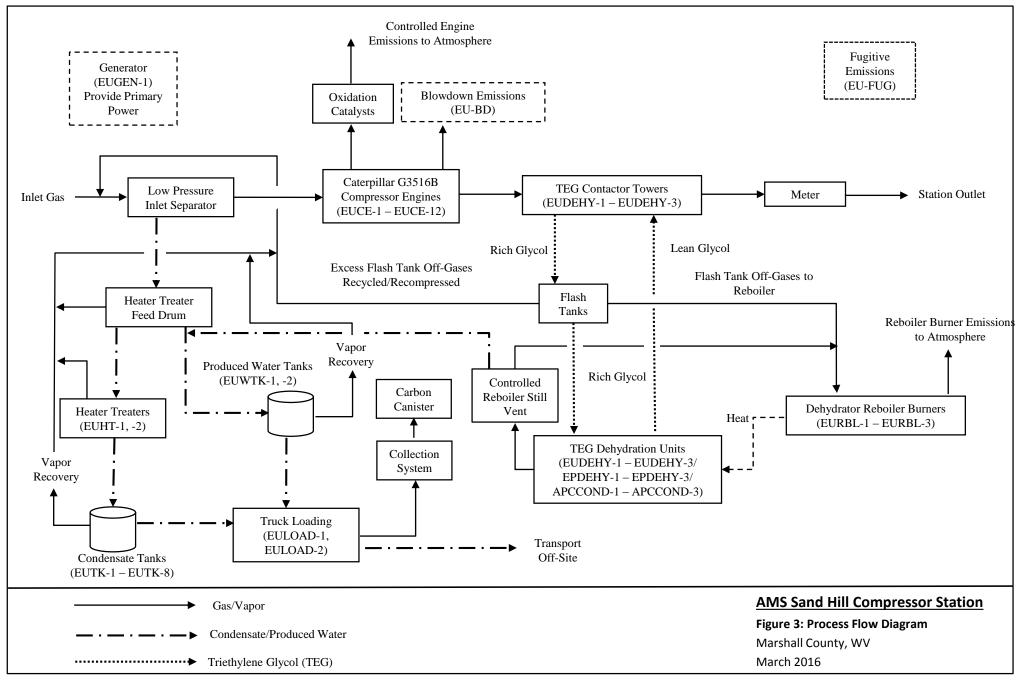
The site is a minor (area) source of hazardous air pollutants. Even though the TEG dehydration units at this facility are considered affected sources, they will be exempt from the requirements of § 63.764(d)(2) since the actual average emissions of benzene from each glycol dehydration unit process vent to the atmosphere will be less than 0.90 Mg (1.0 TPY), as determined by the

procedures specified in § 63.772(b)(2). However, the facility must maintain records of the de minimis determination as required in § 63.774(d)(1).

40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:

The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:


The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower (HP) located at a major source of HAP emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500 HP located at major sources, and for engines constructed and reconstructed after June 12, 2006 located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500 HP at major sources.

Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. The 1,380-hp, four-stroke, lean-burn stationary RICE were constructed after the June 12, 2006 effective date for new stationary RICE at area sources and are subject to this subpart. The engines meet the requirements of this subpart by compliance with Subpart JJJJ. No further requirements apply for these engines under this subpart.

ATTACHMENT E: PLOT PLAN

A plot plan was previously submitted for this facility. No equipment changes are included in this application.

ATTACHMENT F: PROCESS FLOW DIAGRAM

ATTACHMENT G: PROCESS DESCRIPTION

A description of the facility process is as follows: The natural gas inlet stream from surrounding area wells enters the facility at low pressure through a two-phase low pressure inlet separator that will gravity separate the inlet stream into two streams: gas and hydrocarbon/water liquids. Low-pressure inlet gas is compressed via three-stage reciprocating compressors with interstage cooling. Discharge from the compressors passes through filter/coalescer separators to remove any condensed or entrained liquids present. After the inlet gas passes through compressors, it goes through the dehydration process before exiting the facility via a sales pipeline. A portion of the discharge gas will be removed prior to outlet metering for use as fuel gas.

Triethylene glycol (TEG) dehydration units are used to remove water from the gas. The units are comprised of both a glycol contactor skid and a glycol regeneration skid. In the dehydration process, gas passes through a contactor vessel where water is absorbed by the glycol. The "rich" glycol containing water goes to the glycol reboiler where heat is used to remove the water and regenerate the glycol. The heat is supplied by a natural gas-fired reboiler that exhausts to the atmosphere. Overhead still column emissions from the glycol regeneration skid are controlled by an air-cooled condenser. The non-condensables from the still column overheads are routed to the reboiler and burned with 98% destruction efficiency. Flash tank off-gases from the glycol regeneration skid are also routed to the reboiler to be burned as fuel with 98% destruction efficiency. The TEG reboilers are equipped with a burner management system to ensure a constant flame for combustion of the vapors. Any excess vapors not burned as fuel are recycled/recompressed.

After dehydration, fuel gas is pulled from the discharge side of the process. A fuel gas skid (not an emission source) reduces the pressure of a portion of the discharge gas to a pressure suitable for use by fuel-burning equipment. Pertaining to the fuel gas skid, there is no hydrocarbon liquid recovery by design.

Inlet liquids flow from the two-phase low-pressure inlet separator to a heater-treater feed drum, a three-phase low pressure separator. Heavy liquids (water) are separated and sent to atmospheric produced water storage tanks. Produced water is transported off site via truck. Liquid hydrocarbons (condensate) flows from the feed drum to the heater treater. Any vapors evolved from the liquid to the feed drum are routed to the electric-driven flash gas compressor and recycled to the two-phase low pressure inlet separator. After stabilization, condensate is sent to atmospheric condensate storage tanks. Produced condensate is transported off site via truck. Vapors evolved from truck loading (both produced water and condensate) are captured and routed to an activated carbon canister with at least 95% control efficiency.

The facility contains several liquid recycle streams to reduce emissions. All high pressure liquids are cascaded to lower pressure separators to capture gases evolved as a result of pressure reduction. All liquids formed by gas cooling in the inter-stage coolers of the three-stage reciprocating compressors are cascaded to lower pressure scrubbers on the compressor skid.

The facility will also contain several gas recycle streams. All atmospheric tank emissions are controlled by vapor recovery compression. The vapor recovery compressors discharge in the flash gas compressor. The flash gas compressors compress these gases and discharge into the two-phase low pressure inlet separator. Overhead gases from the heater treater feed drum and heater treater are also routed to the flash gas compressor and recycled to the two-phase low pressure inlet separator.

The generator provides electric power to the vapor recovery and flash gas compressors, electric glycol pumps, and other electrical equipment. Fugitive emissions from component leaks also occur.

Please note that the compressor station has two primary suction pressure operating points, 125 psig and 50 psig. The discharge pressure range is 900 - 1,200 psig. The facility initially operates at 125 psig suction pressure and will continue to do so until such time that field production volumes decline. At that time, the suction pressure will be lowered to 50 psig, resulting in a diminished facility capacity.

ATTACHMENT H: MATERIAL SAFETY DATA SHEETS (MSDS)

MSDS were previously submitted.

ATTACHMENT I: EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EUCE-1	EPCE-1	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-2	EPCE-2	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-3	EPCE-3	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-4	EPCE-4	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-5	EPCE-5	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-6	EPCE-6	Caterpillar G3516B Engine	2012	1,380-hp	Modification	Oxid. Cat.
EUCE-7	EPCE-7	Caterpillar G3516B Engine	2014	1,380-hp	Modification	Oxid. Cat.
EUCE-8	EPCE-8	Caterpillar G3516B Engine	2014	1,380-hp	Modification	Oxid. Cat.
EUCE-9	EPCE-9	Caterpillar G3516B Engine	2014	1,380-hp	Modification	Oxid. Cat.
EUCE-10	EPCE-10	Caterpillar G3516B Engine	TBD	1,380-hp	Modification	Oxid. Cat.
EUCE-11	EPCE-11	Caterpillar G3516B Engine	TBD	1,380-hp	Modification	Oxid. Cat.
EUCE-12	EPCE-12	Caterpillar G3516B Engine	TBD	1,380-hp	Modification	Oxid. Cat.
EUGEN-1	EPGEN-1	Capstone C600 Microturbine Generator	2012	805-hp	N/A	N/A
EUDEHY-1	EPDEHY-1	TEG Dehydration Unit Still Vent	2012	55.0- MMSCFD	Modification	APCCOND-1
EUDEHY-1	EPRBL-1	TEG Reboiler	2012	1.0-mmBtu/hr	N/A	N/A
EUDEHY-2	EPDEHY-2	TEG Dehydration Unit Still Vent	2014	55.0- MMSCFD	Modification	APCCOND-2
EUDEHY-2	EPRBL-2	TEG Reboiler	2014	1.0-mmBtu/hr	N/A	N/A
EUDEHY-3	EPDEHY-3	TEG Dehydration Unit Still Vent	TBD	55.0- MMSCFD	Modification	APCCOND-3
EUDEHY-3	EPRBL-3	TEG Reboiler	TBD	1.0-mmBtu/hr	N/A	N/A

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EUHT-1	EPHT-1	Heater Treater Burner	2012	0.5-mmBtu/hr	N/A	N/A
EUHT-2	EPHT-2	Heater Treater Burner	TBD	0.5-mmBtu/hr	N/A	N/A
EUTK-1	EPTK-1	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-2	EPTK-2	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-3	EPTK-3	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-4	EPTK-4	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-5	EPTK-5	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-6	EPTK-6	Condensate Storage Tank	2012	400-bbl	Modification	Vapor Recovery Unit
EUTK-7	EPTK-7	Condensate Storage Tank	TBD	400-bbl	Modification	Vapor Recovery Unit
EUTK-8	EPTK-8	Condensate Storage Tank	TBD	400-bbl	Modification	Vapor Recovery Unit
EUWTK-9	EPWTK-9	Produced Water Storage Tank	2012	400-bbl	N/A	Vapor Recovery Unit
EUWTK-10	EPWTK-10	Produced Water Storage Tank	2012	400-bbl	N/A	Vapor Recovery Unit
EULOAD-1	EPLOAD-1	Condensate Truck Loading	2012	2,520,000 gal/yr	Modification	APC- CARBTROL
EULOAD-2	EPLOAD-2	Produced Water Truck Loading	2012	1,533,000 gal/yr	N/A	APC- CARBTROL
EU-FUG	EP-FUG	Fugitive Emissions	2012	N/A	Modification	N/A
EU-BD	EP-BD	Blowdown Emissions	2012	N/A	Modification	N/A

TBD = To be determined

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emissio n Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		s Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate	RegulatedPotentialPollutants -UncontrolledChemicalEmissions 4lame/CAS3		led Controlled Emissions		Emission Form or Phase (At exit condition s, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration 7 (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vap or)		
EPCE-1	Upward vertical stack	EUCE-1	Caterpillar G3516B Compressor Engine	I	Oxidation Catalyst	I	1	NOx CO VOC PMTOT SO2 Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO2 CH4 N2O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-2	Upward vertical stack	EUCE-2	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	-	1	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ < 0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ < 0.01\\ 1,566.80\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6,862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-

EPCE-3	Upward vertical stack	EUCE-3	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	1	I	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ < 0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ < 0.01\\ 1,566.80\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-4	Upward vertical stack	EUCE-4	Caterpillar G3516B Compressor Engine	I	Oxidation Catalyst		ſ	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <\!\!0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-5	Upward vertical stack	EUCE-5	Caterpillar G3516B Compressor Engine	I	Oxidation Catalyst	1	ı	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <\!\!0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ < 0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ < 0.01\\ 1,566.80\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6,862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-

EPCE-6	Upward vertical stack	EUCE-6	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	1	1	NOx CO VOC PMTOT SO2 Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO2 CH4 N2O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-7	Upward vertical stack	EUCE-7	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst		ſ	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <\!\!0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-8	Upward vertical stack	EUCE-8	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	1	1	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01 \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <\!\!0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-

EPCE-9	Upward vertical stack	EUCE-9	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	1	I	NOx CO VOC PMTOT SO2 Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO2 CH4 N2O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-10	Upward vertical stack	EUCE-10	Caterpillar G3516B Compressor Engine		Oxidation Catalyst		T	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ < 0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ < 0.01\\ 1,566.80\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ <0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPCE-11	Upward vertical stack	EUCE-11	Caterpillar G3516B Compressor Engine	1	Oxidation Catalyst	1	ı	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1,566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <\!\!0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ < 0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ < 0.01\\ 1,566.80\\ 0.03\\ < 0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6,862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-

EPCE-12	Upward vertical stack	EUCE-12	Caterpillar G3516B Compressor Engine	I	Oxidation Catalyst	1	1	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 1.52\\ 9.07\\ 3.29\\ 0.12\\ 0.01\\ 0.10\\ 0.06\\ 0.01\\ <0.01\\ 1.19\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 39.71\\ 14.39\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ <0.01\\ 5.20\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6.862.58\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 1.52\\ 1.36\\ 0.82\\ 0.12\\ 0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ 0.06\\ 0.01\\ 0.03\\ 0.01\\ <0.01\\ 1.566.80\\ 0.03\\ <0.01\\ \end{array}$	$\begin{array}{c} 6.66\\ 5.96\\ 3.60\\ 0.54\\ 0.03\\ 0.45\\ 0.28\\ 0.02\\ < 0.01\\ 0.27\\ 0.06\\ 0.14\\ 0.02\\ 0.01\\ 6,862.58\\ 0.12\\ 0.01\\ \end{array}$	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPGEN-1	Upward vertical stack	EPGEN-1	Microturbine Generator	-	None	1	1	NOx CO VOC PM _{TOT} SO ₂ Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde n-Hexane Methanol Toluene Xylenes CO ₂ CH ₄ N ₂ O	0.25 0.62 0.02 0.05 0.03 <0.01 <0.01 <0.01 <0.01 - - - <0.01 <0.01 880.15 0.02 <0.01	$\begin{array}{c} 1.09\\ 2.70\\ 0.07\\ 0.22\\ 0.11\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 0.02\\ \\ \\ \\ \\ <0.01\\ 3.855.04\\ 0.08\\ 0.01\\ \end{array}$	-	-	Gas/Vapor	O (Manufacturer Data/AP-42\EPA)	-
EPDEHY- 1	Upward vertical stack	EUDEHY-1	Glycol Dehydrator Still Vent and Flash Tank	APCCOND-1	Condenser/Reboile r	I	ı	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	66.97 0.48 0.04 0.00 0.08 1.65 0.35 96.76	293.33 2.10 0.20 0.37 7.25 1.53 423.80	$\begin{array}{c} 1.29 \\ < 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.03 \\ 0.01 \\ 2.13 \end{array}$	$5.67 \\ 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.13 \\ 0.03 \\ 9.32$	Gas/Vapor	O (GRI GL YCalc)	-

EPRBL-1	Upward vertical stack	EUDEHY-1	Glycol Dehydrator Reboiler	1	1	I	1	NOx CO VOC PM _{TOT} SO ₂ n-Hexane Formaldehyde Benzene Toluene CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 0.08\\ 0.06\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.28\\ 0.02\\ 0.03\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\end{array}$	-	-	Gas/Vapor	O (AP-42)	-
EPDEHY- 2	Upward vertical stack	EUDEHY-2	Glycol Dehydrator Still Vent and Flash Tank	APCCOND-2	Condenser/Reboile r	I	1	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	$\begin{array}{c} 66.97\\ 0.48\\ 0.04\\ 0.00\\ 0.08\\ 1.65\\ 0.35\\ 96.76\\ \end{array}$	293.33 2.10 0.20 0.00 0.37 7.25 1.53 423.80	$\begin{array}{c} 1.29 \\ < 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.03 \\ 0.01 \\ 2.13 \end{array}$	$5.67 \\ 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.13 \\ 0.03 \\ 9.32$	Gas/Vapor	O (GRI GLYCalc)	-
EPRBL-2	Upward vertical stack	EUDEHY-2	Glycol Dehydrator Reboiler	I	I	T		NOx CO VOC PM _{TOT} SO ₂ n-Hexane Formaldehyde Benzene Toluene CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 0.08\\ 0.06\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.28\\ 0.02\\ 0.03\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	-	-	Gas/Vapor	O (AP-42)	-
EPDEHY- 3	Upward vertical stack	EUDEHY-3	Glycol Dehydrator Still Vent and Flash Tank	APCCOND-3	Condenser/Reboile r	ı	1	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH4	66.97 0.48 0.04 0.00 0.08 1.65 0.35 96.76	293.33 2.10 0.20 0.00 0.37 7.25 1.53 423.80	$\begin{array}{c} 1.29 \\ < 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.03 \\ 0.01 \\ 2.13 \end{array}$	$5.67 \\ 0.01 \\ < 0.01 \\ 0.00 \\ < 0.01 \\ 0.13 \\ 0.03 \\ 9.32$	Gas/Vapor	O (GRI GLYCalc)	-

EPRBL-3	Upward vertical stack	EUDEHY-3	Glycol Dehydrator Reboiler	1	1	1	ı	NOx CO VOC PM _{TOT} SO ₂ n-Hexane Formaldehyde Benzene Toluene CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 0.08\\ 0.06\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.33\\ 0.28\\ 0.02\\ 0.03\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	-	-	Gas/Vapor	O (AP-42)	-
EPHT-1	Upward vertical stack	EUHT-1	Hot Oil Heater	I	1	I	I	NOx CO VOC PM _{TOT} SO ₂ n-Hexane CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 0.04\\ 0.03\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ \\58.49\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.14\\ 0.01\\ 0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ \end{array}$	-	-	Gas/Vapor	O (AP-42)	-
EPHT-2	Upward vertical stack	EUHT-2	Hot Oil Heater	-	-	1		NOx CO VOC PMTOT SO ₂ n-Hexane CO ₂ CH ₄ N ₂ O	$\begin{array}{c} 0.04\\ 0.03\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ \\58.49\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.14\\ 0.01\\ 0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ \end{array}$	-	-	Gas/Vapor	O (AP-42)	-
EPTK-1 – EPTK-8	Tank Vent	EUTK-1 – EUTK-8	Eight (8) 400-bbl Condensate Tanks	Vapor Recovery Unit	Vapor Recovery	I	ı	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane	-	164.32 0.08 0.44 0.39 1.48 5.85	-	3.29 <0.01 0.01 0.03 0.12	Gas/Vapor	O (TANKS 4.0.9d)	-

EPWTK-1 - EPWTK-2	Tank Vent	EUWTK-1 – EUWTK-2	Two (2) 400-bbl Produced Water Tanks	Vapor Recovery Unit	Vapor Recovery	I	I	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane	-	90.32 0.05 0.24 0.21 0.81 3.22	-	$\begin{array}{c} 1.81 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.02 \\ 0.06 \end{array}$	Gas/Vapor	O (TANKS 4.0.9d)	-
EPLOAD-1	Fugitive	EULOAD-1	Condensate Truck Loading	APC-CARBTROL	Carbon Canister	1	1	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	-	$\begin{array}{c} 6.15 \\ < 0.01 \\ 0.02 \\ 0.01 \\ 0.06 \\ 0.22 \\ < 0.01 \\ 1.85 \end{array}$	-	$\begin{array}{c} 2.06 \\ < 0.01 \\ 0.01 \\ < 0.01 \\ 0.02 \\ 0.07 \\ < 0.01 \\ 0.62 \end{array}$	Gas/Vapor	O (AP-42)	-
EPLOAD-2	Fugitive	EULOAD-2	Produced Water Truck Loading	APC-CARBTROL	Carbon Canister	1	ı	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	-	$\begin{array}{c} 0.04 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.01 \end{array}$	-	$\begin{array}{c} 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array}$	Gas/Vapor	O (AP-42)	-
EP-FUG	Fugitive	EU-FUG	Fugitive Emissions	-	ı	ı	1	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH4	-	$11.89 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 0.01 \\ 0.26 \\ 0.09 \\ 25.52$	-	-	Gas/Vapor	0 (API)	-
EP-BD	Fugitive	EU-BD	Blowdown Emissions		I		I	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	-	$11.88 < 0.01 < 0.01 \\ 0.00 < 0.01 \\ 0.24 \\ 0.10 \\ 27.73$	-	-	Gas/Vapor	0 (API)	-

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

WVDEP-DAQ Revision 2/11

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	ter Data				
Emission Point ID	Inner Exit Gas				Emission Point El	evation (ft)	UTM Coordinates (km)		
No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
EPCE-1	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-2	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-3	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-4	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-5	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-6	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-7	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-8	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-9	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-10	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-11	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPCE-12	1.0	1,012	9,240	195.8	~1,100	20 (est.)	4,426.286	537.993	
EPSTL-1	N/A	212	N/A	N/A	~1,100	N/A	4,426.286	537.993	

			Exit Gas		Emission Point El	evation (ft)	UTM Coordina	tes (km)
Emission Point ID No. (Must match Emission Units Table	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
EPRBL-1	~1.3	350 - 400	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPSTL-2	N/A	212	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPRBL-2	~1.3	350 - 400	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPSTL-3	N/A	212	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPRBL-3	~1.3	350 - 400	N/A	N/A	~1,100	N/A	4,426.286	537.993
EP-HT-1	0.7	~450	N/A	N/A	~1,100	N/A	4,426.286	537.993
EP-HT-2	0.7	~450	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPTK-1 – EPTK-8	N/A	Ambient	N/A	N/A	~1,100	20	4,426.286	537.993
EPWTK-1 – EPWTK-2	N/A	Ambient	N/A	N/A	~1,100	20	4,426.286	537.993
EPLOAD-1	N/A	Ambient	N/A	N/A	~1,100	N/A	4,426.286	537.993
EPLOAD-2	N/A	Ambient	N/A	N/A	~1,100	N/A	4,426.286	537.993
EP-FUG	N/A	Ambient	N/A	N/A	~1,100	N/A	4,426.286	537.993
EP-BD	N/A	Ambient	N/A	N/A	~1,100	20 (est.)	4,426.286	537.993

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No Previously Submitted
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹		m Potential d Emissions ²	Maximum Controlled E		Est. Method
	Chemical Name/CAS*	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations - Condensate	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	Does not apply	6.15 <0.01 0.02 0.01 0.06 0.22 <0.01 1.85	Does not apply	2.06 <0.01 0.01 <0.01 0.02 0.07 <0.01 0.62	0 – AP-42
Loading/Unloading Operations – Produced Water	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	Does not apply	0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01	Does not apply	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0 – AP-42
Wastewater Treatment Evaporation & Operations						

Equipment Leaks	VOC Benzene Toluene Ethylbenzene Xylenes n-Hexane CO ₂ CH ₄	Does not apply	11.89 <0.01 <0.01 <0.01 0.01 0.26 0.09 25.52	Does not apply	N/A	0 – AP-42
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Note: Greenhouse Gas (GHG) emissions were calculated using EPA Mandatory Reporting Rule and 2009 API Compendium guidance. With the exception of fugitive emissions (which are calculated by mass balance), emissions calculation methodologies are intended to calculate metric tons (tonnes) for the purposes of emissions reporting to EPA. These values were converted to tons for consistency with other pollutants.

ATTACHMENT L: EMISSION UNIT DATA SHEETS

- EUDS General: Compressor Engines
- EUDS General: Microturbine
- EUDS General: Dehydration Units
- EUDS General: Heater Treater Burners
- EUDS Storage Tanks Condensate
- EUDS Bulk Liquid Transfer Operations Condensate
- EUDS General: Blowdowns
- EUDS Chemical Process (Leak Sources)

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): See below

1. Name or type and model of proposed affected source:
This form applies to twelve (12) identical 1,380-hp Caterpillar G3516B Compressor Engine w/ Oxidation Catalysts (EUCE-1 through EUCE-12)
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Emissions provided in Question 8. Each unit will operate a maximum of 8,760 hours per year.
Emissions provided in Question of Each and win operate a maximum of 6,700 hours per year.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Emissions provided in Question 8.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Emissions from the combustion of natural gas.
* The identification number which appears here must correspond to the air pollution control device identification number appearing on the <i>List Form</i> .

6. Combustion Data (if applic	able):					
(a) Type and amount in ap	propriate units of	uel(s) to be bu	rned:			
maximum horsepower rating, which	Natural gas is used for fuel (Estimated maximum of 8,984 Btu per horsepower-hour for 8,760 hours per year at maximum horsepower rating, which equals 82.03 million cubic feet per year per unit at 1,324 Btu per standard cubic foot. Actual fuel heating value may vary.					
(b) Chemical analysis of pl and ash:	roposed fuel(s), ex	cluding coal, in	cluding maxim	um percent sulfur		
Gas analyses attached.						
(c) Theoretical combustion	n air requirement (ACF/unit of fue	I):			
@		°F and		psia.		
(d) Percent excess air:						
(e) Type and BTU/hr of bu						
(f) If coal is proposed as a coal as it will be fired:	a source of fuel, ide	entify supplier a	and seams and	give sizing of the		
Not applicable						
(g) Proposed maximum de	esign heat input:	12	.40	× 10 ⁶ BTU/hr.		
7. Projected operating sched	ule:					
Hours/Day 24	Days/Week	7	Weeks/Year	52		

8.	Projected amount of polluta devices were used:	ants that would be	emitted fro	m this affected source if no control
@	1,012	°F and	d	14.7 psia
a.	NO _X	1.52	lb/hr	grains/ACF
b.	SO ₂	0.01	lb/hr	grains/ACF
c.	СО	9.07	lb/hr	grains/ACF
d.	PM ₁₀	<0.01	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	3.29	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	Total HAPs	1.41	lb/hr	grains/ACF
	Note: Emissions shown are per unit. Speciated HAPs and Greenhouse Gases presented in Attachment J.		lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

with	the p		and reporting in order to demonstrate compliance Please propose testing in order to demonstrate hits.
MONITC		· · ·	RECORDKEEPING
5.1.16. Req	uirem	ents for Use of Catalytic Reduction Devices	As required by NSPS Subpart JJJJ
The pe	rmitte	e shall monitor the temperature to the inlet	
of the	cataly	st and, in accordance with manufacturer's	
specifi	cation	s, a high temperature alarm shall shut off	
	-	efore thermal deactivation of the catalyst	
		e engine shuts off due to high temperature,	
		e shall also check for thermal deactivation of	
		before normal operations are resumed. At	
	-	er calendar quarter, the permittee shall	
		p checks of NO _x and CO emissions from the	
		n operating under representative conditions od. Strip checks shall be conducted using the	
		ocedure:	
jouow	i.	Samples of pollutant concentrations	
		should be taken from sample ports in the	
		stack or using a "Shepherd's hook" from	
		a location in the stack such that a	
		representative concentration is measured	
		and bias (e.g., air leakage at weep holes)	
		is prevented. The use of stainless steel	
		tubing ran from sampling site to ground	
		level may be used. A single sampling	
		location near the center of the duct may	
		be selected.	
	ii.	The emissions check should produce at least one test strip of concentration data	
		for each of O ₂ , NO, NO ₂ and CO. The	
		analyzer should be run for a minimum of	
		5 minutes to allow readings to stabilize.	
		Then run analyzer for 5 minutes and	
		verify stability in concentrations. Print a	
		representative test strip on the analyzer.	
	iii.	With this test strip include (when	
		available) unit number or lease name,	
		rpm, manifold pressure, compressor	
		suction and discharge pressures and any	
		other information that may help determine	
	i.	horsepower during test.	
	iv.	Records of the strip checks must be maintained.	
		тататеа.	

REPORTING	TESTING
As required by NSPS Subpart JJJJ	As required by NSPS Subpart JJJJ
MONITORING. PLEASE LIST AND DESCRIBE TH	I HE PROCESS PARAMETERS AND RANGES THAT ARE
	NSTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Not applicable.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): EUGEN-1

1. Name or type and model of proposed affected source:
805-hp Capstone C600 Microturbine Generator
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Emissions provided in Question 8. Unit will operate a maximum of 8,760 hours per year.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Emissions provided in Question 8.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Emissions from the combustion of natural gas.
* The identification number which appears here must correspond to the air pollution control device identification number appearing on the <i>List Form</i> .

6. Combustion Data (if applic	able):			
(a) Type and amount in appropriate units of fuel(s) to be burned:				
Natural gas is used for fuel (Estimated maximum of 9,347 Btu per horsepower-hour for 8,760 hours per year at maximum horsepower rating, which equals 49.78 million cubic feet per year per unit at 1,324 Btu per standard cubic foot. Actual fuel heating value may vary.				
(b) Chemical analysis of pl and ash:	roposed fuel(s), ex	cluding coal, in	cluding maxim	um percent sulfur
Gas analyses attached.				
(c) Theoretical combustion	n air requirement (A	ACF/unit of fue	I):	
@		°F and		psia.
(d) Percent excess air:				
 (e) Type and BTU/hr of bu (f) If coal is proposed as a 				
coal as it will be fired:			inu seanis and	
Not applicable				
(g) Proposed maximum de	esign heat input:	7.	52	× 10 ⁶ BTU/hr.
7. Projected operating sched	ule:			
Hours/Day 24	Days/Week	7	Weeks/Year	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	535	°F and	1	14.7 psia
a.	NOx	0.25	lb/hr	grains/ACF
b.	SO ₂	0.03	lb/hr	grains/ACF
c.	со	0.62	lb/hr	grains/ACF
d.	PM ₁₀	0.01	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	0.02	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	Total HAPs	0.01	lb/hr	grains/ACF
	Note: Emissions shown are per unit. Speciated HAPs and Greenhouse Gases presented in Attachment J.		lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	None Proposed
REPORTING	TESTING
None Proposed	None Proposed
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
	OPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
TESTING. PLEASE DESCRIBE ANY PROPOSED EMPOLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainten maintain warranty	nance procedures required by Manufacturer to
Not applicable.	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): See below

1. Name or type and model of proposed affected source:
This form applies to three (3) identical triethylene glycol (TEG) dehydration units (EUDEHY-1, EUDEHY-2 and EUDEHY-3)
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Emissions provided in Question 8. Each unit will process a maximum of 55.0 million standard cubic feet of natural gas per day.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Emissions provided in Question 8.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Emissions from the still column are formed by boiling off water and absorbed hydrocarbons from triethylene glycol.
Emissions from the reboiler are from combustion of natural gas.
* The identification number which appears here must correspond to the air pollution control device identification number appearing on the <i>List Form</i> .

