625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

May 18, 2015

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-A Permit Application EQT Production Company OXF-163 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-A General Air Permit Application for the OXF-163 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-A General Air Permit Application OXF 163 Natural Gas Production Site

West Union, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

May 2015

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-A Class II General Permit application to the WVDEP's Department of Air Quality for the OXF-163 natural gas production site located in Ritchie County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF-163 pad.

FACILITY DESCRIPTION

The EQT OXF-163 natural gas production site operates in Ritchie County, WV and consists of six (6) natural gas wells. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant seeks to authorize the operation of:

- Six (6) natural gas wells;
- Six (6) line heaters each rated at 1.50 MMBtu/hr heat input;
- One (1) 100 bbl sand trap blowdown tank for storage of condensate and water;
- Six (6) 400 barrel (bbl) tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 mmBtu/hr heat input; and
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF-163 pad will be located in Ritchie County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the OXF-163 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities. The OXF-163 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF-163 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF-163 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

There are no EQT owned or operated sites with a ³/₄ mile radius of the OXF-163 pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the OXF-163 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF-163 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF-163 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF-163 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the OXF-163 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 10 – To Prevent and Control Air Pollution From the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, And Operation of Stationary Sources of Air Pollutants

This G70-A permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-163 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-A general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70A-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-163 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 - Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-A general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-A permit are not subject to the OXF-163 facility:

- 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

FEDERAL REGULATIONS

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-A permit.

The only affected facilities expected to be subject to Subpart OOOO located at the OXF-163 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at OXF-163 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers</u>: Any pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, there will not be any pneumatic controller affected facilities located at this site.

<u>Storage vessels</u>: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

The following NSPS included in the G70-A permit are not applicable to the OXF-163 facility:

• 40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

No additional NSPS are expected to be applicable to this facility.

AUT WEST DIA	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTEC DIVISION OF AIR QUALITY 601 57 th Street, SE	CTION	PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR				
Ray Senser Ust MU	Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov/	/dan	ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS				
CONSTRUCT	() 1 3	'			DMINISTRATIVE UP		
				_	DMINISTRATIVE UF		
	CHECK WHICH TYPE OF GENERAL PER	RMIT R	EGISTRATIC	ON YOU ARE	APPLYING FOR:		
□ G20-B - Hot M □ G30-D - Natu □ G33-A - Spar	Preparation and Handling Mix Asphalt ral Gas Compressor Stations k Ignition Internal Combustion Engines ral Gas Compressor Stations (Flare/Glycol Dehydra	tion Uni	G40-C – Nonmetallic Minerals Processing G50-B – Concrete Batch G60-C - Class II Emergency Generator G65-C – Class I Emergency Generator G70.A Class II Emergency Generator				
	SECTION I. GE	NERA	L INFORMA	ΓΙΟΝ			
1. Name of application	ant (as registered with the WV Secretary of State's 0	Office):		2. Federal Employer ID No. (FEIN):			
	EQT Production Company				25-0724685		
3. Applicant's mai	ling address:	4	4. Applicant's physical address:				
625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222			Traveling North on Route 19 (Grove Summers Road), turn left in Summers, WV onto Sugar Run. Continue for 1.83 miles and at the fork turn left Summers Rd Brushy Fork. Travel a little over a mile and take the unnamed road on the left to the site. The facility is located alongside this unnamed road.				
5. If applicant is a	subsidiary corporation, please provide the name of	parent o	irent corporation:				
- IF YE	 REGISTRATION. Is the applicant a resident of the S, provide a copy of the Certificate of Incorporatio amendments or other Business Registration Cer D, provide a copy of the Certificate of Authority / A amendments or other Business Certificate as At 	n/ Orga tificate a uthority	nization / Limi as Attachmen y of LLC / Reg	- ited Partnersh t A.			
	SECTION II. F			ΓΙΟΝ			
7. Type of plant or facility (stationary source) to be constructed, modified, relocated or administratively updated (e.g., coal			8a. Standard Industrial AND 8b. North American Industry Classification				
preparation plant, primary crusher, etc.): Class II Oil and Natural Gas Production Facility			fication (SIC) c	ode: 1311	System (NAICS) cod	e: 211111	
9. DAQ Plant ID No. (for existing facilities only):			10. List all current 45CSR13 and other General Permit numbers associated with this process (for existing facilities only):				
N/A		Ν/Α					

A: PRIMARY OPERATING SITE INFORMATION								
11A. Facility name of primary operating site:	12A. Address of primary operating site:							
OXF-163 Natural Gas Production Facility	Mailing: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222							
	Physical:							
13A. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? ☑ YES □ NO - IF YES, please explain: The applicant leases the proposed site. □ NO								
- IF NO , YOU ARE NOT ELIGIE	BLE FOR A PERMIT FOR THIS SOURCE.							
 14A. For Modifications or Administrative Updates at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F. Traveling North on Route 19 (Grove Summers Road), turn left in Summers, WV onto Sugar Run. Continue for 1.83 miles and at the fork turn left Summers Rd Brushy Fork. Travel a little over a mile and take the unnamed road on the left to the site. 								
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:						
West Union, WV Ritchie Northing (KM): 513.59 Easting (KM): 4,331.88 Zone: 17								
18A. Briefly describe the proposed new operation or change (s) to the facility: 19A. Latitude & Longitude Coordinates (NAD83,								
The OXF-163 Natural Gas Production Facility w	Decimal Degrees to 5 digits):							
be in production in October 2015.	be in production in October 2015. Latitude: 39.13602 Longitude: -80.84274							

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B: PROCESS DESCRIPTION
- ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D: PROCESS FLOW DIAGRAM
- ATTACHMENT E: PLOT PLAN
- ATTACHMENT F: AREA MAP

X ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM

ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS

ATTACHMENT I: EMISSIONS CALCULATIONS

ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT K: ELECTRONIC SUBMITTAL (not applicable)

☑ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE

ATTACHMENT M: SITING CRITERIA WAIVER (not applicable)

ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (not applicable)

ATTACHMENT O: EMISSIONS SUMMARY SHEETS

OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV.	CERTIFICATION OF INFORMATION
	CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.
FOR A CORPORATION (domestic or foreign) I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation
FOR A PARTNERSHIP I certify that I am a General Partner
FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager
FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors
FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor
I hereby certify that (please print or type) <u>Kenneth Kirk</u> is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,
I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.
Signature 4/18/15 (please use blue ink) Responsible Official Date
Name & Title Kenneth Kirk, Executive Vice President
Signature
Applicant's Name R. Alex Bosiljevac, Environmental Coordinator
Phone & Fax
Email abosiljevac@eqt.com

Attachment A

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment B

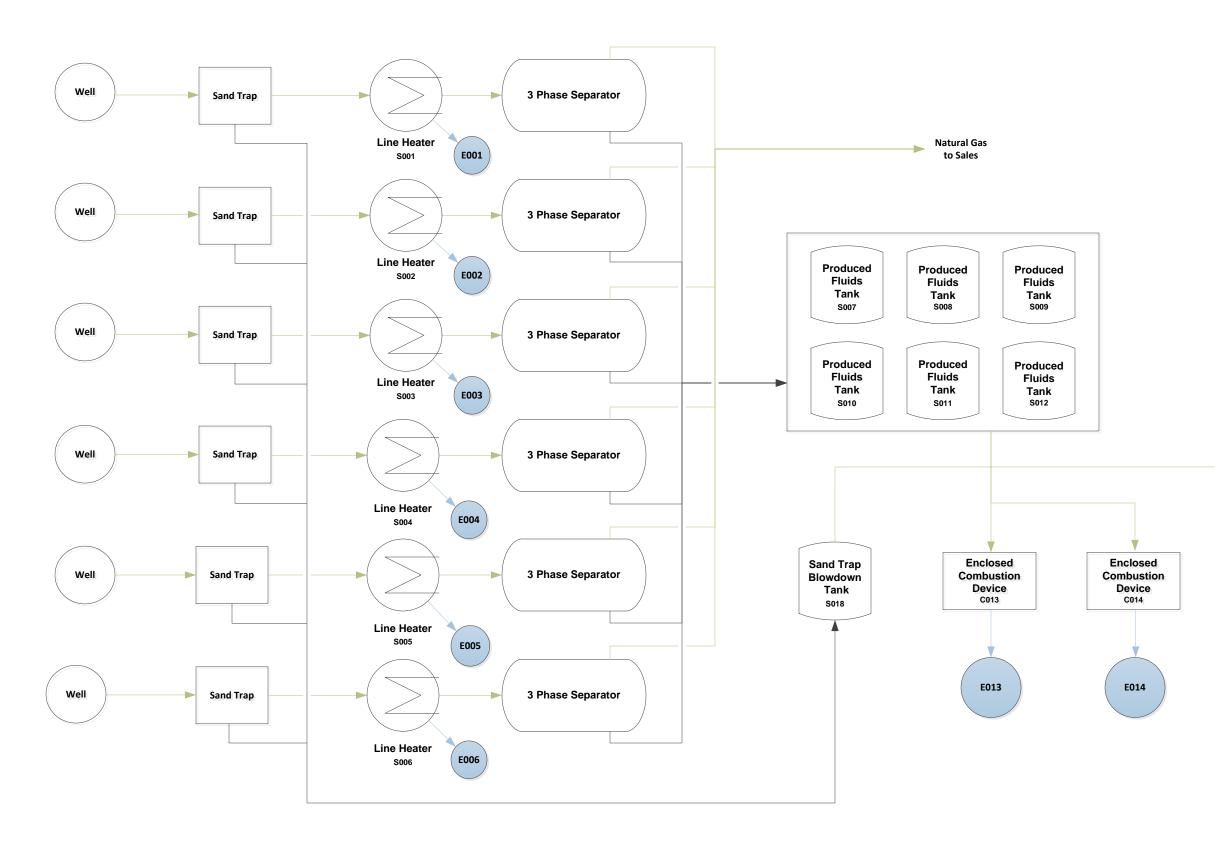
Attachment B Process Description

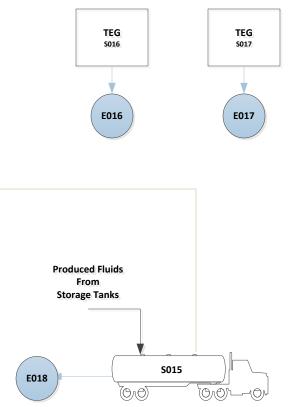
This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF-163 natural gas production site. Incoming raw natural gas from the six (6) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blowdown to the sand trap blowdown tank (S018), as needed. From the sand traps, raw gas is routed through line heaters (S001-S006) to assist with the phase separation process in the downstream three-phase separators. In the separator, produced fluids are removed from the raw gas and transferred to the produced fluids storage tanks (S007-S012). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C013, C014) and burnt. Produced fluids are pumped into a tank truck (S015) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

Two thermoelectric generation units (S016, S017) are operated and provide power to the OXF-163 natural gas production site.

A process flow diagram is included as Attachment D.

Attachment C

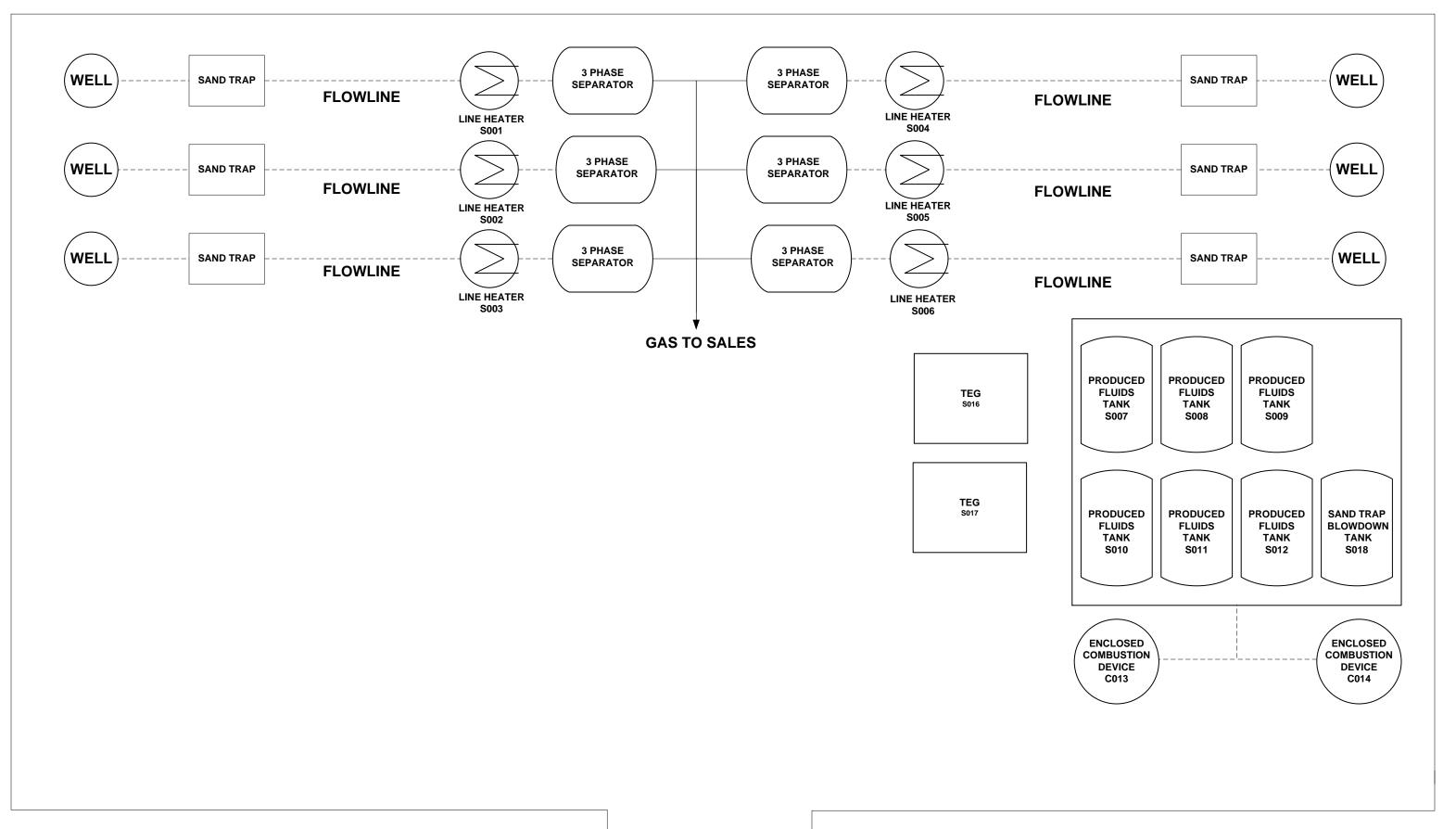

Attachment C


G70-A General Permit Description of Fugitive Emissions

This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF-163 natural gas production site. Fugitive emissions on the site are generated from a number of sources, including an unpaved haul road and equipment leaks. These fugitive emission sources cannot be controlled by air pollution control devices. Emission levels for fugitive emissions were calculated using AP-42 emission factors, results of a gas analysis, and 40 CFR 98 Subpart W factors and equipment counts. A summary of the fugitive emissions on the OXF-163 natural gas production site can be found in Attachment O – Emissions Summary Sheet.

