

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

March 24, 2016

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-B General Permit Registration Application

EQT Production Company

PUL-96 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-B General Permit Registration Application for the PUL-96 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosilievac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Application

PUL 96 Natural Gas Production Site

Pullman, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

March 2016

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-B General Permit Application to the WVDEP's Department of Air Quality for the PUL-96 natural gas production site located in Ritchie County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the PUL-96 pad.

FACILITY DESCRIPTION

The EQT PUL-96 natural gas production site will operate in Ritchie County, WV and will consist of eight (8) natural gas wells. Natural gas and liquids (including water and condensates) will be extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids will be stored in storage vessels.

The applicant seeks to authorize the operation of:

- Eight (8) natural gas wells;
- Eight (8) line heaters each rated at 1.54 MMBtu/hr heat input;
- One (1) line heater rated at 1.15 MMBtu/hr heat input;
- One (1) 140 barrel (bbl) sand trap blowdown tank for storage of condensate and water;
- Eight (8) 400 bbl tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 MMBtu/hr heat input;
- One (1) enclosed combustion devices each with a capacity of 19.22 MMBtu/hr heat input; and
- One (1) 110 HP stationary natural gas compressor engine.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The PUL-96 pad is located in Ritchie County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the PUL-96 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The PUL-96 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the PUL-96 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the PUL-96 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

EQT's PUL-96 Natural Gas Production site is within 3.28 miles of the PEN-13 pad. These facilities do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the PUL-96 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On August 18, 2015 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice is to clarify how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ½ mile of one another.

The PUL-96 and PEN-13 pads are located on surface sites located greater than EPA's ¼ mile proposed ruling. Although the applicant notes the proposed status of this adjacency determination, it is the only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack of finalized guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the PUL-96 pad and makes an applicability determination

for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to PUL-96 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the PUL-96 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the PUL-96 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 ρ_{NG} = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{140,000\ scf}{day} * \frac{1\ day}{24\ hours} * \frac{0.042\ lb}{scf} = \frac{245\ lb}{hr} = \frac{1,073\ tons}{year}$$

If the Incinerator Capacity is less than $15,000 \, lbs/hr$, then F = 5.43

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 - To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70B-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the PUL-96 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the PUL-96 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-B general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the PUL-96 facility:

• 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40CFR60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

40 CFR 60 Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the PUL-96 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at PUL-96 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Any pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, there will not be any pneumatic controller affected facilities located at this site.

Storage vessels: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

	Maximum Annual	PUL-96 Potential to
Pollutant	Emission Limit	Emit
	(tons/year)	(tons/year)
Nitrogen Oxides	50	14.28
Carbon Monoxide	80	14.29
Volatile Organic	80	13.10
Compounds	00	13.10
Particulate Matter – 10/2.5	20	1.52
Sulfur Dioxide	20	0.08
Any Single Hazardous Air	8	0.61 (as C.H)
Pollutant	O	$0.61 \text{ (as C}_6\text{H}_{14}\text{)}$
Total Hazardous Air	20	0.81
Pollutants	20	0.01

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GAS PROD	UCTION FACIL	ITIES LOCATED AT	THE WELL SITE			
⊠CONSTRUCTION □MODIFICATION □RELOCATION	□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE					
SEC	CTION I. GENEI	RAL INFORMATION				
Name of Applicant (as registered with the W	/V Secretary of S	ate's Office): EQT P	roduction Company			
Federal Employer ID No. (FEIN): 25-07246	885					
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 1	700				
City: Pittsburgh	State: PA		ZIP Code: 1522	2		
Facility Name: PUL-96 Natural Gas Prod	uction Facility					
Operating Site Physical Address: None If none available, list road, city or town and	zip of facility. C	ounty Road 12/3, Ha	rrisville, WV 26362			
City: Harrisville, WV	Zip Code: 26362	}	County: Ritchie	•		
Latitude & Longitude Coordinates (NAD83, Latitude: 39.21089 Longitude: -80.98619	Decimal Degrees	to 5 digits):		Medicine .		
SIC Code: 1311		DAO Facility ID No	(For existing facilities)	existing facilities)		
NAICS Code: 211111		None	12 No. (1 of existing facilities)			
CI	ERTIFICATION O	F INFORMATION				
This G70-B General Permit Registration Official is a President, Vice President, Secr Directors, or Owner, depending on business authority to bind the Corporation, Par Proprietorship. Required records of daily compliance certifications and all require Representative. If a business wishes to certif off and the appropriate names and signa unsigned G70-B Registration Application utilized, the application will be	etary, Treasurer, structure. A busing thership, Limited by throughput, hou ed notifications may an Authorized latures entered. An will be returned	General Partner, Gener less may certify an Authiability Company, As rs of operation and ma ust be signed by a Res Representative, the off y administratively income to the applicant. Fur	al Manager, a member of the horized Representative who isociation, Joint Venture or intenance, general correspon ponsible Official or an Auth cial agreement below shall omplete or improperly sign thermore, if the G70-R for	e Board of shall have Sole indence, iorized be checked		
I hereby certify that is an Author business (e.g., Corporation, Partnership, Limmay obligate and legally bind the business. I shall notify the Director of the Division of A I hereby certify that all information contained documents appended hereto is, to the best of have been made to provide the most comprehense.	f the business cha f the business cha ir Quality immed d in this G70-B G	npany, Association Joi nges its Authorized Re iately. eneral Permit Registra	presentative, a Responsible	Official		
Responsible Official Signature: Name and Title: Kenneth Kirk - Executive Email:	Vice Presiden Date: 3	Phone: 4/2-	553570Q _{ax:}			
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:		Fax:			
If applicable: Environmental Contact <u>Alex Bosilievac</u> Name and Title: <u>Environmental Coordina</u> Email: <u>abosilievac@eqt.com</u>	tor Phone: (41)	2) 395-3699	Fax:	9-0-0-0		

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: The PUL-96 Natural Gas Production Facility will be a new production site expected to be in production in 2016.

Directions to the facility: Traveling North on Route 74 from Berea heading towards Pullman, WV at the Main Street/Slab Creek Intersection, continue straight onto Slab Creek (County Route 7/7). Continue for 1.5 miles and take a right at the fork onto Davis Run. Continue for another mile. Davis Run will turn into Goose Run. PUL-96 will be the second site on the left.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:					
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☑ I wish to pay by credit card. Contact for payment (incl. name and email address): Alex Bosiljevac - abosiljevac@eqt.com 					
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OC □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H					
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or JJ NSPS and NESHAP fees apply to new construction or if the so	IJJ.				
☐ Responsible Official or Authorized Representative Signatur	re (if applicable)				
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A				
☐ Siting Criteria Waiver (if applicable) – Attachment B	□ Current Business Certificate – Attachment C				
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E				
□ Plot Plan – Attachment F					
☐ G70-B Section Applicability Form – Attachment H	⊠ Emission Units/ERD Table – Attachment I				
☐ Fugitive Emissions Summary Sheet – Attachment J					
☐ Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K				
⊠ Storage Vessel(s) Data Sheet (include gas sample data, USHYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,				
\boxtimes Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	Heater Treaters, In-Line Heaters if applicable) – Attachment				
 ⊠ Internal Combustion Engine Data Sheet(s) (include manufa N 	cturer performance data sheet(s) if applicable) - Attachment				
☐ Tanker Truck Loading Data Sheet (if applicable) – Attachn	nent O				
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P					
⊠ Pneumatic Controllers Data Sheet - Attachment Q					
⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R					
\boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S					
☐ Facility-wide Emission Summary Sheet(s) – Attachment T					
⊠ Class I Legal Advertisement – Attachment U					
☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

g
in
•

Attachment B CITING CRITERIA WAIVER – (NOT APPLICABLE)

ATTACHMENT B - SITING CRITERIA WAIVER

If applicable, please complete this form and it must be notarized.

G70-B General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

IPrint Name	hereby
Print Name	•
acknowledge and agree that	will
General Permit Applicant 8 No	me
construct an emission unit(s) at a natural gas produ	ection facility
that will be located within 300' of my dwelling and	
•	
I hereby offer this waiver of siting criteria to the West Virginia Departi	ment of Environmental Protection
Division of Air Quality as permission to construct, install and	
21, 150 m of 1 m Quanty as portaneous to constitue, mount and	
Signed:	
Signature	Date
Signature	Doto
Signature	Date
Taken, subscribed and sworn before me this _	day of
Taken, subscribed and sworn before me and _	uu, or
, 20	•
My commission expires:	
SEAL	
SEALNotary Public	

Attachment C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

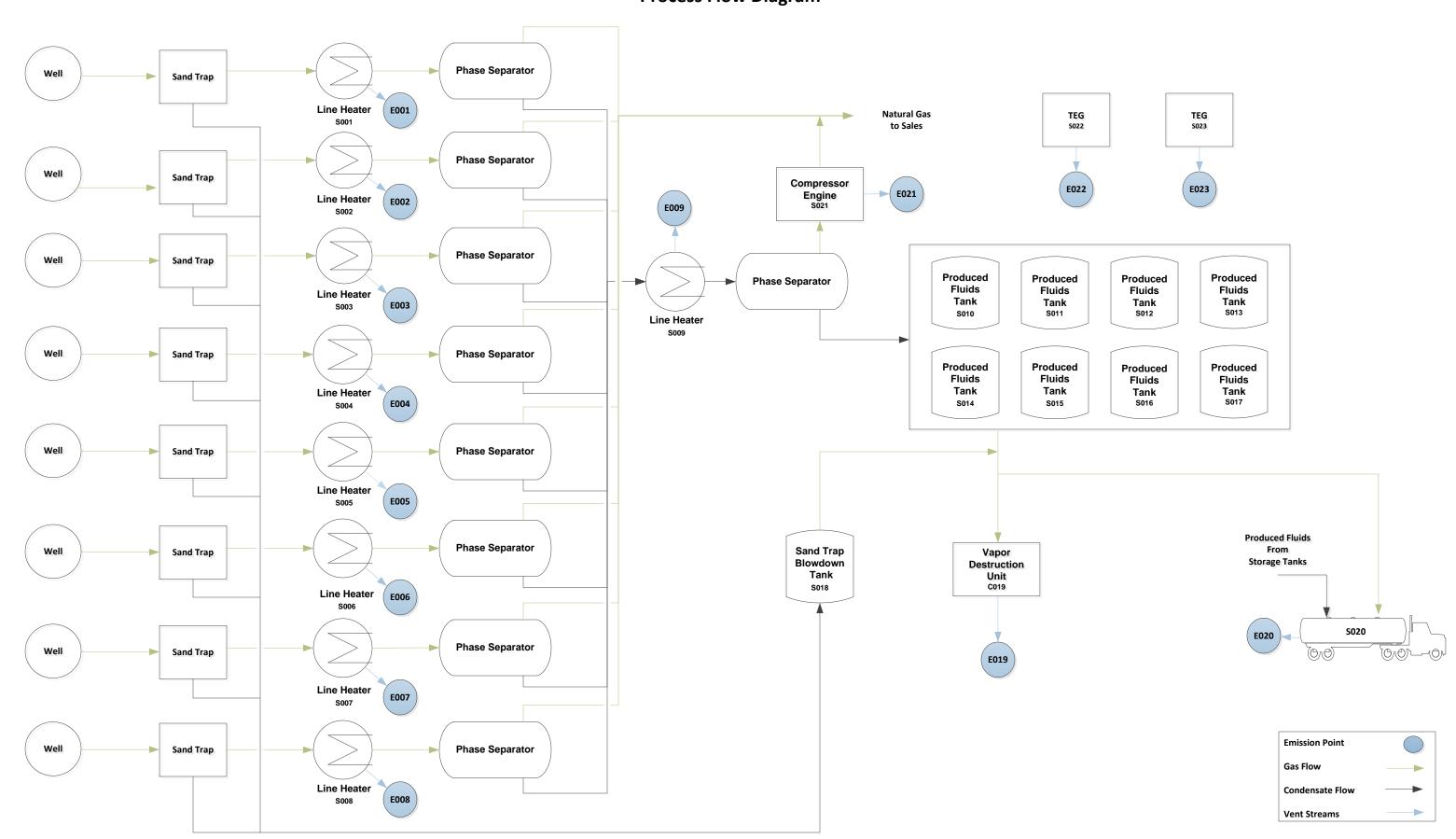
This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment D PROCESS FLOW DIAGRAM

Attachment D PUL 96 Natural Gas Production Process Flow Diagram

Attachment E PROCESS DESCRIPTION

Attachment E Process Description

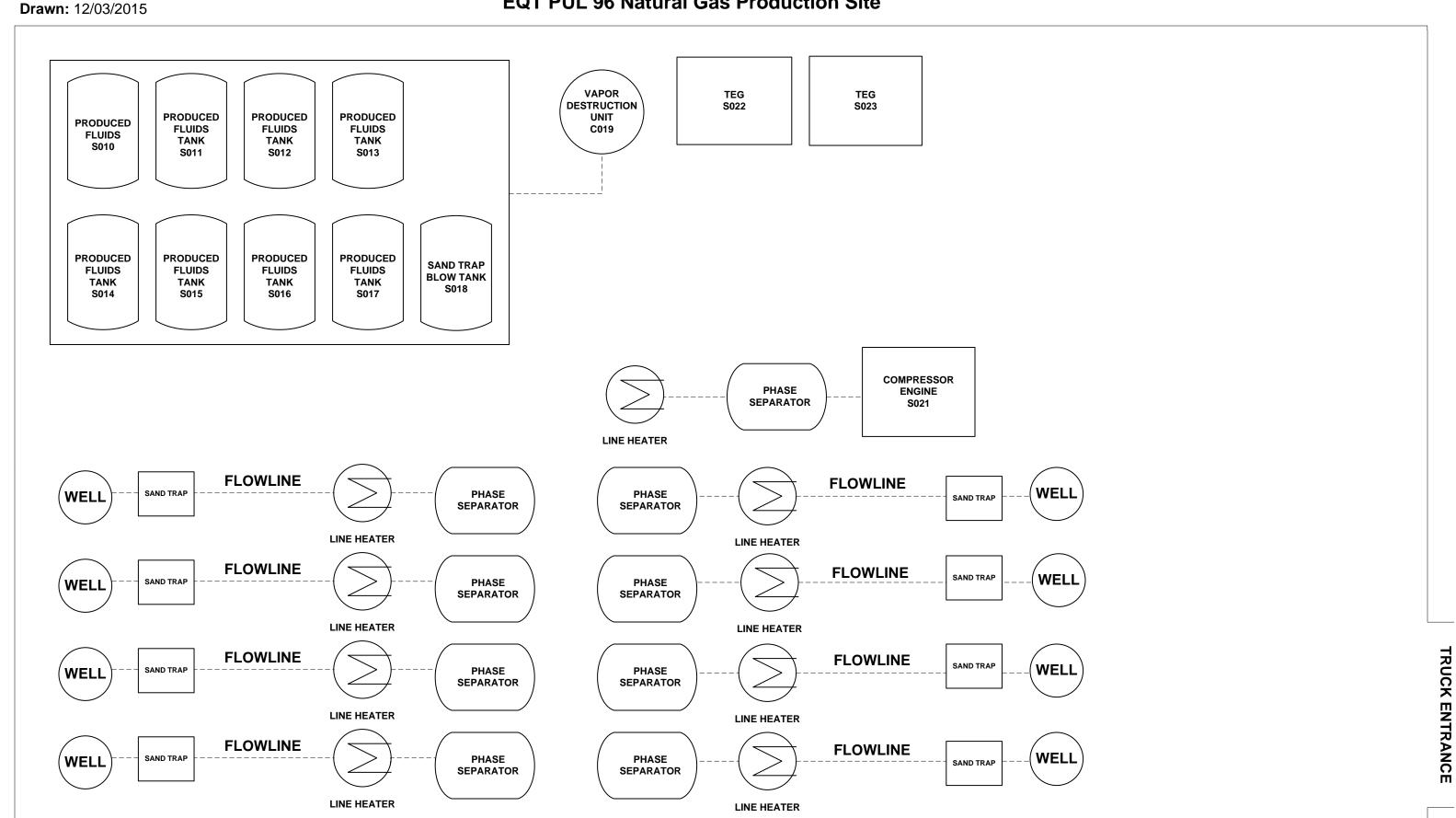
This permit application is being filed for EQT Production Company and addresses operational activities associated with the PUL-96 natural gas production site. Incoming raw natural gas from the eight (8) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (S018), as needed. From the sand traps, raw gas is routed through line heaters (S001-S008). Highpressure fluid separators directly downstream of the line heaters assist with the phase separation process. Produced fluids are removed from the raw gas in these highpressure separators before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (\$009) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from approximately 500 psig to 30 psig. Vapors realized at the low pressure separator are directed to a 110 bhp compressor engine (S021) and routed to the sales pipeline. Produced fluids from the low pressure separator are routed to the produced fluids storage tanks (S010-S017). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to the enclosed combustion device (C019) and combusted. Produced fluids are pumped into a tank truck (S020) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

Two thermoelectric generation units (S022, S023) are operated and provide power to the PUL-96 natural gas production site.

