

PROJECT REPORT

SWN Production Company, LLC Ridgetop Land Ventures

G70-A Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

June 2015

TABLE OF CONTENTS

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-A APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration (PSD) Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	7
3.3.1. NSPS Subparts D, Da, Db, and Dc 3.3.2. NSPS Subparts K, Ka, and Kb 3.3.3. NSPS Subparts JJJJ – Stationary Spark Ignition Internal Combustion Engines 3.3.4. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution	8 8 8
3.3.5. Non-Applicability of All Other NSPS 3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	9 9
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities 3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	10 10
3.4.3. 40 CFR 63 Subpart JJJJJ – Industrial, Commercial, and Institutional Boilers	10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	10
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contri to an Objectionable Odor	butes 10
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	11
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	11
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Prepara Storage and Other Sources of Fugitive Particulate Matter	ation, 11
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	11
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	11
3.5.8. Non-Applicability of Other SIP Rules	11
4. G70-A APPLICATION FORMS	12
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE	
ATTACHMENT B: PROCESS DESCRIPTION	
ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: AREA MAP	

ATTACHMENT G: EMISSION UNIT DATA SHEETS AND G70-A SECTION APPLICABILITY FORM

ATTACHMENT H: AIR POLLUTION CONTROL DEVICE DATA SHEET

ATTACHMENT I: EMISSION CALCULATIONS

ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT K: ELECTRONIC SUBMITTAL

ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE

ATTACHMENT M: SITING CRITERIA WAIVER (NOT APPLICABLE)

ATTACHMENT N: MATERIAL SAFETY DATA SHEET (NOT APPLICABLE)

ATTACHMENT O: EMISSION SUMMARY SHEET

SWN Production Company, LLC (SWN) is submitting this Class II General Permit (G70-A) application to the West Virginia Department of Environmental Protection (WVDEP) for the Ridgetop Land Ventures facility, a natural gas production well pad, located in Wetzel County, West Virginia.

1.1. FACILITY AND PROJECT DESCRIPTION

The Ridgetop Land Ventures Wellpad is a new natural gas production facility that will consist of three (3) natural gas wells. Natural gas and liquids (including water and condensate) will be extracted from deposits underneath the surface. Natural gas will be transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced will be stored in storage vessels.

This application seeks to permit the following equipment at the Ridgetop Land Ventures pad:

- > Two (2) natural gas-fired 145-hp Caterpillar G3306NA flash gas compressor engines equipped with a NSCR catalyst;
- > Five (5) 1.0-MMBtu/hr natural gas-fired GPU burners;
- > Two (2) 0.5-MMBtu/hr natural gas-fired heater treaters;
- > Four (4) 400-bbl condensate storage tanks controlled by the vapor recovery unit (VRU), and one (1) vapor combustor (for backup purposes);
- > Four (4) 400-bbl produced water storage tanks controlled by the vapor recovery unit (VRU), and one (1) vapor combustor (for backup purposes);
- > One (1) 15.0-MMBtu/hr vapor combustor with one (1) 50-SCFH natural gas-fired pilot.
- > One (1) Vapor recovery unit (VRU) powered by one (1) 92 HP General Motors Vortec 5.7L natural gas engine equipped with a NSCR catalyst;

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the proposed Ridgetop Land Ventures for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a quarter-mile radius of the Ridgetop Land Ventures Pad. Therefore, the Ridgetop Land Ventures should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-A APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-A permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- Section 3: Regulatory Discussion;
- > Section 4: G70-A Application Forms;
- > Attachment A: Current Business Certificate;
- > Attachment B: Process Description;
- > Attachment C: Description of Fugitive Emissions;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Plot Plan;
- > Attachment F: Area Map;
- > Attachment G: Emission Unit Data Sheets and G70-A Section Applicability Form;
- > Attachment H: Air Pollution Control Device Sheets:
- > Attachment I: Emission Calculations;
- Attachment J: Class I Legal Advertisement;
- > Attachment K: Electronic Submittal;
- > Attachment L: General Permit Registration Application Fee;
- > Attachment M: Siting Criteria Waver (not applicable);
- > Attachment N: Material Safety Data Sheet (not applicable); and
- > Attachment 0: Emissions Summary Sheet.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment I of this application.

Emissions from this project will result from natural gas combustion in the line heaters, GPU burners, compressor engines, VRU engine and heater treaters, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types are calculated are summarized below.

- > **Compressor and VRU Engines:** Potential Emissions of VOC, NO_X, CO, and formaldehyde are calculated using manufacturer's emission data. Emissions of all other criteria pollutants and HAPs are calculated using U.S EPA's AP-42 factors for natural gas internal combustion engines. Emission of other greenhouse gases are calculated in accordance with 40 CFR 98, Subpart C for natural gas combustion.
- > Line Heaters, GPU Burners, and Heater Treaters: Potential emissions of criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion. These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C. Please note that potential emissions of NOx, CO, PM, SO₂ and GHGs from the combustors are also calculated according to the aforementioned methodologies.
- > **Fugitive Equipment Leaks:** Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with *Table 2-4: Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated in gas service at O&G Production Operations. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³*
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the condensate/produced water stored in the tanks at the facility are calculated using Bryan Research Engineering ProMax® Software. Emissions are controlled by a vapor recovery unit and a backup combustor.
- > **Tank Truck Loading:** Emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is vapor balanced and emissions are controlled by a vapor recovery unit and a backup combustor.
- > **Haul Roads:** Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁴

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. SWN will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

⁵ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad.

3.3.1. NSPS Subparts D, Da, Db, and Dc

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m 3 (\sim 19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subparts JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed engines (VRU and Compressor engines) at the Ridgetop Land Ventures wellpads are 4-stroke rich burn, spark ignition engines manufactured after July 1, 2008, and is subject to this subpart. The engines will be equipped with a non-selective catalytic reduction device for CO, NOx, and VOC emissions control and will comply with the emission standards in Table 1 of the Subpart. SWN will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243(b)(2) (maintenance plan/records and performance testing frequency) for noncertified affected SI ICE at the facility.

3.3.4. NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000 – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. This NSPS was published in the Federal Register on August 16, 2012, and amended in the Federal Register on September 23, 2013⁶. The list of potentially affected facilities includes:

- > Gas wellheads
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment

^{6 78} FR 54816 (http://www.gpo.gov/fdsys/pkg/FR-2013-09-23/pdf/2013-22010.pdf) SWN Production Company, LLC | Ridgetop Land Ventures Pad Trinity Consultants

- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment (excluding natural gas processing plants)
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants
- > Storage vessels in the production, processing, or transmission and storage segments
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells

There will be four (4) condensate storage vessels and four (4) produced water storage vessels at the wellpad. Emissions from the storage vessels will be controlled by one (1) vapor recovery unit and one (1) enclosed combustor (the combustor will operate as the primary control measure only in instances when the VRU is down). The enclosed combustor has a destruction efficiency greater than 95 percent. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-A permit. As such, per 60.5365(e), the tanks are not storage vessel affected facilities under the rule.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365, compressors located at well sites are not affected facilities under Subpart 0000.

The pneumatic controllers were ordered and installed after August 23, 2011 and are therefore potentially subject to NSPS 0000. Per 60.5365(d)(2), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000.

3.3.5. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart [][][] Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol (TEG) dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower (HP) located at a major source of hazardous air pollutant (HAP) emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500 HP located at major sources, and for engines constructed and reconstructed after June 12, 2006 located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500 HP at major sources.

40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The Ridgetop Land Ventures wellpad is a minor (area) source of hazardous air pollutants and the proposed compressor engines and VRU engine are considered new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. SWN will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The wellpad does not include any boilers, or gas fired heaters; therefore the requirements of this subpart do not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The GPU burners, heater treaters, and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent. Per 45 CSR 2-4, PM emissions from the unit will not exceed a level of 0.09 multiplied by the heat design input in MMBtu/hr of the unit.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, SWN will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, SWN will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, SWN will be complying with 45 CSR 34.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

4. G70-A APPLICATION FORMS

The WVDEP permit application forms contained in this application include all applicable G70-A application forms including the required attachments.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304

Phone: (304) 926-0475 * www.dep.wv.gov/dag

APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE

Phone: (304) 926-0475 * www.dep.wv.gov/d	A STATIONARY SOURCE OF AIR POLLUTANTS					
□ CONSTRUCTION						
☐ CLASS II ADMINISTRATIVE UPDATE						
CHECK WHICH TYPE OF GENERAL BER	MIT REGISTRATION YOU ARE APPLYING FOR:					
	G40-C – Nonmetallic Minerals Processing					
G10-D – Coal Preparation and Handling	G50-B – Concrete Batch					
G20-B – Hot Mix Asphalt						
G30-D – Natural Gas Compressor Stations	G60-C - Class II Emergency Generator					
G33-A – Spark Ignition Internal Combustion Engines	☐ G65-C - Class I Emergency Generator					
G35-A – Natural Gas Compressor Stations (Flare/Glycol Dehydrati	on Unit) G70-A – Class II Oil and Natural Gas Production Facility					
SECTION I. GE	NERAL INFORMATION					
Name of applicant (as registered with the WV Secretary of State's C						
SWN Production Company, LLC	26-4388727					
Applicant's mailing address:	4. Applicant's physical address:					
	Harland Didge Dood Wettel County West Virginia					
1000 Energy Drive	Harland Ridge Road, Wetzel County, West Virginia					
Spring, TX 77389						
5. If applicant is a subsidiary corporation, please provide the name of	parent corporation:					
6. WV BUSINESS REGISTRATION. Is the applicant a resident of the	State of West Virginia? XES NO					
 IF YES, provide a copy of the Certificate of Incorp change amendments or other Business Registra 	oration/ Organization / Limited Partnership (one page) including any name tion Certificate as Attachment A.					
	rity / Authority of LLC / Registration (one page) including any name change					
amendments or other Business Certificate as Att	achment A.					
SECTION II. FA	CILITY INFORMATION					
7. Type of plant or facility (stationary source) to be constructed,	8a. Standard Industrial AND 8b. North American Industry					
modified, relocated or administratively updated (e.g., coal	Classification					
preparation plant, primary crusher, etc.): Oil & Natural gas production wellpad	Classification (SIC) code: 1311 System (NAICS) code: 211111					
production wellpad						
DAQ Plant ID No. (for existing facilities only):	10. List all current 45CSR13 and other General Permit numbers associated with this process (for existing facilities only):					
The state of the s	שונוז נוווס פוסטבסס (וטו באוסנוווש ומטוונונבס טוווץ).					

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:						
Ridgetop Land Venture Wellpad	Mailing:	Mailing:					
	Physical: 1066 Harland Ridge Road, New Martinsville, WV 26155						
13A. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? — IF YES, please explain: Southwestern is leasing the land on which the site is constructed							
IF NO , YOU ARE NOT ELIGIBLE FOR A PE							
14A. – For Modifications or Administrative U nearest state road;	pdates at an existing facility, please provide d	irections to the present location of the facility from the					
For Construction or Relocation permits, MAP as Attachment F.	please provide directions to the proposed new	site location from the nearest state road. Include a					
		ute 89. Turn right on Route 89 and travel 2 miles to Harland Ridge Road (CR1-19) and follow 0.7 miles					
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:					
New Martinsville	Wetzel	Northing (KM): 4,390.714 Easting (KM): 528.013 Zone: 17					
18A. Briefly describe the proposed new operation		19A. Latitude & Longitude Coordinates (NAD83,					
Construction and operation of a natural gas v	wellpad.	Decimal Degrees to 5 digits): Latitude: 39.665780° Longitude: -80.673410°					
B: 1 ST ALTERNATE OPERATII	NG SITE INFORMATION (only available for	G20, G40, & G50 General Permits)					
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:						
_N/A	Mailing:	Physical:					
Does the applicant own, lease, have an option of the second of the	13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? YES NO — IF YES, please explain:						
- IF NO , YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.							
14B. — For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road:							
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. 							

45D N							
5B. Nearest city or town: 16B. County:			17B. UTM Coordinates:				
			Northing (KM):				
			Northing (KM):				
			Easting (KM):				
			Zone:				
100 0 0 0 0		6 199	19B. Latitude & Longitude Coordinates				
18B. Briefly describe the proposed new operation	n or change (s) to th	e facility:	(NAD83, Decimal Degrees to 5 digits):				
			Latitude:				
			Longitude:				
C: 2 ND ALTERNATE OPERATI	ING SITE INFORMA	TION (only available for G20	, G40, & G50 General Permits):				
			·				
11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:					
_N/A	Mailing:		Physical:				
100 5 11 11 1 1							
13C. Does the applicant own, lease, have an opt	tion to buy, or otherv	vise have control of the propose	ed site? YES NO				
IF YES, please explain:							
 IF NO, YOU ARE NOT ELIGIBLE FOR A P 	ERMIT FOR THIS S	SOURCE.					
	Updates at an existi	ng facility, please provide direc	tions to the present location of the facility from the				
nearest state road;							
 For Construction or Relocation permits. 	, please provide dire	ctions to the proposed new site	e location from the nearest state road. Include a				
MAP as Attachment F.							
			·····				
							
15C. Nearest city or town:	16C. County:		17C. UTM Coordinates:				
15C. Nearest city or town:	16C. County:						
15C. Nearest city or town:	16C. County:		Northing (KM):				
15C. Nearest city or town:	16C. County:						
15C. Nearest city or town:	16C. County:		Northing (KM):				
		e facility:	Northing (KM): Easting (KM): Zone:				
15C. Nearest city or town: 18C. Briefly describe the proposed new operation		e facility:	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates				
		e facility:	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):				
		e facility:	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates				
		e facility:	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):				
			Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude:				
18C. Briefly describe the proposed new operation	n or change (s) to th	e facility: 21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude:				
	n or change (s) to th		Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or one control of the date of the dat	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation	n or change (s) to th		Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or one control of the date of the dat	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or one control of the date of the dat	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or 10/12/2015	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or 10/12/2015 If this is an After-The-Fact permit application,	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or 10/12/2015 If this is an After-The-Fact permit application,	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or 10/12/2015 If this is an After-The-Fact permit application,	n or change (s) to th	21. Date of anticipated Start-	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted:				
18C. Briefly describe the proposed new operation 20. Provide the date of anticipated installation or 10/12/2015 If this is an After-The-Fact permit application,	n or change (s) to th change: provide the date	21. Date of anticipated Start- 10/12/201	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted: 5				
20. Provide the date of anticipated installation or a10/12/2015 If this is an After-The-Fact permit application, upon which the proposed change did happen: :	n or change (s) to the change: provide the date	21. Date of anticipated Start10/12/201	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted: 5				
20. Provide the date of anticipated installation or a10/12/2015 If this is an After-The-Fact permit application, upon which the proposed change did happen: :// 22. Provide maximum projected Operating Sche	n or change (s) to the change: provide the date	21. Date of anticipated Start10/12/201	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted: 5				
20. Provide the date of anticipated installation or a10/12/2015 If this is an After-The-Fact permit application, upon which the proposed change did happen: :// 22. Provide maximum projected Operating Sche	n or change (s) to the change: provide the date edule of activity/active facility's operation	21. Date of anticipated Start10/12/201 vities outlined in this application	Northing (KM): Easting (KM): Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: Longitude: up if registration is granted: 5				

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).
24. Include a Table of Contents as the first page of your application package.
All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.
25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.
 □ ATTACHMENT A: CURRENT BUSINESS CERTIFICATE □ ATTACHMENT B: PROCESS DESCRIPTION □ ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS □ ATTACHMENT D: PROCESS FLOW DIAGRAM □ ATTACHMENT E: PLOT PLAN □ ATTACHMENT F: AREA MAP □ ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM □ ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS □ ATTACHMENT I: EMISSIONS CALCULATIONS □ ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT □ ATTACHMENT K: ELECTRONIC SUBMITTAL □ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE □ ATTACHMENT M: SITING CRITERIA WAIVER (Not Applicable)
 □ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (Not Applicable) □ ATTACHMENT O: EMISSIONS SUMMARY SHEETS □ OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.) (Not Applicable)
Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also

provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

FOR A CORPORATION (dame at the conference)

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

	I certify that I am a President, Vice President, Secretary, Treasurer or in corporation	n charge of a principal business function of the
	FOR A PARTNERSHIP I certify that I am a General Partner	
	FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager	
	FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors	
	FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager	
	FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor	
is an A Liability change I hereb hereto	nereby certify that (please print or type) Paul Geiger Nuthorized Representative and in that capacity shall represent the interest of the bus by Company, Association Joint Venture or Sole Proprietorship) and may obligate and es its Authorized Representative, a Responsible Official shall notify the Director of the by certify that all information contained in this General Permit Registration Application is, to the best of my knowledge, true, accurate and complete, and that all reasonable whensive information possible	I legally bind the business. If the business the Office of Air Quality immediately, and/or, and any supporting documents appended
Signature		
(please use blue ink)	Responsible Official	Date
Name & Title	Paul Geiger, Sr. Vice President Ops Management	
Signature		
(please use blue ink)	Authorized Representative (if applicable)	Date
Applicant's Nar	me Kristi Evans, HSE Coordinator	
Phone & Fax _	304-884-1652	
	Phone	Fax
Email	Kristi Evans@swn.com	

ATTACHMENT A

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS

SWN PRODUCTION COMPANY: L 5400D BIG TYLER RD CHARLESTON, WV 25313-1103

ŔĔĠĬSTŖŔŢĴŎŇŔĊĊŎŨŊŦŊŨŊŖĔŔ

2307-37

This certificate is issued on:

218/2014

UNE

This certificate is issued by for a line west Virginia State Tax Commissioner in accordance with Chapter 1.1 Article 12, of the West Virginia Code

The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

his certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required:

TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS: DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site, within West: Virginia?

atL006 v.4 L1180094016

ATTACHMENT B

Process Description

ATTACHMENT B: PROCESS DESCRIPTION

This project involves the construction and operation of a natural gas production wellpad (Ridgetop Land Ventures).

The Ridgetop Land Ventures wellpad will consist of three wells. The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water will also occur on-site. Condensate, gas, and water coming from the wellhead will pass through the production units, where the first stage of separation occurs. Fluids (condensate and produced water) will be sent to the heater treaters. The flash gas from the heater treaters will be captured, compressed, and sent into the pipeline using natural gas-fired engines. Produced water from the heater treaters flows into the produced water storage tanks. Condensate flows from the heater treaters into the low pressure towers, where flash gas is recovered by the flash gas compressors and then compressed to the pipeline. The condensate then flows into the condensate storage tanks.

The natural gas stream will exit the facility for transmission via pipeline. Condensate and produced water are transported offsite via truck. Working, breathing and flashing vapors from the condensate and produced water storage tanks will be recovered by a vapor recovery unit (VRU). During periods of VRU downtime, vapors from both storage tanks will be routed to a combustor for control. The combustor has a destruction efficiency of at least 98%. The vapor combustor has natural gas-fired pilots to ensure a constant flame for combustion. Loading emissions will be controlled with vapor return, which has at least 70% capture efficiency, and will be routed to the VRU.

A process flow diagram is included as Attachment D.

ATTACHMENT C

Description of Fugitive Emissions

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS 1	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Name/OAG	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	N/A					
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}	0.95 0.24 0.02	4.17 1.06 0.11	0.95 0.24 0.02	4.17 1.06 0.11	O ^A
Loading/Unloading Operations (Condensate and Produced Water)	VOC HAP Benzene Toluene Ethylbenzene	34.36 0.80 0.011 0.016 0.004	150.50 3.53 0.05 0.07 0.019	11.51 0.27 0.004 0.005 0.001	50.41 1.18 0.02 0.02 0.006	ОВ
Equipment Leaks	VOC CO₂e HAP	Does not apply	2.80 507 0.07	Does not apply	2.80 507 0.07	Oc
Blowdown Emissions	N/A					
Other	N/A					

^A AP-42, Section 13.2.2.

^B AP-42 Section 5.2.

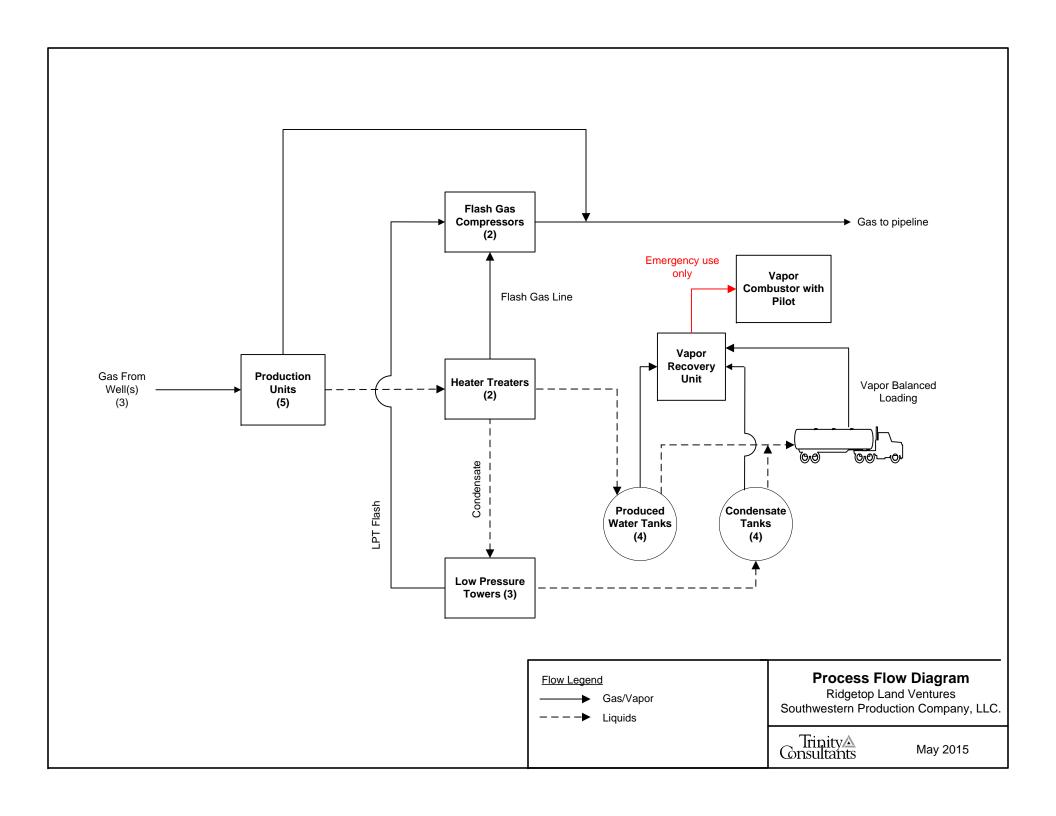
^c Protocol for Equipment Leak Estimates (EPA-453/R-95-017), Table 2-1, Nov. 1995.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).


LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components	Number of Components Monitored by Frequency	Average Time to Repair (days)	Estimated Annual Emission Rate (lb/yr) ¹
Pumps	light liquid VOC		TBD	TBD	
	heavy liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Valves	Gas VOC	85	TBD	TBD	1,487
	Light Liquid VOC	115	TBD	TBD	1,188
	Heavy Liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Safety Relief Valves	Gas VOC	31	TBD	TBD	1,061
	Non VOC		TBD	TBD	
Open-ended Lines	VOC	0	TBD	TBD	
	Non-VOC		TBD	TBD	
Sampling Connections	VOC	843	TBD	TBD	673
(Connectors)	Non-VOC		TBD	TBD	
Compressors (Seals)	VOC	9	TBD	TBD	308
	Non-VOC		TBD	TBD	
Flanges	VOC	843	TBD	TBD	782
	Non-VOC		TBD	TBD	
Other	VOC		TBD	TBD	
	Non-VOC		TBD	TBD	

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Plot Plan

ATTACHMENT F

Area Map

ATTACHMENT F: AREA MAP

Figure 1 - Map of Ridgetop Land Ventures Wellpad Location

 $\begin{array}{lll} \text{UTM Northing (KM):} & 4,390.7 \\ \text{UTM Easting (KM):} & 528.0 \\ \text{Elevation:} & \sim 1,465 \text{ ft} \end{array}$

ATTACHMENT G

Emission Unit Data Sheets and G70-A Section Applicability Form

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	\boxtimes
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol	
	Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	\boxtimes
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	\boxtimes
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants for Stationary	
	Reciprocating Internal Combustion Engines (40CFR63, Subpart ZZZZ)	\boxtimes
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	

^{*} Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

^{**} Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

^{***} Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

	that will be part of this permit application review, regardless of permitting status)						
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴	
EU- ENGINE1	EP- ENGINE1	Caterpillar G3306NA Engine	2015	145 HP	New	NSCR	
EU- ENGINE2	EP- ENGINE2	Caterpillar G3306NA Engine	2015	145 HP	New	NSCR	
VRU-1	VRU-1	VRU Engine-1 (General Motors)	2015	92 HP	New	NSCR	
EU-GPU1	EP-GPU1	GPU Burner	2015	1.0 MMBtu/hr	New	None	
EU-GPU2	EP-GPU2	GPU Burner	2015	1.0 MMBtu/hr	New	None	
EU-GPU3	EP-GPU3	GPU Burner	2015	1.0 MMBtu/hr	New	None	
EU-GPU4	EP-GPU4	GPU Burner	2015	1.0 MMBtu/hr	New	None	
EU-GPU5	EP-GPU5	GPU Burner	2015	1.0 MMBtu/hr	New	None	
EU-HT1	EP-HT1	Heater Treater	2015	0.5 MMBtu/hr	New	None	
EU-HT2	EP-HT2	Heater Treater	2015	0.5 MMBtu/hr	New	None	
EU- TANKS- COND	EP- TANKS- COND	Four (4) Condensate Tanks	2015	400 bbl each	New	APC-VRU APC-COMB- TKLD (combustor is emergency use)	
EU- TANKS- PW	EP- TANKS- PW	Four (4) Produced Water Tanks	2015	400 bbl each	New	APC-VRU APC-COMB- TKLD (combustor is emergency use)	
EU- LOAD- COND	EP- LOAD- COND	Condensate Truck Loading	2015	12,478,620 gal/yr	New	APC-VRU APC-COMB- TKLD (combustor is emergency use)	
EU- LOAD- PW	EP- LOAD- PW	Produced Water Truck Loading	2015	12,923,190 gal/yr	New	APC-VRU APC-COMB- TKLD (combustor is emergency use)	
APC- COMB- TKLD	APC- COMB- TKLD	Vapor Combustor	2015	15.0 MMBtu/hr	New	None	

EU-PILOT	EP-PILOT	Vapor Combustor Pilot	2015	50 scf/hr	New	None
EU-FUG	EP-FUG	Fugitive Emissions	2015	NA	New	None
APC-VRU	APC-VRU	Vapor Recovery Unit	2015	NA	New	NA

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at this facility:				
TBD				
TBD				
TBD				

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State\ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERA	L INFO	ORMA'	TION (required))
----	---------------	--------	-------	--------	-----------	---