Attachment D

Attachment D OFX 163 Natural Gas Production Process Flow Diagram


Emission Point	
Gas Flow	
Condensate Flow	
Vent Streams	>

Attachment E

Attachment E

Plot Plan


EQT OXF 163 Natural Gas Production Site

TRUCK ENTRANCE

Attachment F

Attachment G

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	\boxtimes
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glyco	ol
	Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants	
	for Stationary Reciprocating Internal Combustion Engines	
	(40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	

* Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹			mission Unit Description Year Design Installed/ Capacity Modified		Type ³ and Date of Change	Control Device ⁴
S001	E001	Line Heater	2015	1.54 mmBtu/hr	New	NA
S002	E002	Line Heater	2015	1.54 mmBtu/hr	New	NA
S003	E003	Line Heater	2015	1.54 mmBtu/hr	New	NA
S004	E004	Line Heater	2015	1.54 mmBtu/hr	New	NA
S005	E005	Line Heater	2015	1.54 mmBtu/hr	New	NA
S006	E006	Line Heater	2015	1.54 mmBtu/hr	New	NA
S007	E013 E014	Produced Fluid Tank	2015	400 bbl	New	C013 C014
S008	E013 E014	Produced Fluid Tank	2015	400 bbl	New	C013 C014
S009	E013 E014	Produced Fluid Tank	2015	400 bbl	New	C013 C014
S010	E013 E014	Produced Fluid Tank	2015	400 bbl	New	C013 C014
S011	E013 E014	Produced Fluid Tank	2015	400 bbl	New	C013 C014
S012	E013 E014	Produced Fluid Tank 2015 400 bbl		400 bbl	New	C013 C014
C013	E013	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
C014	E014	Enclosed Combustion Device	2015	11.66 mmBtu/hr	New	NA
S015	E013 E014 E018	E014 Tank Truck Loading Rack		55,640 gal/day	New	NA
S016	E016	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA
S017	E017	Thermal Electric Generator	2015	0.013 mmBtu/hr	New	NA
S018	E013 E014	Sand Trap Blow Tank	2015	100 bbl	New	C013 C014

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E,

³New, modification,

4

... or other appropriate designation. removal

For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

Attachment G Emission Source Data Sheets NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at							
this facility:							
API Number							
TBD							
TBD							
TBD							
TBD							
TBD							
TBD							

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code.$ The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001 = Well number. Each well will have a unique well number.

Attachment G Emission Source Data Sheets STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name						
OXF-163 Storage Tank Area	Produced Fluid Tanks (S007-S012)						
3. Emission Unit ID number	4. Emission Point ID number						
S007-S012	E013 or E014						
5. Date Installed or Modified (for existing tanks)	6. Type of change:						
10/1/2015 (anticipated)	\boxtimes New construction \square New stored material \square						
	Other						
7A. Description of Tank Modification (if applicable): NA							
7B. Will more than one material be stored in this tank? If	so, a separate form must be completed for each material.						
\Box Yes \boxtimes No							
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.) NA							

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the i	nternal cross-sectional area multiplied by internal height.						
16,800 gallons							
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20						
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10						
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10						
12. Nominal Capacity (specify barrels or gallons). This i	s also known as "working volume. 16,800 gallons						
13A. Maximum annual throughput (gal/yr) 20,002,584	13B. Maximum daily throughput (gal/day) 54,801						
14. Number of tank turnovers per year 1,191	15. Maximum tank fill rate (gal/min) 38.06						
16. Tank fill method 🛛 Submerged 🗌 Splash	Bottom Loading						
17. Is the tank system a variable vapor space system?	Yes 🛛 No						
If yes, (A) What is the volume expansion capacity of the system (gal)?							
(B) What are the number of transfers into the system	(B) What are the number of transfers into the system per year?						
18. Type of tank (check all that apply):							
Fixed Roof <u>X</u> vertical horizontal	flat roof $\underline{\mathbf{X}}$ cone roof dome roof other						
(describe)							
External Floating Roof pontoon roof	_ double deck roof						
Domed External (or Covered) Floating Roof							
Internal Floating Roof vertical column support self-supporting							
Variable Vapor Space lifter roof diaphragm							
Pressurized spherical cy	lindrical						
Underground							
Other (describe)							

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

\boxtimes	Refer to	the re	esponses t	to items	19 -	26 iı	1 section	VII
-------------	----------	--------	------------	----------	------	-------	-----------	-----

IV. SITE INFORMAT	TION (c)	heck whi	ch one a _l	oplies)						
Refer to enclosed TA	ANKS S	ummary	Sheets							
Refer to the respon	ises to it	ems 27 -	- 33 in se	ction VI	I					
V. LIQUID INFORM				applies)						
Refer to enclosed T		-			r					
Refer to the respon	ises to it	ems 34 -	- 39 in se	ction VI	1					
VI. EMISSIONS AND 40. Emission Control D					equired)				
Does Not Apply					-	e Disc (ps				
\Box Carbon Adsorption ¹						s Blanket			_	
Vent to Vapor Com	bustion l	Device ¹ (vapor co							
Condenser ¹						ation Ven				
\Box Other ¹ (describe)				_		Setting		ssure Sett	ing	
1	Emergency Relief Valve (psig)									
¹ Complete appropriate										
41. Expected Emission								ne applica		
Material Name and	Flashi	ng	Breath	ing	Work	ing Loss	Total		Estimation	
CAS No.	Loss		Loss	SS		Emissions Loss		Method ¹		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr tpy			
		1.		1.		ed in Atta		1.		
			+	-						
1	1	1	1	1	1	1		1		

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION						
19. Tank Shell Construction:						
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets						
20A. Shell Color: Green	20B. Roof Color: Green	20C. Year Last Painted: NA				
21. Shell Condition (if metal and unlined):						

No Rust Light Rust Dense Rust Not applicable							
22A. Is the tank heated? Yes 22B. If yes, operating temperature: 22C. If yes, how is heat				s, how is heat prov	vided to		
🖾 No			tank?				
23. Operating Pressure Range (psig): -0.05 oz. to 10 oz.							
24. Is the tank a Vertical Fi	xed 24A. If yes,	24A. If yes, for dome roof provide 24B. If yes, for cone roof					
Roof Tank?	radius (ft): N	A	slop (ft/ft):	0.06 ft/ft			
Yes No							
25. Complete item 25 for F	oating Roof Tanks 🗌	Does not apply 🛛					
25A. Year Internal Floaters							
25B. Primary Seal Type (ch				ounted resilient se	eal		
			Other (descril	be):			
25C. Is the Floating Roof ed)				
25D. If yes, how is the seco	•] Rim 🗌	Other (describe)):		
25E. Is the floating roof equ	ipped with a weather shi	eld? Yes	No				
25F. Describe deck fittings:							
26. Complete the following		•	🛛 Does not	11.0			
26A. Deck Type: 🗌 Bo	lted 🗌 Welded	26B. For bolted d	ecks, provide	e deck constructio	n:		
26C. Deck seam. Continuo	us sheet construction:						
\Box 5 ft. wide \Box 6 ft. wide		x 7.5 ft. wide \Box 5 x 12		other (describe)			
26D. Deck seam length	26E. Area of deck (ft^2)	26F. For column	2	CG. For column			
(ft.):		supported tanks, #		upported tanks, di	iameter		
	columns:		0	of column:			
SITE INFORMATION:							
27. Provide the city and stat							
28. Daily Avg. Ambient Ter	-	-	29. Annual Avg. Maximum Temperature (°F): 65.5 °F				
30. Annual Avg. Minimum	-		-	-			
32. Annual Avg. Solar Insul	ation Factor (BTU/ft ² -da	y): 33. Atmospheric	Pressure (psia	a): 14.70			
1,123							
LIQUID INFORMATION: Refer to ProMax Simulation Sheets in Attachment I.							

Attachment G Emission Source Data Sheets STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
OXF-163 Storage Tank Area	Sand Trap Blowdown Tank				
3. Emission Unit ID number	4. Emission Point ID number				
S018	E013 or E014				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
10/1/2015 (anticipated)	\boxtimes New construction \square New stored material \square				
	Other				
7A. Description of Tank Modification (<i>if applicable</i>): NA					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.					
\Box Yes \boxtimes No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.) NA					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the i	nternal cross-sectional area multiplied by internal height.				
16,800 gallons					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10				
12. Nominal Capacity (specify barrels or gallons). This i	s also known as "working volume. 5,800 gallons				
13A. Maximum annual throughput (gal/yr) 305,760	13B. Maximum daily throughput (gal/day) 838				
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 14				
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system?	Yes 🛛 No				
If yes, (A) What is the volume expansion capacity of the s	ystem (gal)?				
(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):					
Fixed Roof vertical <u>X_horizontal</u>	flat roof cone roof dome roof other				
(describe)					
External Floating Roof pontoon roof	_ double deck roof				
Domed External (or Covered) Floating Roof					
Internal Floating Roof vertical column support self-supporting					
Variable Vapor Space lifter roof diaphragm					
Pressurized spherical cy	lindrical				
Underground					
Other (describe)					

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

	1011 (0	heck whi	in one up	prices)					
Refer to enclosed TA	ANKS S	ummary	Sheets						
⊠ Refer to the responses to items 27 – 33 in section VII									
V. LIQUID INFORM				applies)					
Refer to enclosed TA	ANKS S	ummary	Sheets						
Refer to the respon	ses to it	ems 34 -	- 39 in se	ction VI	I				
VI. EMISSIONS AND	CONT	ROL DE	VICE D	ATA (re	equired)			
40. Emission Control D	evices (check as	many as	apply):					
Does Not Apply					-	e Disc (ps			
\Box Carbon Adsorption ¹						s Blanket			_
Vent to Vapor Com	oustion	Device ¹ (vapor co						
Condenser ¹						vation Ven			
\Box Other ¹ (describe)						Setting		ssure Sett	ting
					-	ency Relie	f Valve	(psig)	
¹ Complete appropriate A									
41. Expected Emission	Rate (su	bmit Tes					here in tl	ne applica	
Material Name and	Flashi	ing	Breath	ing	Work	ing Loss	Total		Estimation
CAS No.	Loss		Loss				Emissi	ons	Method ¹
				-			Loss		_
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr tpy		
	Please Refer to Calculations Provided in Attachment I.								
			r to Cal	culations	Provid		chment		
			r to Cald	culations	Provid		chment		
			r to Cali	culations	Provid		chment		
				culations	Provid		chment		
				culations	Provid		chment		
					Provid		chment		
					Provid		chment		
					Provid		chment		
					Provid		chment		
					Provid		chment		
					Provid		chment		
					Provid		chment		

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION						
19. Tank Shell Construction:						
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☑ Other WELDED						
20A. Shell Color: Green20B. Roof Color: Green20C. Year Last Painted: NA						
21. Shell Condition (if metal and unlined):						

No Rust Light Rust Dense Rust Not applicable							
22A. Is the tank heated?	te tank heated? Yes 22B. If yes, operating temper			yes, how is heat provided to			
🖾 No			tank?				
23. Operating Pressure Range (psig): -0.5 oz. to 10 oz.							
24. Is the tank a Vertical Fi	xed 24A. If yes, fo	24A. If yes, for dome roof provide 24B. If yes, for cone roof, p					
Roof Tank?	radius (ft): 5 ft.		slop (ft/f	t): NA			
Yes No							
25. Complete item 25 for F	oating Roof Tanks 🗌	Does not apply 🛛					
25A. Year Internal Floaters							
25B. Primary Seal Type (ch			— ·	mounted resilient seal			
	Vapor mounted	resilient seal	Other (des	cribe):			
25C. Is the Floating Roof ed)				
25D. If yes, how is the seco	•] Rim	Other (describe):			
25E. Is the floating roof equ	ipped with a weather shiel	d? Yes	No				
25F. Describe deck fittings:							
26. Complete the following		•	🛛 Does r	11.0			
26A. Deck Type: Bo	lted Velded	26B. For bolted d	ecks, prov	ide deck construction:			
26C. Deck seam. Continuo	us sheet construction:						
\Box 5 ft. wide \Box 6 ft. wide		$1.5 \text{ ft. wide } \boxed{5 \text{ x } 12}$	ft. wide	other (describe)			
26D. Deck seam length	26E. Area of deck (ft^2):	26F. For column		26G. For column			
(ft.):		supported tanks, #	of	supported tanks, diameter			
		columns:		of column:			
SITE INFORMATION:							
27. Provide the city and stat		section are based: Cha	arleston, V	WV			
28. Daily Avg. Ambient Ter		-		Temperature (°F): 65.5 °			
30. Annual Avg. Minimum	-		-				
32. Annual Avg. Solar Insul	lation Factor (BTU/ft ² -day)	: 33. Atmospheric	Pressure (p	osia): 14.70			
1,123							
LIQUID INFORMATION: Refer to ProMax Simulation Sheets in Attachment I.							

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
S001	E001	Line Heater	2015	New	NA	1.54	1,088
S002	E002	Line Heater	2015	New	NA	1.54	1,088
S003	E003	Line Heater	2015	New	NA	1.54	1,088
S004	E004	Line Heater	2015	New	NA	1.54	1,088
S005	E005	Line Heater	2015	New	NA	1.54	1,088
S006	E006	Line Heater	2015	New	NA	1.54	1,088
S016	E016	TEG	2015	New	NA	0.013	1,088
S017	E017	TEG	2015	New	NA	0.013	1,088

Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:	S018	2. Emissio	n Point ID: E)13/E014	3. Year Instal	lled/ Modified: 2015
4. Emission Unit Des	cription: Tank	Truck Load	ling Rack			
	_					
5. Loading Area Data						
5A. Number of pump	A. Number of pumps: 15B. Number of liquids loaded:15C. Maximum number of tank trucks loading at one					
6. Describe cleaning	location, compo	ounds and pro	ocedure for tar	nk trucks:		
NA						
7. Are tank trucks pre	essure tested for	leaks at this	or any other l	ocation?		
Yes No						
If YES, describe:						
NA						
8. Projected Maximu	m Operating Sc	hedule (for r	ack or transfer	point as a	whole):	
Maximum	Jan Mar.	Ар	r June		Sept.	Oct Dec.
hours/day	As needed	As	needed	As no	eeded	As needed
days/week	As needed	As	needed	As no	eded	As needed
9. Bulk Liquid Data (a	dd pages as nece	ssary):				
Liquid Name				P	roduced Fluids	
Max. daily throughput	(1000 gal/day)				55.64	
Max. annual throughpu	t (1000 gal/yr)				20,308.3	
Loading Method ¹					SP	
Max. Fill Rate (gal/min					42	
Average Fill Time (min	-				100 min	
Max. Bulk Liquid Tem	perature (°F)				70 °F	
True Vapor Pressure ²					NA	
Cargo Vessel Condition	n ³				U	
Control Equipment or M	Control Equipment or Method ⁴ Enclosed Combustion Device					Device

* Continued on next page

(C013 or C014)

70 %

98 %

Minimum collection efficiency (%)

Minimum control efficiency (%)

Attachment G Emission Source Data Sheets

		Source Data Officers						
Maximum Emission Rate	Loading (lb/hr)	0.05						
	Annual (ton/yr)	0.21						
Estimation Method	d ⁵	EPA AP-42, ProMax						
Notes:								
1 BF = Bottom Fill	SP = Splash Fill SUB = Submer	ged Fill						
² At maximum bulk								
${}^{3}B = Ballasted Vesse$	C = Cleaned, U = Uncleaned (dedicated)	ted service), $O = other (describe)$						
		r Pollution Control Device Sheets as Attachment "H"):						
CA = Carbon Adsor		,						
	oor Balance (closed system)							
ECD = Enclosed Co	ombustion Device							
F = Flare								
TO = Thermal Oxida								
5 EPA = EPA Emiss	ion Factor as stated in AP-42							
MB = Material Bal								
TM = Test Measur	ement based upon test data submittal							
O = other (describe)	e)							
and ranges that a demonstrate compl equipment operation EQT will comp	lease list and describe the process pa ure proposed to be monitored in a iance with the operation of this /air pollution control device. ly with all monitoring require permit that is issued.	order to process EQT will comply with all recordkeeping requirements set forth in the permit that is issued.						
REPORTING Plea of the recordkeeping	use describe the proposed frequency of r	reporting TESTING Please describe any proposed emissions testing for this process equipment/air pollution control device.						
	oly with all reporting require permit that is issued.	EQT will comply with all testing requirements se forth in the permit that is issued.						
11. Describe all o	perating ranges and maintenance pr	ocedures required by Manufacturer to maintain warranty:						

Attachment G Emission Source Data Sheets LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴	
Pumps⁵	light liquid VOC ^{6,7}					
	heavy liquid VOC ⁸					
	Non-VOC ⁹					
Valves ¹⁰	Gas VOC	222	N/A	N/A	561.60	
	Light Liquid VOC					
	Heavy Liquid VOC					
	Non-VOC					
Safety Relief Valves ¹¹	Gas VOC	6	N/A	N/A	22.49	
	Non VOC					
Open-ended Lines ¹²	VOC	15	N/A	N/A	85.73	
	Non-VOC					
Sampling Connections ¹³	VOC					
	Non-VOC					
Compressors	VOC					
	Non-VOC					
Flanges	VOC	969	N/A	N/A	272.37	
	Non-VOC					
Other	VOC					
	Non-VOC					

¹⁻¹³ See notes on the following page.