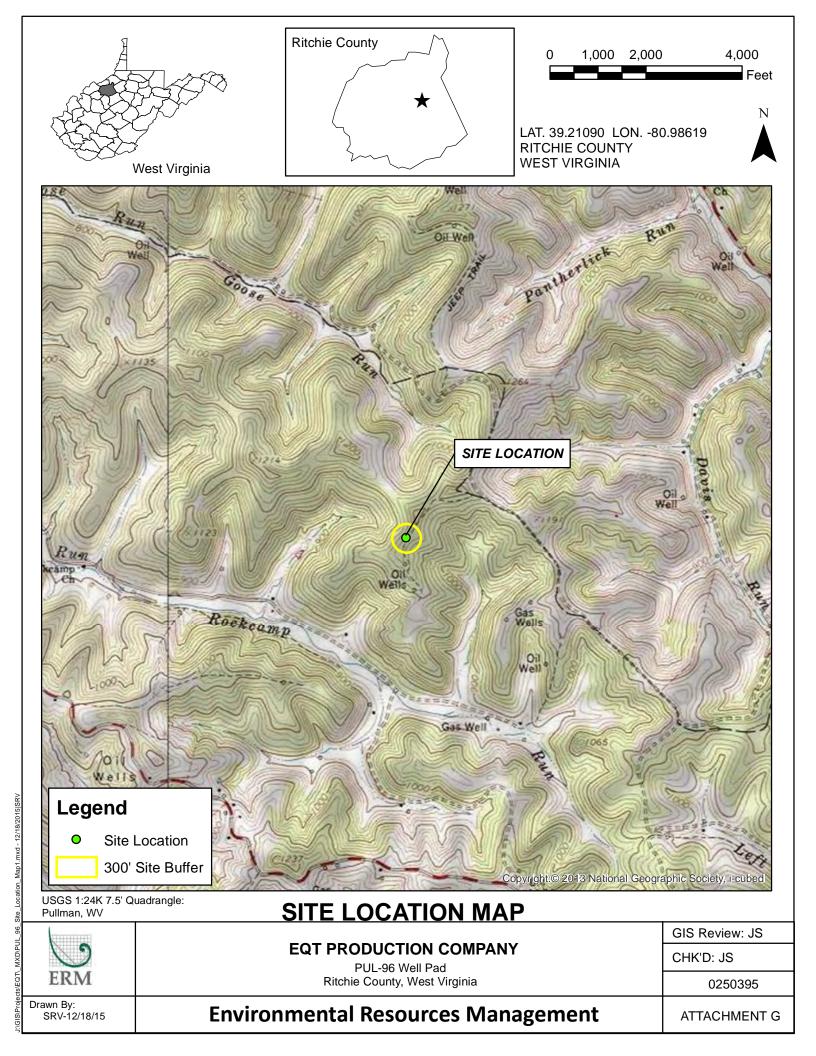
A process flow diagram is included as Attachment D.

Attachment F PLOT PLAN

Coordinates


Latitude: 39.21090 Longitude: -80.98619

Elevation: 1,200 ft


Attachment F

Plot Plan

EQT PUL 96 Natural Gas Production Site

Attachment G AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-B APPLICABLE SECTIONS					
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)				
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines				
X Section 14.0	Tanker Truck Loading ³				
□Section 15.0	Glycol Dehydration Units ⁴				

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S002	E002	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S003	E003	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S004	E004	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S005	E005	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S006	E006	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S007	E007	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S008	E008	Line Heater	2016	2016	1.54 MMBtu/hr	New	NA	NA
S009	E009	Line Heater	2016	2016	1.15 MMBtu/hr	New	NA	NA
S010	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S011	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S012	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S013	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S014	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S015	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S016	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA
S017	E019 E020	Produced Fluid Tank	2016	2016	400 bbl	New	C019 C020	NA

S018	E019 E020	Sand Trap Blowdown Tank	2016	2016	140 bbl	New	C019 C020	NA
C019	E019	Enclosed Combustion Device	2016	2016	19.22 MMBtu/hr	New	NA	NA
S020	E019 E020	Tank Truck Loading Rack	2016	2016	38,726 gal/day	New	NA	NA
S021	E021	Natural Gas Compressor Engine	2016	2015	110 bhp	New	NA	Non-Selective Catalytic Reduction
S022	E022	Thermal Electric Generator	2016	2016	0.013 MMBtu/hr	New	NA	NA
S023	E023	Thermal Electric Generator	2016	2016	0.013 MMBtu/hr	New	NA	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J FUGITIVE EMISSIONS SUMMARY SHEET

			ATTACHMEN	T J – FUGITIVE EMISS	SIONS SUMM	IARY SHE	ET	
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc.							
				s for each associated source	ce or equipmen	it if necessa	ry.	
	Source/Equipm	ent: Fac	ility Wide					
	Leak Detection Method Used		☐ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	⊠ Other (please follow Section 4			☐ None required
Componer	Closed		Source of	Leak Factors	Stream type		Estimated Emis	ssions (tpy)
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both			
Valves	☐ Yes ⊠ No	306	40 CFR 98 Subp	part W Table W-1A	⊠ Gas □ Liquid □ Both	0.35	0.05	29.34
Safety Reli Valves	ef ☐ Yes ☐ No	9	40 CFR 98 Subp	40 CFR 98 Subpart W Table W-1A		0.02	<0.01	1.28
Open Ended Lines	d □ Yes ⊠ No	22	40 CFR 98 Subp	40 CFR 98 Subpart W Table W-1A		0.06	<0.01	4.77
Sampling Connection	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both			
Connection (Not sampling	I IXI NO	1342	40 CFR 98 Subpart W Table W-1A		⊠ Gas □ Liquid □ Both	0.17	0.02	14.30
Compresso	□ Yes ⊠ No	1	component counts are Compressor components (1	able W-1B: Default average used for major equipment. I2 valves and 57 connections) and connection counts.	⊠ Gas □ Liquid □ Both			
Flanges	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both			
Other ¹	☐ Yes ☐ No			☐ Gas ☐ Liquid ☐ Both				
1 Other equ	ipment types m	ay include	e compressor seals, relief valves, o	liaphragms, drains, meters, etc.				
			sources of fugitive emissions (e.gled surfaces associated with pro			atic controllers	, etc.):	
Please indi	cate if there are	any close	d vent bypasses (include compone	ent): NA				
Specify all	equipment used	l in the clo	osed vent system (e.g. VRU, ERD,	thief hatches, tanker truck loading	ng, etc.) NA			

Attachment K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-085-10207	TBD	TBD	Green Completion
47-085-10218	TBD	TBD	Green Completion
47-085-10209	TBD	TBD	Green Completion
47-085-10210	TBD	TBD	Green Completion
47-085-10211	TBD	TBD	Green Completion
47-085-10219	TBD	TBD	Green Completion
47-085-10220	TBD	TBD	Green Completion
47-085-10217	TBD	TBD	Green Completion

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Bulk Storage Area Name PUL-96 Storage Tank Area	2. Tank Name Produced Fluid Tanks (S010-S017)
•	
3. Emission Unit ID number S010-S017	4. Emission Point ID number E019
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
06/2016	⊠ New construction □ New stored material □ Other
Was the tank manufactured after August 23, 2011?	☐ Relocation
✓ Yes □ No	
7A. Description of Tank Modification (<i>if applicable</i>)7B. Will more than one material be stored in this tank? <i>If so, a s</i>	an austa farm must be completed for each material
\square Yes \square No	separate form must ve completea for each material.
7C. Was USEPA Tanks simulation software utilized?	
☐ Yes ☐ No	
If Yes, please provide the appropriate documentation and items	8-42 helow are not required
ANK INFORMATION	0-42 below are not required.
8. Design Capacity (specify barrels or gallons). Use the interna 16,800 gallons	l cross-sectional area multiplied by internal height.
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 16,800 gallons
13A. Maximum annual throughput (gal/yr) 13,569,568	13B. Maximum daily throughput (gal/day) 37,177
14. Number of tank turnovers per year 808	15. Maximum tank fill rate (gal/min) 25.82
16. Tank fill method \boxtimes Submerged \square Splash	☐ Bottom Loading
17. Is the tank system a variable vapor space system? $\ \Box$ Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	
(B) What are the number of transfers into the system per y	/ear?
18. Type of tank (check all that apply):	
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat roof	
\square External Floating Roof \square pontoon roof \square double	deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	☐ self-supporting
\square Variable Vapor Space \square lifter roof \square diaphragm	
\square Pressurized \square spherical \square cylindrical	
☐ Other (describe)	
RESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	ure Disc (psig)
	on Adsorption ¹
∨ Vent to Vapor Combustion Device¹ (vapor combustors, flare	
☐ Cond	enser ¹
-0.5 oz Vacuum Setting 14.0 oz Pressure Setting	
☐ Emergency Relief Valve (psig)	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☒ No – A lock down screw h	atch will be installed instead of Thief Hatch

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashii	ng Loss	Breathi	ng Loss	Workin	g Loss	ss Total		Estimation Method ¹
						Emissions Loss		ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (Pre- Control)	121.3	0.06	0.04	<0.01	0.13	<0.01	121.5	0.06	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONCERNICEION AND OPEN ATIO	N. INTODA (TYON					
TANK CONSTRUCTION AND OPERATION 21. Tank Shell Construction:	ON INFORMATION					
21A. Shell Color: Green 22. Shell Condition (if metal and unlined):	21B. Roof Color: Gre	een	21C. Year	Last Painted: NA		
	22B. If yes, operating		220 16	es, how is heat provided to tank?		
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating (emperature:	22C. II ye	s, now is near provided to tank?		
23. Operating Pressure Range (psig):						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome.	roof provide radius (ft):	24B. If ve	s, for cone roof, provide slop (ft/ft):		
⊠ Yes □ No	5 ft	root provide radius (10).	2.2. 11)	s, for come root, provide stop (ruit).		
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:	, = Boes not appry					
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal	unted resili	ent seal		
1	oor mounted resilient s	-		one soul		
			scribe).			
25C. Is the Floating Roof equipped with a seco		□ No				
25D. If yes, how is the secondary seal mounted			ner (describ	pe):		
25E. Is the floating roof equipped with a weath	er shield?	□ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply	y			
26A. Deck Type: ☐ Bolted ☐ W	/elded	26B. For bolted decks,	, provide dec	k construction:		
26C. Deck seam. Continuous sheet construction	n:	I.				
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wid	e \Box 5 x 7.5 ft. wide	\square 5 x 12 ft. wide \square	other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supportanks, # of columns:	orted	26G. For column supported tanks, diameter of column:		
27. Closed Vent System with VRU? ☐ Yes						
28. Closed Vent System with Enclosed Combu	stor? ⊠ Yes □ No					
SITE INFORMATION						
29. Provide the city and state on which the data						
30. Daily Avg. Ambient Temperature (°F): 70.		31. Annual Avg. Maxi	-			
32. Annual Avg. Minimum Temperature (°F):	14.0	33. Avg. Wind Speed	(mph): 18 m	nph		
34. Annual Avg. Solar Insulation Factor (BTU/	ft²-day): 1,123	35. Atmospheric Press	ure (psia): 1	4.7 (Atmosphere)		
LIQUID INFORMATION		<u> </u>				

36. Avg. daily temperature range of bulk liquid (°F): 82.9	36A. Minimum (°F): 82.9		36B. Maximum (°F): 82.9			
37. Avg. operating pressure range of tank (psig): 0 psig	37A. Minimum (psig): 0 psig		37B. Maximum (psig): 0 psig			
38A. Minimum liquid surface temperature (°F)	: 82.9	38B. (Corresponding v	apor pressure (ps	ia): 0.43	
39A. Avg. liquid surface temperature (°F): 82.		39B. (Corresponding v	apor pressure (ps	ia): 0.43	
40A. Maximum liquid surface temperature (°F)	: 82.9	40B. (Corresponding v	vapor pressure (psia): 0.43		
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if	necessary.		
41A. Material name and composition:	Produced Flui	d				
41B. CAS number:						
41C. Liquid density (lb/gal):	8.00					
41D. Liquid molecular weight (lb/lb-mole):	20.59					
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	From: January To: December					
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	30 psig 85 F					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name PUL-96 Storage Tank	2. Tank Name Sand Trap Blowdown Tank
Area	
3. Emission Unit ID number S018	4. Emission Point ID number E019
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
06/2016	 ✓ New construction ✓ New stored material ✓ Other
Was the tank manufactured after August 23, 2011?	☐ Relocation
⊠ Yes □ No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? <i>If so, a</i>	separate form must be completed for each material.
☐ Yes	
7C. Was USEPA Tanks simulation software utilized?	
☐ Yes	
If Yes, please provide the appropriate documentation and item	as 8-42 below are not required.
TANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the intern	al cross-sectional area multiplied by internal height.
5,800 gallons	
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 5,800 gallons
13A. Maximum annual throughput (gal/yr) 565,399	13B. Maximum daily throughput (gal/day) 1,549
14. Number of tank turnovers per year 97	15. Maximum tank fill rate (gal/min) 1.08
16. Tank fill method ☐ Submerged ☐ Splash	☐ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	
(B) What are the number of transfers into the system per	·-
18. Type of tank (check all that apply):	
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat room	of \square cone roof \boxtimes dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ double	e deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	\square self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	ı
☐ Pressurized ☐ spherical ☐ cylindrical	1
☐ Other (describe)	
PRESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
	eture Disc (psig)
	bon Adsorption ¹
☑ Vent to Vapor Combustion Device¹ (vapor combustors, flar	•
☐ Conservation Vent (psig) ☐ Con	denser ¹
Vacuum Setting Pressure Setting	
☐ Emergency Relief Valve (psig)	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☐ No – Two 16 oz. weighted	ed emergency hatches.
¹ Complete appropriate Air Pollution Control Device Sheet	

20. Expected Emission I	Rate (submi	t Test Da	ta or Calcul	ations here	or elsewhe	re in the ap	plication).		
Material Name	Flashin	g Loss	g Loss Breathin		Working Loss		Total Emissio	ns	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Loss lb/hr	tpy	
Produced Fluid (pre-control)	17.00	0.01	<0.01	<0.01	<0.01	<0.01	17.02	0.01	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATIO	N INFORMATION					
21. Tank Shell Construction: ☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) WELDED						
21A. Shell Color: Green	21B. Roof Color: Gr	Color: Green 21C. Year Last Painted: NA				
22. Shell Condition (if metal and unlined):						
✓ No Rust ☐ Light Rust ☐ Dense	11	<u> </u>				
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?		
23. Operating Pressure Range (psig):						
24. Is the tank a Vertical Fixed Roof Tank ?	•	roof provide radius (ft):	1	s, for cone roof, provide slop (ft/ft):		
⊠ Yes □ No	5 ft.		NA			
25. Complete item 25 for Floating Roof Tanks	\square Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal Liquid mo	unted resili	ent seal		
□ Va _F	or mounted resilient s	eal	scribe):			
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes	□ No				
25D. If yes, how is the secondary seal mounted	? (check one) \square Sho	e 🗆 Rim 🗆 Otl	ner (describ	e):		
25E. Is the floating roof equipped with a weath	er shield?	□ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply	y			
26A. Deck Type: ☐ Bolted ☐ W	/elded	26B. For bolted decks,	provide dec	k construction:		
26C. Deck seam. Continuous sheet construction	n:					
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide	e \Box 5 x 7.5 ft. wide	\square 5 x 12 ft. wide \square	other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column support	orted	26G. For column supported		
		tanks, # of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? ☐ Yes	□ No					
28. Closed Vent System with Enclosed Combus	stor? ⊠ Yes □ No					
SITE INFORMATION						
29. Provide the city and state on which the data	in this section are based:	Charleston, WV				
30 Daily Avg Ambient Temperature (°F): 70	°F	31. Annual Avg. Maxi	mum Tempe	erature (°F): 65.5 °F		

32. Annual Avg. Minimum Temperature (°F): 4	2. Annual Avg. Minimum Temperature (°F): 44 ° F		33. Avg. Wind Speed (mph): 18 mph				
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day): 1,123	,123 35. Atmospheric Pre		essure (psia): 14.70			
LIQUID INFORMATION		l.					
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 8	31.24		36B. Maximur	m (°F): 81.24		
liquid (°F): 81.24							
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0 psi	3	37B. Maximur	m (psig): 0 psig		
(psig): 0 psig		- '					
38A. Minimum liquid surface temperature (°F)	81.24	38B. Corresponding vapor pressure (psi		ia): 0.4			
39A. Avg. liquid surface temperature (°F): 81.	.24	39B. (3. Corresponding vapor pressure (psia): 0.4				
40A. Maximum liquid surface temperature (°F)	: 81.24	40B. Corresponding vapor pressure (psia): 0.4					
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if	necessary.			
41A. Material name and composition:	Produced Flu	id					
41B. CAS number:							
41C. Liquid density (lb/gal):	7.85						
41D. Liquid molecular weight (lb/lb-mole):	20.55						
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.	From: January To: December						
42. Final maximum gauge pressure and	407 psia						
temperature prior to transfer into tank used as	85 F						
inputs into flashing emission calculations.							

