

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275 (412) 787-7300 (412) 787-6002 fax

(FUG-G and -L)

June 12, 2015 (Sent Via Federal Express)

Beverly McKeone New Source Review Program Manager Division of Air Quality **West Virginia Department of Environmental Protection** 601 57th Street SE Charleston, WV 25304

**Subject:** Application for 45CSR13 NSR Modification Permit

Williams Ohio Valley Midstream LLC CONNER COMPRESSOR STATION Marshall County, West Virginia

Fugitive Emissions from Process Piping and Equipment

#### Dear Ms. McKeone:

Williams Ohio Valley Midstream LLC (OVM) is submitting the enclosed Application for 45CSR13 New Source Review (NSR) Modification Permit for the existing Conner Compressor Station located approximately 2.3 miles south-southwest of Moundsville, Marshall County, West Virginia.

This Application for 45CSR13 NSR Modification Permit has been prepared and submitted to provide for construction and operation of the following equipment:

| 1 | and the control of th |                      |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| • | Two (2) 1,380 bhp CAT G3516B Compressor Engines, each w/ OxCa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | et (CE-01 and -02)   |
| • | One (1) 203 bhp Caterpillar G3306B TA Compressor Engine w/ NSCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R (CE-03)            |
| • | Two (2) 200 bhp Electric Driven Reciprocating Gas Compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CM)                 |
| • | Compressor Rod-Packing and Engine Crankcase Leaks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (RPC)                |
|   | (Formerly known as Miscellaneous Equipment Leaks (FUG-2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| • | Start/Stop/Maintenance (Blowdown/Purge/Filter Change-Out - via Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | persion Stack) (SSM) |
| • | Two (2) 1.66 MMBtu/hr Reboilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (RBV-01 and -02)     |
| • | Two (2) 60.0 MMscfd Triethylene Glycol Dehydrators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (RSV-01 and RSV-02)  |
| • | One (1) 6.4 MMBtu/hr Thermal Oxidizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (COMB-1)             |
| • | One (1) 1.55 MMBtu/hr Heater-Treater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (HTR-01)             |
| • | One (1) 2.55 MMBtu/hr Condensate Stabilizer Heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (HTR-02)             |
| • | One (1) 1.66 MMBtu/hr Station Recycle Line Heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (HTR-03)             |
| • | One (1) 9.7 MMBtu/hr NEW Condensate Stabilizer Heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (HTR-04)             |
| • | One (1) 48 bbl Produced Water Storage Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (T01)                |
| • | One (1) 210 bbl Produced Water Storage Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (T02)                |
| • | Produced Water Truck Load-out emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (TLO-01)             |
| • | Stabilized Condensate Truck Load-out emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (TLO-02)             |

These modifications will result in an increase in facility-wide emissions as summarized below:

#### **EMISSIONS SUMMARY SHEET**

| Facility-Wide Emissions Summary [Tons per Year] |                     |                      |                 |  |  |
|-------------------------------------------------|---------------------|----------------------|-----------------|--|--|
| Criteria Pollutants                             | Potential Emissions |                      |                 |  |  |
| Criteria Poliutants                             | Current Permit      | Change               | Proposed Permit |  |  |
| Nitrogen Oxides (NOX)                           | 20.91               | 3.29                 | 24.20           |  |  |
| Carbon Monoxide (CO)                            | 13.92               | 9.86                 | 23.78           |  |  |
| Point - Volatile Organic Compounds (VOC)        | 68.99               | 21.15                | 90.14           |  |  |
| Fugitive - Volatile Organic Compounds (VOC)     | 33.11               | 6.81                 | 39.93           |  |  |
| Total - Volatile Organic Compounds (VOC)        | 102.10              | 27.96                | 130.06          |  |  |
| Sulfur Dioxide (SO2)                            | 0.10                | 0.02                 | 0.13            |  |  |
| Particulate Matter (PM10/2.5)                   | 1.58                | 0.39                 | 1.98            |  |  |
| Lead (Pb)                                       |                     |                      |                 |  |  |
| Hazardous Air Pollutants (HAP)                  | Potential           | Emissions (Including | Fugitives)      |  |  |
| nazardous Air Foliutants (HAF)                  | Current Permit      | Change               | Proposed Permit |  |  |
| Benzene                                         | 1.61                | (0.67)               | 0.94            |  |  |
| Ethylbenzene                                    | 1.43                | (0.50)               | 0.93            |  |  |
| Formaldehyde (HCHO)                             | 2.82                | 0.00                 | 2.82            |  |  |
| n-Hexane                                        | 2.76                | (0.56)               | 2.19            |  |  |
| Methanol (MeOH)                                 |                     | 0.05                 | 0.05            |  |  |
| Toluene                                         | 2.27                | (0.65)               | 1.62            |  |  |
| 2,2,4-Trimethylpentane (i-Octane, TMP)          |                     | 1.42                 | 1.42            |  |  |
| Xylenes                                         | 3.19                | (0.67)               | 2.52            |  |  |
| Other HAP (Acetaldehyde, MeCL, etc.)            | 0.19                |                      | 0.19            |  |  |
| Total HAP                                       | 14.09               | (1.41)               | 12.68           |  |  |
| Greenhouse Gases (GHG)                          | Potential           | Emissions (Including | Fugitives)      |  |  |
| Greenhouse Gases (GHG)                          | Current Permit      | Change               | Proposed Permit |  |  |
| Carbon Dioxide (CO <sub>2</sub> )               | 22,115              | 5,867                | 27,982          |  |  |
| Methane (CH <sub>4</sub> )                      | 195.75              | 34.20                | 229.95          |  |  |
| Nitrous Oxide (N <sub>2</sub> O)                | 0.04                | 0.22                 | 0.26            |  |  |
| CO <sub>2</sub> Equivalent (CO <sub>2</sub> e)  | 27,020              | 6,789                | 33,808          |  |  |

The increases in NOx, CO, SO2, PM10/2.5, and CO2e emissions are primarily due to incremental fuel combustion in the New 9.7 MMBtu/hr Condensate Stabilizer Heater (HTR-04 (20E)).

The increases in NOx emissions are somewhat off-set, and the increase in CO emissions are further increased, because of utilization of revised AP-42 emission factors for flares (COMB-1 (10E)).

The increases in VOC emissions are primarily the result of additional Rod Packing emissions from Two (2) 200 bhp Electric Motor Driven Compressors (RPC (18E)).

Additional increases in VOC emissions and the net decreases in Total HAP emissions are the result of incremental component counts (SSM (16E)) and utilization of improved condensate sampling data (TLO-02 (15E) and FUG-L (17E)).

Beverly McKeone WVDEP – Division of Air Quality June 12, 2015 Page 03 of 03

The facility continues to qualify as a Minor Source under Non-Attainment New Source Review (NNSR), Prevention of Significant Deterioration (PSD), and Title V Operating Permits. The facility is also an Area Source for Hazardous Air Pollutants (HAP) under the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations.

If you have any questions concerning this submittal or need additional information, please contact me at (412) 787-4259 or Danell.Zawaski@Williams.com.

Sincerely,

R. Danell Zawaski, P.E. Environmental Specialist

Enclosures:

Application for NSR Modification Permit Attachments A through S Check for Application Fee

# APPLICATION FOR 45CSR13 NEW SOURCE REVIEW MODIFICATION PERMIT

For the:

Williams Ohio Valley Midstream LLC

#### **CONNER COMPRESSOR STATION**

Marshall County, West Virginia

Submitted to:



## WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

Submitted by:



#### Williams Ohio Valley Midstream LLC

Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

Prepared by:



**EcoLogic Environmental Consultants, LLC** 

864 Windsor Court Santa Barbara, CA 93111

June 2015

# APPLICATION FOR 45CSR13 NEW SOURCE REVIEW MODIFICATION PERMIT

Williams Ohio Valley Midstream LLC

#### **CONNER COMPRESSOR STATION**

Marshall County, West Virginia

#### TABLE OF CONTENTS

#### **COVER LETTER**

#### **APPLICATION FOR NSR MODIFICATION PERMIT**

SECTION I. General

SECTION II. Additional Attachments and Supporting Documents

SECTION III. Certification of Information

#### ATTACHMENTS TO APPLICATION

| • / | ATTACHMENT A | Business | Certificate |
|-----|--------------|----------|-------------|
|-----|--------------|----------|-------------|

- ATTACHMENT B Topographic Map
- ATTACHMENT C Installation and Start-Up Schedule
- ATTACHMENT D Regulatory Discussion
- ATTACHMENT E Plot Plan
- ATTACHMENT F Detailed Process Flow Diagram (PFD)
- ATTACHMENT G Process Description
- ATTACHMENT H Material Safety Data Sheets (MSDS)

(And Representative Extended Gas Analysis)

- ATTACHMENT I Emission Units Table
- ATTACHMENT J Emission Points Data Summary Sheet(s)
- ATTACHMENT K Fugitive Emissions Data Summary Sheet(s)
- ATTACHMENT L Emissions Unit Data Sheet(s)
- ATTACHMENT M Air Pollution Control Device Sheet(s)
- ATTACHMENT N Supporting Emissions Calculations
- ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans (NOT APPLICABLE)
- ATTACHMENT P Public Notice (Class I Legal Advertisement)
- ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)
- ATTACHMENT R Authority Forms (NOT APPLICABLE)
- ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

#### **APPLICATION FEE**

Williams Ohio Valley Midstream LLC

#### APPLICATION FOR 45CSR13 NEW SOURCE REVIEW MODIFICATION PERMIT

• SECTION I. General

• SECTION II. Additional Attachments and Supporting Documents

• SECTION III. Certification of Information

#### NTAL PROTECTION **DIVISION OF AIR QUALITY**

601 57<sup>th</sup> Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/daq

### APPLICATION FOR NSR PERMIT **AND**

#### TITLE V PERMIT REVISION (OPTIONAL)

| The state of the s | (OF HOWAL)                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLEASE CHECK TYPE OF <b>45CSR30 (TITLE V)</b> REVISION (IF ANY):                                             |
| ☑ CONSTRUCTION ☑ MODIFICATION ☐ RELOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ☐ ADMINISTRATIVE AMENDMENT ☐ MINOR MODIFICATION                                                              |
| ☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ SIGNIFICANT MODIFICATION ☐ NOT APPLICABLE                                                                  |
| ☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS <b>ATTACHMENT S</b> TO THIS APPLICATION |
| FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on Guidance" in order to determine your Title V Revision options                                             |

(Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.

|        | Section I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l. General          |                                                                                                                     |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| 1.     | Name of applicant (as registered with the WV Secretary of WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM)                                                                                                                                                                                                                                                                                                                                                                                                   | State's Office):    | 2. Federal Employer ID No. <i>(FEIN):</i> 2 7 – 0 8 5 6 7 0 7                                                       |  |  |
| 3.     | Name of facility (if different from above):  CONNER COMPRESSOR STATION                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 4. The applicant is the:  ☐ OWNER ☐ OPERATOR ☒ BOTH                                                                 |  |  |
| 5A.    | Applicant's mailing address: PARK PLACE CORPORATE CENTER 2 2000 COMMERCE DRIVE PITTSBURGH, PA 15275                                                                                                                                                                                                                                                                                                                                                                                                  | SOUTH S<br>0.2 MI E | s present physical address: SIDE OF KULL LN OF ROBERTS RIDGE RD/CO-21 SVILLE, WV 26041                              |  |  |
| 6.     | West Virginia Business Registration. Is the applicant a resident of the State of West Virginia?   — If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A.  — If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. |                     |                                                                                                                     |  |  |
| 7.     | If applicant is a subsidiary corporation, please provide the r                                                                                                                                                                                                                                                                                                                                                                                                                                       | name of parent co   | orporation: THE WILLIAMS COMPANIES, INC.                                                                            |  |  |
| 8.     | Does the applicant own, lease, have an option to buy, or otherwise have control of the <i>proposed site?</i> ☐ <b>YES</b> ☐ <b>NO</b> — If <b>YES</b> , please explain: <b>APPLICANT OWNS THE COMPRESSOR STATION</b> — If <b>NO</b> , you are not eligible for a permit for this source.                                                                                                                                                                                                             |                     |                                                                                                                     |  |  |
| 9.     | Type of plant or facility (stationary source) to be <b>constructed, modified,</b> relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.):  NATURAL GAS COMPRESSOR STATION  10. North American Industry Classification System (NAICS) code for the facility: 213112–SUPPORT ACTIVITIES FOR OIL AND GAS OPERATIONS                                                                                                                         |                     |                                                                                                                     |  |  |
| 11A.   | DAQ Plant ID No. (existing facilities):  0 5 1 - 0 0 1 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                           | numbers a           | rrent 45CSR13 and 45CSR30 (Title V) permit associated with this process (existing facilities):  3 - ISSUED 04/28/14 |  |  |
| 12A.   | Directions to the facility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                                                                                     |  |  |
|        | <ul> <li>For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road;</li> </ul>                                                                                                                                                                                                                                                                                           |                     |                                                                                                                     |  |  |
|        | <ul> <li>For Construction or Relocation permits, please providents tate road. Include a MAP as Attachment B.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | e directions to the | e proposed new site location from the nearest                                                                       |  |  |
|        | FROM 12TH ST/SR-872 IN MOUNDSVILLE: HEAD SOUT SR-2 ALT FOR ~250 FT; TURN LEFT ONTO CO-21/ROB ~0.2 MI; ENTRANCE TO SITE IS ON THE RIGHT                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                     |  |  |
| All of | All of the required forms and additional information can be found under the Permitting Section of DAO's website or requested by phone                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                     |  |  |

| 12.B. | New site address (if applicable):                                                                                                                                                                                                                                                                                                                                                                                                                              | 12C.        | Nearest city or town:                     | 12D.       | County:                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------|------------|-----------------------------------------------|
|       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | MOUNDSVILLE                               |            | MARSHALL                                      |
| 12.E. | UTM Northing (KM):                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12F.        | UTM Easting (KM):                         | 12G.       | UTM Zone:                                     |
|       | 4,414.56 km N Northing                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 521.65 km Easting                         |            | 178                                           |
| 13.   | Briefly describe the proposed change(s) at t                                                                                                                                                                                                                                                                                                                                                                                                                   | he facil    | ity:                                      |            |                                               |
|       | THIS APPLICATION IS PREPARED AND S                                                                                                                                                                                                                                                                                                                                                                                                                             | :IIDMI      | TTED TO DECLIEST ALITHODIZAT              | TION TO    | NINSTALL AND ODEDATE:                         |
|       | ONE (1) 9.7 MMBTU/HR CONDENSA                                                                                                                                                                                                                                                                                                                                                                                                                                  | _           |                                           | _          |                                               |
|       | TWO (2) 200 BHP ELECTRIC MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | •                                         | * (202))   |                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                           |            |                                               |
|       | UPDATED EMISSION ESTIMATING F                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                           |            |                                               |
|       | UPDATED MAXIMUM DESIGN HEAT<br>HHV RATHER THAN LHV                                                                                                                                                                                                                                                                                                                                                                                                             | INPUT       | RATINGS FOR EXTERNAL COM                  | BUSTIC     | ON EQUIPMENT TO REFLECT                       |
| 14A.  | Provide the date of anticipated installation of                                                                                                                                                                                                                                                                                                                                                                                                                | r chang     | e:                                        |            | Date of anticipated Start-Up                  |
|       | - If this is an <b>After-The-Fact</b> permit applica                                                                                                                                                                                                                                                                                                                                                                                                           | tion, pr    | ovide the date upon which the             |            | if a permit is granted: APPROXIMATELY ONE (1) |
|       | proposed change did happen: NA                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                           |            | MONTH AFTER PERMIT IS                         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                           |            | ISSUED                                        |
| 14C.  | Provide a <b>Schedule</b> of the planned <b>Installat</b> application as <b>Attachment C</b> (if more than c                                                                                                                                                                                                                                                                                                                                                   |             |                                           | the uni    | ts proposed in this permit                    |
| 15.   | Provide maximum projected Operating Sch                                                                                                                                                                                                                                                                                                                                                                                                                        | edule (     | of activity/activities outlined in this a | pplication | on:                                           |
|       | Hours Per Day: 24 Days Per Wee                                                                                                                                                                                                                                                                                                                                                                                                                                 | k: <b>7</b> | Weeks Per Year: 52                        |            |                                               |
| 16.   | Is demolition or physical renovation at an existing facility involved?   ☐ YES  ☐ NO                                                                                                                                                                                                                                                                                                                                                                           |             |                                           |            |                                               |
| 17.   | <b>Risk Management Plans.</b> If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your <b>Risk Management Plan (RMP)</b> to U.S. EPA Region III.                                                                                                                                                                                                     |             |                                           |            |                                               |
| 18.   | <b>Regulatory Discussion.</b> List all Federal and State air pollution control regulations that you believe are applicable to the proposed process ( <i>if known</i> ). A list of possible applicable requirements is also included in <b>Attachment S</b> of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance ( <i>if known</i> ). Provide this information as <b>Attachment D</b> . |             |                                           |            |                                               |
|       | Section II. Additiona                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıl atta     | nchments and supporting                   | docu       | ıments.                                       |
| 19.   | Include a check payable to WVDEP – Division                                                                                                                                                                                                                                                                                                                                                                                                                    |             | .,                                        |            |                                               |
|       | 45CSR13).                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                           |            | ·                                             |
| 20.   | Include a Table of Contents as the first pag                                                                                                                                                                                                                                                                                                                                                                                                                   | e of yo     | ur application package.                   |            |                                               |
| 21.   | Provide a <b>Plot Plan</b> , e.g. scaled map(s) and source(s) is or is to be located as <b>Attachme</b>                                                                                                                                                                                                                                                                                                                                                        |             |                                           | property   | on which the stationary                       |
|       | <ul> <li>Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).</li> </ul>                                                                                                                                                                                                                                                                                                                                        |             |                                           |            |                                               |
| 22.   | Provide a <b>Detailed Process Flow Diagram</b> device as <b>Attachment F</b> .                                                                                                                                                                                                                                                                                                                                                                                 | (s) sho     | wing each proposed or modified em         | nissions   | unit, emission point and control              |
| 23.   | Provide a <b>Process Description</b> as <b>Attachm</b>                                                                                                                                                                                                                                                                                                                                                                                                         | nent G.     |                                           |            |                                               |
|       | - Also describe and quantify to the extent po                                                                                                                                                                                                                                                                                                                                                                                                                  | ssible      | all changes made to the facility sind     | e the la   | st permit review (if applicable).             |
| 24.   | Provide Material Safety Data Sheets (MSD                                                                                                                                                                                                                                                                                                                                                                                                                       | S) for a    | all materials processed, used or pro      | duced a    | as Attachment H.                              |
|       | – For chemical processes, provide a MSDS                                                                                                                                                                                                                                                                                                                                                                                                                       | for eac     | h compound emitted to the air.            |            |                                               |
| 25.   | Fill out the Emission Units Table and provi                                                                                                                                                                                                                                                                                                                                                                                                                    | de it as    | Attachment I.                             |            |                                               |
| 26.   | Fill out the Emission Points Data Summar                                                                                                                                                                                                                                                                                                                                                                                                                       | y Shee      | t (Table 1 and Table 2) and provid        | e it as A  | Attachment J.                                 |
| 27.   | Fill out the Fugitive Emissions Data Summ                                                                                                                                                                                                                                                                                                                                                                                                                      | nary Sł     | neet and provide it as Attachment         | K          |                                               |

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

| 28.    | Check all applicable Emissions Unit Data Sheets listed below:                                                                                                                                                                                                                                                                                                        |                                           |                                            |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--|--|--|
|        | ⊠ Bulk Liquid Transfer Operations                                                                                                                                                                                                                                                                                                                                    | ☐ Haul Road Emissions                     | ☐ Quarry                                   |  |  |  |
|        | ☐ Chemical Processes (*)                                                                                                                                                                                                                                                                                                                                             | ☐ Hot Mix Asphalt Plant                   | ☐ Solid Materials Sizing, Handling         |  |  |  |
|        | ☐ Concrete Batch Plant                                                                                                                                                                                                                                                                                                                                               | ☐ Incinerator                             | and Storage Facilities                     |  |  |  |
|        | ☐ Grey Iron and Steel Foundry                                                                                                                                                                                                                                                                                                                                        | ☐ Indirect Heat Exchanger                 | ⊠ Storage Tanks                            |  |  |  |
|        | ☑ General Emission Unit, specify:                                                                                                                                                                                                                                                                                                                                    |                                           |                                            |  |  |  |
|        | NATURAL GAS-FIRED BOILER/LINE                                                                                                                                                                                                                                                                                                                                        | HEATER DATA SHEET                         |                                            |  |  |  |
|        | (*) LEAK SOURCE DATA SHEET ONLY                                                                                                                                                                                                                                                                                                                                      |                                           |                                            |  |  |  |
|        | Fill out and provide the <b>Emissions Unit Data</b>                                                                                                                                                                                                                                                                                                                  | Sheet(s) as Attachment L.                 |                                            |  |  |  |
| 29.    | Check all applicable Air Pollution Control                                                                                                                                                                                                                                                                                                                           | Device Sheets listed below:               |                                            |  |  |  |
|        | ☐ Absorption Systems                                                                                                                                                                                                                                                                                                                                                 | ☐ Baghouse                                | ⊠ Flare                                    |  |  |  |
|        | ☐ Adsorption Systems                                                                                                                                                                                                                                                                                                                                                 | ☐ Condenser                               | ☐ Mechanical Collector                     |  |  |  |
|        | Afterburner                                                                                                                                                                                                                                                                                                                                                          | ☐ Electrostatic Precipitator              | ☐ Wet Collecting System                    |  |  |  |
|        | Other Collectors, specify:                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |  |  |  |
|        | <ul><li>OXIDATION CATALYST (OXCAT)</li><li>NON-SELECTIVE CATALYTIC REDU</li></ul>                                                                                                                                                                                                                                                                                    | CTION (NSCR)                              |                                            |  |  |  |
|        | Fill out and provide the Air Pollution Control                                                                                                                                                                                                                                                                                                                       | Device Sheet(s) as Attachment M.          |                                            |  |  |  |
| 30.    | <b>Provide all Supporting Emissions Calculations</b> as <b>Attachment N</b> , or attach the calculations directly to the forms listed in Items 28 through 31.                                                                                                                                                                                                        |                                           |                                            |  |  |  |
| 31.    | <b>Monitoring, Recordkeeping, Reporting and Testing Plans.</b> Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as <b>Attachment O</b> .                                                   |                                           |                                            |  |  |  |
| >      | Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.                            |                                           |                                            |  |  |  |
| 32.    | Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt. |                                           |                                            |  |  |  |
| 33.    | Business Confidentiality Claims. Does this                                                                                                                                                                                                                                                                                                                           | s application include confidential inform | ation (per 45CSR31)?                       |  |  |  |
|        | ☐ YES                                                                                                                                                                                                                                                                                                                                                                | ⊠ NO                                      |                                            |  |  |  |
| >      | If YES, identify each segment of information of segment claimed confidential, including the confidentiality" guidance.                                                                                                                                                                                                                                               | riteria under 45CSR§31-4.1, and in acc    | ordance with the DAQ's "Precautionary      |  |  |  |
|        | Section II                                                                                                                                                                                                                                                                                                                                                           | I. Certification of Information           | on                                         |  |  |  |
| 34.    | Authority/Delegation of Authority. Only re-<br>Check applicable Authority Form below:                                                                                                                                                                                                                                                                                | quired when someone other than the re     | esponsible official signs the application. |  |  |  |
|        | ☐ Authority of Corporation or Other Business                                                                                                                                                                                                                                                                                                                         | s Entity                                  | ership                                     |  |  |  |
|        | ☐ Authority of Governmental Agency                                                                                                                                                                                                                                                                                                                                   | ☐ Authority of Limite                     | ed Partnership                             |  |  |  |
|        | Submit completed and signed Authority For                                                                                                                                                                                                                                                                                                                            | m as Attachment R.                        |                                            |  |  |  |
| All of | the required forms and additional information ca                                                                                                                                                                                                                                                                                                                     | n be found under the Permitting Section   | of DAQ's website, or requested by phone.   |  |  |  |

| 35A. Certification of Information. To certify this permit ap or Authorized Representative shall check the appropria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pplication, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) ate box and sign below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Certification of Truth, Accuracy, and Completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| notified in writing within 30 days of the official change.  Compliance Certification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Except for requirements identified in the Title V Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for which compliance is not achieved, I, the undersigned hereby certify ple inquiry, all air contaminant sources identified in this application are in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| compliance with all applicable requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne inquiry, an air containmant sources identified in this application are in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE: 6/11/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| (Please use blue ink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Please use blue ink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 35B. Printed name of signee: DON WICBURG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35C. Title: VICE PRESIDENT AND GENERAL MANAGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 35D. E-mail: DON.WICBURG@WILLIAMS.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36E. Phone: 36F. FAX: (304) 843-3131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 36A. Printed name of contact person:  R. DANELL ZAWASKI, P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36B. Title: ENVIRONMENTAL SPECIALIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 36C. E-mail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36D. Phone: 36E. FAX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| DANELL.ZAWASKI@WILLIAMS.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (412) 787-4259 (412) 787-6002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attachment K: Fugitive Emissions Data Summary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attachment L: Emissions Unit Data Sheet(s)     Attachment M: Air Pollution Control Device Sheet(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| ☑ Attachment D: Regulatory Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ☑ Attachment E: Plot Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☑ Attachment P: Public Notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Attachment Q: Business Confidential Claims) (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Attachment H: Material Safety Data Sheets (MSDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Attachment R: Authority Forms) (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Attachment I: Emission Units Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Attachment S: Title V Permit Revision Information (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| ☑ Attachment J: Emission Points Data Summary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Application Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Please mail an original and three (3) copies of the<br>Permitting Section, at the address listed on the first p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | complete permit application with the signature(s) to the DAQ, page of this application. Please DO NOT fax permit applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <ul> <li>□ Forward 1 copy of the application to the Title V Permitting Group</li> <li>□ For Title V Administrative Amendments:</li> <li>□ NSR permit writer should notify Title V permit writer of drait</li> <li>□ For Title V Minor Modifications:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| ☐ Title V permit writer should send appropriate notification to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THE STATE OF THE PROPERTY AND ADDRESS OF THE PROPERTY OF THE P |  |  |  |  |
| ☐ NSR permit writer should notify Title V permit writer of drai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| ☐ For Title V Significant Modifications processed in parallel with N ☐ NSR permit writer should notify a Title V permit writer of dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | And the state of t |  |  |  |  |
| ☐ Public notice should reference both 45CSR13 and Title V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 350 <sub>1000</sub> W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| ☐ EPA has 45 day review period of a draft permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| All of the required forms and additional information can be found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d under the Permitting Section of DAQ's website, or requested by phone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

#### **ATTACHMENT A**

#### **Business Certificate**

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

Certificate of Amendment to the Certificate of Authority

From: CAIMAN EASTERN MIDSTREAM, LLC

To: WILLIAMS OHIO VALLEY MIDSTREAM LLC

Date: May 15, 2012

Certificate of Authority of a Foreign Limited Liability Company

To: CAIMAN EASTERN MIDSTREAM, LLC

Date: September 11, 2009



### I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

#### CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

## CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC



Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

Secretary of State



### I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

#### CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

## CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia



Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

Clemant

Secretary of State

#### **ATTACHMENT B**

#### **Topographic Map**

"12A. For **Modifications, Administrative Updates** or **Temporary** permits at an existing facility, please provide directions to the present location of the facility from the nearest state road. Include a MAP as Attachment B."