1. GENERAL INFORMATION (required)					
Bulk Storage Area Name	2. Tank Name				
Condensate Storage Tanks	Four (4) 400-bbl Condensate Storage Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
EU-TANKS-COND	EP-TANKS-COND				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
TBD	New construction ☐ New stored material ☐ Other				
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	7B. Will more than one material be stored in this tank? <i>If so, a separate form must be completed for each material.</i>				
☐ Yes No					
7C. Provide any limitations on source operation affecting emission	ons. (production variation, etc.)				
None					
II. TANK INFORMATION (required)					
8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.				
) bbl				
9A. Tank Internal Diameter (ft.) ~12	9B. Tank Internal Height (ft.) ~20				
10A. Maximum Liquid Height (ft.) ~20	10B. Average Liquid Height (ft.) ~10				
11A. Maximum Vapor Space Height (ft.) ~20	11B. Average Vapor Space Height (ft.) ~10				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 400 bbl				
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
~12,478,620 gal/yr (total for all tanks)	~8,547 (per tank)				
14. Number of tank turnovers per year ~186 per tank	15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method ☐ Submerged ☐ Splash	☐ Splash ☐ Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	⊠ No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):					
Fixed Roof _X_ vertical horizontal flat	roof _X cone roof dome roof other (describe)				
External Floating Roof pontoon roof double deck roof					
☐ Domed External (or Covered) Floating Roof					
☐ Internal Floating Roof vertical column support self-supporting					
☐ Variable Vapor Space lifter roof diaphragm					
Pressurized spherical cylindrical					
Underground					
Other (describe)					
L Control of the Cont					
III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)					
Refer to enclosed TANKS Summary Sheets					
Refer to the responses to items 19 – 26 in section VII					

25A. Year Internal Floaters Installed:

IV. SITE INFORMATION (check which one applies) ☐ Refer to enclosed TANKS Summary Sheets Refer to the responses to items 27 – 33 in section VII V. LIQUID INFORMATION (check which one applies) ☐ Refer to enclosed TANKS Summary Sheets \boxtimes Refer to the responses to items 34 – 39 in section VII VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☐ Does Not Apply Rupture Disc (psig) ☐ Carbon Adsorption¹ ☐ Inert Gas Blanket of Vent to Vapor Combustion Device¹ (vapor combustor) – Secondary Conservation Vent (psig) Condenser¹ Other¹ (describe) Vapor Recovery Unit (Primary); Vacuum Setting **Pressure Setting** Emergency Relief Valve (psig) ¹ Complete appropriate Air Pollution Control Device Sheet 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). **Material Name and Flashing Loss Breathing Loss Working Loss** Estimation Method¹ CAS No. **Emissions Loss** lb/hr lb/hr Tpy lb/hr tpy lb/hr tpy tpy **See Attached Emission Calculations** ¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable. **SECTION VII** (required if did not provide TANKS Summary Sheets) TANK CONSTRUCTION AND OPERATION INFORMATION 19. Tank Shell Construction: Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) Welded 20A. Shell Color: Gray 20B. Roof Color: Gray 20C. Year Last Painted: New 21. Shell Condition (if metal and unlined): No Rust ☐ Light Rust ☐ Dense Rust Not applicable 22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank? 23. Operating Pressure Range (psig): -0.03 to 0.03 psig 24. Is the tank a **Vertical Fixed Roof Tank**? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft): X Yes \square No 25. Complete item 25 for **Floating Roof Tanks** Does not apply

25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal ☐ Vapor mounted resilient seal Other (describe): 25C. Is the Floating Roof equipped with a secondary seal? \(\subseteq\) Yes \square No 25D. If yes, how is the secondary seal mounted? (check one)

Shoe Rim Other (describe): 25E. Is the floating roof equipped with a weather shield? □ No 25F. Describe deck fittings: 26. Complete the following section for Internal Floating Roof Tanks Does not apply Bolted 26B. For bolted decks, provide deck construction: 26A. Deck Type: 26C. Deck seam. Continuous sheet construction: \square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.5 ft. wide \square 5 x 12 ft. wide \square other (describe) 26D. Deck seam length (ft.): 26E. Area of deck (ft²): 26F. For column supported 26G. For column supported tanks, diameter of column: tanks, # of columns: SITE INFORMATION: 27. Provide the city and state on which the data in this section are based: Charleston, WV 28. Daily Avg. Ambient Temperature (°F): 54.98 29. Annual Avg. Maximum Temperature (°F): 65.75 30. Annual Avg. Minimum Temperature (°F): 44.21 31. Avg. Wind Speed (mph): 6.05 32. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,250.6 33. Atmospheric Pressure (psia): 14.25 LIQUID INFORMATION:: 34. Avg. daily temperature range of bulk 34A. Minimum (°F): 34B. Maximum (°F): liquid (°F): 35. Avg. operating pressure range of tank 35A. Minimum (psig): 0.1791 35B. Maximum (psig): 0.3117 36A. Minimum liquid surface temperature (°F): 36B. Corresponding vapor pressure (psia): 37A. Avg. liquid surface temperature (°F): 37B. Corresponding vapor pressure (psia): 38A. Maximum liquid surface temperature (°F): 61.48 38B. Corresponding vapor pressure (psia): 39. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary Produced Fluid 39A. Material name and composition: 39B. CAS number: TBD TBD 39C. Liquid density (lb/gal): 97.01 39D. Liquid molecular weight (lb/lb-mole): 39E. Vapor molecular weight (lb/lb-mole): 46.31 39F. Maximum true vapor pressure (psia): TBD 39G. Maxim Reid vapor pressure (psia): TBD 39H. Months Storage per year. From: 12 (All year)

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. (GENER <i>A</i>	L II	NFORN	AATIO	N (ı	required)
------	----------------	------	-------	--------------	------	-----------

1. Bulk Storage Area Name	2. Tank Name				
Produced Water	Four (4) 400 bbl Produced Water Storage Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
EU-TANKS-PW	EP-TANKS-PW				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
TBD	New construction				
7A. Description of Tank Modification (if applicable)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
☐ Yes No					
7C. Provide any limitations on source operation affecting emissi	ions. (production variation, etc.)				
None					
II. TANK INFORMATION (required)					
8. Design Capacity (<i>specify barrels or gallons</i>). Use the interna	l cross-sectional area multiplied by internal height.				
	bbl				
9A. Tank Internal Diameter (ft.) ~12	9B. Tank Internal Height (ft.) ~20				
10A. Maximum Liquid Height (ft.) ~20	10B. Average Liquid Height (ft.) ~10				
11A. Maximum Vapor Space Height (ft.) ~20	11B. Average Vapor Space Height (ft.) ~10				
12. Nominal Capacity (specify barrels or gallons). This is also					
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
~12,923,190 (Total for all tanks)	~8,852 (per tank)				
14. Number of tank turnovers per year ~193 per tank 15. Maximum tank fill rate (gal/min) TBD					
16. Tank fill method ☐ Submerged ☐ Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	No No				
If yes, (A) What is the volume expansion capacity of the system					
(B) What are the number of transfers into the system per y	-				
18. Type of tank (check all that apply):	·				
	roof _X cone roof dome roof other (describe)				
External Floating Roof pontoon roof doub					
Domed External (or Covered) Floating Roof					
☐ Internal Floating Roof vertical column support	self-supporting				
☐ Variable Vapor Space ☐ lifter roof ☐ diaphrag					
Pressurized spherical cylindric					
Underground					
Other (describe)					
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)				
Refer to enclosed TANKS Summary Sheets	- Triving				
Refer to the responses to items 19 – 26 in section VII					
IV. SITE INFORMATION (check which one applies)					
Refer to enclosed TANKS Summary Sheets					
☐ Refer to the responses to items 27 – 33 in section VII					

V. LIQUID INFORMATION (check which one applies) Refer to enclosed TANKS Summary Sheets \boxtimes Refer to the responses to items 34 – 39 in section VII VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Rupture Disc (psig) ☐ Does Not Apply ☐ Carbon Adsorption¹ ☐ Inert Gas Blanket of _ Vent to Vapor Combustion Device¹ (vapor combustor) (Secondary) Condenser¹ Conservation Vent (psig) Other¹ (describe) Vapor Recovery Unit (Primary) Vacuum Setting Pressure Setting ☐ Emergency Relief Valve (psig) ¹ Complete appropriate Air Pollution Control Device Sheet 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). **Material Name and Flashing Loss Breathing Loss Working Loss** Total Estimation Method¹ CAS No. **Emissions Loss** lb/hr | tpy lb/hr lb/hr lb/hr tpy tpy tpy **See Attached Emission Calculations** ¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable. **SECTION VII** (required if did not provide TANKS Summary Sheets) TANK CONSTRUCTION AND OPERATION INFORMATION 19. Tank Shell Construction: ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) Welded Riveted 20A. Shell Color: Gray 20B. Roof Color: Gray 20C. Year Last Painted: New 21. Shell Condition (if metal and unlined): No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable 22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank? 23. Operating Pressure Range (psig): -0.03 to 0.03 psig 24. Is the tank a **Vertical Fixed Roof Tank**? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft): 0.06 X Yes 25. Complete item 25 for **Floating Roof Tanks** Does not apply 25A. Year Internal Floaters Installed: 25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal

Shoe

Other (describe):

Other (describe):

Rim

☐ Vapor mounted resilient seal

25D. If yes, how is the secondary seal mounted? (check one)

G70-A Oil and Natural Gas Production Facilities Instructions and Forms

25E. Is the floating roof equipped with a weather shield? Yes No						
25F. Describe deck fittings:						
	<u> </u>	71 d D AF 1		D		
26. Complete the following section for				Does not appl		
26A. Deck Type: Bolted	∐ W	Velded	26B. I	For bolted decks,	provide dec	k construction:
26C. Deck seam. Continuous sheet cor						
		·		10 &: 1-		4
	7 ft. wid					describe)
26D. Deck seam length (ft.): 26	bE. Area	of deck (ft ²):		or column suppo	orted	26G. For column supported
CALL INTO DAY A LINO N			tanks,	# of columns:		tanks, diameter of column:
SITE INFORMATION:	.1 1 .		Cl. 1			
27. Provide the city and state on which					T.	(0E) 65.75
28. Daily Avg. Ambient Temperature (-	-	rature (°F): 65.75
30. Annual Avg. Minimum Temperatur			31. Avg. Wind Speed (mph): 6.05			1.05
32. Annual Avg. Solar Insulation Factor (BTU/ft2-day): 1,250.6			33. Atmospheric Pressure (psia): 14.25			
LIQUID INFORMATION:	[244 251 1 (07)			245 34	(07)
34. Avg. daily temperature range of bul	ılk	34A. Minimum (°F):			34B. Maximum (°F):	
liquid (°F):	1	254 16: (:)	. 0 1701		35B. Maximum (psig): 0.3117	
35. Avg. operating pressure range of tar	ank	35A. Minimum (psig): 0.1791			55B. Maximum (psig). 0.5117	
(psig):36A. Minimum liquid surface temperat	tumo (9E)	36B Corresponding		Tomosmon din o ve		(main):
37A. Avg. liquid surface temperature (36B. Corresponding vapor pressure (psia): 37B. Corresponding vapor pressure (psia):			
38A. Maximum liquid surface temperature (61.40	38B. Corresponding vapor pressure (psia):			
39. Provide the following for each liquid						
39A. Material name and composition:	nd or gas	Produced Fluid	Add add	itionai pages ii i	iecessary.	
39B. CAS number:		TBD				
	1					
39C. Liquid density (lb/gal): TBD						
39D. Liquid molecular weight (lb/lb-mole): 97.01						
39E. Vapor molecular weight (lb/lb-mole): 18.016		TBD				
39F. Maximum true vapor pressure (ps: 39G. Maxim Reid vapor pressure (psia		TBD				
*	a):	עמו				
39H. Months Storage per year. From:						

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
EU-GPU1	EP-GPU1	GPU Burner	TBD	New	None	1.00	~1,287
EU-GPU2	EP-GPU2	GPU Burner	TBD	New	None	1.00	~1,287
EU-GPU3	EP-GPU3	GPU Burner	TBD	New	None	1.00	~1,287
EU-GPU4	EP-GPU4	GPU Burner	TBD	New	None	1.00	~1,287
EU-GPU5	EP-GPU5	GPU Burner	TBD	New	None	1.00	~1,287
EU-HT1	EP-HT1	Heater Treater	TBD	New	None	0.50	~1,287
EU-HT2	EP-HT2	Heater Treater	TBD	New	None	0.50	~1,287

Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

- ³ New, modification, removal
- Complete appropriate air pollution control device sheet for any control device.
- 5 Enter design heat input capacity in mmBtu/hr.
- Enter the fuel heating value in Btu/standard cubic foot.

Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1,

LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

NATURAL GAS-FIRED COMPRESSOR ENGINE (RICE) EMISSION UNIT DATA SHEET

Complete this section for any natural gas-fired reciprocating internal combustion engine.

Emissio	on Unit (Source) ID No.1	EU-E	NGINE1	EU-EN	NGINE2	VF	LU-1
Em	ission Point ID No. ²	EP-EN	IGINE1	EP-EN	IGINE2	VF	:U-1
Engine	Manufacturer and Model	Caterpillar G3306 NA		Caterpillar G3306 NA		GM Vortec 5.7L NA	
Manufa	acturer's Rated bhp/rpm	1	45	145		9	92
	Source Status ³	NS		1	NS	1	NS .
Date Inst	Date Installed/Modified/Removed ⁴			T	BD	T	BD
Engine Manu	Engine Manufactured/Reconstruction Date ⁵			June	2012	> Jul	y 2010
	o 40CFR60, Subpart JJJJ?	Ŋ	l'es .	Ŋ	es .	Ŋ	es
Is this a Certified Stati to 40CFR60, Subpart J	onary Spark Ignition Engine according JJJ? (Yes or No) ⁶		No		No		No
Is this engine subject to	o 40CFR63, Subpart ZZZZ? (yes or no)	7	l'es .	Ŋ	es es	Ŋ	es
	Engine Type ⁷	45	SRB	48	SRB	45	RB
	APCD Type ⁸	NSCR		NSCR		NSCR	
Engine,	Fuel Type ⁹	PQNG		PQNG		PQNG	
Fuel and	H ₂ S (gr/100 scf)	0		0		0	
Combustion Data	Operating bhp/rpm	1	45	145		92	
	BSFC (Btu/bhp-hr)	8,625		8,625		8,	600
	Fuel throughput (ft3/hr)	971		971		6	15
	Fuel throughput (MMft ³ /yr)	8.5		8	3.5	5	5.4
	Operation (hrs/yr)	8760		8760		8760	
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NOx	0.32	1.40	0.32	1.40	0.20	0.89
MD	CO	0.64	2.80	0.64	2.80	0.41	1.78
MD	VOC	0.07	0.67	0.07	0.67	0.16	0.74
AP-42	SO_2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
AP-42	PM ₁₀	0.02	0.11	0.02	0.11	0.02	0.07
MD	Formaldehyde	0.09	0.38	0.09	0.38	0.02	0.07
MRR ¹²	Proposed Monitoring:	See Project Report		See Project Report		See Project Report	
	Proposed Recordkeeping:	See Proj	ect Report	See Proj	ect Report		Project port
	Proposed Reporting:	See Proj	ect Report	See Proj	ect Report		Project port

Instructions for completing the Engine Emission Unit Data Sheet:

Enter the appropriate Emission Unit (Source) identification number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the production pad. Multiple compressor engines should be designated CE-1S, CE-2S, etc. or other appropriate designation. Generator engines should be designated GE-1S, GE-2S, etc. or other appropriate designation. If more than three (3) engines exist, please use additional sheets.

For Emission Points, use the following numbering system: 1E, 2E, etc. or other appropriate designation.

- ³ Enter the Source Status using the following codes: NS = Construction of New Source (installation); ES = Existing Source; MS = Modification of Existing Source; and RS = Removal of Source
- Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 5 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate. *Provide a manufacturer's data sheet for all engines being registered and a manufacturer's EPA certification of conformity sheet.*
- Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke, RB4S = Rich Burn Four Stroke, and LB4S = Lean Burn Four Stroke.
- Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: NSCR = Rich Burn & Non-Selective Catalytic Reduction, PSC = Rich Burn & Prestratified Charge, SCR = Lean Burn & Selective Catalytic Reduction, or CAT = Lean Burn & Catalytic Oxidation
- ⁹ Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas, or RG = Raw Natural Gas
- Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*. Codes: MD = Manufacturer's Data, AP = AP-42 Factors, GR = GRI-HAPCalc** or OT = Other ______ (please list)
- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet as Attachment O*.
- Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the operation of this engine operation and associated air pollution control device. Include operating ranges and maintenance procedures required by the manufacturer to maintain the warranty

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:	2	2. Emission Point ID:	Year Insta	lled/ Modified:				
EU-LOAD-COND]	EU-LOAD-COND	TBD					
4. Emission Unit Descri	iption: Condensate	Liquid Loading						
5. Loading Area Data:								
5A. Number of pumps:	1	5B. Number of liquids loaded:1	5C. Maximu	m number of				
		•	tank trucks	loading at one time:1				
6. Describe cleaning loc	cation, compounds a	and procedure for tank trucks:						
Point is kept clear. Scoto	ches are provided. L	ines kept in good working order a	and tested periodically					
7. Are tank trucks press	ure tested for leaks	at this or any other location?						
Yes No								
If YES, describe:								
Vessel pressure is tested	in accordance with	DOT requirements, if applicable	:					
8. Projected Maximum	Operating Schedule	e (for rack or transfer point as a w	nole):					
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.				
hours/day	24	24	24	24				
days/week	5	5	5	5				
		<u> </u>		•				

Liquid Name	Condensate	
Max. daily throughput (1000 gal/day)	34.18	
Max. annual throughput (gal/yr)	12,478,620	
Loading Method ¹	SP	
Max. Fill Rate (gal/min)	TBD	
Average Fill Time (min/loading)	~ 60	
Max. Bulk Liquid Temperature (°F)	61.48	
True Vapor Pressure ²	TBD	
Cargo Vessel Condition ³	U	
Control Equipment or Method ⁴	O- Vapor return with VRU and combustor controls	
Minimum collection efficiency (%)	70	
Minimum control efficiency (%)	95	

Maximum	Loading (lb/hr)	VOC: 10.90					
Emission Rate		HAP: 0.27					
	Annual (ton/yr)	VOC: 47.73					
	-	HAP: 1.17					
Estimation Metho	od ⁵	ProMax Software					
Notes:		·	·				
¹ BF = Bottom Fill	SP = Splash Fill SUB =	Submerged Fill					
² At maximum bulk	liquid temperature						
³ B = Ballasted Ves	sel, C = Cleaned, U = Uncleaned	(dedicated service), O = other (describe)					
⁴ List as many as ap	pply (complete and submit approp	riate Air Pollution Control Device Sheets as A	Attachment "H"):				
CA = Carbon Adso	CA = Carbon Adsorption						
VB = Dedicated Va	VB = Dedicated Vapor Balance (closed system)						
ECD = Enclosed C	Combustion Device						

F = Flare

TO = Thermal Oxidation or Incineration

⁵ EPA = EPA Emission Factor as stated in AP-42

 $MB = Material \ Balance$

TM = Test Measurement based upon test data submittal

O = other (describe)

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation/air pollution control device.	RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring.					
None	None					
REPORTING Please describe the proposed frequency of reporting of the recordkeeping.	TESTING Please describe any proposed emissions testing for this process equipment/air pollution control device.					
None	None					

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:	2. E	nission Point ID:	3. `	Year Installed/ Modified:				
EU-LOAD-PW	EU-I	OAD-PW	TF	BD				
4. Emission Unit Descr	intion: Produced Water	iquid Loading						
4. Emission emit Descr	Zamason eme Zeori pusar i rounce i i uni ziquie Zonemg							
5. Loading Area Data:								
5A. Number of pumps:	1 5B.	Number of liquids loaded:1	5C.	Maximum number of				
		1		ank trucks loading at one time:1				
6. Describe cleaning los	cation, compounds and r	rocedure for tank trucks:	<u> </u>					
_		kept in good working order	r and tested per	iodically				
r				, ,				
7. Are tank trucks press	ure tested for leaks at th	is or any other location?						
⊠ Yes □ No		,						
If YES, describe:								
· · · · · · · · · · · · · · · · · · ·	in accordance with DO	Γ requirements, if applicable	le:					
r		,,,,,						
8. Projected Maximum	8. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.				
hours/day	24	24	24	24				
days/week	5	5	5	5				
auj a noon	1 -	1 -	1 -					

Liquid Name	Condensate	
Max. daily throughput (1000 gal/day)	35.41	
Max. annual throughput (gal/yr)	12,923,190	
Loading Method ¹	SUB	
Max. Fill Rate (gal/min)	TBD	
Average Fill Time (min/loading)	~ 60	
Max. Bulk Liquid Temperature (°F)	61.48	
True Vapor Pressure ²	TBD	
Cargo Vessel Condition ³	U	
Control Equipment or Method ⁴	O- Vapor return with VRU and combustor controls	
Minimum collection efficiency (%)	70	
Minimum control efficiency (%)	95	

Maximum	Loading (lb/hr)	VOC: 0.61					
Emission Rate		HAP: <0.01					
	Annual (ton/yr)	VOC: 2.69					
		HAP: 0.01					
Estimation Metho	od ⁵	ProMax Software					
Notes:		·					
¹ BF = Bottom Fill	SP = Splash Fill SUB = Sul	omerged Fill					
² At maximum bulk	liquid temperature						
³ B = Ballasted Vess	sel, C = Cleaned, U = Uncleaned (de	edicated service), O = other (describe					
⁴ List as many as ap	⁴ List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets as Attachment "H"):						
CA = Carbon Adsor	CA = Carbon Adsorption						
VB = Dedicated Va	VB = Dedicated Vapor Balance (closed system)						
ECD = Enclosed C	ombustion Device						
E - Eloro	E - Elono						

F = Flare

TO = Thermal Oxidation or Incineration

⁵ EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. RECORDKEEPING Please describe the proposed recordkeeping MONITORING Please list and describe the process parameters and ranges that are proposed to be monitored in order to that will accompany the monitoring. demonstrate compliance with the operation of this process equipment operation/air pollution control device. None None REPORTING Please describe the proposed frequency of reporting TESTING Please describe any proposed emissions testing for this of the recordkeeping. process equipment/air pollution control device. None None

11. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty: N/A

ATTACHMENT H

Air Pollution Control Device Data Sheets

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE	INSTRUCTIO	ONS ACCOMPA	ANYING THIS FO	ORM BEFOR	E COM	PLETING.
		General Ir	nformation			
1. Control Device ID#: APC-C	1. Control Device ID#: APC-COMB- TKLD					⊠ New
3. Maximum Rated Total Flow ~102 scf/min ~147,000		4. Maximum D 15 MMBtu/h	esign Heat Input: r	5. Design 2,450 BTU		ntent:
		Control Devi	ce Information			
6. Select the type	of vapor comb	oustion control de	vice being used:	Enclosed C	ombustic	on Device
☐ Elevated Flare	e 🗌 Ground F	Flare Thern	nal Oxidizer 🔲	Completion C	ombusti	on Device
7. Manufacturer: MRW Techn Model No.: TBF-5.5-30-14700			8. Hours of opera	ation per year	8760	
9. List the emiss	sion units whos		ontrolled by this var t ID#: see below)	por combustic	on contro	ol device:
10. Emission Unit ID#	Emission Sou	urce Description:	Emission U	nit ID#	Emissi	on Source Description:
EU-TANKS-COND	Condensate S	Storage Tanks				
EU-TANKS-PW	Tanks	Water Storage				
EU-LOAD-COND	Condensate I (emergency u	Liquids Loading use)				
EU-LOAD-PW	Produced Loading (emergency	Water Liquid use)				
If this vapor combusto	or controls emi	ssions from more	than six emission u	nits, please at	tach ada	litional pages.
11. Ass	ist Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?
Steam - Air - I	Pressure - 🖂	Non -	~30 ft	~5.5 ft		□Yes □No NA
		Waste Gas	Information			
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperature of the emissions stream (°F) 18. Exit Velocity of the emissions stream (scf/min			
~102	Var	riable	~70			
19. Provide an attachment with	n the characteri	istics of the waste	gas stream to be bu	ırned. See atta	iched en	nission calculations.

		Pilot Information			
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic reignition be used?	
Pipeline quality natural gas	1	50	1,287	☐ Yes ⊠ No	
If the pilot flame is le		be the method: automatically attempt to reli d a local and remote alarm si			
26. Describe the me	thod of controlling flame:				
	quipped with a monitor sence of the flame?	28. If yes, what type?	Thermocouple Infr	a-Red Ultra Violet	
∑ Yes	_	Camera with monitoring	ng control room 🛛 Oth	er, describe: Flame Rod	
29. Pollu	utant(s) Controlled	30. % Capture Eff	ICIANCU	ufacturer's Guaranteed rol Efficiency (%)	
	НС	100	100 ≥ 98		
	VOC	100		≥ 98	
	HAP	100		≥ 98	
32. Has the control of	device been tested by the m	anufacturer and certified?			
33. Describe all ope See attached specific		nce procedures required by t	he manufacturer to maint	ain warranty:	
34. Additional Infor	mation Attached?	YES NO			
Please attach a copy	of manufacturer's data she of manufacturer's drawing of the manufacturer's perf	?.			

If any of the requested information is not available, please contact the manufacturer.