Attachment G

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

-						PM		PM-10			
k =	Particle size multiplier					4.9		1.5			
s =	Silt content of road surface m	naterial (%)				4.8		4.8			
p =	Number of days per year with	n precipitati	in.		150		150				
ltem Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		
1	Liquids Hauling	14	30	10	0.72	1	4,835	5 NA	NA		
2	Employee Vehicles	4	3	10	0.72	1	200	NA	NA		
3											
4											

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT)

Where:

		Р	Μ	PM-10			
k =	Particle size multiplier	4	.9	1.5			
s =	Silt content of road surface material (%)	4	.8	4.8			
S =	Mean vehicle speed (mph)	1	0	10			
W =	Mean vehicle weight (tons)	30	3	30	3		
w =	Mean number of wheels per vehicle	14 4		14	4		
p =	Number of days per year with precipitation >0.01 in.	1	50	1:	150		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] =$ lb/hr

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

		Р	Μ			PM-10						
Item No.	Uncor	trolled	Cont	rolled	Uncor	ntrolled	-10 Controlled lb/hr TPY 0.79 1.91 0.28 0.03 most recently See Attachment I for					
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY				
1	3.10	7.49	3.10	7.49	0.79	1.91	0.79	1.91				
2	1.10	0.11	1.10	0.11 0.28		0.03	0.28	0.03				
3												
4												
5	Note: AP-4	2 has been u	updated sind	e the last re	vision of thi	is form. The	most recent	lv				
6	published f	actors were	used in pre	paring these								
7	detailed ca	Iculation me	thodologies	.								
8												
TOTALS:	4.20	7.60	4.20	7.60	1.07	1.94	1.07	1.94				

SUMMARY OF UNPAVED HAULROAD EMISSIONS

Attachment H

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

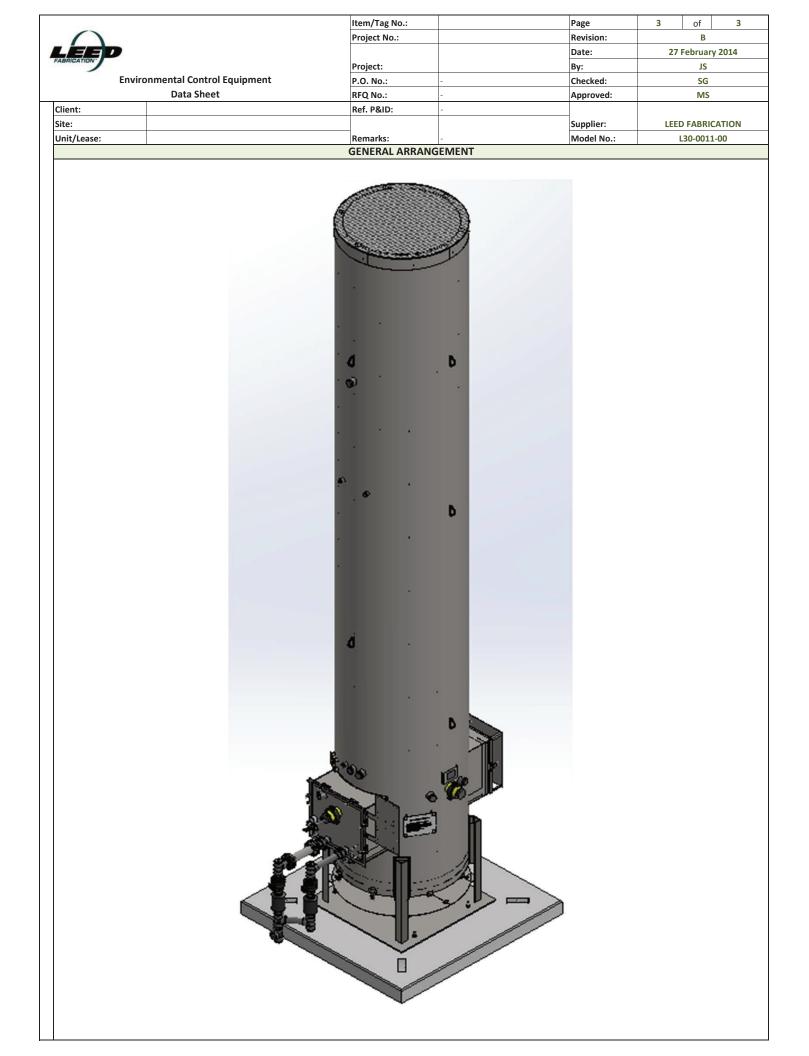
IMPORTANT: READ THE	INSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.			
		General Ir	nformation						
1. Control Device ID#: C013			2. Installation Dat	te: 2015		🛛 New			
3. Maximum Rated Total Flow ~7,800 scfh 188,000		4. Maximum D 11.66 MMB	esign Heat Input: tu/hr	5. Design 1,088	Heat Co BTU/scf				
		Control Devi	ice Information						
6. Select the type			vice being used: 🔀	Enclosed C Completion C					
7. Manufacturer: LEED Fabrication 8. Hours of operation per year: Model No.: Enclosed Combustor 48" 8,760									
9. List the emission units whose emissions are controlled by this vapor combustion control device: Emission Units: S007-S012, S015, S018									
10. Emission Unit ID#	Emission So	urce Description:	Emission Unit ID# Emission Source Description:						
S007-S012		l Fluid Tanks	S015		Tank Truck Loading Rack				
S018	Sand Trap I	Blowdown Tank							
If this vapor combusto	or controls emi	ssions from more	than six emission u	nits, please at	tach ada	litional pages.			
11. Ass	ist Type		12. Flare Height	13. Tip Di	ameter	14. Was the design per §60.18?			
Steam - Air - H	Pressure - 🛛	Non -	~25 ft	4 ft		□Yes □No NA			
		Waste Gas	Information						
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions stre			Exit Velocity of the ssions stream (ft/s)			
266.89 lb/hr	Va	riable	70						
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	ırned.					

Pilot Information											
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	22. Fuel flow rate to pilot flame per pilot 23. Heat input per pilot (BTU/hr):								
Pipeline quality Natural Gas	1	~30	0.03 MMBtu/hr	🗌 Yes 🛛 No							
25. If automatic re-ignition will be used, describe the method: N/A											
26. Describe the met	thod of controlling flame:										
	There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.										
27. Is pilot flame equipped with a monitor to detect the presence of the flame? 28. If yes, what type? ☐ Thermocouple ☐ Infra-Red ☐ Ultra Viole ☐ Camera with monitoring control room ☐ Other, describe:											

29. Pollutant(s) Controlled	30. % Capture Efficiency	31. Manufacturer's Guaranteed Control Efficiency (%)								
HC	100	>98								
VOC	100	>98								
НАР	100	>98								
32. Has the control device been tested by the manufacturer and certified?										
Yes – pending certification from EPA										
33. Describe all operating ranges and maintenance pr	rocedures required by the manufact	urer to maintain warranty:								
See Attached										
34. Additional Information Attached? YES										
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.										

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.


IMPORTANT: READ THE	INSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.			
		General Ir	nformation						
1. Control Device ID#: C014			2. Installation Dat	e: 2015		🛛 New			
3. Maximum Rated Total Flow ~7,800 scfh 188,000		4. Maximum D 11.66 MMB	esign Heat Input: tu/br	5. Design	Heat Co BTU/scf				
7,000 Selli 100,000	seru	11.00 101010	tu/m	1,000	DI U/SCI				
		Control Devi	ce Information						
6. Select the type	of vapor com	oustion control de	vice being used: 🛛	Enclosed C	ombustio	on Device			
Elevated Flare	e 🗌 Ground H	Flare 🗌 Thern	nal Oxidizer 🔲 🛛	Completion C	ombusti	on Device			
7. Manufacturer: LEED Fabrication 8. Hours of operation per year: Model No.: Enclosed Combustor 48" 8,760									
9. List the emission units whose emissions are controlled by this vapor combustion control device: Emission Units: S007-S012, S015, S018									
10. Emission Unit ID#	Emission So	urce Description:	Emission Unit ID# Emission Source Description:						
S007-S012		l Fluid Tanks	S015		Tank Truck Loading Rack				
S018	-	Blowdown Tank							
If this vapor combusto	or controls emi	ssions from more	than six emission u	nits, please at	tach ada	litional pages.			
11. Ass	ist Type		12. Flare Height	13. Tip Dia	ameter	14. Was the design per §60.18?			
Steam - Air - H	Pressure - 🛛	Non -	~25 ft	4 ft		□Yes □No NA			
			Information	6.1	10				
15. Maximum waste gas flow rate (scfm):		ue of waste gas (BTU/ft3)	17. Temperatu emissions strea			Exit Velocity of the ssions stream (ft/s)			
266.89 lb/hr	Va	riable	70						
19. Provide an attachment with	the character	istics of the waste	gas stream to be bu	rned.					

Pilot Information											
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	22. Fuel flow rate to pilot flame per pilot 23. Heat input per pilot (BTU/hr):								
Pipeline quality Natural Gas	1	~30	0.03 MMBtu/hr	🗌 Yes 🛛 No							
25. If automatic re-ignition will be used, describe the method: N/A											
26. Describe the met	thod of controlling flame:										
	There are 3 flame cells to stop the main flame front and two (2) 2" flame arrestors on the piping from the drip pot to the burner assembly.										
27. Is pilot flame equipped with a monitor to detect the presence of the flame? 28. If yes, what type? ☐ Thermocouple ☐ Infra-Red ☐ Ultra Viole ☐ Camera with monitoring control room ☐ Other, describe:											

29. Pollutant(s) Controlled	30. % Capture Efficiency	31. Manufacturer's Guaranteed Control Efficiency (%)								
HC	100	>98								
VOC	100	>98								
НАР	100	>98								
32. Has the control device been tested by the manufacturer and certified?										
Yes – pending certification from EPA										
33. Describe all operating ranges and maintenance pr	rocedures required by the manufact	urer to maintain warranty:								
See Attached										
34. Additional Information Attached? YES										
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.										

_												L		_		-	
	-							Item/Tag No.	.:				Page		1	of	2
1							Project No.:						Revision:		В		
	LEED												Date:		27 February 2014		2014
1	FABRICATION							Dealert							JS		
								Project:					Ву:			12	
	Enviro	omen	ital (Control Equipme	ent			P.O. No.:		-			Checked:			SG	
1			Dat	a Sheet				RFQ No.:		-			Approved	d:		MS	
F	Client:		-					Ref. P&ID:									
								Ref. P&ID:		-			-				
	Site:								Supp					plier: LEED FABRICATION			
	Unit/Lease:							Remarks:	- Model No.: L30-0011-00						-00		
									NERAL								
	Design Codes							01			lupr				CED Falsaise	tion Cha	a da uda
1	Design Code:										NDE:			LI	EED Fabrica	ation Sta	ndards
2	Service:										Custon	ner Specs:			Yes		
3	Description:			Standard	Dual	Stage 48 H	ligh Effic	iency Combus	tor						✓ No		
-										TA					<u> </u>		
								PROCI	ESS DAT								
	Gas Composition:							nol %	Process	Conditions:							
	das composition.						'	1101 /6		Variable		Valu	e	Units	5		
4	Methane					-				Flow Rate		Up to	140	Mscf	4		
												· ·			-		
5	Ethane									Pressure		Up to	12	oz/in	2		
6	Propane									Temperatur	е			°F			
7	I-Butane								M	olecular Wei	ght	1					
											-				التربيع ال		
8	n-Butane									ess/Waste S		✓ Gas			Liquid		
9	I-Pentane								Detaile	d Process De	scriptio	n / Process N	lotes:				
10	n-Pentane								1. Turno	down 10:1. E	Based or	an expected	normal o	peratin	g rate indic	cated abo	ove.
												esign conditi			-		
11											-	in. 0.10 oz/in					
12	CO2							S. Burn	er Fressure I	210p. IVI		£					
13	N2																
14									1								
									-								
15	H ₂ O								1								
16	C7																
17	C8																
									-								
18	C9																
19	C10																
20	C11+																
					TA1				-								
21				10	TAL												
	Other Components:						-	PPMV	Availab	le Utilities:							
22	H2S								F	uel / Pilot G	as		Min.	30psig	Natural Ga	s /Propa	ne 40-50 SCFH
23	Benzene								1	nstrument A	ir		NA				
												-					
24	Toluene								Power 120			120 \	V / 60 H	z or Solar P	ower		
25	E-Benzene								Steam NA			NA	A				
26	Xylene								Purge Gas								
Ē								DECK	SN DAT	-		1					
						-		DESIC									
27	Ambient Temperatures	s:							Noise P	erformance	Require	ments:			Unde	r 85 dBA	
28			Low,	°F			-20		Structu	ral Design Co	ode:						
29		ł	ligh,	°F			120		Wind D	esign Code:				ASCE			
									ttina D	congri couci					AUCE		
	Design Conditions:		ress	ure/Temperature													
31	Max. Relative Humidity	y, %				<u> </u>	90				Pressu	e/Speed			100 mp	h	
32	Elevation (ASL), ft										Catego	ry					
33							Class I D	iv 2	Seismin	Design Code	-						
									Scianic	Design Cour							
34	Electrical Design Code:	_					NEC		L		Locatio	n					
1							E	QUIPMENT	SPECIF	ICATION							
35	Туре:			Elevated	√ E	inclosed			Equipm	ent Design:							
36			\Box	Above Ground						-	ompone	ont		N/~	terial / Size	a / Ratin	7 / Other
					- •	Authinte Ct	cl.		-		ompone			ivia	cendi / SIZE	- / nating	57 Other
37				Stack	î	Iultiple Sta	CK		Burner								
38				Portable / Trailer						Burner Tip) / Assist	Gas Burner			30	04 SS	
39											urner Bo					on Steel	
40	Smokeless By:			Steam	<u>م</u> ۲	ssist Air			Dilat	D		1			Carb		
	SHIOKEIESS DY.		<u> </u>		_				Pilot								
41				Gas Assist	∕ S	taging					Pilot Tip)			30	04 SS	
42										F	ilot Line	(s)			Carb	on Steel	
43			\checkmark	Self Supporting					Fireboy	/ Stack							
					7 0	mokel		C • · · ·	FILEDOX	JUGLK	<i></i>						
44			\Box	Non-Smokeless	∠_ S	mokeless		Gas Assist	 		Shell					on Steel	
45	Pilot:	\checkmark	Inte	ermittent		Continuc	ous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	\checkmark	Loc	al		Remote					Nozzle	5			Carb	on Steel	-
			No				ermocoup		1								
47	Pilot Flame Control:		UVI		Ľ	1 162 (11)6	imocoup				Flange					on Steel	
48	L				_						Insulatio	n			Bla	anket	
49	Pilot Ignition:		Flai	mefront Generator	\checkmark	Inspirati	ng Ignito	r		Ins	sulation	Pins			30	04 SS	
50			Ele	ctronic		Automat	_	Manual	1		Refracto					NA	
							<u> </u>										
51				h Pilot Flame Cont					 	Refra	actory A	nchors				NA	
52			Wit	h Auto Pilot Re-Igr	nition					Ladde	rs and P	atforms				NA	
53												nnections			Per EPA r	equirem	ents
			M4 -	aual a st		· · · -·									TELEPAT		
54					i.e P	iezo-Electi	ric		I		Sight Gla	SS				2	
55	1		Bat	terv Pack					1		Other						