6. Combustion Data (if applic	able):			
(a) Type and amount in appropriate units of fuel(s) to be burned:				
million Btu per hour or 6.62 millio	Natural gas (including flash tank off-gas from the dehydration unit) is used for the reboiler fuel (maximum 1.0 million Btu per hour or 6.62 million cubic feet per year per reboiler based on a higher heating value of 1,324 Btu per standard cubic foot). Actual heating value may vary.			
(b) Chemical analysis of p and ash:	roposed fuel(s), ex	cluding coal, ir	Icluding maxim	ium percent sulfur
Gas analyses attached.				
(c) Theoretical combustion	n air requirement (/	ACF/unit of fue	I):	
@		°F and		psia.
(d) Percent excess air:				
(e) Type and BTU/hr of bu Each unit has a 1.0-mmBtu/hr natu	ral gas-fired reboiler (EPRBL-1, EPRB	L-2, EPRBL-3, re	spectively)
(f) If coal is proposed as a coal as it will be fired:	a source of fuel, ide	entify supplier a	and seams and	l give sizing of the
Not applicable				
(g) Proposed maximum de	esign heat input:	1	.0	× 10 ⁶ BTU/hr.
7. Projected operating sched	ule:		1	
Hours/Day 24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@	212	°F and		14.7 psia
a.	NOx	0.08	lb/hr	grains/ACF
b.	SO ₂	<0.01	lb/hr	grains/ACF
c.	со	0.06	lb/hr	grains/ACF
d.	PM ₁₀	<0.01	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	293.35*	lb/hr	grains/ACF
g.	Pb	N/A	lb/hr	grains/ACF
h.	Specify other(s)			
	Total HAPs	10.03*	lb/hr	grains/ACF
	*Dehy (EPDEHY) + reboiler (EPRBL) emissions with gas pump use.		lb/hr	grains/ACF
	Note: Emissions shown are per unit. Speciated HAPs and Greenhouse Gases presented in Attachment J.		lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
 Each of the glycol dehydration units will not exceed the following limits: a. The natural gas throughput will not exceed 55.0 MMSCFD based on an annual average. b. The lean glycol flow rate of the glycol dehydration unit will not exceed 7.5 gallons per minute. c. Still vent vapors shall be routed to an air-cooled condenser. Non-condensables from the still column overheads will be routed to the reboiler and combusted. d. Flash tank off-gases shall be routed to the reboiler and burned as fuel. Excess vapors not burned as fuel in the reboiler shall be recycled/recompressed. 	AMS shall comply with all applicable requirements of 40 CFR 63 (NESHAP) Subpart HH for Oil and Natural Gas Production for each affected dehydration unit including, but not limited to, 40 CFR 63.760 through 63.775. An owner or operator of a glycol dehydration unit that meets the exemption criteria in §63.764(e)(1)(i) or §63.764(e)(1)(ii) shall maintain the records specified in §§63.774(d)(1)(i) or (d)(1)(ii), as appropriate, for that glycol dehydration unit.		
REPORTING	TESTING		
None Proposed	None Proposed		
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE		
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to		
Not applicable			

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): See below

 Name or type and model of proposed affected source:
This form applies to two (2) identical heater treater burners (EUHT-1 and EUHT-2).
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Emissions provided in Question 8.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Emissions provided in Question 8.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Emissions from the combustion of natural gas.
Emissions from the compustion of natural gas.
* The identification number which appears here must correspond to the air pollution control device

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion D	ata (if applicate	able):			
(a) Type and	(a) Type and amount in appropriate units of fuel(s) to be burned:				
-		uel (maximum 0.5 mill value of 1,324 Btu per	-		
(b) Chemical and ash:	analysis of pr	oposed fuel(s), ex	cluding coal, in	cluding maxim	um percent sulfur
Gas analyses attach	ed.				
(c) Theoretica	al combustion	air requirement (A	ACF/unit of fue	I):	
	@		°F and		psia.
(d) Percent ex	cess air:				
(e) Type and	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
Each unit has a 0.5-	mmBtu/hr natur	al gas-fired burner (E	UHT-1 and EUH	T-2, respectively)	
	roposed as a vill be fired:	source of fuel, ide	entify supplier a	and seams and	give sizing of the
Not applicable					
(g) Proposed	maximum de	sign heat input:	0	.5	× 10 ⁶ BTU/hr.
7. Projected ope	rating schedu	ıle:			
Hours/Day	24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@	350 - 400) °F ar	nd	14.7 psia
a.	NOx	0.04	lb/hr	grains/ACF
b.	SO ₂	< 0.01	lb/hr	grains/ACF
c.	со	0.03	lb/hr	grains/ACF
d.	PM ₁₀	< 0.01	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	<0.01	lb/hr	grains/ACF
g.	Pb	N/A	lb/hr	grains/ACF
h.	Specify other(s)			
	Total HAPs	<0.01	lb/hr	grains/ACF
			lb/hr	grains/ACF
	Note: Emissions shown are per unit. Speciated HAPs and Greenhouse Gases presented in Attachment J.		lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

with the proposed operating parameters. I compliance with the proposed emissions lim	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate hits.
MONITORING	RECORDKEEPING
None Proposed	None Proposed
REPORTING	TESTING
REPORTING	TESTING
None Proposed	None Proposed
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
Not applicable.	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name		
N/A	Condensate		
 Tank Equipment Identification No. (as assigned on Equipment List Form) EUTK-1 – EUTK-8 	 Emission Point Identification No. (as assigned on Equipment List Form) EPTK-1 – EPTK-8 		
5. Date of Commencement of Construction (for existing	tanks) EUTK-1 – EUTK-6 - 2012		
6. Type of change 🛛 New Construction 🗌 N	New Stored Material 🛛 🛛 Other Tank Modification		
 Description of Tank Modification (if applicable) Update tank throughput. 			
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan			
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be		
7C. Provide any limitations on source operation affecting variation, etc.): N/A	emissions, any work practice standards (e.g. production		
II. TANK INFORM	ATION (required)		
height.	the internal cross-sectional area multiplied by internal 2,600 gallons) each		
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)		
12	20		
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)		
19	10		
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)		
20	10		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights. 16.074.56 gallons (each tank, per EPA TANKS 4.0.9d)			

	13B. Maximum daily throughput (gal/day)*			
13A. Maximum annual throughput (gal/yr)	6,904.11 (Total for All Tanks)			
2,520,000 (Total for All Tanks)	*Estimated maximum only. Rolling daily throughput			
	total not to exceed maximum annual throughput.			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
19.60 (for each tank, per EPA TANKS 4.0.9d)				
15. Maximum tank fill rate (gal/min) N/A				
16. Tank fill method Submerged	Splash 🗌 Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply):				
Fixed Roof vertical horizontal	flat roofdome roofdome roof			
other (describe)	double deck roof			
Domed External (or Covered) Floating Roof				
Internal Floating Roof vertical column su	pport self-supporting			
□ Variable Vapor Space lifter roof				
Pressurizedsphericalcylindrical				
Underground				
Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)			
Refer to enclosed TA				
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)			
20A. Shell Color 20B. Roof Color	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):				
No Rust 🗌 Light Rust 🗌 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
	of Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)	of Tanks Does Not Apply			
24A.For dome roof, provide roof radius (ft)24B.For cone roof, provide slope (ft/ft)	of Tanks Does Not Apply			
24B. For cone roof, provide slope (ft/ft)				
 24B. For cone roof, provide slope (ft/ft) 25. Complete the following section for Floating Roof Tai 25A. Year Internal Floaters Installed: 25B. Primary Seal Type: 	hks Does Not Apply Shoe Seal Liquid Mounted Resilient Seal			
 24B. For cone roof, provide slope (ft/ft) 25. Complete the following section for Floating Roof Tai 25A. Year Internal Floaters Installed: 	hks Does Not Apply Shoe Seal Liquid Mounted Resilient Seal			
 24B. For cone roof, provide slope (ft/ft) 25. Complete the following section for Floating Roof Tai 25A. Year Internal Floaters Installed: 25B. Primary Seal Type: 	hks Does Not Apply Shoe Seal Liquid Mounted Resilient Seal ient Seal Other (describe):			
24B. For cone roof, provide slope (ft/ft) 25. Complete the following section for Floating Roof Tail 25A. Year Internal Floaters Installed: 25B. Primary Seal Type: (check one) Uapor Mounted Resil	hks Does Not Apply Shoe Seal Liquid Mounted Resilient Seal ient Seal Other (describe): Seal? YES			

25E. Is the Floating Roof equipped	with a weather shi	eld? 🗌 YES	NO	
25F. Describe deck fittings; indicate the number of each type of fitting:				
ACCESS HATCH				
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAL	JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	COLUM	NWELL		
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH	KETED:	FABRIC SLEEVE SEAL:	
	LADDE	RWELL	1	
PIP COLUMN - SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	 /SAMPLE PORT		
SLIDING COVER, GASKETED:				
WEIGHTED MECHANICAL		HANGER WELL	SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED: ACTUATION, UNGASKETED: (10% OPEN AREA)				
VACUUM BREAKER				
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:	
RIM VENT				
WEIGHTED MECHANICAL ACTUAT			NICAL ACTUATION, UNGASKETED:	
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:		
		50 /0 OLUGED.		
	STUB	DRAIN		
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply
26A. Deck Type: Delted Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
\Box Continuous sheet construction 5 × 7.5 feet wide	
 Continuous sheet construction 5 × 12 feet wide Other (describe) 	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
27. Provide the city and state on which the data in this	if providing TANKS Summary Sheets)
Refer to enclosed TANKS Summary Sheet	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·da	
33. Atmospheric Pressure (psia)	
· · · · · · · · · · · · · · · · · · ·	l if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid: Re	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	pred in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

sure						
ear						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	as apply):	Does No	ot Apply			
otion ¹						
/ent (psig)						
Setting		Pressure Se	etting			
lief Valve (psig)						
ket of						
ank with						
on (scrubber) ¹						
f Tank						
	Cess					
		Shoot				
oriate Air Pollution Contr	¹ Complete appropriate Air Pollution Control Device Sheet.					
			or elsewhere in the an	vication)		
n Rate (submit Test Dat	a or Calcula	ations here		plication).		
n Rate (submit Test Dat Breathing Loss	a or Calcula Workin	ations here g Loss	Annual Loss	blication).		
n Rate (submit Test Dat	a or Calcula	ations here				
n Rate (submit Test Dat Breathing Loss	a or Calcula Workin	ations here g Loss	Annual Loss			
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
n Rate (submit Test Dat Breathing Loss (Ib/hr)	a or Calcula Workin Amount	ations here o g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
	Devices (check as many otion ¹ /ent (psig) Setting lief Valve (psig) ket of ank with fon (scrubber) ¹ f Tank psig) ator ¹	VI. EMISSIONS AND CONTR Devices (check as many as apply): otion ¹ /ent (psig) Setting lief Valve (psig) ket of ank with fon (scrubber) ¹ f Tank psig)	VI. EMISSIONS AND CONTROL DEVICE Devices (check as many as apply): Does No otion ¹ /ent (psig) Setting Pressure Se lief Valve (psig) ket of ank with on (scrubber) ¹ f Tank psig) ator ¹	VI. EMISSIONS AND CONTROL DEVICE DATA (required) Devices (check as many as apply): Does Not Apply otion ¹ //ent (psig) Setting Pressure Setting lief Valve (psig) ket of ank with on (scrubber) ¹ f Tank psig) ator ¹		

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EULOAD-1					
1. Loading Area Name: Condensate Truck Loading					
 2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): Drums Marine Vessels Rail Tank Cars Tank Trucks 					
3. Loading Rack	or Transfer Point	Data:			
Number of pu	mps		1		
Number of liqu	uids loaded		1		
Maximum number of marine 3 vessels, tank trucks, tank cars, and/or drums loading at one time					
4. Does ballasting of marine vessels occur at this loading area?					
 Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: Point is kept clear. Scotches are provided. Lines kept in good working order and tested periodically. 					
6. Are cargo vessels pressure tested for leaks at this or any other location?					
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):					
Maximum	Jan Mar.	Ар	r June	July - Sept.	Oct Dec.
hours/day	Approx. 11	Appro	ox. 11	Approx. 11	Approx. 11
days/week	5	5		5	5
weeks/quarter	ks/quarter 13 13 13 13				

8. Bulk Liqu	id Data <i>(add pages as</i>)	necessary):					
Pump ID No.		N/A					
Liquid Name		Condensate					
Max. daily throughput (1000 gal/day)		6.9					
Max. annual t	Max. annual throughput (1000 gal/yr)						
Loading Method ¹		SUB					
Max. Fill Rate (gal/min)		Est. 250					
Average Fill T	erage Fill Time (min/loading)						
Max. Bulk Liq	uid Temperature (°F)	80 - 100*	80 – 100* *Based on summer ambie temperatures in area		ent		
True Vapor P	ressure ²	7.6845					
Cargo Vessel	Condition ³	U					
Control Equip	ment or Method ⁴	O: Enclosed Flare					
Minimum cont	trol efficiency (%)	70% Capture Efficiency/95% Combustion Efficiency		on			
Maximum Emission	Loading (lb/hr)	Est. 22.15					
Rate	Annual (lb/yr)	Approx. 3,691.96 (1.85 tpy)					
Estimation Me	ethod ⁵	EPA					

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill

² At maximum bulk liquid temperature

 3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption LOA = Lean Oil Adsorption CO = Condensation SC = Scrubber (Absorption) CRA = Compressor-Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe)
 ⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING			
Captured loading emissions shall be routed to the enclosed flare. The flare shall be operated in accordance with applicable regulations for visible emissions and have a constant pilot flame during all times waste gas could be directed to it. The pilot flame shall be continuously monitored.	None Proposed			
The loading vapors (flare stream throughput) shall be monitored using a flow meter to ensure total annual throughput is not exceeded.				
Each monitoring device shall be accurate to, and shall be calibrated at a frequency in accordance with, the manufacturer's specifications.				
REPORTING	TESTING			
None Proposed	None Proposed			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE				
PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS				
PROCESS EQUIPMENT OPERATION/AIR POLLUTION CO	NTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY				
THE MONITORING.				
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mai Manufacturer to maintain warranty Not applicable.	ntenance procedures required by			

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): EU-BD

1. Name or type and model of proposed affected source:
Natural gas blowdowns
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Emissions provided in Question 8.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Emissions provided in Question 8.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Emissions from the release of natural gas
* The identification number which appears here must correspond to the air pollution control device

identification number appearing on the List Form.

6. Com	bustion	Data (if applic	able):							
(a) 1	(a) Type and amount in appropriate units of fuel(s) to be burned:									
Not A _l	oplicable									
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:									
Gas an	alyses at	tached.								
(c) 1	heoretic	al combustion	air requirement (ACF/unit of fue	I):					
Not A	Applicabl	e @		°F and		psia.				
(d) F	Percent e	excess air: 1	Not Applicable							
	ype and		rners and all other	firing equipme	nt planned to b	be used:				
(f) l' c	f coal is coal as it	proposed as a will be fired:	source of fuel, ide	entify supplier a	and seams and	l give sizing of the				
Not Ap	oplicable									
(g) F	Proposed	l maximum de	sign heat input:	Not Ap	plicable	× 10 ⁶ BTU/hr.				
7. Proje	ected op	erating schedu	ule:		1					
Hours/D	ay	Variable	Days/Week	Variable	Weeks/Year	Variable				

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:									
@	Ambient	°F and		Atmospheric	psia					
a.	NOx		lb/hr		grains/ACF					
b.	SO ₂		lb/hr		grains/ACF					
c.	со		lb/hr		grains/ACF					
d.	PM ₁₀		lb/hr		grains/ACF					
e.	Hydrocarbons		lb/hr		grains/ACF					
f.	VOCs	Variable lb/hr rate	lb/hr		grains/ACF					
g.	Pb		lb/hr		grains/ACF					
h.	Specify other(s)			l						
	Total HAPs	Variable lb/hr rate	lb/hr		grains/ACF					
			lb/hr		grains/ACF					
	Note: Short-term emission rate is highly variable. To per year emissions, as well as speciated HAP and GH emissions, are presented in Attachment J.				grains/ACF					
			lb/hr		grains/ACF					

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 								
MONITORING	RECORDKEEPING							
None Proposed	None Proposed							
REPORTING	TESTING							
None Proposed	None Proposed							
	E PROCESS PARAMETERS AND RANGES THAT ARE							
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS							
RECORDKEEPING. PLEASE DESCRIBE THE PROF	POSED RECORDKEEPING THAT WILL ACCOMPANY THE							
MONITORING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE							
RECORDKEEPING.								
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR							
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to							
Not Applicable								

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	or chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all upplementary forms that have been completed.									
	Emergency Vent Summary Sheet									
1.	. Chemical process area name and equipment ID number (as shown in <i>Equipment List Form</i>) Components in natural gas and light liquid service (EU-FUG)									
2.	 Standard Industrial Classification Codes (SICs) for process(es) 1389 									
3.	 List raw materials and ⊠ attach MSDSs Previously submitted Natural gas and condensate 									
	List Products and Maximum Produ		1							
	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)							
Not	t applicable									
5.		ummary Sheet for all emergency relief of								
6.	 6. Complete the <i>Leak Source Data Sheet</i> and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. The facility is not a natural gas processing plant (SIC 1321) and is therefore not subject to New Source Performance Standards (NSPS) Subpart KKK requirements for a leak detection and repair (LDAR) monitoring program. 									
7.	Clearly describe below or attach to spill or release.	o application Accident Procedures to be	e followed in the event of an accidental							
	In the event of an accidental spill o	or release, personnel will be protected, o op the spill or release will be implemen								

 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.). 9. Waste Products - Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.) 							
9A. Types and amounts of wastes to be disposed	d:						
9B. Method of disposal and location of waste dis	•						
Carrier:	Phone:						
9C. Check here if approved USEPA/State Hazard	dous Waste Landfill will be used						
10. Maximum and Projected Typical Operating S	chedule for process or project as a who	ole (circle appropriate units).					
circle units: (hrs/day) (hr/batch) ((days), (batches/day), (batches/week)	(days/yr), (weeks/year)					
10A. Maximum							
10B. Typical							
11. Complete a Reactor Data Sheet for each rea	actor in this chemical process.						
12. Complete a Distillation Column Data Sheet for	or each distillation column in this chem	ical process.					
 Proposed Monitoring, Recordkeeping, Re Please propose monitoring, recordkeeping, a operating parameters. Please propose testin limits. MONITORING 	and reporting in order to demonstrate co						
None proposed	None proposed	None proposed					
REPORTING	TESTING						
None proposed	None proposed	None proposed					
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING. Please describe the proposed frequency of reporting of the recordkeeping. TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.							
14. Describe all operating ranges and maintenar							
Not applicable							

Not applicable

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}	4	N/A	N/A	794
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	931	N/A	N/A	18,704
	Light Liquid VOC	30	N/A	N/A	1,146
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	26	N/A	N/A	1,021
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC	12	N/A	N/A	471
	Non-VOC				
Flanges	VOC	945 (Gas + Light Liq.)	N/A	N/A	1,643
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Note: Component counts shown above are estimated.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEET

APCDS – CONDENSER

- GRI-GLYCALC [™] CONDENSER CONTROL EFFICIENCY CURVES REPORTS
- GRI-GLYCALC [™] CONDENSER VENT STREAMS

Attachment M Air Pollution Control Device Sheet (CONDENSER SYSTEM)

Control Device ID No. (must match Emission Units Table): APCCOND-1, APCCOND-2, APCCOND-3 Equipment Information and Filter Characteristics

1.	Manufacturer: N/A	2. Method: Pressure condensation				
	Model No.	☐ Temperature condensation ☐ Surface				
3.	Control Device Name: Condenser					
		☐ Other, specify				
4.	Provide diagram of condenser:					
5.	•	em with duct arrangement and size of duct, air volume,				
	capacity, horsepower of movers. If applicable, state					
6.	Heat exchanger area: N/A ft ³	7. Reported removal efficiency: See attached GLYCalc Condenser Control Curve Efficiency Report %				
8.	Coolant Used: Air-cooled	9. Refrigeration capacity: Ref. N/A tons				
10.	Composition of coolant: N/A	11. Internal operating temperature: 120 °F				
40	Crecific bact of contents					
12.	Specific heat of coolant:	13. Temperature of condensation: <120 °F				
	N/A BTU/lb.°F, at 77°F					
	Average Operation:	Maximum Operation:				
14.	Coolant Temperature:	15. Coolant Temperature:				
	Inlet: Varies °F	Inlet: Varies °F				
	•					
	Inlet: Varies °F Outlet: <120 °F	Inlet: Varies °F Outlet: <120 °F				
16.	Inlet: Varies °F	Inlet: Varies °F				
16.	Inlet: Varies °F Outlet: <120 °F	Inlet: Varies °F Outlet: <120 °F				
16.	Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature:				
	Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F				
18.	Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F Outlet: 120 °F				
18. * R (Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F Outlet: 120 °F 19. Gas flow rate: 50.8 ft³/min				
18. * R (Inlet: Varies °F Outlet: <120 °F Gas Temperature: Inlet: 212 °F Outlet: 120 °F Gas flow rate: 50.8 ft³/min egenerator Overheads Stream – Gas Pump Coolant flow rate per condenser:	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F Outlet: 120 °F 19. Gas flow rate: 50.8 ft³/min *Regenerator Overheads Stream – Gas Pump 21. Coolant flow rate per condenser:				
18. * R (Inlet: Varies °F Outlet: <120 °F Gas Temperature: Inlet: 212 °F Outlet: 120 °F Gas flow rate: 50.8 ft³/min egenerator Overheads Stream – Gas Pump Coolant flow rate per condenser: Type:	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F Outlet: 120 °F 19. Gas flow rate: 50.8 ft³/min *Regenerator Overheads Stream – Gas Pump 21. Coolant flow rate per condenser: Type:				
18. * R (Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: 				
18. * R 20.	Inlet: Varies °F Outlet: <120 °F Gas Temperature: Inlet: 212 °F Outlet: 120 °F Gas flow rate: 50.8 ft³/min egenerator Overheads Stream – Gas Pump Coolant flow rate per condenser: Type: Water: - gal/min Air: N/A ft³/min Other: - Ib/hour	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: Inlet: 212 °F Outlet: 120 °F 19. Gas flow rate: 50.8 ft³/min *Regenerator Overheads Stream – Gas Pump 21. Coolant flow rate per condenser: Type: Water: - gal/min Air: N/A ft³/min Other: - Ib/hour				
18. * R 20.	Inlet:Varies°FOutlet:<120	Inlet: Varies °F Outlet: <120 °F 17. Gas Temperature: 				

26. Pollutant	Guaranteed Minimum Control Efficiency %	Guaranteed Minimum Concentration Control Efficiency % ppmv		Heat of Vaporation BTU/Ib-mol					
		••							
A VOC	N/A*	-	N/A	N/A					
B Benzene	N/A*	-	0.24295	N/A					
C Toluene	N/A*	-	0.26005	N/A					
D Ethylbenzene	N/A*	-	0.27768	N/A					
E Xylenes	N/A*	-	0.27954	N/A					
F n-Hexane	N/A*	-	0.38628	N/A					
G	*See Question 36	•							
Total Concentration in ppmv -									

	Er	nission Gas	(Vapor) Stre	am		
27. Before Condenser (Rege	enerator Ove	rheads)	28. After C	ondenser <mark>(Co</mark>	ndenser Ven	t Stream)
Inlet vapor flow rate: 50).8 ft ³ /min		Inlet va	por flow rate:	0.9 ft ³ /min	
Influent vapor temperature	e: 212 °F		Influent	vapor tempera	ature: 212 °F	
Effluent vapor temperature	e: 120 °F		Effluent	vapor tempera	ature: 120 °F	
29.		INLET*			OUTLET	٢*
Pollutant	Vapor Pressure	Condensati Temperatu			Vapor Pressure	Condensation Temperature
A VOC	N/A	N/A	11.10) 3.46	N/A	N/A
B Benzene	N/A	N/A	0.43	0.07	N/A	N/A
C Toluene	N/A	N/A	0.04	< 0.01	N/A	N/A
D Ethylbenzene	N/A	N/A	0.00	0.00	N/A	N/A
E Xylenes	N/A	N/A	0.08	< 0.01	N/A	N/A
F n-Hexane	N/A	N/A	0.38	0.07	N/A	N/A
G						
Total of the POLLUTANT	lb/hr		12.03	3 3.60		
Inlet = Regenerator Overheads S Outlet = Condenser Vent Stream emissions.				combusted by r	eboiler for low	ver overall
30. Moisture content:	%					
31. Describe any air pollution reheating, gas humidificat N/A		ce inlet and o	outlet gas co	nditioning proc	esses (e.g., g	gas cooling, gas

32. Describe the collection material disposal system: $$\rm N\!/\!A$$

33. Have you included Condenser Control Device in the Emissions Points Data Summary Sheet? Yes

proposed operating parameters. Please propose proposed emissions limits.	porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the			
MONITORING:	RECORDKEEPING:			
 Each of the glycol dehydration units will not exceed the following limits: a. The natural gas throughput will not exceed 55.0 MMSCFD based on an annual average. b. The lean glycol flow rate of the glycol dehydration unit will not exceed 7.5 gallons per minute. c. Still vent vapors shall be routed to an air-cooled condenser. Non-condensables from the still column overheads will be routed to the reboiler and combusted. d. Flash tank off-gases shall be routed to the reboiler and burned as fuel. Excess vapors not burned as fuel in the reboiler shall be recycled/recompressed. 	CFR 63 (NESHAP) Subpart HH for Oil and Natural Gas Production for each affected dehydration unit including, but not limited to, 40 CFR 63.760 through 63.775. An owner or operator of a glycol dehydration unit that meets the exemption criteria in §63.764(e)(1)(i) or §63.764(e)(1)(ii) shall maintain the records specified in §§63.774(d)(1)(i) or (d)(1)(ii), as appropriate, for that glycol dehydration unit.			
REPORTING:	TESTING:			
None Proposed	None Proposed			
RECORDKEEPING: REPORTING: REPORTING: monitored in order to demons equipment or air control device. Please describe the proposed red Please describe any proposed pollution control device.	bcess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air			
35. Manufacturer's Guaranteed Capture Efficiency for eac N/A	ch air pollutant.			
	h air pollutant. out attached specification sheet demonstrates representative rol Curve Efficiency Report for control efficiency at various			
37. Describe all operating ranges and maintenance proce N/A	edures required by Manufacturer to maintain warranty.			
Note: Units will be equipped with one (1) 22 gpm electric pum as back-ups. Pump rate will be limited to 7.5 gpm in each ope basis for the potential emissions since they are greater than po	erating scenario. Emissions from the gas pumps serve as the			

Page: 1 GRI-GLYCalc VERSION 4.0 - CONDENSER CONTROL CURVE EFFICIENCY REPORT Case Name: Sand Hill Compressor Station - Electric Pump File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill/2015 Sept R13 Mod App/February 2016 dehy update/2016-03-08 Sand Hill Electric - 55 mm - 2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016 CONDENSER CONTROL EFFICIENCY CURVES _____ Note: Condenser curves computed for the range 40.0 F <= T <= 170.0 F. DO NOT EXTRAPOLATE BEYOND THIS RANGE! BTEX Temp(F) Total HAP VOC 89.44 87.71 40.0 62.73 87.53 85.21 85.49 82.77 61.11 59.33 45.0 50.0 82.61 79.73 57.58 55.0 76.39 60.0 79.76 55.87 65.0 76.66 72.79 54.19 73.35 70.0 68.95 52.54 69.87 64.93 75.0 50.95 49.40 47.91 66.25 60.80 80.0 56.60 52.42 48.31 44.32 62.54 85.0 58.79 55.05 51.35 46.49 45.13 43.84 90.0 95.0 100.0 40.49 47.72 42.63 105.0 44.20 36.86 41.49 110.0 36.86 33.44 30.24 27.27 24.50 40.79 115.0 40.43 120.0 37.52 39.44 125.0 34.38 38.51 31.38 37.65 130.0 36.83 28.51 25.77 23.15 21.93 19.55 17.33 15.27 135.0 36.05 140.0 145.0 35.27 20.64 34.48 150.0 18.04 13.19 33.55 155.0 11.33 160.0 15.67 32.49 9.52 165.0 13.31 31.09 170.0 10.95 7.75 29.05 _____

GRI-GLYCalc VERSION 4.0 - STREAM REPORT

Case Name: Sand Hill Compressor Station - Electric Pump File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill\2015 Sept R13 Mod App\February 2016 dehy update\2016-03-08 Sand Hill_Electric - 55 mm - 2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016