Tank Battery Combustor Specification Sheet MRW Technologies, Inc. Combustor Model Number: TBF-5.5-30-147000

Expected Destruction Removal Efficiency (DRE): 98% or Greater of

Non-Methane Hydrocarbons

Unit Size: 5.5-foot Diameter

30-Foot Overall Height

Design Heat Input: 15 MMBTU/HR

Design Flow Rates: 147,000 SCFD

Design Heat Content: 2450 BTU/SCF

Waste Gas Flame Arrestor: 2" Enardo

Pilot Type: MRW Electric Ignition

Pilot Operation (Continuous/Intermittent): Continuous

Pilot Fuel Consumption: 50 SCFH or Less

Pilot Monitoring Device: Flame Rod

Automatic Re-Ignition: Included

Remote Alarm Indication: Included

Description of Control Scheme:

The Combustor pilot is monitored via flame rod. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the reignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

ATTACHMENT I

Emission Calculations

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Wells	3	per pad			
Compressor Engine	2	per pad	EU-ENGINE1 - EU-ENGINE2	EP-ENGINE1 - EP-ENGINE2	NSCR Catalyst
VRU Engine	1	per pad	VRU-1	VRU-1	NSCR Catalyst
Condensate Tanks	4	per pad	EU-TANKS-COND	EP-TANKS-COND	Vapor Recovery Uni
Produced Water Tanks	4	per pad	EU-TANKS-PW	EP-TANKS-PW	Vapor Recovery Uni
Line Heaters	0	per pad	***		
GPU Burners	5	per pad	EU-GPU1 - EU-GPU5	EP-GPU1 - EP-GPU5	
Heater Treaters	2	per pad	EU-HT1 - EU-HT2	EP-HT1 - EP-HT2	
Dehydrator(s)	0	per pad			
Reboiler(s)	0	per pad			
Dehy Drip Tank	0	per pad	***		
Vapor Combustor	1	per pad	APC-COMB-TKLD	APC-COMB-TKLD	
Vapor Combustor Pilot+C81	1	per pad	EU-PILOT	EP-PILOT	
Vapor Recovery Unit	1	per pad	APC-VRU	APC-VRU	
Length of lease road	800	feet			
Low Pressure Towers	3	per pad			

		n 1 1		VRU	C		W 4	n				
Constituent	Condensate Tanks (tpy)	Produced Water Tanks (tpy)	Combustor (tpy)	Engine (tpy)	Compressor Engines (tpy)	GPU Burners (tpy)	Heater Treaters (tpy)	Fugitive Components (tpy)	Condensate Loading (tpy)	Produced Water Loading (tpy)	Haul Roads (tpy)	Total Emissions (tpy)
riteria Pollutants NO _x			5.13	0.89	2.80	1.70	0.34					10.86
CO			4.31	1.78	5.60	1.43	0.34					13.40
PM Total			0.39	0.07 0.07	0.21 0.21	0.13 0.13	0.03				4.17 1.06	4.99 1.89
PM ₁₀ Total												
PM _{2.5} Total			0.39	0.07	0.21	0.13	0.03				0.11	0.93
SO_2			0.03	0.00	0.01	0.01	0.00					0.05
VOC	5.17	0.30		0.74	2.10	0.09	0.02	2.80	47.73	2.69		61.63
reenhouse Gases												
CO ₂			7,719.70	405.45	1358.16	2,562.24	512.45	0.13				12,558
CH ₄			0.15	0.01	5.24	4.8E-02	0.01	20.28				26
N ₂ O			0.01	0.00	0.00	4.8E-03	0.00	20.20				0
												-
CO ₂ e			7,727.67	405.87	1,489.79	2,564.89	512.98	507.04				13,208
lazardous Air Pollutants												
Methylnaphthalene (2-)						4.1E-07	8.2E-08					4.9E-07
Methylchloranthrene (3-)						3.1E-08	6.1E-09					3.7E-08
Dimethybenz(a)anthracene (7,12-)						2.7E-07	5.4E-08					3.3E-07
Acenaphthene						3.1E-08	6.1E-09					3.7E-08
Acenaphthylene						3.1E-08	6.1E-09					3.7E-08
Anthracene						4.1E-08	8.2E-09					4.9E-08
Benz(a)anthracene						3.1E-08	6.1E-09					3.7E-08
Benzene	1.8E-03	5.4E-04		5.5E-03	1.7E-02	3.6E-05	7.1E-06		1.1E-02	5.8E-03		4.2E-02
Benzo(a)pyrene						2.0E-08	4.1E-09					2.5E-08
Benzo(b)fluoranthene						3.1E-08	6.1E-09					3.7E-08
Benzo(g,h,i)perylene						2.0E-08	4.1E-09					2.5E-08
Benzo(k)fluoranthene						3.1E-08	6.1E-09					3.7E-08
Chrysene						3.1E-08	6.1E-09					3.7E-08
Dibenzo(a,h)anthracene						2.0E-08	4.1E-09					2.5E-08
Dichlorohenzene						2.0E-05	4.1E-06					2.5E-08 2.5E-05
Fluoranthene						5.1E-08	1.0E-08					6.1E-08
Fluorine						4.8E-08	9.5E-09					5.7E-08
Formaldehyde		4 477 000		7.1E-02	7.6E-01	1.3E-03	2.6E-04					8.3E-01
Hexane, n-	1.3E-01	1.4E-03				3.1E-02	6.1E-03		1.1E+00	2.6E-04		1.3E+00
Indeno(1,2,3-cd)pyrene						3.1E-08	6.1E-09					3.7E-08
Naphthalene				3.4E-04	1.1E-03	1.0E-05	2.1E-06					1.4E-03
Phenanthrene						2.9E-07	5.8E-08					3.5E-07
Pyrene						8.5E-08	1.7E-08					1.0E-07
Toluene	3.2E-03	3.9E-04		1.9E-03	6.1E-03	5.8E-05	1.2E-05		2.0E-02	2.7E-03		3.5E-02
Arsenic						3.4E-06	6.8E-07					4.1E-06
Beryllium						2.0E-07	4.1E-08					2.5E-07
Cadmium						1.9E-05	3.7E-06					2.2E-05
Chromium						2.4E-05	4.8E-06					2.9E-05
Cobalt						1.4E-06	2.9E-07					1.7E-06
Manganese						6.5E-06	1.3E-06					7.8E-06
Mercury						4.4E-06	8.8E-07					5.3E-06
Nickel						3.6E-05	7.1E-06					4.3E-05
Selenium						3.6E-05 4.1E-07	7.1E-06 8.2E-08					4.3E-05 4.9E-07
Selenium Ethylbenzene	9.2E-04	6.5E-05		8.6E-05	2.7E-04				6.1E-03	2.3E-04		4.9E-07 7.6E-03
	9.2E-04	0.3E-03		8.0E-U3	2./E-04				0.1E-03	2.3E-04		
Trimethylpentane (2,2,4-)	2.55.02	1.05.04			2 15 02				1 (F. 02			0.0E+00
Xylene	2.5E-03	1.8E-04		6.8E-04	2.1E-03				1.6E-02	5.6E-04		2.2E-02
1,1,2,2-Tetrachloroethane				8.8E-05	2.8E-04							
1,1,2-Trichloroethane				5.3E-05	1.7E-04							
1,3-Butadiene				2.3E-03	7.3E-03							
1,3-Dichloropropene				4.4E-05	1.4E-04							
Acetaldehyde				9.7E-03	3.1E-02							
Acrolein				9.1E-03	2.9E-02							
Carbon Tetrachloride				6.1E-05	1.9E-04							
Chlorobenzene				4.5E-05	1.4E-04							
Chloroform				4.7E-05	1.5E-04							
Ethylene Dibromide				7.4E-05	2.3E-04							
Methanol				1.1E-02	3.4E-02							
				1.4E-04	4.5E-04							
Methylene Chloride												
PAH				4.9E-04	1.5E-03							
Styrene				4.1E-05	1.3E-04							
Vinyl Chloride				2.5E-05	7.9E-05							

Condensate Storage Tanks

Throughput Parameter	Value	Units
Operational Hours Total Condensate Throughput	- /	hrs/yr bbl/day

Description	Potential Throughput (gal/yr)
Condensate	12,478,620

Condensate Storage Tanks (400 bbl, each) - Uncontrolled (Total)

	Working Emissions	Breathing Emissions	Flashing Emissions	Total Er	missions ¹
Constituent	tpy	tpy	tpy	lb/hr	tpy
Propane	9.09	1.65	31.44	9.631	42.18
Isobutane	2.10	0.38	7.72	2.330	10.21
n-Butane	4.82	0.88	17.53	5.304	23.23
Isopentane	1.53	0.28	5.83	1.742	7.63
n-Pentane	1.54	0.28	5.96	1.775	7.77
n-Hexane	0.50	0.09	1.99	0.590	2.59
Methylcyclopentane	0.04	0.01	0.17	0.048	0.21
Benzene	0.00	0.00	0.03	0.008	0.04
Cyclohexane	0.05	0.01	0.22	0.062	0.27
n-Heptane	0.20	0.04	0.85	0.249	1.09
n-Octane	0.10	0.02	0.45	0.131	0.57
n-Nonane	0.02	0.00	0.08	0.022	0.10
n-Decane	0.00	0.00	0.02	0.006	0.03
n-Undecane	0.00	0.00	0.01	0.002	0.01
Dodecane	0.00	0.00	0.00	< 0.01	< 0.01
Triethylene Glycol	0.00	0.00	0.00	< 0.01	< 0.01
Cyclopentane	0.00	0.00	0.02	0.005	0.02
Isohexane	0.00	0.00	0.00	< 0.01	< 0.01
3-Methylpentane	0.61	0.11	2.38	0.708	3.10
Neohexane	0.61	0.11	2.36	0.703	3.08
2,3-Dimethylbutane	0.12	0.02	0.46	0.136	0.60
Methylcyclohexane	0.08	0.01	0.36	0.103	0.45
Isooctane	0.00	0.00	0.00	< 0.01	< 0.01
Decane, 2-Methyl-	0.00	0.00	0.00	< 0.01	< 0.01
Toluene	0.01	0.00	0.05	0.015	0.06
m-Xylene	0.01	0.00	0.04	0.011	0.05
Ethylbenzene	0.00	0.00	0.02	0.004	0.02
Total Emissions:	21.437	3.898	77.968	23.585	103.303
Total VOC Emissions:	21.437	3.898	77.968	23.585	103.303
Total HAP Emissions:	0.526	0.096	2.133	0.629	2.755

¹ Emissions calculated using ProMax Software. ProMax software provides estimates for working, breathing, and flashing losses associated with total throughput (i.e emissions from all tanks at the facility).

Condensate Storage Tanks

Condensate Storage Tanks (400 bbl, each) - Controlled (Total)

	Total Emissions ¹		
Constituent	lb/hr	tpy	
Propane	0.482	2.109	
Isobutane	0.117	0.510	
n-Butane	0.265	1.162	
Isopentane	0.087	0.381	
n-Pentane	0.089	0.389	
n-Hexane	0.030	0.129	
Methylcyclopentane	0.002	0.011	
Benzene	0.000	0.002	
Cyclohexane	0.003	0.014	
n-Heptane	0.012	0.054	
n-Octane	0.007	0.029	
n-Nonane	0.001	0.005	
n-Decane	0.000	0.001	
n-Undecane	0.000	0.000	
Dodecane	< 0.01	< 0.01	
Triethylene Glycol	< 0.01	< 0.01	
Cyclopentane	0.000	0.001	
Isohexane	< 0.01	< 0.01	
3-Methylpentane	0.035	0.155	
Neohexane	0.035	0.154	
2,3-Dimethylbutane	0.007	0.030	
Methylcyclohexane	0.005	0.023	
Isooctane	< 0.01	< 0.01	
Decane, 2-Methyl-	< 0.01	< 0.01	
Toluene	0.001	0.003	
m-Xylene	0.001	0.002	
Ethylbenzene	0.000	0.001	
Total Emissions:	1.179	5.165	
Total VOC Emissions:	1.179	5.165	
Total HAP Emissions:	0.031	0.138	

¹ Vapors will be routed to the vapor recovery unit. In the event of VRU downtime, a backup combustor with a 98% control efficiency will be used. An overall control efficiency of 95% is used for the purpose of establishing PTE.

SWN Production Company, LLC
Ridgetop Land Ventures
G-70 Application

Condensate Storage Tanks

Control Efficiency of Combustor Pilot Rating Combustor Rating 95% 0.06 MMBtu/hr 15 MMBtu/hr

$\underline{\textbf{Enclosed Combustor Emissions-APC TKLD-COMB}} \ ^{1}$

	Emission Factor	Combustor Potential Emissions		Pilot Potential Emissions		
Pollutant ²	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
NO _x	0.078	1.17	5.10	0.01	0.02	
CO	0.065	0.98	4.29	0.00	0.02	
PM/PM ₁₀	0.006	0.09	0.39	3.8E-04	0.002	
SO_2	4.7E-04	0.01	0.03	3.0E-05	1.31E-04	
CO ₂ (Natural Gas Firing)	116.997	1754.96	7686.72	7.529	32.976	
CH ₄ (Natural Gas Firing)	0.002	0.03	0.14	1.4E-04	6.21E-04	
N ₂ O (Natural Gas Firing)	2.2E-04	0.00	0.01	1.4E-05	6.21E-05	

¹ Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at this facility. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

² GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Produced Water Storage Tanks

Throughput Parameter	Value	Units
Operational Hours Total Throughput	· ·	hrs/yr bbl/day

Description	Potential Throughput (gal/yr)
Produced Water	12,923,190

Produced Water Tanks (400 bbl each) - Uncontrolled (Total)

Constituent	Working Emissions tpy	Breathing Emissions tpy	Flashing Emissions tpy	Total En	nissions ¹ tpy
Propane	3.68	0.00	0.88	1.041	4.56
Isobutane	0.06	0.00	0.88	0.038	0.17
n-Butane	0.38	0.00	0.47	0.193	0.17
Isopentane	0.38	0.00	0.47	0.193	0.14
n-Pentane	0.02	0.00	0.12	0.031	0.14
			0.13		
n-Hexane	0.00	0.00		0.006	0.03
Methylcyclopentane	0.00	0.00	0.01	0.002	0.01
Benzene	0.01	0.00	0.00	0.002	0.01
Cyclohexane	0.00	0.00	0.01	0.003	0.01
n-Heptane	0.00	0.00	0.01	0.002	0.01
n-Octane	0.00	0.00	0.01	0.001	0.01
n-Nonane	0.00	0.00	0.00	0.001	0.00
n-Decane	0.00	0.00	0.00	0.000	0.00
n-Undecane	0.00	0.00	0.00	0.000	0.00
Dodecane	0.00	0.00	0.00	< 0.01	< 0.01
Triethylene Glycol	0.00	0.00	0.00	< 0.01	< 0.01
Cyclopentane	0.00	0.00	0.00	0.000	0.00
Isohexane	0.00	0.00	0.00	< 0.01	< 0.01
3-Methylpentane	0.00	0.00	0.07	0.016	0.07
Neohexane	0.00	0.00	0.02	0.005	0.02
2,3-Dimethylbutane	0.00	0.00	0.01	0.002	0.01
Methylcyclohexane	0.00	0.00	0.01	0.003	0.02
Isooctane	0.00	0.00	0.00	< 0.01	< 0.01
Decane,2-Methyl-	0.00	0.00	0.00	< 0.01	< 0.01
Toluene	0.00	0.00	0.00	0.002	0.01
m-Xylene	0.00	0.00	0.00	0.001	0.00
Ethylbenzene	0.00	0.00	0.00	0.000	0.00
Total Emissions:	4.176	< 0.01	1.887	1.384	6.063
Total VOC Emissions:	4.176	< 0.01	1.887	1.384	6.063
Total HAP Emissions:	0.015	< 0.01	0.036	0.012	0.051

¹ Emissions calculated using ProMax Software. ProMax software provides estimates for working, breathing, and flashing losses associated with total throughput (i.e. emissions from all tanks at the facility).

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Produced Water Storage Tanks

Produced Water Tanks (400 bbl each) - Controlled (Total)

	Total Fr	missions 1
Constituent	lb/hr	tpy
Constituent	10/111	·PJ
Propane	0.052	0.228
Isobutane	0.002	0.008
n-Butane	0.010	0.042
Isopentane	0.002	0.007
n-Pentane	0.002	0.007
n-Hexane	0.000	0.001
Methylcyclopentane	0.000	0.000
Benzene	0.000	0.001
Cyclohexane	0.000	0.001
n-Heptane	0.000	0.000
n-Octane	0.000	0.000
n-Nonane	0.000	0.000
n-Decane	0.000	0.000
n-Undecane	0.000	0.000
Dodecane	< 0.01	< 0.01
Triethylene Glycol	< 0.01	< 0.01
Cyclopentane	0.000	0.000
Isohexane	< 0.01	< 0.01
3-Methylpentane	0.001	0.003
Neohexane	0.000	0.001
2,3-Dimethylbutane	0.000	0.000
Methylcyclohexane	0.000	0.001
Isooctane	< 0.01	< 0.01
Decane,2-Methyl-	< 0.01	< 0.01
Toluene	0.000	0.000
m-Xylene	0.000	0.000
Ethylbenzene	0.000	0.000
		ı
Total Emissions:	0.069	0.303
Total VOC Emissions:	0.069	0.303
Total HAP Emissions:	0.007	0.003
ZVMI II II ZIIIISSIVIIS.	0.001	0.003
L,		

Vapors will be routed to the vapor recovery unit. In the event of VRU downtime, a backup combustor with a 95% control efficiency will be used. An overall control efficiency of 95% is used for the purpose of establishing PTE.

SWN Production Company, LLC
Ridgetop Land Ventures
G-70 Application

Compressor Engine

Engine Information:

Manufacturer:	Caterpillar
Model No.:	G3306NA
Engine ID	EU-ENGINE1 & EU- ENGINE2
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	145
Control Device:	NSCR Catalyst

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,287
Specific Fuel Consumption (Btu/bhp-hr):	8,625
Maximum Fuel Consumption at 100% Load (scf/hr):	972
Heat Input (MMBtu/hr):	1.25
Potential Fuel Consumption (MMBtu/yr):	10,955
Max. Fuel Consumption at 100%(MMscf/hr):	0.0010
Max. Fuel Consumption (MMscf/yr):	8.5
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Units		Maximum Potential Emissions		Estimation Basis / Emission Factor
1 onutant	Factor	Factor	lbs/hr	tpy	Source
NO_X	1.00	g/bhp-hr	0.32	1.40	Vendor Data
VOC (excludes HCHO)	0.22	g/bhp-hr	0.07	0.67	Vendor Data
VOC (includes HCHO)	0.49	g/bhp-hr	0.16	1.05	Vendor Data
CO	2.00	g/bhp-hr	0.64	2.80	Vendor Data
SO_X	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
PM_{10}	0.02	lb/MMBtu	0.02	0.11	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.02	0.11	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.27	g/bhp-hr	0.09	0.38	Vendor Data
GHG (CO ₂ e)	See 7	Γable Below	170	745	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See 7	Γable Below	0.10	0.44	AP-42, Table 3.2-3 (Aug-2000)

Notes:

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- $2.~GHG~(CO_2e)~is~carbon~dioxide~equivalent,~which~is~the~summation~of~CO_2~(GWP=1) + CH_4~(GWP=25) + N_2O~(GWP=298).\\$
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

SWN Production Company, LLC
Ridgetop Land Ventures
G-70 Application

Compressor Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor Units	Maximum Potential Emissions		Estimation Basis / Emission Factor	
1 onutant		Omes	lbs/hr	tpy	Source
GHGs:					
CO ₂	485.00	g/bhp-hr	155.04	679.08	Vendor Data
$\mathrm{CH_4}$	1.870	g/bhp-hr	0.60	2.62	Vendor Data (THC-NMHC)
N_2O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-2
GHG (CO ₂ e)			170	745	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	6.63E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	1.27E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	2.79E-03	lb/MMBtu	0.00	0.02	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	2.63E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Benzene	1.58E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	1.77E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	1.29E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	1.37E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	2.48E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	2.13E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Methanol	3.06E-03	lb/MMBtu	0.00	0.02	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	4.12E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	9.71E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
PAH	1.41E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Styrene	1.19E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Toluene	5.58E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	7.18E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Xylene	1.95E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Total HAP			0.10	0.44	,

SWN Production Company, LLC Ridgetop Land Ventures G-70 Application

VRU Engine

Engine Information:

Manufacturer:	General Motors
Model No.:	Vortec 5.7L NA
Engine ID	VRU-1
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	92
Control Device:	NSCR Catalyst

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,287
Specific Fuel Consumption (Btu/bhp-hr):	8,600
Maximum Fuel Consumption at 100% Load (scf/hr):	615
Heat Input (MMBtu/hr):	0.79
Potential Fuel Consumption (MMBtu/yr):	6,931
Max. Fuel Consumption at 100%(MMscf/hr):	0.0006
Max. Fuel Consumption (MMscf/yr):	5.4
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Units		Maximum Potential Emissions		Estimation Basis / Emission Factor
1 onutant	Factor	Factor	lbs/hr	tpy	Source
NO_X	1.00	g/bhp-hr	0.20	0.89	Vendor Data
VOC (excludes HCHO)	0.70	g/bhp-hr	0.14	0.67	Vendor Data
VOC (includes HCHO)			0.16	0.74	VOC + HCHO
co	2.00	g/bhp-hr	0.41	1.78	Vendor Data
SO_X	0.001	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
PM_{10}	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Tal	ole Below	93	406	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tal	ole Below	0.03	0.11	AP-42, Table 3.2-3 (Aug-2000)

Notes:

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- $2. \ GHG \ (CO_2e) \ is \ carbon \ dioxide \ equivalent, \ which \ is \ the \ summation \ of \ CO_2 \ (GWP=1) + CH_4 \ (GWP=25) + N_2O \ (GWP=298).$
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

SWN Production Company, LLC
Ridgetop Land Ventures
G-70 Application

VRU Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor Units	Maximum Potential Emissions		Estimation Basis / Emission Factor	
		Omts	lbs/hr	tpy	Source
GHGs:					
CO_2	53.06	kg/MMBtu	92.57	405.45	Vendor Data
CH ₄	0.001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
N_2O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Table C-2
GHG (CO ₂ e)			93	406	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Butadiene	6.63E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
1,3-Dichloropropene	1.27E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Acetaldehyde	2.79E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Acrolein	2.63E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Benzene	1.58E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Carbon Tetrachloride	1.77E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chlorobenzene	1.29E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Chloroform	1.37E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylbenzene	2.48E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Ethylene Dibromide	2.13E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Methanol	3.06E-03	lb/MMBtu	0.00	0.01	AP-42, Table 3.2-3 (Aug-2000)
Methylene Chloride	4.12E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Naphthalene	9.71E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
PAH	1.41E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Styrene	1.19E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Toluene	5.58E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Vinyl Chloride	7.18E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Xylene	1.95E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.2-3 (Aug-2000)
Total HAP			0.03	0.11	

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Heater Treaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,287	BTU/scf
Heat Input	0.50	MMBtu/hr (each)
Fuel Consumption	3.89E-04	MMscf/hr (each)
Annual Fuel Consumption	3.40	MMscf/yr (each)
Potential Annual Hours of Operation	8,760	hr/yr

<u>Criteria and Manufacturer Specific Pollutant Emission Rates:</u>

	Emission Factor	Potential	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³		
NO _x	100	3.89E-02	1.7E-01		
СО	84	3.26E-02	1.4E-01		
SO_2	0.6	2.33E-04	1.0E-03		
PM Total	7.6	2.95E-03	1.3E-02		
PM Condensable	5.7	2.21E-03	9.7E-03		
PM ₁₀ (Filterable)	1.9	7.38E-04	3.2E-03		
PM _{2.5} (Filterable)	1.9	7.38E-04	3.2E-03		
voc	5.5	2.14E-03	9.4E-03		
Lead	5.00E-04	1.9E-07	8.5E-07		
CO ₂ (Natural Gas Firing) ⁴	150,576	58	256		
CH ₄ (Natural Gas Firing) ⁴	2.8	1.1E-03	4.8E-03		
N ₂ O (Natural Gas Firing) ⁴	0.28	1.1E-04	4.8E-04		

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Heater Treaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³	
HAPs:				
Methylnaphthalene (2-)	2.4E-05	9.3E-09	4.1E-08	
3-Methylchloranthrene	1.8E-06	7.0E-10	3.1E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	6.2E-09	2.7E-08	
Acenaphthene	1.8E-06	7.0E-10	3.1E-09	
Acenaphthylene	1.8E-06	7.0E-10	3.1E-09	
Anthracene	2.4E-06	9.3E-10	4.1E-09	
Benz(a)anthracene	1.8E-06	7.0E-10	3.1E-09	
Benzene	2.1E-03	8.2E-07	3.6E-06	
Benzo(a)pyrene	1.2E-06	4.7E-10	2.0E-09	
Benzo(b)fluoranthene	1.8E-06	7.0E-10	3.1E-09	
Benzo(g,h,i)perylene	1.2E-06	4.7E-10	2.0E-09	
Benzo(k)fluoranthene	1.8E-06	7.0E-10	3.1E-09	
Chrysene	1.8E-06	7.0E-10	3.1E-09	
Dibenzo(a,h) anthracene	1.2E-06	4.7E-10	2.0E-09	
Dichlorobenzene	1.2E-03	4.7E-07	2.0E-06	
Fluoranthene	3.0E-06	1.2E-09	5.1E-09	
Fluorine	2.8E-06	1.1E-09	4.8E-09	
Formaldehyde	7.5E-02	2.9E-05	1.3E-04	
Hexane	1.8E+00	7.0E-04	3.1E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	7.0E-10	3.1E-09	
Naphthalene	6.1E-04	2.4E-07	1.0E-06	
Phenanthrene	1.7E-05	6.6E-09	2.9E-08	
Pyrene	5.0E-06	1.9E-09	8.5E-09	
Γoluene	3.4E-03	1.3E-06	5.8E-06	
Arsenic	2.0E-04	7.8E-08	3.4E-07	
Beryllium	1.2E-05	4.7E-09	2.0E-08	
Cadmium	1.1E-03	4.3E-07	1.9E-06	
Chromium	1.4E-03	5.4E-07	2.4E-06	
Cobalt	8.4E-05	3.3E-08	1.4E-07	
Manganese	3.8E-04	1.5E-07	6.5E-07	
Mercury	2.6E-04	1.0E-07	4.4E-07	
Nickel	2.1E-03	8.2E-07	3.6E-06	
Selenium	2.4E-05	9.3E-09	4.1E-08	
Total HAP		7.3E-04	3.2E-03	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 $^{^2\} Emission\ Rate\ (lb/hr) = Rated\ Capacity\ (MMscf/hr) \times Emission\ Factor\ (lb/MMscf).$

 $^{^3}$ Annual Emissions (tons/yr) $_{Potential}$ = (lb/hr) $_{Emissions}$ × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).