Legacy Measurement Solutions

Tulsa, OK 918-827-5770

Customer : 01 - LEGACY MEASUREMENT **Date Sampled** : 08/17/2015 Station Id : 515276 **Date Analyzed** : 08/25/2015 Cylinder Id: 1 **Effective Date** : 09/01/2015 Producer : EQT Line Pressure : 0.00000 **Cyl Pressure** : 502.00000 : PED 15 TAYLOR ER Lease : MGMD Area Temp : 68.00000 Sample By : R MOORE Cylinder Type : Spot

Property Cd : Formation :

y Cu .	i ormation .				
COMPONENT		Mole Percent	WT. Percent	Liq Vol Percent	
Methane	C1	12.6977	2.2551	5.1608	
Ethane	C2	7.6528	2.5474	4.9067	
Propane	C3	4.2766	2.0876	2.8244	
Iso-Butane	IC4	0.8130	0.5230	0.6374	
Normal-Butane	NC4	2.3058	1.4836	1.7423	
Iso-Pentane	IC5	1.2112	0.9674	1.0614	
Normal-Pentane	NC5	1.9514	1.5585	1.6954	
Nitrogen	N2	0.0260	0.0080	0.0062	
Carbon-Dioxide	CO2	0.3040	0.1480	0.1241	
BENZENE	BENZENE	0.1085	0.0938	0.0726	
TOLUENE	TOLUENE	0.7189	0.7333	0.5767	
ETHYLBENZENE	E-BENZENE	0.0235	0.0276	0.0211	
O-ETHYL-TOLUENE / 3- MC9	O- ETOLUENE/ 3-MC9	0.6933	0.9225	0.7147	
O-XYLENE	O-XYLENE	0.1095	0.1286	0.0995	
M-XYLENE/P-XYLENE	M- XYLENE/P- XYLENE	0.8365	0.9831	0.7759	
2,2-Dimethylbutane	22-DMC4	0.2333	0.2225	0.2334	
CYCLOPENTANE	23-DMC4 / CYC5	0.5271	0.5028	0.5172	
2-methylpentane	2-MC5	3.1520	3.0070	3.1339	
MCYC6/1,1,3-TMCYC5/2,2- DMC6	MCYC6/113- TMCYC5/22- DMC6	2.6614	6.2959	5.5790	
N-C6	N-C6	6.3123	6.0219	6.2234	
3-methylpentane	3-MC5	0.4387	0.4184	0.4285	
2,2-Dimethylpentane	22-DMC5	0.2045	0.2268	0.2288	
Methylcyclopentane	MCYC5	0.3080	0.2869	0.2609	
2,4-DMC5	24-DMC5	0.0010	0.0011	0.0005	

2,2,3-TMC4	223-TMC4	0.0054	0.0059	0.0057
3,3-Dimethylpentane	33-DMC5	0.1720	0.1907	0.1871
CYCLOHEXANE	CYC6	0.9803	0.9133	0.7994
2-Methylhexane	2-MC6	2.5482	2.8267	2.8370
2,3-Dimethylpentane	23-DMC5	0.6432	0.7135	0.6992
1,1-DMCYC5	11-DMCYC5	0.0284	0.0308	0.0274
3-Methylhexane	3-MC6	2.6702	2.9620	2.9365
1,t3-Dimethylcyclopentane	1t3-DMCYC5	0.1393	0.1514	0.1373
1,C3-DMCYC5 / 3- Ethylpentane	1C3- DMCYC5 / 3- EC5	0.3565	0.3874	0.3541
1,t2-DMCYC5 / 2,2,4-TMC5	1t2-DMCYC5 / 224-TMC5	0.1780	0.1934	0.1750
N-Heptane	N-C7	5.1668	5.7314	5.7147
1,C2-DMCYC5	1C2- DMCYC5	0.0036	0.0039	0.0034
2,5-Dimethylhexane	25-DMC6	0.2444	0.3090	0.3032
ECYC5 / 2,4-DMC6 / 2,2,3- TMC5	ECYC5 / 24- DMC6 / 223- TMC5	0.4914	0.5450	0.5315
3,3-DMC6 / 1,t3,c4-TMCYC5	33-DMC6 / 1t3c4- TMCYC5	0.1736	0.2156	0.1962
1,t2,c3-TMCYC5	1t2c3- TMCYC5	0.0629	0.0781	0.0703
2,3,4-TMC5	234-TMC5	0.0164	0.0207	0.0194
2,3-Dimethylhexane	23-DMC6	0.8080	1.0218	0.9779
1,1,2-TMCYC5	112- TMCYC5	0.3619	0.4495	0.3965
2-Methylheptane	2-MC7	2.0915	2.6448	2.5829
4-Methylheptane	4-MC7	1.1311	1.4303	1.3836
3,4-DMC6	34-DMC6	0.6259	0.7915	0.7502
3-Methylheptane	3-MC7	2.4937	3.1534	3.0458
3-EC6	3-EC6	0.3773	0.4770	0.4554
1,c,3-DMCYC6/1,c2,t3- TMCY5/1,c2,T4-TMCY	1c3- DMCYC6/1c 2t3- TMCY5/1c2T 4-TMCYC	1.6051	1.7446	1.5947
1,t4-Dimethylcyclohexane	1t4-DMCYC6	1.8148	2.2544	2.0152
2,2,5-TMC6	225-TMC6	0.1205	0.1710	0.1647
1,1-DMCYC6/1-M-t3-ECYC5	11- DMCYC6/1- M-t3-ECYC5	0.6783	0.8426	0.7359
1-M-C3-ECYC5	1-M-C3- ECYC5	0.0000	0.0000	0.0000
1-M-t2-ECYC5 / 2,2,4-TMC5	1-M-t2- ECYC5 / 224 -TMC5	0.2238	0.2779	0.2483

CYC7/1-M-1-ECYC7	CYC7/1-M-1- ECYC7	0.4616	0.5017	0.4216
N-OCTANE / 1,T2-DMCYC6	N-OCTANE / 1T2- DMCYC6	4.0779	5.1568	5.0086
UNKNOWN C8-1	UNKNOWN C8-1	0.0000	0.0000	0.0000
1,t3-DMCYC6/1,C4- DMCYC6/1,C2,C3-TMCYC5	1t3- DMCYC6/1C 4-DMCYC6 / 1C2C3- TMC5	0.0855	0.1062	0.0921
2,4,4 TMC6	244 TMC6	0.2908	0.4128	0.3885
I-C3CYC5	I-C3CYC5	0.0129	0.0160	0.0137
UNKNOWN C8-2	UNKNOWN C8-2	0.0329	0.0416	0.0400
2,2-DMC7	22-DMC7	0.0020	0.0028	0.0022
2,4-DMC7 / 1-M-C2-ECYC5	24-DMC7 / 1- M-C2- ECYC5	0.0000	0.0000	0.0000
2,2,3-TMC6	223-TMC6	0.1894	0.2689	0.1939
2,6-Dimethylheptane / 1,C2-DMCYC6	26-DMC7 / 1	0.0185	0.0262	0.0251
N-C3CYC5 / 1,C3,C5- TMCYC6	N-C3CYC5 / 1C3C5- TMCYC6	0.2384	0.3384	0.2443
2,5-DMC7 / 3,5-DMC7	25-DMC7 / 35-DMC7	0.0485	0.0688	0.0652
Ethylcyclohexane	ECYC6	0.6396	0.7945	0.6872
3,3-DMC7 / 2,3,3-TMC6 / 1,1,3-TMCYC6	33-DMC7 / 233-TMC8 / 113- TMCYC6	0.0300	0.0425	0.0394
1,1,4-TMCYC6	114- TMCYC6	0.0597	0.0834	0.0732
UNKNOWN C8-3	UNKNOWN C8-3	0.0085	0.0107	0.0102
2,3,4-TMC6	234-TMC6	0.0000	0.0000	0.0000
1,t2,t4-TMCYC6	1t2t4- TMCYC6	0.0000	0.0000	0.0000
2,3-DMC7 / 1,C3,t5- TMCYC6	23-DMC7 / 1C3t5- TMCYC6	0.1416	0.1978	0.1727
2-MC8/4-MC8	2-MC8/4- MC8	1.2910	1.8330	1.7520
UNKNOWN C8-4	UNKNOWN C8-4	0.0000	0.0000	0.0000
3-MC8	3-MC8	0.9204	1.3068	1.2365
UNKNOWN C8-5	UNKNOWN C8-5	0.0000	0.0000	0.0000
UNKNOWN C8-6	UNKNOWN C8-6	0.0068	0.0085	0.0080

1,t2,C3-TMCYC6/1,t2,C4- TMCYC6	1t2C3- TMCYC6/1t2 C4-TMCYC6	0.0053	0.0074	0.0062
1,1,2-TMCYC6	112- TMCYC6	0.0021	0.0029	0.0022
UNKNOWN C8-8	UNKNOWN C8-8	0.0014	0.0017	0.0011
UNKNOWN C8-7	UNKNOWN C8-7	0.0876	0.1107	0.1069
NONANE	NONANE	1.5004	2.1304	2.0239
UNKNOWN C9-1	UNKNOWN C9-1	0.0014	0.0019	0.0017
UNKNOWN C9-2	UNKNOWN C9-2	0.0107	0.0151	0.0143
UNKNOWN C9-3	UNKNOWN C9-3	0.0042	0.0059	0.0051
1,C2,C3-TMCYCC6/1,C2,t3- TMCYCC6	1C2C3- TMCYCC6/1 C2t3- TMCYCC6	0.0014	0.0019	0.0011
UNKNOWN C9-4	UNKNOWN C9-4	0.0051	0.0072	0.0062
UNKNOWN C9-5	UNKNOWN C9-5	0.0087	0.0123	0.0114
I-PROPYL-BENZENE	I- C3BENZENE	0.1337	0.1778	0.1401
2,2-DMC8	22-DMC8	0.0146	0.0229	0.0211
IC4CYC8 / CYC8	IC4CYC8 / CYC8	0.0089	0.0138	0.0114
UNKNOWN C9-6	UNKNOWN C9-6	0.0052	0.0073	0.0068
N-C4CYC5 / N-C3CYC6	N-C4CYC5 / N-C3CYC6	0.2572	0.3594	0.3124
3,3-DMC8	33-DMC8	0.0193	0.0303	0.0274
UNKNOWN C9-7	UNKNOWN C9-7	0.0065	0.0092	0.0085
UNKNOWN C9-8	UNKNOWN C9-8	0.0006	0.0008	0.0005
N-PROPYL-BENZENE	N- C3BENZENE	0.8306	1.1052	0.8743
UNKNOWN C9-9	UNKNOWN C9-9	0.3071	0.4360	0.4142
m-ETHYL-TOLUENE	m- ETOLUENE	0.6021	0.8011	0.6316
p-ETHYL-TOLUENE / 2,3- DMC8	p- ETOLUENE / 23-DMC8	0.8624	1.1475	0.9087
4-MC9 / 5-MC9 / 1,3,5- TMBENZENE	4-MC9 / 5- MC9/135- TMBENZ	0.3212	0.5059	0.4714
2-MC9	2-MC9	0.0000	0.0000	0.0000
3-EC8	3-EC8	0.4580	0.7214	0.6706
UNKNOWN C9-10	UNKNOWN C9-10	0.0000	0.0000	0.0000

UNKNOWN C9-11	UNKNOWN C9-11	0.0000	0.0000	0.0000
UNKNOWN C9-12	UNKNOWN C9-12	0.0006	0.0008	0.0005
MCYC8/1,2,4- TMBENZENE/t- BUTYLBENZENE	MCY8 / 124- TMLBENZEN E / t- BENZENE	0.0034	0.0047	0.0034
t-4-BUTYL-CYC6	t-C4CYC6	0.0008	0.0012	0.0005
I-C4CYC6	I-C4CYC6	0.0210	0.0326	0.0274
N-DECANE	N-DECANE	0.8080	1.2727	1.1885
I-C4BENZENE	I- C4BENZENE	0.0116	0.0172	0.0137
SEC-C4BENZENE	SEC- C4BENZENE	0.0083	0.0123	0.0097
UNKNOWN C10-1	UNKNOWN C10-1	0.0010	0.0015	0.0011
1-M-3-I-PROPYL-BENZENE	1-M-3- IC4BENZEN E	0.0020	0.0029	0.0022
1,2,3-TMBENZENE	123- TMBENZEN E	3.6308	4.8310	3.6868
1-M-4-I-PROPLY-BENZENE	1-M-4- ICBENZENE	0.0000	0.0000	0.0000
UNKNOWN C10-2	UNKNOWN C10-2	0.0250	0.0393	0.0366
UNKNOWN C10-3	UNKNOWN C10-3	0.0193	0.0303	0.0280
UNKNOWN C10-4	UNKNOWN C10-4	0.0021	0.0033	0.0028
1-M-2-I-PROPYL-BENZENE	1-M-2- IC4BENZEN E	0.0386	0.0573	0.0440
UNKNOWN C10-5	UNKNOWN C10-5	0.0972	0.1530	0.1424
N-C4CYC6	N-C4CYC6	0.0762	0.1183	0.1007
UNKNOWN C10-6	UNKNOWN C10-6	0.5235	0.8246	0.7702
UNKNOWN C10-7	UNKNOWN C10-7	0.0000	0.0000	0.0000
1,3-DEBENZENE / 1-M-3- PROPYLBENZENE	13- DEBENZENE / 1-M-3- C4BENZENE	0.1119	0.1662	0.1310
N-IC4BENZ/1,2-DEBENZ/1- M-4 PROPYLBENZ	N- IC4BENZ/12- DEBENZ/1- M-4 C3BENZ	0.2200	0.3268	0.2534
1,4-DEBENZENE	14- DEBENZENE	0.2096	0.3114	0.2460
1-M-2-PROPYLBENZENE	1-M-2- C3BENZENE	0.2367	0.3516	0.2746
1,4-DM-2-EBENZENE	14-DM-2- EBENZENE	0.0178	0.0264	0.0200

UNKNOWN C10-8	UNKNOWN C10-8	0.1635	0.2575	0.2403
UNKNOWN C10-9	UNKNOWN C10-9	0.1495	0.2354	0.2197
1,2-DM-4-EBENZENE	12-DM-4- EBENZENE	0.0000	0.0000	0.0000
1,3-DM-2-EBENZENE	13-DM-2- EBENZENE	0.0219	0.0325	0.0246
UNKNOWN C10-10	UNKNOWN C10-10	0.0000	0.0000	0.0000
1,2-DE-3-EBENZENE	12-DE-3- EBENZENE	0.0011	0.0016	0.0011
N-UNDECANE	N- UNDECANE	1.0587	1.8319	1.6880
UNKNOWN C11-1	UNKNOWN C11-1	0.6201	1.0730	0.9888
2-M-C4BENZENE	2-M- C4BENZENE	0.8005	1.3137	1.0431
UNKNOWN C11-2	UNKNOWN C11-2	0.0875	0.1514	0.1390
1,2,4,5-TETRA-MBENZENE	1245- TETRAMBE NZENE	0.0022	0.0032	0.0022
1,2,3,5-TETRA-MBENZENE	1235- TETRAMBE NZENE	0.0057	0.0084	0.0062
UNKNOWN C11-3	UNKNOWN C11-3	0.0023	0.0039	0.0034
tert-1-BUTYL-2-MBENZENE	tert-1-C4-2- MBENZENE	0.0008	0.0013	0.0005
UNKNOWN C11-4	UNKNOWN C11-4	0.0107	0.0185	0.0165
1,2,3,4-TETRA- MBENZENE/CYC10	CYC10 / 1234- TETRA- MBENZENE	0.0000	0.0000	0.0000
N-C5-BENZENE	N-C5- BENZENE	0.1284	0.2107	0.1670
UNKNOWN C11-5	UNKNOWN C11-5	2.4164	4.1814	3.8533
tert-1-C4-3,5-DMBENZENE	1-tert-C4-35- DMBENZEN E	0.1819	0.3267	0.2569
UNKNOWN C11-6	UNKNOWN C11-6	0.0483	0.0835	0.0766
NAPHTHALENE	NAPHTHALE NE	0.0012	0.0020	0.0017
UNKNOWN C11-7	UNKNOWN C11-7	0.0000	0.0000	0.0000
N-DODECANE	N- DODECANE	0.4391	0.8280	0.7536
N-C13	N-C13	0.0039	0.0079	0.0068
TOTAL		100.0003	100.0000	100.0000

Totals

0.6859
90.3376
5.7186
697.9798
24.1732
4,732.5563
117,268.6695
20,400.9731

Gas Analytical

Report Date: Sep 14, 2015 9:23a

Client: Equitable Production Date Sampled: Sep 8, 2015 11:00a

Site: 514394 Analysis Date: Sep 11, 2015 2:17p

Field No: 9998 Collected By: J. Brown

Meter: 514394 Date Effective: Sep 8, 2015 12:00a

Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI): 70.0 **Lab File No: X_CH1-6024.CHR** Sample Temp (°F):

Sample Type: Spot Field H2O: No Test

Reviewed By: Field H2S: No Test

Component	Mol %	Gal/MSCF
Methane	78.1311	
Ethane	14.2559	3.79
Propane	4.0036	1.10
I-Butane	0.5947	0.19
N-Butane	1.1890	0.37
I-Pentane	0.3163	0.12
N-Pentane	0.3248	0.12
Nitrogen	0.4544	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1535	
Hexanes+	0.5767	0.24
TOTAL	100.0000	5.93

Analytical Results at Base Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Analytical Results at Contract Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Calculated Specific Gravities

Ideal Gravity: 0.7188 Real Gravity: 0.7211

Molecular Wt: 20.8177 lb/lbmol

Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

Source	Date	Notes
--------	------	-------

Gas Analytical Sep 11, 2015 results to Bob Gum

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2016	Existing	1.54	1,262
S002	E002	Line Heater	2016	Existing	1.54	1,262
S003	E003	Line Heater	2016	Existing	1.54	1,262
S004	E004	Line Heater	2016	Existing	1.54	1,262
S005	E005	Line Heater	2016	Existing	1.54	1,262
S006	E006	Line Heater	2016	Existing	1.54	1,262
S007	E007	Line Heater	2016	Existing	1.54	1,262
S008	E008	Line Heater	2016	Existing	1.54	1,262
S009	E009	Line Heater	2016	Existing	1.15	1,262
S022	E022	TEG	2016	Existing	0.013	1,262
S023	E023	TEG	2016	Existing	0.013	1,262

Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

New, modification, removal

Enter design heat input capacity in MMBtu/hr.