CONDENSER VENT STREAM -----Temperature: 52.00 deg. F Pressure: 14.08 psia Flow Rate: 8.12e+001 scfh Conc. Loading Component (vol%) (lb/hr) ------Water 1.39e+000 5.35e-002 Carbon Dioxide 1.82e+000 1.72e-001 Nitrogen 7.45e-002 4.47e-003 Methane 1.42e+001 4.87e-001 Ethane 2.72e+001 1.75e+000 Propane 2.67e+001 2.52e+000 Isobutane 4.48e+000 5.58e-001 n-Butane 1.57e+001 1.95e+000 Isopentane 2.36e+000 3.64e-001 n-Pentane 3.36e+000 5.19e-001 n-Hexane 7.24e-001 1.34e-001 Cyclohexane 3.01e-001 5.42e-002 Other Hexanes 8.97e-001 1.65e-001 Heptanes 8.44e-002 1.81e-002 Methylcyclohexane 1.91e-001 4.01e-002 2,2,4-Trimethylpentane 2.51e-003 6.14e-004 Benzene 5.46e-001 9.13e-002 Toluene 1.16e-002 2.29e-003 Xylenes 5.11e-003 1.16e-003 C8+ Heavies 8.52e-003 3.11e-003 ----- ------Total Components 100.00 8.89e+000

Page: 1 GRI-GLYCalc VERSION 4.0 - CONDENSER CONTROL CURVE EFFICIENCY REPORT Case Name: Sand Hill Compressor Station - Gas Pumps File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill/2015 Sept R13 Mod App/February 2016 dehy update/2016-03-08 Sand Hill Gas - 55 mm -2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016 CONDENSER CONTROL EFFICIENCY CURVES _____ Note: Condenser curves computed for the range 40.0 F <= T <= 170.0 F. DO NOT EXTRAPOLATE BEYOND THIS RANGE! BTEX Temp(F) Total HAP VOC 90.83 89.53 40.0 73.19 89.21 87.38 87.65 85.53 45.0 71.94 70.69 50.0 85.36 83.19 69.45 55.0 83.29 80.79 68.30 60.0 65.0 80.90 78.02 67.08 75.05 70.0 78.32 65.86 75.57 71.90 75.0 64.66 72.67 68.59 63.47 80.0 62.29 65.16 85.0 69.64 66.50 63.28 60.01 61.14 61.63 58.06 54.47 90.0 60.02 58.92 95.0 100.0 56.70 50.90 57.85 105.0 47.38 53.39 56.81 110.0 50.09 43.94 115.0 55.81 40.59 120.0 46.82 54.85 125.0 43.59 37.36 53.92 53.02 40.42 130.0 34.24 37.31 34.25 31.26 31.24 28.37 25.62 22.97 52.15 135.0 51.29 50.43 140.0 145.0 28.32 49.55 150.0 20.42 48.59 155.0 25.42 17.96 160.0 22.57 47.47 19.49 15.36 165.0 45.98 170.0 16.55 12.92 43.96 _____

GRI-GLYCalc VERSION 4.0 - STREAM REPORT

Case Name: Sand Hill Compressor Station - Gas Pumps
File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand
Hill\2015 Sept R13 Mod App\February 2016 dehy update\2016-03-08 Sand Hill_Gas - 55 mm 2-26-15 analysis 950 psi 7.5 gpm.ddf
Date: March 08, 2016

CONDENSER VENT STREAM -----Temperature: 52.00 deg. F Pressure: 14.08 psia Flow Rate: 5.57e+001 scfh Conc. Loading Component (vol%) (lb/hr) ------Water 1.39e+000 3.68e-002 Carbon Dioxide 9.19e-001 5.94e-002 Nitrogen 1.29e-001 5.30e-003 Methane 2.82e+001 6.65e-001 Ethane 2.57e+001 1.13e+000 Propane 2.21e+001 1.43e+000 Isobutane 3.52e+000 3.00e-001 n-Butane 1.14e+001 9.75e-001 Isopentane 1.81e+000 1.92e-001 n-Pentane 2.45e+000 2.60e-001 n-Hexane 5.52e-001 6.99e-002 Cyclohexane 2.59e-001 3.20e-002 Other Hexanes 6.69e-001 8.47e-002 Heptanes 7.84e-002 1.15e-002 Methylcyclohexane 1.79e-001 2.58e-002 2,2,4-Trimethylpentane 2.24e-003 3.75e-004 Benzene 6.26e-001 7.18e-002 Toluene 1.29e-002 1.74e-003 Xylenes 5.86e-003 9.14e-004 C8+ Heavies 1.13e-002 2.83e-003 ----- ------Total Components 100.00 5.36e+000

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

EXAMPLE CALCULATIONS

g/hp-hr Emission Factors:

Emission Factor (g/hp-hr) * Engine Rating (hp) * 1 lb/453.6 g = lb/hr

lb/mmBtu Emission Factors:

Emission Factor (lb/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (lb/mmBtu) * Combustor Rating (mmBtu/hr) = lb/hr

lb/mmscf Emission Factors:

Emission Factor (lb/mmscf) * Heater Rating (mmBtu/hr) * 1/Fuel Heating Value (Btu/scf) = lb/hr

kg/mmBtu Emission Factors:

Emission Factor (kg/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 2.20462 lb/kg * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (kg/mmBtu) * Heater Rating (mmBtu/hr) * 2.20462 lb/kg = lb/hr

Fugitives:

TOC Emission Factor (lb/hr/source) * Number of Sources * VOC wt% = lb/hr VOC

Tons per Year (TPY) Conversion:

lb/hr * Hours/Year * 1 ton/2000 lb = TPY

Tonnes/Year * 1.10231131 = TPY

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 1a: Summary of Criteria Air Pollutant Emissions

	NOX CO VOC		s	iO ₂	РМ						
Equipment	Point ID	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-1	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-2	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-3	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-4	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-5	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-6	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-7	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-8	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-9	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-10	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-11	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-12	1.52	6.66	1.36	5.96	0.88	3.86	0.01	0.03	0.12	0.54
805-hp Capstone C600 Microturbine Generator	EPGEN-1	0.25	1.09	0.62	2.70	0.02	0.07	0.03	0.11	0.05	0.22
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-1	-	-	-	-	1.29	5.67	-	-	-	-
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-2	-	-	-	-	1.29	5.67	-	-	-	-
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-3	-	-	-	-	1.29	5.67	-	-	-	-
1.0-mmBtu/hr TEG Reboiler	EPRBL-1	0.08	0.33	0.06	0.28	<0.01	0.02	<0.01	<0.01	0.01	0.03
1.0-mmBtu/hr TEG Reboiler	EPRBL-2	0.08	0.33	0.06	0.28	<0.01	0.02	<0.01	<0.01	0.01	0.03
1.0-mmBtu/hr TEG Reboiler	EPRBL-3	0.08	0.33	0.06	0.28	<0.01	0.02	<0.01	<0.01	0.01	0.03
0.5-mmBtu/hr Heater Treater Burner	EPHT-1	0.04	0.17	0.03	0.14	<0.01	0.01	<0.01	<0.01	<0.01	0.01
0.5-mmBtu/hr Heater Treater Burner	EPHT-2	0.04	0.17	0.03	0.14	<0.01	0.01	<0.01	<0.01	<0.01	0.01
Eight (8) Condensate Storage Tanks - Revise	EPTK-1 - EPTK-8	-	-	-	-	0.75	3.29	-	-	-	-
Two (2) Produced Water Storage Tanks	EPWTK-1 - EPWTK-2	-	-	-	-	0.41	1.81	-	-	-	-
Condensate Truck Loading - Revise	EPLOAD-1	-	-	-	-	-	2.06	-	-	-	-
Produced Water Truck Loading	EPLOAD-2	-	-	-	-	-	0.01	-	-	-	-
Fugitive Emissions - Revise	EP-FUG	-	-	-	-	-	11.89	-	-	-	-
Blowdowns - Revise	EP-BD	-	-	-	-	-	11.88	-	-	-	-
R	evised Total =	18.80	82.37	17.19	75.30	15.66	94.46	0.11	0.50	1.56	6.84
Currently Pe	rmitted Total =	18.80	82.35	3.13	13.74	12.52	81.93	0.11	0.50	1.55	6.78
Change i	n Emissions =	0.00	0.02	14.06	61.56	3.14	12.53	0.00	0.00	0.01	0.05

Note: Per Caterpillar guidance, VOC emission factor does not include formaldehyde; therefore, it has been added to this summary to calculate total VOC at the site.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 1b: Summary of Hazardous Air Pollutants

		Estimated Emissions (lb/hr)									
Equipment	Point ID	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Formaldehyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAPs
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-1	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-2	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-3	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-4	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-5	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-6	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-7	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-8	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-9	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-10	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-11	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-12	0.10	0.06	0.01	<0.01	0.06	0.03	0.01	0.01	<0.01	0.29
805-hp Capstone C600 Microturbine Generator	EPGEN-1	<0.01	<0.01	<0.01	<0.01	0.01	-	-	<0.01	<0.01	0.01
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-1	-	-	<0.01	0.00	-	-	0.03	<0.01	#VALUE!	#VALUE!
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-2	-	-	<0.01	0.00	-	-	0.03	<0.01	#VALUE!	#VALUE!
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-3	-	-	<0.01	0.00	-	-	0.03	<0.01	#VALUE!	#VALUE!
1.0-mmBtu/hr TEG Reboiler	EPRBL-1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.0-mmBtu/hr TEG Reboiler	EPRBL-2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.0-mmBtu/hr TEG Reboiler	EPRBL-3	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater Burner	EPHT-1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater Burner	EPHT-2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Eight (8) Condensate Storage Tanks - Revise	EPTK-1 - EPTK-8	-	-	<0.01	<0.01	-	-	0.03	<0.01	0.01	0.04
Two (2) Produced Water Storage Tanks	EPWTK-1 - EPWTK-2	-	-	<0.01	<0.01	-	-	0.01	<0.01	<0.01	0.02
Condensate Truck Loading - Revise	EPLOAD-1	-	-	-	-	-	-	-	-	-	-
Produced Water Truck Loading	EPLOAD-2	-	-	-	-	-	-	-	-	-	-
Fugitive Emissions - Revise	EP-FUG	-	-	-	-	-	-	-	-	-	-
Blowdowns - Revise	EP-BD	-	-	-	-	-	-	-	-	-	-
	Revised Total =	1.24	0.76	0.07	0.01	0.74	0.37	0.30	0.07	#VALUE!	#VALUE!
Currently	<pre>/ Permitted Total =</pre>	1.24	0.76	0.07	0.01	0.74	0.37	0.30	0.08	0.06	3.63
Char	nge in Emissions =	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.02	#VALUE!	#VALUE!

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 1b: Summary of Hazardous Air Pollutants (Continued)

		Estimated Emissions (tons/yr)									
Equipment	Point ID	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Formaldehyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAPs
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-1	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-2	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-3	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-4	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-5	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-6	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-7	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-8	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-9	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-10	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-11	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-12	0.45	0.28	0.02	<0.01	0.27	0.14	0.06	0.02	0.01	1.25
805-hp Capstone C600 Microturbine Generator	EPGEN-1	<0.01	<0.01	<0.01	<0.01	0.02	-	-	<0.01	<0.01	0.03
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-1	-	-	0.01	0.00	-	-	0.13	<0.01	<0.01	0.14
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-2	-	-	0.01	0.00	-	-	0.13	<0.01	<0.01	0.14
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-3	-	-	0.01	0.00	-	-	0.13	<0.01	<0.01	0.14
1.0-mmBtu/hr TEG Reboiler	EPRBL-1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.0-mmBtu/hr TEG Reboiler	EPRBL-2	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.0-mmBtu/hr TEG Reboiler	EPRBL-3	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
0.5-mmBtu/hr Heater Treater Burner	EPHT-1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater Burner	EPHT-2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Eight (8) Condensate Storage Tanks - Revise	EPTK-1 - EPTK-8	-	-	<0.01	0.01	-	-	0.12	0.01	0.03	0.16
Two (2) Produced Water Storage Tanks	EPWTK-1 - EPWTK-2	-	-	<0.01	<0.01	-	-	0.06	<0.01	0.02	0.09
Condensate Truck Loading - Revise	EPLOAD-1	-	-	<0.01	<0.01	-	-	0.07	0.01	0.02	0.10
Produced Water Truck Loading	EPLOAD-2	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions - Revise	EP-FUG	-	-	<0.01	<0.01	-	-	0.26	<0.01	0.01	0.28
Blowdowns - Revise	EP-BD	-	-	<0.01	<0.01	-	-	0.24	<0.01	<0.01	0.24
	Revised Total =	5.45	3.35	0.33	0.05	3.22	1.63	1.89	0.29	0.20	16.41
Currently	Permitted Total =	5.43	3.34	0.33	0.08	3.22	1.62	1.94	0.37	0.35	16.69
Char	ige in Emissions =	0.02	0.01	0.00	-0.04	0.00	0.01	-0.05	-0.08	-0.15	-0.28

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 1c: Summary of Greenhouse Gas Emissions - Metric Tons Per Year (Tonnes)

Environment	Point ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH₄)	Nitrous O	xide (N ₂ O)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.}
Equipment	Point ID	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-1	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-2	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-3	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-4	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-5	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-6	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-7	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-8	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-9	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-10	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-11	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-12	1,566.80	6,225.63	0.03	0.11	<0.01	0.01	0.68	2.72	0.81	3.24	1,568.30	6,231.58
805-hp Capstone C600 Microturbine Generator	EPGEN-1	880.15	3,497.23	0.02	0.07	<0.01	0.01	0.41	1.65	0.49	1.96	881.06	3,500.84
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-1	0.01	0.03	2.13	8.46	-	-	53.22	211.45	-	-	53.22	211.48
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-2	0.01	0.03	2.13	8.46	-	-	53.22	211.45	-	-	53.22	211.48
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-3	0.01	0.03	2.13	8.46	-	-	53.22	211.45	-	-	53.22	211.48
1.0-mmBtu/hr TEG Reboiler	EPRBL-1	116.98	464.80	<0.01	0.01	<0.01	<0.01	0.06	0.22	0.07	0.26	117.10	465.28
1.0-mmBtu/hr TEG Reboiler	EPRBL-2	116.98	464.80	<0.01	0.01	<0.01	<0.01	0.06	0.22	0.07	0.26	117.10	465.28
1.0-mmBtu/hr TEG Reboiler	EPRBL-3	116.98	464.80	<0.01	0.01	<0.01	<0.01	0.06	0.22	0.07	0.26	117.10	465.28
0.5-mmBtu/hr Heater Treater Burner	EPHT-1	58.49	232.40	<0.01	<0.01	<0.01	<0.01	0.03	0.11	0.03	0.13	58.55	232.64
0.5-mmBtu/hr Heater Treater Burner	EPHT-2	58.49	232.40	<0.01	<0.01	<0.01	<0.01	0.03	0.11	0.03	0.26	58.55	232.77
Eight (8) Condensate Storage Tanks - Revise	EPTK-1 - EPTK-8	0.04	0.14	1.28	5.07	-	-	31.89	126.73	-	-	31.93	126.88
Two (2) Produced Water Storage Tanks	EPWTK-1 - EPWTK-2	0.02	0.09	0.78	3.08	-	-	19.40	77.10	-	-	19.43	77.19
Condensate Truck Loading - Revise	EPLOAD-1	-	<0.01	-	0.56	-	-	-	14.05	-	-	-	14.05
Produced Water Truck Loading	EPLOAD-2	-	<0.01	-	<0.01	-	-		0.09	-	-	-	0.09
Fugitive Emissions - Revise	EP-FUG	-	0.08	-	23.15	-	-	-	578.71	-	-	-	578.80
Blowdowns - Revise	EP-BD	-	0.09	-	25.16	-	-	-	628.94	-	-	-	629.03
	Revised Total =	20,149.72	80,064.47	8.79	83.81	0.04	0.14	219.78	2,095.08	10.53	41.97	20,380.03	82,201.52
Current	tly Permitted Total =	20,769.43	82,526.87	6.28	78.60	0.04	0.14	131.86	1,650.48	10.92	43.52	20,912.21	84,220.87
Cha	ange in Emissions =	-619.71	-2,462.40	2.51	5.21	0.00	0.00	87.92	444.60	-0.39	-1.55	-532.18	-2,019.35

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 1d: Summary of Greenhouse Gas Emissions - Short Tons Per Year (Tons)

Equipment	Point ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Nitrous O	xide (N ₂ O)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.}
	Folite ID	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-1	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-2	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-3	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-4	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-5	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-6	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-7	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-8	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-9	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-10	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-11	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
1,380-hp Caterpillar G3516B Engine w/ Oxid. Cat Revise	EPCE-12	1,566.80	6,862.58	0.03	0.12	<0.01	0.01	0.68	2.99	0.81	3.57	1,568.30	6,869.14
805-hp Capstone C600 Microturbine Generator	EPGEN-1	880.15	3,855.04	0.02	0.08	<0.01	0.01	0.41	1.82	0.49	2.16	881.06	3,859.01
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-1	0.01	0.03	2.13	9.32	-	-	53.22	233.08	-	-	53.22	233.12
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-2	0.01	0.03	2.13	9.32	-	-	53.22	233.08	-	-	53.22	233.12
55.0-MMSCFD TEG Dehydration Unit Still Vent - Revise	EPDEHY-3	0.01	0.03	2.13	9.32	-	-	53.22	233.08	-	-	53.22	233.12
1.0-mmBtu/hr TEG Reboiler	EPRBL-1	116.98	512.36	<0.01	0.01	<0.01	<0.01	0.06	0.24	0.07	0.29	117.10	512.89
1.0-mmBtu/hr TEG Reboiler	EPRBL-2	116.98	512.36	<0.01	0.01	<0.01	<0.01	0.06	0.24	0.07	0.29	117.10	512.89
1.0-mmBtu/hr TEG Reboiler	EPRBL-3	116.98	512.36	<0.01	0.01	<0.01	<0.01	0.06	0.24	0.07	0.29	117.10	512.89
0.5-mmBtu/hr Heater Treater Burner	EPHT-1	58.49	256.18	<0.01	<0.01	<0.01	<0.01	0.03	0.12	0.03	0.14	58.55	256.44
0.5-mmBtu/hr Heater Treater Burner	EPHT-2	58.49	256.18	<0.01	<0.01	<0.01	<0.01	0.03	0.12	0.03	0.14	58.55	256.44
Eight (8) Condensate Storage Tanks - Revise	EPTK-1 - EPTK-8	0.04	0.16	1.28	5.59	-	-	31.89	139.70	-	-	31.93	139.86
Two (2) Produced Water Storage Tanks	EPWTK-1 - EPWTK-2	0.02	0.10	0.78	3.40	-	-	19.40	84.99	-	-	19.43	85.08
Condensate Truck Loading - Revise	EPLOAD-1	-	<0.01	-	0.62	-	-	-	15.48	-	-	-	15.48
Produced Water Truck Loading	EPLOAD-2	-	<0.01	-	<0.01	-	-	-	0.09	-	-	-	0.09
Fugitive Emissions - Revise	EP-FUG	-	0.09	-	25.52	-	-	-	637.92	-	-	-	638.01
Blowdowns - Revise	EP-BD	-	0.10	-	27.73	-	-	-	693.29	-	-	-	693.39
	Revised Total =	20,149.72	88,255.97	8.79	92.38	0.04	0.16	219.78	2,309.43	10.53	46.12	20,380.03	90,611.52
Currentl	y Permitted Total =	20,769.43	90,970.30	6.28	86.64	0.04	0.16	131.86	1,819.35	10.92	47.82	20,912.21	92,837.47
Cha	nge in Emissions =	-619.71	-2,714.33	2.51	5.74	0.00	0.00	87.92	490.08	-0.39	-1.70	-532.18	-2,225.95

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2a(1): Engine Emissions Calculations - Criteria Air Pollutants

Equipment Information

Point ID: EPCE-1 EPCE-2 EPCE-3 EPCE-4 EPCE-5 EPCE-6 Caterpillar Caterpillar Caterpillar Caterpillar Caterpillar Caterpillar Make: G3516B Model: G3516B G3516B G3516B G3516B G3516B 4S-LB 4S-LB 4S-LB 4S-LB 4S-LB 4S-LB Design Class: Oxid. Cat. Oxid. Cat. Oxid. Cat. Oxid. Cat. Oxid. Cat. Controls: Oxid. Cat. 1,380 Horsepower (hp): 1,380 1,380 1,380 1,380 1,380 8,984 Fuel Use (Btu/hp-hr)¹: 8,984 8,984 8,984 8,984 8,984 9,364 Fuel Use (scfh): 9,364 9,364 9,364 9,364 9,364 Fuel Use (mmBtu/hr): 12.40 12.40 12.40 12.40 12.40 12.40 Exhaust Flow (acfm): 9,240 9,240 9,240 9,240 9,240 9,240 Exhaust Temp (°F): 1,012 1,012 1,012 1,012 1,012 1,012 Operating Hours: 8,760 8,760 8,760 8,760 8,760 8,760 Fuel HHV (Btu/scf): 1,324 1,324 1,324 1,324 1,324 1,324 **Uncontrolled Manufacturer Emission Factors** 0.50 0.50 0.50 0.50 NOx (g/hp-hr): 0.50 0.50 CO (g/hp-hr): 2.98 2.98 2.98 2.98 2.98 2.98 1.08 1.08 1.08 1.08 1.08 VOC (g/hp-hr): 1.08 CO Control Eff. % 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% VOC Control Eff. % 75.00% 75.00% 75.00% 75.00% 75.00% 75.00% Controlled Manufacturer Emission Factors² 0.45 0.45 0.45 0.45 0.45 0.45 CO (g/hp-hr): 0.27 0.27 0.27 VOC (g/hp-hr): 0.27 0.27 0.27

Uncontrolled Criteria Air Pollutant Emissions

Point II	: <u>EP</u>	<u>CE-1</u>	EPCE-2		EPCE-3		EPCE-4		EPCE-5		EPCE-6	
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NC	x 1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66
C	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71
VO	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39
SC	2 0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03
PM _{10/2}	5 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM _{CON}	D 0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54
PM _{TC}	т 0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2a(1): Engine Emissions Calculations - Criteria Air Pollutants (Continued)

Controlled Criteria Air Pollutant Emissions

Point	D: <u>EF</u>	<u>PCE-1</u>	EPCE-2		EPCE-3		EPCE-4		EPCE-5		EPCE-6	
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
N	0x 1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66
	O 1.36	5.96	1.36	5.96	1.36	5.96	1.36	5.96	1.36	5.96	1.36	5.96
V	C 0.82	3.60	0.82	3.60	0.82	3.60	0.82	3.60	0.82	3.60	0.82	3.60
S	D ₂ 0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03
PM ₁₀	2.5 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM _{CC}	ND 0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54
PM-	от 0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54

AP-42 Table 3.2-2 (7/2000) Emission Factors

SO ₂	5.88E-04
PM _{10/2.5}	7.71E-05
PM _{COND}	9.91E-03
PM _{TOT}	9.99E-03

Notes:

1) 10% safety factor added to manufacturer fuel use to account for potential fluctuations in fuel heating value.

2) Oxidation Catalyst does not reduce NOx emissions.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2b(1): Engine Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Point ID:	EPCE-1	EPCE-2	EPCE-3	EPCE-4	EPCE-5	EPCE-6
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3516B	G3516B	G3516B	G3516B
Design Class:	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB
Controls:	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.
Horsepower (hp):	1,380	1,380	1,380	1,380	1,380	1,380
Fuel Use (Btu/hp-hr)1:	8,984	8,984	8,984	8,984	8,984	8,984
Fuel Use (scfh):	9,364	9,364	9,364	9,364	9,364	9,364
Fuel Use (mmBtu/hr):	12.40	12.40	12.40	12.40	12.40	12.40
Exhaust Flow (acfm):	9,240	9,240	9,240	9,240	9,240	9,240
Exhaust Temp (°F):	1,012	1,012	1,012	1,012	1,012	1,012
Operating Hours:	8,760	8,760	8,760	8,760	8,760	8,760
te: No reduction taken for oxidation catalust or	ontrol on any HAP othe	or than formaldohydo				

Note: No reduction taken for oxidation catalyst control on any HAP other than formaldehyde.

Uncontrolled Hazardous Air Pollutant (HAP) Emissions

Point ID:	EPO	<u>CE-1</u>	EPCE-2		EPCE-3		EPCE-4		EPCE-5		EPCE-6	
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45
Acrolein	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28
Benzene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20
n-Hexane	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06
Methanol	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14
Toluene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
Total HAPs =	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2b(1): Engine Emissions Calculations - Hazardous Air Pollutants (Continued)

Controlled Hazardous Air Pollutant (HAP) Emissions

Point ID:	<u>EP(</u>	EPCE-1		EPCE-2		EPCE-3		EPCE-4		EPCE-5		EPCE-6	
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Acetaldehyde	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	
Acrolein	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	
Benzene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Formaldehyde	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27	
n-Hexane	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	
Methanol	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	
Toluene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	
Total HAPs =	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25	

AP-42 Table 3.2-2 (7/2000) Emission Factors

Acetaldehyde	8.36E-03
Acrolein	5.14E-03
Benzene	4.40E-04
Ethylbenzene	3.97E-05
n-Hexane	1.11E-03
Methanol	2.50E-03
Toluene	4.08E-04
Xylenes	1.84E-04

Uncontrolled Formaldehyde Manufacturer Emission Factor (g/hp-hr) = Formaldehyde Manufacturer Emission Factor (g/hp-hr) with 95% Control Efficiency =

<mark>0.39</mark> 0.02

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2c(1): Engine Emissions Calculations - Greenhouse Gas Emissions

Equipment Information

Point ID:	EPCE-1	EPCE-2	EPCE-3	EPCE-4	EPCE-5	EPCE-6
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3516B	G3516B	G3516B	G3516B
Design Class:	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB
Controls:	Oxid. Cat.					
Horsepower (hp):	1,380	1,380	1,380	1,380	1,380	1,380
Fuel Use (Btu/hp-hr)1:	8,984	8,984	8,984	8,984	8,984	8,984
Fuel Use (scfh):	9,364	9,364	9,364	9,364	9,364	9,364
Fuel Use (mmBtu/hr):	12.40	12.40	12.40	12.40	12.40	12.40
Exhaust Flow (acfm):	9,240	9,240	9,240	9,240	9,240	9,240
Exhaust Temp (°F):	1,012	1,012	1,012	1,012	1,012	1,012
Operating Hours:	8,760	8,760	8,760	8,760	8,760	8,760

Greenhouse Gas (GHG) Emissions - Metric Tons (Tonnes)

Total CO₂ + CO₂e

1,568.30

6,231.58

1,568.30

6,231.58

Point ID:	Point ID: <u>EPCE-1</u>		EPCE-2		EPCE-3		EPCE-4		EPCE-5		EPCE-6	
Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63
CH ₄	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11
N ₂ O	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
CH ₄ as CO ₂ e	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72
N ₂ O as CO ₂ e	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24

1,568.30

6,231.58

1,568.30

6,231.58

1,568.30

6,231.58

1,568.30

6,231.58

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2c(1): Engine Emissions Calculations - Greenhouse Gas Emissions (Continued)

Greenhouse Gas (GHG) Emissions - Short Tons (Tons)

Point ID:	EPC	<u>) E-1</u>	EPC	<u>)E-2</u>	<u>EPC</u>	<u>)E-3</u>	<u>EP(</u>	<u>CE-4</u>	<u>EPC</u>	<u>CE-5</u>	EPC	<u>)E-6</u>
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
CO ₂	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58
CH ₄	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12
N ₂ O	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
CH ₄ as CO ₂ e	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99
N ₂ O as CO ₂ e	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57
Total CO ₂ + CO ₂ e	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14

515

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)

Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

 $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

Carbon Dioxide (CO₂) Manufacturer Data (g/hp-hr) + 1% for Oxidation Catalyst =

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2a(2): Engine Emissions Calculations - Criteria Air Pollutants

Point ID:	EPCE-7	EPCE-8	EPCE-9	EPCE-10	EPCE-11	EPCE-12
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpilla
Model:	G3516B	G3516B	G3516B	G3516B	G3516B	G3516B
Design Class:	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB
Controls:	Oxid. Cat.	Oxid. Ca				
Horsepower (hp):	1,380	1,380	1,380	1,380	1,380	1,380
Fuel Use (Btu/hp-hr):	8,984	8,984	8,984	8,984	8,984	8,984
Fuel Use (scfh):	9,364	9,364	9,364	9,364	9,364	9,364
Fuel Use (mmBtu/hr) ¹ :	12.40	12.40	12.40	12.40	12.40	12.40
Exhaust Flow (acfm):	9,240	9,240	9,240	9,240	9,240	9,240
Exhaust Temp (°F):	1,012	1,012	1,012	1,012	1,012	1,012
Operating Hours:	8,760	8,760	8,760	8,760	8,760	8,760
Fuel HHV (Btu/scf):	1,324	1,324	1,324	1,324	1,324	1,324
Incontrolled Manufacturer Emission Factors						
NOx (g/hp-hr):	0.50	0.50	0.50	0.50	0.50	0.50
CO (g/hp-hr):	2.98	2.98	2.98	2.98	2.98	2.98
VOC (g/hp-hr):	1.08	1.08	1.08	1.08	1.08	1.08
CO Control Eff. %	85.00%	85.00%	85.00%	85.00%	85.00%	85.00%
VOC Control Eff. %	75.00%	75.00%	75.00%	75.00%	75.00%	75.00%
controlled Manufacturer Emission Factors ²						
CO (g/hp-hr):	0.45	0.45	0.45	0.45	0.45	0.45
VOC (g/hp-hr):	0.27	0.27	0.27	0.27	0.27	0.27

Poin	ID:	EPC	<u>)E-7</u>	EPO	<u>CE-8</u>	<u>EPC</u>	<u>CE-9</u>	EPC	<u>E-10</u>	EPC	<u>E-11</u>	<u>EPC</u>	E-12
Pollutant		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	NOx	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66
	CO	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71	9.07	39.71
	OC/	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39	3.29	14.39
	SO ₂	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03
PM	10/2.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM	COND	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54
PI	1 _{TOT}	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2a(2): Engine Emissions Calculations - Criteria Air Pollutants (Continued)

Controlled Criteria Air Pollutant Emissions

Point	D:	EPCE-7	E	PCE-8	<u>EP</u>	<u>CE-9</u>	<u>EP(</u>	<u>CE-10</u>	EPC	<u>CE-11</u>	EPC	E-12
Pollutant	lb/	nr tons/	/r lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Ν	Ox 1.5	2 6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66	1.52	6.66
	0 1.3	6 5.96	1.36	5.96	1.36	5.96	1.36	5.96	1.36	5.96	1.36	5.96
V	0.0 O.8	2 3.60	0.82	3.60	0.82	3.60	0.82	3.60	0.82	3.60	0.82	3.60
S	O ₂ 0.0	1 0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03
PM ₁₀	2.5 <0 .)1 <0.0	1 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM _{CI}	_{ND} 0.1	2 0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54
PM	от 0.1	2 0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54	0.12	0.54

AP-42 Table 3.2-2 (7/2000) Emission Factors

SO ₂	5.88E-04
PM _{10/2.5}	7.71E-05
PM _{COND}	9.91E-03
PM _{TOT}	9.99E-03

Notes:

1) 10% safety factor added to manufacturer fuel use to account for potential fluctuations in fuel heating value.