		Item/Tag	No.:	Page	2	of	3
\cap		Project N		Revision:		В	
LEED				Date:	2	7 Februar	y 2014
FABRICATION		Project:		By:		JS	
Enviror	nmental Control Equipme		_	, Checked:		SG	
	Data Sheet	RFQ No.:	_	Approved:		MS	
Client:		Ref. P&I		, the second			
Site:			•	Supplier:		ED FABRIC	
Unit/Lease:		Remarks	_	Model No.		L30-0011	
Officy Lease.			NT SPECIFICATION	woder wo.	•	130-0011	1-00
Flama Datastian	Thormocouple	✓ Ionization Rod					
Flame Detection:	Thermocouple		Auxiliary Equipment				
Concerned Constitutions	UV Scanner		Valves			NA	
General Configuration:			Blowers			NA	
	Comment	8	Dampers			NA	
			Inlet KO / Liquid Seal			NA	
			Flame / Detonation Arres	tor		Yes	
	•		Instrumentation & Controls				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Solenoids / Shut-Off Valv	res (Check with Sale	es for avail	lable conf
			Flow Meters			NA	
		D	Calorimeter			NA	
			Pressure Switches/Transmit	tters		NA	
			Thermocouples		Check with Sale	es for avail	lable conf
	a		Temperature Switches/Transr	mitters		NA	
			BMS	(Check with Sal	es for avail	lable conf
	tran .		CEMS			NA	
			Other			NA	
			Other			NA	
	S REAL		Other			NA	
			Other			NA	
			Other			NA	
		FABRICATIO	Other			NA	
Special requirements	Skid Mounted	-		Equipment Inf	0	NA	
Special requirements			DN AND INSPECTION	Equipment Infr			ions
Special requirements	Skid Mounted	-	DN AND INSPECTION Component	Equipment Infr		/ Dimensi	ions
	Other	-	DN AND INSPECTION Component Burner	Equipment Infr			ions
Special requirements Inspection	Other Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly	Equipment Infr			ions
Inspection	Other Vendor Standard Other. Specify:	-	DN AND INSPECTION Component Burner Burner Assembly Stack	Equipment Inf	Weight	/ Dimensi	
	○ Other ✓ Vendor Standard ○ Other. Specify: ✓ Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly	Equipment Inf	Weight		
Inspection	○ Other ○ Vendor Standard ○ Other. Specify: ○ Vendor Standard ○ MTR	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip	Equipment Inf	Weight	/ Dimensi	
Inspection	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s)	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	 Other ✓ Vendor Standard Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly	Equipment Infr	Weight	/ Dimensi	
Inspection	○ Other ✓ Vendor Standard ○ Other. Specify: ✓ Vendor Standard ○ MTR ○ Certificate of Com ○ Other (Specify): ✓ Vendor Standard	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	✓ Other ✓ Vendor Standard ✓ Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): ✓ ✓ Vendor Standard Radiography. Specify	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers	Equipment Infr i i i i i i i i i i i i i	Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant.	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles.	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify: Ultrasonic. Specify: Other. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	

Attachment I

Line Heaters S001 - S006

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.008	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.003	0.011
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.001	<0.001
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.12	0.52
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.14	0.62
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.011	0.05
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.001	0.004
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	180.14	789.03
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	0.003	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	<0.001	0.001
Total HAPs							0.003	0.012
Total CO ₂ e							180.33	789.85

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 6 line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Thermoelectric Generators S016 & S017

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.004
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	0.001	0.005
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.001	<0.001
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	1.52	6.66
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.001	<0.001
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.001	<0.001
Total HAPs				L	1	·	<0.001	<0.001
Total CO ₂ e							1.52	6.67

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S007 - S012

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	368.22	1,612.79
Total HAPs	18.23	79.85
Hexane	16.43	71.97
Benzene	0.45	1.98
Toluene	0.93	4.09
Ethylbenzene	0.04	0.16
Xylene	0.33	1.43
CO ₂	1.11	4.87
CH ₄	58.75	257.31
Total CO ₂ e	1,469.75	6,437.51

Notes:

-Emission rates for Produced Fluid Tanks S007 - S012 were calculated using ProMax software. ProMax output sheets for the OXF-163 Pad are attached.

-The emission rates displayed above are pre-control device emissions.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "4" from the ProMax output sheets.

-For emission calculation purposes, the total throughput for tanks S007 - S012 is modeled as being received through a single tank. The throughput value represents the total throughput for all six (6) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S018

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	5.64	24.71
Total HAPs	0.28	1.22
Hexane	0.25	1.10
Benzene	0.007	0.03
Toluene	0.01	0.06
Ethylbenzene	0.001	0.002
Xylene	0.005	0.02
CO ₂	0.02	0.07
CH ₄	0.90	3.94
Total CO ₂ e	22.52	98.63

Notes:

-Blowdown operations are conducted on the OFX 163 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.

-Emissions from the Sand Trap Blow Tank are routed to an enclosed ground flare. The values displayed above a pre-control emission rates.

-Emission rates for the Sand Trap Blow Tank were calculated using ProMax software. ProMax output sheets for the OFX-163 Pad are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Unloading Operations S015

6-

Total Emissions from Tank Unloading Operations

					outing operations				
Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (Ib/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)	Gas
VOCs	0.16	0.71	70%	98%	0.002	0.01	0.05	0.21	Methane
HAPs	<0.001	0.003	70%	98%	<0.001	<0.001	<0.001	<0.001	Ethane
CO ₂	0.001	0.006	70%	98%	0.68	2.97	<0.001	0.002	Propane
CH ₄	0.012	0.05	70%	98%	<0.001	<0.001	0.003	0.015	Butane
Total CO ₂ e	0.29	1.28			0.68	2.99	0.09	0.38	Pentanes
-CO ₂ and CH ₂ emissions solved for usin	a emissions rates (lb/hr) of load out fluids from I	ProMax summary s	sheets					Carbon Di

 $-CO_2$ and CH_4 emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

-Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

Gas Composition of Vent Gas Gas Stream Methane Ethane Propane Butane Pentanes Carbon Dioxide

Vent Gas Properties

Mass Flowrate	Density
(Ib/hr)	(Ib/ft ³)
0.38	0.10

Enclosed Combustion Devices C013 - C014

	Emissions from Tanks						Gas Composition	of Vent Gas	
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (Ibs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	184.11	806.39	98%	3.68	16.13	Methane	0.27	1
Condensate Tanka 2021 - 2011	HAPs	9.12	39.93	98%	0.182	0.80	Ethane	0.22	
Condensate Tanks S021 - S044	CO ₂	0.56	2.43	98%	670.16	2,935.29	Propane	0.19	
	CH ₄	29.37	128.65	98%	0.59	2.57	Butane	0.15	
	VOCs	2.82	12.36	98%	0.06	0.25	Pentanes	0.08	1
Orad Tran Disustant Tark 0047	HAPs	0.14	0.61	98%	0.003	0.01	Carbon Dioxide	0.002	
Sand Trap Blowdown Tank - S017	CO ₂	0.01	0.04	98%	10.27	44.97	Ver	nt Gas Properties	
	CH ₄	0.45	1.97	98%	0.01	0.04	March Oas		
	VOCs	0.08	0.35	98%	0.00	0.00	Vent Gas Properties	Mass Flow Rate (lb/hr)	De
Truck Londing - 2016	HAPs	<0.001	0.001	98%	<0.001	<0.001	Fiopenties	(15/11)	
Truck Loading - S016	CO ₂	<0.001	0.003	98%	0.34	1.48	Condensate Tank	262.86	1
	CH ₄	0.006	0.03	98%	<0.001	<0.001	Blowdown Tank	4.03	
	VOCs	187.01	819.10		3.74	16.38			
Totals	HAPs	9.26	40.54		0.19	0.81	1		
	CO ₂	0.56	2.47		680.76	2,981.74]		
	CH4	29.83	130.65		0.60	2.61			
	CO2e	746.28	3,268.71		695.68	3,047.06]		

Emissions from Pilot Operations

Pollutant	Emission Factor (Ib/10 ⁶ scf)	Emission Factors (kg X/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Plant Max. Hourly Emissions (Ib/yr)	Plant Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (Ib/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.5		1,088	30,000	11,660,000	<0.001	<0.001	0.06	0.26	0.06	0.26
Hexane	1.8		1,088	30,000	11,660,000	<0.001	<0.001	0.02	0.08	0.02	0.08
Formaldehyde	0.075		1,088	30,000	11,660,000	<0.001	<0.001	<0.001	0.004	<0.001	0.004
CO	84		1,088	30,000	11,660,000	0.002	0.01	0.90	3.94	0.90	3.95
NO _x	100		1,088	30,000	11,660,000	0.003	0.01	1.07	4.69	1.07	4.71
PM ₁₀	7.6		1,088	30,000	11,660,000	<0.001	<0.001	0.08	0.36	0.08	0.36
SO ₂	0.6		1,088	30,000	11,660,000	<0.001	<0.001	0.006	0.03	0.006	0.03
CO ₂		52	1,088	30,000	11,660,000	3.44	15.08	1,226.46	5,371.89	1,229.90	5,386.98
CH ₄		0.0	1,088	30,000	11,660,000	<0.001	<0.001	0.02	0.10	0.02	0.10
N ₂ O		<0.001	1,088	30,000	11,660,000	<0.001	<0.001	0.002	0.01	0.002	0.01
Total HAPs						<0.001	<0.001	0.02	0.09	0.02	0.09
CO ₂ e						3.45	15.10	1,227.75	5,377.55	1,231.20	5,392.65

Density (Ib/ft ³)	
0.10	
0.10	

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	3.80	16.64
HAPs	0.21	0.90
CO	0.90	3.95
NOx	1.07	4.71
PM ₁₀	0.08	0.36
SO ₂	0.01	0.03
CO ₂	1,910.67	8,368.71
CH ₄	0.62	2.72
N ₂ O	0.00	0.01
CO ₂ e	1,926.87	8,439.70

Notes:

-Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

-Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr) Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24 Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$E_{a,CH4}(un-combusted) = V_a * (1-\eta) * X_{CH4}$	(Eq.	W-19)
$E_{a,CO2}$ (un-combusted) = $V_a * X_{CO2}$	(Eq.	₩-20)
$E_{a,CO2} (combusted) = \sum_{j=1}^{5} (\eta * V_a * Y_j * R_j)$	(Eq.	₩-21)

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

 η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

 Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

Patricle size multiplier¹

k s p

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	0.72	4,835	NA	3.10	7.49	0.79	1.91	0.08	0.19
2	Employee Vehicles	4	3	0.72	200	NA	1.10	0.11	0.28	0.03	0.03	0.003
						Totals:	4.20	7.60	1.07	1.94	0.11	0.19

Notes:

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (Ib/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Cor	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹											
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relie Valves								
Wellheads	8	38	0.5	0								
Separators	1	6	0	0								
Meters/Piping	12	45	0	0								
Compressors	12	57	0	0								
In-line Heaters	14	65	2	1								
Dehydrators	24	90	2	2								

Well Specific Equipment Counts										
Facility Equipment										
Туре	Count on Site									
Wellheads	6									
Separators	6									
Meters/Piping	7									
Compressors	0									
In-line Heaters	6									
Dehydrators	0									

¹- Table W-1B to 40CFR98 Subpart W

	Gas Composition													
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	4.16	1.71	0.71	0.22	0.14	0.03	0.009	0.41	0.01	0.014	<0.001	0.007	0.19	78.57
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH₄ (Ibs/hr)	CH₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO ₂ e (tons/yr)
Valves	222	0.027	8760	0.06	0.28	0.006	0.03	0.001	0.006	0.20	0.86	4.89	21.41
Connectors	969	0.003	8760	0.03	0.14	0.003	0.01	<0.001	0.003	0.09	0.42	2.37	10.38
Open-ended Lines	15	0.06	8760	0.01	0.04	<0.001	0.004	<0.001	<0.001	0.03	0.13	0.75	3.27
Pressure Relief Valves	6	0.04	8760	0.003	0.01	<0.001	0.001	<0.001	<0.001	0.01	0.03	0.20	0.86
			Total Emissions:	0.11	0.47	0.01	0.04	0.002	0.01	0.33	1.44	8.20	35.92

²- Table W-1A to 40CFR98 Subpart W

Notes:

-Gas Composition data for OXF-163 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

	VC)Cs	H/	APs	C	0	N	IO _x	Р	М	S	0 ₂	C	02	C	H ₄	N	20	C	D ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	<0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
Line Heater (S002)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	< 0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
Line Heater (S003)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	< 0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
Line Heater (S004)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	< 0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
Line Heater (S005)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	< 0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
Line Heater (S006)	0.008	0.03	0.003	0.01	0.12	0.52	0.14	0.62	0.011	0.05	< 0.001	0.004	180.14	789.03	0.003	0.01	< 0.001	0.001	180.33	789.85
TEG (S016)	< 0.001	< 0.001	< 0.001	<0.001	0.001	0.004	0.001	0.005	< 0.001	< 0.001	< 0.001	< 0.001	1.52	6.66	< 0.001	< 0.001	< 0.001	< 0.001	1.52	6.67
TEG (S017)	< 0.001	<0.001	<0.001	<0.001	0.001	0.004	0.001	0.005	<0.001	< 0.001	< 0.001	< 0.001	1.52	6.66	< 0.001	< 0.001	< 0.001	< 0.001	1.52	6.67
Enclosed Combustion Unit (C013)	3.80	16.64	0.21	0.90	0.90	3.95	1.07	4.71	0.08	0.36	0.006	0.03	1,910.67	8,368.71	0.62	2.72	0.002	0.01	1,926.87	8,439.70
Enclosed Combustion Unit (C014)	3.80	16.64	0.21	0.90	0.90	3.95	1.07	4.71	0.08	0.36	0.006	0.03	1,910.67	8,368.71	0.62	2.72	0.002	0.01	1,926.87	8,439.70
Tank Truck Loading Activities (E018)	0.05	0.21	< 0.001	<0.001									< 0.001	0.00	0.003	0.02			0.09	0.38
Haul Roads									4.20	7.60										
Fugitives Leaks	0.11	0.47	0.01	0.04									0.002	0.01	0.33	1.44			8.20	35.92
Totals	7.80	34.17	0.44	1.91	2.52	11.04	3.00	13.14	4.43	8.60	0.02	0.08	4,905.24	21,484.96	1.59	6.97	0.01	0.03	4,947.06	21,668.14

Total OXF 163 Site Emission Levels

-Two enclosed combustion devices are being included in this application. Emissions from the produced fluid tanks, sand trap blowdown tanks, and tank truck loading are routed to either C013 or C014. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C013 and C014 are additive.

	Total	HAPs	Hex	xane	Ben	zene	Tol	uene	Ethylb	enzene	Ху	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S002)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S003)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S004)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S005)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S006)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S016)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S017)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C013)	0.21	0.90	0.19	0.82	<0.01	0.02	<0.01	0.04	<0.01	<0.01	<0.01	0.01
Enclosed Combustion Unit (C014)	0.21	0.90	0.19	0.82	<0.01	0.02	<0.01	0.04	<0.01	<0.01	<0.01	0.01
Tank Truck Loading Activities (E018)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads												
Fugitives Leaks	0.01	0.04	<0.01	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.44	1.91	0.37	1.63	0.00	0.08	0.00	0.08	0.00	0.00	0.00	0.03

Total OXF-163 Site Emission Levels - HAP Speciation

-Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C013 or C014. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C013 and C014 are additive.