Enter the fuel heating value in BTU/standard cubic foot.

Attachment N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D#1	S0	21				
Engine Manufacturer/Model Ford / CSG-637							
Manufacturers I	Rated bhp/rpm	110 /	3200				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20	016				
Engine Manufac		20	015				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include		ed? ubpart IIII ed? ubpart ZZZZ	☐ NESHAP :	ed? Subpart IIII ed? Subpart ZZZZ	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		48	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf)	H ₂ S (gr/100 scf)		0.25				
Operating bhp/rpm		110 / 3,200					
BSFC (BTU/bhp-hr)		6,552.9					
Hourly Fuel Throughput		686.5 ft³/hr gal/hr			/hr l/hr		/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	6.01 MMft³/yr gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes ⊠	No □	Yes □	No 🗆	Yes □	No □
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly Annual PTE PTE (lb/hr) ¹¹ (tons/year)		Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NO _x	0.42	1.85				
MD	СО	0.88	3.85				
MD	VOC	0.29	0.29 1.29				
AP	SO ₂	<0.01	<0.01				
AP	PM (Filterable)	<0.01	0.03				
AP	PM (Condensable)	<0.01	0.03				
AP	Formaldehyde	0.01	0.06				
AP	Total HAPs	0.02	0.07				
AP	GHG (CO ₂ e)	82.58	361.69				

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

² Enter the Source Status using the following codes:

Modification of Existing Source MS RS Relocated Source REM Removal of Source

Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as

Provide a manufacturer's data sheet for all engines being registered.

Enter the Engine Type designation(s) using the following codes:

Two Stroke Lean Burn 2SLB 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

Air/Fuel Ratio IR

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC LEC

Prestratified Charge Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst SCR Lean Burn & Selective Catalytic Reduction

Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

AP-42 MD Manufacturer's Data AP

GRI-HAPCalcTM GR OT Other (please list)

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.
- PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device

(Emission Unit ID# E021, use extra pages as necessary) Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🗵 ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Sequential Multipart **Fuel Injection** Manufacturer: Ford Model #: CSG-637 Design Operating Temperature: 1,600 °F Design gas volume: scfm Service life of catalyst: 5000 hrs Provide manufacturer data? ⊠Yes \square No Volume of gas handled: 444.9 cfm at 1,600 °F Operating temperature range for NSCR/Ox Cat: °F to From Reducing agent used, if any: Ammonia slip (ppm): Pressure drop against catalyst bed (delta P): 6" inches of H2O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ⊠ No How often is catalyst recommended or required to be replaced (hours of operation)? 5000 hrs How often is performance test required? ☐ Initial ☐ Annual ☐ Every 8,760 hours of operation ☐ Field Testing Required Mo performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 40CFR60.4243(a)(1) - EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

Attachment O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET										
Emission Unit	ID#: S02	0		Emission Point ID#: E019 Year Inst			Year Insta	alled/Modified: 2016		
Emission Unit Description: Tank Truck Loading Rack										
Loading Area Data										
Number of Pu	mps: 1			Number of Liquids Loaded: 1			Max number of trucks loading at one (1) time: 1			
Are tanker tru If Yes, Please		re tes	ted for leaks	at this	or any other	r location?	□ Yes	⊠ No	□ N	Not Required
Provide description of closed vent system and any bypasses. Emissions collected and controlled by enclosed combustion device. Bypass is not available.										
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return?										
⊠ Closed Sys						e (for rack o			a who	ale)
Time	110,	ceteu	Jan – Mar	Operat	_	- Jun		ul – Sept	a wiic	Oct - Dec
Hours/day			As needed	i		eeded		s needed		As needed
Days/week			As needed	ł	As ne	eeded	Α	s needed		As needed
			Bulk	Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name			Prod	uced F	luids					
Max. Daily The (1000 gal/day)				38.73						
Max. Annual (1000 gal/yr)	Throughpu	t	1	4,134.9	97					
Loading Meth				SP						
Max. Fill Rate				26.89						
Average Fill 7 (min/loading)	Time			100 min						
Max. Bulk Lic Temperature (70 °F						
True Vapor Pr	essure ²			NA						
Cargo Vessel	Condition ²	3		U						
Control Equip Method ⁴	ment or			ed Com Device 19 or C	-					
Max. Collection (%)	on Efficie	ncy	70 %							
Max. Control (%)	Efficiency		98 %							
Max.VOC	Loading (lb/hr)		0.06							
Emission Rate	Annual (ton/yr)			0.25						
Max.HAP Emission	Loading (lb/hr)			<0.01						
Rate	Annual (ton/yr)			<0.01						
Estimation Method ⁵ EPA AP-42, ProMax										
BF Bottom Fill SP Splash Fill SUB Submerged Fill At maximum bulk liquid temperature B Ballasted Vessel C Cleaned U Uncleaned (dedicated service) O Other (describe) List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) CA Carbon Adsorption VB Dedicated Vapor Balance (closed system) ECD Enclosed Combustion Device F Flare										
TO Thermal Oxidization or Incineration EPA EPA Emission Factor in AP-42 MB Material Balance TM Test Measurement based upon test data submittal O Other (describe)										

Attachment Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?					
☐ Yes No					
Please list approximate number.					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? Yes No Please list approximate number.					

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

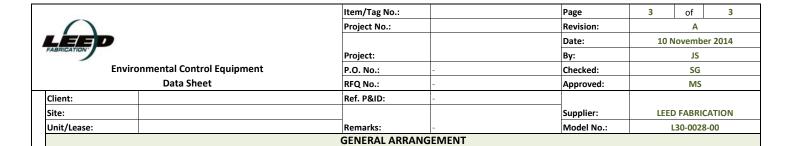
ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

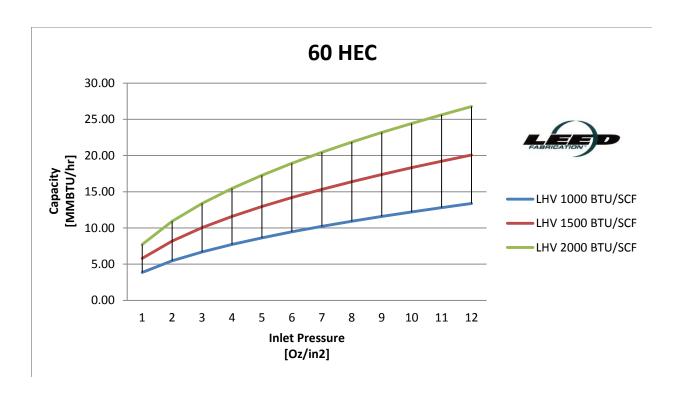
Emissions calculations must be performed using the most conservative control device efficiency.

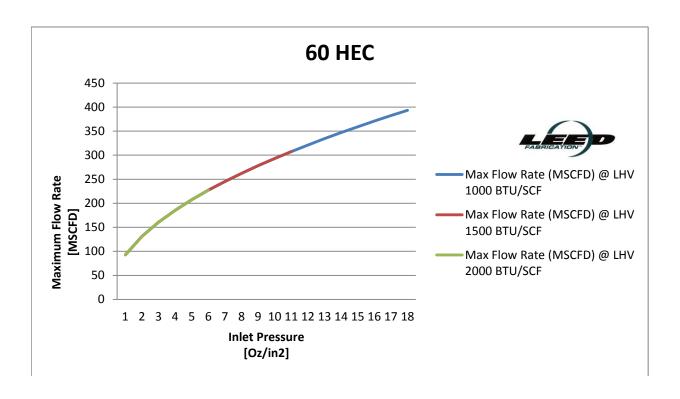
The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID:	Make:				
Primary Control Device ID:	Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No				
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No				

VAPOR COMBUSTION								
(Including Enclosed Combustors)								
			General In	nformation				
Control De		Installation New	Installation Date: 2015 New Modified Relocated					
Maximum 1 ~15,230 so				Design H 1,262 B7	eat Content TU/scf			
			Control Devic	e Informati	on			
⊠ Enclose	ed Combustion Devi l Oxidizer	ce	Type of Vapor Co		ontrol?		Ground Flare	
	rer: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	,760	
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S010-S017 , S018 , S021)								
Emission Unit ID#	Emission Source I	Emission Unit ID#	Emissio	on Source Description				
S010- S017	Produ	Produced Fluid Tanks						
S018	Sand Tra	Sand Trap Blowdown Tank						
S020	Tank Tr	ıck Loa	ding Rack					
If this	vapor combustor c	ntrols e	missions from more the	an six (6) em	nission un	iits, please	attach additional pages.	
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?	
Steam Pressur	e Air		~25 feet	4 feet			☐ Yes ☐ No Provide determination.	
			Waste Gas l	Information	1			
Maxim	ım Waste Gas Flow 314.11 (lb/hr)	Rate	Heat Value of W Variable		eam	Exit Vel	ocity of the Emissions Stream (ft/s)	
	Provide an	attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.	
			Pilot Gas I	nformation				
Number of Pilot Lights 1 Fuel Flow Rate to Pilot Flame per Pilot ~30 scfh			Heat Input per Pilot 0.03 MMBTU/hr			Will automatic re-ignition be used? ☐ Yes ☐ No		
If automati	c re-ignition is used	, please	describe the method.					
Is pilot flame equipped with a monitor to detect the presence of the flame? ⊠ Yes □ No □ Ultraviolet □ Camera □ Other:					•			
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached manufacture specification sheet.								
			es	flame demor	nstration	per §60.18	or §63.11(b) and	


Battery Pack

Item/Tag No.:		Page	1	of	3
Project No.:		Revision:		Α	
		Date:	10 N	ovemb	er 2014
Project:		Ву:		JS	
P.O. No.:	-	Checked:		SG	


7	Proje				Ву:		JS					
	Enviromental Control Equipmen	t		P.O. No.:					Checked:		SG	
	Data Sheet			RFQ No.:					Approved:		MS	
	Client:			Ref. P&ID:		_					ITIJ	
				Ket. P&ID:		-						
	Site:			1					Supplier		LEED FABRICATION	
	Unit/Lease:			Remarks:		-			Model N	o.:	L30-0028-00	
				GEI	NERAL							
1	Design Code:						NDE:			LE	ED Fabrication Standards	
2	Service:						Custom	er Specs:			Yes	
3	Description: Standard D	ual Stage 60	High Effic	iency Combus	tor						✓ No	
				PROCE	ESS DAT	Α						
				1.0/	Process	Conditions:						
	Gas Composition:			mol %		Variable		Valu	e	Units		
4	Methane					Flow Rate		Up to 3	00	Mscfc	1	
5	Ethane					Pressure		Up to	-	oz/in2		
6	Propane				-	Temperature		0 0 10		°F	-	
7	•					lecular Weig						
	I-Butane				1	ess/Waste St		✓ Gas			I have defined	
8	n-Butane										Liquid	
9	I-Pentane					Process Des		-				
0										operating	g rate indicated above.	
1			ļ		1	98 % operat er Pressure D	_	_				
2			<u> </u>							n RTII/¢/	CF unless specified by customer	
3	N2				Jas II	iiature nedli	iig value	commated t	O DE 130	0 0 1 0 / 3 (or umess specified by customer	
4	Helium											
5	H ₂ O	-										
6	C7				1							
7	C8											
8												
9	C10											
0	C11+											
1	TO	·A1										
		AL		DDM/IV	Availabl	e Utilities:						
	Other Components:			PPMV			_		2.01	20 1 - 1	No. 1 Co. 10	
2	H2S				-	uel / Pilot Ga				3upsig r	Natural Gas /Propane 40-50 SCFH	
3	Benzene				li li	nstrument Ai	ır		NA			
4	Toluene					Power			120	V / 60 Hz	or Solar Power	
5	E-Benzene					Steam			NA			
6	Xylene					Purge Gas						
				DESIG	N DAT	A						
7	Ambient Temperatures:				Noise Po	erformance F	Requiren	nents:			Under 85 dBA	
8	Low, °F		-20		Structur	al Design Co	de:					
9	High, °F		120		Wind De	esign Code:					ASCE	
0	Design Conditions: Pressure/Temperature											
	Max. Relative Humidity, %		90				Pressure	e/Speed			100 mph	
	Elevation (ASL), ft						Categor	у				
	Area Classification:		Class I E	Div 2	Seismic	Design Code						
	Electrical Design Code:		NEC				Location	1				
	•			QUIPMENT	SPECIF							
5	Type: Elevated ~	Enclosed	_		T	ent Design:						
6		,			-4-nb.m		ompone	nt		Mat	terial / Size / Rating / Other	
7		Multiple St	ack		Burner	C	pone			ivid	ional / Size / Nating / Other	
		- Mattiple 3t	uck		burner	Durner Tin	/ Assist	Cac Burnar			Stainless Staal	
8					1	Burner Tip					Stainless Steel	
		Acciet Ai-			Dila:	Ві	ırner Bo	uy			Carbon Steel	
		Assist Air			Pilot							
1	Gas Assist	Staging			1		Pilot Tip	,			Stainless Steel	
2					-		ilot Line(s)			Carbon Steel	
			_		Firebox	/ Stack						
4	Stack: Self Supporting				1		Shell					
	Flare Burner: Non-Smokeless	Smokeless		Gas Assist			Jiicii				Carbon Steel	
	Flare Burner: Non-Smokeless Pilot: Intermittent	Continu	uous	Gas Assist			Piping				Carbon Steel Carbon Steel	
5	Flare Burner: Non-Smokeless		uous	Gas Assist								
5	Flare Burner: Non-Smokeless Pilot: Intermittent	Continu	uous				Piping				Carbon Steel	
5	Flare Burner: Non-Smokeless Pilot: Intermittent Pilot Air Inspirator: Local Pilot Flame Control: No	Continu	uous				Piping Nozzles	1			Carbon Steel Carbon Steel	
5 6 7	Flare Burner: Non-Smokeless Pilot: Intermittent Pilot Air Inspirator: Local Pilot Flame Control: No	Continu Remote Yes (Th	uous	ole)		I	Piping Nozzles Flanges				Carbon Steel Carbon Steel Carbon Steel	
5 6 7	Flare Burner: Non-Smokeless Pilot: Intermittent Pilot Air Inspirator: Local Pilot Flame Control: No	Continu Remote Yes (Th	uous e nermocoup	ole)		l Ins	Piping Nozzles Flanges nsulation	ins			Carbon Steel Carbon Steel Carbon Steel Blanket	
.5 .6 .7 .8	Flare Burner: Non-Smokeless Pilot: Intermittent Pilot Air Inspirator: Local Pilot Flame Control: No Pilot Ignition: Flamefront Generator	Continu Remote Yes (Th	uous e nermocoup	ole)		I Ins	Piping Nozzles Flanges nsulation ulation F	'ins y			Carbon Steel Carbon Steel Carbon Steel Blanket Stainless Steel	
15 16 17 18 19	Flare Burner: Pilot: Vintermittent Pilot Air Inspirator: Vintermittent Vintermittent Vintermittent Vintermittent Vintermittent Vintermittent Vintermittent Vintermittent Vintermittent Flare Control: Vintermittent Flare Flare Control: Vintermittent Vintermitten	Continu Remote V Yes (Th V Inspira Autom:	uous e nermocoup	ole)		l Insi R Refra	Piping Nozzles Flanges nsulation ulation F defractor ctory An	rins y chors			Carbon Steel Carbon Steel Carbon Steel Blanket Stainless Steel NA NA	
5 6 7 8 9 60	Flare Burner: Non-Smokeless V Pilot: V Intermittent Pilot Air Inspirator: V Local Pilot Flame Control: No Pilot Ignition: Flamefront Generator Electronic With Pilot Flame Control With Auto Pilot Re-Igni	Continu Remote V Yes (Th V Inspira Autom:	uous e nermocoup	ole)		I Ins R Refra Ladden	Piping Nozzles Flanges nsulation ulation F tefractor ctory An	rins y chors			Carbon Steel Carbon Steel Carbon Steel Blanket Stainless Steel NA	


Other

ĺ					No.: Pa		2 of 3
				Project No.:		Revision:	A
- 6						Date:	10 November 2014
	FABRICATION*						
				Project:		By:	JS
	Environm	ental	Control Equipment	P.O. No.:	-	Checked:	SG
		Dat	a Sheet	RFQ No.:	_	Approved:	MS
_	Client						
	Client:			Ref. P&ID:	-		
	Site:					Supplier:	LEED FABRICATION
	Unit/Lease:			Remarks:	-	Model No.:	L30-0028-00
	·			EQUIPMENT SP	FCIFICATION		
	Eleve Batauta	7 76		-			
	Flame Detection:		ermocouple	AL	ixiliary Equipment		
57	L	UV	Scanner		Valves		NA
58	General Configuration:				Blowers		NA
59					Dampers		NA
l				_	· · · · · · · · · · · · · · · · · · ·		
60					Inlet KO / Liquid Seal		NA
61					Flame / Detonation Arrestor		Yes
62	.			In	strumentation & Controls		
63					Solenoids / Shut-Off Valves	CI	neck with Sales for available config.
l				_			
64					Flow Meters	Cl	heck with Sales for available config.
65					Calorimeter		NA
66					Pressure Switches/Transmitters	Cl	heck with Sales for available config.
67				<u> </u>	Thermocouples		heck with Sales for available config.
				<u> </u>	· · · · · · · · · · · · · · · · · · ·		
68				L	Temperature Switches/Transmitte		heck with Sales for available config.
69			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BMS	Cł	neck with Sales for available config.
70			1 3		CEMS		NA
71			3	<u> </u>	Other		NA
		•		_	Other		IVA
72			1				
73							
74							
75							
,,			F-A	ADDICATION AS	ID INCOCCTION		
				ABRICATION AN	ID INSPECTION		
76	Special requirements		Skid Mounted		Equ	uipment Info	
77			Other		Component		Weight / Dimensions
78				Rı	irner		
79			Vendor Standard				
l	· ·				Burner Assembly		
80			Other. Specify:	St	ack		
81	Material Certification	✓	Vendor Standard		Stack Assembly		60 " OD x 30 ' H. 7,000 Lbs
82			MTR		Pilot Tip		
83		_	Certificate of Compliance		Pilot Line(s)		
l		<u> </u>					
2/			Other (Specify):		Concrete Pad		12'x12' 12". 21,600 Lbs
84	NDE	✓	Vendor Standard	Αι	ıxiliary Equipment		
85	NDE Vendor Standard						
l	Radiography. Specify:				Blowers		
85 86					Blowers		
85 86 87			Ultrasonic. Specify:		Inlet KO / Liquid Seal		
85 86 87 88			Ultrasonic. Specify: Liquid Penetrant.		Inlet KO / Liquid Seal Flame / Detonation Arrestor		
85 86 87 88 89			Ultrasonic. Specify:		Inlet KO / Liquid Seal		
85 86 87 88 89			Ultrasonic. Specify: Liquid Penetrant.	ln	Inlet KO / Liquid Seal Flame / Detonation Arrestor		
85 86 87 88 89 90			Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls		
85 86 87 88 89 90			Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91	Surface Preparation		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls		
85 86 87 88 89 90 91	Surface Preparation		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92	Surface Preparation		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93	Surface Preparation Paint System	Ē	Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94	Surface Preparation Paint System		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	ln:	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95	Surface Preparation Paint System Finished Color	Ē	Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In:	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	ln:	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		
85 86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	In	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS		

Attachment S EMISSION CALCULATIONS

Line Heaters S001 - S008

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.10	0.45
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.12	0.53
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	180.14	789.03
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	0.015
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.54	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO₂e							180.33	789.85

Notes:

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻ Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all line heaters are diplayed in the Total Site Emissions Table.