2) Oxidation Catalyst does not reduce NOx emissions.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2b(2): Engine Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Point ID:	EPCE-7	EPCE-8	EPCE-9	EPCE-10	EPCE-11	EPCE-12
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3516B	G3516B	G3516B	G3516B
Design Class:	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB
Controls:	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.	Oxid. Cat.
Horsepower (hp):	1,380	1,380	1,380	1,380	1,380	1,380
Fuel Use (Btu/hp-hr):	8,984	8,984	8,984	8,984	8,984	8,984
Fuel Use (scfh):	9,364	9,364	9,364	9,364	9,364	9,364
Fuel Use (mmBtu/hr)1:	12.40	12.40	12.40	12.40	12.40	12.40
Exhaust Flow (acfm):	9,240	9,240	9,240	9,240	9,240	9,240
Exhaust Temp (°F):	1,012	1,012	1,012	1,012	1,012	1,012
Operating Hours:	8,760	8,760	8,760	8,760	8,760	8,760
Note: No reduction taken for ovidation catalyst or	ontrol on any HAP othe	or than formaldehyde				

Note: No reduction taken for oxidation catalyst control on any HAP other than formaldehyde.

Uncontrolled Hazardous Air Pollutant (HAP) Emissions

Point ID:	EPO	<u>)E-7</u>	EPO	<u>) E-8</u>	<u>EP(</u>	<u>) E-9</u>	EPC	E-10	EPC	<u>E-11</u>	EPC	<u>E-12</u>
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45
Acrolein	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28
Benzene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20	1.19	5.20
n-Hexane	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06
Methanol	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14
Toluene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
Total HAPs =	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18	1.41	6.18

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2b(2): Engine Emissions Calculations - Hazardous Air Pollutants (Continued)

Controlled Hazardous Air Pollutant (HAP) Emissions

Point ID:	EPO	<u>CE-7</u>	EPC	<u>CE-8</u>	<u>EP(</u>	<u>CE-9</u>	EPC	<u>E-10</u>	EPC	<u>E-11</u>	EPC	E-12
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45	0.10	0.45
Acrolein	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28	0.06	0.28
Benzene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27	0.06	0.27
n-Hexane	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06	0.01	0.06
Methanol	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14	0.03	0.14
Toluene	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
Total HAPs =	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25	0.29	1.25

AP-42 Table 3.2-2 (7/2000) Emission Factors

Acetaldehyde	8.36E-03
Acrolein	5.14E-03
Benzene	4.40E-04
Ethylbenzene	3.97E-05
n-Hexane	1.11E-03
Methanol	2.50E-03
Toluene	4.08E-04
Xylenes	1.84E-04

Uncontrolled Formaldehyde Manufacturer Emission Factor (g/hp-hr) = Formaldehyde Manufacturer Emission Factor (g/hp-hr) with 95% Control Efficiency =

<mark>0.39</mark> 0.02

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2c(2): Engine Emissions Calculations - Greenhouse Gas Emissions

Equipment Information

Point ID:	EPCE-7	EPCE-8	EPCE-9	EPCE-10	EPCE-11	EPCE-12
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3516B	G3516B	G3516B	G3516B
Design Class:	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB	4S-LB
Controls:	Oxid. Cat.					
Horsepower (hp):	1,380	1,380	1,380	1,380	1,380	1,380
Fuel Use (Btu/hp-hr):	8,984	8,984	8,984	8,984	8,984	8,984
Fuel Use (scfh):	9,364	9,364	9,364	9,364	9,364	9,364
Fuel Use (mmBtu/hr)1:	12.40	12.40	12.40	12.40	12.40	12.40
Exhaust Flow (acfm):	9,240	9,240	9,240	9,240	9,240	9,240
Exhaust Temp (°F):	1,012	1,012	1,012	1,012	1,012	1,012
Operating Hours:	8,760	8,760	8,760	8,760	8,760	8,760

Greenhouse Gas (GHG) Emissions - Metric Tons (Tonnes)

Point ID:	EPO	<u>CE-7</u>	EPC	<u>CE-8</u>	EPO	CE-9	EPC	E-10	EPC	<u>E-11</u>	EPC	E-12
Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63	1,566.80	6,225.63
CH₄	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11	0.03	0.11
N ₂ O	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
CH ₄ as CO ₂ e	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72	0.68	2.72
N ₂ O as CO ₂ e	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24	0.81	3.24
Total CO ₂ + CO ₂ e	1,568.30	6,231.58	1,568.30	6,231.58	1,568.30	6,231.58	1,568.30	6,231.58	1,568.30	6,231.58	1,568.30	6,231.58

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 2c(2): Engine Emissions Calculations - Greenhouse Gas Emissions (Continued)

Greenhouse Gas (GHG) Emissions - Short Tons (Tons)

Point ID:	EPO	<u>CE-7</u>	EPC	<u>E-8</u>	<u>EPC</u>	<u>) E-9</u>	EPC	<u>E-10</u>	EPC	<u>E-11</u>	EPC	E-12
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
CO ₂	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58	1,566.80	6,862.58
CH ₄	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12
N ₂ O	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01
CH ₄ as CO ₂ e	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99	0.68	2.99
N ₂ O as CO ₂ e	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57	0.81	3.57
Total CO ₂ + CO ₂ e	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14	1,568.30	6,869.14

515

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)

Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

 $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

Carbon Dioxide (CO₂) Manufacturer Data (g/hp-hr) + 1% for Oxidation Catalyst =

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 3a: Generator Emissions Calculations - Criteria Air Pollutants

Equipment Information

Point ID:	EPGEN-1
Make:	Capstone
Model:	C600
Design Class:	Turbine
Controls:	None
Horsepower (hp):	805
Fuel Use (Btu/hp-hr) ¹ :	9,347
Fuel Use (scfh):	5,683
Fuel Use (mmBtu/hr):	7.52
Operating Hours:	8,760
Exhaust Temp (°F):	535
Fuel HHV (Btu/scf):	1,324
Manufacturer Emission Factors ²	
NOx (g/hp-hr):	0.14

Uncontrolled Criteria Air Pollutant Emissions

Point ID:

EPGEN-1

Pollutant	lb/hr	tons/yr
NOx	0.25	1.09
CO	0.62	2.70
VOC	0.02	0.07
SO ₂	0.03	0.11
PM _{10/2.5}	0.01	0.06
PM _{COND}	0.04	0.15
PM _{TOT}	0.05	0.22

AP-42 Table 3.1-1, 3.1-2a (4/2000) Emission Factors (lb/mmBtu)

CO	8.20E-02
VOC	2.10E-03
SO ₂	3.40E-03
PM _{10/2.5}	1.90E-03
PM _{COND}	4.70E-03
PM _{TOT}	6.60E-03

Notes:

1) 10% safety factor added to manufacturer fuel use to account for potential fluctuations in fuel heating value.

2) All other pollutants calculated using AP-42 emission factors

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 3b: Generator Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Point ID: Make: Model: Design Class: Controls: Horsepower (hp): Fuel Use (Btu/hp-hr)1: Fuel Use (scfh): Fuel Use (mmBtu/hr): Exhaust Temp (°F): Operating Hours:	EPGEN-1 Capstone C600 Turbine None 805 9,347 5,683 7.52 535 8,760
Operating Hours: HAP Control Eff. %	

Uncontrolled Hazardous Air Pollutant Emissions

Point ID:	EPG	<u>EN-1</u>
Pollutant	lb/hr	tons/yr
Acetaldehyde	<0.01	<0.01
Acrolein	<0.01	<0.01
Benzene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Formaldehyde	0.01	0.02
Methanol	-	-
n-Hexane	-	-
Toluene	<0.01	<0.01
Xylenes	<0.01	<0.01
Total HAPs =	0.01	0.03

AP-42 Table 3.1-1, 3.1-2a (4/2000) Emission Factors (lb/mmBtu)

Acetaldehyde	4.00E-05
Acrolein	6.40E-06
Benzene	1.20E-05
Ethylbenzene	3.20E-05
Formaldehyde	7.10E-04
n-Hexane	-
Methanol	-
Toluene	1.30E-04
Xylenes	6.40E-05

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 3c: Generator Emissions Calculations - Greenhouse Gas Emissions

Equipment Information

Point ID:	EPGEN-1
Make:	Capstone
Model:	C600
Design Class:	Turbine
Controls:	None
Horsepower (hp):	805
Fuel Use (Btu/hp-hr)1:	9,347
Fuel Use (scfh):	5,683
Fuel Use (mmBtu/hr):	7.52
Operating Hours:	8,760
Exhaust Temp (°F):	535
Fuel HHV (Btu/scf):	1,324

Greenhouse Gas (GHG) Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CO ₂	880.15	3,497.23
CH ₄	0.02	0.07
N ₂ O	<0.01	0.01
CH_4 as CO_2e	0.41	1.65
N ₂ O as CO ₂ e	0.49	1.96
Total CO ₂ + CO ₂ e	881.06	3,500.84

Point ID:

Greenhouse Gas (GHG) Emissions - Short Tons (Tons)

Point ID: EPGEN-1

Pollutant	lb/hr	tons/yr
CO ₂	880.15	3,855.04
CH ₄	0.02	0.08
N ₂ O	<0.01	0.01
CH ₄ as CO ₂ e	0.41	1.82
N ₂ O as CO ₂ e	0.49	2.16
Total CO ₂ + CO ₂ e	881.06	3,859.01

 $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

EPGEN-1

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4a: Glycol Dehydration Unit Emissions - Criteria and Hazardous Air Pollutants

Equipment Information

Parameter_	<u>Units</u>	Value (Each)
Point ID:	-	EPDEHY-1 - EPDEHY-3
Extended Gas Analysis Date	-	2/26/2015
Maximum Throughput	MMSCFD	55.00
Operating Hours	Hours/Year	8,760
Wet Gas Temperature	°F	103
Wet Gas Pressure	psig	950
Wet Gas Water Content	lb H ₂ O/MMSCF	Saturated
Dry Gas Water Content	lb H ₂ O/MMSCF	7.00
Pump Type	Electric/Gas	Note 1
Electric Pump Lean Glycol Flow Rate	gpm	7.5
Gas Pump Lean Glycol Flow Rate	gpm	7.5
Regenerator Still Vent Controls	-	Note 2
Condenser Temperature	°F	52
Condenser Pressure	psig	14.08
Flash Tank Temperature	°F	120
Flash Tank Pressure	psig	50
Flash Tank Controls	Yes/No	Note 3
Combustion Device Efficiency	%	98%

Notes:

1) Units will be equipped with one (1) 22 gpm electric pump and two (2) 7.5 gpm gas pumps (total = 15 gpm) to be used as back-up pumps. The pump rate will be limited to 7.5 gpm for each pump scenario.

2) Each unit will be equipped with BTEX condenser for still vent emissions controls. Non-condensables (condenser vent stream) will be routed to the reboiler for combustion. Reboiler is equipped with burner management system to ensure constant flame for destruction of gases.

3) Flash tank off-gases are routed to the reboiler for combustion. Excess flash tank off-gases will be recycled/recompressed. A control efficiency of 98% was used as a conservative measure. 4) GRI-GLYCalc Input Summary and Aggregate Calculations Reports attached. 10% safety factor added to GRI-GLYCalc results to account for potential fluctuations in gas composition. Potential emissions from the gas pumps serve as the basis of emissions since they are greater then electric pump emissions.

Potential Emissions

Point ID:	EP

DEHY-1 - EPDEHY-3 (Each)

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	<0.01	<0.01
n-Hexane	0.03	0.13
Benzene	<0.01	0.01
Toluene	<0.01	<0.01
Ethylbenzene	0.00	0.00
Xylenes	#VALUE!	<0.01
Total HAPs =	0.03	0.14
Total VOC =	1.29	5.67

EPDEHY-1 - EPDEHY-3 (Total)

lb/hr	tons/yr
<0.01	0.01
0.09	0.39
0.01	0.03
<0.01	<0.01
0.00	0.00
#VALUE!	<0.01
0.10	0.43
3.88	17.00

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4a: Glycol Dehydration Unit Emissions - Criteria and Hazardous Air Pollutants (Continued)

GRI-GLYCalc Results (Electric Pump) - For Reference Only

EPDEHY-1 - EPDEHY-3 (Each)

Controlled Regenerator Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	<0.0001	0.0001
n-Hexane	0.0027	0.0117
Benzene	0.0018	0.0080
Toluene	<0.0001	0.0002
Ethylbenzene	0.0000	0.0000
Xylenes	<0.0001	0.0001
Total HAPs =	0.0046	0.0201
Total VOC =	0.1285	0.5626

Controlled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0001	0.0003
n-Hexane	0.0059	0.0257
Benzene	0.0001	0.0006
Toluene	<0.0001	<0.0001
Ethylbenzene	0.0000	0.0000
Xylenes	<0.0001	<0.0001
Total HAPs =	0.0061	0.0266
Total VOC =	0.2708	1.1861

Uncontrolled Regenerator Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0075	0.0329
n-Hexane	0.6273	2.7474
Benzene	0.4639	2.0319
Toluene	0.0437	0.1913
Ethylbenzene	0.0000	0.0000
Xylenes	0.0837	0.3666
Total HAPs =	1.2261	5.3701
Total VOC =	15.4590	67.7105

Uncontrolled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0035	0.0151
n-Hexane	0.2936	1.2860
Benzene	0.0071	0.0313
Toluene	0.0004	0.0019
Ethylbenzene	0.0000	0.0000
Xylenes	0.0003	0.0014
Total HAPs =	0.3049	1.3357
Total VOC =	13.5400	59.3052

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4a: Glycol Dehydration Unit Emissions - Criteria and Hazardous Air Pollutants (Continued)

GRI-GLYCalc Results (Gas Pumps) - For Reference Only

EPDEHY-1 - EPDEHY-3 (Each)

Controlled Regenerator Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	<0.0001	<0.0001
n-Hexane	0.0014	0.0061
Benzene	0.0014	0.0063
Toluene	<0.0001	0.0002
Ethylbenzene	0.0000	0.0000
Xylenes	<0.0001	0.0001
Total HAPs =	0.0028	0.0127
Total VOC =	0.0691	0.3028

Controlled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0004	0.0016
n-Hexane	0.0255	0.1115
Benzene	0.0010	0.0042
Toluene	0.0001	0.0003
Ethylbenzene	0.0000	0.0000
Xylenes	<0.0001	0.0002
Total HAPs =	0.0270	0.1178
Total VOC =	1.1072	4.8495

Uncontrolled Regenerator Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0055	0.0241
n-Hexane	0.3811	1.6694
Benzene	0.4327	1.8954
Toluene	0.0419	0.1834
Ethylbenzene	0.0000	0.0000
Xylenes	0.0826	0.3617
Total HAPs =	0.9438	4.1340
Total VOC =	11.6101	50.8521

Uncontrolled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
2, 2, 4-Trimethylpentane	0.0181	0.0793
n-Hexane	1.2733	5.5773
Benzene	0.0475	0.2082
Toluene	0.0029	0.0128
Ethylbenzene	0.0000	0.0000
Xylenes	0.0022	0.0097
Total HAPs =	1.3440	5.8873
Total VOC =	55.3591	242.4730

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4b: Condenser Vent Stream Heat Content - Electric Pump - 55 mmscfd

Non-condensables (condenser vent stream) are routed to the reboiler for combustion and flash tank off-gas is used as fuel in the reboiler. Excess flash tank off-gases are recycled/recompressed. A control efficiency of 98% was used as a conservative measure. The heat content of the condenser vent stream has been calculated to determine total capacity required to combust the stream and demonstrate that each reboiler is adequately sized to burn these vapors from each respective dehydration unit.

Reboiler Capacity (mmBtu/hr) =	1.00	From GRI-GLYCalc Condenser Vent Stream		
Name	MW	LHV	Mole %	Btu/scf
Water	18.015	0.00	1.39E+00	0
Carbon Dioxide	44.010	0.00	1.82E+00	0
Nitrogen	28.013	0.00	7.45E-02	0
Methane	16.042	919.00	1.42E+01	131
Ethane	30.069	1,619.00	2.72E+01	440
Propane	44.096	2,315.00	2.67E+01	618
Isobutane	58.122	3,000.00	4.48E+00	134
n-Butane	58.122	3,011.00	1.57E+01	473
Isopentane	72.149	3,699.00	2.36E+00	87
n-Pentane	72.149	3,707.00	3.36E+00	125
Cyclopentane	70.134	3,764.80	0.00E+00	0
n-Hexane	86.175	4,756.00	7.24E-01	34
Cyclohexane	84.161	4,481.50	3.01E-01	13
Other Hexanes (as n-Hexane)	86.175	4,756.00	8.97E-01	43
n-Heptane	100.204	5,502.50	8.44E-02	5
Methylcyclohexane	98.188	5,215.70	1.91E-01	10
Benzene	78.114	3,741.80	5.46E-01	20
Toluene	92.141	4,475.00	1.16E-02	1
Ethylbenzene	106.167	5,222.20	0.00E+00	0
Xylenes	106.500	5,208.87	5.11E-03	0
C8+ (as Nonane)	128.258	6,996.40	1.10E-02	1
		Total =	1.00E+02	2,135

GLYCalc Flow Rate =	8.12E+01 SCFH
Condenser Stream Heat Content =	0.17 mmBtu/hr
Adequate for Combustion of Non-Condensables?	YES

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4c: Condenser Vent Stream Heat Content - Gas Pumps - 55 mmscfd

Non-condensables (condenser vent stream) are routed to the reboiler for combustion and flash tank off-gas is used as fuel in the reboiler. Excess flash tank off-gases are recycled/recompressed. A control efficiency of 98% was used as a conservative measure. The heat content of the condenser vent stream has been calculated to determine total capacity required to combust the stream and demonstrate that each reboiler is adequately sized to burn these vapors from each respective dehydration unit.

Reboiler Capacity (mmBtu/hr) = 1.00

From GRI-GLYCalc Condenser Vent Stream

Name	MW	LHV	Mole %	Btu/scf
Water	18.015	0.00	1.39E+00	0
Carbon Dioxide	44.010	0.00	9.19E-01	0
Nitrogen	28.013	0.00	1.29E-01	0
Methane	16.042	919.00	2.82E+01	259
Ethane	30.069	1,619.00	2.57E+01	416
Propane	44.096	2,315.00	2.21E+01	512
Isobutane	58.122	3,000.00	3.52E+00	106
n-Butane	58.122	3,011.00	1.14E+01	343
Isopentane	72.149	3,699.00	1.81E+00	67
n-Pentane	72.149	3,707.00	2.45E+00	91
Cyclopentane	70.134	3,764.80	0.00E+00	0
n-Hexane	86.175	4,756.00	5.52E-01	26
Cyclohexane	84.161	4,481.50	2.59E-01	12
Other Hexanes (as n-Hexane)	86.175	4,756.00	6.69E-01	32
n-Heptane	100.204	5,502.50	7.84E-02	4
Methylcyclohexane	98.188	5,215.70	1.79E-01	9
Benzene	78.114	3,741.80	6.26E-01	23
Toluene	92.141	4,475.00	1.29E-02	1
Ethylbenzene	106.167	5,222.20	0.00E+00	0
Xylenes	106.500	5,208.87	5.86E-03	0
C8+ (as Nonane)	128.258	6,996.40	1.35E-02	1
		Total =	1.00E+02	1,902

GLYCalc Flow Rate =	5.57E+01	SCFH
Condenser Stream Heat Content =	0.11	mmBtu/hr
Adequate for Combustion of Non-Condensables?	YES	

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4d: Glycol Dehydration Unit Emissions - Greenhouse Gas Emissions

Input CH ₄ mol% from gas analysis =	73.1340%
Input CO ₂ mol% from gas analysis =	0.0960%

Potential Emissions

Greenhouse Gas (GHG) Emissions - Metric Tons (Tonnes)

Point ID: EPDEHY-1 - EPDEHY-3 (Each)

Pollutant	lb/hr	tonnes/yr
CO ₂ =	0.01	0.03
CH ₄ =	2.13	8.46
CH_4 as $CO_2e =$	53.22	211.45
Total CO ₂ + CO ₂ e =	53.22	211.48

Greenhouse Gas (GHG) Emissions - Short Tons (Tons)

Point ID: EPDEHY-1 - EPDEHY-3 (Each)

Pollutant	lb/hr	tons/yr
CO ₂ =	0.01	0.03
CH ₄ =	2.13	9.32
$CH_4 \text{ as } CO_2 e =$	53.22	233.08
Total CO ₂ + CO ₂ e =	53.22	233.12

Notes:

1) $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

2) 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

3) GRI-GLYCalc Input Summary and Aggregate Calculations Reports attached. 10% safety factor added to GRI-GLYCalc results to account for potential fluctuations in gas composition. Potential emissions for the electric pumps serve as the basis for the potential emissions since they are greater than potential emissions using the gas pumps.

4) Example CO₂ Calculation (Exhibit 5.1: API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, August 2009):

tonnes CH₄ * tonne mole CH₄/16 tonne CH₄ * tonne mole gas/tonne mole CH₄ * tonne mole CO₂/tonne mole CO₂ = tonnes CO₂/yr

EPDEHY-1 - EPDEHY-3 (Total)

lb/hr	tonnes/yr	
0.02	0.09	
6.39	25.37	
159.65	634.35	
159.67	634.44	

EPDEHY-1 - EPDEHY-3 (Total)

lb/hr	tons/yr
0.02	0.10
6.39	27.97
159.65	699.25
159.67	699.35

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 4d: Glycol Dehydration Unit Emissions - Greenhouse Gas Emissions (Continued)

GRI-GLYCalc Results (Electric Pump) - For Reference Only

EPDEHY-1 - EPDEHY-3 (Each)

Controlled Regenerator Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	<0.0001	0.0002
$CH_4 =$	0.0097	0.0427
$CH_4 as CO_2e =$	0.2425	1.0675
Total CO ₂ + CO ₂ e =	0.2425	1.0677

Controlled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0007	0.0031
CH ₄ =	0.1947	0.8529
$CH_4 \text{ as } CO_2 e =$	4.8675	21.3225
Total CO ₂ + CO ₂ e =	4.8682	21.3256

GRI-GLYCalc Results (Gas Pumps) - For Reference Only

EPDEHY-1 - EPDEHY-3 (Each)

Controlled Regenerator Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0000	0.0002
CH ₄ =	0.0133	0.0583
$CH_4 \text{ as } CO_2 e =$	0.3325	1.4575
Total CO ₂ + CO ₂ e =	0.3325	1.4577

Controlled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0069	0.0304
CH ₄ =	1.9218	8.4175
$CH_4 as CO_2 e =$	48.0450	210.4375
Total CO ₂ + CO ₂ e =	48.0519	210.4679

Uncontrolled Regenerator Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0024	0.0106
$CH_4 =$	0.6682	2.9269
CH_4 as $CO_2e =$	16.7050	73.1725
Total CO ₂ + CO ₂ e =	16.7074	73.1831

Uncontrolled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.3469	1.5193
$CH_4 =$	96.0900	420.8744
CH_4 as $CO_2e =$	2,402.2500	10,521.8600
Total CO ₂ + CO ₂ e =	2,402.5969	10,523.3793

Uncontrolled Regenerator Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0018	0.0077
$CH_4 =$	0.4888	2.1409
$CH_4 as CO_2e =$	12.2200	53.5225
Total CO ₂ + CO ₂ e =	12.2218	53.5302

Uncontrolled Flash Tank Emissions

Pollutant	lb/hr	tons/yr
CO ₂ =	0.0351	0.1539
$CH_4 =$	9.7362	42.6448
$CH_4 as CO_2 e =$	243.4050	1,066.1200
Total CO ₂ + CO ₂ e =	243.4401	1,066.2739

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 5a: Heater Emissions Calculations - Criteria Air Pollutants

Equipment Information

Point ID: Description:	EPRBL-1 Glycol Reboiler	<u>EPRBL-2</u> Glycol Reboiler	EPRBL-3 Glycol Reboiler	<u>EPHT-1</u> Heater Treater Burner	EPHT-2 Heater Treater Burner
Burner Design (mmBtu/hr):	1.00	1.00	1.00	0.50	0.50
Fuel HHV (Btu/scf):	1,324	1,324	1,324	1,324	1,324
Annual Fuel Use (mmscf)	6.62	6.62	6.62	3.31	3.31
Annual Operating Hours:	8,760	8,760	8,760	8,760	8,760

Criteria Air Pollutant Emissions

Point ID	EPR	BL-1	EPR	<u>BL-2</u>	EPR	<u>BL-3</u>	EPH	<u>HT-1</u>	EPH	<u>HT-2</u>
Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NO	0.08	0.33	0.08	0.33	0.08	0.33	0.04	0.17	0.04	0.17
CC	0.06	0.28	0.06	0.28	0.06	0.28	0.03	0.14	0.03	0.14
VOC	< 0.01	0.02	<0.01	0.02	<0.01	0.02	<0.01	0.01	<0.01	0.01
SO	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM _{10/2.5}	, <0.01	0.02	<0.01	0.02	<0.01	0.02	<0.01	0.01	<0.01	0.01
PM _{CONE}	< 0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
PM _{TO} -	0.01	0.03	0.01	0.03	0.01	0.03	<0.01	0.01	<0.01	0.01

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	
PM _{COND}	1.9
PM _{TOT}	7.6

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 5b: Heater Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Point ID: Description:	<u>EPRBL-1</u> Glycol Reboiler	EPRBL-2 Glycol Reboiler	<u>EPRBL-3</u> Glycol Reboiler	<u>EPHT-1</u> Heater Treater Burner	<u>EPHT-2</u> Heater Treater Burner
Burner Design (mmBtu/hr):	1.00	1.00	1.00	0.50	0.50
Fuel HHV (Btu/scf):	1,324	1,324	1,324	1,324	1,324
Annual Fuel Use (mmscf)	6.62	6.62	6.62	3.31	3.31
Annual Operating Hours:	8,760	8,760	8,760	8,760	8,760
Hazardous Air Pollutant Emissions					
Point ID:	EPRBL-1	EPRBL-2	EPRBL-3	EPHT-1	EPHT-2

Pollutant	lb/hr	tons/yr								
n-Hexane	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total HAPs	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 5c: Heater Emissions Calculations - Greenhouse Gas Emissions

Equipment Information

Pollutant

Point ID: Description:	EPRBL-1 Glycol Reboiler	EPRBL-2 Glycol Reboiler	<u>EPRBL-3</u> Glycol Reboiler	<u>EPHT-1</u> Heater Treater Burner	<u>EPHT-2</u> Heater Treater Burner
Burner Design (mmBtu/hr):	1.00	1.00	1.00	0.50	0.50
Fuel HHV (Btu/scf):	1,324	1,324	1,324	1,324	1,324
Annual Fuel Use (mmscf)	6.62	6.62	6.62	3.31	3.31
Annual Operating Hours:	8,760	8,760	8,760	8,760	8,760

EPHT-2

Greenhouse Gas (GHG) Emissions - Metric Tons (Tonnes)

Point ID: <u>EPRBL-1</u> <u>EPRBL-2</u> <u>EPRBL-3</u> <u>EPHT-1</u>	
--	--

Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	116.98	464.80	116.98	464.80	116.98	464.80	58.49	232.40	58.49	232.40
CH ₄	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
N ₂ O	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CH ₄ as CO ₂ e	0.06	0.22	0.06	0.22	0.06	0.22	0.03	0.11	0.03	0.11
N ₂ O as CO ₂ e	0.07	0.26	0.07	0.26	0.07	0.26	0.03	0.13	0.03	0.13
Total CO ₂ + CO ₂ e	117.10	465.28	117.10	465.28	117.10	465.28	58.55	232.64	58.55	232.64

Greenhouse Gas (GHG) Emissions - Short Tons (Tons)

Point ID:	EPR	<u>BL-1</u>	EPR	<u>BL-2</u>	EPR	<u>BL-3</u>	<u>EP</u> I	<u>HT-1</u>	EPH	<u>IT-2</u>
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
CO ₂	116.98	512.36	116.98	512.36	116.98	512.36	58.49	256.18	58.49	256.18
CH ₄	<0.01	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01

N ₂ O	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CH ₄ as CO ₂ e	0.06	0.24	0.06	0.24	0.06	0.24	0.03	0.12	0.03	0.12
N ₂ O as CO ₂ e	0.07	0.29	0.07	0.29	0.07	0.29	0.03	0.14	0.03	0.14
Total CO ₂ + CO ₂ e	117.10	512.89	117.10	512.89	117.10	512.89	58.55	256.44	58.55	256.44

CO₂e = CO₂ equivalent (Pollutant times GWP multiplier). 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 6a: Condensate Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Point ID:	<u>EPTK-1 - EPTK-8 (Each)</u>	EPTK-1 - EPTK-8 (Total)
Number of Tanks:	8	-
Capacity (bbl):	400	-
Maximum Annual Throughput (bbl/yr):	7,500	60,000
Maximum Annual Throughput (gal/yr):	315,000	2,520,000
Average Daily Throughput (bbl/d):	20.55	164.38
Control Type:	VRU	VRU
Control Efficiency:	98%	98%

Uncontrolled Working, Breathing, and Flashing VOC Emissions

Point ID: EPTK-1 - EPTK-8 (Each)

Emissions	lb/yr	tons/yr
Working	3,156.71	1.58
Breathing	1,424.69	0.71
Flashing	36,498.24	18.25
Total =	41,079.64	20.54

Controlled Working, Breathing, and Flashing VOC Emissions

Point ID: EPTK-1 - EPTK-8 (Each)

Emissions	lb/yr	tons/yr
Working	63.13	0.03
Breathing	28.49	0.01
Flashing	729.96	0.36
Total =	821.59	0.41

<u>EPTK-1 - EPTK-8 (</u>	<u>[otal)</u>

lb/yr	tons/yr
25,253.68	12.63
11,397.52	5.70
291,985.91	145.99
328,637.11	164.32

EPTK-1 - EPTK-8 (Total)

lb/yr	tons/yr
505.07	0.25
227.95	0.11
5,839.72	2.92
6,572.74	3.29

1) There are eight (8) like-kind storage tanks used to store condensate. Each tank was modeled with an estimated 315,000 gal/yr throughput with a maximum of 2,520,000 gal/yr throughput for all eight (8) tanks. All tanks were modeled as Gasoline RVP 15 in EPA TANKS 4.0.9d for working and breathing losses. Flashing losses calculated with ProMax process simulation software.