		Flowshe Plant Sche		
Client Name:	EQT		Job:	
Location:	OXF 163 100% Contin	ngency		
Flowsheet:	Flowsheet1			
		EQT OXF 163 Well Pad 100% Contingency		
		Temperature 333 psig Pressure 333 psig Std Liquid Volumetric Flow 256.96#/bbl/d Vission Vission Temperature 55' PF Pressure 333' psig Std Liquid Volumetric Flow 1122.6#/bbl/d	3+ Mass Flow =368.1 lb/h 81.2 "F 0 psig umetric Flow 130.4 8 bb/d tric Fraction) 85.6 9 % Tank loss calculations for "5".	
		Note	nd breathing losses from the Vertical Cylinder are 0.2231 lb/h. Loading losses are 0.374 lb/h of loaded liquid.	
		<u>Note</u> Working, Breat	ing and Loading losses include non-VOC components	

Page 1 of 1

		All	Streams Report Streams d by Total Phase			Page For
Client Name:	EQT			Job:		
Location:	OXF 163 100%	Contingency				
Flowsheet:	Flowsheet1					
		Cor	nnections			
		OXF 163 Pad	Produced	3	4	5
Enere Die els		Condensate	Water			
From Block To Block		 MIX-100	 MIX-100	MIX-100 VSSL-100	VSSL-100	VSSL-100
TO BIOCK		MIX-100	INIX-100	V33L-100		
		Stroom	Composition			
		OXF 163 Pad Condensate	Composition Produced Water	3	4	5
Mole Fraction		%	%	%	%	%
Nitrogen		-	* 0 *	• 0	0	0
Methane		12.131	* 0 *	0.392867	27.3861	0.00324517
Carbon Dioxide		0.087		0.00281753	0.188739	0.000133935
Ethane Propane		<u> </u>		* 0.32855 * 0.301896	22.1612 18.5658	0.0134157 0.038275
i-Butane		9.322		0.301896	4.10285	0.038275
n-Butane		6.995		0.226536	10.5718	0.0772116
i-Pentane		3.988		0.129153	3.92655	0.0743411
n-Pentane		5.018		0.16251	4.14567	0.105017
Isohexane		4.263		0.138059	1.84689	0.113394
n-Hexane		4.311		0.139613	1.42619	0.121043
2,2,4-Trimethylpe	entane	0.025		0.000809634	0.00327915	0.000773989
Benzene		0.136		0.00440441	0.0433273	0.0038426
Heptane		<u> </u>	* 0 * * 0 *	0.378617	1.42008 0.0758228	0.363585
Toluene Octane		9.741	* 0*	0.0232203 0.315466	0.393309	0.022461
Ethylbenzene		0.074	-	0.00239652	0.393309	0.00239426
o-Xylene		0.878		0.0284344	0.0229619	0.0285133
Nonane		4.769		0.154446	0.0642891	0.155747
Decane		13.263		0.429527	0.05915	0.434873
Water		0		96.7615	3.59342	98.1063
		OXF 163 Pad	Produced	3	4	5
		Condensate	Water	%	%	
Mass Eraction			0/.			
		%	* 0*			%
Nitrogen		<mark>%</mark>	* 0*	* 0	0	0
Nitrogen Methane		%	* 0*	* 0 * 0.315713	0 11.1731	
Nitrogen Methane Carbon Dioxide		% 0 2.49009 0.0489906 3.90318	* 0 * * 0 * * 0 *	* 0	0	0 0.00264489
Nitrogen Methane Carbon Dioxide Ethane Propane		% 0 2.49009 0.0489906 3.90318 5.25959	* 0 * * 0 * * 0 * * 0 *	* 0 * 0.315713 * 0.00621142 * 0.494876 * 0.666852	0 11.1731 0.211241 16.9467 20.8199	0 0.00264489 0.00029946 0.0204943 0.085745
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane		% 0 2.49009 0.0489906 3.90318 5.25959 1.81906	* 0 * * 0 * * 0 * * 0 * * 0 *	0.315713 0.00621142 0.494876 0.666852 0.230634	0 11.1731 0.211241 16.9467 20.8199 6.06455	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208	* 0 * * 0 * * 0 * * 0 * * 0 * * 0 *	0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156	* 0 * * 0 * * 0 * * 0 * * 0 * * 0 * * 0 *	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241	* 0 * * 0 *	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane		% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395	* 0 * * 0 *	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.595969 0.602679 0.000463276	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345	* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.9891 0.845293	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679 0.00463276 0.0172338 1.90043 0.107173	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.03653955 14.9891 0.845293 14.2372	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679 0.00463276 0.0172338 1.90043 0.107173 1.80511	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 0.0365395 0.135926 14.9891 0.845293 14.2372 0.100522	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.595969 0.602679 0.00463276 0.0172338 1.90043 0.107173 0.80511 0.0012745	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.9891 0.845293 14.2372 0.100522 1.19268	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.595969 0.602679 0.602679 0.00463276 0.1077338 0.107173 0.80511 0.012745 0.0151217	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.0619956	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.9891 0.845293 14.2372 0.100522 1.19268 7.82617	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.602679 0.602679 0.00463276 0.10717338 0.107173 1.80511 0.012745 0.151217 0.992264	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.9891 0.845293 14.2372 0.100522 1.19268 7.82617 24.1456	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679 0.00463276 0.1077338 1.90043 0.107745 0.012745 0.151217 0.992264 3.06137	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693 0.21403	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483 3.14347
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.9891 0.845293 14.2372 0.100522 1.19268 7.82617 24.1456	* 0 * 0	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.602679 0.602679 0.00463276 0.10717338 0.107173 1.80511 0.012745 0.151217 0.992264	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483
Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Butane i-Pentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.2372 0.100522 1.19268 7.82617 24.1456 0 0 0XF 163 Pad Condensate	* 0 * <td>0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.595569 0.602679 0.00463276 0.0172338 1.90043 0.107173 1.80511 0.012745 0.151217 0.992264 3.06137</td> <td>0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693 0.21403 1.64634 4</td> <td>0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483 3.14347 89.7916</td>	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.595569 0.602679 0.00463276 0.0172338 1.90043 0.107173 1.80511 0.012745 0.151217 0.992264 3.06137	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693 0.21403 1.64634 4	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483 3.14347 89.7916
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	% 0 2.49009 0.0489906 3.90318 5.25959 1.81906 5.20208 3.68156 4.63241 4.70052 4.75345 0.0365395 0.135926 14.2372 0.100522 1.19268 7.82617 24.1456 0 0 0XF 163 Pad Condensate lb/h	* 0 * <td>0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679 0.00463276 0.10717338 1.90043 0.107173 1.80511 0.012745 0.151217 0.992264 3.06137 87.3212</td> <td>0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693 0.21403 1.64634</td> <td>0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483 3.14347 89.7916</td>	0 0.315713 0.00621142 0.494876 0.666852 0.230634 0.659561 0.466777 0.587334 0.595969 0.602679 0.00463276 0.10717338 1.90043 0.107173 1.80511 0.012745 0.151217 0.992264 3.06137 87.3212	0 11.1731 0.211241 16.9467 20.8199 6.06455 15.6265 7.20461 7.60667 4.04757 3.1256 0.00952592 0.0860695 3.61877 0.177669 1.14256 0.00689204 0.00619956 0.209693 0.21403 1.64634	0 0.00264489 0.00029946 0.0204943 0.085745 0.0624151 0.227994 0.272494 0.384933 0.496443 0.529932 0.00449167 0.0152489 1.85089 0.10514 1.82421 0.0129137 0.15379 1.01483 3.14347 89.7916

E

			All St	eams Report reams _{y Total Phase}			
Client Name:	EQT				Job:	Į	
Location:	OXF 163 100%	Contingency					
Flowsheet:	Flowsheet1	<u> </u>					
	•				•		
Mass Flow			OXF 163 Pad Condensate Ib/h	Produced Water Ib/h	3 Ib/h	4 Ib/h	5 Ib/h
Carbon Dioxide			1.16513 *	0 *	1.16513	1.11053	0.054598
Ethane			92.8281 *	0 *	92.8281	89.0916	3.73654
Propane			125.087 *	0 *	125.087	109.454	15.6331
i-Butane			43.262 *	0 *	43.262	31.8824	11.3796
n-Butane			123.719 *	0 *	123.719	82.1513	41.5681
i-Pentane			87.5573 *	0 *	87.5573	37.8759	49.6814
n-Pentane			110.171 *	0 *	110.171	39.9896	70.1815
Isohexane			111.791 *	0 *	111.791	21.2788	90.5121
n-Hexane			113.05 *	0 *	113.05	16.4318	96.6178
2,2,4-Trimethylpenta	ane		0.869006 *	0 *	0.869006	0.0500794	0.818926
Benzene			3.23269 *	0 *	3.23269	0.452482	2.78021
Heptane			356.481 *	0 *	356.481	19.0245	337.456
Toluene			20.1033 *	0 *	20.1033	0.934036	19.1693
Octane			338.599 *	0 *	338.599	6.00665	332.593
Ethylbenzene			2.39068 *	0 *	2.39068	0.0362327	2.35445
o-Xylene			28.3651 *	0 *	28.3651	0.325921	28.0392
Nonane			186.127 *	0 *	186.127	1.10239	185.025
Decane			574.247 *	0 *	574.247	1.12519	573.122
Water			0 *	16379.6 *	16379.6	8.65511	16370.9
			Stream F	Properties			
Property		Units	OXF 163 Pad	Produced	3	4	5

Stream Properties												
Property	Units	OXF 163 Pad Condensate	Produced Water	3	4	5						
Temperature	°F	85 *	85 *	85.0985	81.2448	81.2448						
Pressure	psia	407.696 *	407.696 *	407.696	14.6959 *	14.6959						
Mole Fraction Vapor	%	2.45359	0	0.0230963	100	0						
Mole Fraction Light Liquid	%	97.5464	100	3.16039	0	1.8921						
Mole Fraction Heavy Liquid	%	0	0	96.8165	0	98.1079						
Molecular Weight	lb/lbmol	78.1542	18.0153	19.9629	39.3214	19.6835						
Mass Density	lb/ft^3	34.8738	62.1455	57.6661	0.100821	59.5052						
Molar Flow	lbmol/h	30.4304	909.204	939.635	13.3698	926.265						
Mass Flow	lb/h	2378.27	16379.6	18757.8	525.717	18232.1						
Vapor Volumetric Flow	ft^3/h	68.1964	263.568	325.284	5214.38	306.396						
Liquid Volumetric Flow	gpm	8.50241	32.8604	40.5549	650.105	38.2						
Std Vapor Volumetric Flow	MMSCFD	0.277149	8.2807	8.55785	0.121767	8.43608						
Std Liquid Volumetric Flow	sgpm	7.49457 *	32.744 *	40.2385	2.18174	38.0568						
Compressibility		0.156312	0.0202195	0.0241415	0.98738	0.000837436						
Specific Gravity			0.996417		1.35766	0.954082						
API Gravity			9.96415			16.1637						
Enthalpy	Btu/h	-2.35821E+06	-1.11588E+08	-1.13946E+08	-621210	-1.13325E+08						
Mass Enthalpy	Btu/lb	-991.568	-6812.63	-6074.59	-1181.64	-6215.67						
Mass Cp	Btu/(lb*°F)	0.531146	0.981529	0.925092	0.421415	0.93377						
Ideal Gas CpCv Ratio		1.06777	1.32512	1.28951	1.13713	1.29463						
Dynamic Viscosity	cP		0.833816		0.00889169	0.806909						
Kinematic Viscosity	cSt		0.837605		5.50572	0.83748						
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0122885	0.312747						
Surface Tension	lbf/ft		0.00492858			0.0044521						
Net Ideal Gas Heating Value	Btu/ft^3	3993.4	0	129.328	2031.85	101.867						
Net Liquid Heating Value	Btu/lb	19235.7	-1059.76	1513.46	19454.3	996.143						
Gross Ideal Gas Heating Value	Btu/ft^3	4313.43	50.31	188.373	2213.17	159.147						
Gross Liquid Heating Value	Btu/lb	20789.6	0	2635.87	21204.2	2100.46						

Remarks

Simulation Initiated on 5/8/2	2015 9:50:55 AM	OXF163_100%Cont_5.8.2015.pmx					Page 1 of
			MIX	ocks (-100 litter Report			
Client Name:	EQT				Job:		
Location:	OXF 163 100%	Contingency				14 PM, 7/24/2	
Flowsheet:	Flowsheet1				Status: Solv	/ed 9:48 AM, 5	/8/2015
			Conn	ections			
Stream	Connect	ion Type	Other Block	Stream	Connecti	ion Type	Other Block
Produced Water	In	let		OXF 163 Pad Condensate	Inl	et	
3	Ou	tlet	VSSL-100				
			Block P	arameters			
Pressure Drop			0 psi	Fraction to PStream	3		100 %
Remarks							

Simulation Initiated on §	5/8/2015 9:50:55 AM
---------------------------	---------------------

Simulation Initiated on 5/8	3/2015 9:50:55 AM	0XF163_100%C	ont_5.8.2015.pmx	1	Page 1 of
		VSS	ocks L-100 or Report		
Client Name:	EQT			Job:	
_ocation:	OXF 163 100% Contingency			Modified: 2:11 PM, 7/17/2	2014
Flowsheet:	Flowsheet1			Status: Solved 9:48 AM, 5	5/8/2015
		Conne	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
3	Inlet	MIX-100	4	Vapor Outlet	
5	Light Liquid Outlet				
			arameters		
Pressure Drop		393 psi	Main Liquid Phase	Light L	
Mole Fraction Va		2287 %	Heat Duty		0 Btu/h
Mole Fraction Lig		6518 %	Heat Release Curve T	ype Plug	
Mole Fraction He	avy Liquid 9	6.712 %	Heat Release Curve Increments		5
Remarks					

Г

Flowsheet: Flowsheet Number of Poynting Intervals Gibbs Excess Model Evaluation Temperature Component Name Nitrogen Methane Carbon Dioxide Ethane Propane			Job: ent Settings Freeze Out Temperature Threshold Difference Phase Tolerance	10 °F	
Flowsheet: Flowsheet Number of Poynting Intervals Gibbs Excess Model Evaluation Temperature Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	1 0 77 °F		Freeze Out Temperature Threshold Difference		
Flowsheet: Flowsheet Flowsheet: Flowsheet Number of Poynting Intervals Gibbs Excess Model Evaluation Temperature Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	1 0 77 °F		Freeze Out Temperature Threshold Difference		
Gibbs Excess Model Evaluation Temperature	0 77 °F		Freeze Out Temperature Threshold Difference		
Gibbs Excess Model Evaluation Temperature	0 77 °F		Freeze Out Temperature Threshold Difference		
Gibbs Excess Model Evaluation Temperature	0 77 °F		Freeze Out Temperature Threshold Difference		
Gibbs Excess Model Evaluation Temperature	77 °F		Threshold Difference	1 %	
Evaluation Temperature Component Name Nitrogen Methane Carbon Dioxide Ethane Propane				1 %	
	Henry's Law				
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	Henry's Low				
Nitrogen Methane Carbon Dioxide Ethane Propane	Henry's Law				
Nitrogen Methane Carbon Dioxide Ethane Propane	Henry's Law	Comr	onents		
Methane Carbon Dioxide Ethane Propane	Component	Phase Initiator	Component Name	Henry`s Law Component	Phase Initiator
Methane Carbon Dioxide Ethane Propane	False	False	2,2,4-Trimethylpentane	False	False
Ethane Propane	False	False	Benzene	False	False
Ethane Propane	False	False	Heptane	False	False
	False	False	Toluene	False	False
i-Butane	False	False	Octane	False	False
	False	False	Ethylbenzene	False	False
n-Butane	False	False	o-Xylene	False	False
i-Pentane	False	False	Nonane	False	False
n-Pentane	False	False	Decane	False	False
Isohexane	False	False	Water	False	True
n-Hexane	False	False			
	Phys	sical Prope	erty Method Sets		
Liquid Molar Volume	COSTALI		Överall Package	Peng-Robins	son
Stability Calculation	Peng-Robin	son	Vapor Package	Peng-Robins	son
Light Liquid Package	Peng-Robin	son	Heavy Liquid Package	Peng-Robins	son
Remarks					