#### Address:

South side of Kull Lane Airport Access Rd. ~0.2 Miles East of Roberts Ridge Road/Co-21 ~2.3 Miles South-Southwest of Moundsville Moundsville, Marshall County, WV 26041

#### • Latitude and Longitude:

39°52'50.88" North x -80°44'48.48" West (39.8808° North x -80.7468° West)

#### • UTM:

4,414,558 m Northing x 521,650 m Easting x Zone 17S

#### Elevation:

~1,230'

#### Williams Ohio Valley Midstream LLC

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment B - Location Map (Topo)**



## ATTACHMENT C

#### **Installation and Start-Up Schedule**

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

The OVM Conner Compressor Station is an existing operation. The modifications (i.e., New Condensate Stabilization Heater (HTR-04 (20E), Two New Electrically Driven Gas Compressors and Additional Pipeline Components) are scheduled to be implemented w/in approximately one (1) month following receipt of the NSR Modification Permit.

#### **ATTACHMENT D**

#### **Regulatory Discussion**

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

#### Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

#### Williams Ohio Valley Midstream LLC

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## ATTACHMENT D Regulatory Discussion

#### A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

#### 1. Prevention of Significant Deterioration (PSD)

[Not Applicable]

This rule <u>does not apply</u>. The facility is a "PSD Natural Minor Source" for each regulated pollutant, as follows:

- NOx: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy</li>
- CO: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- VOC: PSD Synthetic Minor Source with Pre-Controlled PTE < 250 tpy</li>
- SO2: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy</li>
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy</li>

#### 2. Nonattainment New Source Review (NNSR)

[Not Applicable]

This rule <u>does not apply</u>. The facility is in a county that is classified as Non-Attainment for Fine Particulates and as Attainment for all other criteria pollutants. The facility qualifies as an "NNSR Natural Minor Source" as follows:

- PM10/2.5: NNSR Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>
- NOx: NNSR Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>
- SO2: NNSR Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>

#### 3. Major Source of Hazardous Air Pollutants (HAPs)

[Not Applicable]

This rule does not apply. The facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Individual HAPs < 10 tpy</li>
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy</li>

#### 4. Title V Operating Permit

[Not Applicable]

This rule <u>does not apply</u>. With the requested Federally Enforceable Limits (FEL), the facility qualifies as a "Title V Synthetic Minor Source" as follows:

- NOx: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>
- CO: Title V Synthetic Minor Source with Controlled PTE < 100 tpy</li>
- VOC: Title V Synthetic Minor Source with Controlled PTE < 100 tpy</li>
- SO2: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>
- PM10/2.5: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy</li>
- Each HAP: Title V Synthetic Minor Source with Controlled Individual HAPs PTE < 10 tpy</li>

Total HAPs: Title V Synthetic Minor Source with Controlled PTE < 25 tpy</li>

#### B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

#### 1. NSPS A, General Provisions

40CFR§60.1-§60.19

[Applicable]

This rule <u>does apply</u> to all sources subject to an NSPS (unless a specific provision is excluded within the source NSPS). Requirements include monitoring, recordkeeping and reporting.

#### 2. NSPS Dc, Steam Generating Units

40CFR§60.40c-§60.48c

[Not Applicable]

This rule <u>does not apply</u> to any of the heaters because each has a maximum design heat input capacity < 10 MMBtu/hr (§60.40c(a)).

#### 3. NSPS Kb, Volatile Organic Liquid Storage Vessels

40CFR§60.110b-§60.117b

[Not Applicable]

This rule <u>does not apply</u> because each storage vessel has a design capacity < 75 m3 (19,813 gal, 472 bbl) (§60.110b(a)).

#### 4. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary gas turbine at the facility (§60.330).

#### 5. NSPS KKK, Leaks from Natural Gas Processing Plants

40CFR§60.630-§60.636

[Not Applicable]

This rule <u>does not apply</u> because the facility is not located at a natural gas processing plant that is engaged in the extraction of natural gas liquids from field gas (§60.630(e)).

#### 6. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions

40CFR§60.640-§60.648

[Not Applicable]

This rule <u>does not apply</u> because there is no gas sweetening operation at the facility (§60.640(a)).

#### 7. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines

40CFR§60.4200-§60.4219

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary compression ignition engine at the facility (§60.4200(a)).

#### 8. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE)

40CFR§60.4230-§60.4248

[Applicable]

This rule <u>does apply</u> to the 1,380 bhp Caterpillar G3516B compressor engines (CE-01 and CE-02) because the maximum engine power is greater than 500 HP and each engine was manufactured on or after 07/01/07 (§60.4230(a)(4)(i)). The rule <u>does apply</u> to the 203 bhp Caterpillar G3306B TA compressor engine (CE-03) because the maximum engine power is less than 500 HP and the engine was manufactured after 07/01/08 (§60.4230(a)(4)(iii)).

Requirements include NOx, CO and VOC emission limits (§60.4233(e-f)); operating limits (§60.4243); performance testing (§60.4244); and notification and recordkeeping (§60.4245).

#### 9. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility (§60.4305).

#### 10. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

[Applicable]

The facility is located within the natural gas production segment as it is between the wellhead and the point of custody transfer to the natural gas transmission and storage segment, not including natural gas processing plants.

This rule <u>does apply</u> to each reciprocating compressor driven by the Caterpillar G3516B engines and Caterpillar G3306B TA engine, as well as the two new electrically driven gas compressors, because each commenced construction after 08/23/11 (§60.5360 and §60.5365(c)). Requirements include replacing rod packing systems on a specified schedule (§60.5385(a)) and notification, monitoring, recordkeeping and reporting (§60.5410(c), §60.5415(c), §60.5420(b)(1) and §60.5420(b)(4)).

This rule <u>does not apply</u> to the produced water storage vessel (tank) because the tank does not have the potential to emit  $VOC \ge 6$  tpy ( $\S 60.5420$ ).

This rule <u>does not apply</u> to the group of all equipment, except compressors, within a process unit (§60.5365(f)).

This rule <u>does not apply</u> to the pneumatic controllers because their bleed rate is < 6 scfh, located between the wellhead and point of custody transfer, and not located at a natural gas processing plant (§60.5365(d)(i)).

#### 11. NESHAP A, General Provisions (aka MACT)

40CFR§63.1-§63.16

[Applicable]

This rule <u>does apply</u> to all sources subject to an NESHAP. Requirements include notification, monitoring, and recordkeeping.

#### 12. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

[Applicable]

This rule <u>does apply</u> to the triethylene glycol (TEG) dehydrators. However, because each TEG dehydrator will have an actual annual average flowrate of natural gas < 3 MMscfd or actual annual average benzene emissions < 0.9 megagrams per year, they are exempt from all requirements except to maintain records of actual annual average flowrate of natural gas or actual annual average benzene emissions (as appropriate) to demonstrate continuing exemption status (§63.764(e)(1)).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

#### 13. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

#### 14. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

[Not Applicable]

This rule does not apply as the facility is not a major HAP source (§63.6085).

#### 15. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE)

40CFR§63.6580-§63.6675

[Applicable]

This rule <u>does apply</u> to the Caterpillar G3516B compressor engines and Caterpillar G3306B TA engine; however, because each engine is "new"; i.e., commenced construction or reconstruction on or after 06/12/06 (§63.6590(a)(2)(iii)), the only requirement is compliance with 40CFR§60.4230-§60.4248 (NSPS JJJJ) for Spark Ignition Internal Combustion Engines.

## 16. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480-§63.7575

[Not Applicable]

This rule does not apply as the facility is not a major HAP source (§63.7485).

## **17. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers – Area Sources**40CFR§63.11193–§63.11237 [Not Applicable]

This rule <u>does not apply</u> as there are no industrial, commercial or institutional boilers at the facility. §63.11237 defines a "boiler" as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water. There are no "boilers" as defined in NESHAP JJJJJJ at the facility.

#### 18. Chemical Accident Prevention Provisions

40CFR§68.1-§68.220 [Not Applicable]

This rule <u>does not apply</u> because the facility does not store more than a threshold quantity of a regulated substance in a process, as determined under § 68.115.

#### 19. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

[Not Applicable]

This rule <u>does not apply</u> because the facility is not major source that is required to obtain a part 70 or 71 (Title V) permit.

#### 20. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Not Applicable]

This rule does not apply. The facility does not have the potential to emit  $\geq$  25,000 metric ton/yr (27,558 tpy) of CO2e/yr from all stationary fuel combustion sources combined ( $\S98.2(a)$ ).

#### C. Applicability of Source Aggregation

For New Source Review (NSR) and Title V permitting, the three-part regulatory criteria to determine whether emissions from two or more facilities should be aggregated and treated as a single source is whether the activities:

- i) Belong to the same industrial grouping; and
- ii) Are located on one or more contiguous or adjacent properties; and
- iii) Are under control of the same person (or persons under common control).

#### i) Same Industrial Grouping

The subject facility shares the same two-digit major SIC code of 13 as the upstream gas production wells and other Williams' facilities.

#### ii) Contiguous or Adjacent

The determination of whether two or more facilities are "contiguous" or "adjacent" is made on a case-by-case basis. This determination is proximity based, and it is important to focus on this criterion and whether two contiguous or adjacent facilities, considered as a single source, meet the common sense notion of a plant. The functional interrelationship of the two or more facilities is not a relevant inquiry in determining whether the facilities are "contiguous" or "adjacent."

Neither West Virginia nor federal regulations define the terms "contiguous" or "adjacent." It is clear, however, that the determination of whether two or more facilities are "contiguous" or "adjacent" is based on the plain meaning of the terms "adjacent" and "contiguous", which consider the physical distance between the facilities. The term contiguous is defined in the dictionary as being in actual contact; touching along a boundary or at a point. The term adjacent" is defined in the dictionary as not distant, nearby, having a common endpoint or border.

The closest Williams-owned facility to the Conner Compressor Station is the Oak Grove Gas Plant, which is located 2.9 miles away. The Oak Grove Gas Plant does not meet the common sense definition of being "contiguous" with or "adjacent" to the Conner Compressor Station.

The Conner Compressor Station compresses and dehydrates gas produced from upstream production wells located in northern West Virginia. The subject facility is located on a parcel that is adjacent to pre-existing upstream production wellpads operated by Chevron and Consol-Noble and is located less than ½ mile from those wellpads.

The location of the subject facility was chosen because of suitable characteristics for construction and operation, such as the availability of a reasonably flat grade and accessibility for large trucks and equipment. Williams' business model is to construct scalable capacity that contemplates additional production from multiple operators and the initial configuration is merely a foundation for additional opportunities in the area. The subject facility does not need to be located in the immediate vicinity of the upstream wells in order to operate properly. Had suitable land been available elsewhere, the subject facility could have been located farther from the upstream wells and could theoretically be moved farther from the wells without affecting operations. Therefore, despite the fact that the subject facility is located in close proximity to one or many upstream production sources, aggregation of the subject facility with upstream wells does not meet the common sense notion of a plant.

#### iii) Common Control

Williams OVM operates under its parent company The Williams Companies, Inc. (Williams) and is the sole operator of the subject facility. The closest Williams-operated facility to the subject facility is the Oak Grove Gas Plant, located approximately 2.9 miles away. This facility is the closest to Conner to have common ownership but it is not "contiguous" with or "adjacent" to the Conner facility.

The production wells, including the Chevron and Consol-Noble wellpads, that send natural gas to the subject facility are owned and operated by other companies, which are unaffiliated with Williams. Williams has no ownership stake in the Chevron or Consol-Noble wellpads or in any production well or company in West Virginia that may send natural gas to the subject facility.

Furthermore, neither Williams OVM, nor Williams, exercise operational control over any equipment owned or operated by any natural gas producer upstream of the subject facility. All employees at the subject facility are under the exclusive direction of Williams and are not under the control of any other entity. Similarly, Williams has no authority over employees of the production wells. These companies operate wholly independent of one another. No employees are expected to shuttle back and forth between the subject facility and any production well.

At this time, contracts are in place for the subject facility to process natural gas produced from multiple upstream production wells located throughout the region. As future commercial opportunities are identified, the subject facility will potentially receive gas from other producers. Williams will not have ownership or control of any future wellhead facilities. The producers are, and will be responsible for, any decisions to produce or shut-in wellhead facilities and have no control over the equipment installed, owned, and operated by Williams. Similarly, Williams cannot control the installation or operation of any equipment located at a well site that may be considered an air contamination source.

For the reason above, it is clear that Williams does not have common control of any production wells including the Chevron and Consol-Noble wells.

#### **Summary**

The subject facility and the upstream production wells should not be aggregated and treated as a single source of emissions because the subject facility is not under common control with any of the upstream wells. Additionally, the subject facility and the upstream production wells, considered together, do not meet the common sense notion of a plant because the subject facility is expected to service multiple production wells and because the location of the facility was selected for reasons unrelated to the location of the production wells. Accordingly, the subject facility should not be aggregated with the upstream wells in determining major source or PSD status.

#### D. Applicability of State Regulations

The following State regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

## Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers 45CSR2

The rule <u>does apply</u> as the heaters and dehydrator reboilers have been determined to meet the definition of a "fuel burning unit" under 45CSR2 and are, therefore, subject to the applicable requirements therein. Specifically pursuant to 45CSR2, Section 3.1, each heater and dehydrator reboiler is subject to an opacity limit of 10% based on a six minute block average. Proper operation and maintenance of each unit (and use of natural gas as fuel) will keep the opacity of the units well below 10% during normal operations.

As none of the heaters have a maximum design heat input rating  $\geq$  10 MMBtu/hr, Sections 4 (emission standard), 5 (control of fugitive particulate matter), 6 (registration), 8 (testing, monitoring, recordkeeping, reporting) and 9 (startups, shutdowns, malfunctions) are not applicable.

## 2. Prevent and Control the Discharge of Air Pollutants into the Open Air which Causes or Contributes to an Objectionable Odor or Odors 45CSR4 [Applicable]

The rule <u>does apply</u> and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable. No odors have been deemed objectionable.

#### 3. Control of Air Pollution from Combustion of Refuse

45CSR6 [Not Applicable]

The rule <u>does not apply</u> as 45CSR6 establishes emission standards for particulate matter and requirements for activities involving incineration of refuse. There is no incineration of refuse conducted at site. Notwithstanding the above, it should be noted that the particulate matter and opacity standards of 45CSR6 are met through the combustion of clean burning methane/ethane.

#### 4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides

45CSR10 [Not Applicable]

This rule <u>does not apply</u> to any of the heaters because the Maximum Design Heat Input (MDHI) rating of each heater is < 10 MMBtu/hr.

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation 45CSR13
[Applicable]

The rule <u>does apply</u> as Williams OVM is seeking a NSR Modification Permit for the facility. Williams OVM has published the required Class I legal advertisement notifying the public of their permit application, and paid the appropriate application fee.

## 6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants

45CSR14 [Not Applicable]

The rule <u>does not apply</u> because the facility is not a major source of pollutants subject to Prevention of Significant Deterioration (PSD) rules.

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Applicable]

The rule <u>does apply</u> to this source by reference of §40CFR60 Subparts JJJJ and OOOO. Williams OVM is subject to the notification, testing, monitoring, recordkeeping and reporting requirements of these Subparts.

8. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contribute to Nonattainment

45CSR19 [Not Applicable]

The rule <u>does not apply</u>. Facility-wide emissions are below the nonattainment New Source Review thresholds of 100 TPY NOx and PM2.5 emissions.

#### 9. Regulation of Volatile Organic Compounds (VOC)

45CSR21 [Not Applicable]

This rule <u>does not apply</u> because the facility is not located in Putnam County, Kanawha County, Cabell County, Wayne County, or Wood County

#### 10. Air Quality Management Fees Program

45CSR22 [Applicable]

This rule <u>does apply</u>. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

#### 11. Prevent and Control Emissions of Toxic Air Pollutants

45CSR27 [Not Applicable]

This rule <u>does not apply</u> because equipment is used in the production and distribution of petroleum products is exempt, provided that the product contains no more than 5% benzene by weight (§45-22-2.4).

#### 12. Air Pollution Emissions Banking and Trading

45CSR28 [Not Applicable]

This rule <u>does not apply</u>. The facility does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

#### 13. Emission Statements for VOC and NOX

45CSR29 [Not Applicable]

This rule <u>does not apply</u> because facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

#### 14. Requirements for Operating Permits

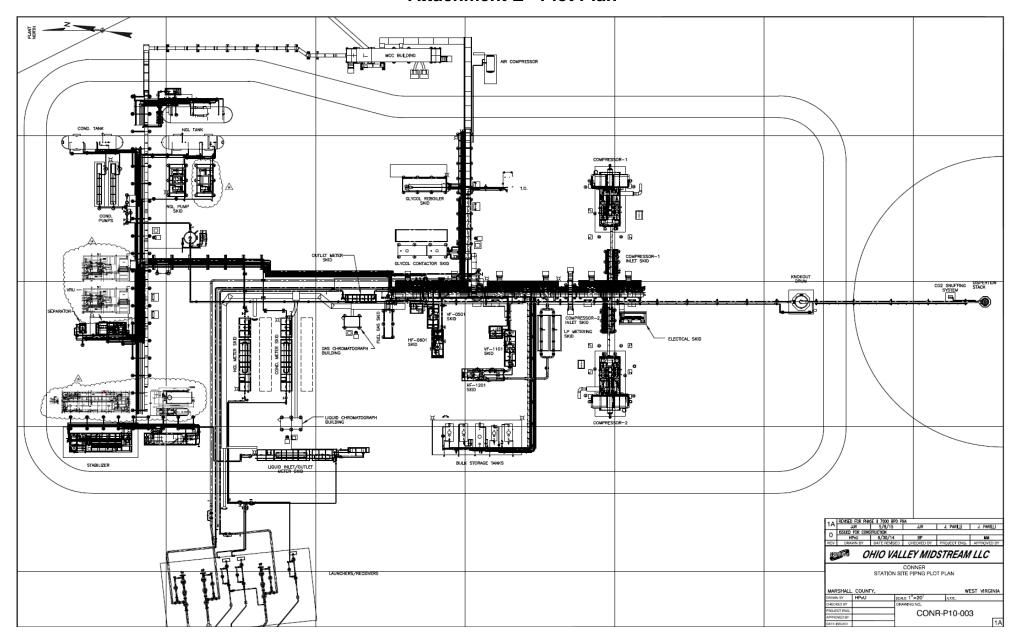
45CSR30 [Not Applicable]

This rule <u>does not apply</u> as the facility is a minor (or "deferred") source of all regulated pollutants.

#### 15. Emission Standards for Hazardous Air Pollutants (HAP)

45CSR34 [Not Applicable]

This rule <u>does not apply</u> because the provisions under Subparts HH and ZZZZ of 40 CFR Part 63 which apply to non-major area sources of hazardous air pollutants are excluded.


## ATTACHMENT E Plot Plan

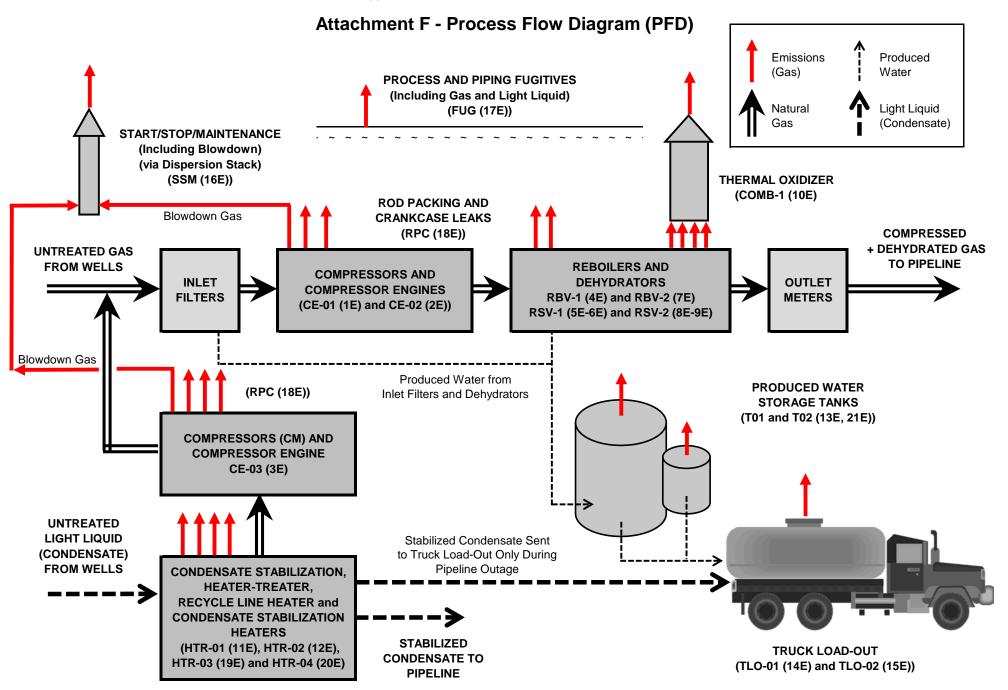
|   | Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/or sketch(es) showing the location of the perty on which the stationary source(s) is or is to be located as Attachment E." |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Plot Plan – OVM Conner CS                                                                                                                                                      |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |
|   |                                                                                                                                                                                |

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment E - Plot Plan**




#### **ATTACHMENT F**

### **Detailed Process Flow Diagram**

|   | Provide a <b>Detailed Process Flow Diagram(s)</b> showing each proposed or modified sions unit, emission point and control device as Attachment F." |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Process Flow Diagram (PFD) – OVM Conner CS                                                                                                          |
|   |                                                                                                                                                     |

#### CONNER COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit



#### **ATTACHMENT G**

#### **Process Description**

"23. Provide a Process Description as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). "

#### • Process Description

- A. Project Overview
- B. Compressor Engines
- C. Compressor Rod Packing and Crankcase Leaks
- D. Startup/Shutdown/Maintenance
- E. Triethylene Glycol (TEG) Dehydrators
- F. Triethylene Glycol (TEG) Reboilers
- G. Thermal Oxidizer
- H. Heaters
- Storage Tanks
- J. Truck Load-Out
- K. Piping and Equipment Fugitive Emissions

#### Williams Ohio Valley Midstream LLC

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 Modification Permit

## Attachment G PROCESS DESCRIPTION

#### A. Project Overview

Williams Ohio Valley Midstream LLC owns and operates the existing Conner Compressor Station located east of Roberts Ridge Road, approximately 2.3 miles south-southwest of Moundsville (See Appendix B – Site Location Map). The facility receives natural gas from local production wells then compresses and dehydrates the gas for delivery to a gathering pipeline. Additionally, raw field condensate is received at the site, stabilized and then sent offsite via pipeline.