 $^{^{\}rm 4}$ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

GPU Burners

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,287	BTU/scf
Heat Input	1.00	MMBtu/hr (each)
Fuel Consumption ¹	7.77E-04	MMscf/hr (each)
Annual Fuel Consumption	6.81	MMscf/yr (each)
Potential Annual Hours of Operation	8,760	hr/yr

<u>Criteria and Manufacturer Specific Pollutant Emission Rates:</u>

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO_x	100	7.77E-02	3.4E-01
СО	84	6.53E-02	2.9E-01
SO_2	0.6	4.66E-04	2.0E-03
PM Total	7.6	5.91E-03	2.6E-02
PM Condensable	5.7	4.43E-03	1.9E-02
PM ₁₀ (Filterable)	1.9	1.48E-03	6.5E-03
PM _{2.5} (Filterable)	1.9	1.48E-03	6.5E-03
VOC	5.5	4.27E-03	1.9E-02
Lead	5.00E-04	3.89E-07	1.7E-06
CO ₂ (Natural Gas Firing) ⁴	150,576	117.00	512
CH ₄ (Natural Gas Firing) ⁴	2.8	0.00	9.7E-03
N ₂ O (Natural Gas Firing) ⁴	0.28	0.00	9.7E-04

SWN Production Company, LLC
Ridgetop Land Ventures
G-70 Application

GPU Burners

<u>Hazardous Air Pollutant (HAP) Potential Emissions:</u>

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³	
HAPs:				
Methylnaphthalene (2-)	2.4E-05	1.9E-08	8.2E-08	
3-Methylchloranthrene	1.8E-06	1.4E-09	6.1E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.2E-08	5.4E-08	
Acenaphthene	1.8E-06	1.4E-09	6.1E-09	
Acenaphthylene	1.8E-06	1.4E-09	6.1E-09	
Anthracene	2.4E-06	1.9E-09	8.2E-09	
Benz(a)anthracene	1.8E-06	1.4E-09	6.1E-09	
Benzene	2.1E-03	1.6E-06	7.1E-06	
Benzo(a)pyrene	1.2E-06	9.3E-10	4.1E-09	
Benzo(b)fluoranthene	1.8E-06	1.4E-09	6.1E-09	
Benzo(g,h,i)perylene	1.2E-06	9.3E-10	4.1E-09	
Benzo(k)fluoranthene	1.8E-06	1.4E-09	6.1E-09	
Chrysene	1.8E-06	1.4E-09	6.1E-09	
Dibenzo(a,h) anthracene	1.2E-06	9.3E-10	4.1E-09	
Dichlorobenzene	1.2E-03	9.3E-07	4.1E-06	
Fluoranthene	3.0E-06	2.3E-09	1.0E-08	
Fluorine	2.8E-06	2.2E-09	9.5E-09	
Formaldehyde	7.5E-02	5.8E-05	2.6E-04	
Hexane	1.8E+00	1.4E-03	6.1E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	1.4E-09	6.1E-09	
Naphthalene	6.1E-04	4.7E-07	2.1E-06	
Phenanthrene	1.7E-05	1.3E-08	5.8E-08	
Pyrene	5.0E-06	3.9E-09	1.7E-08	
Toluene	3.4E-03	2.6E-06	1.2E-05	
Arsenic	2.0E-04	1.6E-07	6.8E-07	
Beryllium	1.2E-05	9.3E-09	4.1E-08	
Cadmium	1.1E-03	8.5E-07	3.7E-06	
Chromium	1.4E-03	1.1E-06	4.8E-06	
Cobalt	8.4E-05	6.5E-08	2.9E-07	
Manganese	3.8E-04	3.0E-07	1.3E-06	
Mercury	2.6E-04	2.0E-07	8.8E-07	
Nickel	2.1E-03	1.6E-06	7.1E-06	
Selenium	2.4E-05	1.9E-08	8.2E-08	
Total HAP		1.5E-03	6.4E-03	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 $^{^2\} Emission\ Rate\ (lb/hr) = Rated\ Capacity\ (MMscf/hr) \times Emission\ Factor\ (lb/MMscf).$

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name: SWN Production Company, LLC **Facility Name: Ridgetop Land Ventures Project Description:** G-70 Application

Fugitive Equipment Leaks

VOC Fugitive Emissions from Component Leaks

Equipment Type	Emission Factors ¹	Facility Equipment Count 2,3	Hourly Fugitive VOC Emissions	Annual Fugitive VOC Emissions	Hourly Fugitive HAP Emissions	Annual Fugitive HAP Emissions
	(lb/hr/source)	(units)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Gas/Vapor Service:						
Connectors	4.41E-04	389	0.03	0.15	0.00	0.00
Valves	9.92E-03	85	0.17	0.74	0.00	0.02
Flanges	8.60E-04	389	0.07	0.30	0.00	0.01
Compressor Seals	1.94E-02	9	0.04	0.15	0.00	0.00
Relief Valves	1.94E-02	31	0.12	0.53	0.00	0.01
Open-Ended Lines	4.41E-05	0	0.00	0.00	0.00	0.00
Light Liquid Service:						
Connectors	4.63E-04	454	0.04	0.19	0.00	0.00
Valves	5.51E-03	115	0.13	0.56	0.00	0.01
Flanges	2.40E-04	454	0.02	0.10	0.00	0.00
Pump Seals	2.87E-02	0	0.00	0.00	0.00	0.00
Relief Valves	1.65E-02	0	0.00	0.00	0.00	0.00
Emission Totals:	•		0.62	2.71	0.02	0.07

- Notes:
 1. All emission factors are from U.S. EPA's Protocol for Equipment Leak Emission Estimates (Table 2-4)
- 2. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 3. The component count is estimated based on design.
- 4. VOC and HAP emissions are based on fractions of site specific gas analysis.

GHG Fugitive Emissions from Component Leaks

Component	Component Count 1	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Gas/Vapor Service:					
Connectors	389	3.00E-03	0.17	0.00	4.19
Valves	85	2.70E-02	0.33	0.00	8.23
Flanges	389	3.00E-03	0.17	0.00	4.19
Compressor Seals	9	1.33E+01	17.17	0.11	429.41
Relief Valves	31	4.00E-02	0.18	0.00	4.45
Light Liquid Service:					
Connectors	454	7.00E-03	0.46	0.00	11.40
Valves	115	5.00E-02	0.82	0.01	20.63
Flanges	454	3.00E-03	0.20	0.00	4.89
Pump Seals	0	1.00E-02	0.00	0.00	0.00
Relief Valves	0	3.00E-01	0.00	0.00	0.00
Total			19.49	0.12	487

- 1. Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W. 2. Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.
- 3. Mole fractions of CH₄ and CO₂ based on gas analysis:

 CH_4 77% CO₂: 0.18%

 $4. \ Carbon\ equivalent\ emissions\ (CO_2e)\ are\ based\ on\ the\ following\ Global\ Warming\ Potentials\ (GWP)\ from\ 40\ CFR\ Part\ 98,\ Table\ A-1:$

Carbon Dioxide (CO₂): Methane (CH₄): **Company Name:** SWN Production Company, LLC Facility Name: Ridgetop Land Ventures **Project Description:** G-70 Application

Fugitive Equipment Leaks

VOC/GHG Fugitive Emissions from Blowdowns:

		Gas Volume	VOC Emissions	HAP Emissions	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
Blowdown Type	Number of Events	(scf/event)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Compressor	48	1,000	0.08	0.00	0.79	0.01	19.66
Total			0.08	0.00	0.79	0.01	19.66

- Notes:

 1. The number of compressor blowdowns assumes 2 blowdowns per compressor per month.
- 2. CH_4 and CO_2 emissions are based on fractions of these pollutants in the site-specific gas analysis.
- 3. Emissions are calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.
- 4. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

Fugitive Component Emissions Data:

Pollutant	Atmospheric Emissions lbs/hr tpy		Emissions Estimation Method
Fonutant			Emissions Estimation Method
VOC	0.64	2.80	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis
HAPs	0.02	0.07	EPA Protocol, Table 2-4 and Site-Specific Gas Analysis
GHG (CO ₂ e)	116	507	40 CFR 98, Table W-1A and Site-Specific Gas Analysis

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Condensate Loading

Liquid Loading Losses:

Description	Maximum Throughput ¹ (gal)
Liquids Hauling	12,478,620

 $^{^{\}rm 1}$ Sum of the annual condensate throughput from each well at the pad.

 $^{^2}$ The capture efficiency is 70% and the control efficiency is 95% for an overall reduction efficiency of 66.5 percent.

Constituent	Total E lb/hr	missions ¹ tpy
Propane	4.621	20.240
Isobutane	1.070	4.685
n-Butane	2.452	10.740
Isopentane	0.775	3.396
n-Pentane	0.782	3.427
n-Hexane	0.255	1.118
Methylcyclopentane	0.020	0.086
Benzene	0.002	0.011
Cyclohexane	0.024	0.103
n-Heptane	0.102	0.445
n-Octane	0.052	0.229
n-Nonane	0.009	0.038
n-Decane	0.002	0.010
n-Undecane	0.001	0.004
Dodecane	0.000	0.000
Triethylene Glycol	0.000	0.000
Cyclopentane	0.002	0.008
Isohexane	0.000	0.000
3-Methylpentane	0.308	1.351
Neohexane	0.310	1.356
2,3-Dimethylbutane	0.060	0.261
Methylcyclohexane	0.041	0.181
Isooctane	0.000	0.000
Decane, 2-Methyl-	0.000	0.000
Toluene	0.005	0.020
m-Xylene	0.004	0.016
Ethylbenzene	0.001	0.006
Total Emissions:	10.897	47.730
Total VOC Emissions:	10.897	47.730
Total HAP Emissions: Liquid loading emissions were e	0.27	1.17

Liquid loading emissions were estimated using ProMax software. Vapor Balance loading and dedicated normal service options were selected and the overall reduction efficiency of 66.5 percent was used.

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Produced Water Loading

Liquid Loading Losses:

Description	Maximum Throughput ¹ (gal)
Liquids Hauling	12,923,190

¹ Sum of the annual produced water throughput from each well at the pad.

 $^{^2}$ The capture efficiency is 70% and the control efficiency is 95% for an overall reduction efficiency of 66.5 percent.

Constituent	Total E lb/hr	missions ¹ tpy
Propane	0.541	2.368
Isobutane	0.008	0.037
n-Butane	0.056	0.244
Isopentane	0.003	0.014
n-Pentane	0.003	0.011
n-Hexane	0.000	0.000
Methylcyclopentane	0.000	0.001
Benzene	0.001	0.006
Cyclohexane	0.000	0.001
n-Heptane	0.000	0.000
n-Octane	0.000	0.000
n-Nonane	0.000	0.000
n-Decane	0.000	0.000
n-Undecane	0.000	0.000
Dodecane	0.000	0.000
Triethylene Glycol	0.000	0.000
Cyclopentane	0.000	0.000
Isohexane	0.000	0.000
3-Methylpentane	0.001	0.002
Neohexane	0.000	0.000
2,3-Dimethylbutane	0.000	0.000
Methylcyclohexane	0.000	0.000
Isooctane	0.000	0.000
Decane, 2-Methyl-	0.000	0.000
Toluene	0.001	0.003
m-Xylene	0.000	0.001
Ethylbenzene	0.000	0.000
Total Emissions:	0.614	2.688
Total VOC Emissions:	0.614	2.688
Total HAP Emissions: Liquid loading emissions were es	0.00	0.01 ax software. Var

Liquid loading emissions were estimated using ProMax software. Vapor Balance loading and dedicated normal service options were selected and the overall reduction efficiency of 66.5 percent was used.

Company Name: SWN Production Company, LLC
Facility Name: Ridgetop Land Ventures
Project Description: G-70 Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy)	PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.30 0.30	6,350 200	1,924 61	0	4.12 0.05	1.05 0.01	0.105 0.001
Total Potential Emissions	1							4.17	1.06	0.11

 Company Name:
 SWN Production Company, LLC

 Facility Name:
 Ridgetop Land Ventures

 Project Description:
 G-70 Application

Gas Analysis

 Sample Location:
 Berisford No. 1-H

 Sample Date:
 2/25/2011

 HHV (Btu/scf):
 1,287

	Natural Gas Stream			Average Weight	Natural Gas Stream	
G	Speciation (Mole %)	Molecular Weight	Molar Weight	Fraction	Speciation	
Constituent		44.01	7 OF 02	2.05.02	(Wt. %)	
Carbon Dioxide	0.180	44.01	7.9E-02	3.8E-03	0.38	
Nitrogen	0.433	28.01	1.2E-01	5.8E-03	0.58	
Methane	77.380	16.04	1.2E+01	5.9E-01	58.92	
Ethane	14.005	30.07	4.2E+00	2.0E-01	19.99	
Propane	4.820	44.10	2.1E+00	1.0E-01	10.09	
Isobutane	0.622	58.12	3.6E-01	1.7E-02	1.72	
n-Butane	1.329	58.12	7.7E-01	3.7E-02	3.67	
Isopentane	0.350	72.15	2.5E-01	1.2E-02	1.20	
n-Pentane	0.384	72.15	2.8E-01	1.3E-02	1.32	
Cyclopentane	0.002	70.1	1.4E-03	6.7E-05	0.01	
Methylcyclopentane	0.009	84.2	7.6E-03	3.6E-04	0.04	
n-Hexane	0.121	86.18	1.0E-01	5.0E-03	0.50	
Cyclohexane	0.012	84.16	1.0E-02	4.8E-04	0.05	
Other Hexanes	0.219	86.18	1.9E-01	9.0E-03	0.90	
Heptanes	0.058	100.21	5.8E-02	2.8E-03	0.28	
Methylcyclohexane	0.020	98.19	2.0E-02	9.3E-04	0.09	
2,2,4-Trimethylpentane	< 0.001	114.23	0.0E+00	0.0E+00	0.00	
Benzene*	0.002	78.11	1.6E-03	7.4E-05	0.01	
Toluene*	0.003	92.14	2.8E-03	1.3E-04	0.01	
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001	
Xylenes*	0.002	106.16	2.1E-03	1.0E-04	0.01	
C8 + Heavies	0.049	114.23	5.6E-02	2.7E-03	0.27	
Oxygen			0.000	0.000	0.000	
Totals	100.00	_	21.06	1.00	100	

TOC (Total)	99.39	99.05
VOC (Total)	8.00	20.1
HAP (Total)	0.13	0.53

Job: V1.0

Southwestern Energy RidgetopWellpad Ridgeland Ventures Client Name: Location: Flowsheet:

Connections

	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas
From Block	MIX-101	Water Tanks		Oil Tanks	
To Block			MIX-102		MIX-102

Stream Composition						
	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas	
Mole Fraction		_				
Nitrogen	0.00429754	6.13809E-09	0 *	2.05272E-08	0.00433 *	
Methane	0.766798	1.01166E-05	0 *	0.000251091	0.7738 *	
CO2	0.00179082	2.5852E-06	0 *	1.50026E-05	0.0018 *	
Ethane	0.141581	8.64784E-06	0 *	0.00871455	0.14005 *	
Propane	0.0503192	5.86595E-06	0 *	0.0418594	0.04838 *	
Isobutane	0.00657793	1.93612E-07	0 *	0.0215077	0.00622 *	
n-Butane	0.014015	1.95477E-06	0 *	0.073068	0.01329 *	
Isopentane	0.00362414	2.48888E-07	0 *	0.0528971	0.0035 *	
n-Pentane	0.0037461	2.72717E-07	0 *	0.0734148	0.00366 *	
n-Hexane	0.00113512	1.93351E-08	0 *	0.0742845	0.00121 *	
Methylcyclopentane	9.47201E-05	4.50055E-08	0 *	0.00627793	9E-05 *	
Benzene	1.90933E-05	8.39482E-07	0 *	0.00126093	2E-05 *	
Cyclohexane	0.000126749	1.33315E-07	0 *	0.0105335	0.00012 *	
n-Heptane	0.00047547	6.08987E-09	0 *	0.0904915	0.00058 *	
n-Octane	0.00024884	2.18787E-09	0 *	0.145231	0.00039 *	
n-Nonane	4.18938E-05	2.76211E-09	0 *	0.0736105	8E-05 *	
n-Decane	1.16317E-05	4.30088E-10	0 *	0.0577838	2E-05 *	
n-Undecane	4.62404E-06	3.37849E-10	0 *	0.0737949	0 *	
Dodecane	0	0	0 *	0	0 *	
Water	0.00199735	0.999966	1 *	0.00414346	0 *	
Triethylene Glycol	0	0	0 *	0	0 *	
Oxygen	0	0	0 *	0	0 *	
Argon	0	0	0 *	0	0 *	
Carbon Monoxide	0	0	0 *	0	0 *	
Cyclopentane	1.0582E-05	1.01219E-08	0 *	0.000301819	2E-05 *	
Isohexane	0	0	0 *	0	0 *	
3-Methylpentane	0.00132295	1.45715E-07	0 *	0.070363	0.00145 *	
Neohexane	0.0012534	1.31367E-08	0 *	0.0398288	0.00048 *	
2,3-Dimethylbutane	0.000248306	1.12864E-08	0 *	0.0107073	0.00026 *	
Methylcyclohexane	0.000194227	6.36062E-08	0 *	0.0360878	0.0002 *	
Isooctane	0	0	0 *	0	0 *	
Decane, 2-Methyl-	0	0	0 *	0	0 *	
Toluene	3.21043E-05	1.22221E-06	0 *	0.00758965	3E-05 *	
m-Xylene	2.44643E-05	8.50593E-07	0 *	0.0199245	2E-05 *	
Ethylbenzene	8.82005E-06	2.79352E-07	0 *	0.00605712	0 *	
	1	1				

	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen	11.9727	4.18925E-06	0 *	1.72786E-06	11.8856 *
Methane	2136.26	0.00690462	0 *	0.0211353	2124.04 *
CO2	4.98915	0.0017644	0 *	0.00126283	4.94091 *
Ethane	394.438	0.00590216	0 *	0.733537	384.43 *
Propane	140.187	0.00400352	0 *	3.52347	132.801 *
Isobutane	18.3258	0.000132141	0 *	1.81038	17.0736 *
n-Butane	39.045	0.00133413	0 *	6.15041	36.4804 *
Isopentane	10.0967	0.000169866	0 *	4.45255	9.60733 *
n-Pentane	10.4365	0.00018613	0 *	6.1796	10.0465 *
n-Hexane	3.16239	1.31962E-05	0 *	6.25281	3.32139 *
Methylcyclopentane	0.263886	3.07163E-05	0 *	0.528437	0.247046 *
Benzene	0.053193	0.000572947	0 *	0.106137	0.054899 *
Cyclohexane	0.353117	9.09873E-05	0 *	0.886642	0.329394 *

Southwestern Energy Job: V1.0 Client Name: Location: Flowsheet: RidgetopWellpad Ridgeland Ventures

	Pipeline	Produced	Reservoir	Sales Oil	Test
Molar Flow	lbmol/h	Water Ibmol/h	Water Ibmol/h	lbmol/h	Separator Gas Ibmol/h
n-Heptane	1.32464	4.15634E-06	0 *	7.61702	1.59207 *
n-Octane	0.693256	1.49322E-06	0 *	12.2247	1.07053 *
n-Nonane	0.116714	1.88514E-06	0 *	6.19608	0.219596 *
n-Decane	0.0324055	2.93536E-07	0 *	4.86389	0.054899 *
n-Undecane	0.0128824	2.30582E-07	0 *	6.2116	0 *
Dodecane	0	0	0 *	0	0 *
Water	5.56451	682.478	688.393 *	0.348771	0 *
Triethylene Glycol	0	0	0 *	0	0 *
Oxygen	0	0	0 *	0	0 *
Argon	0	0	0 *	0	0 *
Carbon Monoxide	0	0	0 *	0	0 *
Cyclopentane	0.029481	6.90821E-06	0 *	0.0254053	0.054899 *
Isohexane	0	0	0 *	0	0 *
3-Methylpentane	3.68567	9.94506E-05	0 *	5.92272	3.98018 *
Neohexane	3.49193	8.96578E-06	0 *	3.35254	1.31758 *
2,3-Dimethylbutane	0.691768	7.70297E-06	0 *	0.901274	0.713687 *
Methylcyclohexane	0.541108	4.34113E-05	0 *	3.03764	0.54899 *
Isooctane	0	0	0 *	0	0 *
Decane, 2-Methyl-	0	0	0 *	0	0 *
Toluene	0.0894411	0.000834161	0 *	0.63885	0.0823486 *
m-Xylene	0.0681564	0.000580531	0 *	1.67712	0.054899 *
Ethylbenzene	0.0245722	0.000190658	0 *	0.509851	0 *

	Pipeline	Produced	Reservoir	Sales Oil	Test
Mass Fraction		Water	Water		Separator Gas
Nitrogen	0.00567531	9.54423E-09	0 *	5.92779E-09	0.00575877 *
Methane	0.579903	9.00845E-06	0 *	4.15239E-05	0.589354 *
CO2	0.00371537	6.31513E-06	0 *	6.80627E-06	0.00376093 *
Ethane	0.200691	1.44334E-05	0 *	0.00270123	0.19993 *
Propane	0.1046	1.43574E-05	0 *	0.0190276	0.101283 *
Isobutane	0.0180233	6.24622E-07	0 *	0.0128864	0.0171636 *
n-Butane	0.0384006	6.30638E-06	0 *	0.043779	0.0366727 *
Isopentane	0.0123264	9.96725E-07	0 *	0.0393421	0.0119887 *
n-Pentane	0.0127413	1.09215E-06	0 *	0.0546021	0.0125368 *
n-Hexane	0.00461135	9.24853E-08	0 *	0.06599	0.00495045 *
Methylcyclopentane	0.000375793	2.10238E-07	0 *	0.00544648	0.000359602 *
Benzene	7.03075E-05	3.63974E-06	0 *	0.00101532	7.41691E-05 *
Cyclohexane	0.000502865	6.22763E-07	0 *	0.00913841	0.000479469 *
n-Heptane	0.00224596	3.38709E-08	0 *	0.0934718	0.00275918 *
n-Octane	0.00133998	1.3872E-08	0 *	0.171014	0.00211502 *
n-Nonane	0.000253296	1.96633E-08	0 *	0.097322	0.000487126 *
n-Decane	7.80184E-05	3.39663E-09	0 *	0.0847524	0.0001351 *
n-Undecane	3.40727E-05	2.93121E-09	0 *	0.118906	0 *
Dodecane	0	0	0 *	0	0 *
Water	0.00169628	0.999928	1 *	0.000769486	0 *
Triethylene Glycol	0	0	0 *	0	0 *
Oxygen	0	0	0 *	0	0 *
Argon	0	0	0 *	0	0 *
Carbon Monoxide	0	0	0 *	0	0 *
Cyclopentane	3.4986E-05	3.94027E-08	0 *	0.000218205	6.65929E-05 *
Isohexane	0	0	0 *	0	0 *
3-Methylpentane	0.00537439	6.96995E-07	0 *	0.0625063	0.00593236 *
Neohexane	0.00509188	6.28362E-08	0 *	0.0353815	0.00196382 *
2,3-Dimethylbutane	0.00100873	5.39859E-08	0 *	0.00951173	0.00106373 *
Methylcyclohexane	0.000899008	3.4665E-07	0 *	0.0365263	0.000932301 *
Isooctane	0	0	0 *	0	0 *
Decane, 2-Methyl-	0	0	0 *	0	0 *
Toluene	0.000139447	6.25071E-06	0 *	0.00720874	0.000131232 *
m-Xylene	0.000122438	5.0124E-06	0 *	0.0218054	0.000100806 *

^{*} User Specified Values ? Extrapolated or Approximate Values

Test

Separator Gas

Process Streams Report All Streams Tabulated by Total Phase

Produced

Water

Reservoir

Water

Sales Oil

Job: V1.0 Client Name: Southwestern Energy RidgetopWellpad Ridgeland Ventures Location: Flowsheet:

Pipeline

Mass Fraction					
Ethylbenzene	4.41424E-05	1.64617E-06	0 *	0.00662894	0 *
	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	335.397	0.000117355	0 *	4.84031E-05	332.957 *
Methane	34270.9	0.110767	0 *	0.339062	34074.9 *
CO2	219.57	0.0776504	0 *	0.0555763	217.447 *
Ethane	11860.4	0.177472	0 *	22.0567	11559.5 *
Propane	6181.63	0.176538	0 *	155.369	5855.93 *
Isobutane	1065.14	0.0076803	0 *	105.223	992.355 *
n-Butane	2269.38	0.0775428	0 *	357.475	2120.32 *
Isopentane	728.464	0.0122557	0 *	321.246	693.157 *
n-Pentane	752.978	0.013429	0 *	445.851	724.844 *
n-Hexane	272.52	0.00113719	0 *	538.838	286.222 *
Methylcyclopentane	22.2085	0.00258507	0 *	44.473	20.7912 *
Benzene	4.15501	0.044754	0 *	8.29056	4.28826 *
Cyclohexane	29.7181	0.00765745	0 *	74.6193	27.7216 *
n-Heptane	132.731	0.000416474	0 *	763.24	159.529 *
n-Octane	79.1896	0.000170568	0 *	1396.41	122.285 *
n-Nonane	14.9692	0.000241779	0 *	794.679	28.1643 *
n-Decane	4.6107	4.17647E-05	0 *	692.042	7.81113 *
n-Undecane	2.01362	3.60419E-05	0 *	970.924	0 *
Dodecane	0	0	0 *	0	0 *
Water	100.246	12295	12401.6 *	6.2832	0 *
Triethylene Glycol	0	0	0 *	0	0 *
Oxygen	0	0	0 *	0	0 *
Argon	0	0	0 *	0	0 *
Carbon Monoxide	0	0	0 *	0	0 *
Cyclopentane	2.06759	0.000484493	0 *	1.78175	3.85023 *
Isohexane	0	0	0 *	0	0 *
3-Methylpentane	317.614	0.00857019	0 *	510.392	342.993 *
Neohexane	300.918	0.000772629	0 *	288.906	113.543 *
2,3-Dimethylbutane	59.6134	0.000663807	0 *	77.6676	61.5023 *
Methylcyclohexane	53.1293	0.00426238	0 *	298.254	53.9032 *
Isooctane	0	0	0 *	0	0 *
Decane, 2-Methyl-	0	0	0 *	0	0 *
Toluene	8.24096	0.0768582	0 *	58.8626	7.58747 *
m-Xvlene	7.23582	0.061632	0 *	178.051	5.82836 *
Ethylbenzene	2.60871	0.0202412	0 *	54.1284	0 *

	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas
Volumetric Flow	ft^3/h	gpm	gpm	gpm	ft^3/h
Nitrogen	305.848	3.13436E-07	0	1.59609E-07	169.993
Methane	52141.6	0.000541363	0	0.00201435	27768.7
CO2	117.049	0.000121462	0	7.03589E-05	59.4613
Ethane	8745	0.00059325	0	0.0908938	4098.31
Propane	2858.1	0.000504924	0	0.571296	1158.79
Isobutane	349.474	2.00876E-05	0	0.365623	124.42
n-Butane	723.467	0.000200267	0	1.2057	242.953
Isopentane	172.502	2.94693E-05	0	1.02577	48.6153
n-Pentane	175.594	3.23536E-05	0	1.41271	47.6604
n-Hexane	47.5206	2.60412E-06	0	1.62868	9.56416
Methylcyclopentane	4.14451	5.36809E-06	0	0.118495	0.82802
Benzene	0.863534	8.34634E-05	0	0.018475	0.202681
Cyclohexane	5.50239	1.54703E-05	0	0.190861	1.036
n-Heptane	17.5306	9.2269E-07	0	2.2358	2.71427
n-Octane	8.06332	3.6598E-07	0	3.95758	1.74018
n-Nonane	1.1377	5.06496F-07	0	2.19576	0.456441

^{*} User Specified Values
? Extrapolated or Approximate Values

Southwestern Energy Job: V1.0 Client Name: Location: Flowsheet: RidgetopWellpad Ridgeland Ventures

	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas
Volumetric Flow	ft^3/h	gpm	gpm	gpm	ft^3/h
n-Decane	0.258724	8.6106E-08	0	1.88055	0.141913
n-Undecane	0.0783293	7.32931E-08	0	2.59627	0
Dodecane	0	0	0	0	0
Water	131.793	24.6144	24.8117	0.0106625	0
Triethylene Glycol	0	0	0	0	0
Oxygen	0	0	0	0	0
Argon	0	0	0	0	0
Carbon Monoxide	0	0	0	0	0
Cyclopentane	0.497488	1.03207E-06	0	0.00472827	0.253047
Isohexane	0	0	0	0	0
3-Methylpentane	56.6991	1.94518E-05	0	1.53648	12.7937
Neohexane	55.787	1.76408E-06	0	0.889974	5.10727
2,3-Dimethylbutane	10.8159	1.50243E-06	0	0.234776	2.49014
Methylcyclohexane	7.62767	8.51928E-06	0	0.773048	1.12458
Isooctane	0	0	0	0	0
Decane, 2-Methyl-	0	0	0	0	0
Toluene	1.28691	0.00014189	0	0.133216	0.16548
m-Xylene	0.869411	0.000112859	0	0.405058	0.0859432
Ethylbenzene	0.319084	3.68681E-05	0	0.122911	0