2) Tanks are controlled by vapor recovery system, which is a closed system that is 100% efficient at preventing emissions from being vented to atmosphere except during vapor recovery system downtime (maintenance, utility power outage, etc.). Vapor recovery system downtime will not exceed 175 hours per year, or approximately 2% of the annual operating time, to ensure that a minimum overall control efficiency of 98% is achieved to control VOC emissions from the tanks. AMS will monitor and record vapor recovery system downtime to document compliance with this requirement.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 6b: Condensate Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Hazardous Air Pollutant (HAP) Emissions (tons/yr)

EPTK-1 - EPTK-8 (Each)

EPTK-1 - EPTK-8 (Total)

Total VOC* =	20.54
n-Hexane	0.73
Benzene	0.01
Toluene	0.05
Ethylbenzene	0.05
Xylenes	0.19
Total HAPs =	1.03

Total VOC* =	164.32
n-Hexane	5.85
Benzene	0.08
Toluene	0.44
Ethylbenzene	0.39
Xylenes	1.48
Total HAPs =	8.24

Controlled Hazardous Air Pollutant (HAP) Emissions (tons/yr)

EPTK-1 - EPTK-8 (Each)

Total VOC* =	0.41
n-Hexane	0.01
Benzene	<0.01
Toluene	<0.01
Ethylbenzene	<0.01
Xylenes	<0.01
Total HAPs =	0.02

*VOC emissions calculated in Condensate Storage Tank Emissions - Criteria Air Pollutants

HAP Composition (% by Weight)**

Pollutant	Wt%
n-Hexane	3.5605%
Benzene	0.0505%
Toluene	0.2670%
Ethylbenzene	0.2370%
Xylenes	0.9022%
Total HAPs =	5.0172%

**HAP Composition from Guy Avolio No. 8H Compositional Analysis of Separator Oil

EPTK-1 - EPTK-8 (Total)

Total VOC* =	3.29
n-Hexane	0.12
Benzene	<0.01
Toluene	0.01
Ethylbenzene	0.01
Xylenes	0.03
Total HAPs =	0.16

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 6c: Condensate Flashing Emissions - Process Simulation

ProMax Results

	530 bbl/day	164 bbl/day	
Pollutant	VOC tons/yr	VOC tons/yr	
Nitrogen	0.020985	0.01	
Carbon Dioxide	0.51301	0.16	
Methane	18.017	5.59	
Ethane	95.476	29.61	
Propane	150.04	46.54	
i-Butane	31.716	9.84	
n-Butane	104.31	32.35	
i-Pentane	30.228	9.38	
n-Pentane	49.701	15.41	
n-Hexane	51.409	15.94	
Heptane	35.257	10.93	
Octane	13.249	4.11	
Nonane	1.4888	0.46	
Decane	0.90465	0.28	
Benzene	0.27611	0.09	
Toluene	1.0698	0.33	
Ethylbenzene	0.28383	0.09	
Xylenes	0.78263	0.24	
Total VOC (C	3+) = 470.72	145.99	

Notes:

1) Simulation results reflect a total condensate and produced water throughput of approx. 530 bbl/day. Results prorated to requested production rate to allow for operational flexibility.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8a: Condensate Truck Loading Emissions Calculations - Criteria Air Pollutants

Loading Information

Point ID:	EPLOAD-1
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal)*:	4.88
Throughput (1000 gal):	2,520
Maximum Loading Rate (gal/hr):	15,120
Control Type:	Carbon Canister
Capture Efficiency:	70.00%
Captured Vapors Routed to:	Carbon Canister
Control Efficiency:	95.00%
Overall Control Efficiency ¹ :	66.50%

*AP-42 5.2-4 Equation 1 (6/2008): Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T, where:

7.0149	= P, True vapor pressure of liquid loaded (average psia)
47.52	= M, Molecular weight of vapor (lb/lb-mol) - Actual Analysis
50.33	= T, Temperature of bulk liquid loaded (average °F)
510.33	= T, Temperature of bulk liquid loaded (°F + 460 = °R)

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8a: Condensate Truck Loading Emissions Calculations - Criteria Air Pollutants (Continued)

Uncontrolled Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	73.84	6.15

Uncaptured Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	22.15	1.85

Controlled Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	2.58	0.22

Total Loading VOC Emissions (Uncaptured + Controlled)

Pollutant	lb/hr	tons/yr
VOC	24.74	2.06

Notes:

1) Uncontrolled emissions that are captured by a collection system are routed to the carbon canister, which reduces emissions with 95% control efficiency. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the carbon canister. The overall reduction efficiency accounts for the capture efficiency of the collection system as well as the control efficiency of the carbon canister.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8b: Condensate Truck Loading Emissions Calculations - Hazardous Air Pollutants

Pollutant	lb/hr	tons/yr
VOC	73.84	6.15
n-Hexane	2.63	0.22
Benzene	0.04	<0.01
Toluene	0.20	0.02
Ethylbenzene	0.17	0.01
Xylenes	0.67	0.06
Total HAPs	3.70	0.31

Uncontrolled Loading HAP Emissions

Uncaptured Loading HAP Emissions

Pollutant	lb/hr	tons/yr
VOC	22.15	1.85
n-Hexane	0.79	0.07
Benzene	0.01	<0.01
Toluene	0.06	<0.01
Ethylbenzene	0.05	<0.01
Xylenes	0.20	0.02
Total HAPs	1.11	0.09

Appalachia Midstream Services, L.L.C.

Sand Hill Compressor Station

Table 8b: Condensate Truck Loading Emissions Calculations - Hazardous Air Pollutants (Continued)

Controlled Loading HAP Emissions

Pollutant	lb/hr	tons/yr
VOC	2.58	0.22
n-Hexane	0.09	0.01
Benzene	<0.01	<0.01
Toluene	0.01	<0.01
Ethylbenzene	0.01	<0.01
Xylenes	0.02	<0.01
Total HAPs	0.13	0.01

Total Loading HAP Emissions (Uncaptured + Controlled)

Pollutant	lb/hr	tons/yr
VOC	24.74	2.06
n-Hexane	0.88	0.07
Benzene	0.01	<0.01
Toluene	0.07	0.01
Ethylbenzene	0.06	<0.01
Xylenes	0.22	0.02
Total HAPs	1.24	0.10

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8b: Condensate Truck Loading Emissions Calculations - Hazardous Air Pollutants (Continued)

HAP Composition (% by Weight)¹

Pollutant	Wt%
n-Hexane	3.5605%
Benzene	0.0505%
Toluene	0.2670%
Ethylbenzene	0.2370%
Xylenes	0.9022%
Total HAPs	5.0172%

Notes:

1) HAP Composition from Guy Avolio No. 8H Compositional Analysis of Separator Oil.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8c: Condensate Truck Loading Emissions Calculations - Greenhouse Gas Emissions

Loading Information

Point ID:	EPLOAD-1
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
TOC Em. Factor (tonne/10 ⁶ gal) *:	0.91
Throughput (10 ⁶ gal):	2.520
Maximum Loading Rate (gal/hr):	15,120
Control Type:	Carbon Canister
Capture Efficiency:	70.00%
Captured Vapors Routed to:	Carbon Canister
Control Efficiency:	95.00%
Overall Control Efficiency ¹ :	66.50%
Input CH ₄ wt% from vapor analysis =	73.134%
Input CO ₂ wt% from vapor analysis =	0.096%

Uncontrolled GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	22.18	1.68
CH₄ as CO₂e	554.61	41.93
CO ₂	0.03	<0.01
Total CO ₂ + CO ₂ e	554.64	41.93

Uncontrolled GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	22.18	1.85
CH ₄ as CO ₂ e	554.61	46.22
CO ₂	0.03	<0.01
Total CO ₂ + CO ₂ e	554.64	46.22

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8c: Condensate Truck Loading Emissions Calculations - Greenhouse Gas Emissions (Continued)

Uncaptured GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	6.66	0.50
CH ₄ as CO ₂ e	166.38	12.58
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	166.39	12.58

Uncaptured GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	6.66	0.55
CH₄ as CO₂e	166.38	13.87
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	166.39	13.87

Controlled GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	0.78	0.06
CH ₄ as CO ₂ e	19.41	1.47
CO ₂	<0.01	<0.01
Total CO ₂ + CO ₂ e	19.41	1.47

Controlled GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	0.78	0.06
CH ₄ as CO ₂ e	19.41	1.62
CO ₂	<0.01	<0.01
Total CO ₂ + CO ₂ e	19.41	1.62

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 8c: Condensate Truck Loading Emissions Calculations - Greenhouse Gas Emissions (Continued)

Pollutant	lb/hr	tonnes/yr
CH ₄	7.43	0.56
CH₄ as CO₂e	185.79	14.05
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	185.80	14.05

Total Loading GHG Emissions (Uncaptured + Controlled) - Metric Tons (Tonnes)

Total Loading GHG Emissions (Uncaptured + Controlled) - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	7.43	0.62
CH ₄ as CO ₂ e	185.79	15.48
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	185.80	15.48

1) Uncontrolled emissions that are captured by a collection system are routed to the carbon canister, which reduces emissions with 95% control efficiency. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the carbon canister. The overall reduction efficiency accounts for the capture efficiency of the collection system as well as the control efficiency of the carbon canister.

2) $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 7a: Produced Water Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Point ID:	EPWTK-1 - EPWTK-2 (Each)	EPWTK-1 - EPWTK-2 (Total)
Number of Tanks:	2	-
Capacity (bbl):	400	-
Max. Annual Prod. Water Throughput (bbl/yr):	18,250	36,500
Max. Annual Prod. Water Throughput (gal/yr):	766,500	1,533,000
Average Daily Prod. Water Throughput (bbl/d):	50	100
1% Throughput as Gasoline RVP 15 (gal/yr):	7,665	15,330
Control Type:	VRU	VRU
Control Efficiency:	98%	98%

Uncontrolled Working, Breathing, and Flashing VOC Emissions

Point ID: EPWTK-1 - EPWTK-2 (Each)

Emissions	lb/yr	tons/yr
Working	76.81	0.04
Breathing	1,424.69	0.71
Flashing	88,814.31	44.41
Total =	90,315.81	45.16

Controlled Working, Breathing, and Flashing VOC Emissions

Point ID: EPWTK-1 - EPWTK-2 (Each)

Emissions	lb/yr	tons/yr
Working	1.54	<0.01
Breathing	28.49	0.01
Flashing	1,776.29	0.89
Total =	1,806.32	0.90

EPWTK-1 - EPWTK-2 (Total)

lb/yr	tons/yr
153.62	0.08
2,849.38	1.42
177,628.61	88.81
180,631.61	90.32

EPWTK-1 - EPWTK-2 (Total)

lb/yr	tons/yr
3.07	<0.01
56.99	0.03
3,552.57	1.78
3,612.63	1.81

1) There are two (2) like-kind storage tanks that store produced water. Contents consist primarily of water with negligible hydrocarbons. For potential emissions, 1% of each tank throughput was modeled as Gasoline RVP 15 in EPA TANKS 4.0.9d for a conservative (higher) emissions estimate of working and breathing losses. Flashing losses calculated with ProMax process simulation software.

2) Tanks are controlled by vapor recovery, which is a closed system that is 100% efficient at preventing emissions from being vented to atmosphere except during vapor recovery system downtime (maintenance, utility power outage, etc.). Vapor recovery system downtime will not exceed 175 hours per year, or approx. 2% of annual operating time, to ensure that a minimum overall control efficiency of 98% is achieved. AMS will monitor and record vapor recovery system downtime to document compliance with this requirement.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 7b: Produced Water Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Hazardous Air Pollutant (HAP) Emissions (tons/yr)

EPWTK-1 - EPWTK-2 (Each)

Total VOC* =	45.16
n-Hexane	1.61
Benzene	0.02
Toluene	0.12
Ethylbenzene	0.11
Xylenes	0.41
Total HAPs =	2.27

EPWTK-1 - EPWTK-2 (Total)

Total VOC* =	90.32
n-Hexane	3.22
Benzene	0.05
Toluene	0.24
Ethylbenzene	0.21
Xylenes	0.81
Total HAPs =	4.53

Controlled Hazardous Air Pollutant (HAP) Emissions (tons/yr)

EPWTK-1 - EPWTK-2 (Each)

Total VOC* =	0.90
n-Hexane	0.03
Benzene	<0.01
Toluene	<0.01
Ethylbenzene	<0.01
Xylenes	0.01
Total HAPs =	0.05

*VOC emissions calculated in Produced Water Storage Tank Emissions - Criteria Air Pollutants

HAP Composition (% by Weight)**

Pollutant	Wt%
n-Hexane	3.5605%
Benzene	0.0505%
Toluene	0.2670%
Ethylbenzene	0.2370%
Xylenes	0.9022%
Total HAPs =	5.0172%

**HAP Composition from Guy Avolio No. 8H Compositional Analysis of Separator Oil

EPWTK-1 - EPWTK-2 (Total)

Total VOC* =	1.81
n-Hexane	0.06
Benzene	<0.01
Toluene	<0.01
Ethylbenzene	<0.01
Xylenes	0.02
Total HAPs =	0.09

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 7c: Produced Water Flashing Emissions - Process Simulation

ProMax Results

	530 bbl/day	100 bbl/day
Pollutant	VOC tons/yr	VOC tons/yr
Nitrogen	0.020985	<0.01
Carbon Dioxide	0.51301	0.10
Methane	18.017	3.40
Ethane	95.476	18.01
Propane	150.04	28.31
i-Butane	31.716	5.98
n-Butane	104.31	19.68
i-Pentane	30.228	5.70
n-Pentane	49.701	9.38
n-Hexane	51.409	9.70
Heptane	35.257	6.65
Octane	13.249	2.50
Nonane	1.4888	0.28
Decane	0.90465	0.17
Benzene	0.27611	0.05
Toluene	1.0698	0.20
Ethylbenzene	0.28383	0.05
Xylenes	0.78263	0.15
Total VOC (C3	3+) = 470.72	88.81

Notes:

1) Simulation results reflect a total condensate and produced water throughput of approx. 530 bbl/day. Results prorated to requested production rate to allow for operational flexibility.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9a: Produced Water Truck Loading Emissions Calculations - Criteria Air Pollutants

Loading Information

Point ID:	EPLOAD-2
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal)*:	4.88
Throughput (1000 gal):	15.33
Maximum Loading Rate (gal/hr):	15,120
Control Type:	Carbon Canister
Capture Efficiency:	70.00%
Captured Vapors Routed to:	Carbon Canister
Control Efficiency:	95.00%
Overall Control Efficiency ¹ :	66.50%

*AP-42 5.2-4 Equation 1 (6/2008): Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T, where:

7.0149	= P, True vapor pressure of liquid loaded (average psia)
47.52	= M, Molecular weight of vapor (lb/lb-mol) - Actual Analysis
50.33	= T, Temperature of bulk liquid loaded (average °F)
510.33	= T, Temperature of bulk liquid loaded (°F + 460 = °R)

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9a: Produced Water Truck Loading Emissions Calculations - Criteria Air Pollutants (Continued)

Uncontrolled Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	73.84	0.04

Uncaptured Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	22.15	0.01

Controlled Loading VOC Emissions

Pollutant	lb/hr	tons/yr
VOC	2.58	<0.01

Total Loading VOC Emissions (Uncaptured + Controlled)

Pollutant	lb/hr	tons/yr
VOC	24.74	0.01

Notes:

1) Uncontrolled emissions that are captured by a collection system are routed to the carbon canister, which reduces emissions with 95% control efficiency. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the carbon canister. The overall reduction efficiency accounts for the capture efficiency of the collection system as well as the control efficiency of the carbon canister.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9b: Produced Water Truck Loading Emissions Calculations - Hazardous Air Pollutants

Pollutant	lb/hr	tons/yr
VOC	73.84	0.04
n-Hexane	2.63	<0.01
Benzene	0.04	<0.01
Toluene	0.20	<0.01
Ethylbenzene	0.17	<0.01
Xylenes	0.67	<0.01
Total HAPs	3.70	<0.01

Uncontrolled Loading HAP Emissions

Uncaptured Loading HAP Emissions

Pollutant	lb/hr	tons/yr
VOC	22.15	0.01
n-Hexane	0.79	<0.01
Benzene	0.01	<0.01
Toluene	0.06	<0.01
Ethylbenzene	0.05	<0.01
Xylenes	0.20	<0.01
Total HAPs	1.11	<0.01

Appalachia Midstream Services, L.L.C.

Sand Hill Compressor Station

Table 9b: Produced Water Truck Loading Emissions Calculations - Hazardous Air Pollutants (Continued)

Controlled Loading HAP Emissions

Pollutant	lb/hr	tons/yr
VOC	2.58	<0.01
n-Hexane	0.09	<0.01
Benzene	<0.01	<0.01
Toluene	0.01	<0.01
Ethylbenzene	0.01	<0.01
Xylenes	0.02	<0.01
Total HAPs	0.13	<0.01

Total Loading HAP Emissions (Uncaptured + Controlled)

Pollutant	lb/hr	tons/yr
VOC	24.74	0.01
n-Hexane	0.88	<0.01
Benzene	0.01	<0.01
Toluene	0.07	<0.01
Ethylbenzene	0.06	<0.01
Xylenes	0.22	<0.01
Total HAPs	1.24	<0.01

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9b: Produced Water Truck Loading Emissions Calculations - Hazardous Air Pollutants (Continued)

HAP Composition (% by Weight)¹

Pollutant	Wt%
n-Hexane	3.5605%
Benzene	0.0505%
Toluene	0.2670%
Ethylbenzene	0.2370%
Xylenes	0.9022%
Total HAPs	5.0172%

Notes:

1) HAP Composition from Guy Avolio No. 8H Compositional Analysis of Separator Oil.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9c: Produced Water Truck Loading Emissions Calculations - Greenhouse Gas Emissions

Loading Information

Point ID:	EPLOAD-2
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
TOC Em. Factor (tonne/10 ⁶ gal) *:	0.91
Throughput (10 ⁶ gal):	0.015
Maximum Loading Rate (gal/hr):	15,120
Control Type:	Carbon Canister
Capture Efficiency:	70.00%
Captured Vapors Routed to:	Carbon Canister
Control Efficiency:	95.00%
Overall Control Efficiency ¹ :	66.50%
-	
Input CH ₄ wt% from vapor analysis =	73.134%
Input CO ₂ wt% from vapor analysis =	0.096%

Uncontrolled GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	22.18	0.01
CH₄ as CO₂e	554.61	0.26
CO ₂	0.03	<0.01
Total CO ₂ + CO ₂ e	554.64	0.26

Uncontrolled GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	22.18	0.01
CH₄ as CO₂e	554.61	0.28
CO ₂	0.03	<0.01
Total CO ₂ + CO ₂ e	554.64	0.28

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9c: Produced Water Truck Loading Emissions Calculations - Greenhouse Gas Emissions (Continued)

Uncaptured GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	6.66	<0.01
CH ₄ as CO ₂ e	166.38	0.08
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	166.39	0.08

Uncaptured GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	6.66	<0.01
CH₄ as CO₂e	166.38	0.08
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	166.39	0.08

Controlled GHG Emissions - Metric Tons (Tonnes)

Pollutant	lb/hr	tonnes/yr
CH ₄	0.78	<0.01
CH₄ as CO₂e	19.41	0.01
CO ₂	<0.01	<0.01
Total CO ₂ + CO ₂ e	19.41	0.01

Controlled GHG Emissions - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	0.78	<0.01
CH ₄ as CO ₂ e	19.41	0.01
CO ₂	<0.01	<0.01
Total CO ₂ + CO ₂ e	19.41	0.01

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 9c: Produced Water Truck Loading Emissions Calculations - Greenhouse Gas Emissions (Continued)

Pollutant	lb/hr	tonnes/yr
CH ₄	7.43	<0.01
CH ₄ as CO ₂ e	185.79	0.09
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	185.80	0.09

Total Loading GHG Emissions (Uncaptured + Controlled) - Metric Tons (Tonnes)

Total Loading GHG Emissions (Uncaptured + Controlled) - Short Tons (Tons)

Pollutant	lb/hr	tons/yr
CH ₄	7.43	<0.01
CH ₄ as CO ₂ e	185.79	0.09
CO ₂	0.01	<0.01
Total CO ₂ + CO ₂ e	185.80	0.09

1) Uncontrolled emissions that are captured by a collection system are routed to the carbon canister, which reduces emissions with 95% control efficiency. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the carbon canister. The overall reduction efficiency accounts for the capture efficiency of the collection system as well as the control efficiency of the carbon canister.

2) $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier)

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 12: Fugitive Emissions Calculations

Equipment Information

Source Type/Service	Number of Sources	Em. Factor (Ib/hr/source)	Control Efficiency	TOC lb/hr	TOC tons/yr	VOC Wt % *
Valves - Gas	931	9.92E-03	0.00%	9.2361	40.4542	23.1172%
Flanges - Gas	900	8.60E-04	0.00%	0.7738	3.3893	23.1172%
Compressor Seals - Gas	12	1.94E-02	0.00%	0.2328	1.0197	23.1172%
Relief Valves - Gas	26	1.94E-02	0.00%	0.5044	2.2093	23.1172%
Valves - Light Oil	30	5.51E-03	0.00%	0.1653	0.7242	79.0890%
Flanges - Light Oil	45	2.43E-04	0.00%	0.0109	0.0478	79.0890%
Pump Seals - Light Oil	4	2.87E-02	0.00%	0.1146	0.5021	79.0890%

* Total organic compound (TOC) emission rates multiplied by VOC content of the gas and liquid streams (weight percent) to obtain VOC emissions.

Emissions

Source Type/Service	V	VOC		CO ₂		CH ₄	
Source Type/Service	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Valves - Gas	2.14	9.35	0.02	0.08	4.98	21.83	
Flanges - Gas	0.18	0.78	<0.01	0.01	0.42	1.83	
Compressor Seals - Gas	0.05	0.24	<0.01	<0.01	0.13	0.55	
Relief Valves - Gas	0.12	0.51	<0.01	<0.01	0.27	1.19	
Valves - Light Oil	0.13	0.57	<0.01	<0.01	0.02	0.07	
Flanges - Light Oil	0.01	0.04	<0.01	<0.01	<0.01	<0.01	
Pump Seals - Light Oil	0.09	0.40	<0.01	<0.01	0.01	0.05	
Total =	2.71	11.89	0.02	0.09	5.83	25.52	

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 12: Fugitive Emissions Calculations (Continued)

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service		n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	Total
Valves - Gas		0.04	<0.01	<0.01	<0.01	<0.01	0.04
Flanges - Gas		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Seals - Gas		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Relief Valves - Gas		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Valves - Light Oil		0.01	<0.01	<0.01	<0.01	<0.01	0.01
Flanges - Light Oil		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pump Seals - Light Oil		<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	Total =	0.06	<0.01	<0.01	<0.01	<0.01	0.06

Hazardous Air Pollutant (HAP) Emissions (tons/yr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	Total
Valves - Gas	0.19	<0.01	<0.01	<0.01	<0.01	0.19
Flanges - Gas	0.02	<0.01	<0.01	<0.01	<0.01	0.02
Compressor Seals - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Relief Valves - Gas	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Valves - Light Oil	0.03	<0.01	<0.01	<0.01	0.01	0.04
Flanges - Light Oil	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pump Seals - Light Oil	0.02	<0.01	<0.01	<0.01	<0.01	0.03
Total =	0.26	<0.01	<0.01	<0.01	0.01	0.28

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 12: Fugitive Emissions Calculations (Continued)

Sand Hill Compositional Analysis of Separator Gas - 2/26/15

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	tons/yr
Hydrogen Sulfide	34.082	0.0000%	0.000	0.0000%	-	0.00	0.00
Carbon Dioxide	44.010	0.0960%	0.042	0.1931%	-	0.02	0.09
Nitrogen	28.013	0.3450%	0.097	0.4416%	-	0.05	0.21
Methane	16.042	73.1340%	11.732	53.6099%	53.952%	5.80	25.40
Ethane	30.069	16.5830%	4.986	22.7850%	22.931%	2.46	10.79
Propane	44.096	6.2040%	2.736	12.5008%	12.581%	1.35	5.92
i-Butane	58.122	0.6960%	0.405	1.8485%	1.860%	0.20	0.88
n-Butane	58.122	1.7500%	1.017	4.6478%	4.677%	0.50	2.20
i-Pentane	72.149	0.3540%	0.255	1.1671%	1.175%	0.13	0.55
n-Pentane	72.149	0.4420%	0.319	1.4572%	1.467%	0.16	0.69
n-Hexane	86.175	0.1154%	0.099	0.4544%	0.457%	0.05	0.22
Other Hexanes	86.175	0.1460%	0.126	0.5749%	0.579%	0.06	0.27
Heptanes (as n-Heptane)	100.202	0.0250%	0.025	0.1145%	0.115%	0.01	0.05
Benzene	78.114	0.0016%	0.001	0.0057%	0.006%	<0.01	<0.01
Toluene	92.141	0.0001%	0.000	0.0004%	0.000%	<0.01	<0.01
Ethylbenzene	106.167	0.0000%	0.000	0.0000%	0.000%	0.00	0.00
Xylenes	106.167	0.0001%	0.000	0.0005%	0.000%	<0.01	<0.01
Octanes (as n-Octane)	114.229	0.0347%	0.040	0.1811%	0.182%	0.02	0.09
Nonanes (as n-Nonane)	128.255	0.0030%	0.004	0.0176%	0.018%	<0.01	0.01
Decanes (as n-Decane)	142.282	0.0000%	0.000	0.0000%	0.000%	<0.01	<0.01
· · · · · · · · · · · · · · · · · · ·	TOTAL =	100.0000%	21.884	100.0000%	100.000%	10.82	47.37
		TOTAL HC =	21.745	TOTAL VOC =	23.117%	2.48	10.88
				TOTAL HAP =	0.464%	0.05	0.22

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 12: Fugitive Emissions Calculations (Continued)

Guy Avolio No. 8H Compositional Analysis of Separator Oil

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.0000%	0.000	0.0000%	-	0.00	0.00
Carbon Dioxide	44.010	0.0520%	0.023	0.0448%	-	<0.01	<0.01
Nitrogen	28.013	0.1050%	0.029	0.0575%	-	<0.01	<0.01
Methane	16.042	30.0520%	4.821	9.4304%	9.440%	0.03	0.12
Ethane	30.069	19.4820%	5.858	11.4592%	11.471%	0.03	0.15
Propane	44.096	14.3610%	6.333	12.3875%	12.400%	0.04	0.16
i-Butane	58.122	2.1200%	1.232	2.4103%	2.413%	0.01	0.03
n-Butane	58.122	7.2410%	4.209	8.2326%	8.241%	0.02	0.11
i-Pentane	72.149	2.0250%	1.461	2.8580%	2.861%	0.01	0.04
n-Pentane	72.149	3.3360%	2.407	4.7082%	4.713%	0.01	0.06
n-Hexane	86.175	2.1100%	1.818	3.5568%	3.560%	0.01	0.05
Other Hexanes	86.175	2.1870%	1.885	3.6866%	3.690%	0.01	0.05
Heptanes (as n-Heptane)	100.202	3.9050%	3.913	7.6542%	7.662%	0.02	0.10
Benzene	78.114	0.0330%	0.026	0.0504%	0.050%	<0.01	<0.01
Toluene	92.141	0.1480%	0.136	0.2668%	0.267%	<0.01	<0.01
Ethylbenzene	106.167	0.1140%	0.121	0.2368%	0.237%	<0.01	<0.01
Xylenes	106.167	0.4340%	0.461	0.9013%	0.902%	<0.01	0.01
Octanes (as n-Octane)	114.229	2.9780%	3.402	6.6543%	6.661%	0.02	0.08
Nonanes (as n-Nonane)	128.255	1.9110%	2.451	4.7944%	4.799%	0.01	0.06
Decanes (as n-Decane)	142.282	7.4050%	10.536	20.6099%	20.631%	0.06	0.26
	TOTAL =	99.9990%	51.121	100.00%	100.000%	0.29	1.28
		TOTAL HC =	51.069	TOTAL VOC =	79.089%	0.23	1.01
				TOTAL HAP =	5.017%	0.01	0.06

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 13a: Blowdown Emissions Calculations

Estimated annual volume = 1,793,500 standard cubic feet per year (scf/yr)

* Based on an estimated 10 blowdowns per engine during the first month of operation and 8 blowdowns per engine per month for the remainder of the year. See following table for estimated engine blowdown volume calculations.