	Calc	ulator Report	
Client Name:	EQT	Job:	
	OXF 163 100% Contingency		
	Sir	mple Solver 1	
		Source Code	
Residual Error (for C'	V1) = TP / 476190 - 1		
	Calcula	ted Variable [CV1]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheets Volumetric Flow	et1!PStreams!OXF 163 Pad Condensa	te!Phases!Total!Properties!Std Liquid
Value	256.957		
Unit	bbl/d		
		red Variable [TP]	
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet	et1!PStreams!5!Phases!Total!Propertie	es!Std Liquid Volumetric Flow
Value	476253		
Unit	bbl/yr		
		ver Properties	Status: Solved
Error	0.000133126	Iterations	9
Calculated Value	7.49457 sgpm	Max Iterations	20
Lower Bound	sgpm	Weighting	1
Upper Bound	sgpm	Priority	0
Step Size	sgpm	Solver Active	Active
Is Minimizer	False	Solver Active Group	
		Solver Active	Active False
Is Minimizer Algorithm	False Default	Solver Active Group Skip Dependency Check	
Is Minimizer Algorithm	False Default Sin	Solver Active Group Skip Dependency Check mple Solver 2	
Is Minimizer Algorithm Remarks	False Default Sin	Solver Active Group Skip Dependency Check	
Is Minimizer Algorithm	False Default Sin	Solver Active Group Skip Dependency Check mple Solver 2	
Is Minimizer Algorithm Remarks	False Default Sin Sin S V1) = LF /86 - 1	Solver Active Group Skip Dependency Check mple Solver 2 Source Code	
Is Minimizer Algorithm Remarks Residual Error (for C	False Default Sin Sin V1) = LF /86 - 1 Calcula	Solver Active Group Skip Dependency Check mple Solver 2 Source Code	False
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker	False Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet	Solver Active Group Skip Dependency Check mple Solver 2 Source Code	False
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value	False Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65	Solver Active Group Skip Dependency Check mple Solver 2 Source Code	False
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker	False Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheets	Solver Active Group Skip Dependency Check mple Solver 2 Source Code	False
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value	False Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d	Solver Active Group Skip Dependency Check Source Code Source Code Source Variable [CV1] et1!PStreams!Produced Water!Phases	False
Is Minimizer Algorithm Remarks Residual Error (for C ¹ SourceMoniker Value Unit	False Default Sin SV1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases	False False !Total!Properties!Std Liquid Volumetric Flow
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker	False Default Sin SV1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases	False False !Total!Properties!Std Liquid Volumetric Flow
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value	False Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Simon Simon ProMax:ProMax!Project!Flowsheets!Flowsheet Simon Simon Beasu ProMax:ProMax!Project!Flowsheets!Flowsheet Simon Simon Simon Simon Simon <tr< td=""><td>Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases</td><td>False False !Total!Properties!Std Liquid Volumetric Flow</td></tr<>	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases	False False !Total!Properties!Std Liquid Volumetric Flow
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value	False Default Sin SV1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases	False False !Total!Properties!Std Liquid Volumetric Flow
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value	False Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet %	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases Ured Variable [LF] et1!PStreams!5!Phases!Total!Composi	False False
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value Unit	False Default Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet ProMax:ProMax!Project!Flowsheets!Flowsheet Sol Sol	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi	False False !Total!Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value	False Default Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05	Solver Active Group Skip Dependency Check Source Code Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases Ured Variable [LF] et1!PStreams!5!Phases!Total!Composi	False False
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound	False Default Default Sin Sin V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet ProMax:ProMax!Project!Flowsheets!Flowsheet Sol Sol	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Ated Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi Ver Properties Iterations Max Iterations Weighting	False False ITotal!Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound	False Default Sin Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet Measu ProMax:ProMax!Project!Flowsheets!Flowsheet Sol Sol Sol -6.65926E-05 32.744 sgpm sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [CV1] et1!PStreams!Produced Water!Phases Iterations Iterations Max Iterations Max Iterations Weighting Priority	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi Iterations Iterations Max Iterations Max Iterations Weighting Priority Solver Active	False False ITotal!Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm Sgpm Sgpm Sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi lterations Max Iterations Max Iterations Weighting Priority Solver Active Group	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0 Active
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi Iterations Max Iterations Max Iterations Weighting Priority Solver Active	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm Sgpm Sgpm Sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi lterations Max Iterations Max Iterations Weighting Priority Solver Active Group	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0 Active
Is Minimizer Algorithm Remarks Residual Error (for C' SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm Sgpm Sgpm Sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi lterations Max Iterations Max Iterations Weighting Priority Solver Active Group	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0 Active
Is Minimizer Algorithm Remarks Residual Error (for C) SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm	False Default Default Sin Sin S V1) = LF /86 - 1 Calcula ProMax:ProMax!Project!Flowsheets!Flowsheet 1122.65 bbl/d Measu ProMax:ProMax!Project!Flowsheets!Flowsheet 85.9943 % Sol -6.65926E-05 32.744 sgpm sgpm sgpm Sgpm Sgpm Sgpm	Solver Active Group Skip Dependency Check Skip Dependency Check mple Solver 2 Source Code Meted Variable [CV1] et1!PStreams!Produced Water!Phases ured Variable [LF] et1!PStreams!5!Phases!Total!Composi lterations Max Iterations Max Iterations Weighting Priority Solver Active Group	False False Properties!Std Liquid Volumetric Flow ition!Std. Liquid Volumetric Fraction!Water Status: Solved 9 20 1 0 Active

Simulation mitiated on a	/0/2010 0:00:00 / (M		100 %CONL_5.8.2015.pmx		Fage 1012
		User Va	lue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 163 100% C	ontingency			
		<u> </u>			
			+ Flow/Frac.		
* Parameter		368.121 lb/h	lue [CnPlusSum] Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value S	et was programmatic	ally generated. GUID={E8670	C485-3D3C-49CB-BC24-EA16	6096DB2B1	}
	1 0				
		T:	ank Losses		
			lue [ShellLength]		
* Parameter		20 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
			alue [ShellDiam]		
 Parameter Lower Bound 		<u> </u>	Upper Bound * Enforce Bounds		False
Lower Bound		0 11	Enlorce Bourius		T dise
		Liser Va	lue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound		c.co poly	* Enforce Bounds		False
		User Valı	ue [BreatherVacP]		
* Parameter		-0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
Parameter		User val	ue [DomeRadius] Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
Lonor Bound		, , , , , , , , , , , , , , , , , , ,	Enorod Boando		T dibb
		User V	/alue [OpPress]		
* Parameter		0 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [AvgPercentLiq]		
 Parameter Lower Bound 		<u>50 %</u> %	Upper Bound * Enforce Bounds		False
Lower Bound		70	Eniorce Bourius		Faise
		Lisor Valu	e [MaxPercentLig]		
* Parameter		90 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			alue [AnnNetTP]		
* Parameter		1302.87 bbl/day	Upper Bound		
* Lower Bound		0 bbl/day	* Enforce Bounds		False
* Doromotor			Value [OREff]		
* Parameter Lower Bound		0 %	Upper Bound * Enforce Bounds		False
		/0			
		lleer Val	ue [AtmPressure]		
* Parameter		14.1085 psia	Upper Bound		
Lower Bound		poid	* Enforce Bounds		False

		User Val	ue Sets Report		
Client Name:	EQT			Job:	•
Location:	OXF 163 100%	Contingency			
		llsor	· Value [TVP]		
* Parameter		0.405573 psia	Upper Bound		
Lower Bound		P	* Enforce Bounds		False
		User Value	e [AvgLiqSurfaceT]		
* Parameter		57.7675 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
* D			[MaxLiqSurfaceT]		
* Parameter Lower Bound		66.3119 °F	Upper Bound * Enforce Bounds		False
			Enlorce Bounds		Faise
		Lisor Val	ue [TotalLosses]		
* Parameter		0.223078 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
		User Value	e [WorkingLosses]		
* Parameter		0.13674 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[StandingLosses]		
* Parameter		0.0261066 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
* Donomotor			e [RimSealLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Enoice Bounds		1 4100
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [LoadingLosses]		
* Parameter		0.374001 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
			[DeckFittingLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Efforce Bounds		1 0150
		Liser Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [FlashingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			e [GasMoleWeight]		
* Parameter		0.0279931 kg/mol	Upper Bound		Falaa
Lower Bound			* Enforce Bounds		False
Remarks					
	t was programmat	tically generated. GUID={B57AF	C7E-AAE8-4873-921B-7B403	31991004}	

			wsheet1 Schematic		
Client Name:	EQT		Jot	b:	
Location:	OXF 163 Blowdown Ta	ank			
Flowsheet:	Flowsheet1				
		EQT OXF 163 Well Pad Blowdown Tank			
		Itemporature 0393 psig Pressure 393 psig Std Liquid Volumetric Flow 3.9363# bbl/d OXF 163 Pid Combinisate VSU-Loo Produced Wates MIX-Loo Temperature 393" psig Std Liquid Volumetric Flow 393" psig Std Liquid Volumetric Flow 17.209# Bbl/d Freesure	Stream 4 C3+ Mass Flow =5.639 lb/h		
		Note	Tank loss calculations for "5". working and breathing losses from the Horizontal Cylinder are 0.006458 lb/ Loading losses are 0.005697 lb/h of loaded liquid.	vh.	

Page 1 of 2

		-		Tank_1.15.2015.pmx			Page 1 of
			All Sti	eams Report Ceams Total Phase			
Client Name:	EQT				Job:		
					JUD.		
Location:	OXF 163 Blowd	Dwn Tank					
Flowsheet:	Flowsheet1						
			0.000	attan a			
			Conne	ctions			
		OXF 163	Pad	Produced	3	4	5
		Condens	ate	Water			
From Block					MIX-100	VSSL-100	VSSL-100
To Block		MIX-10	0	MIX-100	VSSL-100		
		Stre	am Co	mposition			
		OXF 163 Condens	Pad	Produced Water	3	4	5
Mala Frentian			ale		0/	0/	0/
Mole Fraction		%		%	%	%	%
Nitrogen			0 *	0 *	0	0	0
Methane		12	2.131 *	0 *	0.392614	27.3856	0.00324335
Carbon Dioxide		().087 *	0 *	0.00281572	0.188732	0.000133896
Ethane			0.145 *	0 *	0.328338	22.1609	0.0134067
Propane			9.322 *	0 *	0.301702	18.5656	0.0382483
				-			
i-Butane			2.446 *	0 *	0.0791637	4.10285	0.0211225
n-Butane			6.995 *	0 *	0.22639	10.5719	0.0771576
i-Pentane		3	3.988 *	0 *	0.12907	3.92666	0.0742901
n-Pentane		F	5.018 *	0 *	0.162405	4.14581	0.104945
Isohexane			4.263 *	0 *	0.13797	1.84699	0.113318
				0 *			
n-Hexane			4.311 *		0.139524	1.42628	0.120962
2,2,4-Trimethylpe	entane		0.025 *	0 *	0.000809114	0.0032794	0.00077348
Benzene		0	0.136 *	0 *	0.00440158	0.0433292	0.00384005
Heptane		11	1.691 *	0 *	0.378374	1.4202	0.363346
Toluene			0.717 *	0 *	0.0232054	0.0758285	0.0224463
Octane			9.741 *	0 *			
				-	0.315263	0.393346	0.314137
Ethylbenzene			0.074 *	0 *	0.00239498	0.00255291	0.0023927
o-Xylene			0.878 *	0 *	0.0284161	0.0229641	0.0284947
Nonane			4.769 *	0 *	0.154347	0.0642958	0.155646
NUTIALLE		-	+./03	0			0.100040
				0 *		0.0591568	
Decane			3.263 *	0 *	0.429251	0.0591568	0.43459
Decane				-		0.0591568 3.59376	
Decane Water		0XF 163	3.263 * 0 * Pad	0 * 100 * Produced	0.429251		0.43459
Decane Water		OXF 163 Condens	3.263 * 0 * Pad	0 * 100 * Produced Water	0.429251 96.7635 3	3.59376 4	0.43459 98.1075 5
Decane Water Mass Fraction		0XF 163	3.263 * 0 * Pad sate	0 * 100 * Produced Water %	0.429251 96.7635 3 %	3.59376 4 %	0.43459 98.1075 5 %
Decane Water Mass Fraction Nitrogen		OXF 163 Condens	3.263 * 0 * Pad	0 * 100 * Produced Water % :4* *	0.429251 96.7635 3 % 0	3.59376 4 % 0	0.43459 98.1075 5 % 0
Decane Water Mass Fraction Nitrogen		OXF 163 Condens %	3.263 * 0 * Pad sate	0 * 100 * Produced Water %	0.429251 96.7635 3 %	3.59376 4 %	0.43459 98.1075 5 %
Decane Water Mass Fraction Nitrogen Methane		13 OXF 163 Condens % 2.4	3.263 * 0 * Pad sate 0 * 9009 *	0 * 100 * Produced Water % :4* *	0.429251 96.7635 3 % 0 0.31553	3.59376 4 % 0 11.1728	0.43459 98.1075 5 % 0 0.00264355
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide		0XF 163 Condens % 2.4 0.048	3.263 * 0 * Pad sate 0 * 9009 * 9906 *	0 * 100 * Produced Water % :4* * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782	3.59376 4 % 0 11.1728 0.211232	0.43459 98.1075 5 % 0.00264355 0.000299389
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane		0XF 163 Condens % 2.4 0.048 3.9	B.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589	3.59376 4 % 0 11.1728 0.211232 16.9462	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		0XF 163 Condens % 2.4 0.048 3.9 5.2	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2	3.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		0XF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6	3.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane		0XF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7	3.263 * 0 * 90 * 99906 * 99906 * 19906 * 00208 * 8156 * 3241 * 0052 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.227847 0.227822 0.384692 0.496139
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.7 4.7	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 0.036	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13	3.263 * 0 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.595623 0.60233 0.00463007 0.0172238	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.277847 0.272322 0.384692 0.496139 0.529609 0.00448896
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13 14.	3.263 * 0 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.595623 0.60233 0.00463007 0.0172238	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 * 9891 * 5293 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14.	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 * 9891 * 5293 * 2372 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane Isohexane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 0.10 0.10	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane Isohexane n-Pentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	OXF 163 Condens % % 2.4 0.048 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 0.8 14. 0.10 1.1	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.60233 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Sohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152960 0.0052397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.60233 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene Ethylbenzene Octane Ethylbenzene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152960 0.0052397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene Ethylbenzene Octane Ethylbenzene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 59926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 * 1456 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene o-Xylene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24.	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5996 * 9891 * 9268 * 2372 * 00522 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.0448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.0153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163 Condens	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648 4	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152977 1.84977 0.105077 1.82312 0.012206 0.012206 0.153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163 Condens	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648 4	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416 89.7978

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

	All Str	reams			
<u>+</u>			Job:	<u>+</u>	
wdown Tank					
	OXF 163 Pad Condensate	Produced Water	3	4	5
					lb/h
					0.000836683
					0.0572387
		÷			0.239473
					0.174315
	1.89526 *	-		1.2585	0.636751
	1.34129 *			0.580247	0.761042
				0.612632	1.07508
	=				1.38653
	1.73181 *	0 *	1.73181	0.251739	1.48007
	0.0133123 *	0 *	0.0133123	0.000767238	0.012545
	0.0495215 *	0 *	0.0495215	0.00693199	0.0425895
	5.46092 *	0 *	5.46092	0.291464	5.16945
	0.307962 *	0 *	0.307962	0.0143098	0.293653
	5.187 *	0 *	5.187	0.0920259	5.09497
	0.0366228 *	0 *	0.0366228	0.000555108	0.0360676
	0.434524 *	0 *	0.434524	0.00499334	0.429531
	2.85128 *	0 *	2.85128	0.0168895	2.83439
	8.79688 *	0 *	8.79688	0.0172391	8.77964
	0 *	251.085 *	251.085	0.132602	250.953
	Stream P	roperties			
Units	OXF 163 Pad	Produced	3	4	5
	Units	All Str Tabulated by owdown Tank OXF 163 Pad Condensate Ib/h 0.0178486 * 1.42203 * 1.91621 * 0.66273 * 1.89526 * 1.34129 * 1.68771 * 1.68771 * 1.771252 * 1.73181 * 0.0133123 * 0.0495215 * 5.46092 * 0.307962 * 5.187 * 0.0366228 * 0.434524 * 2.85128 * 8.79688 * 0 *	OXF 163 Pad Condensate Ib/h Produced Water Ib/h 0.0178486 * 0 1.42203 * 0 1.91621 * 0 0.66273 0 * 1.91621 0 * 1.91621 0 * 1.91621 0 * 1.91621 0 * 1.91621 0 * 1.91621 0 * 1.91621 0 * 1.89526 0 * 1.89526 0 * 1.34129 0 * 1.73181 0 * 1.73181 0 * 0.0133123 0 * 0.0307962 0 * 0.307962 0 * 0.0366228 0 * 0.434524 0 * 0.434524 0 * 0 2.85128 0 * 0	OXF 163 Pad Condensate Ib/h Produced Water Ib/h 3 0.0178486 * 0 * 0.0178486 0.0178486 * 0 * 0.0178486 1.42203 * 0 * 1.42203 1.91621 * 0 * 1.91621 0.66273 * 0 * 0.66273 1.89526 * 0 * 1.89526 1.34129 * 1.34129 1.68771 1.68771 * 0 * 1.73181 0.0133123 * 0 * 0.0133123 0.0133123 * 0 * 0.307962 0.307962 * 0 * 5.46092 0.307962 * 0 * 0.307962 0.337962 * 0 * 0.307962 0.337962 * 0 * 0.307962 0.337962 * 0 * 0.307962 0.337962 * 0 * 0.307962 0.337962 * 0 * 0.336228 0.434524 * 0 * 0.85128 0.434524 * 0 * 2.85128 0 * 2.85128 * 0 * 3.79688 0 *	All Streams Tabulated by Total Phase Job: owdown Tank OXF 163 Pad Condensate Ib/h Produced Water Ib/h 3 4 0.0178486 * 0 * 0.0178486 0.0170119 1.42203 * 0 * 1.42203 1.36479 1.91621 * 0 * 1.91621 1.67673 0.66273 * 0 * 0.66273 0.488415 1.89526 * 0 * 1.89526 1.2585 1.34129 * 0 * 1.34129 0.580247 1.68771 * 0 * 1.68771 0.612632 1.71252 * 0 * 1.73181 0.251739 0.0133123 * 0 * 0.0133123 0.000767238 0.0133123 * 0 * 0.0133123 0.000767238 0.0366228 * 0 * 0.307962 0.0133123 0.0366228 * 0 * 0.30366228 0.000366228 0.0366228 * 0 * 0.434524 0.0049334 2.85128 * 0 * 2.85128 0.0132602 0 * 2.85128