#### B. Reciprocating Engines

Three (3) natural gas-fueled reciprocating engines are utilized at the facility. These engines drive a natural gas compressor to increase the pressure of the natural gas. Emissions result from the combustion of natural gas fuel.

#### C. Compressor Rod Packing and Crankcase Emissions

The compressor and engine operations result in emissions from the wear of mechanical joints, seals, and rotating surfaces over time.

#### D. Startup/Shutdown/Maintenance

During routine operation of the facility, the compressor engine will undergo periods of startup and shutdown. Often when the engine is shutdown, the natural gas contained within the compressor and associated piping is vented to atmosphere. Additionally, there will be other infrequent and (often) de-minimis emissions from various maintenance activities at the facility that are not necessarily associated with compressor blowdowns.

The SSM emissions are generally vented through a dispersion stack.

#### E. Tri-Ethylene Glycol (TEG) Dehydrators

Two (2) Triethylene Glycol (TEG) Dehydrators are utilized at the facility. Each dehydrator is comprised of a Contactor/Absorber Tower (no vented emissions), a Flash Tank, and a Regenerator/Still Vent.

The TEG Dehydrators are used to remove water vapor from the inlet wet gas stream to meet pipeline specifications. In the dehydration process, the wet inlet gas stream flows through a contactor tower where the gas is contacted with lean glycol. The lean glycol absorbs the water in the gas stream and becomes rich glycol laden with water and trace amounts of hydrocarbons.

The rich glycol is then routed to a flash tank where the glycol pressure is reduced to liberate the lighter end hydrocarbons (especially methane). Whenever practical, the lighter end

hydrocarbons are routed from the flash tank to the Reboiler for use as fuel; otherwise these off-gases are vented to a thermal oxidizer.

The rich glycol is then sent from the flash tank to the regenerator/still where the TEG is heated to drive off the water vapor and any remaining hydrocarbons. The off-gases from the regenerator/still are vented to a thermal oxidizer.

Once boiled, the glycol is returned to a lean state and used again in the process.

#### F. <u>Tri-Ethylene Glycol (TEG) Reboilers</u>

Tri-Ethylene Glycol (TEG) Reboilers are utilized to supply heat for the Triethylene Glycol (TEG) Regenerator/Stills.

#### G. Thermal Oxidizer

One 6.4 MMBtu/hr thermal oxidizer (COMB-1) with 99% VOC/HAPs destruction efficiency is used to control the dehydrator's flash gas and still vent vapor streams.

#### H. Heaters

One (1) 1.55 MMBtu/hr heater-treater (HTR-01), one (1) 2.55 MMBtu/hr condensate stabilizer heater (HTR-02), One (1) 1.66 MMBtu/hr station recycle line heater (HTR-03), and one (1) 9.7 MMBtu/hr condensate stabilizer heater (HTR-04) will be used at the site.

#### I. Storage Tanks

There are tanks at the facility used to store various materials, including produced water, lube oil, fresh and spent TEG, etc. All of these tanks, except for the produced water storage tanks, generate de-minimis (insignificant) emissions.

The produced water tanks receive liquids from the dehydrator and inlet separator. Liquids removed through the dehydration process are cooled, condensed and sent to the atmospheric storage tanks (T01 and T02).

A ProMax simulation of was completed to determine the presence of flash emissions from the storage tanks. The ProMax process simulation showed minimal tank flash emissions and these losses are included in the emission estimates.

#### J. Truck Load-Out

Produced water will be loaded into tanker trucks (TLO-01) and produce small quantities of VOC emissions. Additionally, under normal operating conditions, stabilized condensate will be sent offsite via pipeline; however, during unforeseen periods of pipeline outage, the stabilized condensate will be offloaded into tanker trucks (TLO-02), which will also create VOC emissions.

#### K. Piping and Equipment Fugitive Emissions

Piping and process equipment generate from leaks from different component types (connectors, valves, pumps, etc.) in gas-vapor service and light-liquid (condensate) service.

#### **ATTACHMENT H**

#### Material Safety Data Sheets (MSDS)

#### (And Representative Gas Analysis)

"24. Provide **Material Safety Data Sheets (MSDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a MSDS for each compound emitted to the air."

#### NATURAL GAS

- Extended Gas Analysis
- Composition Summary

#### • CONDENSATE

- Extended Liquids Analysis
- Composition Summary

#### MATERIAL SAFETY DATA SHEETS (MSDS):

- Wellhead Natural Gas
- Natural Gas Condensate (Light Liquid)
- Produced Water
- Triethylene Glycol (TEG)

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### Attachment H - Gas Analysis

#### **Inlet Natural Gas - Certificate of Analysis**



#### HOUSTON LABORATORIES

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

#### CERTIFICATE OF ANALYSIS

Number: 2009090563-001A

Gas Analytical Services Chuck Honaker PO Box 1028

Bridgeport, West Virginia 26330

Field: Station: Chief Oil & Gas

Cavenay #1-H

Station No.:

Sample Point: Cylinder#:

Comments:

Flowback's (Manek's)

3 Phase Sep.

Report Date: 10/01/09 Sample Of: Spot - Gas

Sample Date: Sample Conditions:

09/23/2009 14:35 165 psi ,N.G.° F

PO / Ref. No.:

| Comments: 3 Phase Sep             |         | NALYTICA        | AL DATA        |          |     |                      |
|-----------------------------------|---------|-----------------|----------------|----------|-----|----------------------|
| Components                        | Mol %   | Wt%             | GPM at         | Method   | Lab | Date                 |
|                                   |         |                 | 14,696 psia    | GPA-2286 | JL. | Analyzed<br>10/01/09 |
| · ·                               |         | 0.570           | 0.054          |          | JI. | 10/01/02             |
| Nitrogen                          | 0.465   | 0.578           | 0.051          | (MC14)   |     |                      |
| Methana                           | 71.426  | 50.915          | 12.078         |          |     |                      |
| Carbon Dloxide                    | 0.188   | 0.369           | 0.032          |          |     |                      |
| Ethane                            | 17.027  | 22,752          | 4.542          |          |     |                      |
| Propane<br>iso Butane             | 6.819   | 13,362<br>1,866 | 1.874<br>0.236 |          |     |                      |
| n-Butane                          | 1,974   | 5,097           | 0.236          |          |     |                      |
| n-eutano<br>Iso Pentano           | 0.366   | 1.173           | 0.021          |          |     |                      |
| n-Pentane                         | 0.503   | 1.613           | 0.134          |          |     |                      |
| i-Hexanes                         | 0.089   | 0.342           | 0.102          |          |     |                      |
| n-Hexane                          | 0.102   | 0.342           | 0.036          |          |     |                      |
| n-nexane<br>Benzene               | 0.002   | 0.006           | NIL            |          |     |                      |
|                                   |         |                 | 0.005          |          |     |                      |
| Cyclohexane                       | 0.014   | 0.052           | 0.005          |          |     |                      |
| Heptanes                          | 0.054   | 0.367<br>0.247  | 0.037          |          |     |                      |
| n-Heptane<br>Toluene              | 0.006   | 0.024           | 0.002          |          |     |                      |
| -Octanes                          | 0.003   | 0.024           | 0.002          |          |     |                      |
| n-Octanes<br>n-Octane             | 0.021   | 0.108           | 0.039          |          |     |                      |
| *e-Benzene                        | 0.001   | 0.004           | NIL            |          |     |                      |
| *m.o,&p-Xylene                    | 0.007   | 0.035           | 0.003          |          |     |                      |
| -m,o,sp-λyiene<br>I-Nonanes       | 0.007   | 0.165           | 0.003          |          |     |                      |
| n-Nonane                          | 0.029   | 0.165           | 0.016          |          |     |                      |
| i-Decenes                         | 0.007   | 0.085           | 0.004          |          |     |                      |
| n-Decane                          | 0.002   | 0.003           | 0.003          |          |     |                      |
| Undecanes                         | NIL     | 0.004           | NIL            |          |     |                      |
| Dodecanes                         | NIL     | NIL             | NIL            |          |     |                      |
| Tridecanes                        | NIL     | NIL             | NIL            |          |     |                      |
| Tetradecanes Plus                 | NIE     | NIL             | NIL            |          |     |                      |
| Totals                            | 100,000 | 100.000         | 19,977         |          |     |                      |
| Calculated Values                 | TOTAL   | C6+             | C7+            |          |     |                      |
| Molecular Weight                  | 22,504  | 100.402         | 108,752        |          |     |                      |
| Real Dry BTU @ 14,696 psla, 60 °F | 1350.1  | 5374.0          | 5742.7         |          |     |                      |
| Real Wet BTU @ 14.696 psia, 60 °F | 1327.4  | 5281.1          | 5643.4         |          |     |                      |
| Relative Density                  | 0.7795  | 3,4180          | 3.6782         |          |     |                      |
| Notativo Delibity                 |         |                 |                |          |     |                      |
|                                   | TOTAL   | C2+             | iC5+           |          |     |                      |
| GPM's at 14.696 psia, 60 °F       | 19.977  | 7.816           | 0.543          |          |     |                      |
| Compressibility Factor            | 0.9958  |                 |                |          |     |                      |
|                                   |         |                 |                |          |     |                      |

Hydrocarbon Laboratory Manager

#### CONNER COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

#### Attachment H - Gas Analysis

#### **Condensate - Certificate of Analysis**



Certificate of Analysis

Number: 1030-15040195-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Stephanie Poch Williams 200 Caiman Dr. Moundsville, WV 26041

Station Name: Conner Berger CRP

Method: GPA 2103M Cylinder No: 89304

Analyzed: 04/07/2015 10:08:43 by RR

Sampled By:

Sample Of: Liquid Spot Sample Date: 03/30/2015 11:00 Sample Conditions: 485 psig, @ 68 °F

Apr. 24, 2015

#### **Analytical Data**

| Components                  | Mol. %      | MW      | Wt. %   | Sp. Gravity | L.V. %  |  |
|-----------------------------|-------------|---------|---------|-------------|---------|--|
| Nitrogen                    | 0.016       | 28.013  | 0.005   | 0.807       | 0.004   |  |
| Methane                     | 1.781       | 16.043  | 0.314   | 0.300       | 0.705   |  |
| Carbon Dioxide              | 0.017       | 44.010  | 0.008   | 0.817       | 0.007   |  |
| Ethane                      | 7.225       | 30.069  | 2.388   | 0.356       | 4.521   |  |
| Propane                     | 12.264      | 44.096  | 5.945   | 0.507       | 7.907   |  |
| Iso-Butane                  | 2.850       | 58.122  | 1.821   | 0.563       | 2.183   |  |
| n-Butane                    | 11.713      | 58.122  | 7.483   | 0.584       | 8.641   |  |
| Iso-Pentane                 | 4.445       | 72.149  | 3.525   | 0.625       | 3.804   |  |
| n-Pentane                   | 7.949       | 72.149  | 6.304   | 0.631       | 6.743   |  |
| i-Hexanes                   | 3.624       | 85.500  | 3.405   | 0.666       | 3.449   |  |
| n-Hexane                    | 5.475       | 86.175  | 5.186   | 0.664       | 5.268   |  |
| 2,2,4-Trimethylpentane      | 0.018       | 114.231 | 0.023   | 0.697       | 0.022   |  |
| Benzene                     | 0.090       | 78.114  | 0.077   | 0.885       | 0.059   |  |
| Heptanes                    | 11.210      | 97.961  | 12.072  | 0.700       | 11.631  |  |
| Toluene                     | 0.504       | 92.141  | 0.510   | 0.872       | 0.394   |  |
| Octanes                     | 10.780      | 110.540 | 13.099  | 0.727       | 12.159  |  |
| Ethylbenzene                | 0.076       | 106.167 | 0.089   | 0.872       | 0.069   |  |
| Xylenes                     | 0.609       | 106.167 | 0.710   | 0.872       | 0.550   |  |
| Nonanes                     | 6.539       | 126.989 | 9.127   | 0.741       | 8.314   |  |
| Decanes Plus                | 12.815      | 198.141 | 27.909  | 0.799       | 23.570  |  |
|                             | 100.000     |         | 100.000 |             | 100.000 |  |
| Physical Properties         |             |         | Total   | C10+        |         |  |
| Specific Gravity at 60°F    |             | 0.      | 6746    | 0.7988      |         |  |
| API Gravity at 60°F         |             | 78      | 3.258   | 45.641      |         |  |
| Molecular Weight            |             | 90      | 0.976   | 198.141     |         |  |
| Pounds per Gallon (in Vacua | um)         | 5       | 5.624   | 6.660       |         |  |
| Pounds per Gallon (in Air)  |             | 5       | 5.618   | 6.652       |         |  |
| Cu. Ft. Vapor per Gallon @  | 14.696 psia | 23      | 3.460   | 12.755      |         |  |



Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

#### Williams Ohio Valley Midstream LLC (OVM)

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### Attachment H - Gas Analysis

## **Extended Gas Analysis Summary**

Gas Analysis for Caveney #1-H - Sampled 09/23/09

| Compound                 | CAS       | Formula | Molecular<br>Weight (MW) | Mole %<br>(M% = V%) | Mole Fraction<br>(M%/Sum-M%) | Weighted Sum<br>(MW*MF) | Weight %<br>(WS/Sum-WS) | lb/MMscf<br>(WS/UGC#) |
|--------------------------|-----------|---------|--------------------------|---------------------|------------------------------|-------------------------|-------------------------|-----------------------|
| Water                    | 109-86-4  | H2O     | 18.02                    |                     |                              |                         |                         |                       |
| Carbon Monoxide          | 630-08-0  | CO      | 28.01                    |                     |                              |                         |                         |                       |
| Nitrogen                 | 7727-37-9 | N2      | 28.01                    | 0.4650              | 0.00465                      | 0.1303                  | 0.5788                  | 343.26                |
| Oxygen                   | 7782-44-7 | O2      | 32.00                    |                     |                              |                         |                         |                       |
| Hydrogen Sulfide         | 2148-87-8 | H2S     | 34.09                    |                     |                              |                         |                         |                       |
| Carbon Dioxide           | 124-38-9  | CO2     | 44.01                    | 0.1880              | 0.00188                      | 0.0827                  | 0.3676                  | 218.03                |
| Methane*                 | 75-82-8   | CH4     | 16.04                    | 71.4260             | 0.71426                      | 11.4584                 | 50.9111                 | 30,194.92             |
| Ethane*                  | 74-84-0   | C2H6    | 30.07                    | 17.0270             | 0.17027                      | 5.1198                  | 22.7480                 | 13,491.63             |
| Propane**                | 74-98-6   | C3H8    | 44.10                    | 6.8190              | 0.06819                      | 3.0069                  | 13.3598                 | 7,923.60              |
| i-Butane**               | 75-28-5   | C4H10   | 58.12                    | 0.7220              | 0.00722                      | 0.4196                  | 1.8645                  | 1,105.82              |
| n-Butane**               | 106-97-8  | C4H10   | 58.12                    | 1.9740              | 0.019740                     | 1.1473                  | 5.0977                  | 3,023.40              |
| Cyclopentane**           | 287-92-3  | C5H10   | 70.10                    |                     |                              |                         |                         |                       |
| i-Pentane**              | 78-78-4   | C5H12   | 72.15                    | 0.3660              | 0.003660                     | 0.2641                  | 1.1733                  | 695.85                |
| n-Pentane**              | 109-66-0  | C5H12   | 72.15                    | 0.5030              | 0.005030                     | 0.3629                  | 1.6124                  | 956.32                |
| Cyclohexane**            | 110-82-7  | C6H12   | 84.16                    | 0.0140              | 0.000140                     | 0.0118                  | 0.0523                  | 31.05                 |
| Other Hexanes**          | 110-54-3  | C6H14   | 86.18                    | 0.0890              | 0.000890                     | 0.0767                  | 0.3408                  | 202.11                |
| Methylcyclohexanes**     | varies    | C7H14   | 98.19                    |                     |                              |                         |                         |                       |
| Heptanes**               | varies    | C7H16   | 100.20                   | 0.1360              | 0.001360                     | 0.1363                  | 0.6055                  | 359.11                |
| C8+ Heavies**            | varies    | C8+     | 130.00 est               | 0.0705              | 0.000705                     | 0.0916                  | 0.4072                  | 241.51                |
| Benzene***               | 71-43-2   | C6H6    | 78.11                    | 0.0020              | 0.000020                     | 0.0016                  | 0.0069                  | 4.12                  |
| Ethylbenzene***          | 100-41-4  | C8H10   | 106.17                   | 0.0010              | 0.000010                     | 0.0011                  | 0.0047                  | 2.80                  |
| n-Hexane***              | 110-54-3  | C6H14   | 86.18                    | 0.1020              | 0.001020                     | 0.0879                  | 0.3905                  | 231.63                |
| Toluene***               | 108-88-3  | C7H8    | 92.14                    | 0.0060              | 0.000060                     | 0.0055                  | 0.0246                  | 14.57                 |
| 2,2,4-Trimethylpentane** | 540-84-1  | C8H18   | 114.23                   | 0.0830              | 0.000830                     | 0.0948                  | 0.4212                  | 249.84                |
| Xylenes***               | 1330-20-7 | C8H10   | 106.17                   | 0.0070              | 0.000070                     | 0.0074                  | 0.0330                  | 19.58                 |

| Total:     | 100.00 | 1.0000 | 22.51 | 100.00 | 59,309 |
|------------|--------|--------|-------|--------|--------|
| THC:       | 99.35  | 0.9935 | 22.29 | 99.05  | 58,748 |
| Total CH4: | 71.43  | 0.7143 | 11.46 | 50.91  | 30,195 |
| Total VOC: | 10.89  | 0.1089 | 5.72  | 25.39  | 15,061 |
| Total HAP: | 0.20   | 0.0020 | 0.20  | 0.88   | 523    |

To be conservative, the following "worst-case" values were assumed:

| Compound                 | CAS       | Formula      | Representative Gas Analysis |         |           | Assumed "Worst-Case" Assumption (120%) |         |           |
|--------------------------|-----------|--------------|-----------------------------|---------|-----------|----------------------------------------|---------|-----------|
| Compound                 | CAS       | Formula      | Mole %                      | Wgt %   | lb/MMscf  | Mole %                                 | Wgt %   | lb/MMscf  |
| Carbon Dioxide           | 124-38-9  | CO2          | 0.1880                      | 0.3676  | 218.03    | 0.226                                  | 0.441   | 261.63    |
| Methane*                 | 75-82-8   | CH4          | 71.4260                     | 50.9111 | 30,194.92 | 100.000                                | 100.000 | 42,275.00 |
| Ethane*                  | 74-98-6   | C2H6         | 6.8190                      | 13.3598 | 7,923.60  | 8.183                                  | 16.032  | 9,508.33  |
| VOC**                    | Various   | C3 thru C10+ | 10.8945                     | 25.3946 | 15,061.31 | 13.073                                 | 30.473  | 18,073.57 |
| Benzene***               | 71-43-2   | C6H6         | 0.0020                      | 0.0069  | 4.12      | 0.0024                                 | 0.008   | 4.94      |
| Ethylbenzene***          | 100-41-4  | C8H10        | 0.0010                      | 0.0047  | 2.80      | 0.0012                                 | 0.006   | 3.36      |
| n-Hexane***              | 110-54-3  | C6H14        | 0.1020                      | 0.3905  | 231.63    | 0.1224                                 | 0.469   | 277.95    |
| Toluene***               | 108-88-3  | C7H8         | 0.0060                      | 0.0246  | 14.57     | 0.0072                                 | 0.029   | 17.48     |
| 2,2,4-Trimethylpentane** | 540-84-1  | C8H18        | 0.0830                      | 0.4212  | 249.84    | 0.0996                                 | 0.505   | 299.81    |
| Xylenes***               | 1330-20-7 | C8H10        | 0.0070                      | 0.0330  | 19.58     | 0.0084                                 | 0.040   | 23.50     |
| Total HAP***             | Various   | C6 thru C8   | 0.2010                      | 0.8810  | 522.53    | 0.2412                                 | 1.057   | 627.04    |

<sup>\*\*\* =</sup> also Hazardous Air Pollutant (EPA-HAP)
Pound "X"/scf = M% of "X" \* MW of "X" / UGC



Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Revision Date: 10/02/2013 Version: 1.0

#### SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY

<u>Product Identifier</u> <u>Product Form:</u> Mixture

Product Name: Wellhead Natural Gas

Synonyms: Wellhead Gas, Raw Gas, Methane, Residue Gas, Natural Gas Sweet, Marsh Gas, Fuel Gas, Petroleum Gas.

**Intended Use of the Product** 

Use of the Substance/Mixture: Fuel.

Name, Address, and Telephone of the Responsible Party

Company

Williams, Inc.

One Williams Center Tulsa, OK 74172, US T 800-688-7507

enterpriseehs@williams.com

**Emergency Telephone Number** 

Emergency number : 800-424-9300

#### **SECTION 2: HAZARDS IDENTIFICATION**

## **Classification of the Substance or Mixture**

Classification (GHS-US)

Simple Asphy

Flam. Gas 1 H220 Compressed gas H280

Label Elements
GHS-US Labeling

Hazard Pictograms (GHS-US)





Signal Word (GHS-US) : Danger

Hazard Statements (GHS-US) : H220 - Extremely flammable gas

H280 - Contains gas under pressure; may explode if heated

May displace oxygen and cause rapid suffocation

Precautionary Statements (GHS-US): P210 - Keep away from heat, sparks, open flames, hot surfaces. - No smoking.

P377 - Leaking gas fire: Do not extinguish, unless leak can be stopped safely.

P381 - Eliminate all ignition sources if safe to do so.

P403 - Store in a well-ventilated place.

P410+P403 - Protect from sunlight. Store in a well-ventilated place.

#### **Other Hazards**

Other Hazards Not Contributing to the Classification: Contains hydrogen sulfide. Hydrogen sulfide is a highly flammable, explosive gas under certain conditions, is a toxic gas, and may be fatal. Gas can accumulate in the headspace of closed containers, use caution when opening sealed containers. Heating the product or containers can cause thermal decomposition of the product and release hydrogen sulfide. Exposure may aggravate those with pre existing eye, skin, or respiratory conditions.