⁻ Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻ AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻ CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Line Heaters S009

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.08	0.34
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.09	0.40
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	134.52	589.21
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	<0.01	0.011
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.15	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO₂e							134.66	589.82

Notes

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all line heaters are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Thermoelectric Generators S022 & S023

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	1.52	6.66
CH₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.013	1,262	8,760	<0.01	<0.01
Total HAPs					ı		<0.01	<0.01
Total CO ₂ e							1.52	6.67

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 1.4 references are from the July 1998 revision.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Natural Gas Compressor Engine S021

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
VOC's	1.21	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.29	1.29
Formaldehyde	2.05E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	0.01	0.06
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Ethylbenzene	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
Xylene	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
СО	3.62	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.88	3.85
NO _x	1.74	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,262	8,760	0.42	1.85
PM _{Filterable}	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	0.03
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	0.03
PM _{Total}	1.94E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	0.01	0.06
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	82.49	361.32
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	110.0	6,553	1,262	8,760	<0.01	<0.01
Total HAPs Total CO ₂ e		<u> </u>		1	•	•		0.02 82.58	0.07 361.69

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.
- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- AP-42, Chapter 3.2, Table 3.2-3 Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- CO_2 equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298
- Vendor Guarantee Emissions are listed in Attachment S
- Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S010 - S017

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	121.45	531.94
HAPs	6.47	28.33
Hexane	6.03	26.39
Benzene	9.21	40.35
Toluene	5.77	25.26
Ethylbenzene	0.19	0.85
Xylene	0.87	3.79
CO ₂	15.30	67.00
CH₄	<0.01	<0.01
Total CO₂e	15.30	67.00

Notes:

- Emission rates for Produced Fluid Tanks S010 S017 were calculated using ProMax software. ProMax output sheets for the PUL-96 Pad are attached.
- The emission rates displayed above are pre-control device emissions.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- ${\rm CO_2}$ and ${\rm CH_4}$ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.
- For emission calculation purposes, the total throughput for tanks S010 S017 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S018

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	17.01	3.11
HAPs	0.55	0.10
Hexane	0.44	0.08
Benzene	0.85	0.15
Toluene	0.50	0.09
Ethylbenzene	0.02	<0.01
Xylene	0.07	0.01
CO ₂	1.64	0.30
CH ₄	<0.01	<0.01
Total CO₂e	1.64	0.30

Notes:

- Blowdown operations are conducted on the PUL-96 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day (365 days per year).
- Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates.
- Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the PUL-96 Pad are attached.
- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Unloading Operations S020

Total Emissions from Tank Unloading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.19	0.82	70%	98%	<0.01	0.01	0.06	0.25
HAPs	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
CO_2	<0.01	<0.01	70%	98%	0.49	2.17	<0.01	<0.01
CH ₄	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
Total CO ₂ e	0.04	0.17			0.50	2.17	0.01	0.05

⁻ CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

- Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.
- Vapors from tank unloading operations are vapor-balanced to the produced fluid tanks and realized at one of the two enclosed combustion devices. AP-42 calculation methods were used to estimate the collection efficiency from tank unloading operations. Emissions that are not collected during the unloading events are realized at the Loading Rack Emission Point, E020.

Enclosed Ground Flares C019

Amount of Gas Sent to Enclosed Combustion Enclosed Combustion Device Max. Hourly Max. Yearly	
Input to Enclosed Combustion Device Pollutant Device (lbs/hr) Combustion Device (ms/year) Emissions Combustion Efficiency Emissions (lb/hr) Emissions (ms/yr)	Mole Fraction
VOCs 121.45 531.94 98% 2.43 10.64 Methane	0.16
HAPs 6.47 28.33 98% 0.13 0.57 Ethane	0.28
Hexane 6.03 26.39 98% 0.12 0.53 Propane	0.20
Benzene 9.21 40.35 98% 0.18 0.81 Butane	0.10
Produced Fluids Tanks S008 - S015 Toluene 5.77 25.26 98% 0.12 0.51 Pentanes	0.05
Ethylbenzene 0.19 0.85 98% <0.01 0.02 Carbon Dioxide	0.011
Xylene 0.87 3.79 98% 0.02 0.08	
CO ₂ 15.30 67.00 98% 329.15 1,441.69 Vent	Gas Properties
CH ₄ <0.01 <0.01 98% <0.01 <0.01	Mass Flow Rate
VOCs 17.01 3.11 98% 0.34 0.06 Vent Gas Properties	(lb/hr)
HAPs 0.55 0.10 98% 0.01 <0.01	(.2/111)
Hexane 0.44 0.08 98% <0.01 <0.01 Produced Fluids Tank	146.78
Benzene 0.85 0.15 98% 0.02 <0.01 Blowdown Tank	167.33

	Aylerie	0.07	3.19	30 /0	0.02	0.00
	CO ₂	15.30	67.00	98%	329.15	1,441.69
	CH ₄	<0.01	<0.01	98%	<0.01	<0.01
	VOCs	17.01	3.11	98%	0.34	0.06
	HAPs	0.55	0.10	98%	0.01	<0.01
	Hexane	0.44	0.08	98%	<0.01	<0.01
	Benzene	0.85	0.15	98%	0.02	<0.01
Sand Trap Blowdown Tank - S016	Toluene	0.50	0.09	98%	<0.01	<0.01
	Ethylbenzene	0.02	<0.01	98%	<0.01	<0.01
	Xylene	0.07	0.01	98%	<0.01	< 0.01
	CO ₂	1.64	0.30	98%	486.32	2,130.06
	CH ₄	<0.01	<0.01	98%	<0.01	<0.01
	VOCs	0.19	0.82	98%	<0.01	0.01
Truck Loading - S017	HAPs	<0.01	<0.01	98%	<0.01	<0.01
Truck Edading - 3017	CO ₂	<0.01	<0.01	98%	0.49	2.17
	CH ₄	<0.01	<0.01	98%	<0.01	<0.01
	VOCs	138.65	535.87	-	2.77	10.71
	HAPs	7.02	28.44	-	0.14	0.57
	Hexane	6.46	26.47	-	0.13	0.53
	Benzene	10.06	40.51	-	0.20	0.81
Totals	Toluene	6.27	25.35	-	0.13	0.51
Totals	Ethylbenzene	0.21	0.85	-	<0.01	0.02
	Xylene	0.94	3.81	-	0.02	0.08
	CO ₂	16.94	67.30	-	815.96	3,573.92
	CH ₄	<0.01	<0.01		<0.01	<0.01
	CO2e	16.98	67.47		815.96	3,573.93

Emissions from Pilot Operations

0.10

					perations						
Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50	1	1,088	30,000	19,220,000	<0.01	<0.01	-	-	< 0.01	<0.01
Hexane	1.80	-	1,088	30,000	19,220,000	<0.01	<0.01		-	< 0.01	<0.01
Formaldehyde	0.075	-	1,088	30,000	19,220,000	<0.01	<0.01			< 0.01	<0.01
CO	84		1,088	30,000	19,220,000	<0.01	0.01	1.48	6.50	1.49	6.51
NO _x	100	1	1,088	30,000	19,220,000	<0.01	0.01	1.77	7.74	1.77	7.75
PM _{Condensable}	5.70	1	1,088	30,000	19,220,000	<0.01	<0.01	0.10	0.44	0.10	0.44
PM _{Filterable}	1.90	1	1,088	30,000	19,220,000	<0.01	<0.01	0.03	0.15	0.03	0.15
PM _{Total}	7.60	-	1,088	30,000	19,220,000	<0.01	<0.01	0.13	0.59	0.13	0.59
SO ₂	0.60	-	1,088	30,000	19,220,000	<0.01	<0.01	0.01	0.05	0.01	0.05
CO ₂	120,000	53.06	1,088	30,000	19,220,000	3.51	15.37	2,248.30	9,847.56	2,251.81	9,862.93
CH ₄	2.3	0.001	1,088	30,000	19,220,000	<0.01	<0.01	0.04	0.19	0.04	0.19
N ₂ O	2.2	<0.001	1,088	30,000	19,220,000	<0.01	<0.01	<0.01	0.02	<0.01	0.02
Total HAPs										<0.01	<0.01
CO₂e								<u> </u>	·	2,254.14	9,873.11

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	2.77	10.71
HAPs	0.14	0.57
CO	1.49	6.51
NO _x	1.77	7.75
PM _{Condensable}	0.10	0.44
PM _{Filterable}	0.03	0.15
PM _{Total}	0.13	0.59
SO ₂	0.01	0.05
CO ₂	3,067.77	13,436.85
CH ₄	0.04	0.19
N ₂ O	<0.01	0.02
CO ₂ e	3,070.10	13,447.04

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
 CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₂=25, GWP N₂O=298

Example Calculations:

- Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)
- Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) + 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 + 24
- Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation
- Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcdd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcdd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$\begin{split} E_{_{ACO2}}(un-combusted) &= V_{_{a}} * (1-\eta) * X_{_{CN4}} & (\text{Eq. W-19}) \\ E_{_{ACO2}}(un-combusted) &= V_{_{a}} * X_{_{CO2}} & (\text{Eq. W-20}) \\ E_{_{aCO2}}(combusted) &= \sum_{j=1}^{i} (\eta * V_{_{a}} * Y_{_{j}} * R_{_{j}}) & (\text{Eq. W-21}) \end{split}$$

Where:

Ea,CH₄(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₃(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial I	Roads	
Constant	PM	PM-10	PM-2.5
k (lb/VMT)	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

Particle size multiplier 1

Silt content of road surface material (%) ² 4.8 150

Number of days per year with precipitation >0.01 in. ³

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	1.60	1	80	NA	NA	6.85	0.27	1.75	0.07	0.17	< 0.01
2	Employee Vehicles	4	3	10	1.60	1	200	NA	NA	2.43	0.24	0.62	0.06	0.06	<0.01
									Totals:	9.29	0.52	2.37	0.13	0.24	0.013

Notes:

1 - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in³ found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations: Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - $E_{ext} = E[(365-p)/365]$

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹						
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves		
Wellheads	8	38	0.5	0		
Separators	1	6	0	0		
Meters/Piping	12	45	0	0		
Compressors	12	57	0	0		
In-line Heaters	14	65	2	1		
Dehydrators	24	90	2	2		

¹⁻ Table W-1B to 40CFR98 Subpart W

Facility Equipment Type	Count on Site
Wellheads	8
Separators	8
Meters/Piping	9
Compressors	0
In-line Heaters	9
Dehydrators	0

Well Specific Equipment Counts

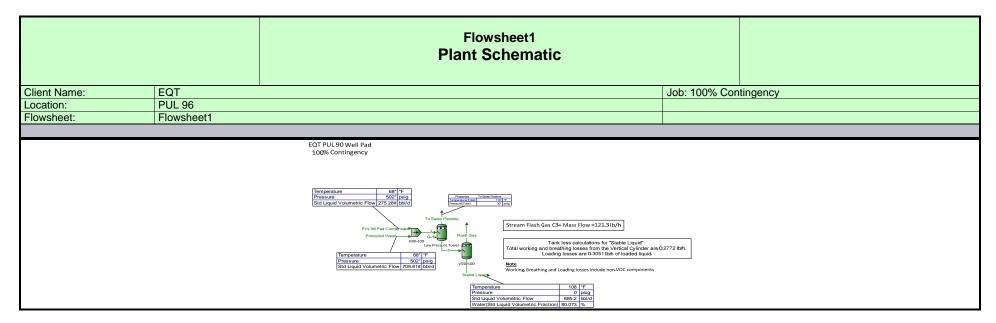
Gas Composition										
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes+	CO ₂	CH ₄				
Mole %	4.00	1.78	0.64	0.58	0.15	78.13				
MW	44	58	72	86.00	44.00	16.00				

	Fugitive Emissions														
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	Hexane (lbs/hr)	Hexane (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO₂e (lbs/hr)	Total CO ₂ e (tons/yr)
Valves	306	0.027	8760	0.08	0.35	0.01	0.05	0.011	0.05	< 0.01	< 0.01	0.27	1.17	6.70	29.34
Connectors	1342	0.003	8760	0.04	0.17	< 0.01	0.02	<0.01	0.02	< 0.01	<0.01	0.13	0.57	3.26	14.30
Open-ended Lines	22	0.061	8760	0.01	0.06	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	0.04	0.19	1.09	4.77
Pressure Relief Valves	9	0.040	8760	<0.01	0.02	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	0.01	0.05	0.29	1.28
			Total Emissions:	0.14	0.60	0.02	0.08	0.02	0.08	<0.01	0.01	0.45	1.99	11.34	49.69

²- Table W-1A to 40CFR98 Subpart W

Notes:
-Gas Composition data for PUL-96 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations:
Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's


Total PUL 96 Site Emission Levels

	VC	OCs	HA	APs	C	Ö	N	O _x	PIV	Total	PM _F	ilterable	PM _{Cor}	ndensable	S	02	(CO ₂	С	H ₄	N	20		CO ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E002)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E003)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E004)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E005)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E006)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E007)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	<0.01	< 0.01	180.33	789.85
Line Heater (E008)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	<0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (E009)	< 0.01	0.02	< 0.01	< 0.01	0.08	0.34	0.09	0.40	< 0.01	0.03	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	134.52	589.21	< 0.01	0.01	<0.01	< 0.01	134.66	589.82
TEG (E022)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.52	6.66	< 0.01	<0.01	<0.01	< 0.01	1.52	6.67
TEG (E023)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	1.52	6.66	< 0.01	< 0.01	< 0.01	< 0.01	1.52	6.67
Compressor Engine (E021)	0.29	1.29	0.02	0.07	0.88	3.85	0.42	1.85	0.014	0.06	< 0.01	0.03	< 0.01	0.03	< 0.01	< 0.01	82.49	361.32	< 0.01	<0.01	<0.01	< 0.01	82.58	361.69
Enclosed Combustion Unit (E019)	2.77	10.71	0.14	0.57	1.49	6.51	1.77	7.75	0.13	0.59	0.03	0.15	0.10	0.44	0.011	0.05	3,067.77	13,436.85	0.04	0.19	< 0.01	0.02	3,070.10	13,447.04
*Tank Truck Loading Operations (E020)	0.06	0.25	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01						-	< 0.01	< 0.01	0.00	0.00	0.00	0.00	< 0.01	< 0.01	0.01	0.05
Haul Roads						-			9.29	0.52	9.29	0.52	< 0.01	< 0.01		-				-				
Fugitives Leaks	0.14	0.60	0.02	0.08												-	<0.01	0.01	0.45	1.99			11.34	49.69
Totals	3.32	13.10	0.20	0.81	3.26	14.29	3.26	14.28	9.51	1.52	9.35	0.78	0.17	0.74	0.02	0.08	4,728.99	20,712.99	0.53	2.31	0.01	0.03	4,744.39	20,780.42

^{*}Emissions from Tank Truck Loading Operations are routed to the vapor combustion unit. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the VDU are realized at the Tank Truck Loading Operations Emission Point.