	Pipeline	Produced	Reservoir	Sales Oil	Test
		Water	Water		Separator Gas
Std. Liquid Volumetric Fraction					
Nitrogen	0.00243623	1.18278E-08	0 *	5.06357E-09	0.0024595 *
Methane	0.669842	3.00399E-05	0 *	9.54443E-05	0.677299 *
CO2	0.00157481	7.72751E-06	0 *	5.74076E-06	0.00158602 *
Ethane	0.195106	4.05082E-05	0 *	0.00522562	0.193379 *
Propane	0.0714337	2.8306E-05	0 *	0.0258577	0.068817 *
Isobutane	0.0110914	1.10969E-06	0 *	0.0157805	0.0105087 *
n-Butane	0.0227673	1.07941E-05	0 *	0.0516506	0.0216324 *
Isopentane	0.00682952	1.59426E-06	0 *	0.0433755	0.00660866 *
n-Pentane	0.00699706	1.73149E-06	0 *	0.0596688	0.00684978 *
n-Hexane	0.00240524	1.39262E-07	0 *	0.0684924	0.00256898 *
Methylcyclopentane	0.000172738	2.78985E-07	0 *	0.00498183	0.000164455 *
Benzene	2.75298E-05	4.11437E-06	0 *	0.000791114	2.88942E-05 *
Cyclohexane	0.000222308	7.94803E-07	0 *	0.00803914	0.000210888 *
n-Heptane	0.00113033	4.9211E-08	0 *	0.0936094	0.00138157 *
n-Octane	0.000656883	1.96318E-08	0 *	0.166823	0.00103156 *
n-Nonane	0.000121473	2.72234E-08	0 *	0.0928749	0.000232424 *
n-Decane	3.67867E-05	4.62353E-09	0 *	0.0795207	6.33776E-05 *
n-Undecane	1.58647E-05	3.94007E-09	0 *	0.11017	0 *
Dodecane	0	0	0 *	0	0 *
Water	0.000587536	0.999856	1 *	0.000530362	0 *
Triethylene Glycol	0	0	0 *	0	0 *
Oxygen	0	0	0 *	0	0 *
Argon	0	0	0 *	0	0 *
Carbon Monoxide	0	0	0 *	0	0 *
Cyclopentane	1.61607E-05	5.25441E-08	0 *	0.00020057	3.06042E-05 *
Isohexane	0	0	0 *	0	0 *
3-Methylpentane	0.00278247	1.04175E-06	0 *	0.0643962	0.00305574 *
Neohexane	0.00269748	9.60999E-08	0 *	0.0372986	0.00103507 *
2,3-Dimethylbutane	0.000524588	8.10508E-08	0 *	0.00984327	0.000550383 *
Methylcyclohexane	0.00040234	4.4787E-07	0 *	0.032529	0.000415119 *
Isooctane	0	0	0 *	0	0 *
Decane, 2-Methyl-	0	0	0 *	0	0 *
Toluene	5.54005E-05	7.16915E-06	0 *	0.00569902	5.18718E-05 *
m-Xylene	4.8812E-05	5.76881E-06	0 *	0.0172985	3.99837E-05 *
Ethylbenzene	1.75402E-05	1.88836E-06	0 *	0.00524152	0 *

 Client Name:
 Southwestern Energy
 Job: V1.0

 Location:
 RidgetopWellpad

 Flowsheet:
 Ridgeland Ventures

Pipeline Produced Reservoir Sales Oil Test Water Water Separator Gas Std. Vapor Volumetric Flow **MMSCFD MMSCFD** MMSCFD MMSCFD **MMSCFD** Nitrogen 0.109043 3.81541E-08 0 0.10825 1.57367E-08 Methane 19.4563 6.28847E-05 0 0.000192492 19.345 0.0454393 CO2 1.60695E-05 0 1.15013E-05 0.045 Ethane 3.5924 5.37546E-05 0 0.00668078 3.50125 Propane 1.27677 3.64626E-05 0 0.0320904 1.2095 1.20349E-06 Isobutane 0.166905 0 0.0164883 0.1555 n-Butane 0.355608 1.21508E-05 0 0.0560157 0.33225 0.0919569 1.54708E-06 0 0.0405522 0.0875 Isopentane n-Pentane 0.0950514 1.6952E-06 0 0.0562815 0.0915 0.0288019 n-Hexane 1.20187E-07 0 0.0569483 0.03025 Methylcyclopentane 0.00240337 2.79752E-07 0 0.00481281 0.00225 Benzene 0.000484463 5.21819E-06 0 0.000966657 0.0005 Cyclohexane 0.00321606 8.28679E-07 0 0.0080752 0.003 n-Heptane 0.0120643 3.78544E-08 0 0.0693729 0.0145 n-Octane 0.00631392 1.35997E-08 0 0.111338 0.00975 n-Nonane 0.00106299 1.71692E-08 0 0.0564316 0.002 0.000295137 2.67341E-09 0 0.0442985 0.0005 n-Decane 2.10006E-09 n-Undecane 0.000117328 0 0.0565729 0 Dodecane 0 0 0 0 0 6.21576 0.0506795 6.26962 0.00317647 Water 0 Triethylene Glycol 0 0 0 0 Oxygen 0 0 0 0 0 Argon 0 0 0 0 0 Carbon Monoxide 0 0 0 0 0 0.000268502 6.29174E-08 0.000231382 0.0005 Cyclopentane 0 Isohexane 0 0 0 0.03625 0.0335677 9.05759E-07 0.0539419 3-Methylpentane 0 Neohexane 0.0318032 8.1657E-08 0 0.0305337 0.012 7.01558E-08 2,3-Dimethylbutane 0.00630037 0.00820847 0 0.0065 Methylcyclohexane 0.00492821 3.95374E-07 0 0.0276657 0.005 Isooctane 0 0 0 0 Decane, 2-Methyl-0 0 0 0 0 0.000814596 Toluene 7.59722E-06 0 0.00581841 0.00075 0.0005 m-Xylene 0.000620743 5.28726E-06 0.0152746 0 Ethylbenzene 0.000223795 1.73644E-06 0 0.00464354 0

Stream Properties							
Property	Units	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas	
Temperature	°F	74.9621	70	68 *	70 '	68	
Pressure	psig	215	0.5	400 *	0.5	400	
Mole Fraction Vapor		0.999986	0	0	0	0.996002	
Mole Fraction Light Liquid		1.35197E-05	1	1	0.99625	0.00399849	
Mole Fraction Heavy Liquid		0	0	0	0.00375039	0	
Molecular Weight	lb/lbmol	21.2127	18.016	18.0153	97.0071	21.0632	
Mass Density	lb/ft^3	0.896242	62.2744	62.3163	43.1234	1.71272	
Molar Flow	lbmol/h	2785.95	682.501	688.393	84.1738	2744.95	
Mass Flow	lb/h	59097.7	12295.9	12401.6	8165.46	57817.4	
Vapor Volumetric Flow	ft^3/h	65939.4	197.447	199.01	189.351	33757.6	
Liquid Volumetric Flow	gpm	8221.02	24.6168	24.8117	23.6074	4208.74	
Std Vapor Volumetric Flow	MMSCFD	25.3734	6.21597	6.26962	0.766624	25	
Std Liquid Volumetric Flow	sgpm	341.084	24.5822	24.7917 *	23.683	335.4	
Compressibility		0.947557	0.000773405	0.0211711	0.0060138	0.900618	
Specific Gravity			0.998483	0.999155	0.691423		
API Gravity			10.0157	9.9633	71.6974		
Enthalpy	Btu/h	-9.66507E+07	-8.39366E+07	-8.46715E+07	-7.67986E+06	-9.53701E+07	
Mass Enthalpy	Btu/lb	-1635.44	-6826.38	-6827.47	-940.531	-1649.51	
Mass Cp	Btu/(lb*°F)	0.507971	0.974673	0.974206	0.509201	0.54127	
Ideal Gas CpCv Ratio		1.24449	1.32583	1.32594	1.05671	1.24777	

^{*} User Specified Values

Client Name:	Southwestern Energy	Job: V1.0
Location:	RidgetopWellpad	
Flowsheet:	Ridgeland Ventures	

Stream Properties								
Property	Units	Pipeline	Produced Water	Reservoir Water	Sales Oil	Test Separator Gas		
Dynamic Viscosity	cP		0.995637	1.02705	0.416329			
Kinematic Viscosity	cSt		0.998093	1.02889	0.602618			
Thermal Conductivity	Btu/(h*ft*°F)		0.347033	0.346162	0.0704622			
Surface Tension	lbf/ft		0.00504239 ?	0.0050581	0.00135141	?		
Net Ideal Gas Heating Value	Btu/ft^3	1156.2	0.0610126	0	4913.24	1150.68		
Net Liquid Heating Value	Btu/lb	20618.5	-1058.41	-1059.76	19061.4	20668.8		
Gross Ideal Gas Heating Value	Btu/ft^3	1274.19	50.3743	50.31	5295.66	1268.24		
Gross Liquid Heating Value	Btu/lb	22729.1	1.38086	0	20557.4	22786.8		
Mass Fraction Vapor		0.999989	0	0	0	0.987662		
Mass Fraction Light Liquid		1.14828E-05	1	1	0.999303	0.0123382		
Mass Fraction Heavy Liquid		0	0	0	0.000696525	0		
Volume Fraction Vapor		1	0	0	0	0.99945		
Volume Fraction Light Liquid		1.65421E-07	1	1	0.999518	0.000550129		
Volume Fraction Heavy Liquid		0	0	0	0.000482325	0		

Remarks

Process Streams Report All Streams **Tabulated by Total Phase** Job: V1.0 Client Name: Southwestern Energy Location: RidgetopWellpad Flowsheet: Ridgeland Ventures **Connections** Test Vapor to Flare Vapor to VRU **Separator Oil** From Block SPLT-100 SPLT-100 MIX-102 MIX-105 CMPR-100 To Block Stream Composition Vapor to Flare Test Vapor to VRU **Separator Oil Mole Fraction** 0.000730015 2.7735E-05 Nitrogen 2.7735E-05 Methane 0.102662 0.0577951 0.0577951 CO₂ 0.000430009 0.0011194 0.0011194 Ethane 0.0901618 0.256857 0.256857 Propane 0.0915818 0.32003 0.32003 Isobutane 0.0256905 0.0618717 0.0618717 n-Butane 0.0731015 0.143661 0.143661 Isopentane 0.0414308 0.0395038 0.0395038 n-Pentane 0.0550711 0.0408294 0.0408294 0.051071 n-Hexane 0.011807 0.011807 Methylcyclopentane 0.00457009 0.00101379 0.00101379 Benzene 0.000880018 0.000207059 0.000207059 Cyclohexane 0.00763015 0.00134291 0.00134291 n-Heptane $0.06159\overline{12}$ 0.00448226 0.00448226 n-Octane 0.099282 0.00214852 0.00214852 n-Nonane 0.051061 0.000337952 0.000337952 0.0405708 8.42178E-05 8.42178E-05 n-Decane n-Undecane 0.052161 3.04509E-05 3.04509E-05 Dodecane 0 Water 0 0.0238369 0.0238369 Triethylene Glycol 0 0 0 Oxygen 0 0 0 Argon 0 0 0 Carbon Monoxide 0 0 0 0.000118389 0.000118389 Cyclopentane 0 Isohexane 0 0 0 0.0471709 0.0141094 0.0141094 3-Methylpentane Neohexane 0.0463209 0.0135832 0.0135832 2,3-Dimethylbutane 0.00737015 0.00266684 0.00266684 0.00191852 Methylcyclohexane 0.0253905 0.00191852 Isooctane 0 n 0 Decane, 2-Methyl-0 0 Toluene 0.00542011 0.000317224 0.000317224 0.0141703 m-Xylene 0.000219457 0.000219457 0.00448009 Ethylbenzene 8.01212E-05 8.01212E-05 Vapor to VRU Test Vapor to Flare **Separator Oil** lbmol/h **Molar Flow** lbmol/h lbmol/h 0.0871141 1.26788E-06 2.40898E-05 Nitrogen Methane 12.2509 0.00264205 0.0501989 0.000972272 CO2 0.0513138 5.11722E-05 Ethane 10.7592 0.011742 0.223098 Propane 10.9286 0.0146299 0.277968 Isobutane 3.0657 0.00282841 0.0537398 n-Butane 8.72335 0.00656735 0.12478 4.94402 0.00180588 0.0343117 Isopentane n-Pentane 6.57175 0.00186648 0.035463 n-Hexane 6.09441 0.000539746 0.0102552 Methylcyclopentane 0.545358 4.63446E-05 0.000880548

Benzene

Cyclohexane

9.4655E-06

6.13901E-05

0.000179845

0.00116641

0.105014

0.910522

User Specified Values

RidgetopWellpad

Ridgeland Ventures

Client Name:

Location:

Flowsheet:

m-Xylene

Ethylbenzene

Process Streams Report All Streams Tabulated by Total Phase Southwestern Energy Job: V1.0

Vapor to Flare Vapor to VRU Test **Separator Oil Molar Flow** lbmol/h lbmol/h lbmol/h 0.00389315 n-Heptane 7.34981 0.000204903 n-Octane 11.8475 9.82177E-05 0.00186614 6.09321 1.54492E-05 0.000293534 n-Nonane n-Decane 4.8414 3.84994E-06 7.31489E-05 1.39203E-06 6.22448 2.64486E-05 n-Undecane Dodecane 0 0 0 0.00108968 Water 0 0.020704 Triethylene Glycol 0 0 0 Oxygen 0 0 0 Argon 0 0 0 Carbon Monoxide 0 0 0 5.41202E-06 0.000102828 Cyclopentane 0 Isohexane 0 0 0 0.000645 0.012255 3-Methylpentane 5.629 0.000620945 Neohexane 5.52757 0.011798 2,3-Dimethylbutane 0.879495 0.000121912 0.00231633 0.00166637 Methylcyclohexane 3.0299 8.77035E-05 Isooctane 0 0 0 Decane, 2-Methyl-0 0 0 0.646792 1.45016E-05 0.000275531 Toluene

1.00323E-05

3.66267E-06

0.000190613

6.95907E-05

1.69097

0.534618

	Test	Vapor to Flare	Vapor to VRU	
	Separator Oil			
Mass Fraction				
Nitrogen	0.000261217 *	1.69475E-05	1.69475E-05	
Methane	0.0210371 *	0.0202243	0.0202243	
CO2	0.000241729 *	0.00107459	0.00107459	
Ethane	0.0346296 *	0.16847	0.16847	
Propane	0.0515834 *	0.307821	0.307821	
Isobutane	0.019073 *	0.0784416	0.0784416	
n-Butane	0.0542716 *	0.182135	0.182135	
Isopentane	0.0381819 *	0.0621698	0.0621698	
n-Pentane	0.0507525 *	0.064256	0.064256	
n-Hexane	0.0562163 *	0.0221939	0.0221939	
Methylcyclopentane	0.00491284 *	0.00186108	0.00186108	
Benzene	0.000878038 *	0.000352795	0.000352795	
Cyclohexane	0.0082024 *	0.00246526	0.00246526	
n-Heptane	0.0788315 *	0.00979683	0.00979683	
n-Octane	0.14486 *	0.00535336	0.00535336	
n-Nonane	0.0836506 *	0.000945458	0.000945458	
n-Decane	0.073734 *	0.000261376	0.000261376	
n-Undecane	0.104144 *	0.000103823	0.000103823	
Dodecane	0 *	0	0	
Water	0 *	0.00936706	0.00936706	
Triethylene Glycol	0 *	0	0	
Oxygen	0 *	0	0	
Argon	0 *	0	0	
Carbon Monoxide	0 *	0	0	
Cyclopentane	0 *	0.000181111	0.000181111	
Isohexane	0 *	0	0	
3-Methylpentane	0.0519233 *	0.0265219	0.0265219	
Neohexane	0.0509877 *	0.0255328	0.0255328	
2,3-Dimethylbutane	0.00811268 *	0.00501293	0.00501293	
Methylcyclohexane	0.0318439 *	0.00410893	0.00410893	
Isooctane	0 *	0	0	
Decane, 2-Methyl-	0 *	0	0	
Toluene	0.00637901 *	0.000637557	0.000637557	
m-Xylene	0.0192161 *	0.00050821	0.00050821	

^{*} User Specified Values

m-Xylene	179.522 *	0.00106508	0.0202364	
Ethylbenzene	56.7577 *	0.000388847	0.00738809	
	Test Separator Oil	Vapor to Flare	Vapor to VRU	
Volumetric Flow	gpm	ft^3/h	ft^3/h	
Nitrogen	0.00933538	0.000480218	0.00912415	
Methane	1.31314	0.994353	18.8927	
CO2	0.00354343	0.0191701	0.364232	
Ethane	1.42052	4.36429	82.9215	
Propane	1.82635	5.38075	102.234	
Isobutane	0.625957	1.03106	19.5902	
n-Butane	1.7276	2.38913	45.3935	
Isopentane	1.13658	0.651268	12.3741	
n-Pentane	1.49941	0.67184	12.765	
n-Hexane	1.57222	0.191944	3.64693	
Methylcyclopentane	0.120665	0.0165608	0.314655	
Benzene	0.0180876	0.00339937	0.064588	
Cyclohexane	0.192698	0.0219441	0.416939	
n-Heptane	2.12518	0.0721292	1.37045	
n-Octane	3.76489	0.0341675	0.649182	
n-Nonane	2.11417	0.00530462	0.100788	

0

0

0

0

0

0

485.081

476.34

75.7908

297.494

59.5944

0

0

0

0

0.000379561

0.0555831

0.0535102

0.0105058

0.00861126

0.00133616

0

O

0

0

0

0.00721166

1.05608

1.01669

0.19961

0.163614

0.025387

Argon

Carbon Monoxide

3-Methylpentane

2,3-Dimethylbutane

Methylcyclohexane

Decane, 2-Methyl-

Cyclopentane

Isohexane

Neohexane

Isooctane

Toluene

User Specified Values

[?] Extrapolated or Approximate Values

Southwestern Energy Job: V1.0 Client Name: Location: Flowsheet: RidgetopWellpad Ridgeland Ventures

	Test Separator Oil	Vapor to Flare	Vapor to VRU	
Volumetric Flow	gpm	ft^3/h	ft^3/h	
n-Decane	1.82924	0.00130734	0.0248395	·
n-Undecane	2.53987	0.000466485	0.00886321	
Dodecane	0	0	0	
Water	0	0.409117	7.77323	
Triethylene Glycol	0	0	0	
Oxygen	0	0	0	
Argon	0	0	0	
Carbon Monoxide	0	0	0	
Cyclopentane	0	0.00195184	0.0370849	
Isohexane	0	0	0	
3-Methylpentane	1.44499	0.229877	4.36767	
Neohexane	1.45134	0.222039	4.21873	
2,3-Dimethylbutane	0.2265	0.0435078	0.826649	
Methylcyclohexane	0.753509	0.0310439	0.589834	
Isooctane	0	0	0	
Decane, 2-Methyl-	0	0	0	
Toluene	0.132277	0.0051448	0.0977512	
m-Xylene	0.398727	0.00351767	0.0668357	
Ethylbenzene	0.125666	0.00128623	0.0244383	

Test	Vapor to Flare	Vapor to VRU		
Separator Oil				
0.00007005	1 007055 05	4 007055 05		
0.0391081 *	0.0505648	0.0505648	T	
0.051525 *	0.0518004	0.0518004		
0.0542062 *	0.0169934	0.0169934		T
0.00417473 *	0.0012558	0.0012558		T
0.000635581 *	0.000202787	0.000202787		
0.00670351 *	0.00159987	0.00159987		1
0.0733434 *	0.00723778	0.00723778		
0.13128 *	0.00385241	0.00385241		
0.0741615 *	0.000665595	0.000665595		
0.0642714 *	0.000180915	0.000180915		
0.0896428 *	7.09635E-05	7.09635E-05		
0 *	0	0		
0 *	0.00476273	0.00476273		1
0 *	0	0		
0 *	0	0		
0 *	0	0		
0 *	0	0		
0 *	0.000122808	0.000122808		+
0 *	0	0		
0.049696 *	0.0201568	0.0201568		+
			-	
			+	+
			+	+
				+
				+
•	-	•		
0.00446281 *	0.000237410	0.000237410	+	+
	\$eparator Oil 0.000207295 * 0.0449221 * 0.000189413 * 0.0622366 * 0.0651234 * 0.0216985 * 0.0594846 * 0.0391081 * 0.051525 * 0.0542062 * 0.00417473 * 0.00670351 * 0.0733434 * 0.13128 * 0.0741615 * 0.0642714 * 0.0896428 * 0 * 0 * 0 * 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 * 0 0 0 * 0 0 0 0	Separator Oil	Separator Oil	Separator Oil

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: Southwestern Energy Job: V1.0

Location: RidgetopWellpad
Flowsheet: Ridgeland Ventures

	Test	Vapor to Flare	Vapor to VRU		
	Separator Oil	•			
Std. Vapor Volumetric Flow	MMSCFD	MMSCFD	MMSCFD		
Nitrogen	0.000793403 *	1.15474E-08	2.194E-07	, i	
Methane	0.111576 *	2.40628E-05	0.000457193		
CO2	0.000467347 *	4.66058E-07	8.8551E-06		
Ethane	0.0979907 *	0.000106942	0.00203189		
Propane	0.099534 *	0.000133243	0.00253162		
Isobutane	0.0279213 *	2.57601E-05	0.000489442		
n-Butane	0.079449 *	5.9813E-05	0.00113645		
Isopentane	0.0450283 *	1.64473E-05	0.000312498		
n-Pentane	0.059853 *	1.69992E-05	0.000322984		
n-Hexane	0.0555056 *	4.9158E-06	9.34003E-05		
Methylcyclopentane	0.00496692 *	4.2209E-07	8.0197E-06		
Benzene	0.000956431 *	8.62083E-08	1.63796E-06		
Cyclohexane	0.00829269 *	5.59118E-07	1.06232E-05		
n-Heptane	0.0669393 *	1.86618E-06	3.54574E-05		
n-Octane	0.107903 *	8.9453E-07	1.69961E-05		
n-Nonane	0.0554947 *	1.40705E-07	2.6734E-06		
n-Decane	0.0440936 *	3.50638E-08	6.66213E-07		
n-Undecane	0.0566903 *	1.26781E-08	2.40884E-07		
Dodecane	0 *	0	0		
Water	0 *	9.92443E-06	0.000188564		
Triethylene Glycol	0 *	0	0		
Oxygen	0 *	0	0		
Argon	0 *	0	0		
Carbon Monoxide	0 *	0	0		
Cyclopentane	0 *	4.92907E-08	9.36523E-07		
Isohexane	0 *	0	0		
3-Methylpentane	0.0512669 *	5.87442E-06	0.000111614		
Neohexane	0.0503431 *	5.65534E-06	0.000107451		
2,3-Dimethylbutane	0.00801011 *	1.11033E-06	2.10962E-05		
Methylcyclohexane	0.0275952 *	7.98771E-07	1.51766E-05		
Isooctane	0 *	0	0		
Decane, 2-Methyl-	0 *	0	0		
Toluene	0.00589075 *	1.32075E-07	2.50943E-06		
m-Xylene	0.0154007 *	9.13702E-08	1.73603E-06		
Ethylbenzene	0.0048691 *	3.33582E-08	6.33806E-07		

Stream Properties Property Units Test Vapor to Flare Vapor to VRU **Separator Oil** Temperature °F 69.9943 69.9943 68 Pressure psig 400 0.5 0.5 Mole Fraction Vapor 0.999997 0.999997 0 Mole Fraction Light Liquid 1 3.22996E-06 3.22996E-06 Mole Fraction Heavy Liquid 0 O Molecular Weight lb/lbmol 78.288 45.8446 45.8446 Mass Density lb/ft^3 41.0521 0.124768 0.124768 Molar Flow lbmol/h 0.0457141 119.332 0.868567 Mass Flow lb/h 9342.26 2.09574 39.8191 Vapor Volumetric Flow ft^3/h 319.144 227.571 16.797 Liquid Volumetric Flow gpm 28.3725 2.09418 39.7894 Std Vapor Volumetric Flow MMSCFD 1.08683 0.000416347 0.00791059 Std Liquid Volumetric Flow sgpm 29.1667 0.00823974 0.156555 Compressibility 0.139657 0.982305 0.982305 Specific Gravity 0.658213 API Gravity 82.0221 -9.25119E+06 -42482.8 Enthalpy Btu/h -2235.94 Mass Enthalpy Btu/lb -990.251 -1066.9 -1066.9 Btu/(lb*°F) 0.527544 0.403142 0.403142 Mass Cp Ideal Gas CpCv Ratio 1.0705 1.12152 1.12152

^{*} User Specified Values

Client Name: Southwestern Energy Job: V1.0

Location: Flowsheet: RidgetopWellpad Ridgeland Ventures

Stream Properties								
Property	Units	Test Separator Oil	Vapor to Flare	Vapor to VRU				
Dynamic Viscosity	cР	0.28852						
Kinematic Viscosity	cSt	0.438753						
Thermal Conductivity	Btu/(h*ft*°F)	0.0675712						
Surface Tension	lbf/ft	0.00099246 ?						
Net Ideal Gas Heating Value	Btu/ft^3	3991.26	2371.81	2371.81				
Net Liquid Heating Value	Btu/lb	19192.5	19470	19470				
Gross Ideal Gas Heating Value	Btu/ft^3	4308.95	2577.26	2577.26				
Gross Liquid Heating Value	Btu/lb	20732.4	21170.8	21170.8				
Mass Fraction Vapor		0	0.999999	0.999999				
Mass Fraction Light Liquid		1	1.26933E-06	1.26933E-06				
Mass Fraction Heavy Liquid		0	0	0				
Volume Fraction Vapor	·	0	1	1				
Volume Fraction Light Liquid		1	2.54312E-09	2.54312E-09				
Volume Fraction Heavy Liquid		0	0	0				

Remarks

Flowsheet Environment SRK Environment

Client Name: Southwestern Energy Job: V1.0 RidgetopWellpad Ridgeland Ventures Location: Flowsheet:

False

False

Environment Settings

Components

Freeze Out Temperature Threshold Difference Number of Poynting Intervals 0 10 °F

Gibbs Excess Model 77 °F Phase Tolerance 0.01

Evaluation Temperature

Component Name	Henry`s Law Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator
Nitrogen	False	False	Dodecane	False	False
Methane	False	False	Water	False	True
CO2	False	False	Triethylene Glycol	False	True
Ethane	False	False	Oxygen	False	False
Propane	False	False	Argon	False	False
Isobutane	False	False	Carbon Monoxide	False	False
n-Butane	False	False	Cyclopentane	False	False
Isopentane	False	False	Isohexane	False	False
n-Pentane	False	False	3-Methylpentane	False	False
n-Hexane	False	False	Neohexane	False	False
Methylcyclopentane	False	False	2,3-Dimethylbutane	False	False
Benzene	False	False	Methylcyclohexane	False	False
Cyclohexane	False	False	Isooctane	False	False
n-Heptane	False	False	Decane, 2-Methyl-	False	False
n-Octane	False	False	Toluene	False	False
n-Nonane	False	False	m-Xylene	False	False

Physical Property Method Sets							
Liquid Molar Volume	COSTALD	Overall Package	SRK				
Stability Calculation	SRK	Vapor Package	SRK				
Light Liquid Package	SRK	Heavy Liquid Package	SRK				

Ethylbenzene

False

False

Remarks

n-Decane

n-Undecane

False

False

Simulation Initiated on 6/1/2	2015 10:40:29 AM	2015052	8_SWN_Ridgetor	ventures_Promax_v1.1.pmx			Page 1 of 1
		Eı	nvironm	ents Report			
Client Name:	Southwestern Ene	erav		.](ob: V1.0		
Location:	RidgetopWellpad	<i>"9)</i>		9.	00. 11.0		
	agotop 11 opaa						
		Р	roject-Wi	de Constants			
Atmospheric Pressu	re	14.6959		IG Ref Pressure		14.6959	osia
IG Ref Temperature		60		IG Ref Volume		379.485	
Lig Ref Temperature	1	60	°F	To real volume		0.000	,
		Envir	onment (S	RK Environment]			
				ent Settings			
Number of Poyntir	na Intervals	0		Freeze Out Temperature		10 °F	
Number of Foyntii	ig intervals	U		Threshold Difference		10 1	
Gibbs Excess Mod	iel .	77 °F		Phase Tolerance		0.01	
Evaluation Tempe		• • • •		Triado Folorarios		0.01	
			Comr	onanta			
Component Name		Henry`s Law		Component Name		Hanni'a Law	Dhasa
Component Name		Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	Dodecane		False	False
Methane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
							False
Propane		False	False	Argon		False	. 4.00
Propane Isobutane			False False	Argon Carbon Monoxide		False False	False
Isobutane n-Butane		False False False	False False	Carbon Monoxide Cyclopentane		False False	False False
Isobutane n-Butane Isopentane		False False False False	False False False	Carbon Monoxide Cyclopentane Isohexane		False False False	False False False
Isobutane n-Butane Isopentane n-Pentane		False False False False False	False False False False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane		False False False False	False False False False
Isobutane n-Butane Isopentane n-Pentane n-Hexane		False False False False False False False	False False False False False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane		False False False False False	False False False False False False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane		False False False False False False False False	False False False False False False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane		False False False False False False False	False False False False False False False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene		False	False False False False False False False False False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane		False False False False False False False False	False False False False False False False False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl-		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene		False	False
n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene Ethylbenzene		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene Ethylbenzene		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane		False COSTALE	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene Ethylbenzene erty Method Sets Overall Package		False	False
Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane		False	False	Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene Ethylbenzene		False	False

20150528_SWN_Ridgetop Ventures_Promax_v1.1.pmx **Project Warnings Report**

Client Name:	Southwestern Energy	Job: V1.0	
Location:	RidgetopWellpad		

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!Scrubber Dump 2!Properties!PDrop

Warning: A negative pressure drop of -40 psi was encountered in block Scrubber Dump 2.