Speciated Gas Analysis and Emission Rates

	Molecular				Vent Stream			
Component	Weight Ib/Ib-mole	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	scf/yr	lb-mole/yr	tons/yr
Hydrogen Sulfide	34.082	0.0000%	0.000	0.000%	-	0	0	0.00
Carbon Dioxide	44.010	0.0960%	0.042	0.193%	-	1,722	5	0.10
Nitrogen	28.013	0.3450%	0.097	0.442%	-	6,188	16	0.23
Methane	16.042	73.1340%	11.732	53.610%	53.952%	1,311,659	3,457	27.73
Ethane	30.069	16.5830%	4.986	22.785%	22.931%	297,416	784	11.79
Propane	44.096	6.2040%	2.736	12.501%	12.581%	111,269	293	6.47
i-Butane	58.122	0.6960%	0.405	1.848%	1.860%	12,483	33	0.96
n-Butane	58.122	1.7500%	1.017	4.648%	4.677%	31,386	83	2.40
i-Pentane	72.149	0.3540%	0.255	1.167%	1.175%	6,349	17	0.60
n-Pentane	72.149	0.4420%	0.319	1.457%	1.467%	7,927	21	0.75
n-Hexane	86.175	0.1154%	0.099	0.454%	0.457%	2,070	5	0.24
Other Hexanes	86.175	0.1460%	0.126	0.575%	0.579%	2,619	7	0.30
Heptanes (as n-Heptane)	100.202	0.0250%	0.025	0.114%	0.115%	448	1	0.06
Benzene	78.114	0.0016%	0.001	0.006%	0.006%	29	0	<0.01
Toluene	92.141	0.0001%	0.000	0.000%	0.000%	2	0	<0.01
Ethylbenzene	106.167	0.0000%	0.000	0.000%	0.000%	0	0	0.00
Xylenes	106.167	0.0001%	0.000	0.000%	0.000%	2	0	<0.01
Octanes (as n-Octane)	114.229	0.0347%	0.040	0.181%	0.182%	622	2	0.09
Nonanes (as n-Nonane)	128.255	0.0030%	0.004	0.018%	0.018%	54	0	0.01
Decanes (as n-Decane)	142.282	0.0000%	0.000	0.000%	0.000%	0	0	0.00
	TOTAL =	100.0000%	21.884	100.000%	100.000%	1,792,243	4,724	51.73
		TOTAL HC	21.745	99.365%	100.000%	1,784,334	4,703	51.40
			7	OTAL VOC =	23.117%	175,259	462	11.88
			Т	OTAL HAPs =	0.464%	2,102	6	0.24

Molar volume conversion @ 60° F and 1 atm: 1 lb/mole = 379.4 scf

Note: Hourly emissions have not been estimated due to variances in operating conditions.

Appalachia Midstream Services, L.L.C. Sand Hill Compressor Station Table 13b: Blowdown Volume Calculations

	Amount	Length	ID	Ра	Va	Vs	Weight of Gas
Description	Each	ft	in	psig	ft ³	ft ³	(lb)
1st Suction Line	1	50	10.02	125	27	260	14.81
1st Suction Scrubber	1	6.5	30	125	32	303	17.26
1st Suction Bottle	1	7	20	125	15	145	8.26
1st Cylinder	2	4	13.625	125	8	77	4.38
1st Discharge Bottle	1	12	16	125	17	159	9.06
1st Discharge Line to Cooler	1	18.5	7.981	125	6	61	3.48
1st-2nd Inter-Cooler	118	24	0.505	125	4	37	2.13
2nd Suction Line from Cooler	1	35	7.981	125	12	116	6.58
2nd Suction Scrubber	1	5.5	24	125	17	164	9.35
2nd Suction Bottle	1	3	16	125	4	40	2.27
2nd Cylinder	1	4	10.5	125	2	23	1.30
2nd Discharge Bottle	1	3.83	16	125	5	51	2.89
2nd Discharge Line to Cooler	1	42.67	6.065	125	9	81	4.63
2nd-3rd Inter-Cooler	86	24	0.505	125	3	27	1.55
3rd Suction Line from Cooler	1	30.5	6.065	125	6	58	3.31
3rd Suction Scrubber	1	5.5	18	125	10	92	5.26
3rd Suction Bottle	1	3	14	125	3	30	1.73
3rd Cylinder	1	4	6.25	125	1	8	0.46
3rd Discharge Bottle	1	3.67	14	125	4	37	2.12
3rd Discharge Line to Cooler	1	29	3.826	125	2	22	1.25
After-Cooler	74	24	0.63	125	4	37	2.08
					TOTAL =	1,830	104.16

$P_s * V_s/T_s = P_a * V_z/T_a$	Specific Gravity (SG) =	0.76
If $T_s = T_a$:	Density of Air =	0.074887 lb/ft ³
$V_s = P_a * V_a / P_s$	P _s =	14.7 psig
Pounds of Gas = V_s * Density of Air * SG	a = Act	tual

ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

Except as noted on Emissions Unit Data Sheets, AMS is not submitting any special recommendations for monitoring, recordkeeping, reporting, or testing plans other than those typically established for the emissions units proposed in this application.

ATTACHMENT P: PUBLIC NOTICE

Note: Affidavit of Publication will be submitted upon receipt by AMS from the publisher.

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Appalachia Midstream Services, L.L.C. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a New Source Review (45 CSR 13) Modification permit for the Sand Hill Compressor Station located in Marshall County, West Virginia. Driving directions to the facility are: From Dallas, three (3) miles west on Stone Church Road, 1.3 miles south on Golden Road, then east into location.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Carbon Monoxide (CO)75.30 tons/yrVolatile Organic Compounds (VOC)94.46 tons/yrParticulate Matter (PM)6.84 tons/yrSulfur Dioxide (SO2)0.50 tons/yr	Nitrogen Oxides (NOx)	82.37 tons/yr
Particulate Matter (PM)6.84 tons/yrSulfur Dioxide (SO2)0.50 tons/yr		
Sulfur Dioxide (SO2)0.50 tons/yr	Volatile Organic Compounds (VOC)	94.46 tons/yr
	Particulate Matter (PM)	6.84 tons/yr
Acetaldehyde 5.45 tons/vr	Sulfur Dioxide (SO ₂)	0.50 tons/yr
	Acetaldehyde	5.45 tons/yr
Acrolein 3.35 tons/yr	Acrolein	3.35 tons/yr
Benzene 0.33 tons/yr	Benzene	0.33 tons/yr
Ethylbenzene 0.05 tons/yr	Ethylbenzene	0.05 tons/yr
Formaldehyde 3.22 tons/yr	Formaldehyde	3.22 tons/yr
Methanol 1.63 tons/yr	Methanol	1.63 tons/yr
n-Hexane 1.89 tons/yr	n-Hexane	1.89 tons/yr
Toluene 0.29 tons/yr	Toluene	0.29 tons/yr
Xylenes 0.20 tons/yr	Xylenes	0.20 tons/yr
Methane 92.38 tons/yr	Methane	92.38 tons/yr
Carbon Dioxide 88,255.97 tons/yr	Carbon Dioxide	88,255.97 tons/yr
Nitrous Oxide 0.16 tons/yr	Nitrous Oxide	0.16 tons/yr
Carbon Dioxide Equivalent 90,611.53 tons/yr	Carbon Dioxide Equivalent	90,611.53 tons/yr

Modifications are based on an updated gas analysis and no new construction is proposed. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 31st of March 2016

By: Appalachia Midstream Services, L.L.C. Don Wicburg VP Northeast P.O. Box 54382 Oklahoma City, OK 73154-1382

ATTACHMENT R: AUTHORITY OF CORPORATION

Note: The Authority Form designating Mr. Don Wicburg, VP Northeast, signatory authority by Mr. John Michael Stice, President and Chief Operating Officer of Williams, has already been submitted to the agency.

APPENDIX A: SUPPORT DOCUMENTS

CATERPILLAR G3516B AND OXIDATION CATALYST SPECIFICATION SHEETS

GRI-GLYCALC REPORTS

TANKS 4.0.9d REPORT

REPRESENTATIVE FUEL GAS ANALYSIS

REPRESENTATIVE GAS ANALYSIS

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

ASPIRATION:

COMBUSTION:

COOLING SYSTEM:

CONTROL SYSTEM:

EXHAUST MANIFOLD:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F):

NOX EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

JACKET WATER OUTLET (°F):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

FUEL:

1400 8:1 SCAC 130 201 210 ΤA JW+OC+1AC, 2AC

ADEM3

LOW EMISSION

DRY

0.5 28

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS:

FUEL LHV (Btu/scf):

FUEL PRESSURE RANGE(psig):

ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F):

FUEL METHANE NUMBER:

STANDARD RATED POWER:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

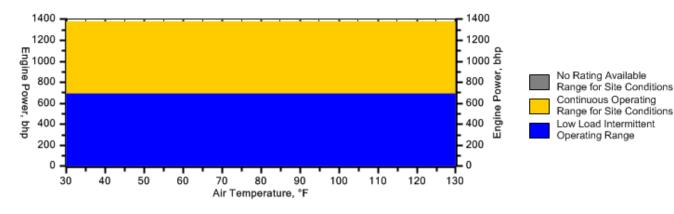
> Gas Analysis 7.0-40.0 53.6 1203 500 77 1380 bhp@1400rpm

			MAXIMUM	SITE RA	TING AT N	IAXIMUM
			RATING	INLET A	IR TEMPE	RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	77	77	77	77
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7420	7420	7947	8536
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8167	8167	8747	9395
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	3148	3148	2469	1726
AIR FLOW (WET)		lb/hr	13958	13958	10949	7655
FUEL FLOW (60°F, 14.7 psia)		scfm	142	142	114	82
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	93.1	93.1	75.5	53.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	1012	1012	1005	1025
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	9240	9240	7226	5127
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	14449	14449	11343	7937
EMISSIONS DATA - ENGINE OUT	1					
	(0)(0)	a/hha ha	0.50	0.50	0.50	0.50
NOx (as NO2) CO	(8)(9) (8)(9)	g/bhp-hr g/bhp-hr	2.98	2.98	0.50 3.19	0.50 3.13
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.40	2.90 4.40	4.72	4.79
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	2.12	2.12	2.27	2.30
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	1.08	1.08	1.16	1.18
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.39	0.39	0.38	0.38
CO2	(8)(9)	g/bhp-hr	510	510	545	592
EXHAUST OXYGEN	(8)(11)	% DRY	9.1	9.1	8.8	8.4
	(-/(/					••••
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	22089	22089	20587	19228
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	9641	9641	7913	2550
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5334	5334	5035	3317
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	39791			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5601			
A section system appart factor of 00/ has been added to the section system similar evitaria						

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

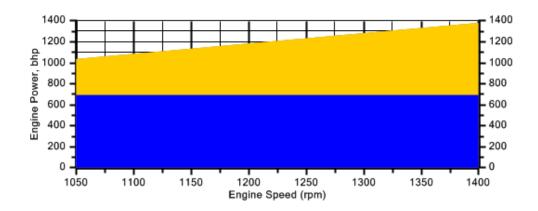
CONDITIONS AND DEFINITIONS

Engine ratio obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three

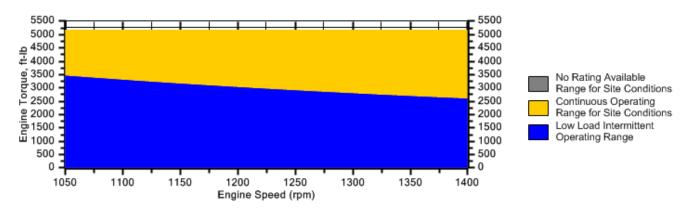
GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 500 ft and 1400 rpm

Engine Power vs. Engine Speed


Data represents speed sweep at 500 ft and 77 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 500 ft and 77 °F

Note: At site conditions of 500 ft and 77°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

G3516B

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	73.1340	73.1340	Fuel Makeup:	Gas Analysis
Ethane	C2H6	16.5830	16.5830	Unit of Measure:	English
Propane	C3H8	6.2040	6.2040		C C
Isobutane	iso-C4H1O	0.6960	0.6960	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.7500	1.7500		52.6
Isopentane	iso-C5H12	0.3540	0.3540	Caterpillar Methane Number:	53.6
Norpentane	nor-C5H12	0.4420	0.4420		
Hexane	C6H14	0.3960	0.3960	Lower Heating Value (Btu/scf):	1203
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1324
Nitrogen	N2	0.3450	0.3450	WOBBE Index (Btu/scf):	1382
Carbon Dioxide	CO2	0.0960	0.0960	(, , , , , , , , , , , , , , , , , , ,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	225.76
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.44%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.996
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	12.45
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.44
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.757
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.273
TOTAL (Volume %)		100.0000	100.0000	Specific Heat Constant (N).	1.275

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

2585 Heartland Drive Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5310 kdunham@emittechnologies.com

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	9240 CFM
Exhaust Temperature:	1012 °F
Reference:	DM8800-07-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>
NOx:	0.50
CO:	2.98
THC:	4.40
NMHC	2.12
NMNEHC:	1.08
HCHO:	0.39
O2:	9.00 %

POST CATALYST EMISSIONS

	<u>g/bhp-hr</u>
NOx:	Unaffected by Oxidation Catalyst
CO:	<0.45
VOC:	<0.27

CONTROL EQUIPMENT

Catalyst Housing

Model: Manufacturer: Element Size: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

ELH-3550-1416F-4CE0-241 EMIT Technologies, Inc Rectangle 24" x 15" x 3.5" 4 Element Capacity Accessible Housing 10 gauge Carbon Steel 9 (0.5" NPT) 14" Flat Face Flange 16" Flat Face Flange End In / Side Out Integrated Hospital 35-40 dBA

Catalyst Element

Model:	RT-2415-H
Catalyst Type:	Oxidation, Premium Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	4
Element Size:	Rectangle 24" x 15" x 3.5"

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buver,

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive excosure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane. nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/t3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 50 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Sand Hill Compressor Station - Electric Pump File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill/2015 Sept R13 Mod App/February 2016 dehy update/2016-03-08 Sand Hill Electric - 55 mm - 2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016 DESCRIPTION: _____ Description: Three identical dehydration units Sand Hill Gas Analysis 2/26/15 55 MMSCFD/7.5 gpm Still vent condenser/combustion; flash tank combustion 98% - excess recycled/recompressed Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 103.00 deg. F Pressure: 950.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.0960

 Nitrogen
 0.3450

 Methane
 73.1340

 Ethane
 16.5830

 Propane
 6.2040

 Isobutane
 0.6960

 n-Butane
 1.7500

 Isopentane
 0.3540

 n-Pentane
 0.4420

 n-Hexane
 0.1154
 Cyclohexane 0.0110 Other Hexanes 0.1460 Heptanes 0.0250 Methylcyclohexane 0.0134 2,2,4-Trimethylpentane 0.0015
 Benzene
 0.0016

 Toluene
 0.0001

 Xylenes
 0.0001

 C8+
 Heavies
 0.0819
 DRY GAS: Flow Rate: 55.0 MMSCF/day Water Content: 7.0 lbs. H20/M 7.0 lbs. H20/MMSCF LEAN GLYCOL: _____

Page: 1

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm PUMP:

Glycol Pump Type: Electric/Pneumatic

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 120.0 deg. F Pressure: 50.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: Control Device: Condenser Temperature: 52.0 deg. F Pressure: 14.1 psia Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 0.0 % Ambient Air Temperature: 52.0 deg. F GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Sand Hill Compressor Station - Electric Pump File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill\2015 Sept R13 Mod App\February 2016 dehy update\2016-03-08 Sand Hill_Electric - 55 mm - 2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016

DESCRIPTION:

Description: Three identical dehydration units Sand Hill Gas Analysis 2/26/15 55 MMSCFD/7.5 gpm Still vent condenser/combustion; flash tank combustion 98% - excess recycled/recompressed

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

 Component
 lbs/hr
 lbs/day
 tons/yr

 Methane
 0.0097
 0.234
 0.0427

 Ethane
 0.0350
 0.840
 0.1532

 Propane
 0.0504
 1.209
 0.2206

 Isobutane
 0.0112
 0.268
 0.0489

 n-Butane
 0.0391
 0.938
 0.1712

 Isopentane
 0.0073
 0.175
 0.0319

 n-Pentane
 0.0014
 0.249
 0.0454

 n-Hexane
 0.0027
 0.664
 0.0117

 Cyclohexane
 0.0011
 0.026
 0.0047

 Other Hexanes
 0.0033
 0.079
 0.0145

 Heptanes
 0.0004
 0.009
 0.0016

 Methylcyclohexane
 0.0001
 0.001
 0.0001

 2,2,4-Trimethylpentane
 <0.0001</td>
 0.001
 0.0002

 Xylenes
 <0.0001</td>
 0.001
 0.0001

 C8+ Heavies
 0.0001
 0.001
 0.0001

 C8+ Heavies
 0.1732
 4.156
 0.7585

 Total Hyd

CONTROLLED REGENERATOR EMISSIONS

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4888	11.731	2.1409
Ethane	1.7762	42.630	7.7799
Propane	2.7291	65.497	11.9532
Isobutane	0.6677	16.025	2.9245
n-Butane	2.5481	61.155	11.1608

Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	0.6308 1.1159 0.6273 0.3483 0.5642	15.140 26.781 15.054 8.360 13.541	Page: 2 2.7630 4.8876 2.7474 1.5257 2.4712	
Heptanes	0.3090	7.416	1.3533	
Methylcyclohexane	0.5038	12.091	2.2066	
2,2,4-Trimethylpentane	0.0075	0.180	0.0329	
Benzene	0.4639	11.134	2.0319	
Toluene	0.0437	1.048	0.1913	
Xylenes	0.0837	2.009	0.3666	
C8+ Heavies	4.8161	115.585	21.0943	
Total Emissions	17.7240	425.377	77.6312	
Total Hydrocarbon Emissions	17.7240	425.377	77.6312	
Total VOC Emissions	15.4590	371.016	67.7105	
Total HAP Emissions	1.2260	29.425	5.3701	
Total BTEX Emissions	0.5913	14.191	2.5898	

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1947	4.673	0.8529
Ethane	0.2028	4.867	0.8883
Propane	0.1354	3.250	0.5931
Isobutane	0.0218	0.522	0.0953
n-Butane	0.0628	1.508	0.2752
Isopentane	0.0135	0.325	0.0592
n-Pentane	0.0190	0.455	0.0830
n-Hexane	0.0059	0.141	0.0257
Cyclohexane	0.0008	0.020	0.0037
Other Hexanes	0.0070	0.169	0.0308
Heptanes	0.0014	0.034	0.0062
Methylcyclohexane	0.0009	0.023	0.0041
2,2,4-Trimethylpentane	0.0001	0.002	0.0003
Benzene	0.0001	0.003	0.0006
Toluene	<0.0001	<0.001	<0.0001
Xylenes	<0.0001	<0.001	<0.0001
C8+ Heavies	0.0020	0.048	0.0088
Total Emissions	0.6683	16.040	2.9273
Total Hydrocarbon Emissions	0.6683	16.040	2.9273
Total VOC Emissions	0.2708	6.499	1.1861
Total HAP Emissions	0.0061	0.146	0.0267
Total BTEX Emissions	0.0002	0.004	0.0007

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	9.7362	233.670	42.6448
Ethane	10.1403	243.366	44.4143
Propane	6.7701	162.482	29.6529
Isobutane	1.0882	26.116	4.7661
n-Butane	3.1413	75.392	13.7591
Isopentane	0.6763	16.231	2.9622
n-Pentane	0.9479	22.749	4.1517

n-Hexane Cyclohexane Other Hexanes	0.2936 0.0423 0.3512	7.047 1.014 8.428	Page: 3 1.2860 0.1851 1.5381
Heptanes	0.0703	1.687	0.3079
Methylcyclohexane	0.0470	1.128	0.2059
2,2,4-Trimethylpentane	0.0035	0.083	0.0151
Benzene	0.0071	0.172	0.0313
Toluene	0.0004	0.010	0.0019
Xylenes	0.0003	0.008	$0.0014 \\ 0.4404$
C8+ Heavies	0.1005	2.413	
Total Emissions	33.4165	801.996	146.3642
Total Hydrocarbon Emissions	33.4165	801.996	146.3642
Total VOC Emissions	13.5400	324.960	59.3052
Total HAP Emissions	0.3050	7.319	1.3358
Total BTEX Emissions	0.0079	0.190	0.0346

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature:	52.00	deg. F
Condenser Pressure:	14.08	psia
Condenser Duty:	3.69e-002	MM BTU/hr
Hydrocarbon Recovery:	0.73	bbls/day
Produced Water:	9.67	bbls/day
Ambient Temperature:	52.00	deg. F
Excess Oxygen:	0.00	010
Combustion Efficiency:	98.00	010
Supplemental Fuel Requirement:	3.69e-002	MM BTU/hr

Component	Emitted	Destroyed
Methane	1.99%	98.01%
Ethane	1.97%	98.03%
Propane	1.85%	98.15%
Isobutane	1.67%	98.33%
n-Butane	1.53%	98.47%
Isopentane	1.16%	98.84%
n-Pentane	0.93%	99.07%
n-Hexane	0.43%	99.57%
Cyclohexane	0.31%	99.69%
Other Hexanes	0.59%	99.41%
Heptanes	0.12%	99.88%
Methylcyclohexane	0.16%	99.84%
2,2,4-Trimethylpentane	0.16%	99.84%
Benzene	0.39%	99.61%
Toluene	0.10%	99.90%
Xylenes	0.03%	99.97%
C8+ Heavies	0.00%	100.00%

ABSORBER

Page: 4 NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 4.71	lbs. H2O/MMSCF
Temperature: Pressure:	103.0 950.0	deg. F
Dry Gas Flow Rate: Glycol Losses with Dry Gas:		MMSCF/day
Wet Gas Water Content:	Saturated	,
Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:		lbs. H2O/MMSCF gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.11%	92.89%
Carbon Dioxide	99.82%	0.18%
Nitrogen	99.98%	0.02%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.94%	0.06%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.92%	0.08%
n-Pentane	99.89%	0.11%
n-Hexane	99.85%	0.15%
Cyclohexane	99.30%	0.70%
Other Hexanes	99.88%	0.12%
Heptanes	99.75%	0.25%
Methylcyclohexane	99.31%	0.69%
2,2,4-Trimethylpentane	99.89%	0.11%
Benzene	93.76%	6.24%
Toluene	92.07%	7.93%
Xylenes	86.89%	13.11%
C8+ Heavies	99.42%	0.58%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Flash Temperature: 120.0 deg. F Flash Pressure: 50.0 psig Component Left in Removed in Component Glycol Flash Gas Water 99.97% 0.03% Carbon Dioxide 38.91% 61.09% Nitrogen 4.53% 95.47% Methane 4.78% 95.22% Ethane 14.91% 85.09% Propane 28.73% 71.27% Isobutane 38.03% 61.97% n-Butane 44.79% 55.21% Isopentane 48.52% 51.48% n-Pentane 54.30% 45.70% N-Hexane 68.27% 31.73% Cyclohexane 89.53% 10.47% Other Hexanes 62.02% 37.98%

		Page:	5
Heptanes	81.56%	18.44%	
Methylcyclohexane	91.81%	8.19%	
2,2,4-Trimethylpentane	68.94%	31.06%	
Benzene	98.56%	1.44%	
Toluene	99.10%	0.90%	
Xylenes	99.67%	0.33%	
C8+ Heavies	98.20%	1.80%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	30.98%	69.02%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.03%	98.97%
n-Pentane	0.92%	99.08%
n-Hexane	0.73%	99.27%
Cyclohexane	3.57%	96.43%
Other Hexanes	1.61%	98.39%
Heptanes	0.61%	99.39%
Methylcyclohexane	4.36%	95.64%
2,2,4-Trimethylpentane	2.18%	97.82%
Benzene	5.07%	94.93%
Toluene	7.98%	92.02%
Xylenes	12.99%	87.01%
C8+ Heavies	12.27%	87.73%

STREAM REPORTS:

WET GAS STREAM

L L	.00 deg. F .70 psia 006 scfh			
Compo	nent	Conc. (vol%)	Loading (lb/hr)	
Ca	rbon Dioxide Nitrogen Methane	1.39e-001 9.59e-002 3.45e-001 7.30e+001 1.66e+001	2.55e+002 5.84e+002 7.09e+004	
	Isobutane	6.20e+000 6.95e-001 1.75e+000 3.54e-001	2.44e+003 6.14e+003	

Page: 6 n-Pentane 4.41e-001 1.93e+003 n-Hexane 1.15e-001 6.01e+002 Cyclohexane 1.10e-002 5.59e+001 Other Hexanes 1.46e-001 7.60e+002 Heptanes 2.50e-002 1.51e+002 Methylcyclohexane 1.34e-002 7.95e+001 2,2,4-Trimethylpentane 1.50e-003 1.04e+001 Benzene 1.60e-003 7.55e+000 Toluene 9.99e-005 5.57e-001 Xylenes 9.99e-005 6.41e-001 C8+ Heavies 8.18e-002 8.43e+002 Total Components 100.00 1.33e+005 DRY GAS STREAM _____ Temperature: 103.00 deg. F Pressure: 964.70 psia Flow Rate: 2.29e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 9.93e-003 1.08e+001 Carbon Dioxide 9.58e-002 2.55e+002 Nitrogen 3.45e-001 5.84e+002 Methane 7.31e+001 7.09e+004 Ethane 1.66e+001 3.01e+004 Propane 6.20e+000 1.65e+004 Isobutane 6.96e-001 2.44e+003 n-Butane 1.75e+000 6.14e+003 Isopentane 3.54e-001 1.54e+003 n-Pentane 4.42e-001 1.92e+003 n-Hexane 1.15e-001 6.00e+002 Cyclohexane 1.09e-002 5.55e+001 Other Hexanes 1.46e-001 7.59e+002 Heptanes 2.49e-002 1.51e+002 Methylcyclohexane 1.33e-002 7.89e+001 2,2,4-Trimethylpentane 1.50e-003 1.03e+001 Benzene 1.50e-003 7.08e+000 Toluene 9.21e-005 5.13e-001 Xylenes 8.69e-005 5.57e-001 C8+ Heavies 8.14e-002 8.38e+002 ----- ------Total Components 100.00 1.33e+005

LEAN GLYCOL STREAM Temperature: 103.00 deg. F Flow Rate: 7.50e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.08e-012 4.58e-011 Nitrogen 2.34e-013 9.89e-012 Methane 8.14e-018 3.44e-016 Ethane 1.33e-007 5.62e-006 Propane 9.16e-009 3.87e-007 Isobutane 1.25e-009 5.27e-008 n-Butane 3.34e-009 1.41e-007 Isopentane 1.56e-004 6.57e-003 n-Pentane 2.46e-004 1.04e-002 n-Hexane 1.10e-004 4.63e-003 Cyclohexane 3.06e-004 1.29e-002 Other Hexanes 2.19e-004 9.25e-003 Heptanes 4.51e-005 1.91e-003 Methylcyclohexane 5.44e-004 2.30e-002 2,2,4-Trimethylpentane 3.95e-006 1.67e-004 Benzene 5.87e-004 2.48e-002 Toluene 8.97e-005 3.79e-003 Xylenes 2.96e-004 1.25e-002 C8+ Heavies 1.60e-002 6.73e-001 Total Components 100.00 4.22e+003

RICH GLYCOL STREAM

Temperature:	103.00 deg. F
Pressure:	
Flow Rate:	7.89e+000 gpm
	has more than one phase.
	_

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.42e+001 4.63e+000 1.04e-002 2.24e-003 2.32e-001	2.04e+002 4.58e-001 9.87e-002
Propane Isobutane	2.70e-001 2.15e-001 3.98e-002 1.29e-001 2.98e-002	9.50e+000 1.76e+000 5.69e+000
n-Hexane Cyclohexane Other Hexanes		9.26e-001 4.04e-001 9.25e-001
Toluene		1.11e-002 4.96e-001 4.79e-002
C8+ Heavies Total Components		5.59e+000 4.41e+003

FLASH TANK OFF GAS STREAM Temperature: 120.00 deg. F Pressure: 64.70 psia Flow Rate: 4.61e+002 scfh