Total PUL-96 Site Emission Levels - HAP Speciation

	Total	HAPs	Formal	ldehyde	Hex	cane	Ben	zene	Tolu	iene	Ethylb	enzene	Xyl	ene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E002)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E003)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E004)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E005)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E006)	<0.01	0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Line Heater (E007)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E008)	<0.01	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Line Heater (E009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E023)	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Compressor Engine (E021)	0.02	0.07	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Enclosed Combustion Unit (E019)	0.14	0.57	< 0.01	<0.01	0.13	0.53	0.02	<0.01	0.12	0.51	<0.01	<0.01	0.02	0.08
Tank Truck Loading Activities (E020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	0.02	0.08	<0.01	<0.01	0.02	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.20	0.81	0.02	0.07	0.15	0.61	0.02	<0.01	0.12	0.51	<0.01	<0.01	0.02	0.08

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: 100% Contingency Location: Flowsheet: PUL 96 Flowsheet1

Connections

	Flash Gas	Produced Water	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline
From Block	VSSL-100			VSSL-100	Low Pressure
					Tower
To Block		MIX-100	MIX-100		

	Stream C	omposition			
Mala Frantian	Flash Gas	Produced Water %	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline
Mole Fraction	%		%	%	%
Nitrogen	0	U	0 *	· · · · · · · · · · · · · · · · · · ·	0
Methane	3.56876	0 *	13.84 *		30.536
Carbon Dioxide	0.0514122	0 *	0.056 *	3.60314E-05	0.116075
Ethane	11.7232	0 *	11.604 *		23.8259
Propane	21.7053	0 *	10.834 *	0.0506719	18.801
Isobutane	7.81513	0 *	3.233 *	0.0429043	4.3111
n-Butane	19.2242	0 *	8.093 *	0.146279	9.3426
Isopentane	8.38478	0 *	4.712 *	0.153044	3.27958
n-Pentane	8.30988	0 *	5.407 *	0.197733	3.12575
Isohexane	4.19044	0 *	4.842 *	0.225779	1.45541
n-Hexane	2.62629	0 *	3.864 *	0.190028	0.899706
Benzene	0.0969724	0 *	0.148 *	0.00732168	0.0333923
Cyclohexane	0.403648	0 *	0.738 *	0.0375985	0.137673
Heptane	2.35779	0 *	8.689 *	0.474244	0.797986
Toluene	0.141191	0 *	0.609 *	0.0335584	0.0475776
Octane	0.952616	0 *	9.628 *	0.547102	0.324464
Ethylbenzene	0.00690387	0 *	0.081 *	0.00461733	0.00235053
o-Xylene	0.0583075	0 *	0.882 *	0.050497	0.0199098
Nonane	0.16536	0 *	4.579 *	0.26396	0.056599
Decane	0.0675793	0 *	5.147 *	0.298242	0.023768
C11	0.00604299	0 *	1.371 *	0.0796016	0.00216183
C12	0.00155615	0 *	0.834 *	0.0484513	0.000565363
C13	0.000154094	0 *	0.255 *	0.0148186	5.74613E-05
C14	0.000106442	0 *	0.554 *	0.0321973	4.06907E-05
Water	8.14235	100 *	0 *	97.0921	2.86025

	Flash Gas	Produced Water	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline
Mass Fraction	%	%	%	%	%
Nitrogen	0	0 *	0 *	0	0
Methane	1.07657	0 *	3.073 *	0.000427552	13.2409
Carbon Dioxide	0.0425468	0 *	0.0341107 *	7.7255E-05	0.138076
Ethane	6.62859	0 *	4.82929 *	0.012747	19.3643
Propane	17.9977	0 *	6.61211 *	0.108858	22.4083
Isobutane	8.54147	0 *	2.60078 *	0.121491	6.77272
n-Butane	21.0109	0 *	6.5104 *	0.414214	14.6772
Isopentane	11.3756	0 *	4.70533 *	0.537954	6.39558
n-Pentane	11.274	0 *	5.39935 *	0.695036	6.09559
Isohexane	6.79042	0 *	5.77516 *	0.947909	3.39002
n-Hexane	4.2558	0 *	4.60868 *	0.79781	2.09564
Benzene	0.142436	0 *	0.160005 *	0.027863	0.070501
Cyclohexane	0.638793	0 *	0.859638 *	0.15416	0.313174
Heptane	4.44259	0 *	12.0504 *	2.31514	2.16125
Toluene	0.244626	0 *	0.77663 *	0.150641	0.118489
Octane	2.04619	0 *	15.2218 *	3.04469	1.00178
Ethylbenzene	0.0137825	0 *	0.119021 *	0.023882	0.00674497
o-Xylene	0.116402	0 *	1.296 *	0.261184	0.0571321
Nonane	0.398804	0 *	8.12833 *	1.64935	0.196208
Decane	0.180808	0 *	10.1358 *	2.06737	0.091406
C11	0.0177618	0 *	2.96603 *	0.606182	0.00913348
C12	0.00498437	0 *	1.96619 *	0.402077	0.00260294

Process Streams Report All Streams Tabulated by Total Phase

Job: 100% Contingency Client Name: EQT PUL 96

Location: Flowsheet: Flowsheet1

Flash Gas	Produced Water	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline
%	%	<u> </u>	%	%
0.000534207	0 *	0.650678 *	0.1331	0.000286338
0.000397084	0 *	1.52118 *	0.311197	0.000218194
2.75832	100 *	0 *	85.2166	1.39277
	% 0.000534207 0.000397084	% Water % 0.000534207 0 * 0.000397084 0 *	Water Condensate % % 0.000534207 0 * 0.650678 * 0.000397084 0 * 1.52118 *	Water Condensate % 0.000534207 0 * 0.650678 * 0.1331 0.000397084 0 * 1.52118 * 0.311197

Mass Flow	Flash Gas	Produced Water lb/h	PUL 96 Pad Condensate lb/h	Stable Liquid	To Sales Pipeline Ib/h
Nitrogen	0	0 *	0 *	0	0
Methane	1.45896	0 *	76.296 *	0.0518864	74.7852
Carbon Dioxide	0.0576592	0 *	0.846895 *	0.00937544	0.77986
Ethane	8.98304	0 *	119.901 *	1.54694	109.371
Propane	24.3904	0 *	164.164 *	13.2107	126.563
Isobutane	11.5754	0 *	64.5718 *	14.7437	38.2527
n-Butane	28.4739	0 *	161.639 *	50.2678	82.8975
Isopentane	15.4162	0 *	116.823 *	65.2845	36.1226
n-Pentane	15.2785	0 *	134.054 *	84.3475	34.4282
Isohexane	9.20235	0 *	143.385 *	115.035	19.147
n-Hexane	5.76744	0 *	114.423 *	96.8198	11.8363
Benzene	0.193028	0 *	3.97259 *	3.38137	0.398194
Cyclohexane	0.865689	0 *	21.3429 *	18.7084	1.76882
Heptane	6.02058	0 *	299.186 *	280.958	12.2068
Toluene	0.331515	0 *	19.282 *	18.2813	0.66923
Octane	2.77299	0 *	377.925 *	369.494	5.65813
Ethylbenzene	0.018678	0 *	2.95503 *	2.89825	0.038096
o-Xylene	0.157747	0 *	32.177 *	31.6965	0.322685
Nonane	0.540457	0 *	201.809 *	200.16	1.10819
Decane	0.24503	0 *	251.651 *	250.889	0.516266
C11	0.0240708	0 *	73.6401 *	73.5644	0.0515864
C12	0.0067548	0 *	48.8163 *	48.7948	0.0147015
C13	0.000723954	0 *	16.1549 *	16.1526	0.00161725
C14	0.000538126	0 *	37.7677 *	37.7659	0.00123237
Water	3.73807	10353.2 *	0 *	10341.6	7.86642

		Stream I	Properties			
Property	Units	Flash Gas	Produced Water	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline
Temperature	°F	107.981	68 *	68 *	107.981	110 *
Pressure	psia	14.6959 *	516.696 *	516.696 *	14.6959	44.6959 *
Mole Fraction Vapor	%	100	0	0	0	100
Mole Fraction Light Liquid	%	0	100	100	2.90895	0
Mole Fraction Heavy Liquid	%	0	0	0	97.091	0
Molecular Weight	lb/lbmol	53.1797	18.0153	72.251	20.5258	36.9971
Mass Density	lb/ft^3	0.130888	62.3219	39.8305	57.9022	0.278785
Molar Flow	lbmol/h	2.54833	574.692	34.3633	591.241	15.2662
Mass Flow	lb/h	135.52	10353.2	2482.78	12135.7	564.806
Vapor Volumetric Flow	ft^3/h	1035.39	166.125	62.3337	209.589	2025.95
Liquid Volumetric Flow	gpm	129.087	20.7117	7.77147	26.1306	252.587
Std Vapor Volumetric Flow	MMSCFD	0.0232093	5.23408	0.312968	5.3848	0.139039
Std Liquid Volumetric Flow	sgpm	0.476858	20.6969 *	8.02895 *	25.8184	2.43058
Compressibility		0.980165	0.026376	0.165515	0.00085518	0.970239
Specific Gravity		1.83615	0.999244	0.638627	0.928381	1.27741
API Gravity			9.95096	88.4445	19.0659	
Enthalpy	Btu/h	-145121	-7.07024E+07	-2.53078E+06	-7.18605E+07	-673066
Mass Enthalpy	Btu/lb	-1070.85	-6829.01	-1019.33	-5921.41	-1191.68
Mass Cp	Btu/(lb*°F)	0.421959	0.98244	0.528322	0.914034	0.444781
Ideal Gas CpCv Ratio	·	1.09786	1.32594	1.0756	1.27859	1.13979
Dynamic Viscosity	cP	0.0083734	1.0284	0.247634	0.58783	0.009574
Kinematic Viscosity	cSt	3.99376	1.03015	0.388127	0.627858	2.14389
Thermal Conductivity	Btu/(h*ft*°F)	0.0106577	0.346162	0.067231	0.303628	0.0138944

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job: 100%	Contingency
Location:	PUL 96			
Flowsheet:	Flowsheet1			

	Stream Properties									
Property	Units	Flash Gas	Produced Water	PUL 96 Pad Condensate	Stable Liquid	To Sales Pipeline				
Surface Tension	lbf/ft		0.0050581	0.000865521 ?	0.00404781 ?					
Net Ideal Gas Heating Value	Btu/ft^3	2677.38	0	3700.05	153.797	1925.3				
Net Liquid Heating Value	Btu/lb	18923.9	-1059.76	19280.3	1916.87	19599.1				
Gross Ideal Gas Heating Value	Btu/ft^3	2905.64	50.31	3998.81	214.597	2098.87				
Gross Liquid Heating Value	Btu/lb	20552.7	0	20849.4	3040.95	21379.4				

			3 7				
		All St	reams Report treams by Total Phase				
Client Name:	EQT			Job: 100%	Contingency		
Location:	PUL 96						
Flowsheet:	Flowsheet1						
	<u> </u>			<u> </u>			
		Conn	ections				
		1	3				
From Block		Low Pressure	MIX-100				
		Tower					
To Block		VSSL-100	Low Pressure				
			Tower				
		Stream C	omposition				
		1	3				
Mole Fraction		<u>,</u> %	%				
Nitrogen		0	0				
Methane		0.0158605	0.780862				
Carbon Dioxide		0.00025652	0.00315956				
Ethane		0.0589761	0.654705				
Propane		0.143606	0.611262				
Isobutane		0.07626	0.182408				
n-Butane		0.228155	0.456612				
Isopentane		0.188372	0.265854				
n-Pentane		0.232547	0.305067				
Isohexane		0.242794	0.273189				
n-Hexane		0.200483	0.218009				
Benzene		0.00770643	0.00835026				
Cyclohexane		0.0391694	0.0416385				
Heptane		0.482327	0.490239				
Toluene		0.0340204	0.0343602				
Octane		0.548842	0.543218				
Ethylbenzene		0.00462714	0.00457007				
o-Xylene		0.0505306	0.049763				
Nonane		0.263537	0.25835				
Decane		0.297252	0.290397				
C11		0.0792859	0.0773527				
C12		0.0482501	0.0470548				
C13		0.0147557	0.0143873				
C14		0.0320596	0.0312571				
Water		96.7103	94.3579				
		1	3	·			
Mass Fraction		%	%				
Nitrogen		0	0				
Methane		0.0123121	0.59439				
Carbon Dioxide		0.000546276	0.0065978	-			
Ethane		0.0858104	0.934097				
Propane		0.306417	1.27894				
Isobutane		0.214478	0.503051				
n-Butane		0.641678	1.25926				
Isopentane		0.657642	0.91012				
n-Pentane		0.811867	1.04436				
Isohexane		1.01243	1.11705				
n-Hexane		0.835999	0.891425				
Benzene		0.0291283	0.0309488				
Cyclohexane		0.159512	0.166274				
Heptane		2.33863	2.33083				
Toluene		0.151679	0.150218				
Octane		3.03366	2.94425				
Ethylbenzene		0.0237705	0.0230214				
o-Xylene		0.259585	0.250677				
Nonane		1.63554	1.57221				
Decane		2.04653	1.9605				
C11		0.599684	0.573699				
C12 C13		0.397691 0.131636	0.380307 0.125856				
C13		0.131636	0.125856				
U14		0.307764	0.294232				

			All St	eams Report reams y Total Phase			
	EQT				Job: 100%	Contingency	
	PUL 96 Flowsheet1						
Flowsheet:	Flowsneet1						
			1	3			
Mass Fraction			%	%			
Water			84.306	80.6577			
			1	3			
Mass Flow			lb/h	lb/h			
Nitrogen			0	0			
Methane Carbon Dioxide			1.51085 0.0670347	76.296 0.846895			
Ethane			10.53	119.901			
Propane			37.6011	164.164			
Isobutane			26.3191	64.5718			
n-Butane			78.7416	161.639			
Isopentane			80.7007	116.823			
n-Pentane			99.6259 124.238	134.054 143.385			
n-Hexane			124.238	143.385			
Benzene			3.57439	3.97259			
Cyclohexane			19.5741	21.3429			
Heptane			286.979	299.186			
Toluene			18.6128	19.282			
Octane			372.267	377.925			
Ethylbenzene o-Xylene			2.91693 31.8543	2.95503 32.177			
Nonane			200.701	201.809			
Decane			251.134	251.651			
C11			73.5885	73.6401			
C12			48.8016	48.8163			
C13			16.1533	16.1549			
C14 Water			37.7664 10345.4	37.7677 10353.2			
vvalei			10343.4	10333.2			
			Ctroom F	Properties			
Property		Units	1	3	<u> </u>		
Temperature		°F	110	68.046			
Pressure		psia	44.6959	516.696			
Mole Fraction Vapor		%	0	0			
Mole Fraction Light L		%	3.28736	5.57428			
Mole Fraction Heavy	Liquid	%	96.7126	94.4257			
Molecular Weight		lb/lbmol	20.6659	21.0753			
Mass Density Molar Flow		lb/ft^3 lbmol/h	57.4791 593.789	56.2137 609.055			
Mass Flow		lb/h	12271.2	12836		<u> </u>	
Vapor Volumetric Flo	w	ft^3/h	213.49	228.343			
		gpm	26.6169	28.4688			
Liquid Volumetric Flo		MMSCFD	5.40801	5.54705			
Std Vapor Volumetric				28.7258			
Std Vapor Volumetric		sgpm	26.2952				
Std Vapor Volumetric Std Liquid Volumetric Compressibility		sgpm	0.00262861	0.034206			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity		sgpm	0.00262861 0.921597	0.034206 0.901309			
Std Vapor Volumetric Std Liquid Volumetric Compressibility		sgpm Btu/h	0.00262861	0.034206			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy		Btu/h Btu/lb	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp	Flow	Btu/h	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio	Flow	Btu/h Btu/lb Btu/(lb*°F)	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity	Flow	Btu/h Btu/lb Btu/(lb*°F)	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618 0.565543	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462 0.812601			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity	Flow	Btu/h Btu/lb Btu/(lb*°F) cP cSt	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618 0.565543 0.605697	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462 0.812601 0.852955			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratic Dynamic Viscosity Kinematic Viscosity Thermal Conductivity	Flow	Btu/h Btu/lb Btu/(lb*°F)	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618 0.565543 0.605697 0.299795	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462 0.812601 0.852955 0.269709			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratic Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension Net Ideal Gas Heating	Flow o	Btu/h Btu/lb Btu/(lb*°F) cP cSt Btu/(h*ft*°F)	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618 0.565543 0.605697	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462 0.812601 0.852955			
Std Vapor Volumetric Std Liquid Volumetric Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratic Dynamic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension	g Value	Btu/h Btu/lb Btu/(lb*°F) cP cSt Btu/(h*ft*°F)	0.00262861 0.921597 20.0096 -7.20056E+07 -5867.85 0.910722 1.27618 0.565543 0.605697 0.299795 0.00397277 ?	0.034206 0.901309 25.1307 -7.32332E+07 -5705.29 0.895104 1.27462 0.812601 0.852955 0.269709 0.00391811 ?			