Property	Units	OXF 163 Pad	Produced	3	4	5
_		Condensate	Water			
Temperature	°F	85 *	85 *	85.0985	81.2476	81.2476
Pressure	psia	407.696 *	407.696 *	407.696	14.6959 *	14.6959
Mole Fraction Vapor	%	2.45359	0	0.0230435	100	0
Mole Fraction Light Liquid	%	97.5464	100	3.15836	0	1.89085
Mole Fraction Heavy Liquid	%	0	0	96.8186	0	98.1092
Molecular Weight	lb/lbmol	78.1542	18.0153	19.9617	39.3218	19.6824
Mass Density	lb/ft^3	34.8738	62.1455	57.6693	0.100821	59.5067
Molar Flow	lbmol/h	0.466163	13.9373	14.4035	0.204814	14.1987
Mass Flow	lb/h	36.4326	251.085	287.518	8.05367	279.464
Vapor Volumetric Flow	ft^3/h	1.0447	4.04028	4.98563	79.8808	4.69635
Liquid Volumetric Flow	gpm	0.130248	0.503723	0.621585	9.95916	0.585519
Std Vapor Volumetric Flow	MMSCFD	0.00424564	0.126936	0.131182	0.00186537	0.129316
Std Liquid Volumetric Flow	sgpm	0.114809 *	0.501937 *	0.616747	0.0334227	0.583324
Compressibility		0.156312	0.0202195	0.0241386	0.987379	0.000837364
Specific Gravity			0.996417		1.35767	0.954107
API Gravity			9.96415			16.16
Enthalpy	Btu/h	-36125.4	-1.71055E+06	-1.74667E+06	-9516.56	-1.73716E+06
Mass Enthalpy	Btu/lb	-991.568	-6812.63	-6075.02	-1181.64	-6216.03
Mass Cp	Btu/(lb*°F)	0.531146	0.981529	0.925125	0.421416	0.933799
Ideal Gas CpCv Ratio		1.06777	1.32512	1.28953	1.13713	1.29464
Dynamic Viscosity	cP		0.833816		0.00889172	0.806918
Kinematic Viscosity	cSt		0.837605		5.50571	0.837473
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0122885	0.312771
Surface Tension	lbf/ft		0.00492858			0.00445237
Net Ideal Gas Heating Value	Btu/ft^3	3993.4	0	129.245	2031.86	101.8
Net Liquid Heating Value	Btu/lb	19235.7	-1059.76	1511.97	19454.3	994.904
Gross Ideal Gas Heating Value	Btu/ft^3	4313.43	50.31	188.284	2213.19	159.075
Gross Liguid Heating Value	Btu/lb	20789.6	0	2634.35	21204.2	2099.2

Remarks

Simulation Initiated on 1/15	/2015 12:05:46 PM		OXF163_Blowdow	n Tank_1.15.2015.pmx			Page 1 of 1
			MD	ocks (-100 litter Report			
Client Name:	EQT				Job:		
Location:	OXF 163 Blowdo	own Tank			Modified: 2:	14 PM, 7/24/2	014
Flowsheet:	Flowsheet1				Status: Solv	/ed 11:54 AM,	1/15/2015
			Conn	ections			
Stream	Connecti	on Type	Other Block	Stream	Connecti	ion Type	Other Block
Produced Water	Ini	et		OXF 163 Pad Condensate	Inl	et	
3	Out	let	VSSL-100				
			Block P	arameters			
Pressure Drop			0 psi	Fraction to PStream	3		100 %
Remarks							

Simulation Initiated on 1/15	5/2015 12:05:46 PM		OXF163_Blowdown	Tank_1.15.2015.pmx			Page 1 of
			VSSI	Cks 100 or Report			
Client Name:	EQT				Job:	I	
Location:	OXF 163 Blowdo	own Tank			Modified: 1	:11 PM, 7/17/201	4
Flowsheet:	Flowsheet1				Status: Sol	ved 11:54 AM, 1/	15/2015
			Conne	ections			
Stream	Connecti	on Type	Other Block	Stream	Connect	ion Type	Other Block
3	Inle	et	MIX-100	4	Vapor	Outlet	
5	Light Liqu	id Outlet					
			Block Pa	rameters			
Pressure Drop		393	psi	Main Liquid Phase		Light Liqu	id
Mole Fraction Vap	or	1.42198	%	Heat Duty			0 Btu/h
Mole Fraction Ligh	nt Liquid	1.86396		Heat Release Curve	Туре	Plug Flo	W
Mole Fraction Hea	avy Liquid	96.7141	%	Heat Release Curve Increments			5
Pomorko							
Remarks							

		F		Environment onment1			
Client Name:	EQT	-			Job:		
Location:	OXF 163 Blowd	own Tank					
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynti	ng Intervals	0		Freeze Out Temperatur Threshold Difference	е	10 °F	
Gibbs Excess Mo Evaluation Tempe		77 °F		Phase Tolerance		1 %	
				onents			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
Methane		False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
i-Butane		False	False	Ethylbenzene		False	False
n-Butane		False	False	o-Xylene		False	False
i-Pentane		False	False	Nonane		False	False
n-Pentane		False	False	Decane		False	False
Isohexane		False	False	Water		False	True
n-Hexane		False	False				
		Phys	ical Prope	erty Method Sets			
		COSTALD)	Overall Package		Peng-Robins	on
Liquid Molar Volume	9			1		Deve Delt's a	
Liquid Molar Volume Stability Calculation	9	Peng-Robins	son	Vapor Package		Peng-Robins	on

Calculator Report Ciret Name: DXP 193 Blowdown Tank Sumple Solver 1 Source Code Redual Error (for CV1) = TP / 20 -1 Calculated Variable [CV1] SourceMoniter PortfaceProductProjectIFDownheets/FlowaheetTPStreamsDXF 103 Prod Condensate/PhasesTrotal/Properties/Std Liquid Volumetric Flow Yalue 3.9331 Data PortfaceProductProjectIFDownheetS/FlowaheetTPStreamsDXF 103 Properties/Std Liquid Volumetric Flow Yalue 19.8997 Unit Delvid SourceMoniter PortfaceProductProjectIFDownheetS/FlowaheetTPStreamsDIPhasesTrotalProperties/Std Liquid Volumetric Flow Yalue 19.8997 Unit Delvid Calculated Value 0.114005 ggm Error -16.2407E-05 Calculated Value 0.14090 ggm Error -16.2407E-05 Calculated Value 0.14090 ggm Bygmin Defrault Signe Source Code Calculated Value 0.14090 ggm Aporthin Defrault Signe Source Code Readual Signe Aporthin	Simulation Initiated on 1/15	72013 12.03.46 FM	OXF163_Blowdown 1	ank_1.15.2015.pmx			Page 1 of 1
Location: XXF 163 Biowdown Tank Simple Solver 1 Source Code Residual Error (for CV1) = TP / 20 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax/Project/Flowsheets/Flowsh			Calculato	r Report			
Simple Solver 1 Source Code Residual Error (for CV1) = TP / 20 - 1 Calculated Variable [CV1] Source Code Calculated Variable [CV1] SourceMoniker ProMax:ProMax/ProjectIFlowsheets/Flows	Client Name:	EQT			Job:		
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax: ProMax:Project:FlowsheetsIPStreamsISP hasesITotalIPropertiesIStd Liquid Volumetric Flow Value 3.9363 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid Calculated Value 0.116247E-05 Interations 5 Calculated Value Active Active Calculated Value Coroup Agorter Code Source Moniker ProMax: ProMaxProMarProject/FlowsheetsIPStreamsIProduced WaterIPhasesITotalIPropertiesIStd Liquid Volumetric SourceMoniker<							
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax/Project/Flowsheets/F							
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax/Project/Flowsheets/F							
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax: ProMax:Project:FlowsheetsIPStreamsISP hasesITotalIPropertiesIStd Liquid Volumetric Flow Value 3.9363 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid Calculated Value 0.116247E-05 Interations 5 Calculated Value Active Active Calculated Value Coroup Agorter Code Source Moniker ProMax: ProMaxProMarProject/FlowsheetsIPStreamsIProduced WaterIPhasesITotalIPropertiesIStd Liquid Volumetric SourceMoniker<			Simple S	olver 1			
Calculated Variable [CV1] Source Moniker ProMax:ProMaxIProject/Flowsheets/F							
Calculated Variable [CV1] SourceMoniker ProMac ProMaxIProject/Flowsheets/Flow	Desidual Error (for C	()(1) TB (20 1	Source	COUE			
SourceMoniker ProMax/Project/Flowsheets/Flowsheet1/PStreams/OXF 163 Pad Condensate/Phases/Total/Properties/Std Liqui Volumetric Flow Value 3.93631 Unit bb/d SourceMoniker ProMax/Project/Flowsheets/Flowsheet1/PStreams/SI/Phases/Total/Properties/Std Liquid Volumetric Flow Yalue 19.9997 Unit bb/d SourceMoniker ProMax/Project/Flowsheet1/PStreams/SI/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bb/d Calculated Value 0.114609 sgpm Kax Promining 1 Calculated Value 0.114609 sgpm Max Iterations 5 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Calculated Value Skip Dependency Check False Source Code Remarks Source Code Source Code Residual Error (for CV1) = LF./86 - 1 Source Moniker ProMax/Project/Flowsheets/Flowsheet1/PStreams/B/Phases/Total/Properties/Std Liq	Residual Ellor (IOI C	$(V_1) = 1P / 20 - 1$					
SourceMoniker ProMaxProMaxIProject/FlowsheetsIFlowsheet11PStreamsIOXF 163 Pad CondensateIPhasesITotalIPropertiesIStd Liqui Value 3.95631 Unit bbl/d SourceMoniker ProMaxProMaxIProject/FlowsheetSIFlowsheet1IPStreamsISIPhasesITotalIPropertiesIStd Liqui Volumetric Flow Value 19.9997 Unit bbl/d Error - 1.62467E-05 Iterations 5 Catculated Value 0.114609 gpm Max Iterations 20 Lower Bound sgpm Priority 0 Site Site Site Site Solver 2 Catculated Value 0.114609 sgpm Solver Active Active Is Minnizer False Group Algorithm Default Skip Dependency Check False Remarks Catculated Value 17.2033 Unit bbl/d Catculated Value 0.114809 sgpm Priority 0 Site Site Site Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Value 17.2033 Unit bbl/d Catculated Value 0.501397 sgpm Active Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Value 0.501397 sgpm Active Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1			O al a al a (a d) / a				
Volumetric Flow Value 3.35831 Unit bbl/d SourceMoniker ProMax/ProMaxiProject/Flowsheets/Flowsheet1!PStreams/5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bbl/d SourceMoniker 0.116809 sgpm Max Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Mininizer False Group Algorithm Default Skip Dependency Check False Remarks Remarks SourceMoniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 17.2093 Unit bbl/d SourceMoniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 0.501937 ggpm Max Iterations 20 Lower Bound Sgpm Priority 0 Source Moniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 0.501937 ggpm Max Iterations 20 Lower Bound Sgpm Priority 0 Step Size Sgpm Solver Active Active 0 Step Size Sgpm Priority 0 Step Size Sgpm Solver Active Active Active 0 Step Size Sgpm Solver Active Active Active 0 Step Size Sgpm Solver Active Active Cateve Active 0 Active Step Size Sgpm Solver Active Active 0 Step Size Sgpm Solver Active Active 0 Step Size Sgpm Solver Active Active Cateve Catev	0 11 1		Calculated va				
Value 3.93631 Unit bb//d SourceMoniker ProMax:ProMax!ProjectiFlowsheets/Flowsheet1!PStreams/5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bb//d SourceMoniker ProMax:ProMax!ProjectiFlowsheets/Flowsh	SourceMoniker		s!Flowsheet1!PStre	eams!OXF 163 Pad Cond	lensate!Pha	ases! I otal! Properties! Std Liqu	lid
Unit bb/d Measured Variable [TP] SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5IPhases/TotalIProperties/Std Liquid Volumetric Flow Value 19.997 Unit bb/d SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5IPhases/TotalIProperties/Std Liquid Volumetric Flow Value 0.114809 sgpm Max Iterations 5 Catculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sggm Weighting 1 0 Upper Bound sggm Solver Active Active 4 Algorithm Default Skip Dependency Check False Remarks Source Code Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Variable [CV1] SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsIProduced WaterIPhases/TotalIProperties/IStd Liquid Volumetric Fraction/N Value 0.2024 Measured Variable [CV1] Solver Properties Status: Solved SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 6.00	Value						
Measured Variable [TP] SourceMoniker ProMax.ProMax!Project!Flowsheets!Flowshe							
SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowshee		551/G					
SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowshee			Magginged V/	richle [TD]			
Value 19.9997 Unit bbl/d Solver Properties Status: Solved Error -1.62467E-05 Iterations 20 Lower Bound 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group - Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Source Code Source Moniker ProMax:ProMaxIProject/Flowsheet/IPStreams/SiProduced Water/Phases/Total/Project/siStd Liquid Volumetric Fraction/N Vale Solver Properties	CourseMention				nortion I Ot -	Liquid Volumetric Flour	
Unit bbl/d Error -1.62467E-05 Iterations 5 Calculated Value 0.118409 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Active Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Source Code Calculated Variable [CV1] Surge Monitor ProMax:ProMax!Project/Flowsheets/Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetr Measured Variable [CV1] SourceMoniker ProMax:ProMax!Project/Flowsheets!Flowsheet1!PStreams!FireAses!Total!Properties!Std Liquid Volumetric Fraction!! Value 86.0024 Weighting 1 Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 5 Colover Properties Status: Solved			s:riowsneet1!PStre	eams:o:Phases:Total!Pro	pernes!Std	Liquia volumetric FIOW	
Solver Properties Status: Solved Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sppm Max Iterations 20 Lower Bound sppm Weighing 1 Upper Bound sppm Priority 0 Site Size sgpm Solver Active Active Is Minimizer False Group - Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code - Residual Error (for CV1) = LF /86 - 1 Source Code - - SourceMoniker ProMax:ProMaxIProjectFlowsheets/Flowsheet1PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Value 17.203 - Unit bbl/d - - - SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet!Phases!Total!Composition!Std. Liquid Volumetric Fraction!V - Value 86.0024 - - - Unit bbl/d - - - Error							
Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Sitep Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Fl							
Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active 0 Sigp Size sgpm Solver Active Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsIFlowsheet1!PStreamsIProduced WaterIPhasesITotalIPropertiesIStd Liquid Volumettr Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetr Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] Source Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Loculated Value 0.501937 sgpm Max Iterations 20 Lique False Sgpm Solver Active Active Active I pper Bound sgpm Priority 0 Skip Dependency Check False Algorithm Default Skip Dependency Check False			Solver Dr	operties		Status: Solved	
Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Recommendation of the system Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!SIPhases!Total!Properties!Std Liquid Volumetric Fraction? Value 86.0024 Unit Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.0501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active	Error	1 604675 05	Solver Pr				
Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Adjorithm Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Moniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Value Value Solver Properties Status: Solved Error 2.7567E-05 Literations Solver Properties Status: Solved Error 2.7567E-05 Calculated Variable [LF] Solver Properties Status: Solved Error 2.7567E-05 Calculated Variable [LF] Solver Properties Sppm <td></td> <td></td> <td>sapm</td> <td></td> <td></td> <td></td> <td></td>			sapm				
Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheet1!PStreamsIProduced WaterIPhases!Total!Properties!Std Liquid Volumetric Value Value 17.2093 Umit bb/d SourceMoniker ProMax:ProMaxIProject!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!! Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.0024 Unit % Verden Supp Max Iterations 20 Literations 5 <							
Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1/PStreams/Produced Water/Phases!Total/Properties/Std Liquid Volumetr Value 17.2093 Unit bb/d Source Moniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1/PStreams/SiPhases!Total/Composition!Std. Liquid Volumetric Fraction!\/ Value BourceMoniker ProMax:ProMaxIProject!Flowsheets!Plowsheet1!PStreams!SiPhases!Total!Composition!Std. Liquid Volumetric Fraction!\/ Value Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 Sgpm Max Iterations 20 Lower Bound sgpm Stolver Active Active Is Minimizer False G							
Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetr Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMaxIProject/Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction! Value 86.0024 Unit % Terror 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterions 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False						· · · · · · · · · · · · · · · · · · ·	
Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Moniker ProMax:ProMax!Project/Flowsheets!Flowsheets!Plowsh			- 31				
Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProjectIFlowsheetsIFlowsheet1IPStreams!Produced WaterIPhases!TotallProperties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProjectIFlowsheetsIFlowsheet1IPStreams!5IPhases!TotallComposition!Std. Liquid Volumetric Fraction!Value 86.0024 Unit % Solver Properties Status: Solved Calculated Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Solver Properties Status: Solved Lower Bound sgpm Weighting 1 Uper Bound sgpm Priority 0 Solver Active Active Solver Froup Algorithm Default Skip Dependency Check False					ck	False	
Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bb/d Measured Variable [LF] SourceMoniker ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Merations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Solver Active Active <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Value Solver Properties Status: Solved Liquid Value Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 Sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False							
Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Tota!!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Tota!!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Value 86.0024 Unit % Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Weighting 1 Upper Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False							
Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Source	Code			
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 3 Step Size sgpm Solver Active Active 1 0 3	Residual Error (for C	V1) = LF /86 - 1					
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 3 Step Size sgpm Solver Active Active 1 0 3							
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Calculated Va	riable [CV1]			
Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 <sgpm< th=""> Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False</sgpm<>	SourceMoniker	ProMax:ProMax!Project!Flowsheet			ases!Total!	Properties!Std Liquid Volume	tric Flow
Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Active Algorithm Default Skip Dependency Check False					accol. i otal.		
Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!V Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False							
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False							
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Measured Va	ariable [I F]			
Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False	SourceMoniker	ProMax:ProMaxIProjectIFlowsheet			nnositionISI	td. Liquid Volumetric Fraction	Water
Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Teles Algorithm Default Skip Dependency Check False							
Solver PropertiesStatus:SolvedError2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup-AlgorithmDefaultSkip Dependency CheckFalse							
Error2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup							
Error2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup			Solver Pr	operties		Status: Solved	
Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroupAlgorithmDefaultSkip Dependency CheckFalse	Error	2 7567E-05	50170111				
Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroupAlgorithmAlgorithmDefaultSkip Dependency CheckFalse			sqpm				
Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False							
Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False	Upper Bound			Priority			
Is Minimizer False Group Algorithm Default Skip Dependency Check False	Step Size					Active	
	Is Minimizer	False		Group			
Remarks	Algorithm	Default		Skip Dependency Chec	ck	False	
Remarks							
	Remarks						