Unknown Acute Toxicity (GHS-US) Not available

## SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

#### Mixture

| Name    | Product identifier | % (w/w) | Classification (GHS-US) |
|---------|--------------------|---------|-------------------------|
| Methane | (CAS No) 74-82-8   | > 75    | Simple Asphy            |

10/02/2013 EN (English US) 1/17

#### Williams Ohio Valley Midstream LLC (OVM)

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## Attachment H - Gas Analysis

## **Condensate Analysis Summary**

## Sampled 02/27/15

| Compound                 | CAS       | Formula | Molecular<br>Weight (MW) | Mole %<br>(M% = V%) | Mole Fraction<br>(M%/Sum-M%) | Weighted Sum<br>(MW*MF) | Weight %<br>(WS/Sum-WS) | lb/MMscf<br>(WS/UGC#) |
|--------------------------|-----------|---------|--------------------------|---------------------|------------------------------|-------------------------|-------------------------|-----------------------|
| Water                    | 109-86-4  | H2O     | 18.02                    |                     |                              |                         |                         |                       |
| Carbon Monoxide          | 630-08-0  | CO      | 28.01                    |                     |                              |                         |                         |                       |
| Nitrogen                 | 7727-37-9 | N2      | 28.01                    | 0.0160              | 0.00016                      | 0.0045                  | 0.0053                  | 11.81                 |
| Oxygen                   | 7782-44-7 | O2      | 32.00                    |                     |                              |                         |                         |                       |
| Hydrogen Sulfide         | 2148-87-8 | H2S     | 34.09                    |                     |                              |                         |                         |                       |
| Carbon Dioxide           | 124-38-9  | CO2     | 44.01                    | 0.0170              | 0.00017                      | 0.0075                  | 0.0088                  | 19.72                 |
| Methane*                 | 75-82-8   | CH4     | 16.04                    | 1.7810              | 0.01781                      | 0.2857                  | 0.3369                  | 752.91                |
| Ethane*                  | 74-84-0   | C2H6    | 30.07                    | 7.2250              | 0.07225                      | 2.1725                  | 2.5614                  | 5,724.88              |
| Propane**                | 74-98-6   | C3H8    | 44.10                    | 12.2640             | 0.12264                      | 5.4079                  | 6.3761                  | 14,250.71             |
| i-Butane**               | 75-28-5   | C4H10   | 58.12                    | 2.8500              | 0.02850                      | 1.6565                  | 1.9531                  | 4,365.12              |
| n-Butane**               | 106-97-8  | C4H10   | 58.12                    | 11.7130             | 0.117130                     | 6.8079                  | 8.0267                  | 17,939.86             |
| Cyclopentane**           | 287-92-3  | C5H10   | 70.10                    |                     |                              |                         |                         |                       |
| i-Pentane**              | 78-78-4   | C5H12   | 72.15                    | 4.4450              | 0.044450                     | 3.2070                  | 3.7812                  | 8,451.03              |
| n-Pentane**              | 109-66-0  | C5H12   | 72.15                    | 7.9490              | 0.079490                     | 5.7351                  | 6.7619                  | 15,112.99             |
| Cyclohexane**            | 110-82-7  | C6H12   | 84.16                    |                     |                              |                         |                         |                       |
| Other Hexanes**          | 110-54-3  | C6H14   | 86.18                    | 3.6240              | 0.036240                     | 3.1230                  | 3.6821                  | 8,229.63              |
| Methylcyclohexanes**     | varies    | C7H14   | 98.19                    |                     |                              |                         |                         |                       |
| Heptanes**               | varies    | C7H16   | 100.20                   | 11.2100             | 0.112100                     | 11.2326                 | 13.2437                 | 29,599.92             |
| C8+ Heavies**            | varies    | C8+     | 130.00 est               | 30.1340             | 0.301340                     | 39.1742                 | 46.1879                 | 103,230.72            |
| Benzene***               | 71-43-2   | C6H6    | 78.11                    | 0.0900              | 0.000900                     | 0.0703                  | 0.0829                  | 185.25                |
| Ethylbenzene***          | 100-41-4  | C8H10   | 106.17                   | 0.0760              | 0.000760                     | 0.0807                  | 0.0951                  | 212.62                |
| n-Hexane***              | 110-54-3  | C6H14   | 86.18                    | 5.4750              | 0.054750                     | 4.7181                  | 5.5628                  | 12,433.00             |
| Toluene***               | 108-88-3  | C7H8    | 92.14                    | 0.5040              | 0.005040                     | 0.4644                  | 0.5475                  | 1,223.71              |
| 2,2,4-Trimethylpentane** | 540-84-1  | C8H18   | 114.23                   | 0.0180              | 0.000180                     | 0.0206                  | 0.0242                  | 54.18                 |
| Xylenes***               | 1330-20-7 | C8H10   | 106.17                   | 0.6090              | 0.006090                     | 0.6465                  | 0.7623                  | 1,703.76              |

| Total:     | 100.00 | 1.0000 | 84.81 | 100.00 | 223,502 |
|------------|--------|--------|-------|--------|---------|
| THC:       | 99.97  | 0.9997 | 84.80 | 99.99  | 223,470 |
| Total CH4: | 1.78   | 0.0178 | 0.29  | 0.34   | 753     |
| Total VOC: | 90.96  | 0.9096 | 82.34 | 97.09  | 216,992 |
| Total HAP: | 6.77   | 0.0677 | 6.00  | 7.07   | 15,813  |

To be conservative, the following "worst-case" values were assumed:

| Compound                 | CAS       | CAS Formula  |         | Representative Liquid Analysis |            |         | Assumed "Worst-Case" Assumption (120%) |            |  |
|--------------------------|-----------|--------------|---------|--------------------------------|------------|---------|----------------------------------------|------------|--|
| Compound                 | CAS       | Formula      | Mole %  | Wgt %                          | lb/MMscf   | Mole %  | Wgt %                                  | lb/MMscf   |  |
| Carbon Dioxide           | 124-38-9  | CO2          | 0.0170  | 0.0088                         | 19.72      | 0.020   | 0.011                                  | 23.66      |  |
| Methane*                 | 75-82-8   | CH4          | 1.7810  | 0.3369                         | 752.91     | 2.137   | 0.404                                  | 903.49     |  |
| Ethane*                  | 74-84-0   | C2H6         | 7.2250  | 2.5614                         | 5,724.88   | 8.670   | 3.074                                  | 6,869.85   |  |
| VOC**                    | Various   | C3 thru C10+ | 90.9610 | 97.0876                        | 216,992.49 | 100.000 | 100.000                                | 260,390.99 |  |
| Benzene***               | 71-43-2   | C6H6         | 0.0900  | 0.0829                         | 185.25     | 0.1080  | 0.099                                  | 222.31     |  |
| Ethylbenzene***          | 100-41-4  | C8H10        | 0.0760  | 0.0951                         | 212.62     | 0.0912  | 0.114                                  | 255.14     |  |
| n-Hexane***              | 110-54-3  | C6H14        | 5.4750  | 5.5628                         | 12,433.00  | 6.5700  | 6.675                                  | 14,919.60  |  |
| Toluene***               | 108-88-3  | C7H8         | 0.5040  | 0.5475                         | 1,223.71   | 0.6048  | 0.657                                  | 1,468.46   |  |
| 2,2,4-Trimethylpentane** | 540-84-1  | C8H18        | 0.0180  | 0.0242                         | 54.18      | 0.0216  | 0.029                                  | 65.02      |  |
| Xylenes***               | 1330-20-7 | C8H10        | 0.6090  | 0.7623                         | 1,703.76   | 0.7308  | 0.915                                  | 2,044.51   |  |
| Total HAP***             | Various   | C6 thru C8   | 6.7720  | 7.0749                         | 15,812.53  | 8.1264  | 8.490                                  | 18,975.04  |  |

<sup>\*\*\* =</sup> also Hazardous Air Pollutant (EPA-HAP)
Pound "X"/scf = M% of "X" \* MW of "X" / UGC

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

|                  |                    |           | Flam. Gas 1, H220                   |
|------------------|--------------------|-----------|-------------------------------------|
|                  |                    |           | Liquefied gas, H280                 |
| Ethane           | (CAS No) 74-84-0   | < 20      | Simple Asphy                        |
|                  |                    |           | Flam. Gas 1, H220                   |
|                  |                    |           | Liquefied gas, H280                 |
| Propane          | (CAS No) 74-98-6   | < 10      | Simple Asphy                        |
|                  |                    |           | Flam. Gas 1, H220                   |
|                  |                    |           | Liquefied gas, H280                 |
| Carbon dioxide   | (CAS No) 124-38-9  | < 10      | Simple Asphy                        |
|                  |                    |           | Compressed gas, H280                |
| Butane           | (CAS No) 106-97-8  | < 5       | Simple Asphy                        |
|                  |                    |           | Flam. Gas 1, H220                   |
|                  |                    |           | Liquefied gas, H280                 |
| Nitrogen         | (CAS No) 7727-37-9 | < 5       | Simple Asphy                        |
|                  |                    |           | Compressed gas, H280                |
| Hydrogen sulfide | (CAS No) 7783-06-4 | <= 0.0004 | Flam. Gas 1, H220                   |
|                  |                    |           | Liquefied gas, H280                 |
|                  |                    |           | Acute Tox. 2 (Inhalation:gas), H330 |
|                  |                    |           | Aquatic Acute 1, H400               |

Full text of H-phrases: see section 16

#### **SECTION 4: FIRST AID MEASURES**

#### **Description of First Aid Measures**

**General:** Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible). If frostbite or freezing occurs, immediately flush with plenty of lukewarm water to GENTLY warm the affected area. Do not use hot water. Do not rub affected area. Get immediate medical attention.

**Inhalation:** When symptoms occur: go into open air and ventilate suspected area. Remove to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER/doctor/physician if you feel unwell

**Skin Contact:** Remove contaminated clothing. Drench affected area with water for at least 15 minutes. Obtain medical attention if irritation persists. Thaw frosted parts with lukewarm water. Do not rub affected area.

**Eye Contact:** Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Obtain medical attention if irritation persists

**Ingestion:** Rinse mouth.Do NOT induce vomiting.Get immediate medical attention.

## Most Important Symptoms and Effects Both Acute and Delayed

General: May cause frostbite on contact with the liquid.Butane is an asphyxiant. Lack of oxygen can be fatal

**Inhalation:** Gas can be toxic as a simple asphyxiant by displacing oxygen from the air. Asphyxia by lack of oxygen: risk of death. May cause drowsiness or dizziness

Skin Contact: Contact with the liquid may cause cold burns/frostbite

**Eye Contact:** This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns

**Ingestion:** Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

**Chronic Symptoms:** Contains a small amount of Hydrogen Sulfide, symptoms of overexposure are headaches, dizziness, nausea, coughing, respiratory irritation, eye irritation, skin irritation, pain in the nose, and loss of consciousness. Heating of the product may release higher amounts of Hydrogen Sulfide (H<sub>2</sub>S).

#### Indication of Any Immediate Medical Attention and Special Treatment Needed

If exposed or concerned, get medical advice and attention.

#### **SECTION 5: FIREFIGHTING MEASURES**

## **Extinguishing Media**

Suitable Extinguishing Media: Foam, dry chemical, carbon dioxide, water spray, fog

Unsuitable Extinguishing Media: Do not use a heavy water stream. Use of heavy stream of water may spread fire

10/02/2013 EN (English US) 2/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

## **Special Hazards Arising From the Substance or Mixture**

Fire Hazard: Extremely flammable gas

Explosion Hazard: May form flammable/explosive vapor-air mixture. Heating may cause an explosion. Heat may build pressure,

rupturing closed containers, spreading fire and increasing risk of burns and injuries.

Reactivity: Hazardous reactions will not occur under normal conditions.

#### **Advice for Firefighters**

Precautionary Measures Fire: Exercise caution when fighting any chemical fire

**Firefighting Instructions:** Leaking gas fire: Do not extinguish, unless leak can be stopped safely. In case of leaking gas fire, eliminate all ignition sources if safe to do so. Use water spray or fog for cooling exposed containers. In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

**Protection During Firefighting:** Do not enter fire area without proper protective equipment, including respiratory protection. **Hazardous Combustion Products**: Carbon oxides (CO, CO<sub>2</sub>). Hydrocarbon, sulfur dioxide (SO<sub>2</sub>), and Hydrogen sulfide (H<sub>2</sub>S) fatal and irritating gases

Other information: Do not allow run-off from fire fighting to enter drains or water courses

**Reference to Other Sections** 

Refer to section 9 for flammability properties.

## **SECTION 6: ACCIDENTAL RELEASE MEASURES**

#### Personal Precautions, Protective Equipment and Emergency Procedures

**General Measures:** Use special care to avoid static electric charges. Eliminate every possible source of ignition. Keep away from heat/sparks/open flames/hot surfaces - No smoking. Avoid breathing (dust, vapor, mist, gas). Use only outdoors or in a well-ventilated area. Ruptured cylinders may rocket. Do not allow product to spread into the environment

#### For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protection equipment (PPE).

**Emergency Procedures:** Evacuate unnecessary personnel.

**For Emergency Personnel** 

**Protective Equipment:** Equip cleanup crew with proper protection.

Emergency Procedures: Ventilate area.

#### **Environmental Precautions**

Prevent entry to sewers and public waters. Avoid release to the environment

## Methods and Material for Containment and Cleaning Up

For Containment: Notify authorities if liquid enters sewers or public waters. Use only non-sparking tools

**Methods for Cleaning Up:** Clear up spills immediately and dispose of waste safely. Isolate area until gas has dispersed. Use water spray to disperse vapors. For water based spills contact appropriate authorities and abide by local regulations for hydrocarbon spills into waterways. Contact competent authorities after a spill

#### **Reference to Other Sections**

See heading 8, Exposure Controls and Personal Protection.

#### SECTION 7: HANDLING AND STORAGE

#### **Precautions for Safe Handling**

Additional Hazards When Processed: Handle empty containers with care because residual vapors are flammable.Extremely flammable gas.Do not pressurize, cut, or weld containers. Do not puncture or incinerate container.Liquid gas can cause frost-type burns. If stored under heat for extended periods or significantly agitated, this material might evolve or release hydrogen sulfide, a toxic, flammable gas, which can raise and widen this material's actual flammability limits and significantly lower its auto-ignition temperature. Hydrogen sulfide can be fatal.

**Hygiene Measures:** Handle in accordance with good industrial hygiene and safety procedures. Wash hands and other exposed areas with mild soap and water before eating, drinking, or smoking and again when leaving work. Do no eat, drink or smoke when using this product

Technical Measures: Proper grounding procedures to avoid static electricity should be followed. Comply with applicable regulations.

10/02/2013 EN (English US) 3/17

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

**Storage Conditions:** Store in a dry, cool and well-ventilated place. Keep container closed when not in use. Keep in fireproof place. Store in a well-ventilated place. Keep container tightly closed. Keep/Store away from extremely high or low temperatures, ignition sources, direct sunlight, incompatible materials. Store in original container.

Incompatible Materials: strong acids, Strong bases, Strong oxidizers, chlorine, Halogenated compounds

<u>Conditions for Safe Storage, Including Any Incompatibilities</u> Not available

**Specific End Use(s)** 

Fuel.

# SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

## **Control Parameters**

| Hydrogen sulfide (7783-06-4 | 1)                          |          |
|-----------------------------|-----------------------------|----------|
| USA ACGIH                   | ACGIH TWA (ppm)             | 1 ppm    |
| USA ACGIH                   | ACGIH STEL (ppm)            | 5 ppm    |
| USA OSHA                    | OSHA PEL (Ceiling) (ppm)    | 20 ppm   |
| USA NIOSH                   | NIOSH REL (ceiling) (mg/m3) | 15 mg/m³ |
| USA NIOSH                   | NIOSH REL (ceiling) (ppm)   | 10 ppm   |
| USA IDLH                    | US IDLH (ppm)               | 100 ppm  |
| Alberta                     | OEL Ceiling (mg/m³)         | 21 mg/m³ |
| Alberta                     | OEL Ceiling (ppm)           | 15 ppm   |
| Alberta                     | OEL TWA (mg/m³)             | 14 mg/m³ |
| Alberta                     | OEL TWA (ppm)               | 10 ppm   |
| British Columbia            | OEL Ceiling (ppm)           | 10 ppm   |
| Manitoba                    | OEL STEL (ppm)              | 5 ppm    |
| Manitoba                    | OEL TWA (ppm)               | 1 ppm    |
| New Brunswick               | OEL STEL (mg/m³)            | 21 mg/m³ |
| New Brunswick               | OEL STEL (ppm)              | 15 ppm   |
| New Brunswick               | OEL TWA (mg/m³)             | 14 mg/m³ |
| New Brunswick               | OEL TWA (ppm)               | 10 ppm   |
| Newfoundland & Labrador     | OEL STEL (ppm)              | 5 ppm    |
| Newfoundland & Labrador     | OEL TWA (ppm)               | 1 ppm    |
| Nova Scotia                 | OEL STEL (ppm)              | 5 ppm    |
| Nova Scotia                 | OEL TWA (ppm)               | 1 ppm    |
| Nunavut                     | OEL Ceiling (mg/m³)         | 28 mg/m³ |
| Nunavut                     | OEL Ceiling (ppm)           | 20 ppm   |
| Nunavut                     | OEL STEL (mg/m³)            | 21 mg/m³ |
| Nunavut                     | OEL STEL (ppm)              | 15 ppm   |
| Nunavut                     | OEL TWA (mg/m³)             | 14 mg/m³ |
| Nunavut                     | OEL TWA (ppm)               | 10 ppm   |
| Northwest Territories       | OEL Ceiling (mg/m³)         | 28 mg/m³ |
| Northwest Territories       | OEL Ceiling (ppm)           | 20 ppm   |
| Northwest Territories       | OEL STEL (mg/m³)            | 21 mg/m³ |
| Northwest Territories       | OEL STEL (ppm)              | 15 ppm   |
| Northwest Territories       | OEL TWA (mg/m³)             | 14 mg/m³ |
| Northwest Territories       | OEL TWA (ppm)               | 10 ppm   |
| Ontario                     | OEL STEL (ppm)              | 15 ppm   |
| Ontario                     | OEL TWA (ppm)               | 10 ppm   |
| Prince Edward Island        | OEL STEL (ppm)              | 5 ppm    |
| Prince Edward Island        | OEL TWA (ppm)               | 1 ppm    |
| Québec                      | VECD (mg/m³)                | 21 mg/m³ |
| Québec                      | VECD (ppm)                  | 15 ppm   |

10/02/2013 EN (English US) 4/17

# Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| Québec                    | VEMP (mg/m³)                        | 14 mg/m³             |
|---------------------------|-------------------------------------|----------------------|
| Québec                    | VEMP (mg/m²) VEMP (ppm)             | 10 ppm               |
|                           |                                     |                      |
| Saskatchewan Saskatchewan | OEL STEL (ppm) OEL TWA (ppm)        | 15 ppm<br>10 ppm     |
| Yukon                     | OEL TWA (ppin)  OEL STEL (mg/m³)    | 27 mg/m³             |
| Yukon                     | OEL STEL (IIIg/III ) OEL STEL (ppm) | 15 ppm               |
| Yukon                     | OEL TWA (mg/m³)                     | 15 mg/m <sup>3</sup> |
| Yukon                     | OEL TWA (IIIg/III ) OEL TWA (ppm)   | 10 ppm               |
|                           | OEL TWA (ppili)                     | 10 ppm               |
| Propane (74-98-6)         | L                                   | T                    |
| USA ACGIH                 | ACGIH TWA (ppm)                     | 1000 ppm             |
| USA OSHA                  | OSHA PEL (TWA) (mg/m3)              | 1800 mg/m³           |
| USA OSHA                  | OSHA PEL (TWA) (ppm)                | 1000 ppm             |
| USA NIOSH                 | NIOSH REL (TWA) (mg/m3)             | 1800 mg/m³           |
| USA NIOSH                 | NIOSH REL (TWA) (ppm)               | 1000 ppm             |
| USA IDLH                  | US IDLH (ppm)                       | 2100 ppm (10% LEL)   |
| Alberta                   | OEL TWA (ppm)                       | 1000 ppm             |
| British Columbia          | OEL TWA (ppm)                       | 1000 ppm             |
| Manitoba                  | OEL TWA (ppm)                       | 1000 ppm             |
| Newfoundland & Labrador   | OEL TWA (ppm)                       | 1000 ppm             |
| Nova Scotia               | OEL TWA (ppm)                       | 1000 ppm             |
| Ontario                   | OEL TWA (ppm)                       | 1000 ppm             |
| Prince Edward Island      | OEL TWA (ppm)                       | 1000 ppm             |
| Québec                    | VEMP (mg/m³)                        | 1800 mg/m³           |
| Québec                    | VEMP (ppm)                          | 1000 ppm             |
| Saskatchewan              | OEL STEL (ppm)                      | 1250 ppm             |
| Saskatchewan              | OEL TWA (ppm)                       | 1000 ppm             |
| Butane (106-97-8)         |                                     |                      |
| USA ACGIH                 | ACGIH TWA (ppm)                     | 1000 ppm             |
| USA NIOSH                 | NIOSH REL (TWA) (mg/m3)             | 1900 mg/m³           |
| USA NIOSH                 | NIOSH REL (TWA) (ppm)               | 800 ppm              |
| Alberta                   | OEL TWA (ppm)                       | 1000 ppm             |
| British Columbia          | OEL STEL (ppm)                      | 750 ppm              |
| British Columbia          | OEL TWA (ppm)                       | 600 ppm              |
| Manitoba                  | OEL TWA (ppm)                       | 1000 ppm             |
| New Brunswick             | OEL TWA (mg/m³)                     | 1900 mg/m³           |
| New Brunswick             | OEL TWA (ppm)                       | 800 ppm              |
| Newfoundland & Labrador   | OEL TWA (ppm)                       | 1000 ppm             |
| Nova Scotia               | OEL TWA (ppm)                       | 1000 ppm             |
| Nunavut                   | OEL STEL (mg/m³)                    | 2576 mg/m³           |
| Nunavut                   | OEL STEL (ppm)                      | 1000 ppm             |
| Nunavut                   | OEL TWA (mg/m³)                     | 1901 mg/m³           |
| Nunavut                   | OEL TWA (ppm)                       | 800 ppm              |
| Northwest Territories     | OEL STEL (mg/m³)                    | 2576 mg/m³           |
| Northwest Territories     | OEL STEL (ppm)                      | 1000 ppm             |
| Northwest Territories     | OEL TWA (mg/m³)                     | 1901 mg/m³           |
| Northwest Territories     | OEL TWA (ppm)                       | 800 ppm              |
| Ontario                   | OEL TWA (ppm)                       | 800 ppm              |
| Prince Edward Island      | OEL TWA (ppm)                       | 1000 ppm             |
| Québec                    | VEMP (mg/m³)                        | 1900 mg/m³           |