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT	J	lob: 100% (Contingency
Location:	PUL 96			
Flowsheet:	Flowsheet1			
	•			
Remarks				

Simulation Initiated on 2/15/2016 9:46:30 AM			PI	PUL 96_100% Continge	ncy_2.15.16.pm	nx		Page 1 of 1
		En	nergy Strea	ım Repo	ort			
Client Name:	EQT						Job: 100% Con	tingency
Location:	PUL 96	JL 96						
Flowsheet:	Flowsheet1							
				Energy St	reams			
Energy Stream		Energy Ra	te	Powe	r	F	rom Block	To Block
Q-1		554484	Btu/h	217.92	hp			Low Pressure Tower
Remarks								

Blocks **Low Pressure Tower**

Separator Report

Client Name:	EQT	Job: 100% Contingency
Location:	PUL 96	Modified: 11:05 AM, 1/21/2016
Flowsheet:	Flowsheet1	Status: Solved 9:42 AM, 2/15/2016

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
3	Inlet	MIX-100	To Sales Pipeline	Vapor Outlet	
1	Light Liquid Outlet	VSSL-100	0-1	Energy	

Block Parameters							
Pressure Drop	472 psi	Main Liquid Phase	Light Liquid				
Mole Fraction Vapor	2.50654 %	Heat Duty	554484 Btu/h				
Mole Fraction Light Liquid	3.20496 %	Heat Release Curve Type	Plug Flow				
Mole Fraction Heavy Liquid	94.2885 %	Heat Release Curve	5				
		Increments					

Page 1 of 1 **Blocks MIX-100** Mixer/Splitter Report Job: 100% Contingency Modified: 2:14 PM, 7/24/2014 Status: Solved 9:42 AM, 2/15/2016 Client Name: EQT PUL 96 Location: Flowsheet: Flowsheet1 **Connections** Connection Type Connection Type Stream Other Block Stream Other Block **Produced Water** Inlet PUL 96 Pad Inlet Condensate 3 Low Pressure Tower Outlet **Block Parameters** 100 % Fraction to PStream 3 Pressure Drop 0 psi Remarks

Blocks VSSL-100

Separator Report

Client Name:	EQT	Job: 100% Contingency
Location:	PUL 96	Modified: 12:29 PM, 12/3/2015
Flowsheet:	Flowsheet1	Status: Solved 9:42 AM, 2/15/2016

Stream	Connection Type	Other Block	Stream	Connection Type	Other Block	
1	Inlet	Low Pressure Tower	Flash Gas	Vapor Outlet		
Stable Liquid	Light Liquid Outlet					
Block Parameters						
D		00'	Maria I family Disease	1.5 - 1.6 - 1.1	Control of	

Connections

Block Parameters						
Pressure Drop	30 psi	Main Liquid Phase	Light Liquid			
Mole Fraction Vapor	0.429165 %	Heat Duty	0 Btu/h			
Mole Fraction Light Liquid	2.89647 %	Heat Release Curve Type	Plug Flow			
Mole Fraction Heavy Liquid	96.6744 %	Heat Release Curve	5			
		Increments				

		Flowsheet Environment Environment1				
Client Name:	EQT	Job: 100%	Contingency			
Location:	PUL 96					
Flowsheet:	Flowsheet1					
Environment Settings						

Environment Settings						
Number of Poynting Intervals	0	Freeze Out Temperature Threshold Difference	10 °F			
Gibbs Excess Model Evaluation Temperature	77 °F	Phase Tolerance	1 %			

Components							
Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator		
Nitrogen	False	False	Heptane	False	False		
Methane	False	False	Toluene	False	False		
Carbon Dioxide	False	False	Octane	False	False		
Ethane	False	False	Ethylbenzene	False	False		
Propane	False	False	o-Xylene	False	False		
Isobutane	False	False	Nonane	False	False		
n-Butane	False	False	Decane	False	False		
Isopentane	False	False	C11	False	False		
n-Pentane	False	False	C12	False	False		
Isohexane	False	False	C13	False	False		
n-Hexane	False	False	C14	False	False		
Benzene	False	False	Water	False	True		
Cyclohexane	False	False					

Physical Property Method Sets							
Liquid Molar Volume COSTALD Overall Package Peng-Robinson							
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson				
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson				

Client Name: EQT Job: 100% Contingency
Location: PUL 96

Simple Solver 1

Source Code

Residual Error (for CV1) = TF / 885.1642531 - 1

Calculated Variable [CV1]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!PUL 96 Pad Condensate!Phases!Total!Properties!Std Liquid Volumetric Flow

Value 275.278
Unit bbl/d

Measured Variable [TF]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Properties!Std Liquid Volumetric Flow Value 885.202
Unit bbl/d

	Solv	Status: Solved	
Error	4.23218E-05	Iterations	4
Calculated Value	8.02895 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

Remarks

Simple Solver 2 Source Code

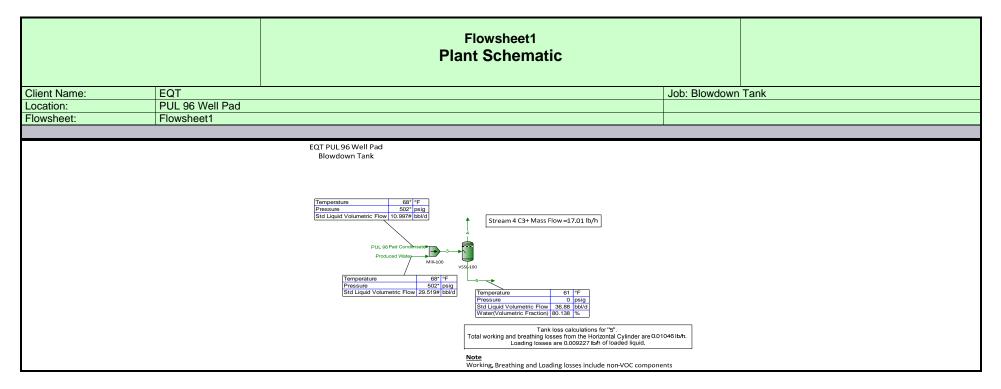
Residual Error (for CV1) = WP /80 - 1

Calculated Variable [CV1]

SourceMoniker ProMax:ProJect!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Flow Value 709.607
Unit bbl/d

Measured Variable [WP]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Stable Liquid!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water


Value 80.0735
Unit %

	Solve	Status: Solved	
Error	0.000918197	Iterations	4
Calculated Value	20.6969 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

^{*} User Specified Values

Simulation initiated on 2/	13/2010 3.40.30 AW	1 02 30_100 % 0	onungency_z.15.16.pmx		rage 1 01 2		
		User Valu	e Sets Report				
Client Name:	EQT			Job: 100% Contingency			
Location:	PUL 96						
			Flow/Frac.				
* 6			e [CnPlusSum]				
* Parameter Lower Bound		121.282 lb/h lb/h	Upper Bound * Enforce Bounds	F	alse		
	Remarks This User Value Set was programmatically generated. GUID={E867C485-3D3C-49CB-BC24-EA16096DB2B1}						
		Tan	k Losses				
			e [ShellLength]				
* Parameter		20 ft	Upper Bound				
* Lower Bound		0 ft	* Enforce Bounds	Fa	alse		
		Hear Valu	ıe [ShellDiam]				
* Parameter		12 ft	Upper Bound				
* Lower Bound		0 ft	* Enforce Bounds	Fa	alse		
* Doromotor			e [BreatherVP] Upper Bound				
* Parameter Lower Bound		0.03 psig	* Enforce Bounds	F	alse		
			[BreatherVacP]				
* Parameter Lower Bound		-0.03 psig	Upper Bound * Enforce Bounds	E-	alse		
Lower Bouria			Efficice Bourius	1	aise		
		User Value	[DomeRadius]				
Parameter		ft	Upper Bound		ft		
Lower Bound		ft	* Enforce Bounds	F	alse		
		User Val	ue [OpPress]				
* Parameter		0 psig	Upper Bound				
Lower Bound			* Enforce Bounds	Fa	alse		
		Hoor Volus	[AvaParanti ia]				
* Parameter		50 %	[AvgPercentLiq] Upper Bound				
Lower Bound		%	* Enforce Bounds	F	alse		
* Doromate:			[MaxPercentLiq]				
* Parameter Lower Bound		90 %	Upper Bound * Enforce Bounds	Fr	alse		
		· 					
			ie [AnnNetTP]				
* Parameter * Lower Bound		883.46 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds	г.	alse		
LOWEI DOUIIG		o bbi/day	Emole bounds	F:	aisc		
		User V	alue [OREff]				
* Parameter		0 %	Upper Bound				
Lower Bound		%	* Enforce Bounds	F:	alse		
		Hear Value	[AtmPressure]				
* Parameter		14.1085 psia	Upper Bound				
Lower Bound		•	* Enforce Bounds	F	alse		

		OSCI Val	lue Sets Report	
ient Name:	EQT			Job: 100% Contingency
cation:	PUL 96			
_			Value [TVP]	
Parameter Lower Bound		0.417101 psia	Upper Bound * Enforce Bounds	False
Lower Bouria			Efficice Bourius	i dise
		User Value	e [AvgLiqSurfaceT]	
Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds	False
Lower Bound			Lilloice Bourius	i dise
		User Value	e [MaxLiqSurfaceT]	
Parameter		66.3119 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User Val	ue [TotalLosses]	
Parameter		0.27719 lb/h	Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
		Hear Value	e [WorkingLosses]	
Parameter		0.12016 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
		11 1/	- FO(1'1 1	
Parameter		0.0316019 ton/yr	E [StandingLosses] Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
Danasatan			e [RimSealLosses]	
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
			e [WithdrawalLoss]	
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
Lower Bouria			Lilloice Bourius	i dise
		User Value	e [LoadingLosses]	
Parameter		0.305068 lb/h	Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
		User Value	[DeckFittingLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Hear Value	[DeckSeamLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		11a an 1/a	[Fleebing]	
Parameter		User Value 0 ton/yr	E [FlashingLosses] Upper Bound	
Lower Bound		O tollyl	* Enforce Bounds	False
Doronasta			e [GasMoleWeight]	
Parameter Lower Bound		0.0327431 kg/mol	Upper Bound * Enforce Bounds	False
				, 6.00

5

VSSL-100

4

VSSL-100

From Block

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: EQT Job: Blowdown Tank PUL 96 Well Pad Location: Flowsheet: Flowsheet1

Connections

PUL 96 Pad

Condensate

3

MIX-100

Produced

Water

To Block	MIX-100	MIX-100	VSSL-100					
Stream Composition								
	Produced Water	PUL 96 Pad Condensate	3	4	5			
Mole Fraction	%	%	%	%	%			
Nitrogen	0 *	0 *	0	0	0			
Methane	0 *	13.84 *	0.751578	28.8854	0.00536481			
Carbon Dioxide	0 *	0.056 *	0.00304107	0.113166	0.000120135			
Ethane	0 *	11.604 *	0.630152	23.4021	0.0261554			
Propane	0 *	10.834 *	0.588338	19.6715	0.0821819			
Isobutane	0 *	3.233 *	0.175567	4.79272	0.053103			
n-Butane	0 *	8.093 *	0.439488	10.5591	0.171079			
Isopentane	0 *	4.712 *	0.255884	3.73116	0.163707			
n-Pentane	0 *	5.407 *	0.293626	3.48393	0.209007			
Isohexane	0 *	4.842 *	0.262944	1.504	0.230026			
n-Hexane	0 *	3.864 *	0.209834	0.886376	0.191889			
Benzene	0 *	0.148 *	0.0080371	0.0334913	0.00736196			
Cyclohexane	0 *	0.738 *	0.0400769	0.13405	0.0375844			
Heptane	0 *	8.689 *	0.471854	0.665967	0.466705			
Toluene	0 *	0.609 *	0.0330716	0.0400273	0.0328871			
Octane	0 *	9.628 *	0.522846	0.225742	0.530726			
Ethylbenzene	0 *	0.081 *	0.00439868	0.0016503	0.00447158			
o-Xylene	0 *	0.882 *	0.0478968	0.0133544	0.048813			
Nonane	0 *	4.579 *	0.248661	0.0331556	0.254377			
Decane	0 *	5.147 *	0.279506	0.0116212	0.286612			
C11	0 *	1.371 *	0.0744518	0.000876963	0.0764033			
C12	0 *	0.834 *	0.0452902	0.000200036	0.0464861			
C13	0 *	0.255 *	0.0138477	1.63744E-05	0.0142146			
C14	0 *	0.554 *	0.0300848	9.38313E-06	0.0308825			
Water	100 *	0 *	94.5695	1.81048	97.0298			

Maga Frantian	Produced Water %	PUL 96 Pad Condensate	3	4 %	5
Mass Fraction		%	%		
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	3.073 *	0.575231	12.1667	0.00419699
Carbon Dioxide	0 *	0.0341107 *	0.00638513	0.130763	0.000257827
Ethane	0 *	4.82929 *	0.903988	18.4755	0.0383525
Propane	0 *	6.61211 *	1.23771	22.7748	0.17672
Isobutane	0 *	2.60078 *	0.486836	7.31387	0.150513
n-Butane	0 *	6.5104 *	1.21867	16.1135	0.484899
Isopentane	0 *	4.70533 *	0.880784	7.06798	0.575982
n-Pentane	0 *	5.39935 *	1.0107	6.59966	0.735365
Isohexane	0 *	5.77516 *	1.08104	3.40294	0.966659
n-Hexane	0 *	4.60868 *	0.862692	2.00551	0.806392
Benzene	0 *	0.160005 *	0.0299512	0.0686865	0.0280429
Cyclohexane	0 *	0.859638 *	0.160914	0.296205	0.154249
Heptane	0 *	12.0504 *	2.2557	1.75207	2.28051
Toluene	0 *	0.77663 *	0.145376	0.0968322	0.147768
Octane	0 *	15.2218 *	2.84935	0.677032	2.95637
Ethylbenzene	0 *	0.119021 *	0.0222793	0.00460009	0.0231502
o-Xylene	0 *	1.296 *	0.242597	0.0372246	0.252714
Nonane	0 *	8.12833 *	1.52153	0.111649	1.59099
Decane	0 *	10.1358 *	1.89731	0.0434132	1.98864
C11	0 *	2.96603 *	0.555207	0.00359903	0.582381
C12	0 *	1.96619 *	0.368048	0.000894613	0.386136
C13	0 *	0.650678 *	0.1218	7.9261E-05	0.127796

Process Streams Report All Streams Tabulated by Total Phase Job: Blowdown Tank Client Name: EQT Location: Flowsheet: PUL 96 Well Pad Flowsheet1

Mass Fraction	Produced Water	Condensate	3 %	4 %	5 %
Wass Fraction	%	70	70	70	70
C14	0 *	1.52118 *	0.284748	4.88749E-05	0.298773
Water	100 *	0 *	81.2811	0.856362	85.2431
	Produced	PUL 96 Pad	3	4	5
	Water	Condensate			

	Produced	PUL 96 Pad	3	4	5
l., -,	Water	Condensate			
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0 *	0 *	0	0	0
Methane	0 *	3.04795 *	3.04795	3.02675	0.0211943
Carbon Dioxide	0 *	0.0338326 *	0.0338326	0.0325306	0.00130199
Ethane	0 *	4.78991 *	4.78991	4.59624	0.193676
Propane	0 *	6.5582 *	6.5582	5.66579	0.892412
Isobutane	0 *	2.57957 *	2.57957	1.8195	0.760072
n-Butane	0 *	6.45732 *	6.45732	4.00863	2.44868
Isopentane	0 *	4.66697 *	4.66697	1.75833	2.90864
n-Pentane	0 *	5.35532 *	5.35532	1.64183	3.7135
Isohexane	0 *	5.72807 *	5.72807	0.846562	4.88151
n-Hexane	0 *	4.5711 *	4.5711	0.498918	4.07218
Benzene	0 *	0.158701 *	0.158701	0.0170874	0.141613
Cyclohexane	0 *	0.852628 *	0.852628	0.0736881	0.77894
Heptane	0 *	11.9522 *	11.9522	0.43587	11.5163
Toluene	0 *	0.770297 *	0.770297	0.0240893	0.746208
Octane	0 *	15.0977 *	15.0977	0.168428	14.9293
Ethylbenzene	0 *	0.11805 *	0.11805	0.00114438	0.116906
o-Xylene	0 *	1.28544 *	1.28544	0.00926052	1.27618
Nonane	0 *	8.06205 *	8.06205	0.0277754	8.03428
Decane	0 *	10.0532 *	10.0532	0.0108001	10.0424
C11	0 *	2.94184 *	2.94184	0.000895347	2.94095
C12	0 *	1.95016 *	1.95016	0.000222557	1.94994
C13	0 *	0.645373 *	0.645373	1.97181E-05	0.645353
C14	0 *	1.50878 *	1.50878	1.21588E-05	1.50877
Water	430.68 *	0 *	430.68	0.213041	430.467

	Stream Properties							
Property	Units	Produced Water	PUL 96 Pad Condensate	3	4	5		
Temperature	°F	68 *	68 *	68.0467	61.049	61.049		
Pressure	psia	516.696 *	516.696 *	516.696	14.6959 *	14.6959		
Mole Fraction Vapor	%	0	0	0	100	0		
Mole Fraction Light Liquid	%	100	100	5.3626	0	2.96783		
Mole Fraction Heavy Liquid	%	0	0	94.6374	0	97.0322		
Molecular Weight	lb/lbmol	18.0153	72.251	20.9605	38.087	20.5063		
Mass Density	lb/ft^3	62.3219	39.8305	56.3929	0.101506	58.6217		
Molar Flow	lbmol/h	23.9064	1.37278	25.2792	0.653173	24.626		
Mass Flow	lb/h	430.68	99.1846	529.865	24.8774	504.987		
Vapor Volumetric Flow	ft^3/h	6.91058	2.49017	9.39594	245.083	8.61434		
Liquid Volumetric Flow	gpm	0.861579	0.310462	1.17144	30.5558	1.074		
Std Vapor Volumetric Flow	MMSCFD	0.21773	0.0125028	0.230233	0.00594886	0.224284		
Std Liquid Volumetric Flow	sgpm	0.860961 *	0.320748 *	1.18171	0.106042	1.07567		
Compressibility		0.026376	0.165515	0.0339116	0.986767	0.000919937		
Specific Gravity		0.999244	0.638627	0.904182	1.31504	0.939918		
API Gravity		9.95096	88.4445	24.6391		19.0111		
Enthalpy	Btu/h	-2.94112E+06	-101102	-3.04222E+06	-29177.6	-3.01304E+06		
Mass Enthalpy	Btu/lb	-6829.01	-1019.33	-5741.51	-1172.86	-5966.57		
Mass Cp	Btu/(lb*°F)	0.98244	0.528322	0.897938	0.41206	0.911653		
Ideal Gas CpCv Ratio		1.32594	1.0756	1.27625	1.146	1.28385		
Dynamic Viscosity	сР	1.0284	0.247634	0.818783	0.00863735	0.98938		
Kinematic Viscosity	cSt	1.03015	0.388127	0.85804	5.31211	1.0307		
Thermal Conductivity	Btu/(h*ft*°F)	0.346162	0.067231	0.271926	0.011788	0.289148		
Surface Tension	lbf/ft	0.0050581	0.000865521 ?	0.0039515 ?		0.00437763 ?		