Component

Conc. Loading

Page: 8

(vol%) (lb/hr) Water 2.95e-001 6.46e-002 Carbon Dioxide 5.22e-001 2.80e-001 Nitrogen 2.77e-001 9.42e-002 Methane 4.99e+001 9.74e+000 Ethane 2.77e+001 1.01e+001 Propane 1.26e+001 6.77e+000 Isobutane 1.54e+000 1.09e+000 n-Butane 4.44e+000 3.14e+000 Isopentane 7.71e-001 6.76e-001 n-Pentane 1.08e+000 9.48e-001 n-Hexane 2.80e-001 2.94e-001 Cyclohexane 4.13e-002 4.23e-002 Other Hexanes 3.35e-001 3.51e-001 Heptanes 5.77e-002 7.03e-002 Methylcyclohexane 3.94e-002 4.70e-002 2,2,4-Trimethylpentane 2.49e-003 3.46e-003 Benzene 7.53e-003 7.15e-003 Toluene 3.84e-004 4.31e-004 Xylenes 2.46e-004 3.18e-004 C8+ Heavies 4.85e-002 1.01e-001 ----- -----Total Components 100.00 3.39e+001 FLASH TANK GLYCOL STREAM _____ Temperature: 120.00 deg. F Flow Rate: 7.81e+000 gpm Conc. Conc. Loading (wt%) (lb/hr) Component TEG 9.49e+001 4.16e+003 Water 4.67e+000 2.04e+002 Carbon Dioxide 4.07e-003 1.78e-001 Nitrogen 1.02e-004 4.47e-003 Methane 1.12e-002 4.89e-001 Ethane 4.06e-002 1.78e+000 Propane 6.23e-002 2.73e+000 Isobutane 1.52e-002 6.68e-001 n-Butane 5.82e-002 2.55e+000 Isopentane 1.46e-002 6.37e-001 n-Pentane 2.57e-002 1.13e+000 n-Hexane 1.44e-002 6.32e-001 Cyclohexane 8.25e-003 3.61e-001 Other Hexanes 1.31e-002 5.73e-001 Heptanes 7.10e-003 3.11e-001 Methylcyclohexane 1.20e-002 5.27e-001 2,2,4-Trimethylpentane 1.75e-004 7.67e-003 Benzene 1.12e-002 4.89e-001 Toluene 1.08e-003 4.75e-002 Xylenes 2.20e-003 9.62e-002 C8+ Heavies 1.25e-001 5.49e+000 ----- -----Total Components 100.00 4.38e+003

FLASH GAS EMISSIONS

Flow Rate: 2.10e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.03e+001 3.92e+001 6.06e-002 2.19e-001 1.22e-001	9.56e+001 9.42e-002 1.95e-001
Isobutane n-Butane Isopentane	5.54e-002 6.75e-003 1.95e-002 3.38e-003 4.74e-003	2.18e-002 6.28e-002 1.35e-002
Cyclohexane Other Hexanes	1.47e-003 2.53e-004	8.45e-004 7.02e-003 1.41e-003
Toluene	3.30e-005 1.68e-006 1.08e-006	1.43e-004 8.61e-006 6.37e-006
Total Components	100.00	1.57e+002

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate: 3			7			
	Component	t			Loading (lb/hr)	
	Carbon	n Dioxi Nitrog Metha	.de jen ane	9.63e+001 4.98e-002 1.96e-003 3.75e-001 7.26e-001	1.78e-001 4.47e-003 4.89e-001	
	Is	Isobuta n-Buta sopenta	ane ane ane	7.61e-001 1.41e-001 5.39e-001 1.08e-001 1.90e-001	6.68e-001 2.55e+000 6.31e-001	
1	Other	clohexa r Hexar Heptar	ane les les	8.95e-002 5.09e-002 8.05e-002 3.79e-002 6.31e-002	3.48e-001 5.64e-001 3.09e-001	
2,2,4	-	Benze Tolue Xyler	ene ene les	8.08e-004 7.30e-002 5.83e-003 9.70e-003 3.48e-001	4.64e-001 4.37e-002 8.37e-002	
	Total Co	omponer	nts	100.00	1.59e+002	

CONDENSER PRODUCED WATER STREAM			
Temperature: 52.00 deg. F Flow Rate: 2.82e-001 gpm			
Component		Loading (lb/hr)	(ppm)
Carbon Dioxide Nitrogen Methane		2.35e-006 5.85e-004	999774. 39. 0. 4. 22.
Isobutane n-Butane Isopentane	1.47e-003 1.94e-004 9.88e-004 1.45e-004 2.34e-004	2.74e-004 1.39e-003 2.04e-004	15. 2. 10. 1. 2.
Cyclohexane Other Hexanes	5.45e-005 4.85e-006	2.43e-004 7.69e-005 6.84e-006	1. 2. 1. 0. 1.
Toluene	1.22e-002 2.86e-004 1.88e-004	1.72e-002 4.04e-004 2.66e-004	0. 122. 3. 2. 0.
Total Components	100.00	1.41e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 52.00 deg. H Flow Rate: 2.13e-002 gpm	
Component	Conc. Loading (wt%) (lb/hr)
Carbon Dioxi Nitrog Metha	er 1.43e-002 1.29e-003 de 1.02e-002 9.19e-004 gen 2.75e-005 2.48e-006 ne 1.18e-002 1.06e-003 ne 2.66e-001 2.41e-002
Isobuta n-Buta Isopenta	ne 2.31e+000 2.09e-001 ne 1.21e+000 1.09e-001 ne 6.55e+000 5.92e-001 ne 2.95e+000 2.66e-001 ne 6.60e+000 5.97e-001
Cyclohexa Other Hexar Heptar	ne 5.46e+000 4.94e-001 ne 3.25e+000 2.94e-001 les 4.41e+000 3.99e-001 les 3.22e+000 2.91e-001 ne 5.13e+000 4.64e-001
Benze Tolue Xyler	ne 7.62e-002 6.89e-003 ne 3.93e+000 3.55e-001 ne 4.53e-001 4.10e-002 les 9.10e-001 8.23e-002 les 5.32e+001 4.81e+000

CONDENSER VENT STREAM		
Temperature: 52.00 deg. F Pressure: 14.08 psia Flow Rate: 8.12e+001 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxid Nitroge Methan	r 1.39e+000 e 1.82e+000 n 7.45e-002 e 1.42e+001 e 2.72e+001	1.72e-001 4.47e-003 4.87e-001
Isobutan n-Butan Isopentan	e 2.67e+001 e 4.48e+000 e 1.57e+001 e 2.36e+000 e 3.36e+000	5.58e-001 1.95e+000 3.64e-001
Cyclohexan Other Hexane	s 8.44e-002	5.42e-002 1.65e-001 1.81e-002
Toluen Xylene	e 2.51e-003 e 5.46e-001 e 1.16e-002 s 5.11e-003 s 8.52e-003	9.13e-002 2.29e-003 1.16e-003
Total Component	s 100.00	8.89e+000

COMBUSTION DEVICE OFF GAS STREAM

_____ Temperature:1000.00 deg. FPressure:14.70 psiaFlow Rate:1.57e+000 scfh Component Conc. Loading (vol%) (lb/hr) Methane 1.47e+001 9.74e-003 Ethane 2.81e+001 3.50e-002 Propane 2.76e+001 5.04e-002 Isobutane 4.64e+000 1.12e-002 n-Butane 1.62e+001 3.91e-002 Isopentane 2.44e+000 7.29e-003 n-Pentane 3.47e+000 1.04e-002 n-Hexane 7.49e-001 2.67e-003 Cyclohexane 3.11e-001 1.08e-003 Other Hexanes 9.27e-001 3.31e-003 Heptanes 8.73e-002 3.62e-004 Methylcyclohexane 1.97e-001 8.02e-004 2,2,4-Trimethylpentane 2.60e-003 1.23e-005 Benzene 5.64e-001 1.83e-003 Toluene 1.20e-002 4.58e-005 Xylenes 5.28e-003 2.32e-005 C8+ Heavies 8.81e-003 6.21e-005

CONDENSER CONTROL CURVE DATA REPORT: _____ CONDENSER CONTROL EFFICIENCY CURVES _____ Note: Condenser curves computed for the range 40.0 F <= T <= 170.0 F. DO NOT EXTRAPOLATE BEYOND THIS RANGE! BTEX Temp(F) Total HAP VOC 87.71 89.44 40.0 62.73 61.11 85.49 82.77 45.0 87.53 85.21 50.0 59.33 79.73 57.58 82.61 55.0 76.39 60.0 79.76 55.87 65.0 76.66 72.79 54.19 70.0 73.35 68.95 52.54 50.95 75.0 69.87 64.93 49.40 80.0 66.25 60.80 56.60 47.91 85.0 62.54 58.79 55.05 51.35 52.42 48.31 44.32 46.49 45.13 43.84 90.0 95.0 100.0 47.72 40.49 42.63 105.0 44.20 36.86 41.49 110.0 115.0 40.79 33.44 40.43 120.0 37.52 30.24 39.44 125.0 34.38 27.27 38.51 31.38 24.50 130.0 37.65 28.51 21.93 36.83 135.0 25.77 19.55 140.0 36.05 145.0 23.15 17.33 35.27 20.64 15.27 34.48 150.0 155.0 18.04 13.19 33.55 160.0 15.67 11.33 32.49 9.52 165.0 13.31 31.09 170.0 10.95 7.75 29.05 _____ ANNUAL AIR-COOLED CONDENSER PERFORMANCE: _____ ANNUAL AIR-COOLED CONDENSER PERFORMANCE Nearest Site for Air Temperature Data: Elkins, WV Ambient Air Dry Bulb Condenser Outlet Temperature (deg. F) Frequency (%) Temperature (deg. F) 49.57 <=50 <=70 71-75 51-55 8.52 9.28 56-60 76-80 10.35 81-85 61-65 86-90 66-70 8.85 6.15 4.62 71-75 91-95 96-100 76-80 2.09 101-105 81-85 86-90 0.52 106-110 91-95 0.06 111-115 167

_____ ____

Total Components 100.00 1.73e-001

Page: 12

			Page: 13
96-100	0.00	116-120	
>100	0.00	>120	

Condenser outlet temperature approach to ambient: 20.00 deg. F

Annual air-cooled condenser emissions and control efficiency:

	Uncontrolled emissions tons/year	Controlled emissions tons/year	% Control
Benzene	2.032	0.803	60.46
BTEX	2.590	0.851	67.14
Total HAP	5.370	2.045	61.92
VOC	67.710	33.875	49.97

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Sand Hill Compressor Station - Gas Pumps File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand Hill/2015 Sept R13 Mod App/February 2016 dehy update/2016-03-08 Sand Hill Gas - 55 mm -2-26-15 analysis 950 psi 7.5 gpm.ddf Date: March 08, 2016 DESCRIPTION: _____ Description: Three identical dehydration units Sand Hill Gas Analysis 2/26/15 55 MMSCFD/7.5 gpm Still vent condenser/combustion; flash tank combustion 98% - excess recycled/recompressed Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 103.00 deg. F Pressure: 950.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.0960

 Nitrogen
 0.3450

 Methane
 73.1340

 Ethane
 16.5830

 Propane
 6.2040

 Isobutane
 0.6960

 n-Butane
 1.7500

 Isopentane
 0.3540

 n-Pentane
 0.4420

 n-Hexane
 0.1154
 Cyclohexane 0.0110 Other Hexanes 0.1460 Heptanes 0.0250 Methylcyclohexane 0.0134 2,2,4-Trimethylpentane 0.0015
 Benzene
 0.0016

 Toluene
 0.0001

 Xylenes
 0.0001

 C8+
 Heavies
 0.0819
 DRY GAS: Flow Rate: 55.0 MMSCF/day Water Content: 7.0 lbs. H20/M 7.0 lbs. H20/MMSCF LEAN GLYCOL:

Page: 1

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm PUMP: Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol FLASH TANK: Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 120.0 deg. F Pressure: 50.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: Control Device: Condenser Temperature: 52.0 deg. F Pressure: 14.1 psia Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 0.0 % Ambient Air Temperature: 52.0 deg. F

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Sand Hill Compressor Station - Gas Pumps
File Name: C:\Users\hmoseley\Dropbox\Flatrock OKC - Hillary\Access\Sand
Hill\2015 Sept R13 Mod App\February 2016 dehy update\2016-03-08 Sand Hill_Gas - 55 mm 2-26-15 analysis 950 psi 7.5 gpm.ddf
Date: March 08, 2016

DESCRIPTION:

Description: Three identical dehydration units Sand Hill Gas Analysis 2/26/15 55 MMSCFD/7.5 gpm Still vent condenser/combustion; flash tank combustion 98% - excess recycled/recompressed

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

_____ lbs/hr lbs/day tons/yr Component _____ Methane0.01330.3190.0583Ethane0.02270.5440.0994Propane0.02860.6860.1252Isobutane0.00600.1440.0263n-Butane0.01950.4680.0854
 Isopentane
 0.0038
 0.092

 n-Pentane
 0.0052
 0.125

 n-Hexane
 0.0014
 0.034

 Cyclohexane
 0.0006
 0.015

 Other Hexanes
 0.0017
 0.041
 0.0168 0.0168 0.0227 0.0061 0.0028 0.041 0.0074 Heptanes0.00020.0060.0010Methylcyclohexane0.00050.0120.00232,2,4-Trimethylpentane<0.0001</td><0.001</td><0.0001</td>Benzene0.00140.0340.0063Toluene<0.0001</td>0.0010.0002 Xylenes<0.0001</th><0.001</th>0.0001C8+ Heavies0.00010.0010.0002 _____ ____ Total Emissions 0.1051 2.523 0.4605 Total Hydrocarbon Emissions0.10512.523Total VOC Emissions0.06911.659Total HAP Emissions0.00290.069Total BTEX Emissions0.00150.036 2.5230.46051.6590.30280.0690.01270.0360.0065

CONTROLLED REGENERATOR EMISSIONS

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.6682	16.038	2.9269
Ethane	1.1571	27.770	5.0681
Propane	1.5800	37.920	6.9205
Isobutane	0.3747	8.992	1.6411
n-Butane	1.3445	32.269	5.8891

Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	0.3664 0.6217 0.3811 0.2446 0.3369	14.921	Page: 2 1.6049 2.7231 1.6694 1.0714 1.4757
Heptanes	0.2156	5.174	0.9442
Methylcyclohexane	0.3878	9.307	1.6985
2,2,4-Trimethylpentane	0.0055	0.132	0.0241
Benzene	0.4327	10.386	1.8954
Toluene	0.0419	1.005	0.1834
Xylenes	0.0826	1.982	0.3617
C8+ Heavies	5.1940	124.656	22.7497
Total Emissions	13.4354	322.450	58.8471
Total Hydrocarbon Emissions	13.4354	322.450	58.8471
Total VOC Emissions	11.6101	278.642	50.8521
Total HAP Emissions	0.9438	22.652	4.1340
Total BTEX Emissions	0.5572	13.373	2.4405

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.9218	46.123	8.4175
Ethane	0.9509	22.821	4.1648
Propane	0.5620	13.489	2.4617
Isobutane	0.0873	2.095	0.3824
n-Butane	0.2370	5.687	1.0379
Isopentane	0.0565	1.356	0.2475
n-Pentane	0.0759	1.821	0.3324
n-Hexane	0.0255	0.611	0.1115
Cyclohexane	0.0043	0.103	0.0188
Other Hexanes	0.0301	0.723	0.1320
Heptanes	0.0070	0.167	0.0305
Methylcyclohexane	0.0052	0.125	0.0228
2,2,4-Trimethylpentane	0.0004	0.009	0.0016
Benzene	0.0010	0.023	0.0042
Toluene	0.0001	0.001	0.0003
Xylenes	<0.0001	0.001	0.0002
C8+ Heavies	0.0150	0.361	0.0659
Total Emissions	3.9799	95.516	17.4317
Total Hydrocarbon Emissions	3.9799	95.516	17.4317
Total VOC Emissions	1.1072	26.572	4.8495
Total HAP Emissions	0.0269	0.645	0.1177
Total BTEX Emissions	0.0011	0.025	0.0046

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	96.0900	2306.161	420.8744
Ethane	47.5433	1141.040	208.2399
Propane	28.1015	674.437	123.0847
Isobutane	4.3652	104.764	19.1194
n-Butane	11.8478	284.347	51.8934
Isopentane	2.8248	67.795	12.3727
n-Pentane	3.7945	91.068	16.6199

n-Hexane Cyclohexane Other Hexanes	1.2733 0.2143 1.5066	30.560 5.143 36.159	Page: 3 5.5773 0.9386 6.5990
Heptanes	0.3485	8.364	1.5265
Methylcyclohexane	0.2601	6.242	1.1391
2,2,4-Trimethylpentane	0.0181	0.434	0.0793
Benzene	0.0475	1.141	0.2082
Toluene	0.0029	0.070	0.0128
Xylenes	0.0022	0.053	0.0097
C8+ Heavies	0.7517	18.041	3.2925
Total Emissions	198.9925	4775.821	871.5872
Total Hydrocarbon Emissions	198.9925	4775.821	871.5872
Total VOC Emissions	55.3591	1328.619	242.4730
Total HAP Emissions	1.3441	32.259	5.8873
Total BTEX Emissions	0.0527	1.264	0.2307

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature:	52.00	deg. F
Condenser Pressure:	14.08	
Condenser Duty:	2.26e-002	MM BTU/hr
Hydrocarbon Recovery:	0.66	bbls/day
Produced Water:	9.65	bbls/day
Ambient Temperature:	52.00	deg. F
Excess Oxygen:	0.00	00
Combustion Efficiency:	98.00	
Supplemental Fuel Requirement:	2.26e-002	MM BTU/hr

Component	Emitted	Destroyed
Methane	1.99%	98.01%
Ethane	1.96%	98.04%
Propane	1.81%	98.19%
Isobutane	1.60%	98.40%
n-Butane	1.45%	98.55%
Isopentane	1.05%	98.95%
n-Pentane	0.84%	99.16%
n-Hexane	0.37%	99.63%
Cyclohexane	0.26%	99.74%
Other Hexanes	0.50%	99.50%
Heptanes	0.11%	99.89%
Methylcyclohexane	0.13%	99.87%
2,2,4-Trimethylpentane	0.14%	99.86%
Benzene	0.33%	99.67%
Toluene	0.08%	99.92%
Xylenes	0.02%	99.98%
C8+ Heavies	0.00%	100.00%

ABSORBER

Page: 4 NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 4.71	lbs. H2O/MMSCF
Temperature: Pressure:	103.0 950.0	deg. F
Dry Gas Flow Rate: Glycol Losses with Dry Gas:		MMSCF/day
Wet Gas Water Content:	Saturated	,
Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:		lbs. H2O/MMSCF gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.11%	92.89%
Carbon Dioxide	99.82%	0.18%
Nitrogen	99.98%	0.02%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.94%	0.06%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.92%	0.08%
n-Pentane	99.89%	0.11%
n-Hexane	99.85%	0.15%
Cyclohexane	99.30%	0.70%
Other Hexanes	99.88%	0.12%
Heptanes	99.75%	0.25%
Methylcyclohexane	99.31%	0.69%
2,2,4-Trimethylpentane	99.89%	0.11%
Benzene	93.76%	6.24%
Toluene	92.07%	7.93%
Xylenes	86.89%	13.11%
C8+ Heavies	99.42%	0.58%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Flash Temperature: 120.0 deg. F Flash Pressure: 50.0 psig Component Left in Removed in Component Glycol Flash Gas Water 99.77% 0.23% Carbon Dioxide 8.13% 91.87% Nitrogen 0.65% 99.35% Methane 0.69% 99.31% Ethane 2.38% 97.62% Propane 5.32% 94.68% Isobutane 7.90% 92.10% n-Butane 10.19% 89.81% Isopentane 11.66% 88.34% n-Pentane 14.28% 85.72% n-Hexane 23.25% 76.75% Cyclohexane 54.58% 45.42% Other Hexanes 18.68% 81.32%

		Page:	5
Heptanes	38.42%	61.58%	
Methylcyclohexane	61.23%	38.77%	
2,2,4-Trimethylpentane	23.84%	76.16%	
Benzene	90.59%	9.41%	
Toluene	93.98%	6.02%	
Xylenes	97.72%	2.28%	
C8+ Heavies	88.64%	11.36%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	31.01%	68.99%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.76%	98.24%
n-Pentane	1.64%	98.36%
n-Hexane	1.20%	98.80%
Cyclohexane	5.01%	94.99%
Other Hexanes	2.67%	97.33%
Heptanes	0.88%	99.12%
Methylcyclohexane	5.59%	94.41%
2,2,4-Trimethylpentane	2.95%	97.05%
Benzene	5.42%	94.58%
Toluene	8.29%	91.71%
Xylenes	13.14%	86.86%
C8+ Heavies	11.48%	88.52%

STREAM REPORTS:

WET GAS STREAM

± 1	103.00 deg. F 964.70 psia 30e+006 scfh		
C	omponent	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxi Nitrog Metha	er 1.39e-001 de 9.59e-002 en 3.45e-001 ne 7.30e+001 ne 1.66e+001	2.55e+002 5.84e+002 7.09e+004
	Isobuta n-Buta	ne 6.20e+000 ne 6.95e-001 ne 1.75e+000 ne 3.54e-001	2.44e+003 6.14e+003

Page: 6 n-Pentane 4.41e-001 1.93e+003 n-Hexane 1.15e-001 6.01e+002 Cyclohexane 1.10e-002 5.59e+001 Other Hexanes 1.46e-001 7.60e+002 Heptanes 2.50e-002 1.51e+002 Methylcyclohexane 1.34e-002 7.95e+001 2,2,4-Trimethylpentane 1.50e-003 1.04e+001 Benzene 1.60e-003 7.55e+000 Toluene 9.99e-005 5.57e-001 Xylenes 9.99e-005 6.41e-001 C8+ Heavies 8.18e-002 8.43e+002 Total Components 100.00 1.33e+005 DRY GAS STREAM _____ Temperature: 103.00 deg. F Pressure: 964.70 psia Flow Rate: 2.29e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 9.93e-003 1.08e+001 Carbon Dioxide 9.58e-002 2.55e+002 Nitrogen 3.45e-001 5.84e+002 Methane 7.31e+001 7.09e+004 Ethane 1.66e+001 3.01e+004 Propane 6.20e+000 1.65e+004 Isobutane 6.96e-001 2.44e+003 n-Butane 1.75e+000 6.14e+003 Isopentane 3.54e-001 1.54e+003 n-Pentane 4.42e-001 1.92e+003 n-Hexane 1.15e-001 6.00e+002 Cyclohexane 1.09e-002 5.55e+001 Other Hexanes 1.46e-001 7.59e+002 Heptanes 2.49e-002 1.51e+002 Methylcyclohexane 1.33e-002 7.89e+001 2,2,4-Trimethylpentane 1.50e-003 1.03e+001 Benzene 1.50e-003 7.08e+000 Toluene 9.21e-005 5.13e-001 Xylenes 8.69e-005 5.57e-001 C8+ Heavies 8.14e-002 8.38e+002 ----- -----Total Components 100.00 1.33e+005

LEAN GLYCOL STREAM Temperature: 103.00 deg. F Flow Rate: 7.50e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.08e-012 4.58e-011 Nitrogen 2.34e-013 9.89e-012 Methane 8.14e-018 3.44e-016 Ethane 1.33e-007 5.62e-006 Propane 9.16e-009 3.87e-007 Isobutane 1.25e-009 5.27e-008 n-Butane 3.34e-009 1.41e-007 Isopentane 1.56e-004 6.57e-003 n-Pentane 2.46e-004 1.04e-002 n-Hexane 1.10e-004 4.63e-003 Cyclohexane 3.06e-004 1.29e-002 Other Hexanes 2.19e-004 9.25e-003 Heptanes 4.51e-005 1.91e-003 Methylcyclohexane 5.44e-004 2.30e-002 2,2,4-Trimethylpentane 3.95e-006 1.67e-004 Benzene 5.87e-004 2.48e-002 Toluene 8.97e-005 3.79e-003 Xylenes 2.96e-004 1.25e-002 C8+ Heavies 1.60e-002 6.73e-001 Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature:	103.00 deg. F
Pressure:	964.70 psia
Flow Rate:	8.25e+000 gpm
NOTE: Stream	has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.08e+001 4.47e+000 1.68e-002 1.77e-002 2.11e+000	2.05e+002 7.69e-001 8.12e-001
Propane Isobutane	1.06e+000 6.49e-001 1.04e-001 2.88e-001 6.99e-002	2.97e+001 4.74e+000 1.32e+001
n-Hexane Cyclohexane Other Hexanes		1.66e+000 4.72e-001 1.85e+000
Toluene		2.38e-002 5.05e-001 4.86e-002
C8+ Heavies Total Components		6.62e+000 4.58e+003

FLASH TANK OFF GAS STREAM Temperature: 120.00 deg. F Pressure: 64.70 psia Flow Rate: 3.30e+003 scfh

Component

Conc. Loading

Page: 8

(vol%) (lb/hr) ----- ------Water 2.95e-001 4.62e-001 Carbon Dioxide 1.85e-001 7.07e-001 Nitrogen 3.31e-001 8.06e-001 Methane 6.89e+001 9.61e+001 Ethane 1.82e+001 4.75e+001 Propane 7.33e+000 2.81e+001 Isobutane 8.64e-001 4.37e+000 n-Butane 2.34e+000 1.18e+001 Isopentane 4.50e-001 2.82e+000 n-Pentane 6.05e-001 3.79e+000 n-Hexane 1.70e-001 1.27e+000 Cyclohexane 2.93e-002 2.14e-001 Other Hexanes 2.01e-001 1.51e+000 Heptanes 4.00e-002 3.49e-001 Methylcyclohexane 3.05e-002 2.60e-001 2,2,4-Trimethylpentane 1.82e-003 1.81e-002 Benzene 7.00e-003 4.75e-002 Toluene 3.65e-004 2.93e-003 Xylenes 2.41e-004 2.22e-003 C8+ Heavies 5.07e-002 7.52e-001 ----- -----Total Components 100.00 2.01e+002 FLASH TANK GLYCOL STREAM _____ Temperature: 120.00 deg. F Flow Rate: 7.80e+000 gpm Component Conc. Loading (wt%) (lb/hr) Conc. TEG 9.50e+001 4.16e+003 Water 4.67e+000 2.04e+002 Carbon Dioxide 1.43e-003 6.26e-002 Nitrogen 1.21e-004 5.30e-003 Methane 1.53e-002 6.68e-001 Ethane 2.65e-002 1.16e+000 Propane 3.61e-002 1.58e+000 Isobutane 8.57e-003 3.75e-001 n-Butane 3.07e-002 1.34e+000 Isopentane 8.53e-003 3.73e-001 n-Pentane 1.44e-002 6.32e-001 n-Hexane 8.82e-003 3.86e-001 Cyclohexane 5.89e-003 2.58e-001 Other Hexanes 7.91e-003 3.46e-001 Heptanes 4.97e-003 2.17e-001 Methylcyclohexane 9.39e-003 4.11e-001 2,2,4-Trimethylpentane 1.29e-004 5.66e-003 Benzene 1.05e-002 4.58e-001 Toluene 1.04e-003 4.57e-002 Xylenes 2.17e-003 9.51e-002 C8+ Heavies 1.34e-001 5.87e+000 ----- -----Total Components 100.00 4.37e+003

FLASH GAS EMISSIONS

Flow Rate: 1.29e+004 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.21e+001 3.73e+001 8.45e-002 3.52e-001 9.28e-002	5.59e+002 8.06e-001 1.92e+000
Isobutane n-Butane Isopentane	3.74e-002 4.41e-003 1.20e-002 2.30e-003 3.09e-003	8.73e-002 2.37e-001 5.65e-002
Cyclohexane Other Hexanes	1.03e-003 2.04e-004	4.29e-003 3.01e-002 6.97e-003
Toluene	3.57e-005 1.86e-006 1.23e-006	9.51e-004 5.85e-005 4.44e-005
Total Components	100.00	9.45e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 Pressure: 14.70 Flow Rate: 3.05e+003				
Componer	nt		Loading (lb/hr)	
Carbo	on Dioxide Nitrogen Methane	9.73e+001 1.77e-002 2.36e-003 5.18e-001 4.79e-001	6.26e-002 5.30e-003 6.68e-001	
1	Isobutane n-Butane Sopentane	4.46e-001 8.02e-002 2.88e-001 6.32e-002 1.07e-001	3.75e-001 1.34e+000 3.66e-001	
Othe	vclohexane er Hexanes Heptanes	5.50e-002 3.62e-002 4.86e-002 2.68e-002 4.91e-002	2.45e-001 3.37e-001 2.16e-001	
2,2,4-Trimeth C8	Benzene Toluene Xylenes	5.99e-004 6.89e-002 5.65e-003 9.68e-003 3.79e-001	4.33e-001 4.19e-002 8.26e-002	
Total (Components	100.00	1.54e+002	

CONDENSER PRODUCED WATER STREAM			
Temperature: 52.00 deg. F Flow Rate: 2.82e-001 gpm			
Component		Loading (lb/hr)	(ppm)
Carbon Dioxide Nitrogen Methane		4.04e-006 1.16e-003	999779. 20. 0. 8. 21.
Isobutane n-Butane Isopentane	1.22e-003 1.53e-004 7.19e-004 1.11e-004 1.71e-004	2.15e-004 1.01e-003 1.57e-004	12. 2. 7. 1. 2.
Cyclohexane Other Hexanes	4.08e-005 4.53e-006	2.10e-004 5.75e-005 6.38e-006	0. 1. 0. 0. 1.
Toluene	1.40e-002 3.19e-004 2.17e-004	1.97e-002 4.49e-004 3.06e-004	0. 140. 3. 2. 0.
Total Components	100.00	1.41e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 52.00 deg. F Flow Rate: 1.92e-002 gpm		
Component		Loading (lb/hr)
Carbon Dioxid Nitroge Methan	r 1.40e-002 e 4.70e-003 n 4.69e-005 e 2.12e-002 e 2.43e-001	3.83e-004 3.83e-006 1.73e-003
Isobutan n-Butan Isopentan	e 1.84e+000 e 9.07e-001 e 4.52e+000 e 2.14e+000 e 4.44e+000	7.40e-002 3.68e-001 1.75e-001
Cyclohexan Other Hexane	s 2.50e+000	2.12e-001 2.52e-001 2.04e-001
Toluen Xylene	e 6.28e-002 e 4.19e+000 e 4.87e-001 s 9.98e-001 s 6.37e+001	3.41e-001 3.97e-002 8.14e-002