Simulation initiated on 1/	13/2013 12:03:40 FIM	i i		Tank_1.15.2015.pmx		Page 1 01 2
			User Value	Sets Report		
Client Name:	EQT	I			Job:	
Location:	OXF 163 Blowd	own Tank				
				ow/Frac.		
			User Value	[CnPlusSum]		
* Parameter		5.63944	lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Remarks This User Value S	et was programma	tically generated. C	GUID={E867C485	3D3C-49CB-BC24-EA1609	6DB2B1}	
				•		
				Losses		
* •				[ShellLength]		
 Parameter Lower Bound 		10	ft ft	Upper Bound * Enforce Bounds		
Lower Bound		0	π	* Enforce Bounds		False
				[ShellDiam]		
* Parameter		10		Upper Bound		
* Lower Bound			ft	* Enforce Bounds		False
		· ·				
			User Value	[BreatherVP]		
* Parameter		0.03		Upper Bound		
Lower Bound		0.000	polg	* Enforce Bounds		False
			User Value [BreatherVacP]		
* Parameter		-0.03		Upper Bound		
Lower Bound				 * Enforce Bounds 		False
				DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
				10 Day 1		
* Doromotor		0	User value	e [OpPress]		
* Parameter Lower Bound		0	psig	* Enforce Bounds		False
Lower Dound				Enioree Dounds		1 000
			llser Value [A	vgPercentLiq]		
* Parameter		50		Upper Bound		
Lower Bound		50	%	* Enforce Bounds		False
			User Value IN	laxPercentLiq]		
* Parameter		90	%	Upper Bound		
Lower Bound			%	* Enforce Bounds		False
				[AnnNetTP]		
* Parameter		19.8551		Upper Bound		
* Lower Bound		0	bbl/day	* Enforce Bounds		False
				ue [OREff]		
		0	%	Upper Bound		Feler
* Parameter				* Enforce Bounds		False
* Parameter Lower Bound			70			
Lower Bound		44.1007	User Value [AtmPressure]		
		14.1085	User Value [AtmPressure] Upper Bound * Enforce Bounds		False

		User Val	ue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 163 Blowde	own Tank			
	Į				
		User	Value [TVP]		
* Parameter		0.40546 psia	Upper Bound		
Lower Bound			* Enforce Bounds	False	
* Deverseter			[AvgLiqSurfaceT]		
 Parameter Lower Bound 		57.7675 °F	Upper Bound * Enforce Bounds	False	
201101 200110					
		User Value	[MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds	False	
* Parameter		0.00645818 lb/h	IE [TotalLosses] Upper Bound		
Lower Bound		lb/h	* Enforce Bounds	False	
		User Value	[WorkingLosses]		
* Parameter		0.0282868 ton/yr	Upper Bound * Enforce Bounds	F alaa	
Lower Bound		ton/yr	Enforce Bounds	False	
		Liser Value	[StandingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds	False	
			[RimSealLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False	
Lower Dound			Enlorde Bounds	1 4100	
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds	False	
			Il andiaul annal		
* Parameter		0.00569714 lb/h	[LoadingLosses] Upper Bound		
Lower Bound		lb/h	* Enforce Bounds	False	
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound	F ala a	
Lower Bound			* Enforce Bounds	False	
		Liser Value I	DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds	False	
			[FlashingLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False	
		User Value	[GasMoleWeight]		
* Parameter		0.0279891 kg/mol	Upper Bound		
Lower Bound			* Enforce Bounds	False	
Demerike					
Remarks This User Value Set	was programmat	ically generated. GUID={B57AF	C7E-AAE8-4873-921B-7B403	31991004}	

* User Specified Values ? Extrapolated or Approximate Values

Certificate of Analysis :

13060035-001A

Company: Well: Field:	Gas Analytical Services Oxford 21 Pad EQT Midstream	For:	Gas Analytical Services Alan Ball PO Box 1028	3
Sample of: Conditions: Sampled by:	Condensate-Spot 393 @ N.G. RM-GAS		Bridgeport, WV, 26330	
Sample dy: Sample date: Remarks: Remarks:	5/28/2013 Cylinder No.: GAS	Report Da	ate: 6/27/2013	

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	12.131	16.043	2.159	0.3000	4.855
Carbon Dioxide	0.087	44.010	0.042	0.8180	0.035
Ethane	10.145	30.070	3.384	0.3562	6.403
Propane	9.322	44.097	4.560	0.5070	6.061
lso-butane	2.446	58.123	1.577	0.5629	1.889
N-butane	6.995	58.123	4.510	0.5840	5.207
Iso-pentane	3.988	72.150	3.191	0.6244	3.446
N-pentane	5.018	72.150	4.016	0.6311	4.291
i-Hexanes	· 4.263	86.177	4.026	0.6795	4.092
n-Hexane	4.311	85.713	4.125	0.6640	4.172
2,2,4 trimethylpentane	0.025	114.231	0.032	0.6967	0.031
Benzene	0.136	78.114	0.102	0.8846	0.090
Heptanes	11.691	97.742	12.715	0.7030	12.206
Toluene	0.717	92.141	0.630	0.8719	0.569
Octanes	9.741	106.996	11.781	0.7535	10.540
E-benzene	0.074	106.167	0.040	0.8718	0.068
M-,O-,P-xylene	0.878	106.167	1.032	0.8731	0.803
Nonanes	4.769	122.539	6.704	0.7576	6.051
Decanes Plus	13.263	240.460	35.374		29.191
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6744	0.8174
Api Gravity at 60 °F	78.317	41.616
Molecular Weight	90.157	240.460
Pounds per Gallon (in Vacuum)	5.623	6.815
Pounds per Gallon (in Air)	5.617	6.807
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.722	10.730

Southern Petroleum Laboratories, Inc.

Attachment J

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit for the OXF-163 natural gas production operation located in West Union, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.13602 and -80.84274. Startup of operations is scheduled to begin on June 1, 2015.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 8.60 tpy Sulfur Dioxide (SO₂) = 0.08 tpy Volatile Organic Compounds (VOC) = 34.17 tpy Carbon Monoxide (CO) = 11.04 tpy Nitrogen Oxides (NO_x) = 13.14 tpy Hazardous Air Pollutants (HAPs) = 1.91 tpy Carbon Dioxide Equivalents (CO₂e) = 21,668.14 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 18th day of May, 2015.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222

Attachment L

Attachment L G70-A General Permit Application Fee

Please contact Alex Bosiljevac at 412-395-3699 or abosiljevac@eqt.com for payment of the application fee by credit card.

Attachment O

						Emission ounin						
Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹	Emission L Through This match Emission Plot	s Point <i>(Must</i> n Units Table &	(Must match	Control Device Emission Units Plot Plan)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Uncontrolled	n Potential d Emissions ⁴		n Potential Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liguid or Gas/Vapor)	Est. Method Used ⁶
Plan)		ID No.	Source	ID No.	Device Type	V003 & HAF 3)	lb/hr	ton/yr	lb/hr	ton/yr		
E001	Upward Vertical Stack	S001	NA	NA	NA	Total VOCs NO $_x$ CO PM $_{10}$ Total HAPs Hexane CO $_2$ CH $_4$ CO $_2$ e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W
E002	Upward Vertical Stack	S002	NA	NA	NA	Total VOCs NO $_x$ CO PM $_{10}$ Total HAPs Hexane CO $_2$ CH $_4$ CO $_2$ e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W

Attachment O G70-A Emission Summary Sheet

Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹	Emission L Through This match Emission Plot I	s Point <i>(Must</i> n Units Table &	(Must match	Control Device Emission Units Plot Plan)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		n Potential d Emissions ⁴		n Potential Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶
Plan)		ID No.	Source	ID No.	Device Type		lb/hr	ton/yr	lb/hr	ton/yr		
E003	Upward Vertical Stack	S003	NA	NA	NA	Total VOCs NO _x CO PM_{10} Total HAPs Hexane CO_2 CH_4 CO_2e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W
E004	Upward Vertical Stack	S004	NA	NA	NA	Total VOCs NO $_x$ CO PM $_{10}$ Total HAPs Hexane CO $_2$ CH $_4$ CO $_2$ e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W

Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹	Emission L Through This match Emission Plot I	s Point <i>(Must</i> n Units Table &	(Must match	Control Device Emission Units Plot Plan)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		n Potential d Emissions ⁴		n Potential Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶
Plan)		ID No.	Source	ID No.	Device Type		lb/hr	ton/yr	lb/hr	ton/yr		
E005	Upward Vertical Stack	S005	NA	NA	NA	Total VOCs NO _x CO PM_{10} Total HAPs Hexane CO_2 CH_4 CO_2e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W
E006	Upward Vertical Stack	S006	NA	NA	NA	Total VOCs NO $_x$ CO PM $_{10}$ Total HAPs Hexane CO $_2$ CH $_4$ CO $_2$ e	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	<0.01 0.14 0.12 0.01 <0.01 <0.01 180.14 <0.01 180.33	0.03 0.62 0.52 0.05 0.01 0.01 789.03 0.01 789.85	Gas	AP-42, Subpart W

Emission Point ID No. (Must match Emission Units Table & Plot	Emission Point Type ¹			(Must match	Control Device Emission Units Plot Plan)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		n Potential d Emissions ⁴		n Potential Emissions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶
Plan)		ID No.	Source	ID No.	Device Type		lb/hr	ton/yr	lb/hr	ton/yr		
						Total VOCs	187.01	819.10	3.80	16.64		
						NO _x	1.07	4.71	1.07	4.71		
						со	0.90	3.95	0.90	3.95		
						PM ₁₀	0.08	0.36	0.08	0.36		
			Produced			SO ₂	0.006	0.03	<0.01	0.03		
			Fluids Tanks,			Hexane	8.34	36.54	0.19	0.82		
	Upward	S007 - S012,	Sand Trap Blowdown			Benzene	0.23	1.01	<0.01	0.02		AP-42.
E013*	Vertical Stack	S017 - S012, S018, S015	Tank, Tank	NA	NA	Ethylbenzene	0.02	0.08	<0.01	<0.01	Gas	Subpart W
	Vertical Otdok	0010, 0010	Truck			Toluene	0.47	2.08	<0.01	0.04		Oubpart W
			Loading			Xylenes	0.17	0.72	<0.01	0.01		
			Emissions			Total HAPs	9.26	40.54	0.21	0.90		
						CO ₂	0.56	2.47	1,910.67	8,368.71		
						CH ₄	29.83	130.65	0.62	2.72		
						N ₂ O	<0.01	0.01	<0.01	0.01		
						CO ₂ e	746.28	3,268.71	1,926.87	8,439.70		
						Total VOCs	187.01	819.10	3.80	16.64		
						NO _x	1.07	4.71	1.07	4.71		
						со	0.90	3.95	0.90	3.95		
						PM ₁₀	0.08	0.36	0.08	0.36		
			Produced			SO ₂	<0.01	0.03	<0.01	0.03		
			Fluids Tanks,			Hexane	8.34	36.54	0.19	0.82		
		0007 0040	Sand Trap			Benzene	0.23	1.01	<0.01	0.02		15.40
E014*	Upward Vertical Stack	S007 - S012, S018, S015	Blowdown Tank, Tank	NA	NA	Ethylbenzene	0.02	0.08	<0.01	<0.01	Gas	AP-42,
	ventical Stack	5018, 5015	Tank, Tank			Toluene	0.47	2.08	<0.01	0.04		Subpart W
			Loading			Xylenes	0.17	0.72	<0.01	0.01		
			Emissions			Total HAPs	9.26	40.54	0.21	0.90		
						CO ₂	0.56	2.47	1,910.67	8,368.71		
						CH ₄	29.83	130.65	0.62	2.72		
						N ₂ O	<0.01	0.01	<0.01	0.01		
						CO ₂ e	746.28	3,268.71	1,926.87	8,439.70		
	Unword					CO ₂	1.52	6.66	1.52	6.66		AP-42,
E016	Upward Vertical Stack	S016	NA	NA	NA	CO ₂ e	1.52	6.67	1.52	6.67	Gas	AP-42, Subpart W

Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Table & Plot Plan)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)	Est. Method Used ⁶
		ID No.	Source	ID No.	Device Type		lb/hr	ton/yr	lb/hr	ton/yr		
E017	Upward Vertical Stack	S017	NA	NA	NA	CO ₂	1.52	6.66	1.52	6.66	Gas	AP-42, Subpart W
						CO ₂ e	1.52	6.67	1.52	6.67		
E018	Upward Vertical Stack	S015	NA	NA	NA	VOCs	0.05	0.21	0.05	0.21		AP-42, Subpart W
						Total HAPs	<0.001	<0.001	<0.001	<0.001	Gas	
						CO ₂	<0.001	0.00	<0.001	0.00		
						CH ₄	0.00	0.00	0.00	0.00		
						CO ₂ e	0.09	0.38	0.09	0.38		

*Two enclosed combustion devices are being included in this application. Emissions from the condensate tanks, sand trap blowdown tanks, and truck loading are routed to either C021 or C022. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C021 and C022 are additive.

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases

3 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

4 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Indicate method used to determine emission rate as follows: $MB = material \ balance; \ ST = stack \ test (give \ date \ of \ test); \ EE = engineering \ estimate; \ M = modeling; \ O = other (specify).$

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potenti Emissi		Maximum Potential Controlled Emissions ³		Est. Method	
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴	
Haul Road/Road Dust Emissions Paved Haul Roads	NA						
Unpaved Haul Roads	PM PM-10 PM-2.5	4.20 1.07 0.11	7.60 1.94 0.19	4.20 1.07 0.11	7.60 1.94 0.19	AP-42	
Equipment Leaks	Total VOC Total HAPs CO ₂ CH ₄ CO ₂ e	0.11 0.01 <0.01 0.33 8.20	0.47 0.04 0.01 1.44 35.92	0.11 0.01 <0.01 0.33 8.20	0.47 0.04 0.01 1.44 35.92	40CFR98 Subpart W	
Other	NA	NA	NA	NA	NA	NA	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S,

List all regulated all politicality. Speciale VOCs, including all risk is rollow chemical harde with chemical Abstracts Service (OAS) humber. List Acids, CO, CS₂, VOCs, Fi₂O, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases. ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).