10/02/2013 EN (English US) 5/17

# Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| Saskatchewan         OEL STEL (ppm)         1250 ppm           Saskatchewan         OEL TWA (ppm)         1000 ppm           Yukon         OEL STEL (ppm)         750 ppm           Yukon         OEL STEL (ppm)         750 ppm           Yukon         OEL TWA (ppm)         600 ppm           Yukon         OEL TWA (ppm)         5000 ppm           USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH TWA (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (ng/m3)         9000 mg/m²           USA OSHA         OSHA PEL (TWA) (ng/m3)         9000 mg/m²           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         50000 mg/m²           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         50000 ppm </th <th>Québec</th> <th>VEMP (ppm)</th> <th>800 ppm</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Québec                    | VEMP (ppm)       | 800 ppm                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------------------------------------|
| Saskatchewan         OEL TWA (ppm)         1000 ppm           Yukon         OEL STEL (mg/m²)         1600 mg/m²           Yukon         OEL TWA (mg/m²)         1400 mg/m²           Yukon         OEL TWA (mg/m²)         1400 mg/m²           Yukon         OEL TWA (ppm)         500 ppm           Carbon dioxide (124-38-9)         SOUD ppm         5000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m³)         30000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (STEU) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (STEU) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEU) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEU) (ppm)         30000 ppm           Alberta         OEL STEL (mg/m²)         44000 mg/m²           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL STEL (ppm)         30000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                  |                  |                                         |
| Yukon         QEL STEL (pm)         750 pm           Yukon         QEL TWA (mg/m²)         1400 mg/m³           Yukon         QEL TWA (ppm)         600 ppm           Vukon         QEL TWA (ppm)         600 ppm           Carbon dioxide (124-38-9)           USA ACGIH           USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH TWA (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (mg/m3)         9000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m3)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                                         |
| Yukon         OEL TWA (mg/m²)         150 ppm           Yukon         OEL TWA (mg/m²)         1400 mg/m²           Yukon         OEL TWA (ppm)         500 ppm           USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH STEL (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m³)         9000 mg/m³           USA OSHA         OSHA PEL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TVA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m³)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           Alberta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (mg/m³)         5000 ppm           Britsh Columbia         OEL TWA (ppm)         5000 ppm           Britsh Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Mari Kubarawik         OEL STEL (mg/m³)         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  | · ·                                     |
| Yukon         OEL TWA (ng/m²)         1400 mg/m²           Vukon         OEL TWA (ppm)         600 ppm           Carbon dioxide (124-38-9)         Carbon dioxide (124-38-9)           USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m³)         9000 mg/m³           USA OSHA         OSHA PEL (TWA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (mg/m³)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (mg/m³)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m³)         30000 ppm           USA IOLH         US DLH (ppm)         40000 ppm           USA IOLH         US ELTE (pfm)         30000 ppm           USA IOLH         US ELTE (pm)         30000 ppm           Alberta         OEL STEL (mg/m³)         5000 ppm           Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (mg/m³)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | , <u> </u>       |                                         |
| Vukon         OEL TWA (ppm)         600 ppm           Carbon dioxide (124-38-9)         USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH STEL (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m3)         9000 mg/m³           USA OSHA         OSHA PEL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           JABORTA         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                                         |
| Carbon dioxide (124-38-9)         USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH STEL (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m³)         9000 mg/m³           USA OSHA         OSHA PEL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (mg/m³)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA DLH         USI DLH (ppm)         40000 ppm           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  | <u> </u>                                |
| USA ACGIH         ACGIH TWA (ppm)         5000 ppm           USA ACGIH         ACGIH STEL (ppm)         30000 ppm           USA OSHA         OSHA PEL (TWA) (mg/m3)         9000 mg/m³           USA OSHA         OSHA PEL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (mg/m3)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         USI DUH (ppm)         40000 ppm           USA NIOSH         USI DUH (ppm)         40000 ppm           USA NIOSH         USI DUH (ppm)         40000 ppm           JABerta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (mg/m³)         9000 mg/m³           Alberta         OEL STEL (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         5000 ppm           Manitoba         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (mg/m³) <t< td=""><td>Carbon dioxide (124-38-9)</td><td> ,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbon dioxide (124-38-9) | ,                |                                         |
| USA ACGIH  USA OSHA  OSHA PEL (TWA) (mg/m3)  9000 mg/m³  9000 mg/m³  USA NIOSH  OSHA PEL (TWA) (mg/m3)  9000 mg/m³  USA NIOSH  NIOSH REL (TWA) (mg/m3)  9000 mg/m³  USA NIOSH  NIOSH REL (TWA) (ppm)  S000 ppm  S000 ppm  USA NIOSH  NIOSH REL (TWA) (ppm)  USA NIOSH  NIOSH REL (STEL) (mg/m³)  USA NIOSH  NIOSH REL (STEL) (mg/m³)  USA NIOSH  NIOSH REL (STEL) (mg/m³)  S0000 ppm  USA DEL TWA (mg/m³)  Alberta  OEL STEL (mg/m³)  Alberta  OEL STEL (mg/m³)  Alberta  OEL TWA (ppm)  S0000 ppm  OEL TWA (ppm)  S0000 ppm  British Columbia  OEL TWA (ppm)  S0000 ppm  Manitoba  OEL STEL (ppm)  New Brunswick  OEL TWA (mg/m³)  New Brunswick  OEL TWA (ppm)  S0000 ppm  New Fundanda & Labrador  New Goundland & Labrador  New Goundland & Labrador  New Goundland & Labrador  New Fundandar & Labrador  Nota Scotia  OEL TWA (ppm)  S0000 ppm  Nortwest Territories  OEL STEL (ppm)  Nortwest Territories  OEL STEL (ppm)  Northwest Territories  OEL STEL (ppm)  Northwest Territories  OEL STEL (ppm)  Northwest Territories  OEL TWA (mg/m³)  Northwest Territories  OEL TWA (mg/m³)  Northwest Territories  OEL TWA (mg/m³)  Northwest Territories  OEL TWA (ppm)  S0000 ppm  Prince Edward Island  OEL TWA (ppm)  S0000 ppm  Prince Edward Island  OEL TWA (ppm)  S0000 ppm  Ontario  OEL TWA (ppm)  S0000 ppm | •                         | ACGIH TWA (ppm)  | 5000 ppm                                |
| USA OSHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                  |                                         |
| USA NIOSH         OSHA PEL (TWA) (mg/m3)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (mg/m3)         9000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m3)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (mg/m3)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA IOLH         US IOLH (ppm)         40000 ppm           Alberta         OEL STEL (ng/m³)         54000 mg/m³           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (ng/m²)         9000 mg/m³           Alberta         OEL TWA (ng/m²)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ng/m³)         54000 mg/m³           New Brunswick         OEL STEL (ng/m³)         54000 mg/m³           New Brunswick         OEL STEL (ng/m³)         30000 ppm           New Brunswick         OEL TWA (ng/m³)         9000 mg/m³           New Brunswick         OEL TWA (ng/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  | · · ·                                   |
| USA NIOSH         NIOSH REL (TWA) (mg/m3)         9000 mg/m³           USA NIOSH         NIOSH REL (TWA) (ppm)         5000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA DILH         US IDLH (ppm)         40000 ppm           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (mg/m²)         9000 mg/m²           Alberta         OEL TWA (ppm)         5000 ppm           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | , , , , ,        |                                         |
| USA NIOSH         NIOSH REL (STEL) (mg/m3)         5000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m3)         54000 mg/m³           USA NIOSH         NIOSH REL (STEL) (mg/m²)         30000 ppm           USA DLH         US IDLH (ppm)         40000 ppm           Alberta         OEL STEL (mg/m²)         54000 mg/m³           Alberta         OEL TWA (mg/m²)         9000 mg/m³           Alberta         OEL TWA (mg/m²)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m²)         54000 mg/m²           New Brunswick         OEL STEL (mg/m²)         30000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Fundidland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (mg/m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                  |                                         |
| USA NIOSH         NIOSH REL (STEL) (pmm)         30000 ppm           USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA IDLH         US IDLH (ppm)         40000 ppm           Alberta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (pmm)         5000 ppm           New Foundland & Labrador         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | , , , , , ,      |                                         |
| USA NIOSH         NIOSH REL (STEL) (ppm)         30000 ppm           USA IDLH         US IDLH (ppm)         40000 ppm           Alberta         OEL STEL (mg/m²)         54000 mg/m³           Alberta         OEL TWA (mg/m²)         9000 mg/m²           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         5000 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                                         |
| USA IDLH         US IDLH (ppm)         40000 ppm           Alberta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           Mew Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Foundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         27000 mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | , , , , , ,      |                                         |
| Alberta         OEL STEL (mg/m³)         54000 mg/m³           Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL TWA (ppm)         30000 ppm           Manitoba         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nunavut         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL STEL (ppm)         9000 mg/m³ <t< td=""><td></td><td>, , , , , ,</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | , , , , , ,      |                                         |
| Alberta         OEL STEL (ppm)         30000 ppm           Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Foundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                                         |
| Alberta         OEL TWA (mg/m³)         9000 mg/m³           Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Funswick         OEL TWA (mpm)         5000 ppm           New Funswick         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                  | <u>.</u>                                |
| Alberta         OEL TWA (ppm)         5000 ppm           British Columbia         OEL STEL (ppm)         15000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         9000 mg/m³           Nunavut         OEL STEL (mg/m³)         9000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                  | • • • • • • • • • • • • • • • • • • • • |
| British Columbia         OEL STEL (ppm)         15000 ppm           British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL TWA (ppm)         30000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories </td <td></td> <td></td> <td><u> </u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                  | <u> </u>                                |
| British Columbia         OEL TWA (ppm)         5000 ppm           Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL STEL (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Grunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         30000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  | ···                                     |
| Manitoba         OEL STEL (ppm)         30000 ppm           Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (mg/m³)         54000 mg/m³           New Brunswick         OEL TWA (mg/m³)         30000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL TWA (ppm)         5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ** * *           |                                         |
| Manitoba         OEL TWA (ppm)         5000 ppm           New Brunswick         OEL STEL (pgm/m³)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (pgm/m³)         27000 mg/m³           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Orice Edward Island         OEL TWA (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | ** * * *         |                                         |
| New Brunswick         OEL STEL (pgm)         54000 mg/m³           New Brunswick         OEL STEL (ppm)         30000 ppm           New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Orice Edward Island         OEL TWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                  |                                         |
| New Brunswick         OEL TWA (mg/m³)         30000 ppm           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL STWA (ppm)         5000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                  | · ·                                     |
| New Brunswick         OEL TWA (mg/m³)         9000 mg/m³           New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Ortario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  | <u> </u>                                |
| New Brunswick         OEL TWA (ppm)         5000 ppm           Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New Brunswick             |                  | · · ·                                   |
| Newfoundland & Labrador         OEL STEL (ppm)         30000 ppm           Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | ,                |                                         |
| Newfoundland & Labrador         OEL TWA (ppm)         5000 ppm           Nova Scotia         OEL TWA (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Newfoundland & Labrador   |                  |                                         |
| Nova Scotia         OEL STEL (ppm)         30000 ppm           Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Newfoundland & Labrador   | 1                |                                         |
| Nova Scotia         OEL TWA (ppm)         5000 ppm           Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nova Scotia               |                  | 30000 ppm                               |
| Nunavut         OEL STEL (mg/m³)         27000 mg/m³           Nunavut         OEL STEL (ppm)         15000 ppm           Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nova Scotia               | OEL TWA (ppm)    |                                         |
| Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nunavut                   |                  |                                         |
| Nunavut         OEL TWA (mg/m³)         9000 mg/m³           Nunavut         OEL TWA (ppm)         5000 ppm           Northwest Territories         OEL STEL (mg/m³)         27000 mg/m³           Northwest Territories         OEL STEL (ppm)         15000 ppm           Northwest Territories         OEL TWA (mg/m³)         9000 mg/m³           Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (mg/m³)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nunavut                   | OEL STEL (ppm)   | 15000 ppm                               |
| Northwest TerritoriesOEL STEL (mg/m³)27000 mg/m³Northwest TerritoriesOEL STEL (ppm)15000 ppmNorthwest TerritoriesOEL TWA (mg/m³)9000 mg/m³Northwest TerritoriesOEL TWA (ppm)5000 ppmOntarioOEL STEL (ppm)30000 ppmOntarioOEL TWA (ppm)5000 ppmPrince Edward IslandOEL STEL (ppm)30000 ppmPrince Edward IslandOEL TWA (ppm)5000 ppmQuébecVECD (mg/m³)54000 mg/m³QuébecVECD (ppm)30000 ppmQuébecVEMP (mg/m³)9000 mg/m³QuébecVEMP (mg/m³)5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nunavut                   |                  |                                         |
| Northwest TerritoriesOEL STEL (ppm)15000 ppmNorthwest TerritoriesOEL TWA (mg/m³)9000 mg/m³Northwest TerritoriesOEL TWA (ppm)5000 ppmOntarioOEL STEL (ppm)30000 ppmOntarioOEL TWA (ppm)5000 ppmPrince Edward IslandOEL STEL (ppm)30000 ppmPrince Edward IslandOEL TWA (ppm)5000 ppmQuébecVECD (mg/m³)54000 mg/m³QuébecVECD (ppm)30000 ppmQuébecVEMP (mg/m³)9000 mg/m³QuébecVEMP (mg/m³)5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nunavut                   | OEL TWA (ppm)    | 5000 ppm                                |
| Northwest TerritoriesOEL TWA (mg/m³)9000 mg/m³Northwest TerritoriesOEL TWA (ppm)5000 ppmOntarioOEL STEL (ppm)30000 ppmOntarioOEL TWA (ppm)5000 ppmPrince Edward IslandOEL STEL (ppm)30000 ppmPrince Edward IslandOEL TWA (ppm)5000 ppmQuébecVECD (mg/m³)54000 mg/m³QuébecVECD (ppm)30000 ppmQuébecVEMP (mg/m³)9000 mg/m³QuébecVEMP (mg/m³)5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Northwest Territories     | OEL STEL (mg/m³) | 27000 mg/m³                             |
| Northwest Territories         OEL TWA (ppm)         5000 ppm           Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Northwest Territories     | OEL STEL (ppm)   | 15000 ppm                               |
| Ontario         OEL STEL (ppm)         30000 ppm           Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Northwest Territories     | OEL TWA (mg/m³)  | 9000 mg/m³                              |
| Ontario         OEL TWA (ppm)         5000 ppm           Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Northwest Territories     | OEL TWA (ppm)    | 5000 ppm                                |
| Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ontario                   | OEL STEL (ppm)   | 30000 ppm                               |
| Prince Edward Island         OEL STEL (ppm)         30000 ppm           Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ontario                   | OEL TWA (ppm)    | 5000 ppm                                |
| Prince Edward Island         OEL TWA (ppm)         5000 ppm           Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prince Edward Island      |                  |                                         |
| Québec         VECD (mg/m³)         54000 mg/m³           Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prince Edward Island      | OEL TWA (ppm)    | · · ·                                   |
| Québec         VECD (ppm)         30000 ppm           Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Québec                    |                  |                                         |
| Québec         VEMP (mg/m³)         9000 mg/m³           Québec         VEMP (ppm)         5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                  | <u>.</u>                                |
| QuébecVEMP (ppm)5000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | ** ** **         |                                         |
| Saskatchewan OEL STEL (ppm) 30000 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Québec                    | VEMP (ppm)       | 5000 ppm                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Saskatchewan              | OEL STEL (ppm)   | 30000 ppm                               |

10/02/2013 EN (English US) 6/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| Saskatchewan            | OEL TWA (ppm)    | 5000 ppm    |
|-------------------------|------------------|-------------|
| Yukon                   | OEL STEL (mg/m³) | 27000 mg/m³ |
| Yukon                   | OEL STEL (ppm)   | 15000 ppm   |
| Yukon                   | OEL TWA (mg/m³)  | 9000 mg/m³  |
| Yukon                   | OEL TWA (ppm)    | 5000 ppm    |
| Nitrogen (7727-37-9)    |                  |             |
| Methane (74-82-8)       |                  |             |
| USA ACGIH               | ACGIH TWA (ppm)  | 1000 ppm    |
| British Columbia        | OEL TWA (ppm)    | 1000 ppm    |
| Manitoba                | OEL TWA (ppm)    | 1000 ppm    |
| Newfoundland & Labrador | OEL TWA (ppm)    | 1000 ppm    |
| Nova Scotia             | OEL TWA (ppm)    | 1000 ppm    |
| Ontario                 | OEL TWA (ppm)    | 1000 ppm    |
| Prince Edward Island    | OEL TWA (ppm)    | 1000 ppm    |
| Saskatchewan            | OEL STEL (ppm)   | 1250 ppm    |
| Saskatchewan            | OEL TWA (ppm)    | 1000 ppm    |
| Ethane (74-84-0)        |                  |             |
| USA ACGIH               | ACGIH TWA (ppm)  | 1000 ppm    |
| Alberta                 | OEL TWA (ppm)    | 1000 ppm    |
| British Columbia        | OEL TWA (ppm)    | 1000 ppm    |
| Manitoba                | OEL TWA (ppm)    | 1000 ppm    |
| Newfoundland & Labrador | OEL TWA (ppm)    | 1000 ppm    |
| Nova Scotia             | OEL TWA (ppm)    | 1000 ppm    |
| Ontario                 | OEL TWA (ppm)    | 1000 ppm    |
| Prince Edward Island    | OEL TWA (ppm)    | 1000 ppm    |
| Saskatchewan            | OEL STEL (ppm)   | 1250 ppm    |
| Saskatchewan            | OEL TWA (ppm)    | 1000 ppm    |
|                         |                  |             |

## **Exposure Controls**

**Appropriate Engineering Controls:** Gas detectors should be used when flammable gases/vapours may be released. Ensure adequate ventilation, especially in confined areas. Proper grounding procedures to avoid static electricity should be followed. Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Use explosion-proof equipment

**Personal Protective Equipment:** Protective goggles. Protective clothing. Respiratory protection of the dependent type. Insulated gloves









Materials for Protective Clothing: Chemically resistant materials and fabrics. Wear fire/flame resistant/retardant clothing

Hand Protection: Wear chemically resistant protective gloves. Insulated gloves

**Eye Protection:** Chemical goggles or face shield.

Skin and Body Protection: Not available

**Respiratory Protection:** Use a NIOSH-approved self-contained breathing apparatus whenever exposure may exceed established

Occupational Exposure Limits.

**Thermal Hazard Protection:** Wear suitable protective clothing. **Other Information:** When using, do not eat, drink or smoke.

## SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

**Information on Basic Physical and Chemical Properties** 

Physical State : Gas

10/02/2013 EN (English US) 7/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

**Appearance** : Clear, Colorless gas

**Odor** : Contains Ethyl Mercaptan for leak detection, which has a skunk-like odor,

odorless.

**Odor Threshold** Not available Not available Relative Evaporation Rate (butylacetate=1) Not available **Melting Point** Not available **Freezing Point** Not available **Boiling Point** -157 °C (-250.6°F) **Flash Point** -187 °C (-304.6°F) **Auto-ignition Temperature** > 288 °C (>550.4°F) **Decomposition Temperature** Not available

Flammability (solid, gas) : Extremely flammable gas

Lower Flammable Limit : 3 %
Upper Flammable Limit : 17 %

Vapor Pressure : 40 mm Hg @25°C (77°F)

Relative Vapor Density at 20 °C : 0.6

**Relative Density** Not available **Specific Gravity** Not available Solubility Not available Log Pow Not available Log Kow Not available Viscosity, Kinematic Not available Viscosity, Dynamic Not available Explosion Data - Sensitivity to Mechanical Impact : Not available Explosion Data - Sensitivity to Static Discharge Not available

## **SECTION 10: STABILITY AND REACTIVITY**

**Reactivity:** Hazardous reactions will not occur under normal conditions.

Chemical Stability: Extremely flammable gas. Stable at standard temperature and pressure.

Possibility of Hazardous Reactions: Hazardous polymerization will not occur.

Conditions to Avoid: Direct sunlight. Extremely high or low temperatures. Open flame. Overheating. Heat. Sparks. Incompatible

materials. Avoid ignition sources

Incompatible Materials: Strong acids.Strong bases.Strong oxidizers.Halogenated compounds.Chlorine

Hazardous Decomposition Products: Carbon oxides (CO, CO2).hydrocarbons. Sulfur dioxide and hydrogen sulfide are fatal and

irritating gases.

#### **SECTION 11: TOXICOLOGICAL INFORMATION**

## **Information on Toxicological Effects - Product**

Acute Toxicity: Not classified
LD50 and LC50 Data Not available
Skin Corrosion/Irritation: Not classified
Serious Eye Damage/Irritation: Not classified
Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

**Teratogenicity:** Not available **Carcinogenicity:** Not classified

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): Not classified

10/02/2013 EN (English US) 8/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

**Aspiration Hazard:** Not classified

**Symptoms/Injuries After Inhalation:** Gas can be toxic as a simple asphyxiant by displacing oxygen from the air. Asphyxia by lack of oxygen: risk of death. May cause drowsiness or dizziness.

Symptoms/Injuries After Skin Contact: Contact with the liquid may cause cold burns/frostbite.

**Symptoms/Injuries After Eye Contact:** This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns.

**Symptoms/Injuries After Ingestion:** Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

## Information on Toxicological Effects - Ingredient(s)

#### LD50 and LC50 Data

| Hydrogen sulfide (7783-06-4) |                                |  |  |
|------------------------------|--------------------------------|--|--|
| LC50 Inhalation Rat (mg/l)   | 0.99 mg/l (Exposure time: 1 h) |  |  |
| ATE (gases)                  | 100.000 ppmV/4h                |  |  |
| Propane (74-98-6)            |                                |  |  |
| LC50 Inhalation Rat (mg/l)   | 658 mg/l (Exposure time: 4 h)  |  |  |
| Butane (106-97-8)            |                                |  |  |
| LC50 Inhalation Rat (mg/l)   | 658 mg/l (Exposure time: 4 h)  |  |  |
| Ethane (74-84-0)             |                                |  |  |
| LC50 Inhalation Rat (mg/l)   | 658 mg/l (Exposure time: 4 h)  |  |  |

## SECTION 12: ECOLOGICAL INFORMATION

## **Toxicity**

| Wellhead Natural Gas (CAS Mixture)                                             |                                                                                 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| LC50 Fish 1 0.002 mg/l (Exposure time: 96 h - Species: Coregonus clupeaformis) |                                                                                 |
| Hydrogen sulfide (7783-06-4)                                                   |                                                                                 |
| LC50 Fish 1                                                                    | 0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through]) |
| EC50 Daphnia 1                                                                 | 0.022 mg/l (Exposure time: 96 h - Species: Gammarus pseudolimnaeus)             |
| LC 50 Fish 2                                                                   | 0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])  |

## **Persistence and Degradability**

| Wellhead Natural Gas          |                  |
|-------------------------------|------------------|
| Persistence and Degradability | Not established. |

## **Bioaccumulative Potential**

| Wellhead Natural Gas         |                               |  |
|------------------------------|-------------------------------|--|
| Bioaccumulative Potential    | Not established.              |  |
| Hydrogen sulfide (7783-06-4) |                               |  |
| BCF fish 1                   | (no bioaccumulation expected) |  |
| Log Pow                      | 0.45 (at 25 °C)               |  |
| Propane (74-98-6)            |                               |  |
| Log Pow                      | 2.3                           |  |
| Butane (106-97-8)            |                               |  |
| Log Pow                      | 2.89                          |  |
| Carbon dioxide (124-38-9)    |                               |  |
| BCF fish 1                   | (no bioaccumulation)          |  |
| Log Pow                      | 0.83                          |  |
| Ethane (74-84-0)             |                               |  |
| Log Pow                      | <= 2.8                        |  |

10/02/2013 EN (English US) 9/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

## **Mobility in Soil** Not available

#### **Other Adverse Effects**

Other adverse effects: Can cause frost damage to vegetation. Has photochemical ozone creation potential.

Other Information: Avoid release to the environment.

#### **SECTION 13: DISPOSAL CONSIDERATIONS**

**Waste Disposal Recommendations:** Dispose of waste material in accordance with all local, regional, national, provincial, territorial and international regulations.

**Additional Information:** Handle empty containers with care because residual vapors are flammable. Empty gas cylinders should be returned to the vendor for recycling or refilling.

## **SECTION 14: TRANSPORT INFORMATION**

In Accordance With ICAO/IATA/DOT/TDG

UN Number
UN-No.(DOT): 1971
DOT NA no.: UN1971

**UN Proper Shipping Name DOT Proper Shipping Name** 

: Natural gas, compressed (with high methane content)

Hazard Labels (DOT) : 2.1 - Flammable gases



DOT Packaging Exceptions (49 CFR 173.xxx) : 306

DOT Packaging Non Bulk (49 CFR 173.xxx) : 302

DOT Packaging Bulk (49 CFR 173.xxx) : 302

**Additional Information** 

Emergency Response Guide (ERG) Number : 115

**Transport by sea** 

**DOT Vessel Stowage Location** : E - The material may be stowed "on deck" or "under deck" on a cargo vessel and on a

passenger vessel carrying a number of passengers limited to not more than the larger of 25 passengers, or one passenger per each 3 m of overall vessel length, but is prohibited from carriage on passenger vessels in which the limiting number of

passengers is exceeded.

**DOT Vessel Stowage Other** : 40 - Stow "clear of living quarters"

Air transport

DOT Quantity Limitations Passenger Aircraft/Rail (49 CFR 173.27) : Forbidden DOT Quantity Limitations Cargo Aircraft Only (49 CFR 175.75) : 150 kg

## **SECTION 15: REGULATORY INFORMATION**

SARA Section 302 Threshold Planning Quantity (TPQ)

**SARA Section 313 - Emission Reporting** 

## **US Federal Regulations**

| Wellhead Natural Gas                                                      |                                 |  |  |  |
|---------------------------------------------------------------------------|---------------------------------|--|--|--|
| SARA Section 311/312 Hazard Classes                                       | Fire hazard                     |  |  |  |
|                                                                           | Immediate (acute) health hazard |  |  |  |
| Sudden release of pressure hazard                                         |                                 |  |  |  |
| Hydrogen sulfide (7783-06-4)                                              |                                 |  |  |  |
| Listed on the United States TSCA (Toxic Substances Control Act) inventory |                                 |  |  |  |
| Listed on SARA Section 302 (Specific toxic chemical listings)             |                                 |  |  |  |
| Listed on SARA Section 313 (Specific toxic chemical listings)             |                                 |  |  |  |

10/02/2013 EN (English US) 10/17

500 1.0 %

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

#### Propane (74-98-6)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

#### Butane (106-97-8)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

#### Carbon dioxide (124-38-9)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

## Nitrogen (7727-37-9)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

#### Methane (74-82-8)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

#### Ethane (74-84-0)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

#### **US State Regulations**

#### Hydrogen sulfide (7783-06-4)

- U.S. California SCAQMD Toxic Air Contaminants Non-Cancer Acute
- U.S. California SCAQMD Toxic Air Contaminants Non-Cancer Chronic
- U.S. California Toxic Air Contaminant List (AB 1807, AB 2728)
- U.S. Colorado Hazardous Wastes Discarded Chemical Products, Off-Specification Species, Container and Spill Residues
- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Accidental Release Prevention Regulations Toxic Endpoints
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Hawaii Occupational Exposure Limits STELs
- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Acceptable Ambient Concentrations
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Emission Levels (ELs)
- U.S. Idaho Occupational Exposure Limits Acceptable Maximum Peak Above the Ceiling Concentration for an 8-Hour Shift
- U.S. Idaho Occupational Exposure Limits Ceilings
- U.S. Idaho Occupational Exposure Limits TWAs
- U.S. Louisiana Reportable Quantity List for Pollutants
- U.S. Maine Air Pollutants Hazardous Air Pollutants
- U.S. Massachusetts Allowable Ambient Limits (AALs)
- U.S. Massachusetts Allowable Threshold Concentrations (ATCs)
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Threshold Effects Exposure Limits (TELs)
- U.S. Michigan Occupational Exposure Limits STELs
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Michigan Polluting Materials List
- U.S. Michigan Process Safety Management Highly Hazardous Chemicals
- U.S. Minnesota Chemicals of High Concern
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits STELs
- U.S. Minnesota Permissible Exposure Limits TWAs

10/02/2013 EN (English US) 11/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

- U.S. Montana Ambient Air Quality Standards
- U.S. New Hampshire Regulated Toxic Air Pollutants Ambient Air Levels (AALs) 24-Hour
- U.S. New Hampshire Regulated Toxic Air Pollutants Ambient Air Levels (AALs) Annual
- U.S. New Jersey Discharge Prevention List of Hazardous Substances
- U.S. New Jersey Environmental Hazardous Substances List
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New Jersey Special Health Hazards Substances List
- U.S. New Jersey TCPA Extraordinarily Hazardous Substances (EHS)
- U.S. New Mexico Air Quality Ambient Air Quality Standards
- U.S. New York Occupational Exposure Limits TWAs
- U.S. New York Reporting of Releases Part 597 List of Hazardous Substances
- U.S. North Carolina Control of Toxic Air Pollutants
- U.S. North Dakota Ambient Air Quality Standards Maximum Permissible Concentrations
- U.S. North Dakota Hazardous Wastes Discarded Chemical Products, Off-Specification Species, Container and Spill Residues
- U.S. Ohio Accidental Release Prevention Threshold Quantities
- U.S. Ohio Extremely Hazardous Substances Threshold Quantities
- U.S. Oregon Permissible Exposure Limits Ceilings
- U.S. Oregon Permissible Exposure Limits STELs
- U.S. Pennsylvania RTK (Right to Know) Environmental Hazard List
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Rhode Island Air Toxics Acceptable Ambient Levels 1-Hour
- U.S. Rhode Island Air Toxics Acceptable Ambient Levels 24-Hour
- U.S. Rhode Island Air Toxics Acceptable Ambient Levels Annual
- U.S. South Carolina Toxic Air Pollutants Maximum Allowable Concentrations
- U.S. South Carolina Toxic Air Pollutants Pollutant Categories
- U.S. Tennessee Occupational Exposure Limits STELs
- U.S. Tennessee Occupational Exposure Limits TWAs
- U.S. Texas Drinking Water Standards Secondary Constituent Levels (SCLs)
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Vermont Hazardous Waste Hazardous Constituents
- U.S. Vermont Permissible Exposure Limits STELs
- U.S. Vermont Permissible Exposure Limits TWAs
- U.S. Virginia Water Quality Standards Chronic Freshwater Aquatic Life
- U.S. Virginia Water Quality Standards Chronic Saltwater Aquatic Life
- U.S. Washington Dangerous Waste Dangerous Waste Constituents List
- U.S. Washington Dangerous Waste Discarded Chemical Products List
- U.S. Washington Permissible Exposure Limits STELs
- U.S. Washington Permissible Exposure Limits TWAs
- U.S. Wisconsin Hazardous Air Contaminants All Sources Emissions From Stack Heights 25 Feet to Less Than 40 Feet
- U.S. Wisconsin Hazardous Air Contaminants All Sources Emissions From Stack Heights 40 Feet to Less Than 75 Feet
- U.S. Wisconsin Hazardous Air Contaminants All Sources Emissions From Stack Heights 75 Feet or Greater
- U.S. Wisconsin Hazardous Air Contaminants All Sources Emissions From Stack Heights Less Than 25 Feet
- U.S. Wyoming Process Safety Management Highly Hazardous Chemicals
- U.S. Alaska Water Quality Standards Chronic Aquatic Life Criteria for Fresh Water
- U.S. Alaska Water Quality Standards Chronic Aquatic Life Criteria for Marine Water