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!Choke!Properties!PDrop

Warning: A negative pressure drop of -25391.9 psi was encountered in block Choke.

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !PStreams!2

Warning: The temperature of 70 °F is below hydrate formation.

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!Compressor Stage 1

Warning: The change in entropy is negative.
ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!Compressor Stage 2

Warning: The change in entropy is negative.

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!Compressor Stage 3

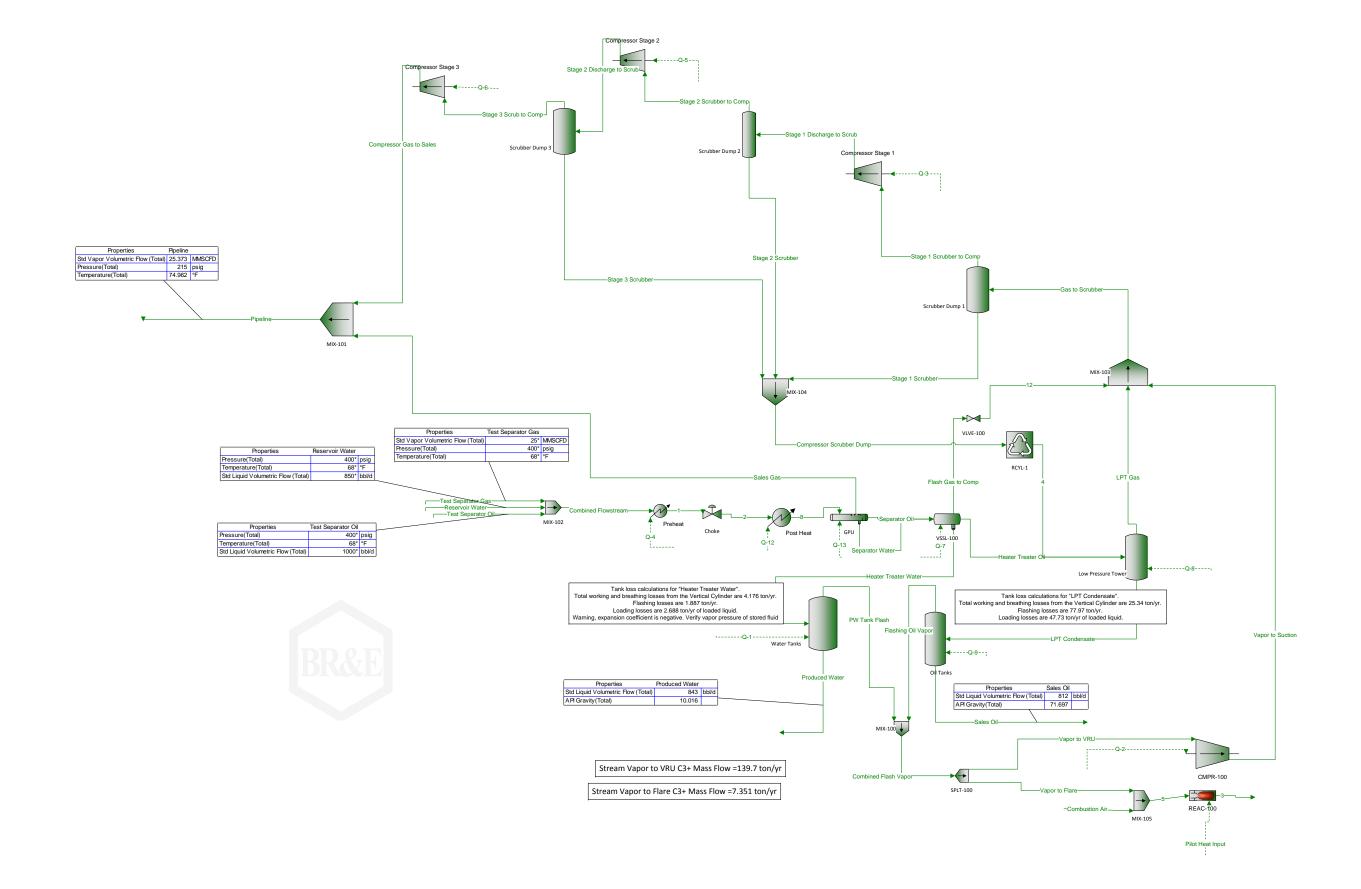
Warning: The change in entropy is negative.

ProMax:ProMax!Project!Flowsheets!Ridgeland Ventures !Blocks!CMPR-100

Warning: The change in entropy is negative.

			User V	alue Sets Report		
Client Name:	Southwestern Er				Job: V1.0	
Location:	RidgetopWellpad					
			Ta	ank Losses.53		
			User V	/alue [ShellLength]		
* Parameter		20		Upper Bound		ft
* Lower Bound		0	ft	* Enforce Bounds		False
				Value [ShellDiam]		
* Parameter		12		Upper Bound		ft
* Lower Bound		0	ft	* Enforce Bounds		False
				/alue [BreatherVP]		
* Parameter		0.03		Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
			User Va	alue [BreatherVacP]		
* Parameter		-0.03		Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
			User V	alue [DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
				Value [OpPress]		
* Parameter		0	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
				lue [AvgPercentLiq]		
* Parameter		50	%	Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
			Haan Ma	lue [MayDaraant] is:1		
* Danamatan		00	user va	lue [MaxPercentLiq]		0/
* Parameter Lower Bound		90	%	Upper Bound * Enforce Bounds		% False
Lower bound			70	Eniorce Bourids		raise

User Specified Values


		User Val	ue Sets Report		
			•		
Client Name:	Southwestern Energy			Job: V1.0	
Location:	RidgetopWellpad				
		Hear Va	lue [AnnNetTP]		
* Parameter		849.476 bbl/day	Upper Bound		bbl/day
* Lower Bound		0 bbl/day	* Enforce Bounds		False
		ĺ			
		User '	Value [OREff]		
* Parameter		66.5 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Haan Male	[AtmsDunganuma]		
* Parameter		14.2535 psia	ue [AtmPressure] Upper Bound		psia
Lower Bound		psia psia	* Enforce Bounds		psia False
Lower Bound		ροια	2.110100 Dourido		. 4.00
		User Value	[MaxLiqSurfaceT]		
* Parameter		61.4758 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			ue [TotalLosses]		
* Parameter		4.17586 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Heer Velue	- [\A/a wish and a a a a a]		
* Parameter		1.04396 ton/yr	E [WorkingLosses] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		,			
		User Value	[StandingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
* 5			e [RimSealLosses]		
* Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bouria		ton/yi	Lilloice Bourius		i dise
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			e [LoadingLosses]		
* Parameter		2.68809 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Haan Value I	Dook Eitting		
* Parameter		User Value 0 ton/yr	[DeckFittingLosses] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		ton/yr False
					- 100
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			[FlashingLosses]		
* Parameter		1.88744 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hoor Velve	CocMoloMoight1		
* Parameter		0.0455266 kg/mol	E [GasMoleWeight] Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False

			e Sets Report		
Client Name:	Southwestern Er			Job: V1.0	
Location:	RidgetopWellpad	3			
	1				
Remarks This User Value Set	t was programmati	ically generated. GUID={5524AB8	3C-40B1-4354-9DD7-EED65	770BF87}	
			Losses.331		
			e [ShellLength]		
* Parameter		20 ft	Upper Bound		ft
* Lower Bound		0 ft	* Enforce Bounds		False
		He as Wal-	(OL - IID'1		
* Daramatar			ue [ShellDiam]		4
* Parameter * Lower Bound		12 ft 0 ft	Upper Bound * Enforce Bounds		ft False
Lower Board		0 11	Emorce Bounds		i dise
		Hear Valu	e [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		User Value	[BreatherVacP]		
* Parameter		-0.03 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
			[DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
		Hear Val	ue [OpPress]		
* Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		F3			
		User Value	[AvgPercentLiq]		
* Parameter		50 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
			[MaxPercentLiq]		
* Parameter		90 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		III Wal-			
* Danamatan			ue [AnnNetTP]		hhl/de
* Parameter * Lower Bound		820.265 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds		bbl/day False
Lower Bound		O bbl/day	Lilloice Boulius		i dise
		Hear W	alue [OREff]		
* Parameter		66.5 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		User Value	[AtmPressure]		
* Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
		User Value [MaxLiqSurfaceT]		
* Parameter		61.4758 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False

^{*} User Specified Values ? Extrapolated or Approximate Values

ient Name: ocation:	Southwestern Energy					
ocation.	RidgetopWellpad			Job: V1.0		
	Triagetop**Ciipaa					
		User Val	ue [TotalLosses]			
Parameter		25.3369 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
		User Value	e [WorkingLosses]			
Parameter		5.35963 ton/yr	Upper Bound * Enforce Bounds		Foloo	ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	
		User Value	[StandingLosses]			
Parameter		0.974583 ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
Lower Bound		ton/yr	Enforce Bounds		raise	
			e [RimSealLosses]			
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
Lower Bouria		ton/yr	Efficice Bourius		raise	
			[WithdrawalLoss]			
Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
Lower Bouria		ton/yr	Efficice Bourius		i aise	
			e [LoadingLosses]			
Parameter Lower Bound		47.7324 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
2011.0		to.ny.	2		. 4.00	
			[DeckFittingLosses]			
Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
20WO. Dodina		to.uy.	21110100 2001100		. 4.00	
			[DeckSeamLosses]			
Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
		,				
Danasastan		User Value	[FlashingLosses]			La call on
Parameter Lower Bound		77.9664 ton/yr ton/yr	Upper Bound * Enforce Bounds		False	ton/yr
		,				
			e [GasMoleWeight]			
Parameter Lower Bound		0.0543644 kg/mol kg/mol	Upper Bound * Enforce Bounds		False	kg/mol
2.1.2		J				
emarks			040 CDCE 4DCA 0C0C CE4E	25054040)		
iis Oser value se	t was programmatically g	enerated. GOID={23417	019-6BCF-4B6A-8C2C-C51E	3F93TUA6}		
		Cn+	Flow/Frac.55			
			ue [CnPlusSum]			
Parameter		139.674 ton/yr	Upper Bound			
Lower Bound			* Enforce Bounds		False	
emarks						

		User Va	alue Sets Report					
Client Name:	Southwestern E	nergy		Job: V1.0				
Location:	RidgetopWellpa	d						
		Cn+	Flow/Frac.525					
		User Va	alue [CnPlusSum]					
* Parameter		7.35125 ton/yr	Upper Bound		ton/yr			
Lower Bound		ton/yr	* Enforce Bounds		False			
Remarks This User Value Set	Remarks This User Value Set was programmatically generated. GUID={B1B5784C-81D6-46F0-8CA3-A09758308B44}							

G3306 NA

SET POINT TIMING:

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

ENGINE SPEED (rpm): COMPRESSION RATIO: JACKET WATER OUTLET (°F): COOLING SYSTEM: IGNITION SYSTEM: **EXHAUST MANIFOLD:** COMBUSTION: EXHAUST 02 EMISSION LEVEL %: 1800 10,5:1 210 JW+OC MAG WC

FUEL SYSTEM:

LPG IMPCO WITH CUSTOMER SUPPLIED AIR FUEL RATIO CONTROL

SITE CONDITIONS:

FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf):

Nat Gas 1.5-10.0 84.8

Catalyst 0.5 ALTITUDE(ft): 905 500 77

30.0

MAXIMUM INLET AIR TEMPERATURE(°F): NAMEPLATE RATING:

145 bhp@1800rpm

	1 47	WILL DATE TO		1 10 Dilp@ 1000ipi		
			MAXIMUM RATING		G AT MAXIMU EMPERATUR	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(1)	bhp	145	145	109	72
INLET AIR TEMPERATURE		°F	77	77	77	77
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7775	7775	8318	9509
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8625	8625	9227	10548
AIR FLOW	(3)(4)	lb/hr	922	922	739	556
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	208	208	167	125
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	26.2	26.2	21.8	17.6
EXHAUST STACK TEMPERATURE	(6)	°F	1101	1101	1067	1037
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	678	678	532	393
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	978	978	784	590
EMISSIONS DATA					·	
NOx (as NO2)	(8)	g/bhp-hr	13.47	13.47	12.15	9.76
co	(8)	g/bhp-hr	13.47	13.47	11.44	9.56
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.20	2.20	2.49	3.22
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.33	0.33	0.37	0.48
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.22	0.22	0.25	0.32
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.27	0.27	0.31	0.33
CO2	(8)	g/bhp-hr	485	485	525	601
EXHAUST OXYGEN	(10)	% DRY	0.5	0.5	0.5	0.5
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	6049	6049	5237	4455
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	751	751	602	459
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	990	990	857	729

(12)

Btu/min

7842

CONDITIONS AND DEFINITIONS
Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

PREPARED BY:

Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM5053-07-000, Printed 31Jan2011

HEAT EXCHANGER SIZING CRITERIA

TOTAL JACKET WATER CIRCUIT (JW+OC)

Prepared For:

Jason Stinson
MIDCON COMPRESSION, LP

MANUFACTURED ON OR AFTER 1/1/2011

INFORMATION PROVIDED BY CATERPILLAR

G3306 NA Engine: 145 Horsepower: 1800 RPM: Compression Ratio: 10.5:1 678 CFM **Exhaust Flow Rate:** 1101 °F Exhaust Temperature: Reference: DM5053-07 Natural Gas Fuel: Annual Operating Hours: 8760

Uncontrolled Emissions

 NOx:
 13.47 g/bhp-hr

 CO:
 13.47 g/bhp-hr

 THC:
 2.20 g/bhp-hr

 NMHC:
 0.33 g/bhp-hr

 NMNEHC:
 0.22 g/bhp-hr

 HCHO:
 0.27 g/bhp-hr

 Oxygen:
 0.50 %

POST CATALYST EMISSIONS

NOx: <1.0 g/bhp-hr CO: <2.0 g/bhp-hr VOC: <0.7 g/bhp-hr

CONTROL EQUIPMENT

Catalytic Converter

Model: EAH-1200T-0404F-21CEE
Catalyst Type: NSCR, Precious group metals
Manufacturer: EMIT Technologies, Inc.

Element Size: Round 12 x 3.5

Catalyst Elements: 1

Housing Type: 2 Element Capacity
Catalyst Installation: Accessible Housing
Construction: 10 gauge Carbon Steel

Sample Ports: 6 (0.5" NPT)

Inlet Connections: 4" Flat Face Flange
Outlet Connections: 4" Flat Face Flange
Configuration: End In / End Out

Silencer: Integrated
Silencer Grade: Hospital
Insertion Loss: 35-40 dBA

Air Fuel Ratio Controller

Model: ENG-S-075-T

Manufacturer: EMIT Technologies, Inc.

Description: EDGE NG Air Fuel Ratio Controller

4-Wire Narrowband O2 Sensor

Digital Power Valve
O2 Sensor Weldment

Wiring Harness

(2) 25' Type K Thermocouple

Digital Power Valve Size: 0.75" NPT

5.7L Bucks Engine-Out Emissions on Pipeline Natural Gas

Engine	5.7L Bucks	5.7L Bucks	5.7L Bucks	
Test Description	Steady-State Raw Engine-Out Emissions	Steady-State Raw Engine-Out Emissions	Steady-State Raw Engine-Out Emissions	
Date	1/4/08	1/4/08	1/4/08	
Flywheel	Bucks Cert Cell 5	Bucks Cert Cell 6	Bucks Cert Cell 7	
Catalyst	Model TG192W-3, SN NX-0316	Model TG192W-3, SN NX-0316	Model TG192W-3, SN NX-0316	
Calibration	MI07SEQ064_GM574X_B_EMS_D_015.cal	MI07SEQ064_GM574X_B_EMS_D_015.cal	MI07SEQ064_GM574X_B_EMS_D_015.cal	
Speed	2400	2400	2400	
TQ (Nm)	337	337	337	
UEGO PHI	0.990	1.000	1.010	
Fuel	Pipeline NG	Pipeline NG	Pipeline NG	
THC ppm	597	586	616	
NMHC ppm (est)	35.8	35.2	36.9	
NOx ppm	2007	2001	2056	
NMHC + NOx ppm	2043	2036	2093	
CO %	0.927	1.120	1.287	
CO2 %	10.36	10.27	10.27	
BTE	31.2	31.2	31.2	
NOTES	PHI using UEGO Sensor	PHI using UEGO Sensor	PHI using UEGO Sensor	

MIRATECH Emissions Control Equipment Specification Summary

Proposal Number: TJ-12-2475

Engine Data

Number of Engines:

Application: Gas Compression
Engine Manufacturer: General Motors
Model Number: Vortec 5.7L NA

Power Output: 92 bhp

Lubrication Oil: 0.6 wt% sulfated ash or less

Type of Fuel:

Exhaust Flow Rate:

Exhaust Temperature:

Natural Gas

650 acfm (cfm)

1,200°F

System Details

Housing Model Number: VXCI-1005-3.5-HSG Element Model Number: VX-RE-05XC

Number of Catalyst Layers: 1
Number of Spare Catalyst Layers: 1

System Pressure Loss: 4.0 inches of WC (Fresh)
Sound Attenuation: 28-32 dBA insertion loss

Exhaust Temperature Limits: 750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number: VXCI-1005-3.5-XC1
Material: Carbon Steel

Inlet Pipe Size & Connection: 3.5 inch FF Flange, 150# ANSI standard bolt pattern
Outlet Pipe Size & Connection: 3.5 inch FF Flange, 150# ANSI standard bolt pattern

Overall Length: 43 inches
Weight Without Catalyst: 98 lbs
Weight Including Catalyst: 104 lbs

Instrumentation Ports: 1 inlet/1 outlet (1/2" NPT)

Emission Requirements

			Warranted	
	Engine Outputs		Converter Outputs	Requested
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets
NOx	14.00	93%	1.00	1 g/bhp-hr
CO	11.00	82%	2.00	2 g/bhp-hr
NMNEHC	0.40	0%	0.70	.7 g/bhp-hr
Oxygen	0.5%			

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

MIRATECH Catalyzer (TM) 8/17/2012

Retrograde Gas PVT Fluid Study for Chesapeake Energy Corporation Berisford No. 1-H Victory Field Wetzel County, West Virginia

The analysis, opinions and interpretations contained in this report are based upon observations, assumptions, empirical factors, inferences and data supplied by the customer, which are not infallible. The results expressed in this report represent the best judgment of FESCO. Accordingly, FESCO assumes no responsibility and makes no warranty as to the accuracy or correctness of any analysis, opinion or interpretation. FESCO shall not be liable or responsible for any loss, cost, damage, claim or expense whatsoever incurred or sustained by the customer resulting from any analysis, opinion or interpretation made by any of our employees.

Petroleum Engineers

Table of Contents Item # **Item Description Page Summary Information** 1 **Summary Letter** 1 2 Well Summary 3 3 **Results Summary** 4 4 Sample Summary 5 **Separator Fluid Analyses** Table 1-A: C₇₊ Separator Effluent Compositional Analyses 5 6 Table 1-B: C₁₁₊ Separator Effluent Compositional Analyses 6 7 7 Table 1-C: C₃₁₊ Separator Effluent Compositional Analyses 9 Hoffman Table and Plot 8 11 9 Table 2: Separator Liquid Flash 12 **Constant Composition Expansion** 10 Table 3: Constant Composition Expansion (CCE) 13 11 Figure 1: Relative Volume vs Pressure 14 12 Figure 2: Density vs Pressure 15 Figure 3: Y-Function vs Pressure 13 16 14 Figure 4: Retrograde Liquid Volume (%HCPV) vs Pressure 17 Figure 5: Retrograde Liquid Volume (Bbls/MM) vs Pressure 15 18 16 Figure 6: Gas Deviation Factor (Z) vs Pressure 19 17 Figure 7: Gas Expansion Factor vs Pressure 20 **Constant Composition Expansion** 18 Table 4: Constant Volume Depletion Study at 150 °F 21 19 Figure 8: Gas Deviation Factor vs Pressure 22 20 Figure 9: P/Z vs Cumulative Produced Wellstream Percent 23 21 Figure 10: Cumulative Produced Wellstream Percent vs Pressure 24 22 Figure 11: GPM of C₃₊, C₄₊, C₅₊ vs Pressure 25 23 Table 5: Calculated Cumulative Recovery During Depletion at 150 °F 26 24 Table 6: Retrograde Condensation During Depletion at 150 °F 27 25 Figure 12: Retrograde Liquid Volume (%HCPV) vs Pressure 28 26 Figure 13: Retrograde Liquid Volume (Bbls/MM) vs Pressure 29

May 3, 2011

Mr. Brad Claypool Chesapeake Energy Corporation P. O. Box 18496 Oklahoma City, Oklahoma 73154

Re: Well: Berisford No. 1-H

Field: Victory

Location: Wetzel County, West Virginia

Formation: Marcellus

Perforations: Horizontal Completion; Datum - Unavailable

Test Type: Retrograde Gas PVT Fluid Study

Dear Mr. Claypool:

The attached report contains results from a laboratory study performed on the recombined separator fluids from the subject well. The study determined the type and character of the reservoir fluid. The fluid study was performed using first-stage separator gas and oil samples obtained from the well on February 25, 2011 by FESCO, Ltd. FESCO then delivered the separator samples to its PVT laboratory in Alice, Texas. Extended compositional analyses were performed on the separator gas (C_{11+}) and on the separator oil (C_{31+}) samples. Tables 1-A through 1-C list the compositional analyses of the separator gas, separator oil and mathematically recombined wellstream fluid through C_{7+} , C_{11+} and C_{31+} , respectively. Table 2 reports the fluid properties measured as the separator oil was flashed from separator conditions to ambient laboratory conditions.

The separator gas and oil were physically recombined in a visual PVT cell at the reservoir temperature of 150 °F and at the reported gas-oil ratio of 63943 Scf/Sep Bbl (83688 Scf/STB). The recombined fluid was evaluated during a Constant Composition Expansion (CCE) process at pressures ranging from 7500 to 960 psig. The resulting CCE data is reported in Table 3. *A retrograde dew point was observed at 2408 psig.* The static reservoir pressure is higher than the observed retrograde dew point pressure. Therefore, the reservoir fluid exists as undersaturated (single-phase) gas at static reservoir conditions of 4430 psig and 150 °F. Figures 1 through 7 illustrate the data reported in Table 3.

Chesapeake Energy Corporation Berisford No. 1-H May 3, 2011

A Constant Volume Depletion (CVD) study was performed on the reservoir fluid to model wellstream production below the dew point. A CVD study consists of a series of expansions and constant pressure displacements terminating at the original saturated reservoir (dew point) volume. Table 4 provides the displaced wellstream volume and compositional analysis measured at each depletion pressure. Figures 8 and 10 illustrate the gas deviation factors (equilibrium gas and 2-phase) and cumulative produced wellstream volume, respectively, versus pressure as reported in Table 4. Figure 9 shows the corresponding P/Z (equilibrium gas and 2-phase) versus cumulative produced wellstream percent. Figure 11 presents the C_{3+} , C_{4+} and C_{5+} GPM content of the wellstream gas at each depletion pressure.

The cumulative stock tank oil and sales gas recoveries using normal-temperature single-stage separation were calculated from the produced wellstream volumes and their corresponding compositions. The plant liquid products produced during the single-stage separation were also calculated. The total plant products in the wellstream were then determined. The results are shown in Table 5. All recoveries are based on one MMscf of original reservoir fluid at the retrograde dew point and 100 percent plant efficiency.

Table 6 contains the cumulative retrograde liquid volume that condensed during the CVD process at reservoir temperature (150 °F). The maximum observed volume of condensed retrograde liquid was 0.672 percent of the hydrocarbon pore space at 1500 psig. Figures 12 and 13 illustrate the condensed retrograde liquid volume reported in Table 6 versus pressure.

Thank you for this opportunity to serve Chesapeake Energy Corporation. Please call me if you have any questions or concerns regarding this report.

Sincerely,

FESCO, Ltd.

Armando Ramirez Natural Gas Engineer

Alice, Texas

Phone: 361-661-7015

Email: Armando. Ramirez@FescoInc.com

Eddie Bickham, P. E. Vice - President

Alice, Texas

Phone: 361-661-7000 Ext. 115

Email: Ed.Bickham@FescoInc.com

FESCO, Ltd.

Petroleum Engineers

WELL SUMMARY

WELL INFORMATION

Company: Chesapeake Energy Corporation

Well Name: Berisford No. 1-H

Field: Victory

Location: Wetzel County, West Virginia

RESERVOIR INFORMATION

Formation: Marcellus

Perforations: Horizontal Completion

Reservoir Datum:

Reservoir Temperature:

Static Reservoir Pressure:

Flowing Reservoir Pressure:

Unavailable

4430 psig

Unavailable

SAMPLE INFORMATION

Sampling Date: 2/25/2011

Sampled By: FESCO, Ltd. - Shinnston, WV
Sample Type: 1st-Stage Separator Gas and Oil

Flowing Tubing Pressure: 1850 psig
1st Stage Separator Pressure: 415 psig
1st Stage Separator Temperature: 94 °F

2nd Stage Separator Pressure: Not Present 2nd Stage Separator Temperature: Not Present

PRODUCTION INFORMATION

Test Date: 2/25/2011
1st Stage Separator Gas Rate: 2678 Mcf/d
Stock Tank Oil Rate: 32.00 STB/d
Water Rate: 0.00 STB/d

Stock Tank Gas-Oil Ratio: 83688 Scf 1st Stage Gas / STB
Separator Gas-Oil Ratio: 63943 Scf 1st Stage Gas / Sep Bbl
Separator Oil Volume Factor: 1.30878 Sep Oil Vol / STO Vol

FESCO, Ltd.