CONDENSER VENT STREAM		
Temperature: 52.00 deg. F Pressure: 14.08 psia Flow Rate: 5.57e+001 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.39e+000 9.19e-001 1.29e-001 2.82e+001 2.57e+001	5.94e-002 5.30e-003 6.65e-001
Isobutane n-Butane Isopentane	2.21e+001 3.52e+000 1.14e+001 1.81e+000 2.45e+000	3.00e-001 9.75e-001 1.92e-001
Cyclohexane Other Hexanes	6.69e-001 7.84e-002	3.20e-002 8.47e-002 1.15e-002
Toluene	6.26e-001 1.29e-002 5.86e-003	7.18e-002 1.74e-003 9.14e-004
Total Components	100.00	5.36e+000

COMBUSTION DEVICE OFF GAS STREAM

_____ Temperature:1000.00 deg. FPressure:14.70 psiaFlow Rate:1.09e+000 scfh Component Conc. Loading (vol%) (lb/hr) Methane 2.89e+001 1.33e-002 Ethane 2.63e+001 2.27e-002 Propane 2.26e+001 2.86e-002 Isobutane 3.61e+000 6.01e-003 n-Butane 1.17e+001 1.95e-002 Isopentane 1.85e+000 3.83e-003 n-Pentane 2.51e+000 5.19e-003 n-Hexane 5.66e-001 1.40e-003 Cyclohexane 2.66e-001 6.41e-004 Other Hexanes 6.86e-001 1.69e-003 Heptanes 8.04e-002 2.31e-004 Methylcyclohexane 1.83e-001 5.15e-004 2,2,4-Trimethylpentane 2.29e-003 7.51e-006 Benzene 6.41e-001 1.44e-003 Toluene 1.32e-002 3.49e-005 Xylenes 6.00e-003 1.83e-005 C8+ Heavies 1.16e-002 5.65e-005

CONDENSER CONTROL CURVE DATA REPORT: _____ CONDENSER CONTROL EFFICIENCY CURVES _____ Note: Condenser curves computed for the range 40.0 F <= T <= 170.0 F. DO NOT EXTRAPOLATE BEYOND THIS RANGE! BTEX 90.83 Total HAP Temp(F) VOC 89.53 73.19 40.0 87.65 85.53 45.0 89.21 71.94 87.38 70.69 50.0 83.19 85.36 69.45 55.0 83.29 60.0 80.79 68.30 65.0 80.90 78.02 67.08 70.0 78.32 75.05 65.86 64.66 75.0 75.57 71.90 80.0 72.67 68.59 63.47 62.29 85.0 69.64 65.16 61.14 66.50 63.28 60.01 61.63 58.06 90.0 95.0 60.02 58.92 54.47 100.0 56.70 50.90 105.0 57.85 53.39 47.38 110.0 56.81 115.0 50.09 43.94 55.81 120.0 46.82 40.59 54.85 43.59 125.0 37.36 53.92 34.24 40.42 53.02 130.0 31.24 37.31 52.15 135.0 34.25 140.0 28.37 51.29 145.0 31.26 25.62 50.43 28.32 22.97 150.0 49.55 25.42 20.42 48.59 155.0 160.0 22.57 17.96 47.47 19.49 15.36 165.0 45.98 170.0 16.55 12.92 43.96 _____ ANNUAL AIR-COOLED CONDENSER PERFORMANCE: _____ ANNUAL AIR-COOLED CONDENSER PERFORMANCE Nearest Site for Air Temperature Data: Elkins, WV Ambient Air Dry Bulb Condenser Outlet Temperature (deg. F) Frequency (%) Temperature (deg. F) 49.57 <=50 <=70 71-75 51-55 8.52 9.28 56-60 76-80 10.35 81-85 61-65 86-90 66-70 8.85 6.15 4.62 71-75 91-95 96-100 76-80 2.09 101-105 81-85 86-90 0.52 106-110 91-95 0.06 111-115 182

_____ ____

Total Components 100.00 1.05e-001

Page: 12

			Page: 13
96-100	0.00	116-120	
>100	0.00	>120	

Condenser outlet temperature approach to ambient: 20.00 deg. F

Annual air-cooled condenser emissions and control efficiency:

	Uncontrolled emissions tons/year	Controlled emissions tons/year	% Control
Benzene	1.895	0.618	67.38
BTEX	2.440	0.653	73.25
Total HAP	4.134	1.269	69.31
VOC	50.852	18.384	63.85

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:	Sand Hill Compressor Station: 1 of 8 Condensate
City: State: Company: Type of Tank: Description:	West Virginia Appalachia Midstream Services, LLC Vertical Fixed Roof Tank One (1) of eight (8) 400-bbl Condensate Tanks
Tank Dimensions	
Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.00 16,074.56 19.60 315,000.00 N
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition Roof Color/Shade:	Good White/White
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft) Slope (ft/ft) (Cone Roof)	0.00 0.06
Breather Vent Settings	
Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03
J	

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Sand Hill Compressor Station: 1 of 8 Condensate - Vertical Fixed Roof Tank , West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.0)	All	51.94	47.06	56.81	50.33	7.0149	6.3924	7.6845	60.0000			92.00	Option 4: RVP=15, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Sand Hill Compressor Station: 1 of 8 Condensate - Vertical Fixed Roof Tank , West Virginia

	Losses(lbs)				
Components	Working Loss Breathing Loss Total Emiss				
Gasoline (RVP 15.0)	3,156.71	1,424.69	4,581.40		

elemei	nt"
CICITICI	

Element Materials Technology 2129 West Willow Street F 337 232 3621 Scott, LA 70583-5301 USA

P 337 232 3568 T 888 786 7555 info.scott@element.com element.com

GAS ANALYSIS REPORT NO.: 21-030515-42 (372061)

DATE: 03/05/15

FOR:	ACCESS MIDSTREAM	Si	AMPLE IDENTIFICATION:	
	ATTN: DEE BAILEY	COMPANY :	ACCESS MIDSTREAM	
	190 MIDSTREAM WAY	FIELD:	N/P	
	JANE LEW WV 26378	LEASE :	SANDHILL UPSTREAM OF DEH	
		STA #:		

SAMPLE DATA: DATE: 02/26/15 10:00 **BY:** F. RODAK **PSIG:** 950

TEMP: 103 **DEG.F. DP:** N/P **LBS H20**

REMARKS: WET GAS

CYL #1239

SAMPLE TYPE: SPOT	EFFECTIVE DATE	: 03/01/15	
F	IYDROCARBON ANA	LYSIS - METHOD GPA 2261-13	B LAB ANALYST: MP
COMPONEN	I NAME	MOL PERCENT	GPM @ 14.730 PSIA
HYDROGEN SULFIDE	(H2S)	0.000	
CARBON DIOXIDE	(CO2)	0.096	
NITROGEN	(N2)	0.345	
METHANE	(C1)	73.134	
ETHANE	(C2)	16.583	4.434
PROPANE	(C3)	6.204	1.709
ISO-BUTANE	(IC4)	0.696	0.228
N-BUTANE	(NC4)	1.750	0.552
ISO-PENTANE	(IC5)	0.354	0.129
N-PENTANE	(NC5)	0.442	0.160
HEXANES PLUS	(C6+)	0.396	0.164
TOTAL		100.000	
		ETHANE +	GPM: 7.376
MOL WEIGHT: 21.95	5	PROPANE +	GPM: 2.942
BTU/LB: 22816.0	0	ISO-PENTANE +	GPM: 0.453
		COMPRESSIBILITY FACTOR:	0.9959
SP	ECIFIC GRAVITY	@ 60 DEG. F. (AIR = 1):	0.761
BTU/CUFT. (REAL) 60 D			0 15.025 0 1354.6

na Verasec

This document shall not be reproduced, except in full, without the written approval of Element Materials Technology. 2129 WEST WILLOW SCOTT LA 70583 337-232-3568

REVIEWED BY:

SAMPLE IDENTIFICATION

COMPANY: ACCESS MIDSTREAM FIELD: N/P LEASE: SANDHILL UPSTREAM OF DEH STA #: SAMPLE DATE: 02/26/15 (372061)

COMPONENT	MOL PERCENT	WT. PERCENT
METHANE	0.0000	0.0000
ETHANE	0.0000	0.0000
PROPANE	0.0000	0.0000
ISO-BUTANE	0.0000	0.0000
N-BUTANE	0.0000	0.0000
2,2-DIMETHYLPROPANE (NEOPENTANE)	0.0000	0.0000
ISOPENTANE	0.0000	0.0000
N-PENTANE	0.0000	0.0000
2,2-DIMETHYLBUTANE (NEOHEXANE)	0.0079	0.0312
2,3-dimethylbutane Cyclopentane	0.0146	0.0519
2-methylpentane	0.0778	0.3060
3-methylpentane	0.0457	0.1794
N-HEXANE	0.1154	0.4514
2,2-DIMETHYLPENTANE	0.0019	0.0085
METHYLCYCLOPENTANE	0.0120	0.0460
2,4-DIMETHYLPENTANE	0.0002	0.0011
2,2,3-TRIMETHYLBUTANE	0.0005	0.0021
BENZENE	0.0016	0.0057
3,3-DIMETHYLPENTANE	0.0010	0.0047
CYCLOHEXANE	0.0110	0.0424
2-METHYLHEXANE	0.0168	0.0766
2,3-DIMETHYLPENTANE	0.0041	0.0186
1,1-DIMETHYLCYCLOPENTANE 3-METHYLHEXANE	0.0178	0.0809
1,t3-DIMETHYLCYCLOPENTANE	0.0011	0.0052
1,c3-DIMETHYLCYCLOPENTANE 3-ETHYLPENTANE	0.0024	0.0108

COMPONENTS A	S % OF TOTAL SAMPLE	
COMPONENT	MOL PERCENT	WT. PERCENT
1,t2-DIMETHYLCYCLOPENTANE 2,2,4-TRIMETHYLPENTANE	0.0015	0.0070
N-HEPTANE	0.0250	0.1142
METHYLCYCLOHEXANE 1,1,3-TRIMETHYLCYCLOPENTANE 2,2-DIMETHYLHEXANE	0.0134	0.0608
1,C2-DIMETHYLCYCLOPENTANE	0.0002	0.0008
2,5-DIMETHYLHEXANE	0.0000	0.0000
2,4-DIMETHYLHEXANE 2,2,3-TRIMETHYLPENTANE ETHYLCYCLOPENTANE	0.0008	0.0037
1,t2,c4-TRIMETHYLCYCLOPENTANE 3,3-DIMETHYLHEXANE	0.0017	0.0085
1,t2,c3-TRIMETHYLCYCLOPENTANE	0.0006	0.0030
2,3,4-TRIMETHYLPENTANE	0.0002	0.0009
TOLUENE	0.0001	0.0005
2,3-DIMETHYLHEXANE	0.0020	0.0103
1,1,2-TRIMETHYLCYCLOPENTANE	0.0006	0.0032
2-METHYLHEPTANE	0.0031	0.0160
4-METHYLHEPTANE	0.0013	0.0069
3,4-DIMETHYLHEXANE	0.0003	0.0017
3-METHYLHEPTANE 3-ETHYLHEXANE	0.0036	0.0187
1,c3-DIMETHYLCYCLOHEXANE 1,c2,t3-TRIMETHYLCYCLOPENTANE 1,c2,t4-TRIMETHYLCYCLOPENTANE	0.0015	0.0078
1,t4-DIMETHYLCYCLOHEXANE	0.0007	0.0036
2,2,5-TRIMETHYLHEXANE	0.0000	0.0003
1,1-DIMETHYLCYCLOHEXANE 1,methyl-t3-ETHYLCYCLOPENTANE	0.0004	0.0019
1-methyl-c3-ETHYLCYCLOPENTANE	0.0002	0.0010
1-methyl-t2-ETHYLCYCLOPENTANE 2,2,4-TRIMETHYLHEXANE	0.0000	0.0000
1-methyl-1-ETHYLCYCLOPENTANE CYCLOHEPTANE N-OCTANE	0.0038	0.0196
1,T2-DIMETHYLCYCLOCHEXANE	0.0002	0.0011

COMPONENTS AS % OF TOTAL SAMPLE			
COMPONENT	MOL PERCENT	WT. PERCENT	
UNKNOWN	0.0000	0.0002	
1,t3-DIMETHYLCYCLOHEXANE 1,c4-DIMETHYLCYCLOHEXANE 1,c2,c3-TRIMETHYLCYCLOPENTANE	0.0004	0.0020	
2,4,4-TRIMETHYLHEXANE	0.0000	0.0001	
ISOPROPYLCYCLOPENTANE	0.0000	0.0002	
UNKNOWN	0.0000	0.0002	
2,2-DIMETHYLHEPTANE	0.0000	0.0003	
2,4-DIMETHYLHEPTANE 1-methyl-c2-ETHYLCYCLOPENTANE	0.0001	0.0008	
2,2,3-TRIMETHYLHEXANE	0.0000	0.0002	
1,c2-DIMETHYLCYCLOHEXANE 2,6-DIMETHYLHEPTANE	0.0001	0.0008	
N-PROPYLCYCLOPENTANE 1,c3,c5-TRIMETHYLCYCLOHEXANE	0.0001	0.0006	
2,5-DIMETHYLHEPTANE 3,5-DIMETHYLHEPTANE ETHYLCYCLOHEXANE	0.0006	0.0032	
1,1,3-TRIMETHYLCYCLOHEXANE 2,3,3-TRIMETHYLHEXANE 3,3-DIMETHYLHEPTANE	0.0001	0.0006	
1,1,4-TRIMETHYLCYCLOHEXANE	0.0000	0.0002	
UNKNOWN	0.0000	0.0000	
2,3,4-TRIMETHYLHEXANE	0.0000	0.0002	
ETHYLBENZENE	0.0000	0.0000	
1,t2,t4-TRIMETHYLCYCLOHEXANE 1,c3,t5-TRIMETHYLCYCLOHEXANE 2,3-DIMETHYLHEPTANE	0.0001	0.0004	
M-XYLENE P-XYLENE 3,4-DIMETHYLHEPTANE	0.0001	0.0006	
2-methyloctane 4-methyloctane	0.0006	0.0034	
UNKNOWN	0.0003	0.0020	
3-methyloctane	0.0002	0.0013	
UNKNOWN	0.0000	0.0000	
1,t2,c3-TRIMETHYLCYCLOHEXANE 1,t2,c4-TRIMETHYLCYCLOHEXANE	0.0000	0.0001	

COMPONENTS	AS % OF TOTAL SAMPLE	
COMPONENT	MOL PERCENT	WT. PERCENT
O-XYLENE	0.0001	0.0004
1,1,2-TRIMETHYLCYCLOHEXANE	0.0000	0.0002
UNKNOWN	0.0000	0.0003
ISOBUTYLCYCLOPENTANE	0.0000	0.0001
N-NONANE	0.0002	0.0014
UNKNOWN	0.0000	0.0000
1,c2,c3-TRIMETHYLCYCLOHEXANE 1,c2,t3-TRIMETHYLCYCLOHEXANE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
ISOPROPYLBENZENE	0.0000	0.0002
2,2-DIMETHYLOCTANE	0.0000	0.0001
ISOPROPYLCYCLOHEXANE CYCLOOCTANE	0.0000	0.0001
UNKNOWN	0.0000	0.0000
N-BUTYLCYCLOPENTANE N-PROPYLCYCLOHEXANE	0.0000	0.0001
3,3-dimethyloctane	0.0000	0.0000
UNKNOWN	0.0000	0.0000
N-PROPYLBENZENE	0.0000	0.0002
UNKNOWN	0.0000	0.0000
m-ETHYLTOLUENE	0.0000	0.0000
p-ETHYLTOLUENE 2,3-DIMETHYLOCTANE	0.0000	0.0001
4-METHYLNONANE 5-METHYLNONANE 1,3,5-TRIMETHYLBENZENE	0.0000	0.0001
2-methylnonane	0.0000	0.0000
3-ethyloctane	0.0000	0.0003
O-ETHYLTOLUENE 3-METHYLNONANE	0.0000	0.0001
UNKNOWN	0.0000	0.0000
1,2,4-TRIMETHYLBENZENE t-BUTYLBENZENE METHYLCYCLOOCTANE	0.0000	0.0000
tert-BUTYLCYCLOHEXANE	0.0000	0.0001

COMPONEN	TS AS % OF TOTAL SAMPLE	
COMPONENT	MOL PERCENT	WT. PERCENT
ISO-BUTYLCYCLOHEXANE	0.0000	0.0000
N-DECANE	0.0000	0.0001
ISOBUTYLBENZENE	0.0000	0.0000
sec-BUTYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
1-METHYL-3-ISOPROPYLBENZENE	0.0000	0.0000
1,2,3-TRIMETHYLBENZENE 1-METHYL-4-ISOPROPYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
1-METHYL-2-ISOPROPYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
N-BUTYLCYCLOHEXANE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
1,3-DIETHYLBENZENE 1-METHYL-3-PROPYLBENZENE	0.0000	0.0000
1,2-DIETHYLBENZENE N-BUTYLBENZENE 1-METHYL-4-PROPYLBENZENE	0.0000	0.0000
1,4-DIETHYLBENZENE	0.0000	0.0000
1-METHYL-2-PROPYLBENZENE	0.0000	0.0001
1,4-DIMETHYL-2-ETHYLBENZENE	0.0000	0.0001
UNKNOWN	0.0000	0.0001
1,2-DIMETHYL-4-ETHYLBENZENE	0.0000	0.0000
1,3-DIMETHYL-2-ETHYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
1,2-DIMETHYL-3-ETHYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
N-UNDECANE	0.0000	0.0001
UNKNOWN	0.0000	0.0000
1,2,4,5-TETRAMETHYLBENZENE	0.0000	0.0000
1,2,3,5-TETRAMETHYLBENZENE	0.0000	0.0000
UNKNOWN	0.0000	0.0000
1,2,3,4-tetramethylbenzene Cyclodecane	0.0000	0.0000

COMPONENTS AS % OF TOTAL SAMPLE			
COMPONENT	MOL PERCENT	WT. PERCENT	
UNKNOWN	0.0000	0.0001	
NAPHTHALENE	0.0000	0.0000	
N-DODECANE	0.0000	0.0002	
ISOTRIDECANES PLUS	0.0000	0.0000	
TOTALS	0.3960	1.6360	
TOTAL HEXANES	= 0.2614	1.0199	
TOTAL HEPTANES	= 0.0969	0.4238	
TOTAL OCTANES	= 0.0347	0.1703	
TOTAL NONANES	= 0.0030	0.0198	
TOTAL DECANES PLUS	= 0.0000	0.0022	

SAMPLE IDENTIFICATION

_

COMPANY: ACCESS MIDSTREAM FIELD: N/P LEASE: SANDHILL UPSTREAM OF DEH STA #: SAMPLE DATE: 02/26/15 (372061)

CAPILLARY	ANALYSIS	; -	METHOD	GPA	2286-95
	HEAVY E	ND	FRACTIO	N	

COMPONENT	MOL PERCENT	WT. PERCENT
METHANE	0.000	0.000
ETHANE	0.000	0.000
PROPANE	0.000	0.000
ISO-BUTANE	0.000	0.000
N-BUTANE	0.000	0.000
2,2-DIMETHYLPROPANE (NEOPENTANE)	0.000	0.000
ISOPENTANE	0.000	0.000
N-PENTANE	0.000	0.000
2,2-DIMETHYLBUTANE (NEOHEXANE)	2.002	1.906
2,3-DIMETHYLBUTANE CYCLOPENTANE	3.678	3.173
2-methylpentane	19.658	18.704
3-methylpentane	11.532	10.967
N-HEXANE	28.971	27.558
2,2-DIMETHYLPENTANE	0.471	0.521
METHYLCYCLOPENTANE	3.026	2.812
2,4-DIMETHYLPENTANE	0.063	0.067
2,2,3-TRIMETHYLBUTANE	0.118	0.131
BENZENE	0.408	0.350
3,3-DIMETHYLPENTANE	0.263	0.288
CYCLOHEXANE	2.790	2.591
2-METHYLHEXANE	4.230	4.683
2,3-DIMETHYLPENTANE	1.024	1.137
1,1-DIMETHYLCYCLOPENTANE 3-METHYLHEXANE	4.484	4.946
1,t3-DIMETHYLCYCLOPENTANE	0.290	0.317

HEAVY END FRACTION			
COMPONENT	MOL PERCENT	WT. PERCENT	
1,c3-DIMETHYLCYCLOPENTANE 3-ETHYLPENTANE	0.607	0.659	
1,t2-DIMETHYLCYCLOPENTANE 2,2,4-TRIMETHYLPENTANE	0.390	0.426	
N-HEPTANE	6.305	6.978	
METHYLCYCLOHEXANE 1,1,3-TRIMETHYLCYCLOPENTANE 2,2-DIMETHYLHEXANE	3.379	3.717	
1,C2-DIMETHYLCYCLOPENTANE	0.045	0.050	
2,5-dimethylhexane	0.000	0.000	
2,4-DIMETHYLHEXANE 2,2,3-TRIMETHYLPENTANE ETHYLCYCLOPENTANE	0.199	0.228	
1,t2,c4-TRIMETHYLCYCLOPENTANE 3,3-DIMETHYLHEXANE	0.417	0.518	
1,t2,c3-TRIMETHYLCYCLOPENTANE	0.145	0.185	
2,3,4-TRIMETHYLPENTANE	0.045	0.056	
TOLUENE	0.027	0.029	
2,3-DIMETHYLHEXANE	0.498	0.629	
1,1,2-TRIMETHYLCYCLOPENTANE	0.163	0.197	
2-METHYLHEPTANE	0.779	0.980	
4-METHYLHEPTANE	0.335	0.422	
3,4-DIMETHYLHEXANE	0.082	0.105	
3-METHYLHEPTANE 3-ETHYLHEXANE	0.906	1.142	
1,c3-DIMETHYLCYCLOHEXANE 1,c2,t3-TRIMETHYLCYCLOPENTANE 1,c2,t4-TRIMETHYLCYCLOPENTANE	0.390	0.478	
1,t4-DIMETHYLCYCLOHEXANE	0.172	0.217	
2,2,5-TRIMETHYLHEXANE	0.009	0.018	
1,1-DIMETHYLCYCLOHEXANE 1,methyl-t3-ETHYLCYCLOPENTANE	0.091	0.116	
1-methyl-c3-ETHYLCYCLOPENTANE	0.045	0.061	
1-methyl-t2-ETHYLCYCLOPENTANE 2,2,4-TRIMETHYLHEXANE	0.000	0.000	
1-methyl-1-ETHYLCYCLOPENTANE CYCLOHEPTANE	0.951	1.197	

CAPILLARY ANALYSIS - METHOD GPA 2286-95 HEAVY END FRACTION

N-OCTANE

CAPILLARY	ANALYSIS	- METHOD GPA 2286-95
	HEAVY ENI	D FRACTION

	HEAVY END FRACTION	
COMPONENT	MOL PERCENT	WT. PERCENT
1,T2-DIMETHYLCYCLOCHEXANE	0.054	0.069
UNKNOWN	0.009	0.010
1,t3-DIMETHYLCYCLOHEXANE 1,c4-DIMETHYLCYCLOHEXANE 1,c2,c3-TRIMETHYLCYCLOPENTANE	0.100	0.123
2,4,4-TRIMETHYLHEXANE	0.000	0.006
ISOPROPYLCYCLOPENTANE	0.009	0.011
UNKNOWN	0.009	0.014
2,2-DIMETHYLHEPTANE	0.009	0.019
2,4-DIMETHYLHEPTANE 1-methyl-c2-ETHYLCYCLOPENTANE	0.036	0.049
2,2,3-TRIMETHYLHEXANE	0.009	0.010
1,c2-DIMETHYLCYCLOHEXANE 2,6-DIMETHYLHEPTANE	0.036	0.046
N-PROPYLCYCLOPENTANE 1,c3,c5-TRIMETHYLCYCLOHEXANE	0.027	0.039
2,5-DIMETHYLHEPTANE 3,5-DIMETHYLHEPTANE ETHYLCYCLOHEXANE	0.154	0.196
1,1,3-TRIMETHYLCYCLOHEXANE 2,3,3-TRIMETHYLHEXANE 3,3-DIMETHYLHEPTANE	0.027	0.036
1,1,4-TRIMETHYLCYCLOHEXANE	0.009	0.014
UNKNOWN	0.000	0.003
2,3,4-TRIMETHYLHEXANE	0.009	0.011
ETHYLBENZENE	0.000	0.000
1,t2,t4-TRIMETHYLCYCLOHEXANE 1,c3,t5-TRIMETHYLCYCLOHEXANE 2,3-DIMETHYLHEPTANE	0.018	0.027
M-XYLENE P-XYLENE 3,4-DIMETHYLHEPTANE	0.036	0.039
2-methyloctane 4-methyloctane	0.145	0.206
UNKNOWN	0.082	0.125
3-methyloctane	0.054	0.081
UNKNOWN	0.000	0.000

HEA	IVY END FRACTION	
COMPONENT	MOL PERCENT	WT. PERCENT
1,t2,c3-TRIMETHYLCYCLOHEXANE 1,t2,c4-TRIMETHYLCYCLOHEXANE	0.009	0.008
O-XYLENE	0.018	0.026
1,1,2-TRIMETHYLCYCLOHEXANE	0.009	0.012
UNKNOWN	0.009	0.018
ISOBUTYLCYCLOPENTANE	0.009	0.008
N-NONANE	0.063	0.084
UNKNOWN	0.000	0.000
1,c2,c3-TRIMETHYLCYCLOHEXANE 1,c2,t3-TRIMETHYLCYCLOHEXANE	0.000	0.000
UNKNOWN	0.000	0.000
ISOPROPYLBENZENE	0.009	0.010
2,2-DIMETHYLOCTANE	0.000	0.004
ISOPROPYLCYCLOHEXANE CYCLOOCTANE	0.009	0.009
UNKNOWN	0.000	0.001
N-BUTYLCYCLOPENTANE N-PROPYLCYCLOHEXANE	0.009	0.009
3,3-dimethyloctane	0.000	0.000
UNKNOWN	0.000	0.002
N-PROPYLBENZENE	0.009	0.014
UNKNOWN	0.000	0.002
m-ETHYLTOLUENE	0.000	0.002
p-ETHYLTOLUENE 2,3-DIMETHYLOCTANE	0.000	0.004
4-METHYLNONANE 5-METHYLNONANE 1,3,5-TRIMETHYLBENZENE	0.000	0.005
2-methylnonane	0.000	0.000
3-ETHYLOCTANE	0.009	0.019
O-ETHYLTOLUENE 3-METHYLNONANE	0.000	0.004
UNKNOWN	0.000	0.001
1,2,4-TRIMETHYLBENZENE t-BUTYLBENZENE	0.000	0.002

CAPILLARY ANALYSIS - METHOD GPA 2286-95 HEAVY END FRACTION

METHYLCYCLOOCTANE

CAPILLARY ANALYSIS - METHOD GPA 2286-95 HEAVY END FRACTION

COMPONENT	MOL PERCENT	WT. PERCENT
tert-BUTYLCYCLOHEXANE	0.000	0.006
ISO-BUTYLCYCLOHEXANE	0.000	0.001
N-DECANE	0.009	0.008
ISOBUTYLBENZENE	0.000	0.001
sec-BUTYLBENZENE	0.000	0.002
UNKNOWN	0.000	0.000
1-METHYL-3-ISOPROPYLBENZENE	0.000	0.000
1,2,3-TRIMETHYLBENZENE 1-METHYL-4-ISOPROPYLBENZENE	0.000	0.000
UNKNOWN	0.000	0.000
1-METHYL-2-ISOPROPYLBENZENE	0.000	0.003
UNKNOWN	0.000	0.001
N-BUTYLCYCLOHEXANE	0.000	0.000
UNKNOWN	0.000	0.002
1,3-DIETHYLBENZENE 1-METHYL-3-PROPYLBENZENE	0.000	0.000
1,2-DIETHYLBENZENE N-BUTYLBENZENE 1-METHYL-4-PROPYLBENZENE	0.000	0.000
1,4-DIETHYLBENZENE	0.000	0.000
1-METHYL-2-PROPYLBENZENE	0.000	0.004
1,4-DIMETHYL-2-ETHYLBENZENE	0.000	0.004
UNKNOWN	0.000	0.004
1,2-DIMETHYL-4-ETHYLBENZENE	0.000	0.000
1,3-DIMETHYL-2-ETHYLBENZENE	0.000	0.000
UNKNOWN	0.000	0.000
1,2-DIMETHYL-3-ETHYLBENZENE	0.000	0.000
UNKNOWN	0.000	0.000
N-UNDECANE	0.000	0.007
UNKNOWN	0.000	0.000
1,2,4,5-TETRAMETHYLBENZENE	0.000	0.000
1,2,3,5-TETRAMETHYLBENZENE	0.000	0.000
UNKNOWN	0.000	0.000

CAPILLARY	ANALYSIS	- METHOD GPA	2286-95
	HEAVY ENI	FRACTION	

HEAVI END FRACTION					
COMPONENT	MOL PERCENT	WT. PERCENT			
1,2,3,4-tetramethylbenzene cyclodecane	0.000	0.003			
UNKNOWN	0.000	0.004			
NAPHTHALENE	0.000	0.003			
N-DODECANE	0.009	0.010			
ISOTRIDECANES PLUS	0.000	0.000			
TOTALS	100.000	100.000			
SPECIFIC GRAVITY @ 60 DEG. F. (AIR = MOLECULAR WEIGHT COMPRESSIBILITY FACTOR SUMMATION FACTOR CU. FT. VAPOR/GAL @ 14.696 PSIA & 60 CU. FT. VAPOR/GAL @ 14.730 PSIA & 60	DEG. F.	3.1282 90.59 0.8894 0.0867 24.138 24.082			
BTU/CU.FT. @ 14.696 PSIA, DRY BTU/CU.FT. @ 14.730 PSIA, DRY BTU/LB		4956.20 4967.70 20778			