			All S	reams Report treams by Total Phase			
Client Name:	EQT	*			Job: Blowd	own Tank	
Location:	PUL 96 Well Pad						
Flowsheet:	Flowsheet1						
			Stream	Properties			
Property		Units	Produced Water	PUL 96 Pad Condensate	3	4	5
Net Ideal Gas Hea	ting Value	Btu/ft^3	0	3700.05	200.93	1990.36	153.468
Net Liquid Heating	Value	Btu/lb	-1059.76	19280.3	2747.66	19685.3	1913.25
Gross Ideal Gas H	eating Value	Btu/ft^3	50.31	3998.81	264.732	2168.47	214.238
Gross Liquid Heat	ing Value	Btu/lb	0	20849.4	3902.77	21459.9	3037.84

Blocks MIX-100

Mixer/Splitter Report

Client Name: EQT Job: Blowdown Tank PUL 96 Well Pad Flowsheet1 Modified: 2:14 PM, 7/24/2014 Status: Solved 10:10 AM, 2/15/2016 Location: Flowsheet:

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Water	Inlet		PUL 96 Pad Condensate	Inlet	
3	Outlet	VSSL-100			

Block Parameters

Fraction to PStream 3 100 % Pressure Drop 0 psi

Blocks VSSL-100

Separator Report

Client Name: EQT Job: Blowdown Tank Location: Flowsheet: PUL 96 Well Pad Flowsheet1 Modified: 1:11 PM, 7/17/2014 Status: Solved 10:10 AM, 2/15/2016

Connections						
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block	
3	Inlet	MIX-100	4	Vapor Outlet		
5	Light Liquid Outlet					

Block Parameters					
Pressure Drop	502 psi	Main Liquid Phase	Light Liquid		
Mole Fraction Vapor	2.58384 %	Heat Duty	0 Btu/h		
Mole Fraction Light Liquid	2.89115 %	Heat Release Curve Type	Plug Flow		
Mole Fraction Heavy Liquid	94.525 %	Heat Release Curve	5		
		Increments			

		F		Environment onment1			
Client Name:	EQT				Job: Blowdown ⁻	Гank	
Location:	PUL 96 Well Pad						
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poyr	nting Intervals	0		Freeze Out Temperatur Threshold Difference	е	10 °F	
Gibbs Excess M	1odel	77 °F		Phase Tolerance		1 %	
Evaluation Tem	perature						
			Comp	onents			
Component Nam	e	Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	Heptane		False	False
Methane		False	False	Toluene		False	False
Carbon Dioxide		False	False	Octane		False	False
Ethane		False	False	Ethylbenzene		False	False
Propane		False	False	o-Xylene		False	False
Isobutane		False	False	Nonane		False	False
n-Butane		False	False	Decane		False	False
Isopentane		False	False	C11		False	False
n-Pentane		False	False	C12		False	False
		False	False	C13		False	False
		False	False	C14		False	False
n-Hexane				1		E-1	True
Isohexane n-Hexane Benzene		False	False	Water		False	1140
n-Hexane		False False	False False	Water		Faise	1100
n-Hexane Benzene	_			Water		False	1140
n-Hexane Benzene		False	False	water erty Method Sets		Faise	1140
n-Hexane Benzene Cyclohexane	me	False	False				
n-Hexane Benzene		False Phys	False sical Prope	erty Method Sets		Peng-Robins Peng-Robins	son

Calculator Report

Client Name: EQT Job: Blowdown Tank
Location: PUL 96 Well Pad

Simple Solver 1

Source Code

Residual Error (for CV1) = Water-80

Calculated Variable [CV1]

SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Flow
Value	29.5187
Unit	bbl/d

Measured Variable [Water]

SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water
Value	80.0001
Unit	%

	Solve	er Properties	Status: Solved
Error	0.00013922	Iterations	12
Calculated Value	0.860961 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

Remarks

Simple Solver 2 Source Code

Residual Error (for CV1) = Flow-36.88

Calculated Variable [CV1]

SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!PUL 96 Pad Condensate!Phases!Total!Properties!Std Liquid Volumetric Flow

 Value
 10.9971

 Unit
 bbl/d

Measured Variable [Flow]

SourceMoniker ProMax:Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Properties!Std Liquid Volumetric Flow Value 36.88
Unit bbl/d

	Solv	ver Properties	Status: Solved
Error	8.73232E-06	Iterations	12
Calculated Value	0.320748 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Group	
Algorithm	Default	Skip Dependency Check	False

^{*} User Specified Values

User Value Sets Report Client Name: EQT Job: Blowdown Tank Location: PUL 96 Well Pad Cn+ Flow/Frac. **User Value [CnPlusSum]** 17.0089 lb/h Parameter Upper Bound Lower Bound Enforce Bounds False lb/h Remarks This User Value Set was programmatically generated. GUID={E867C485-3D3C-49CB-BC24-EA16096DB2B1} **Tank Losses User Value [ShellLength]** Upper Bound 10 ft Parameter Enforce Bounds Lower Bound 0 ft False **User Value [ShellDiam]** 10 ft Upper Bound Parameter Lower Bound 0 ft Enforce Bounds False User Value [BreatherVP] Parameter 0.03 psig Upper Bound Lower Bound Enforce Bounds False User Value [BreatherVacP] Parameter -0.03 psig Upper Bound Lower Bound Enforce Bounds False **User Value [DomeRadius]** Parameter Upper Bound ft ft Lower Bound ft **Enforce Bounds** False **User Value [OpPress]** Parameter 0 psig Upper Bound Lower Bound Enforce Bounds False User Value [AvgPercentLiq] Parameter 50 % Upper Bound Lower Bound Enforce Bounds False User Value [MaxPercentLig] Upper Bound Parameter 90 % Lower Bound Enforce Bounds False **User Value [AnnNetTP]** Parameter 19.8551 bbl/day Upper Bound * Lower Bound 0 bbl/day * Enforce Bounds False **User Value [OREff]** Parameter 0 % Upper Bound Lower Bound Enforce Bounds False **User Value [AtmPressure]** Parameter 14.1085 psia Upper Bound Enforce Bounds Lower Bound False

^{*} User Specified Values

			·			
ient Name:	EQT			Job: Blowdo	own Tank	
cation:	PUL 96 Well Pag	<u> </u>				
			r Value [TVP]			
Parameter		0.558156 psia	Upper Bound		F.1	
Lower Bound			* Enforce Bounds		False	
		User Valu	e [AvgLiqSurfaceT]			
Parameter		57.7675 °F	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Hear Value	· [Maylin0facaT]			
Parameter		66.3119 °F	e [MaxLiqSurfaceT] Upper Bound			
Lower Bound		00.0110	* Enforce Bounds		False	
			lue [TotalLosses]			
Parameter Lower Bound		0.0104598 lb/h lb/h	Upper Bound * Enforce Bounds		False	
LOWEI DOUIIU		ID/II	Lilloice Boullus		raise	
		User Valu	e [WorkingLosses]			
Parameter		0.045814 ton/yr	Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
		Hear Value	o [Ctonding cooo]			
Parameter		0 ton/yr	e [StandingLosses] Upper Bound			
Lower Bound		ton/yr	* Enforce Bounds		False	
			e [RimSealLosses]			
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	
Lower Bouria			Efficied Bourius		1 disc	
		User Valu	e [WithdrawalLoss]			
Parameter		0 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
		Hear Valu	e [LoadingLosses]			
Parameter		0.00922721 lb/h	Upper Bound			
Lower Bound		lb/h	* Enforce Bounds		False	
Parameter			[DeckFittingLosses]			
Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	
			[DeckSeamLosses]			
Parameter		0 ton/yr	Upper Bound		Falsa	
Lower Bound			* Enforce Bounds		False	
		User Valu	e [FlashingLosses]			
Parameter		0.30633 ton/yr	Upper Bound			
Lower Bound		•	* Enforce Bounds		False	
		11 77 1				
Parameter			e [GasMoleWeight] Upper Bound			
Lower Bound		0.0329302 kg/mol	* Enforce Bounds		False	

Gas Analytical

Report Date: Sep 14, 2015 9:23a

Client: Equitable Production Date Sampled: Sep 8, 2015 11:00a

Site: 514394 Analysis Date: Sep 11, 2015 2:17p

Field No: 9998 Collected By: J. Brown

Meter: 514394 Date Effective: Sep 8, 2015 12:00a

Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI): 70.0 **Lab File No: X_CH1-6024.CHR** Sample Temp (°F):

Sample Type: Spot Field H2O: No Test

Reviewed By: Field H2S: No Test

Component	Mol %	Gal/MSCF
Methane	78.1311	
Ethane	14.2559	3.79
Propane	4.0036	1.10
I-Butane	0.5947	0.19
N-Butane	1.1890	0.37
I-Pentane	0.3163	0.12
N-Pentane	0.3248	0.12
Nitrogen	0.4544	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1535	
Hexanes+	0.5767	0.24
TOTAL	100.0000	5.93

Analytical Results at Base Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Analytical Results at Contract Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

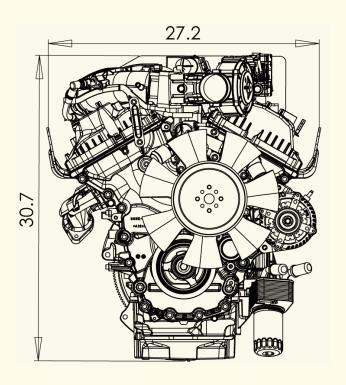
Z Factor (Saturated): 0.99604

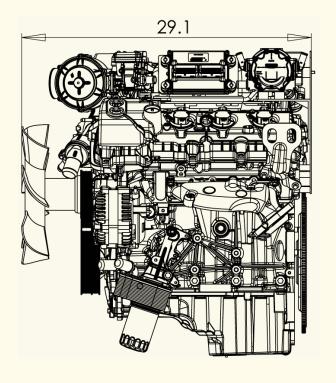
Calculated Specific Gravities

Ideal Gravity: 0.7188 Real Gravity: 0.7211

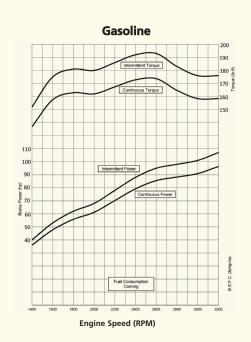
Molecular Wt: 20.8177 lb/lbmol

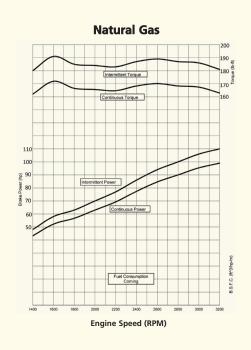
Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

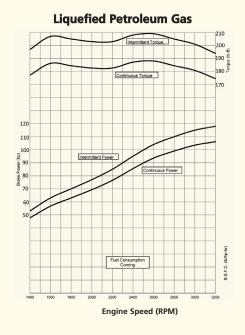

Source	Date	Notes
--------	------	-------


Gas Analytical Sep 11, 2015 results to Bob Gum

Installation Drawings


Front End View


Left Side View



Power Curves (corrected per SAE J1349)

For additional information Contact:

Powertrain Assemblies & Components Provided By Ford Component Sales

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans

- 14" (355mm) diameter suction
- 14" (355mm) diameter pusher

Flywheels

- 11.5" (292mm) SAE over-center clutch
- flat face flywheel

Flywheel Housings

• SAE #3

Exhaust Manifold

• rear dump down

Power Steering Pump
Air Conditioning
Wiring Harnesses
Discrete Speed Switch
Variable Speed Hand Throttle
Variable Speed Foot Pedal
Engine Mounts

- Automotive with insulators
- Open power unit

Electronic Instrument Panel, Gauges Three Way Catalyst / Muffler Standard

Transmissions

6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Power Products

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6	
Bore and Stroke	3.7" x 3.4" (94mm x 86mm)	
Displacement	3.7L Liter (225.7 CID)	
Compression Ratio		
	6 qts. including filter	
	355 Lbs. with accessories (161 Kgs.)	
	L 25.4" x W 29.5" x H 29.4"	
	(646 mm x 751 mm x 748 mm)	

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2015 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Engine Distributors, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: FEDIB03.7CSG-006

Effective Date: 06/08/2015

Expiration Date: 12/31/2015

Issue Date: 06/08/2015

Revision Date: N/A

Manufacturer: Engine Distributors, Inc.

Engine Family: FEDIB03.7CSG

Mobile/Stationary Certification Type: Mobile and Stationary

Fuel: LPG/Propane

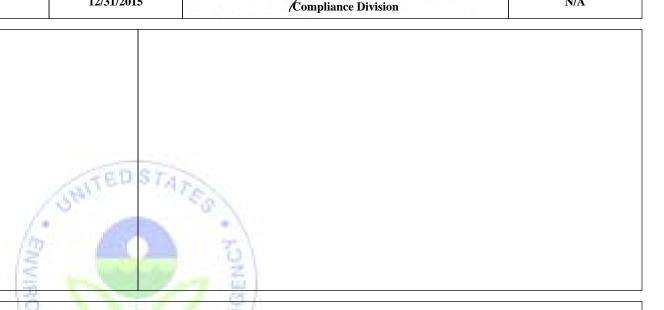
Gasoline (up to and including 10% Ethanol)

Natural Gas (CNG/LNG)

Emission Standards:

Mobile Part 1048

HC + NOx (g/kW-hr) : 0.8NMHC + NOx (g/kW-hr) : 0.8


CO (g/kW-hr) : 20.6 Part 60 Subpart JJJJ Table 1

NOx (g/kW-hr) : 1.3

HC + NOx (g/kW-hr) : 0.8

CO (g/kW-hr) : 2.7 CO (g/kW-hr) : 20.6 VOC (g/kW-hr) : 0.9

Emergency Use Only: N

Byron J. Bunker, Division Director

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Attachment T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT T - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	NO	O _x	СО		VOC		SO ₂		PM _{Filterable}		PM _{Condrnsable}		GHG	(CO ₂ e)
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S002)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S003)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S004)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S005)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S006)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S007)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S008)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.03	180.33	789.85
Line Heater (S009)	0.09	0.40	0.08	0.34	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	134.66	589.82
TEG (S022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
Enclosed Combustion Unit (E019)	1.77	7.75	1.49	6.51	2.77	10.71	0.01	0.05	0.03	0.15	0.10	0.44	3,070.10	13,447.04
Tank Truck Loading Activities (E020)	<0.01	<0.01	<0.01	<0.01	0.06	0.25	<0.01	<0.01					0.01	0.05
Compressor Engine (E021)	0.42	1.85	0.88	3.85	0.29	1.29	<0.01	<0.01	<0.01	0.03	<0.01	0.03	82.58	361.69
TOTAL	3.26	14.28	3.26	14.29	3.18	12.50	0.02	0.08	0.06	0.27	0.17	0.74	4,773.04	20,730.73

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Formaldehyde		Ben	zene	Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S007)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S008)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (E019)	<0.01	<0.01	0.02	<0.01	0.12	0.51	<0.01	<0.01	0.02	0.08	0.13	0.53	0.14	0.57
Tank Truck Loading Activities (E020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E021)	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.07
TOTAL	0.02	0.07	0.02	<0.01	0.12	0.51	<0.01	<0.01	0.02	0.08	0.13	0.53	0.18	0.73

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above

Attachment U CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit for the PUL-96 natural gas production facility located in Pullman, Ritchie County, West Virginia. The latitude and longitude coordinates are: 39.21090 and -80.98619.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 14.29 tpy Nitrogen Oxides (NO_x) = 14.28 tpy Particulate Matter – Total = 1.52 tpy Sulfur Dioxide (SO₂) = 0.08 tpy Volatile Organic Compounds (VOC) = 13.10 tpy Formaldehyde = 0.07 tpy Hexane = 0.61 tpy Hazardous Air Pollutants (HAPs) = 0.81 tpy Carbon Dioxide Equivalents (CO₂e) = 20,780.42 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of March, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222