Petroleum Engineers

RESULTS SUMMARY

Company: Chesapeake Energy Corporation

Well: Berisford No. 1-H

Type of Test: Retrograde Gas PVT Fluid Study

Reservoir Fluid Type: Undersaturated Gas

Saturation Conditions:

Pressure (Retrograde Dew Point): 2408 psig Temperature: 150 °F Gas Deviation Factor (Z): 0.79039

Gas Expansion Factor: 0.97845 Mscf/Bbl

Reservoir Conditions:

Pressure: 4430 psig
Temperature: 150 °F
Gas Deviation Factor (Z): 0.92167

Gas Expansion Factor: 1.54365 Mscf/Bbl

Report Date: 5/3/2011

FESCO, Ltd.

Petroleum Engineers

SAMPLE SUMMARY

Company: Chesapeake Energy Corporation

Well: Berisford No. 1-H

Sample Date: 02/25/11

Separator Conditions

Pressure: 415 psig Temperature: 94 °F

Laboratory Quality Test

Separator Gas: <u>Pressure</u> <u>Temperature</u>

 Cylinder ID No. G-3390*
 382 psig
 68 °F

 Cylinder ID No. G-2184
 271 psig
 68 °F

Separator Liquid: <u>BP Pressure Temperature</u>

 Cylinder ID No. T-657*
 338 psig
 68 °F

 Cylinder ID No. T-547
 312 psig
 68 °F

Report Date: 5/3/2011

^{*} Samples used in fluid study

TABLE 1-A

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{7+}

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	TREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.433	0.000	0.073	0.021	0.427	0.000
Carbon Dioxide	0.180	0.000	0.043	0.019	0.178	0.000
Methane	77.380	0.000	10.266	4.552	76.241	0.000
Ethane	14.005	3.776	9.016	6.309	13.920	3.753
Propane	4.820	1.337	9.073	6.532	4.892	1.357
Iso-butane	0.622	0.205	2.569	2.198	0.655	0.216
N-butane	1.329	0.422	7.310	6.026	1.431	0.454
2-2 Dimethylpropane	0.018	0.007	0.085	0.085	0.019	0.007
Iso-pentane	0.350	0.129	4.143	3.966	0.414	0.153
N-pentane	0.366	0.134	5.507	5.219	0.453	0.166
2-2 Dimethylbutane	0.012	0.005	0.244	0.267	0.016	0.007
Cyclopentane	0.002	0.001	0.000	0.000	0.002	0.001
2-3 Dimethylbutane	0.014	0.006	0.493	0.529	0.022	0.009
2 Methylpentane	0.091	0.038	2.801	3.041	0.137	0.057
3 Methylpentane	0.054	0.022	1.916	2.046	0.086	0.035
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.121	0.050	5.107	5.494	0.206	0.085
Heptanes Plus	0.203	0.091	41.354	53.698	0.901	0.440
TOTAL	100.000	6.223	100.000	100.000	100.000	6.741

HEPTANES PLUS (C ₇₊) FRACTION CHARACTERISTICS									
	Specific	e Gravity	Gross Heating Value						
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***				
Gas	N/A	3.5037	101.477	22.376	5,433				
Oil	56.898	0.7511	117.667	19.985	125,978				
Wellstream	N/A	0.7458	114.083	20.469	N/A				

TOTAL SAMPLE CHARACTERISTICS										
	Molecular Vapor Gross Heating Value									
	Specific	Gravity	Weight	Volume	Dry	Saturated				
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***				
Gas	N/A	0.7304	21.074	160.700	1,287	1,266				
Oil	84.807	0.6542	78.925	25.951	N/A	112,067				
Wellstream	N/A	0.7615	22.056	50.390	N/A	N/A				

^{*} GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

^{**} Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

^{***} Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{11+}

SEPARATOR GOR.....: 63943 Scf/Sep Bbl

SEPARATOR PRESSURE...... 415 psig SEPARATOR TEMPERATURE...... 94 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS'	TREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.433	0.000	0.073	0.021	0.427	0.000
Carbon Dioxide	0.180	0.000	0.043	0.019	0.178	0.000
Methane	77.380	0.000	10.266	4.552	76.241	0.000
Ethane	14.005	3.776	9.016	6.309	13.920	3.753
Propane	4.820	1.337	9.073	6.532	4.892	1.357
Iso-butane	0.622	0.205	2.569	2.198	0.655	0.216
N-butane	1.329	0.422	7.310	6.026	1.431	0.454
2-2 Dimethylpropane	0.018	0.007	0.085	0.085	0.019	0.007
Iso-pentane	0.350	0.129	4.143	3.966	0.414	0.153
N-pentane	0.366	0.134	5.507	5.219	0.453	0.166
2-2 Dimethylbutane	0.012	0.005	0.244	0.267	0.016	0.007
Cyclopentane	0.002	0.001	0.000	0.000	0.002	0.001
2-3 Dimethylbutane	0.014	0.006	0.493	0.529	0.022	0.009
2 Methylpentane	0.091	0.038	2.801	3.041	0.137	0.057
3 Methylpentane	0.054	0.022	1.916	2.046	0.086	0.035
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.121	0.050	5.107	5.494	0.206	0.085
Methylcyclopentane	0.009	0.003	0.457	0.423	0.017	0.006
Benzene	0.002	0.001	0.088	0.065	0.003	0.001
Cyclohexane	0.012	0.004	0.763	0.679	0.025	0.008
2-Methylhexane	0.024	0.011	2.276	2.768	0.062	0.029
3-Methylhexane	0.024	0.011	2.356	2.829	0.064	0.029
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.024	0.011	1.904	2.169	0.056	0.025
n-Heptane	0.034	0.016	4.255	5.135	0.106	0.049
Methylcyclohexane	0.020	0.008	2.539	2.670	0.063	0.025
Toluene	0.003	0.001	0.542	0.475	0.012	0.004
Other C-8's	0.031	0.015	7.178	8.802	0.152	0.072
n-Octane	0.008	0.004	2.750	3.684	0.055	0.028
Ethylbenzene	0.000	0.000	0.448	0.453	0.008	0.003
M&P-Xylene	0.002	0.001	0.585	0.594	0.012	0.005
O-Xylene	0.000	0.000	0.832	0.828	0.014	0.005
Other C-9's	0.007	0.004	3.645	4.992	0.069	0.036
n-Nonane	0.001	0.001	1.461	2.152	0.026	0.015
Other C10's	0.001	0.001	3.247	4.888	0.056	0.033
n-Decane	0.001	0.001	0.810	1.301	0.015	0.009
Undecanes Plus	0.000	0.000	5.216	8.794	0.089	0.058
TOTAL	100.000	6.223	100.000	100.000	100.000	6.741

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{11+}

SEPARATOR GOR.....: 63943 Scf/Sep Bbl

SEPARATOR PRESSURE....... 415 psig SEPARATOR TEMPERATURE.....: 94 °F

UNDECANES PLUS (C ₁₁₊) FRACTION CHARACTERISTICS									
	Specific	Gravity	Molecular Weight	Vapor Volume	Gross Heating Value				
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***				
Gas	N/A	0.8250	156.000	16.558	8,400				
Oil	44.561	0.8037	163.500	15.391	128,193				
Wellstream	N/A	0.8037	163.500	15.391	N/A				

TOTAL SAMPLE CHARACTERISTICS										
			Molecular	Vapor	Gross Heating Value					
	Specific	Specific Gravity		Volume	Dry	Saturated				
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***				
Gas	N/A	0.7304	21.074	160.700	1,287	1,266				
Oil	84.807	0.6542	78.925	25.951	N/A	112,067				
Wellstream	N/A	0.7615	22.056	50.390	N/A	N/A				

^{*} GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

^{**} Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

^{***} Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

TABLE 1-C

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{31+}

SEPARATOR GOR...... 63943 Scf/Sep Bbl

SEPARATOR PRESSURE....... 415 psig SEPARATOR TEMPERATURE...... 94 °F

	SEPARATOR GAS		SEPARATOR OIL		WELLSTREAM	
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.433	0.000	0.073	0.021	0.427	0.000
Carbon Dioxide	0.180	0.000	0.043	0.019	0.178	0.000
Methane	77.380	0.000	10.266	4.552	76.241	0.000
Ethane	14.005	3.776	9.016	6.308	13.920	3.753
Propane	4.820	1.337	9.073	6.531	4.892	1.357
Iso-butane	0.622	0.205	2.569	2.198	0.655	0.216
N-butane	1.329	0.422	7.310	6.026	1.431	0.454
2-2 Dimethylpropane	0.018	0.007	0.085	0.085	0.019	0.007
Iso-pentane	0.350	0.129	4.143	3.966	0.414	0.153
N-pentane	0.366	0.134	5.507	5.219	0.453	0.166
2-2 Dimethylbutane	0.012	0.005	0.244	0.267	0.016	0.007
Cyclopentane	0.002	0.001	0.000	0.000	0.002	0.001
2-3 Dimethylbutane	0.014	0.006	0.493	0.529	0.022	0.009
2 Methylpentane	0.091	0.038	2.801	3.041	0.137	0.057
3 Methylpentane	0.054	0.022	1.916	2.046	0.086	0.035
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.121	0.050	5.107	5.493	0.206	0.085
Methylcyclopentane	0.009	0.003	0.457	0.423	0.017	0.006
Benzene	0.002	0.001	0.088	0.065	0.003	0.001
Cyclohexane	0.012	0.004	0.763	0.679	0.025	0.008
2-Methylhexane	0.024	0.011	2.276	2.768	0.062	0.029
3-Methylhexane	0.024	0.011	2.356	2.828	0.064	0.029
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.024	0.011	1.904	2.168	0.056	0.025
n-Heptane	0.034	0.016	4.255	5.135	0.106	0.049
Methylcyclohexane	0.020	0.008	2.539	2.670	0.063	0.025
Toluene	0.003	0.001	0.542	0.475	0.012	0.004
Other C-8's	0.031	0.015	7.178	8.801	0.152	0.072
n-Octane	0.008	0.004	2.750	3.684	0.055	0.028
Ethylbenzene	0.000	0.000	0.448	0.453	0.008	0.003
M&P-Xylene	0.002	0.001	0.585	0.594	0.012	0.005
O-Xylene	0.000	0.000	0.832	0.828	0.014	0.005
Other C-9's	0.007	0.004	3.645	4.991	0.069	0.036
n-Nonane	0.001	0.001	1.461	2.152	0.026	0.015
Other C10's	0.001	0.001	3.247	4.887	0.056	0.033
n-Decane	0.001	0.001	0.810	1.301	0.015	0.009
Undecanes	0.000	0.000	2.371	3.662	0.040	0.024
Dodecanes	0.000	0.000	1.336	2.229	0.023	0.015
Tridecanes	0.000	0.000	0.766	1.371	0.013	0.009

TABLE 1-C

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH C_{31+}

SEPARATOR GOR..... 63943 Scf/Sep Bbl

SEPARATOR PRESSURE...... 415 psig SEPARATOR TEMPERATURE.....: 94 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	ΓREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Tetradecanes	0.000	0.000	0.371	0.711	0.006	0.005
Pentadecanes	0.000	0.000	0.165	0.339	0.003	0.002
Hexadecanes	0.000	0.000	0.091	0.199	0.002	0.001
Heptadecanes	0.000	0.000	0.051	0.118	0.001	0.001
Octadecanes	0.000	0.000	0.026	0.065	0.000	0.000
Nonadecanes	0.000	0.000	0.013	0.034	0.000	0.000
Eicosanes	0.000	0.000	0.007	0.018	0.000	0.000
Heneicosanes	0.000	0.000	0.005	0.013	0.000	0.000
Docosanes	0.000	0.000	0.003	0.009	0.000	0.000
Tricosanes	0.000	0.000	0.001	0.004	0.000	0.000
Tetracosanes	0.000	0.000	0.001	0.004	0.000	0.000
Pentacosanes	0.000	0.000	0.001	0.003	0.000	0.000
Hexacosanes	0.000	0.000	0.002	0.006	0.000	0.000
Heptacosanes	0.000	0.000	0.001	0.003	0.000	0.000
Octacosanes	0.000	0.000	0.001	0.003	0.000	0.000
Nonacosanes	0.000	0.000	0.000	0.000	0.000	0.000
Triacontanes	0.000	0.000	0.001	0.002	0.000	0.000
Hentriacontanes Plus	0.000	0.000	0.002	0.009	0.000	0.000
TOTALS	100.000	6.223	100.000	100.000	100.000	6.741

	TOTAL SAMPLE CHARACTERISTICS										
Molecular Vapor Gross Heating Value											
	Specific	Gravity	Weight	Volume	Dry	Saturated					
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***					
Gas	N/A	0.7304	21.074	160.700	1,287	1,266					
Oil	84.807	0.6542	78.925	25.951	N/A	112,067					
Wellstream	N/A	0.7615	22.056	50.390	N/A	N/A					

^{*} GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

^{**} Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

^{***} Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

HOFFMAN PLOT

EQUILIBRIUM CHECK of SEPARATOR LIQUID and GAS COMPOSITIONAL ANALYSES

Separator Pressure = 415 psig Separator Temperature = 94 °F

	Gas (X)	Oil (Y)	Equil. Ratio	K*Psep	Normal BP (NBP)		Critical Pressure	Critical Temperature		Gra Resi	•
Components	Mole %	Mole %	(K=Y/X)	(psiA)	°R	T_{NBP}^{-1} - T_{SEP}^{-1}	(Pc) psiA	(Tc) °R	B-Factor	B(1/Tb-1/Tsp)	Log(K*Psep)
N2	0.433	0.073	5.934	2550.77	139	0.005373	493	227	548	2.947	3.407
CO2	0.180	0.043	4.230	1818.07	350	0.001048	1071	548	1806	1.892	3.260
C1	77.380	10.266	7.537	3239.92	201	0.003169	668	343	803	2.543	3.511
C2	14.005	9.016	1.553	667.70	332	0.001204	708	550	1408	1.695	2.825
C3	4.820	9.073	0.531	228.36	416	0.000598	616	666	1793	1.072	2.359
IC4	0.622	2.569	0.242	104.08	471	0.000319	529	735	2030	0.647	2.017
NC4	1.329	7.310	0.182	78.15	491	0.000231	551	765	2150	0.497	1.893
IC5	0.368	4.228	0.087	37.41	542	0.000040	490	829	2373	0.095	1.573
NC5	0.366	5.507	0.066	28.57	557	-0.000009	489	845	2474	-0.023	1.456
C6	0.294	10.562	0.028	11.97	615	-0.000181	437	913	2773	-0.502	1.078
C7+	0.203	41.354	0.005	2.11	763	-0.000496	332	1070	3592	-1.781	0.324
Total	100.000	100.000									-

(Note: C7+ Critical Properties as C9. The C6 composition includes iso-hexanes.)

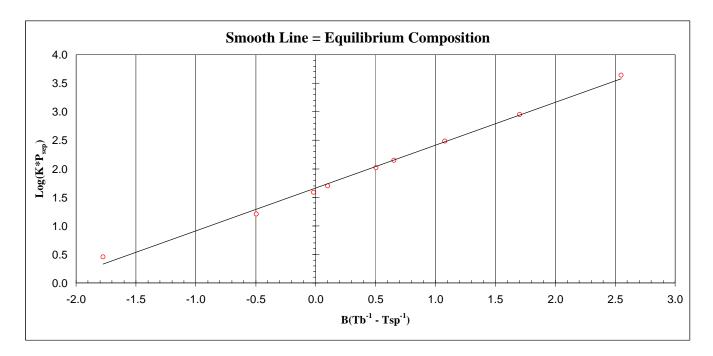


TABLE 2
FLASH LIBERATION OF 1st-STAGE SEPARATOR LIQUID

SEPARATOR CONDITIONS and FLUID PROPERTIES											
Conditions	Pressure psia	Temperature °F	GOR (1)	Separator Oil Volume Factor (2)	Oil Specific Gravity (3)	Gas Specific Gravity (4)					
1st Stage Separator	430	94	N/A	1.3088	0.6542	0.7304					
Ambient Lab Conditions	14.72	70	486	1.0065	0.7157	1.4993					
Stock Tank	14.85	60	0	1.0000	0.7203	1.4993					
TOTALS			486								

Stock Tank Oil Gravity: 64.95 °API at 60 °F

(1) Gas-Oil Ratio (GOR) is the cubic feet of gas at standard conditions per barrel of stock tank oil.

(2) Barrels of oil at indicated separator conditions per barrel of stock tank oil.

(3) Water = 1.000

(4) Air = 1.000

TABLE 3

PRESSURE-VOLUME RELATION OF A 63943 Scf/Sep Bbl RESERVOIR FLUID AT 150 °F (Constant Composition Expansion)

Pressure,	Relative	Density,	Y-Function	Retrograde L	iquid Volume	Gas Deviation Factor,	Gas Expansion Factor,
(psig)	Volume	(g/cc)	(1)	Volume (2)	(3)	Z	(4)
(psig)	Volume	(g/cc)	(1)	volume (2)	(3)	2	(4)
7500	0.50763	0.32724	N/A	N/A	N/A	1.24447	1.93552
7000	0.52007	0.31941	N/A	N/A	N/A	1.19013	1.88897
6000	0.55179	0.30105	N/A	N/A	N/A	1.08271	1.77976
5000	0.59794	0.27782	N/A	N/A	N/A	0.97820	1.64158
4430 Pres	0.63563	0.26134	N/A	N/A	N/A	0.92167	1.54365
4000	0.67334	0.24671	N/A	N/A	N/A	0.88190	1.45668
3500	0.73342	0.22650	N/A	N/A	N/A	0.84095	1.33665
3000	0.82218	0.20204	N/A	N/A	N/A	0.80863	1.19150
2408 Psat	1.00000	0.16612	N/A	0.00%	0.000	0.79039	0.97845
2245	1.07186	N/A	1.00373	0.16%	1.659	N/A	N/A
2174	1.10769	N/A	0.99270	0.23%	2.342	N/A	N/A
2108	1.14396	N/A	0.98168	0.29%	2.968	N/A	N/A
1964	1.23432	N/A	0.95756	0.42%	4.241	N/A	N/A
1841	1.32484	N/A	0.94052	0.53%	5.365	N/A	N/A
1736	1.41553	N/A	0.92367	0.63%	6.361	N/A	N/A
1644	1.50633	N/A	0.90961	0.71%	7.209	N/A	N/A
1562	1.59721	N/A	0.89836	0.76%	7.762	N/A	N/A
1489	1.68819	N/A	0.88797	0.78%	7.965	N/A	N/A
1423	1.77921	N/A	0.87916	0.78%	7.946	N/A	N/A
1362	1.87028	N/A	0.87295	0.78%	7.891	N/A	N/A
1166	2.23497	N/A	0.85167	0.75%	7.578	N/A	N/A
960	2.78275	N/A	0.83318	0.70%	7.117	N/A	N/A

⁽¹⁾ Y - Function = Dimensionless Compressibility = $(P_{sat} - P_i) * [P_i * (RV_i - 1)]^{-1}$

Relative Volume = volume at indicated pressure per volume at the saturation pressure.

Psat = Saturation (Retrograde Dew Point) pressure at reservoir temperature.

Pres = Current static reservoir pressure.

⁽²⁾ Retrograde liquid volume at the indicated pressure and reservoir temperature as a percent of the hydrocarbon pore volume at the dew point pressure and reservoir temperature.

⁽³⁾ Retrograde liquid volume at the indicated pressure and reservoir temperature (Bbls) per volume of gas (MMscf) at the dew point pressure and reservoir temperature.

⁽⁴⁾ Gas Expansion Factor = the volume of surface gas at standard conditions (Mscf) produced from one barrel of undersaturated gas at the indicated pressure and reservoir temperature.

FIGURE 1
Relative Volume vs Pressure

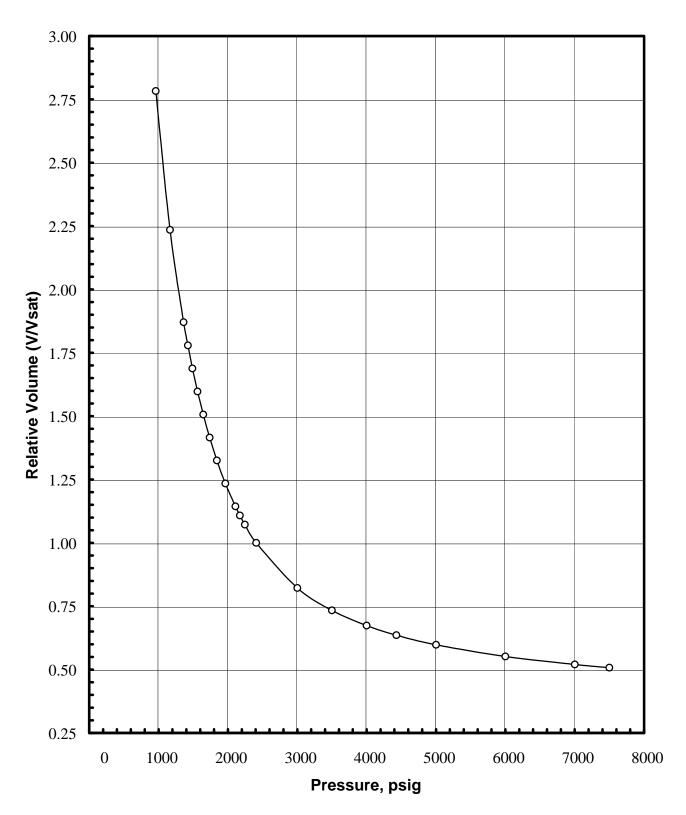
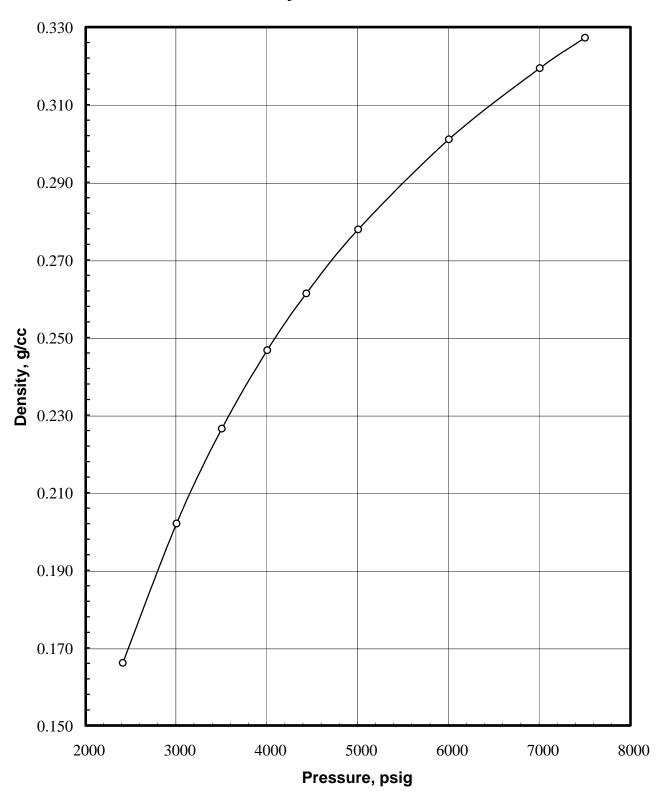
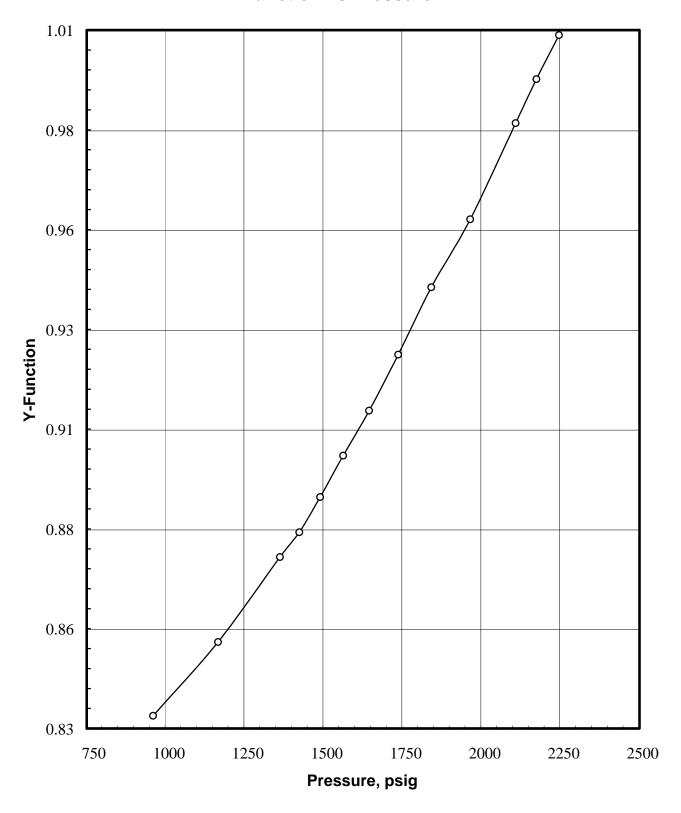