## Propane (74-98-6)

- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities

10/02/2013 EN (English US) 12/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Idaho Occupational Exposure Limits TWAs
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits TWAs
- U.S. New Jersey Discharge Prevention List of Hazardous Substances
- U.S. New Jersey Environmental Hazardous Substances List
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New Jersey Special Health Hazards Substances List
- U.S. New Jersey TCPA Extraordinarily Hazardous Substances (EHS)
- U.S. New York Occupational Exposure Limits TWAs
- U.S. Ohio Accidental Release Prevention Threshold Quantities
- U.S. Oregon Permissible Exposure Limits TWAs
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Tennessee Occupational Exposure Limits TWAs
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Vermont Permissible Exposure Limits TWAs
- U.S. Washington Permissible Exposure Limits STELs
- U.S. Washington Permissible Exposure Limits TWAs

#### Butane (106-97-8)

- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Maine Chemicals of High Concern
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Minnesota Chemicals of High Concern
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits TWAs
- U.S. New Jersey Discharge Prevention List of Hazardous Substances
- U.S. New Jersey Environmental Hazardous Substances List
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New Jersey Special Health Hazards Substances List
- U.S. New Jersey TCPA Extraordinarily Hazardous Substances (EHS)
- U.S. Ohio Accidental Release Prevention Threshold Quantities
- U.S. Oregon Permissible Exposure Limits TWAs
- U.S. Pennsylvania RTK (Right to Know) List

10/02/2013 EN (English US) 13/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

- U.S. Tennessee Occupational Exposure Limits TWAs
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Vermont Permissible Exposure Limits TWAs
- U.S. Washington Permissible Exposure Limits STELs
- U.S. Washington Permissible Exposure Limits TWAs

#### Carbon dioxide (124-38-9)

- U.S. Hawaii Occupational Exposure Limits STELs
- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Idaho Occupational Exposure Limits TWAs
- U.S. Maine Air Pollutants Greenhouse Gases (GHG)
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Volatile Organic Compounds Exempt From Requirements
- U.S. Michigan Occupational Exposure Limits STELs
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits STELs
- U.S. Minnesota Permissible Exposure Limits TWAs
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New York Occupational Exposure Limits TWAs
- U.S. Oregon Permissible Exposure Limits TWAs
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Tennessee Occupational Exposure Limits STELs
- U.S. Tennessee Occupational Exposure Limits TWAs
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Vermont Permissible Exposure Limits STELs
- U.S. Vermont Permissible Exposure Limits TWAs
- U.S. Washington Permissible Exposure Limits STELs
- U.S. Washington Permissible Exposure Limits TWAs

## Nitrogen (7727-37-9)

- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Right To Know List
- U.S. Minnesota Hazardous Substance List
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Washington Permissible Exposure Limits Simple Asphyxiants

#### Methane (74-82-8)

- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Delaware Volatile Organic Compounds Exempt from Requirements
- U.S. Maine Air Pollutants Greenhouse Gases (GHG)
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Volatile Organic Compounds Exempt From Requirements

10/02/2013 EN (English US) 14/17

#### Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

- U.S. Minnesota Hazardous Substance List
- U.S. New Jersey Discharge Prevention List of Hazardous Substances
- U.S. New Jersey Environmental Hazardous Substances List
- U.S. New Jersey Excluded Volatile Organic Compounds
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New Jersey Special Health Hazards Substances List
- U.S. New Jersey TCPA Extraordinarily Hazardous Substances (EHS)
- U.S. Ohio Accidental Release Prevention Threshold Quantities
- U.S. Oregon Permissible Exposure Limits TWAs
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Washington Permissible Exposure Limits Simple Asphyxiants

#### Ethane (74-84-0)

- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Delaware Volatile Organic Compounds Exempt from Requirements
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Volatile Organic Compounds Exempt From Requirements
- U.S. Minnesota Hazardous Substance List
- U.S. New Jersey Discharge Prevention List of Hazardous Substances
- U.S. New Jersey Environmental Hazardous Substances List
- U.S. New Jersey Excluded Volatile Organic Compounds
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. New Jersey Special Health Hazards Substances List
- U.S. New Jersey TCPA Extraordinarily Hazardous Substances (EHS)
- U.S. Ohio Accidental Release Prevention Threshold Quantities
- U.S. Oregon Permissible Exposure Limits TWAs
- U.S. Pennsylvania RTK (Right to Know) List
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term
- U.S. Washington Permissible Exposure Limits Simple Asphyxiants

## **Canadian Regulations**

#### Wellhead Natural Gas

WHMIS Classification Class B Division 1 - Flammable Gas

Class A - Compressed Gas





#### Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List) inventory.

Listed on the Canadian Ingredient Disclosure List

10/02/2013 EN (English US) 15/17

## Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                               | Class B Division 1 - Flammable Gas                                                                 |  |  |
|                               | Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects |  |  |
|                               | Class D Division 2 Subdivision B - Toxic material causing other toxic effects                      |  |  |
| Propane (74-98-6)             |                                                                                                    |  |  |
| Listed on the Canadian DSL (D | omestic Substances List) inventory.                                                                |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
|                               | Class B Division 1 - Flammable Gas                                                                 |  |  |
| Butane (106-97-8)             |                                                                                                    |  |  |
| Listed on the Canadian DSL (D | omestic Substances List) inventory.                                                                |  |  |
| Listed on the Canadian Ingred | lient Disclosure List                                                                              |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
|                               | Class B Division 1 - Flammable Gas                                                                 |  |  |
| Carbon dioxide (124-38-9)     |                                                                                                    |  |  |
| Listed on the Canadian DSL (D | Listed on the Canadian DSL (Domestic Substances List) inventory.                                   |  |  |
| Listed on the Canadian Ingred | lient Disclosure List                                                                              |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
| Nitrogen (7727-37-9)          | Nitrogen (7727-37-9)                                                                               |  |  |
| Listed on the Canadian DSL (D | omestic Substances List) inventory.                                                                |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
| Methane (74-82-8)             |                                                                                                    |  |  |
| Listed on the Canadian DSL (D | omestic Substances List) inventory.                                                                |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
|                               | Class B Division 1 - Flammable Gas                                                                 |  |  |
| Ethane (74-84-0)              |                                                                                                    |  |  |
| Listed on the Canadian DSL (D | omestic Substances List) inventory.                                                                |  |  |
| WHMIS Classification          | Class A - Compressed Gas                                                                           |  |  |
|                               | Class B Division 1 - Flammable Gas                                                                 |  |  |
|                               |                                                                                                    |  |  |

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by CPR.

## **SECTION 16: OTHER INFORMATION**

**Revision date** : 10/02/2013

Other Information : This document has been prepared in accordance with the SDS requirements of the OSHA

Hazard Communication Standard 29 CFR 1910.1200

#### **GHS Full Text Phrases:**

| Acute Tox. 2 (Inhalation:gas) | Acute toxicity (inhalation:gas) Category 2                     |
|-------------------------------|----------------------------------------------------------------|
| Aquatic Acute 1               | Hazardous to the aquatic environment - Acute Hazard Category 1 |
| Compressed gas                | Gases under pressure Compressed gas                            |
| Flam. Gas 1                   | Flammable gases Category 1                                     |
| Liquefied gas                 | Gases under pressure Liquefied gas                             |
| Simple Asphy                  | Simple Asphyxiant                                              |
| H220                          | Extremely flammable gas                                        |
| H280                          | Contains gas under pressure; may explode if heated             |
| H330                          | Fatal if inhaled                                               |
| H400                          | Very toxic to aquatic life                                     |

## Party Responsible for the Preparation of This Document

10/02/2013 EN (English US) 16/17

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Williams, Inc. One Williams Center Tulsa, OK 74172, US 800-688-7507

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product North America GHS US 2012 & WHMIS

10/02/2013 EN (English US) 17/17



# MATERIAL SAFETY DATA SHEET

#### PRODUCT AND COMPANY IDENTIFICATION

Product Name: Natural Gas Condensate

Synonyms: Condensate, Gas Condensate, Distillate, Pipeline Drip, Natural gasoline, Casinghead gasoline,

Straight-run gasoline, Isoparaffin mixture, and Drip gas

Manufacturer Name: Emergency Telephone:

Williams, Inc. 888-677-2370
One Williams Center

Tulsa, OK 74172 Non-emergency Telephone: USA 800-688-7507

**Intended Use:** Industrial use

## HAZARDS IDENTIFICATION

# Emergency Overview

Physical State: Liquid

**Color:** Colorless to brownish-black

**Odor:** Petroleum

#### DANGER!

2

1

Harmful if inhaled or absorbed through skin. Harmful if swallowed - may enter lungs if swallowed or vomited. Causes skin and eye irritation. High vapor concentrations may cause drowsiness and irritation of the eyes or respiratory tract.

Extremely flammable liquid and vapor - vapor may cause flash fire.

## **Potential Health Effects**

Inhalation: Harmful if inhaled. May cause central nervous system effects.

**Eye Contact:** Causes eye irritation. High vapor concentrations may cause irritation.

**Skin Contact:** Harmful if absorbed through skin. Causes skin irritation.

**Ingestion:** Harmful if swallowed - may enter lungs if swallowed or vomited.

**Chronic Health Effects:** Long-term exposure to condensate vapor has caused kidney and liver cancer in laboratory animals. Case reports of chronic condensate abuse (such as sniffing) and chronic misuse as a solvent or as a cleaning agent have shown a range of nervous system effects, sudden deaths from heart attacks, blood effects and leukemia. These effects are not expected to occur at exposure levels encountered in the distribution and use of condensate as a motor fuel. Prolonged and repeated exposure to benzene may

cause serious injury to blood forming organs and is associated with anemia and to the later development of acute myelogenous leukemia (AML).

**Target Organ(s):** | Central nervous system | Eye | Kidney | Liver | Skin | Blood and/or blood-forming organs |

**OSHA Regulatory Status:** This product is hazardous according to OSHA 29CFR 1910.1200.

## 3 COMPOSITION / INFORMATION ON INGREDIENTS

**General Information:** Condensate is a complex mixture of volatile hydrocarbons, primarily in the C3 to C8 range. The composition varies depending on the natural gas source and processing, but typically includes some concentration of benzene.

| Chemical Name                        | CAS-No.    | Concentration* |
|--------------------------------------|------------|----------------|
| †Natural gas condensates (petroleum) | 68919-39-1 | 97.9 - 99.6%   |
| †Benzene                             | 71-43-2    | 0.4 - 2.1%     |

<sup>\*</sup> All concentrations are in percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

## 4 FIRST AID MEASURES

**Inhalation:** Move to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

**Eye Contact:** Immediately flush with plenty of water for at least 15 minutes. If easy to do, remove contact lenses. Get medical attention. In case of irritation from airborne exposure, move to fresh air. Get medical attention if symptoms persist.

**Skin Contact:** Immediately flush with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash contaminated clothing before reuse. Destroy or thoroughly clean contaminated shoes.

**Ingestion:** Call a physician or poison control center immediately. DO NOT induce vomiting. if victim is fully conscious, give a cupful of water. Never give anything by mouth to an unconscious person. If vomiting occurs, keep head lower than the hips to help prevent aspiration.

## 5 FIRE-FIGHTING MEASURES

**Extinguishing Media:** Extinguish with foam, carbon dioxide, dry powder or water fog.

Unsuitable Extinguishing Media: Not applicable.

**Special Fire Fighting Procedures:** Self-contained breathing apparatus and full protective clothing should be worn when fighting chemical fires. Use water spray to keep fire-exposed containers cool.

**Unusual Fire & Explosion Hazards:** Material will float and may ignite on surface of water. Vapors may travel considerable distance to a source of ignition and flash back. Vapors may cause a flash fire or ignite explosively.

Hazardous Combustion Products: Carbon Oxides

<sup>†</sup> This chemical is hazardous according to OSHA/WHMIS criteria.

## 6 ACCIDENTAL RELEASE MEASURES

**Personal Precautions:** Wear protective clothing as described in Section 8 of this safety data sheet.

**Spill Cleanup Methods:** Eliminate all ignition sources. Small Liquid Spills: Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal. Large Spillages: Use water spray to disperse vapors and flush spill area. Prevent runoff from entering drains, sewers, or streams. Dike for later disposal.

## 7 HANDLING AND STORAGE

**Handling:** Do not breathe mist or vapor. Do not get in eyes, on skin, on clothing. Do not taste or swallow. Use only with adequate ventilation. Wash thoroughly after handling.

**Storage:** Keep away from heat, sparks and open flame. Keep container tightly closed and in a well-ventilated place. Comply with all national, state, and local codes pertaining to the storage, handling, dispensing, and disposal of flammable liquids. Keep away from food, drink and animal feed. Store away from incompatible materials.

## 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

#### **Exposure Limits:**

| Chemical Name | Source                       | Type        | <b>Exposure Limits</b>       | Notes |
|---------------|------------------------------|-------------|------------------------------|-------|
| Benzene       | CA. Alberta OELs             | STEL        | 16 mg/m <sup>3</sup> 5 ppm   | Skin  |
| Benzene       | CA. Alberta OELs             | TWA         | 3.2 mg/m <sup>3</sup> 1 ppm  | Skin  |
| Benzene       | CA. British Columbia<br>OELs | TWA         | 0.5 ppm                      | Skin  |
| Benzene       | CA. British Columbia<br>OELs | STEL        | 2.5 ppm                      | Skin  |
| Benzene       | CA. Ontario OELs             | STEL        | 2.5 ppm                      |       |
| Benzene       | CA. Ontario OELs             | TWA         | 0.5 ppm                      |       |
| Benzene       | CA. Quebec OELs              | TWA         | 3 mg/m³ 1 ppm                |       |
| Benzene       | CA. Quebec OELs              | STEL        | 15.5 mg/m <sup>3</sup> 5 ppm |       |
| Benzene       | MEX. OELs                    | STEL        | 16 mg/m <sup>3</sup> 5 ppm   |       |
| Benzene       | MEX. OELs                    | TWA         | 3.2 mg/m <sup>3</sup> 1 ppm  |       |
| Benzene       | US. ACGIH TLV                | STEL        | 2.5 ppm                      | Skin  |
| Benzene       | US. ACGIH TLV                | TWA         | 0.5 ppm                      | Skin  |
| Benzene       | US. NIOSH Guide              | IDLH        | 500 ppm                      |       |
| Benzene       | US. OSHA Spec. Reg.          | OSHA        | 0.5 ppm                      |       |
|               |                              | Action      |                              |       |
|               |                              | level       |                              |       |
| Benzene       | US. OSHA Spec. Reg.          | STEL        | 5 ppm                        |       |
| Benzene       | US. OSHA Spec. Reg.          | TWA         | 1 ppm                        |       |
| Benzene       | US. OSHA Z-2 PEL             | TWA         | 10 ppm                       |       |
| Benzene       | US. OSHA Z-2 PEL             | Maximum     | 50 ppm                       |       |
|               |                              | concentrati |                              |       |
|               |                              | on          |                              |       |
| Benzene       | US. OSHA Z-2 PEL             | Ceiling     | 25 ppm                       |       |

**Engineering Controls:** Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits.

If exposure limits have not been established, maintain airborne levels to an acceptable level.

**Respiratory Protection:** If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn. In the United States of America, if respirators are used, a program should be instituted to assure compliance with OSHA Standard 63 FR 1152, January 8, 1998. Respirator type: Air-purifying respirator with an appropriate, government approved (where applicable), air-purifying filter, cartridge or canister. Contact health and safety professional or manufacturer for specific information.

**Eye Protection:** Wear safety glasses with side shields (or goggles). Wear a full-face respirator, if needed.

Hand Protection: Wear chemical-resistant gloves. Contact glove manufacturer for specific information.

**Skin Protection:** Wear appropriate chemical resistant clothing to prevent any possibility of skin contact.

**Hygiene Measures:** Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

Environmental Exposure Controls: Environmental manager must be informed of all major spillages.

## PHYSICAL AND CHEMICAL PROPERTIES

**Color:** Colorless to brownish-black

**Odor:** Petroleum

**Odor Threshold:** No data available.

Physical State: LiquidpH: Not applicable

**Melting Point:** No data available. **Freezing Point:** No data available.

**Boiling Point:** 45°C (113°F) - 404°C (759°F) **Flash Point:** <-18°C (0°F) (Approximate)

**Evaporation Rate:** >100 [vs. n-Butyl Acetate = 1]

Flammability (Solid): No data available.

Flammability Limit - Upper (%): 10 (Approximate)
Flammability Limit - Lower (%): 1 (Approximate)
Vapor Pressure: 51 mmHg - 857 mmHg @100°F [Reid]

Vapor Density (Air=1): > 1 Specific Gravity: 0.766 - 0.87 Solubility in Water: Negligible Solubility (Other): No data available.

Partition Coefficient (n-Octanol/water): No data available.

**Autoignition Temperature:** No data available. **Decomposition Temperature:** No data available.

**Viscosity:** < 1 cst @38°C **Percent Volatile:** 100 %vol

Explosive Properties: No data available

## 10 STABILITY AND REACTIVITY

**Stability:** Stable under the prescribed storage conditions.

**Conditions to Avoid:** Keep away from heat, sparks and open flame. Prevent buildup of vapors or gases to explosive concentrations.

**Incompatible Materials:** Strong oxidizing agents.

**Hazardous Decomposition Products:** No data available.

## 11 TOXICOLOGICAL INFORMATION

## **Specified Substance(s)**

**Acute Toxicity:** 

#### **Test Results:**

| Chemical Name                       | Test Results                       |
|-------------------------------------|------------------------------------|
| Natural gas condensates (petroleum) | Dermal LD50 (Rabbit): > 3750 mg/kg |
| Natural gas condensates (petroleum) | Inhalation LC50 (Rat): > 5.2 mg/l  |
| Natural gas condensates (petroleum) | Oral LD50 (Rat): > 5000 mg/kg      |

**Chronic Toxicity:** Contains benzene. Human epidemiology studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-producing system and serious blood disorders, including leukemia. Animal tests suggest that prolonged and/or repeated overexposure to benzene may damage the embryo/fetus. The relevance of these animal studies to humans has not been fully established.

**Listed Carcinogens:** 

| Chemical Name | IARC | NTP    | OSHA   | ACGIH |
|---------------|------|--------|--------|-------|
| Benzene       | 1    | Listed | Listed | A1    |

IARC: 1 = Carcinogenic to Humans; 2A = Probably Carcinogenic to Humans; 2B = Possibly Carcinogenic to Humans; 3 = Not classifiable as to carcinogenicity to humans; 4 = Probably not carcinogenic to humans; Not listed = Not evaluated by IARC. ACGIH: A1 = Confirmed Human Carcinogen; A2 = Suspected Human Carcinogen; A3 = Confirmed Animal Carcinogen; A4 = Not classifiable as a human carcinogen; A5 = Not suspected to be a human carcinogen; Not listed = Not evaluated by ACGIH.

## **Product Information**

**Acute Toxicity:** 

**Test Results:** No test data available for the product.

**Other Acute:** Harmful if inhaled or absorbed through skin. Harmful if swallowed - may enter lungs if swallowed or vomited. Causes severe skin and eye irritation. High vapor concentrations may cause drowsiness and irritation of the eyes or respiratory tract.

**Chronic Toxicity:** Long-term exposure to gasoline vapor has caused kidney and liver cancer in laboratory animals. Case reports of chronic gasoline abuse (such as sniffing) and chronic misuse as a solvent or as a cleaning agent have shown a range of nervous system effects, sudden deaths from heart attacks, blood effects and leukemia. These effects are not expected to occur at exposure levels encountered in the distribution and use of gasoline as a motor fuel.

## 12 ECOLOGICAL INFORMATION

**Ecotoxicity:** There are no data on the ecotoxicity of this product.

Mobility: No data available.

Persistence and Degradability: No data available.

Bioaccumulation Potential: No data available.

## 13 DISPOSAL CONSIDERATIONS

**General Information:** Dispose of waste and residues in accordance with local authority requirements.

**Disposal Methods:** No specific disposal method required.

**Container:** Since emptied containers retain product residue, follow label warnings even after container is emptied.

## 14 TRANSPORT INFORMATION

DOT

UN No.: UN1993

**Proper Shipping Name:** Flammable liquids, n.o.s. (Natural gas condensates)

Class: 3

Packing Group: II

Label(s): 3

**TDG** 

UN No.: UN1993

**Proper Shipping Name:** Flammable liquid, n.o.s. (Natural gas condensates)

Class: 3

Packing Group: II

**IATA** 

**UN No.:** UN1993

**Proper Shipping Name:** Flammable liquid, n.o.s. (Natural gas condensates)

Class: 3

Packing Group: II

Label(s): 3

<u>IMDG</u>

**UN No.:** UN1993

**Proper Shipping Name:** Flammable liquid, n.o.s. (Natural gas condensates)

Class: 3

**Packing Group:** II **EmS No.:** F-E, S-E

## 15 REGULATORY INFORMATION

**Canadian Controlled Products Regulations:** This product has been classified according to the hazard criteria of the Canadian Controlled Products Regulations, Section 33, and the MSDS contains all required information.

WHMIS Classification: B2, D2A, D2B

Mexican Dangerous Statement: This product is dangerous according to Mexican regulations.

## OSHA Specifically Regulated Substances (29 CFR 1910.1001-.1052):

| Chemical Name | CAS-No. |
|---------------|---------|
| Benzene       | 71-43-2 |

## **Inventory Status**

This product or all components are listed or exempt from listing on the following inventory: TSCA

## **US Regulations**

**CERCLA Hazardous Substance List (40 CFR 302.4):** 

| Chemical Name | RQ     |
|---------------|--------|
| Benzene       | 10 lbs |

## **SARA** Title III

Section 302 Extremely Hazardous Substances (40 CFR 355, Appendix A): Not regulated.

| X | Acute (Immediate) | X Chronic (Delayed) | X Fire | Reactive |  | Pressure Generating |
|---|-------------------|---------------------|--------|----------|--|---------------------|
|---|-------------------|---------------------|--------|----------|--|---------------------|

Section 313 Toxic Release Inventory (40 CFR 372):

| Chemical Name |         | for other users | Reporting threshold for manufacturing |
|---------------|---------|-----------------|---------------------------------------|
|               |         |                 | and processing                        |
| Benzene       | 71-43-2 | 10000 lbs       | 25000 lbs                             |

For reporting purposes: the De Minimis Concentration for a toxic chemical in a mixture is 0.1% for carcinogens as defined in 29 CFR 1910.1200(d)(4) or 1% for others.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130): Not regulated.

Clean Water Act Section 311 Hazardous Substances (40 CFR 117.3): Benzene

**Drug Enforcement Act:** Not regulated.

## **TSCA**

TSCA Section 4(a) Final Test Rules & Testing Consent Orders: Not regulated.

TSCA Section 5(a)(2) Final Significant New Use Rules (SNURs) (40CFR 721, Subpt. E): Not regulated.

TSCA Section 5(e) PMN-Substance Consent Orders: Not regulated.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D): Not regulated.

## **State Regulations**

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): Benzene

Massachusetts Right-To-Know List: Benzene

Michigan Critical Materials List (Michigan Natural Resources and Environmental Protection Act

(Act. 451 of 1994)): Benzene

Minnesota Hazardous Substances List: Benzene

New Jersey Right-To-Know List: Benzene

Pennsylvania Right-To-Know List: Benzene

Rhode Island Right-To-Know List: Benzene

16 OTHER INFORMATION

## **HAZARD RATINGS**

|      | Health Hazard | Fire Hazard | Instability | Special Hazard |
|------|---------------|-------------|-------------|----------------|
| NFPA | 2             | 4           | 0           | NONE           |

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe

NFPA Label colored diamond code: Blue - Health; Red - Flammability; Yellow - Instability; White - Special Hazards

|      | Health Hazard | Flammability | Physical Hazard | <b>Personal Protection</b> |
|------|---------------|--------------|-----------------|----------------------------|
| HMIS | 2*            | 4            | 0               |                            |

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe \*- Chronic Health Effect HMIS Label colored bar code: Blue - Health; Red - Flammability; Orange - Physical Hazards; White - Special

**Issue Date:** 31-Mar-2009 **Supercedes Date:** 28-Jul-1999

**SDS No.:** 1023419

**Disclaimer:** This information is provided without warranty. The information is believed to be correct. This information should be used to make an independent determination of the methods to safeguard workers and the environment.