FIGURE 2 Density vs Pressure

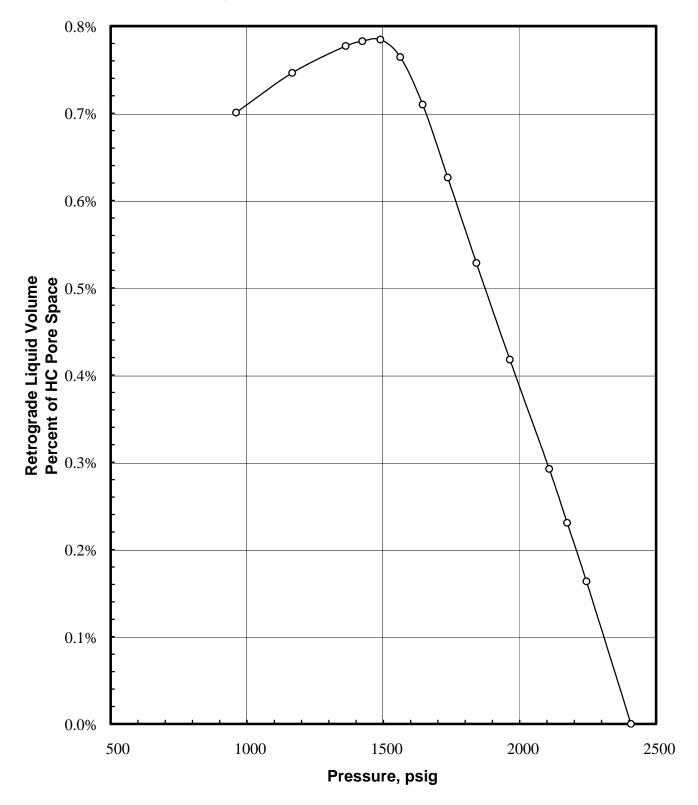

Page 15

FIGURE 3
Y-Function vs Pressure

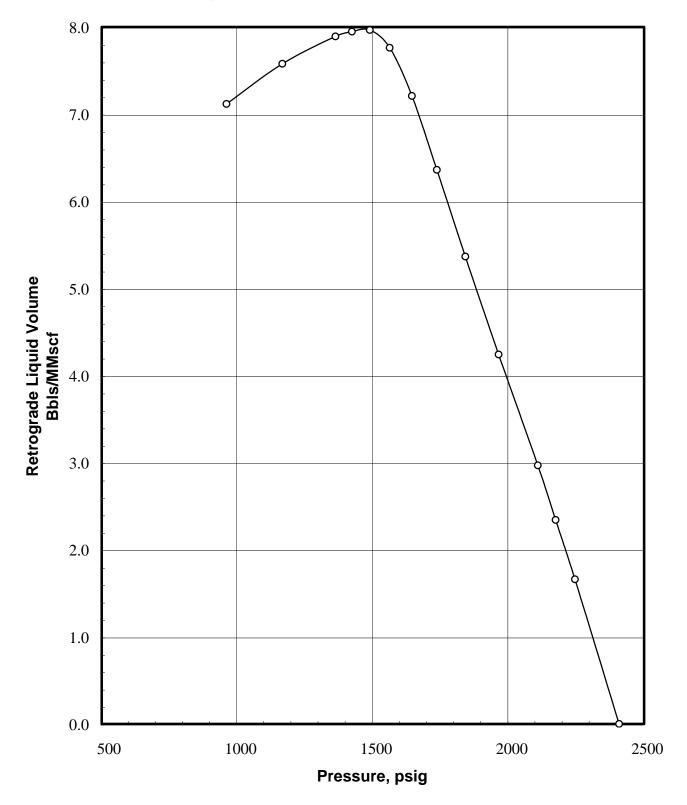

Page 16

FIGURE 4
Retrograde Liquid Volume vs Pressure

Page 17

FIGURE 5
Retrograde Liquid Volume vs Pressure

Page 18

FIGURE 6
Gas Deviation Factor (Z) vs Pressure

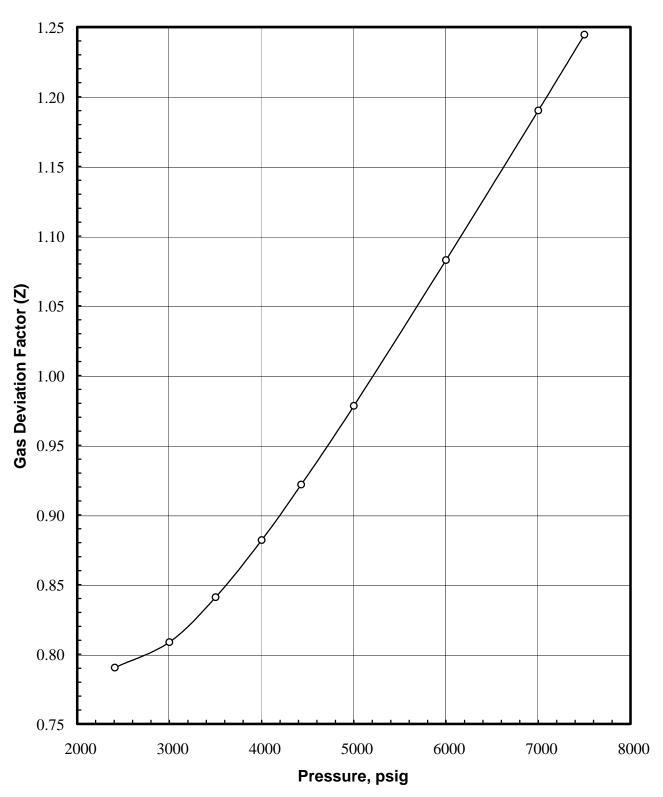


FIGURE 7
Gas Expansion Factor vs Pressure

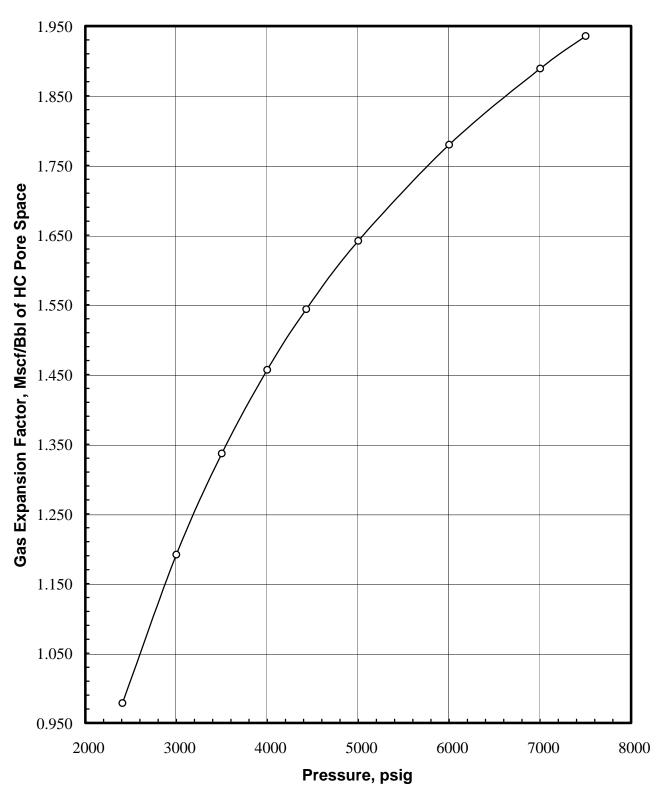


TABLE 4

RESERVOIR GAS DEPLETION STUDY AT 150 °F

Reservoir Pressure, psig	(D.P.) 2408	2100	1800	1500	1100	600	0
Wellstream Components	mole %	mole %	mole %	mole %	mole %	mole %	mole %
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.427	0.426	0.427	0.428	0.429	0.428	0.418
Carbon Dioxide	0.178	0.177	0.177	0.178	0.178	0.178	0.175
Methane	76.241	76.409	76.540	76.576	76.954	76.852	75.422
Ethane	13.920	13.931	13.970	14.077	13.940	13.999	13.521
Propane	4.892	4.864	4.825	4.819	4.764	4.826	4.987
Iso-butane	0.655	0.652	0.646	0.640	0.635	0.640	0.689
N-butane	1.431	1.412	1.402	1.387	1.382	1.396	1.462
Iso-pentane	0.434	0.413	0.416	0.413	0.394	0.402	0.512
N-pentane	0.453	0.436	0.428	0.428	0.413	0.420	0.531
Hexanes	0.468	0.452	0.440	0.436	0.416	0.406	0.601
Heptanes Plus	0.901	0.829	0.730	0.619	0.494	0.454	1.683
TOTALS	100.000	100.000	100.000	100.000	100.000	100.000	100.000

	HEPTANES PLUS (C ₇₊) FRACTION CHARACTERISTICS										
Molecular Weight	Molecular Weight 114.083 111.741 110.227 109.437 109.009 108.832 109.753										
Specific Gravity	Specific Gravity 0.7458 0.7423 0.7399 0.7387 0.7380 0.7377 0.7916										

CONDENSED RETROGRADE LIQUID VOLUME										
HC Pore Volume % 0.000 0.300 0.536 0.672 0.632 0.546 0.436										
Bbls/MMscf of DP Gas 0.000 3.042 5.439 6.822 6.416 5.550 4.425										

GAS DEVIATION FACTOR									
Equilibrium Gas	0.7904	0.7913	0.8029	0.8259	0.8687	0.9304	N/A		
Two-Phase	0.7904	0.7915	0.8020	0.8212	0.8579	0.9124	N/A		

CUMULATIVE PRODUCED WELLSTREAM VOLUME										
Vol % of Initial DP Gas	0.000	12.832	26.181	39.823	57.606	78.016	99.784			

GPM FROM CVD WELLSTREAM COMPOSITIONS											
Propane plus (C_{3+})	2.988	2.910	2.836	2.770	2.672	2.677	3.503				
Butanes plus (C ₄₊)	1.631	1.561	1.497	1.433	1.350	1.338	2.120				
Pentanes plus (C ₅₊)											

FIGURE 8
Equilibrium Gas Deviation (Z) Factor vs Pressure

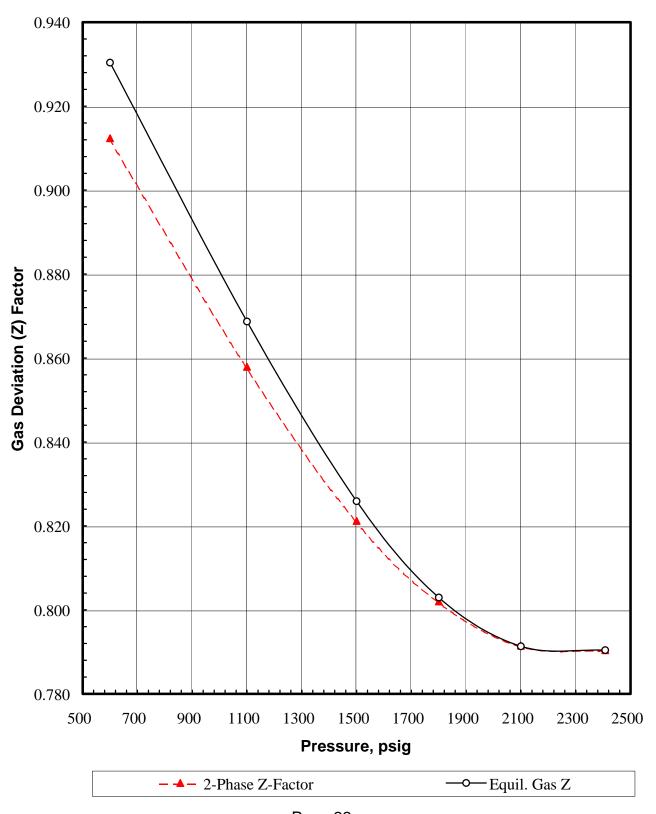
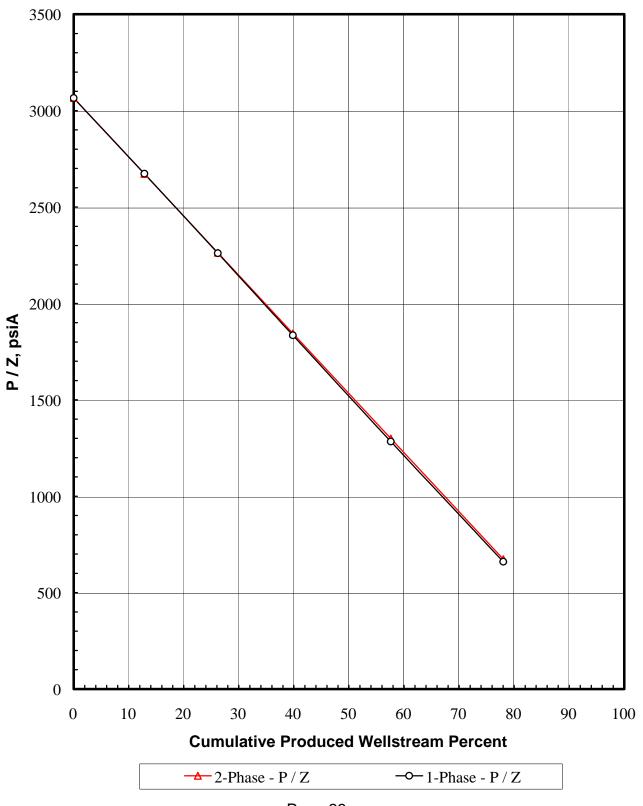



FIGURE 9
P / Z vs Cumulative Produced Wellstream %

Page 23

FIGURE 10
Cumulative Produced Wellstream Volume vs Pressure

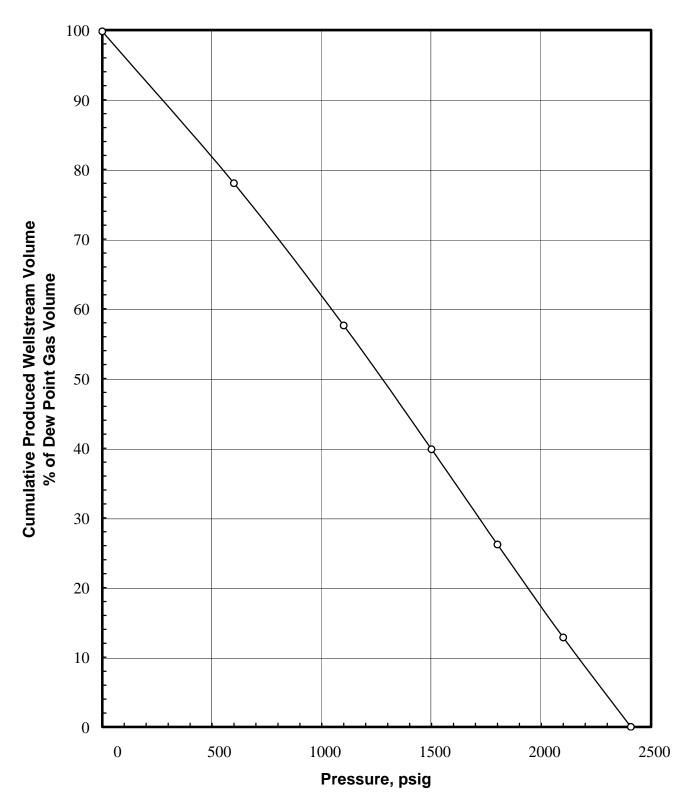
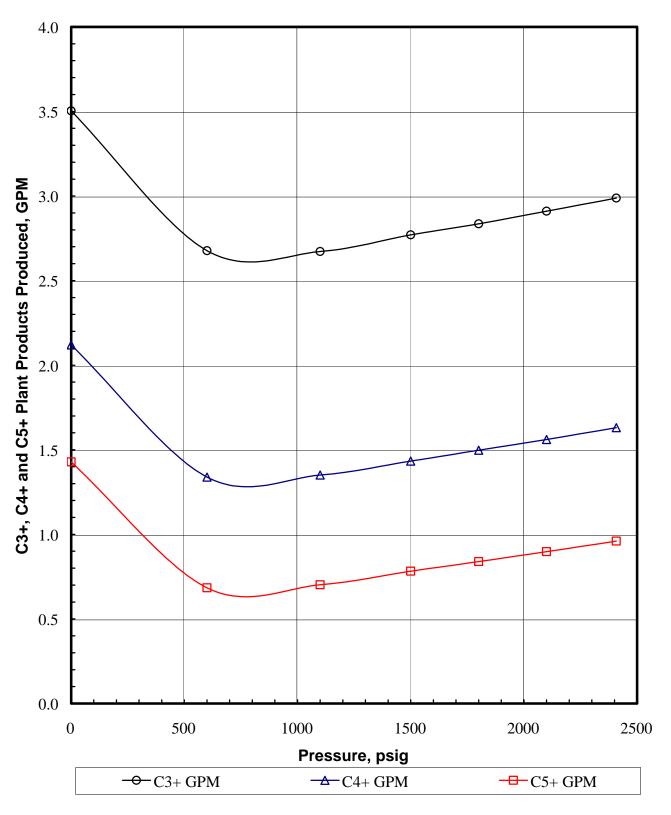



FIGURE 11 C3+, C4+ and C5+ GPM vs Pressure

TABLE 5 CALCULATED CUMULATIVE RECOVERY DURING DEPLETION AT 150 °F

Cumulative Fluid Recovery				Reservoir Pr	essure - psig		
per MMScf of Original	Initial Gas	(D.P.)					
Dew Point Gas	in Place	2408	2100	1800	1500	1100	600
Well Stream (Mcf)	1000.00	0.00	128.32	261.81	398.23	576.06	780.16
` ,							
* Normal Temperature Separation							
Stock Tank Liquid (Bbls)	13.24	0.00	1.57	2.98	4.16	5.31	6.52
Primary Separator Gas (Mcf)	982.55	0.00	126.11	257.53	392.17	568.27	770.51
Second Stage Gas (Mcf)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stock Tank Gas (Mcf)	4.99	0.00	0.70	1.41	2.03	2.65	3.31
Cumulative Total GOR (Scf/STB)	74559	0	80871	86878	94694	107587	118623
Instantaneous Total GOR (Scf/STB)	74559	0	80871	93547	114397	154518	166753
Total Gallons of Ethane Plus							
(C ₂₊) Plant Products Produced in:							
Well Stream	6741.10	0.00	855.38	1736.78	2632.50	3776.05	5092.73
Primary Separator Gas	6066.53	0.00	773.56	1579.93	2412.22	3494.16	4745.22
Second Stage Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stock Tank Gas	110.25	0.00	15.16	30.26	43.57	56.77	70.98

* Recovery Basis: $\,$ 1st Stage Separation at 415 psig and 94 $^{\circ}F$

2nd Stage Separation: Not Present

Stock Tank Conditions at 14.85 psig and 70 $^{\circ}F$ Standard Conditions at 14.85 psig and 60 $^{\circ}F$

TABLE 6

RETROGRADE CONDENSATION DURING GAS DEPLETION
AT 150 °F

Pressure	Condensed Retrograde Liquid Volume							
psig	(1)	(2)						
2408	0.000	0.00						
2100	0.300	3.04						
1800	0.536	5.44						
1500	0.672	6.82						
1100	0.632	6.42						
600	0.546	5.55						
0	0.436	4.42						

- (1) Retrograde liquid volume condensed at the indicated pressure and reservoir temperature as a percent of the hydrocarbon pore volume at the dew point pressure and reservoir temperature.
- (2) Retrograde liquid volume (Bbls) condensed at the indicated pressure and reservoir temperature per volume of gas (MMscf) at the dew point pressure and reservoir temperature.

FIGURE 12
Retrograde Liquid Volume vs Pressure

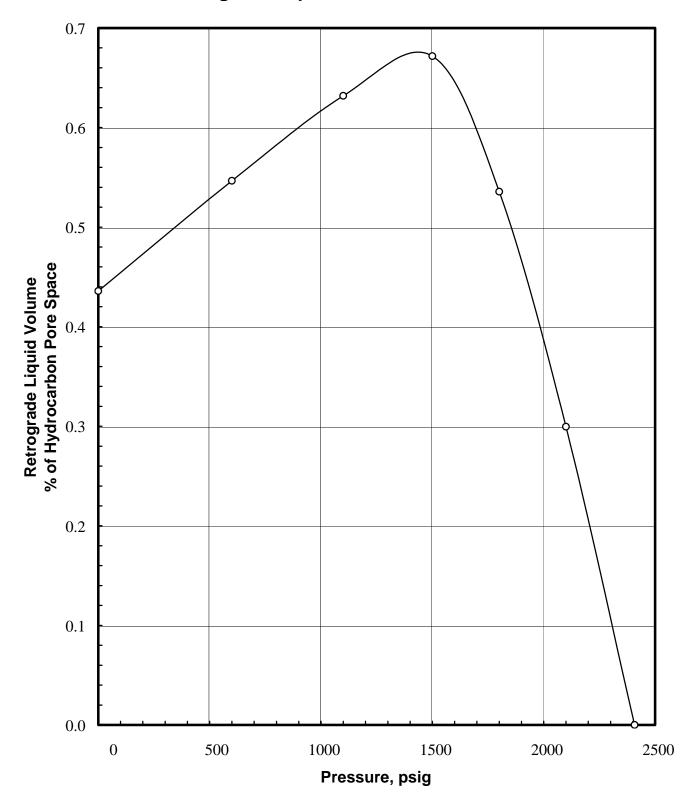
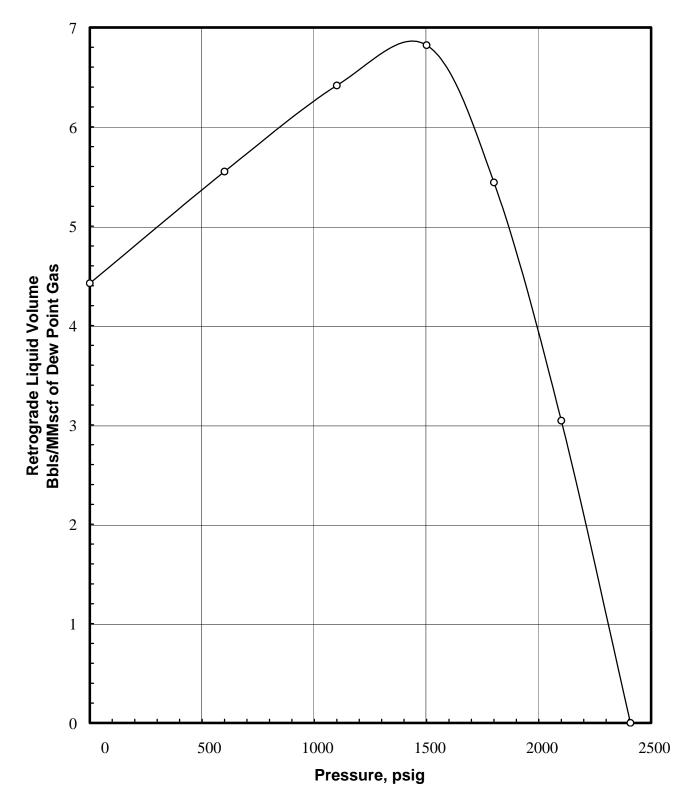



FIGURE 13
Retrograde Liquid Volume vs Pressure

ATTACHMENT J

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Southwestern Production Company, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II General Permit (G70-A) for a new natural gas production wellpad (Ridgetop Land Ventures Wellpad). The facility will be located 0.7 miles off Harlan Ridge Road (at 39.665780, -80.673410) near New Martinsville, West Virginia in Wetzel County

The applicant estimates that the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions (tons per year)			
NO _X	10.86			
CO	13.40			
VOC	61.63			
SO ₂	0.05			
PM	4.99			
Total HAPs	2.42			
Carbon Dioxide Equivalents (CO ₂ e)	13,208			

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the XX day of June, 2015.

By: SWN Production Company, LLC

Paul Geiger – Sr. Vice President Ops Management

10000 Energy Drive Spring TX 77389

ATTACHMENT L

General Permit Registration Application Fee

ATTACHMENT O

Emission Summary Sheet

G70-A EMISSIONS SUMMARY SHEET

Emission Point ID No.	Emission Point Type ¹	Emission Unit Vented Through This Point		Air Pollution Control Device		All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or	
											Gas/Vapor)	
EP-TANKS- PW (Total All Tanks)	Upward vertical stack	EU- TANKS -PW	Four (4) Produced Water Tanks	APC- VRU & APC- COMB- TKLD	VRU, Combustor	VOC HAPS	1.38 0.01	6.06 0.05	0.07 <0.01	0.30 <0.01	Gas/Vapor	ProMax
EP-TANKS- COND (Total All Tanks)	Upward vertical stack	EU- TANKS - COND	Four (4) Condensate Tanks	APC- VRU & APC- COMB- TKLD	VRU, Combustor	VOC HAPS	23.59 0.63	103.30 2.76	1.18 0.03	5.17 0.14	Gas/Vapor	ProMax
EP-ENGINE1	Upward vertical stack	EU- ENGIN E1	Caterpillar G3306NA Engine	Catalyst	NSCR	NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e}	4.31 4.31 0.02 <0.01 0.16 170	18.86 18.86 0.11 <0.01 1.05 745	0.32 0.64 0.02 <0.01 0.16 170	1.40 2.80 0.11 0.01 1.05 745	Gas/Vapor	AP-42 Vendor Data
EP-ENGINE2	Upward vertical stack	EU- ENGIN E2	Caterpillar G3306NA Engine	Catalyst	NSCR	NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e}	4.31 4.31 0.02 <0.01 0.16 170	18.86 18.86 0.11 <0.01 1.05 745	0.32 0.64 0.02 <0.01 0.16 170	1.40 2.80 0.11 0.01 1.05 745	Gas/Vapor	AP-42 Vendor Data
VRU-1	Upward vertical stack	VRU-1	VRU Engine	Catalyst	NSCR	NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e}	2.84 2.23 0.02 <0.01 0.16 93	12.44 9.77 0.07 <0.01 0.74 406	0.20 0.41 0.02 <0.01 0.16 93	0.89 1.78 0.07 <0.01 0.74 406	Gas/Vapor	AP-42 Vendor Data
EP-HT1 to EP- HT2 (Total – All units)	Upward vertical stack	EU-HT1 to EU- HT2	Heater Treaters	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC HAPs CO _{2e}	0.08 0.07 <0.01 <0.01 <0.01 <0.01 117	0.34 0.29 0.03 <0.01 0.02 <0.01 513	0.08 0.07 <0.01 <0.01 <0.01 <0.01 117	0.34 0.29 0.03 <0.01 0.02 <0.01 513	Gas/Vapor	AP-42
EP-GPU1 to EP- GPU5 (Total – All units)	Upward vertical stack	EU- GPU1 to EU- GPU5	GPU Burners	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC HAPs CO _{2e}	0.39 0.33 0.03 <0.01 0.02 <0.01 586	1.70 1.43 0.13 0.01 0.09 0.03 2,565	0.39 0.33 0.03 <0.01 0.02 <0.01 586	1.70 1.43 0.13 0.01 0.09 0.03 2,565	Gas/Vapor	AP-42

EP-LOAD-COND	Upward vertical stack	EU- LOAD- COND	Condensate Liquid Loading	APC- VRU & APC- COMB- TKLD	VRU, Combustor	VOC HAPs Benzene	32.53 0.80 0.01	142.48 3.50 0.03	10.90 0.27 0.002	47.73 1.17 0.01	Gas/Vapor	AP-42
EP-LOAD-PW	Upward vertical stack	EU- LOAD- PW	Produced Water Liquid Loading	APC- VRU & APC- COMB- TKLD	VRU, Combustor	VOC HAPs Benzene	1.14 0.001 0.004	4.98 0.01 0.02	0.61 0.002 0.001	2.69 0.01 0.006	Gas/Vapor	AP-42
EP-FUG	Fugitive	EU- FUG	Fugitive Components	None		VOC HAPs CO₂e	0.64 0.02 116	2.80 0.07 507	0.64 0.02 116	2.80 0.07 507	Gas/Vapor	AP-42
EP-PILOT	Upward vertical stack	EU- PILOT	Vapor Combustor Pilot	None		$\begin{array}{c} NO_X \\ CO \\ PM/PM_{10}/PM_{2.5} \\ SO_2 \\ CO_{2e} \end{array}$	0.01 <0.01 <0.01 <0.01 8	0.02 0.02 0.002 <0.01 33	0.01 <0.01 <0.01 <0.01 8	0.02 0.02 0.002 <0.01 33	Gas/Vapor	AP-42
APC-COMB- TKLD	Upward vertical stack	APC- COMB- TKLD	Vapor Combustor	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ CO _{2e}	1.17 0.98 0.09 0.01 1,764	5.13 4.31 0.39 0.03 7,728	1.17 0.98 0.09 0.01 1,764	5.13 4.31 0.39 0.03 7,728	Gas/Vapor	AP-42

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs,
- H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases
- ³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).