**EnCana Corporation** 

Material Safety Data Sheet

Produced Water – Sweet Page 1 of 2

#### SECTION 1 – MATERIAL IDENTIFICATION AND USE

Material Name: PRODUCED WATER (SWEET - FROM CRUDE OIL OR DEEP GAS PRODUCTION)

Use: Process stream, waste

WHMIS Classification: Class B, Div. 2; Class D, Div. 2, Sub-Div. A and B

NFPA: Fire: 3 Reactivity: 0 Health: 2

TDG: UN: 1267 Class: 3 Packing Group: II

Shipping Name: PETROLEUM CRUDE OIL

Manufacturer/Supplier: ENCANA CORPORATION

#1800, 855 - 2<sup>nd</sup> Street S.W., P.O. BOX 2850

CALGARY, ALBERTA, T2P 2S5

Emergency Telephone: (403) 645-3333

**Chemical Family**: Water with C5+ aliphatic and aromatic hydrocarbons.

## SECTION 2 – HAZARDOUS INGREDIENTS OF MATERIAL

| Hazardous<br>Ingredients | Approximate<br>Concentrations (%) | C.A.S.<br>Nos. | LD50/LC50<br>(Incl. Species<br>& Route) | Exposure<br>Limits |
|--------------------------|-----------------------------------|----------------|-----------------------------------------|--------------------|
| Sodium chloride          | 5-20                              | 7647-14-05     | N.Av.                                   | N.Av.              |
| n-Hexane                 | 0.1-1                             | 110-54-3       | LD50,rat,oral,28.7 g/kg                 | 50 ppm (OEL,TLV)   |
| Benzene                  | 0.1-1                             | 71-43-2        | LD50,rat,oral,930 mg/kg                 | 0.5 ppm (OEL)      |
|                          |                                   |                | LC50,rat,4 hr,13200 ppm                 | 0.5 ppm (TLV)      |

OEL = 8 hr. Alberta Occupational Exposure Limit; TLV = Threshold Limit Value (8 hrs)

## SECTION 3 – PHYSICAL DATA FOR MATERIAL

Physical State: Liquid Vapour Pressure (mmHg): 20 @ 20 deg. C.

Specific Gravity: 1,0 - 1.1 @ 20 degrees C
Vapour Density (air=1): 2.5-3.0

Percent Volatiles, by volume: 100

pH: N.Av.

Codour Threshold (ppm): N.Av.

Evaporation Rate: N.Av.

Boiling Pt. (deg.C): 50 to 100

Freezing Pt. (deg.C): -10 to 0 (est.)

Coefficient of Water/Oil Distribution: >100 / 1

Odour & Appearance: colorless/straw coloured liquid, hydrocarbon odour

(N.AV. = not available N.App. = not applicable)

#### **SECTION 4 – FIRE AND EXPLOSION**

**Flammability**: Yes **Conditions**: Bulk of material is water, and will not ignite. However, sufficient hydrocarbon vapour may be present to cause flash fire at normal temperatures\*.

Means of Extinction: Foam, CO2, dry chemical. Explosive accumulations can build up in areas of poor ventilation\*.

Special Procedures: Use water spray to cool fire-exposed containers, and to disperse vapors if spill has not

ignited. If safe to do so, cut off supply and allow flame to burn out\*.

Flash Point (deg.C) & Method: <-40 (TCC) (hydrocarbons)\*

Upper Explosive Limit (% by vol.): 8\* Sensitivity to Impact: No

**Lower Explosive Limit (% by vol.)**: 1\* **Sensitivity to Static Discharge**: Yes, may ignite\* **Auto Ignition Temp. (deg.C)**: 260\* **Sensitivity to Static Discharge**: Yes, may ignite\* **TDG Flammability Classification**: Class 3\*

Hazardous Combustion Products: Carbon monoxide, carbon dioxide\*

<sup>\*</sup>Assuming hydrocarbon content is high enough to ignite. Hydrocarbons may derive from the original produced water or contamination through transportation in a tank that had previously contained crude oil.

EnCana Corporation Material Safety Data Sheet Produced Water - Sweet Page of 2

#### SECTION 5 – REACTIVITY DATA

Chemical Stability: Yes Conditions: Heat

Incompatibility: Yes Substances: Oxidizing agents (e.g. chlorine, compressed oxygen)

Reactivity: Yes Conditions: Heat, strong sunlight

Hazardous Decomposition Products: Carbon monoxide, carbon dioxide

#### SECTION 6 – TOXICOLOGICAL PROPERTIES OF PRODUCT

**Routes of Entry:** 

Skin Absorption Yes Skin Contact: Yes (liquid) Eye Contact: Yes Inhalation: Acute: Yes Chronic: Yes **Ingestion**: Yes

Effects of Acute Exposure: Vapour may cause irritation of eyes, nose and throat, dizziness and drowsiness. Contact with skin may cause irritation and possibly dermatitis. Hydrocarbons absorbed through intact skin. Contact of liquid with eyes may cause severe irritation.

Effects of Chronic Exposure: Due to presence of benzene and n-hexane, long term exposure may increase the risk of anaemia, leukaemia and nervous system damage.

Sensitization to Product: N.Av.

**Exposure Limits of Product**: 0.5 ppm (8 hr Alberta OEL for benzene)

Irritancy: Yes

Synergistic Materials: None reported

Carcinogenicity: Yes **Reproductive Effects**: Possibly **Teratogenicity**: Possibly Mutagenicity: Possibly

#### SECTION 7 – PREVENTIVE MEASURES

**Personal Protective Equipment:** Use positive pressure self-contained breathing apparatus, supplied air breathing apparatus, or cartridge respirator approved for organic vapours where concentrations may exceed exposure limits. **Gloves**: Viton (nitrile adequate for short exposure to liquid)

**Respiratory**: SCBA, SABA or cartridge respirator approved for organic vapours.

Eye: Chemical splash goggles Footwear: As per safety policy. Clothing: As per fire protection policy.

Engineering Controls: Use only in well ventilated areas. Mechanical ventilation required in confined areas. Equipment must be explosion proof.

Leaks & Spills: Stop leak if safe to do so. Use personal protective equipment. Use water spray to cool containers. Remove all ignition sources. Provide explosion-proof clearing ventilation, if possible. Prevent from entering confined spaces, or from contaminating land and water courses. Dyke and pump into containers for recycling or disposal. Notify appropriate regulatory authorities.

Waste Disposal: Contact appropriate regulatory authorities for disposal requirements.

Handling Procedures & Equipment: Avoid contact with liquid. Avoid inhalation. Bond and ground all transfers. Avoid sparking conditions.

Storage Requirements: Store in a cool, dry, well ventilated area away from heat, strong sunlight, and ignition sources. **Special Shipping Information**: N.Av.

## SECTION 8 – FIRST AID MEASURES

Skin: Flush skin with water, removing contaminated clothing. Get medical attention if irritation persists or

large areas of contact.

Immediately flush with large amounts of luke warm water for 15 minutes, lifting upper and lower lids at Eye:

intervals. Get medical attention if irritation persists.

Ensure own safety. Remove victim to fresh air. Give oxygen, artificial respiration, or CPR if needed. Inhalation:

Get immediate medical attention.

Give 2-3 glasses of milk or water to drink. DO NOT INDUCE VOMITING. Keep warm and at rest. Ingestion:

Get immediate medical attention.

#### SECTION 9 – PREPARATION DATE OF MSDS

Prepared By: Encana Environment, Health and Safety (EHS)

Phone Number: (403) 645-2000 Preparation Date: July 1, 2011 Expiry Date: July 1, 2014







# Material Safety Data Sheet Triethylene glycol MSDS

## **Section 1: Chemical Product and Company Identification**

Product Name: Triethylene glycol

Catalog Codes: SLT2644

CAS#: 112-27-6

**RTECS:** YE4550000

TSCA: TSCA 8(b) inventory: Triethylene glycol

CI#: Not available.

**Synonym:** 2,2'-[1,2-Ethanediylbis(oxy)]bisethanol

Chemical Formula: C6H14O4

**Contact Information:** 

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

# **Section 2: Composition and Information on Ingredients**

## Composition:

| Name               | CAS#     | % by Weight |  |
|--------------------|----------|-------------|--|
| Triethylene glycol | 112-27-6 | 100         |  |

Toxicological Data on Ingredients: Triethylene glycol: ORAL (LD50): Acute: 17000 mg/kg [Rat].

#### Section 3: Hazards Identification

#### **Potential Acute Health Effects:**

Very hazardous in case of eye contact (irritant), of ingestion. Slightly hazardous in case of inhalation. Inflammation of the eye is characterized by redness, watering, and itching.

#### **Potential Chronic Health Effects:**

Very hazardous in case of eye contact (irritant). Slightly hazardous in case of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to kidneys, the nervous system. Repeated or prolonged exposure to the substance can produce target organs damage.

## **Section 4: First Aid Measures**

#### **Eye Contact:**

Check for and remove any contact lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Do not use an eye ointment. Seek medical attention.

**Skin Contact:** No known effect on skin contact, rinse with water for a few minutes.

Serious Skin Contact: Not available.

**Inhalation:** Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation: Not available.

## Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

## **Section 5: Fire and Explosion Data**

Flammability of the Product: May be combustible at high temperature.

**Auto-Ignition Temperature:** 371°C (699.8°F)

Flash Points: CLOSED CUP: 177°C (350.6°F). OPEN CUP: 165.5°C (329.9°F).

Flammable Limits: LOWER: 0.9% UPPER: 9.2%

**Products of Combustion:** These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances: Not available.

## **Explosion Hazards in Presence of Various Substances:**

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

#### **Fire Fighting Media and Instructions:**

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

## Section 6: Accidental Release Measures

#### Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

#### Large Spill:

Absorb with an inert material and put the spilled material in an appropriate waste disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

## **Section 7: Handling and Storage**

#### Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapour/spray. Avoid contact with eyes If ingested, seek medical advice immediately and show the container or the label.

#### Storage:

Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Combustible materials should be stored away from extreme heat and away from strong oxidizing agents.

# **Section 8: Exposure Controls/Personal Protection**

#### **Engineering Controls:**

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection: Splash goggles. Lab coat.

## Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE

handling this product.

**Exposure Limits:** Not available.

## **Section 9: Physical and Chemical Properties**

Physical state and appearance: Liquid. (Hygroscopic liquid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 150.18 g/mole

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 285°C (545°F)

Melting Point: -5°C (23°F)

Critical Temperature: Not available.

Specific Gravity: 1.1274 (Water = 1)

**Vapor Pressure:** Not available. **Vapor Density:** 5.17 (Air = 1)

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available. lonicity (in Water): Not available.

**Dispersion Properties:** See solubility in water.

Solubility: Easily soluble in cold water.

# Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

# **Section 11: Toxicological Information**

Routes of Entry: Eye contact. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 17000 mg/kg [Rat].

Chronic Effects on Humans: The substance is toxic to kidneys, the nervous system.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Slightly hazardous in case of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

## **Section 12: Ecological Information**

**Ecotoxicity:** Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

**Toxicity of the Products of Biodegradation:** The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

## **Section 13: Disposal Considerations**

Waste Disposal:

# **Section 14: Transport Information**

**DOT Classification:** Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

# **Section 15: Other Regulatory Information**

Federal and State Regulations:

Pennsylvania RTK: Triethylene glycol TSCA 8(b) inventory: Triethylene glycol

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada): Not controlled under WHMIS (Canada).

DSCL (EEC): R41- Risk of serious damage to eyes.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 1

Reactivity: 0

Personal Protection: i

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 1

Reactivity: 0

Specific hazard:

**Protective Equipment:** 

Not applicable. Lab coat. Not applicable. Splash goggles.

## **Section 16: Other Information**

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:31 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

# **ATTACHMENT I**

# **Emission Units Table**

| "25. Fill out the <b>Emission Units Table</b> and provide it as Attachment I." |
|--------------------------------------------------------------------------------|
| Emissions Unit Table                                                           |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |

#### Williams Ohio Valley Midstream LLC (OVM)

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### Attachment I

#### **EMISSION UNITS TABLE**

(Include all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status.)

|                                  |                                | part of time permit application                       |                             |                    |                                      |                                |
|----------------------------------|--------------------------------|-------------------------------------------------------|-----------------------------|--------------------|--------------------------------------|--------------------------------|
| Emission Unit<br>ID <sup>1</sup> | Emission Point ID <sup>2</sup> | Emission Unit Description                             | Year Installed/<br>Modified | Design<br>Capacity | Type <sup>3</sup> and Date of Change | Control<br>Device <sup>4</sup> |
| CE-01                            | 1E                             | Caterpillar G3516B Engine                             | 2014                        | 1,380 bhp          | Existing                             | 01-OxCat                       |
| CE-02                            | 2E                             | Caterpillar G3516B Engine                             | 2014                        | 1,380 bhp          | Existing                             | 02-OxCat                       |
| CE-03                            | 3E                             | Caterpillar G3306B TA Engine                          | 2014                        | 203 bhp            | Existing                             | 01-NSCR                        |
| RBV-1                            | 4E                             | Dehydrator Reboiler 01                                | 2014                        | 1.66 MMBtu/hr      | Existing                             | na                             |
| RSV-1                            | 5E                             | Dehydrator Still Vent 01                              | 2014                        | 60.0 MMscfd        | Existing                             | 01-COMB                        |
| NOV-1                            | 6E                             | Dehydrator Flash Tank 01                              | 2014                        | OC.O IVIIVISCIU    | Existing                             | 01-COMB                        |
| RBV-2                            | 7E                             | Dehydrator Reboiler 02                                | tbd                         | 1.66 MMBtu/hr      | Existing                             | na                             |
| RSV-2                            | 8E                             | Dehydrator Still Vent 02                              | tbd                         | 60.0 MMscfd        | Existing                             | 01-COMB                        |
| N3V-2                            | 9E                             | Dehydrator Flash Tank 02                              | tbd                         | OC.O IVIIVISCIU    | Existing                             | 01-COMB                        |
| COMB-1                           | 10E                            | Thermal Oxidizer 01                                   | 2014                        | 6.41 MMBtu/hr      | Existing                             | na                             |
| HTR-01                           | 11E                            | Heater Treater 01                                     | 2014                        | 1.55 MMBtu/hr      | Existing                             | na                             |
| HTR-02                           | 12E                            | Condensate<br>Stabilizer Heater 01                    | 2014                        | 2.55 MMBtu/hr      | Existing                             | na                             |
| T01                              | 13E                            | Produced Water Tank 01                                | 2014                        | 48 bbl             | Existing                             | na                             |
| TLO-1                            | 14E                            | Truck Load-Out<br>Produced Water                      | 2014                        | 10,400 gal/yr      | Existing                             | na                             |
| TLO-2                            | 15E                            | Truck Load-Out<br>Stabilized Condensate               | 2014                        | 250,000 gal/yr     | Existing                             | na                             |
| SSM                              | 16E                            | Start/Stop/Maintenance<br>(Via Dispersion Stack)      | 2014                        | 3,363 bhp          | Modified                             | na                             |
| FUG-G                            | 17E                            | Process Piping Fugitives<br>Gas/Vapor                 | 2014/tbd                    | 1,953 fittings     | Modified                             | na                             |
| FUG-L                            | 1/5                            | Process Piping Fugitives<br>Light Liquid (Condensate) | 2014/tbd                    | 2,468 fittings     | Modified                             | na                             |
| RPC<br>(Prior FUG2)              | 18E                            | Rod Packing/Crankcase Leaks                           | 2014                        | 5 Recips           | Modified                             | na                             |
| HTR-03                           | 19E                            | Station Recycle Line Heater 01                        | 2015                        | 1.7 MMBtu/hr       | Existing                             | na                             |
| HTR-04                           | 20E                            | Condensate<br>Stabilizer Heater 02                    | tbd                         | 9.7 MMBtu/hr       | New                                  | na                             |
| T02                              | 21E                            | Produced Water Tank 02                                | 2015                        | 210 bbl            | Existing                             | na                             |

<sup>&</sup>lt;sup>1</sup> For Emission Units (or <u>S</u>ources) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

<sup>&</sup>lt;sup>2</sup> For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

<sup>&</sup>lt;sup>3</sup> New, modification, removal, etc.

<sup>&</sup>lt;sup>4</sup> For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

#### **ATTACHMENT J**

## **Emission Points Data Summary Sheet**

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

#### Table 1 – Emissions Data

- Compressor Engines 01 and 02 w/ OxCat (Each)
- o Compressor Engine 03 w/ NSCR
- Rod Packing/Crankcase Leaks (RPC)
- Start/Stop/Maintenance (w/ Blowdown) (SSM)
- Dehydrator Reboilers 01 and 02 (Each)
- Dehydrators 01 and 02 (Each)
- Thermal Oxidizer 01
- Heater Treater
- Condensate Stabilizer Heater 01
- Station Recycle Line Heater
- Condensate Stabilizer Heater 02
- Produced Water Storage Tank 01
- Produced Water Truck Load-Out 01
- Condensate Truck Load-Out 02
- Produced Water Storage Tank 02
- FACILITY-WIDE SUMMARY
- Table 2 Release Parameter Data

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Compressor Engines 01 and 02 w/ OxCat (Each)

|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            | Table 1: E                              | missions Data                                                            |                                |                   |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------|-------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br><i>(Must</i><br><i>Emi</i> ssid | ion Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must r<br>Emission<br>Table & P | Device<br>match<br>n Units | Emissi<br><i>(Che</i>      | ime for<br>on Unit<br>mical<br>es only) | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                                            | Source                                                                 | ID No.                                                 | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                          | & HAPS)                                                                  | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | NOX                                                                      | 1.52                           | 6.66              | 1.52         | 6.66                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        | 1 200 bbs (                                       | CAT 02546                                                              | D (4CL D @4                                            | 400 ====                   |                            |                                         | СО                                                                       | 9.37                           | 41.04             | 0.50         | 2.20                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        | •                                                 |                                                                        | 3 (4SLB@1,<br>and 02 w/ 0                              |                            | :h)                        |                                         | VOC                                                                      | 4.32                           | 18.92             | 0.56         | 2.47                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        | •                                                 | <b>J</b>                                                               |                                                        |                            | ,                          |                                         | SO2                                                                      | 0.01                           | 0.03              | 0.01         | 0.03                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | PM10/2.5                                                                 | 0.11                           | 0.50              | 0.11         | 0.50                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | Benzene                                                                  | 0.01                           | 0.02              | 4.6E-04      | 2.0E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | Ethylbenzene                                                             | 4.5E-04                        | 0.00              | 4.2E-05      | 1.8E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | HCHO                                                                     | 1.10                           | 4.80              | 0.27         | 1.17                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | n-Hexane                                                                 | 0.01                           | 0.06              | 1.2E-03      | 0.01                                          | Gas                                                                      | AP-42                               |                                                                                |
| CE-01                                                               |                                        | CE-01                                             | CE-01                                                                  |                                                        |                            |                            |                                         | Methanol                                                                 | 0.03                           | 0.12              | 0.00         | 0.01                                          | Gas                                                                      | AP-42                               |                                                                                |
| (1E)<br>and                                                         | Upward                                 | (1E)<br>and                                       | (1E)<br>and                                                            | 01-OxCat                                               |                            |                            | 8760                                    | Toluene                                                                  | 4.7E-03                        | 0.02              | 4.3E-04      | 1.9E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
| CE-02                                                               | Vertical                               | CE-02                                             | CE-02                                                                  | and                                                    | OxCat                      | С                          | (Each)                                  | 2,2,4-TMP                                                                | 2.9E-03                        | 0.01              | 2.6E-04      | 1.2E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
| (2E)                                                                |                                        | (2E)                                              | (2E)                                                                   | 02-OxCat                                               |                            |                            | ( 333 )                                 | Xylenes                                                                  | 2.1E-03                        | 0.01              | 1.9E-04      | 8.5E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
| (Each)                                                              |                                        | (Each)                                            | (Each)                                                                 |                                                        |                            |                            |                                         | Other HAP                                                                | 0.16                           | 0.72              | 0.02         | 0.07                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | Total HAP                                                                | 1.32                           | 5.76              | 0.29         | 1.26                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | СО                                                                       | 1,570                          | 6,876             | 1,570        | 6,876                                         | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | CH4                                                                      | 5.99                           | 26.25             | 5.99         | 26.25                                         | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | N2O                                                                      | 2.5E-03                        | 0.01              | 2.5E-03      | 0.01                                          | Gas                                                                      | Ap-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                        |                            |                            |                                         | CO2e                                                                     | 1,720                          | 7,536             | 1,720        | 7,536                                         | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Compressor Engine 03 w/ NSCR

|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            | Table 1: E     | missions Data                                                            |         |                                                 |              |                                               |                                                                          |                                     |                                                                                |
|------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|----------------|--------------------------------------------------------------------------|---------|-------------------------------------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table &<br>Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emission | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must r<br>Emissio<br>Table & P | Device<br>match<br>n Units |                            |                | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Uncon   | mum<br>ential<br>etrolled<br>sions <sup>4</sup> | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                                        |                                        | ID No.                              | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr) | & HAPS)                                                                  | lb/hr   | ton/yr                                          | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | NOX                                                                      | 6.83    | 29.91                                           | 0.20         | 0.90                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                                    |                                        | 00 1-1 0.4                          | T 00000D 7                                                            | : A /4000 @4                                          |                            |                            |                | CO                                                                       | 6.83    | 29.91                                           | 0.89         | 3.89                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                                    | 2                                      | -                                   | Compress                                                              | A (4SRB@1<br>or Engine                                | ,800 rpm)                  |                            |                | VOC                                                                      | 0.20    | 0.86                                            | 0.20         | 0.86                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                                    |                                        |                                     |                                                                       | ogo                                                   |                            |                            |                | SO2                                                                      | 1.1E-03 | 4.8E-03                                         | 1.1E-03      | 4.8E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            | ,              | PM10/2.5                                                                 | 0.04    | 0.16                                            | 0.04         | 0.16                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | Benzene                                                                  | 0.00    | 0.01                                            | 2.9E-03      | 1.3E-02                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | Ethylbenzene                                                             | 4.6E-05 | 0.00                                            | 4.6E-05      | 2.0E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | НСНО                                                                     | 0.09    | 0.39                                            | 0.09         | 0.39                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | n-Hexane                                                                 |         |                                                 |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | Methanol                                                                 | 0.01    | 0.02                                            | 0.01         | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
| OF 00                                                                              | l lavorand                             | OF 00                               | OF 00                                                                 |                                                       |                            |                            |                | Toluene                                                                  | 1.0E-03 | 0.00                                            | 1.0E-03      | 4.5E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
| CE-03<br>(3E)                                                                      | Upward<br>Vertical                     | CE-03<br>(3E)                       | CE-03<br>(3E)                                                         | 03-NSCR                                               | NSCR                       | С                          | 8,760          | 2,2,4-TMP                                                                |         |                                                 |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
| ()                                                                                 |                                        | (/                                  | ()                                                                    |                                                       |                            |                            |                | Xylenes                                                                  | 3.6E-04 | 0.00                                            | 3.6E-04      | 1.6E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | Other HAP                                                                | 0.01    | 0.05                                            | 0.01         | 0.05                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | Total HAP                                                                | 0.11    | 0.49                                            | 0.11         | 0.49                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | CO                                                                       | 254     | 1,113                                           | 254          | 1,113                                         | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | CH4                                                                      | 0.19    | 0.84                                            | 0.19         | 0.84                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | N2O                                                                      | 4.1E-04 | 0.00                                            | 4.1E-04      | 0.00                                          | Gas                                                                      | Ap-42                               |                                                                                |
|                                                                                    |                                        |                                     |                                                                       |                                                       |                            |                            |                | CO2e                                                                     | 259     | 1,135                                           | 259          | 1,135                                         | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Rod Packing/Crankcase Leaks (RPC)

|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     | Table 1: E              | missions Data                                                            |       |        |              |                                                |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------|-------|--------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br><i>(Must</i><br><i>Emi</i> ssio | ion Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Uncon | ential | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                                            | Source                                                                 | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | & HAPS)                                                                  | lb/hr | ton/yr | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | NOX                                                                      |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | CO                                                                       |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        | Rod Pac                                           | king/Crank                                                             | case Leaks                                            | (RPC)                      |                                     |                         | VOC                                                                      | 6.32  | 27.66  | 6.32         | 27.66                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | SO2                                                                      |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | PM10/2.5                                                                 |       |        |              |                                                | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | Benzene                                                                  | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | Ethylbenzene                                                             | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | НСНО                                                                     | 0.02  | 0.09   | 0.02         | 0.09                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | n-Hexane                                                                 | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        | D.D.O.                                            | DD0                                                                    |                                                       |                            |                                     |                         | Methanol                                                                 |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
| RPC                                                                 |                                        | RPC<br>(fka-                                      | RPC<br>(fka-                                                           |                                                       |                            |                                     |                         | Toluene                                                                  | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
| (fka-FUG2)<br>(18E)                                                 | na                                     | FÙG2)                                             | FÙG2)                                                                  | na                                                    | na                         | С                                   | 8,760                   | 2,2,4-TMP                                                                | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
| (IOL)                                                               |                                        | (18E)                                             | (18E)                                                                  |                                                       |                            |                                     |                         | Xylenes                                                                  | 0.04  | 0.16   | 0.04         | 0.16                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | Other HAP                                                                |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | Total HAP                                                                | 0.24  | 1.05   | 0.24         | 1.05                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | СО                                                                       | 29    | 128    | 29           | 128                                            | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | CH4                                                                      | 14.70 | 64.37  | 14.70        | 64.37                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | N2O                                                                      |       |        |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                        |                                                       |                            |                                     |                         | CO2e                                                                     | 397   | 1,738  | 397          | 1,738                                          | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Start/Stop/Maintenance (w/ Blowdown) (SSM)

|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            | Table 1: E                              | missions Data                                                                        |       |                    |              |                                                |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|-------|--------------------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br><i>(Must</i> | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Po<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Emissi<br>(Che             | ime for<br>on Unit<br>mical<br>es only) | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs |       | ential<br>ntrolled | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                         | Source                                                                | ID No.                                               | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                          | & HAPS)                                                                              | lb/hr | ton/yr             | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | NOX                                                                                  |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | CO                                                                                   |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        | Startup, Sh                    | utdown and                                                            | d Maintenar                                          | nce (SSM)                  |                            |                                         | VOC                                                                                  |       | 42.84              |              | 42.84                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | SO2                                                                                  |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | PM10/2.5                                                                             |       |                    |              |                                                | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | Benzene                                                                              |       | 0.02               |              | 0.02                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | Ethylbenzene                                                                         |       | 0.02               |              | 0.02                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | HCHO                                                                                 |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | n-Hexane                                                                             |       | 1.10               |              | 1.10                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            | Mixed<br>(~160                          | Methanol                                                                             |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
| SSM                                                                 |                                        | SSM                            | SSM                                                                   |                                                      |                            |                            | hrs/hr                                  | Toluene                                                                              |       | 0.09               |              | 0.09                                           | Gas                                                                      | Vendor                              |                                                                                |
| (16E)                                                               | na                                     | (16E)                          | (16E)                                                                 | na                                                   | na                         | I/C                        | plus                                    | 2,2,4-TMP                                                                            |       | 0.54               |              | 0.54                                           | Gas                                                                      | Vendor                              |                                                                                |
| ( - /                                                               |                                        | ( - )                          | ( - )                                                                 |                                                      |                            |                            | contin-<br>uous                         | Xylenes                                                                              |       | 0.13               |              | 0.13                                           | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            | purge)                                  | Other HAP                                                                            |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | Total HAP                                                                            |       | 1.89               |              | 1.89                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | CO                                                                                   |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | CH4                                                                                  |       | 75.44              |              | 75.44                                          | Gas                                                                      | Vendor                              |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | N2O                                                                                  |       |                    |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                |                                                                       |                                                      |                            |                            |                                         | CO2e                                                                                 |       | 1,886              |              | 1,886                                          | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Dehydrator Reboilers 01 and 02 (Each)**

|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            | Table 1: E                              | missions Data                                                            |         |         |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------|---------|---------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emissio | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Emissi<br><i>(Che</i>      | ime for<br>on Unit<br>mical<br>es only) | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Uncon   | ential  | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                             | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                          | & HAPS)                                                                  | lb/hr   | ton/yr  | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | NOX                                                                      | 0.16    | 0.71    | 0.16         | 0.71                                          | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CO                                                                       | 0.14    | 0.60    | 0.14         | 0.60                                          | Gas                                                                      |                                     |                                                                                |
|                                                                     | 1.66 N                                 | MBtu/hr D                          | ehydrator R                                                           | eboilers 01                                           | and 02 (E                  | ach)                       |                                         | VOC                                                                      | 0.01    | 0.04    | 0.01         | 0.04                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | SO2                                                                      | 9.8E-04 | 4.3E-03 | 9.8E-04      | 4.3E-03                                       | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | PM10/2.5                                                                 | 0.01    | 0.05    | 0.01         | 0.05                                          | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Benzene                                                                  | 3.4E-06 | 1.5E-05 | 3.4E-06      | 1.5E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Ethylbenzene                                                             |         |         |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | HCHO                                                                     | 1.2E-04 | 5.4E-04 | 1.2E-04      | 5.4E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | n-Hexane                                                                 | 2.9E-03 | 0.01    | 2.9E-03      | 0.01                                          | Gas                                                                      | AP-42                               |                                                                                |
| RBV-01                                                              |                                        | RBV-01                             | RBV-01                                                                |                                                       |                            |                            |                                         | Methanol                                                                 |         |         |              |                                               | Gas                                                                      |                                     |                                                                                |
| (4E)                                                                | Linuard                                | (4E)                               | (4E)                                                                  |                                                       |                            |                            | 8760                                    | Toluene                                                                  | 5.5E-06 | 2.4E-05 | 5.5E-06      | 2.4E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
| and                                                                 | Upward<br>Vertical                     | and                                | and                                                                   | na                                                    | na                         | С                          | (Each)                                  | 2,2,4-TMP                                                                |         |         |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
| RBV-02<br>(7E)                                                      |                                        | RBV-02<br>(7E)                     | RBV-02<br>(7E)                                                        |                                                       |                            |                            | (====,                                  | Xylenes                                                                  |         |         |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
| (1 = )                                                              |                                        | (/ =)                              | (1 -)                                                                 |                                                       |                            |                            |                                         | Other HAP                                                                | 3.1E-06 | 1.4E-05 | 3.1E-06      | 1.4E-05                                       | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Total HAP                                                                | 3.1E-03 | 0.01    | 3.1E-03      | 0.01                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CO                                                                       | 196     | 857     | 196          | 857                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CH4                                                                      | 3.8E-03 | 0.02    | 3.8E-03      | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | N2O                                                                      | 3.6E-03 | 0.02    | 3.6E-03      | 0.02                                          | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CO2e                                                                     | 197     | 862     | 197          | 862                                           | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Dehydrators 01 and 02 (Each)

|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            | Table 1: E                              | missions Data                                                                        |                                |                   |              |                                                |                                                                          |                                     |                                                                                |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------|-------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & | Sint ID No.  Lust match Emission Point Type¹  This Point (Must match Emission Units Table & Plot Plan)  ID No.  Source  Control Device (Must match Emission Units Table & Plot Plan)  Device Type |              |                |              |       |                            | ime for<br>on Unit<br>mical<br>es only) | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOUFIAII)                                               |                                                                                                                                                                                                   | ID No.       | Source         | ID No.       |       | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                          | & HAPS)                                                                              | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | NOX                                                                                  |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   | 60 MMs       | scfd Dehydi    | rators 01 ar | nd 02 |                            |                                         | CO                                                                                   |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   | (Still Ve    | ent and Flas   |              | -Gas) |                            |                                         | VOC                                                                                  | 110.64                         | 484.62            | 1.11         | 4.85                                           | Gas                                                                      | GLYCalc                             |                                                                                |
|                                                          |                                                                                                                                                                                                   |              | (Eac           | h)           |       |                            |                                         | SO2                                                                                  |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | PM10/2.5                                                                             |                                |                   |              |                                                | Solid/Gas                                                                |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | Benzene                                                                              | 1.97                           | 8.64              | 0.02         | 0.09                                           | Gas                                                                      | GLYCalc                             |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | Ethylbenzene                                                                         | 2.05                           | 9.00              | 0.02         | 0.09                                           | Gas                                                                      | GLYCalc                             |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | НСНО                                                                                 |                                |                   |              |                                                | Gas                                                                      | GLYCalc                             |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | n-Hexane                                                                             | 2.32                           | 10.18             | 0.02         | 0.10                                           | Gas                                                                      | GLYCalc                             |                                                                                |
| RSV-1                                                    |                                                                                                                                                                                                   | RSV-1        | RSV-1          |              |       |                            |                                         | Methanol                                                                             |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
| (5E/6E)                                                  | Linuxord                                                                                                                                                                                          | (5E/6E)      | (5E/6E)<br>and |              |       |                            | 8760                                    | Toluene                                                                              | 9.03                           | 39.55             | 0.09         | 0.39                                           | Gas                                                                      | GLYCalc                             |                                                                                |
| and<br>RSV-2                                             | Upward<br>Vertical                                                                                                                                                                                | and<br>RSV-2 | RSV-2          | na           | na    | С                          | (Each)                                  | 2,2,4-TMP                                                                            | 1.71                           | 7.48              | 0.02         | 0.07                                           | Gas                                                                      | GLYCalc                             |                                                                                |
| (8E/9E)                                                  |                                                                                                                                                                                                   | (8E/9E)      | (8E/9E)        |              |       |                            | (====,                                  | Xylenes                                                                              | 18.95                          | 82.98             | 0.19         | 0.83                                           | Gas                                                                      | GLYCalc                             |                                                                                |
| (Each)                                                   |                                                                                                                                                                                                   | (Each)       | (Each)         |              |       |                            |                                         | Other HAP                                                                            |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | Total HAP                                                                            | 36.15                          | 158.33            | 0.36         | 1.57                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | CO                                                                                   |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | CH4                                                                                  | 22.64                          | 99.17             | 0.23         | 0.99                                           | Gas                                                                      | GLYCalc                             |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | N2O                                                                                  |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                          |                                                                                                                                                                                                   |              |                |              |       |                            |                                         | CO2e                                                                                 | 566                            | 2,479             | 6            | 25                                             | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Thermal Oxidizer 01**

|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            | Table 1: E     | missions Data                                                                        |                                |                   |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|----------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br><i>(Must</i><br><i>Emissi</i> d | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units |                            |                | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                                            | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr) | & HAPS)                                                                              | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | NOX                                                                                  |                                |                   | 0.44         | 1.91                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        | C 4 MM                                            | ID4/lon Tloon                                                         |                                                       | 04                         |                            |                | CO                                                                                   |                                |                   | 1.99         | 8.71                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        | 6.4 IVIIVI                                        | Btu/hr Ther<br>COMB-1)                                                |                                                       | er u i                     |                            |                | VOC                                                                                  |                                |                   |              |                                               | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   | (002                                                                  | ()                                                    |                            |                            |                | SO2                                                                                  |                                |                   | 3.8E-03      | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | PM10/2.5                                                                             |                                |                   | 0.05         | 0.21                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | Benzene                                                                              |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | Ethylbenzene                                                                         |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | HCHO                                                                                 |                                |                   | 4.7E-04      | 2.1E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | n-Hexane                                                                             |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | Methanol                                                                             |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| COMB-1                                                              |                                        | COMB-1                                            | COMB-1                                                                |                                                       |                            |                            |                | Toluene                                                                              |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| (10E)                                                               | Flare                                  | (10E)                                             | (10E)                                                                 | na                                                    | na                         | С                          | 8,760          | 2,2,4-TMP                                                                            |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| , ,                                                                 |                                        | , ,                                               |                                                                       |                                                       |                            |                            |                | Xylenes                                                                              |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | Other HAP                                                                            |                                |                   | 1.2E-05      | 5.2E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | Total HAP                                                                            |                                |                   | 4.8E-04      | 2.1E-03                                       | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | CO                                                                                   |                                |                   | 754          | 3,304                                         | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | CH4                                                                                  |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | N2O                                                                                  |                                |                   | 0.01         | 0.06                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                            |                | CO2e                                                                                 |                                |                   | 758          | 3,322                                         | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Heater Treater**

|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     | Table 1: E              | missions Data                                                            |         |         |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------|---------|---------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emissio | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Uncon   | ential  | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAII)                                                         |                                        | ID No.                             | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | & HAPS)                                                                  | lb/hr   | ton/yr  | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     | ,                                                                              |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | NOX                                                                      | 0.15    | 0.67    | 0.15         | 0.67                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        | 4.55                               | 1414D: // 1                                                           |                                                       |                            |                                     |                         | CO                                                                       | 0.13    | 0.56    | 0.13         | 0.56                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        | 1.55                               | MMBtu/hr H<br>(HTR-01                                                 |                                                       | ter                        |                                     |                         | VOC                                                                      | 0.01    | 0.04    | 0.01         | 0.04                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    | (                                                                     | (//                                                   |                            |                                     |                         | SO2                                                                      | 9.1E-04 | 4.0E-03 | 9.1E-04      | 4.0E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | PM10/2.5                                                                 | 0.01    | 0.05    | 0.01         | 0.05                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Benzene                                                                  | 3.2E-06 | 1.4E-05 | 3.2E-06      | 1.4E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Ethylbenzene                                                             |         |         |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | НСНО                                                                     | 1.1E-04 | 5.0E-04 | 1.1E-04      | 5.0E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | n-Hexane                                                                 | 2.7E-03 | 0.01    | 2.7E-03      | 0.01                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Methanol                                                                 |         |         |              |                                               | Gas                                                                      |                                     |                                                                                |
| LITD 04                                                             | I la a a d                             | LITE 04                            | LITD 04                                                               |                                                       |                            |                                     |                         | Toluene                                                                  | 5.2E-06 | 2.3E-05 | 5.2E-06      | 2.3E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
| HTR-01<br>(11E)                                                     | Upward<br>Vertical                     | HTR-01<br>(11E)                    | HTR-01<br>(11E)                                                       | na                                                    | na                         | С                                   | 8,760                   | 2,2,4-TMP                                                                |         |         |              |                                               | Gas                                                                      |                                     |                                                                                |
| (112)                                                               | Vortical                               | (112)                              | (112)                                                                 |                                                       |                            |                                     |                         | Xylenes                                                                  |         |         |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Other HAP                                                                | 2.9E-06 | 1.3E-05 | 2.9E-06      | 1.3E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Total HAP                                                                | 2.9E-03 | 0.01    | 2.9E-03      | 0.01                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CO                                                                       | 183     | 800     | 183          | 800                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CH4                                                                      | 3.5E-03 | 0.02    | 3.5E-03      | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | N2O                                                                      | 3.3E-03 | 0.01    | 3.3E-03      | 0.01                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CO2e                                                                     | 184     | 805     | 184          | 805                                           | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Condensate Stabilizer Heater 01**

|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            | Table 1: E                              | missions Data                                                                        |         |                                                 |              |                                               |                                                                          |                                     |                                                                                |
|------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|---------|-------------------------------------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission<br>Point ID No.<br>(Must match<br>Emission<br>Units Table &<br>Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emissio | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Emissi                     | ime for<br>on Unit<br>mical<br>es only) | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Uncon   | mum<br>ential<br>etrolled<br>sions <sup>4</sup> | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                                        |                                        | ID No.                             | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr)                          | & HAPS)                                                                              | lb/hr   | ton/yr                                          | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | NOX                                                                                  | 0.25    | 1.10                                            | 0.25         | 1.10                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    | 0.5                                    |                                    |                                                                       | . 0. 1                                                |                            | <b>.</b>                   |                                         | CO                                                                                   | 0.21    | 0.92                                            | 0.21         | 0.92                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    | 2.5                                    | 5 MWBtu/n                          | r Condensa<br>(HTR-02                                                 |                                                       | er Heater U                | 71                         |                                         | VOC                                                                                  | 0.01    | 0.06                                            | 0.01         | 0.06                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    | ( 02                                                                  | (:==),                                                |                            |                            |                                         | SO2                                                                                  | 1.5E-03 | 6.6E-03                                         | 1.5E-03      | 6.6E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | PM10/2.5                                                                             | 0.02    | 0.08                                            | 0.02         | 0.08                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Benzene                                                                              | 5.3E-06 | 2.3E-05                                         | 5.3E-06      | 2.3E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Ethylbenzene                                                                         |         |                                                 |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | НСНО                                                                                 | 1.9E-04 | 8.2E-04                                         | 1.9E-04      | 8.2E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | n-Hexane                                                                             | 4.5E-03 | 0.02                                            | 4.5E-03      | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Methanol                                                                             |         |                                                 |              |                                               | Gas                                                                      |                                     |                                                                                |
| LITE 00                                                                            | l la a a d                             | LITE OO                            | LITE OO                                                               |                                                       |                            |                            |                                         | Toluene                                                                              | 8.5E-06 | 3.7E-05                                         | 8.5E-06      | 3.7E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
| HTR-02<br>(12E)                                                                    | Upward<br>Vertical                     | HTR-02<br>(12E)                    | HTR-02<br>(12E)                                                       | na                                                    | na                         | С                          | 8,760                                   | 2,2,4-TMP                                                                            |         |                                                 |              |                                               | Gas                                                                      |                                     |                                                                                |
| (122)                                                                              | Vortical                               | (122)                              | (122)                                                                 |                                                       |                            |                            |                                         | Xylenes                                                                              |         |                                                 |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Other HAP                                                                            | 4.7E-06 | 2.1E-05                                         | 4.7E-06      | 2.1E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | Total HAP                                                                            | 4.7E-03 | 0.02                                            | 4.7E-03      | 0.02                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CO                                                                                   | 300     | 1,314                                           | 300          | 1,314                                         | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CH4                                                                                  | 5.8E-03 | 0.03                                            | 5.8E-03      | 0.03                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | N2O                                                                                  | 5.5E-03 | 0.02                                            | 5.5E-03      | 0.02                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                                    |                                        |                                    |                                                                       |                                                       |                            |                            |                                         | CO2e                                                                                 | 302     | 1,322                                           | 302          | 1,322                                         | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Station Recycle Line Heater**

|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            | Table 1: E     | missions Data                                                            |                                |                   |              |                                                |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------|----------------|--------------------------------------------------------------------------|--------------------------------|-------------------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emissio | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units |                            |                | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                             | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup> | Max<br>(hr/yr) | & HAPS)                                                                  | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | NOX                                                                      | 0.16                           | 0.71              | 0.16         | 0.71                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     | ,                                      | CC MMD4                            | llan Ctation                                                          | Decuela I i                                           | ina Haatan                 |                            |                | CO                                                                       | 0.14                           | 0.60              | 0.14         | 0.60                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     | 1                                      | .66 IVIIVIBLU                      | hr - Station/<br>HTR-03)                                              |                                                       | ne Heater                  |                            |                | VOC                                                                      | 0.01                           | 0.04              | 0.01         | 0.04                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    | (                                                                     | (,                                                    |                            |                            |                | SO2                                                                      | 9.8E-04                        | 4.3E-03           | 9.8E-04      | 4.3E-03                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | PM10/2.5                                                                 | 0.01                           | 0.05              | 0.01         | 0.05                                           | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | Benzene                                                                  | 3.4E-06                        | 1.5E-05           | 3.4E-06      | 1.5E-05                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | Ethylbenzene                                                             |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | HCHO                                                                     | 1.2E-04                        | 5.4E-04           | 1.2E-04      | 5.4E-04                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | n-Hexane                                                                 | 2.9E-03                        | 0.01              | 2.9E-03      | 0.01                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | Methanol                                                                 |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
| HTR-03                                                              | Linuard                                | HTR-03                             | HTR-03                                                                |                                                       |                            |                            |                | Toluene                                                                  | 5.5E-06                        | 2.4E-05           | 5.5E-06      | 2.4E-05                                        | Gas                                                                      | AP-42                               |                                                                                |
| (19E)                                                               | Upward<br>Vertical                     | (19E)                              | (19E)                                                                 | na                                                    | na                         | С                          | 8,760          | 2,2,4-TMP                                                                |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
| ,                                                                   |                                        | , ,                                |                                                                       |                                                       |                            |                            |                | Xylenes                                                                  |                                |                   |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | Other HAP                                                                | 3.1E-06                        | 1.4E-05           | 3.1E-06      | 1.4E-05                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | Total HAP                                                                | 3.1E-03                        | 0.01              | 3.1E-03      | 0.01                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | CO                                                                       | 196                            | 857               | 196          | 857                                            | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | CH4                                                                      | 3.8E-03                        | 0.02              | 3.8E-03      | 0.02                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | N2O                                                                      | 3.6E-03                        | 0.02              | 3.6E-03      | 0.02                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                            |                | CO2e                                                                     | 197                            | 862               | 197          | 862                                            | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Condensate Stabilizer Heater 02**

|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     | Table 1: E              | missions Data                                                                        |                                |                   |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br>(Must<br>Emissio | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                             | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | & HAPS)                                                                              | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | NOX                                                                                  | 0.95                           | 4.17              | 0.95         | 4.17                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     | 0.                                     | 7 NANAD4//s.a                      | . Candanaa                                                            | ta Otabiliaa                                          |                            | ,                                   |                         | CO                                                                                   | 0.80                           | 3.50              | 0.80         | 3.50                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     | 9.                                     | / WWBtu/nr                         | Condensa (<br>HTR-04)                                                 |                                                       | r Heater U                 | 2                                   |                         | VOC                                                                                  | 0.05                           | 0.24              | 0.05         | 0.24                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    | (                                                                     | (===//                                                |                            |                                     |                         | SO2                                                                                  | 5.7E-03                        | 2.5E-02           | 5.7E-03      | 2.5E-02                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     | ,                       | PM10/2.5                                                                             | 0.07                           | 0.32              | 0.07         | 0.32                                          | Solid/Gas                                                                | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Benzene                                                                              | 2.0E-05                        | 8.7E-05           | 2.0E-05      | 8.7E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Ethylbenzene                                                                         |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | HCHO                                                                                 | 7.1E-04                        | 3.1E-03           | 7.1E-04      | 3.1E-03                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | n-Hexane                                                                             | 1.7E-02                        | 0.07              | 1.7E-02      | 0.07                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Methanol                                                                             |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| LITE 04                                                             | l laccon and                           | LITE 04                            | HTR-04                                                                |                                                       |                            |                                     |                         | Toluene                                                                              | 3.2E-05                        | 1.4E-04           | 3.2E-05      | 1.4E-04                                       | Gas                                                                      | AP-42                               |                                                                                |
| HTR-04<br>(20E)                                                     | Upward<br>Vertical                     | HTR-04<br>(20E)                    | (20E)                                                                 | na                                                    | na                         | С                                   | 8,760                   | 2,2,4-TMP                                                                            |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| (/                                                                  |                                        | (===)                              | (===)                                                                 |                                                       |                            |                                     |                         | Xylenes                                                                              |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Other HAP                                                                            | 1.8E-05                        | 7.9E-05           | 1.8E-05      | 7.9E-05                                       | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | Total HAP                                                                            | 1.8E-02                        | 0.08              | 1.8E-02      | 0.08                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CO                                                                                   | 1,141                          | 4,999             | 1,141        | 4,999                                         | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CH4                                                                                  | 2.2E-02                        | 0.10              | 2.2E-02      | 0.10                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | N2O                                                                                  | 2.1E-02                        | 0.09              | 2.1E-02      | 0.09                                          | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                        |                                    |                                                                       |                                                       |                            |                                     |                         | CO2e                                                                                 | 1,148                          | 5,029             | 1,148        | 5,029                                         | Gas                                                                      | Wgt Sum                             |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Produced Water Storage Tank**

|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     | Table 1: E              | missions Data                                                                        |                                |                   |              |                                               |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission<br>Point<br>Type <sup>1</sup> | Vented<br>This<br><i>(Must</i><br><i>Emissi</i> o | on Unit<br>Through<br>Point<br><i>match</i><br>on Units<br>Plot Plan) | Air Pol<br>Control<br>(Must I<br>Emissio<br>Table & F | Device<br>match<br>n Units | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>3</sup><br>(Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ential<br>trolled | Pote<br>Cont | mum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                        | ID No.                                            | Source                                                                | ID No.                                                | Device<br>Type             | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | & HAPS)                                                                              | lb/hr                          | ton/yr            | lb/hr        | ton/yr                                        | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | NOX                                                                                  |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        | 40 bbl Dra                                        | duced Wat                                                             | or Ctorono                                            | Tonk 04                    |                                     |                         | СО                                                                                   |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        | 46 DDI Pro                                        | T01 (1)                                                               | _                                                     | Tank UT                    |                                     |                         | VOC                                                                                  | 0.03                           | 0.14              | 0.03         | 0.14                                          | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                        |                                                   | , , ,                                                                 | - //                                                  |                            |                                     |                         | SO2                                                                                  |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | PM10/2.5                                                                             |                                |                   |              |                                               | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | Benzene                                                                              | 1.6E-03                        | 7.0E-03           | 1.6E-03      | 7.0E-03                                       | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | Ethylbenzene                                                                         | 1.6E-03                        | 7.0E-03           | 1.6E-03      | 7.0E-03                                       | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | HCHO                                                                                 |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | n-Hexane                                                                             | 1.6E-03                        | 0.01              | 1.6E-03      | 0.01                                          | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | Methanol                                                                             |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
| T01                                                                 | Upward                                 | T01                                               | T01                                                                   |                                                       |                            |                                     |                         | Toluene                                                                              | 1.6E-03                        | 7.0E-03           | 1.6E-03      | 7.0E-03                                       | Gas                                                                      | EPA                                 |                                                                                |
| (13E)                                                               | Vertical                               | (13E)                                             | (13E)                                                                 | na                                                    | na                         | С                                   | 8,760                   | 2,2,4-TMP                                                                            | 1.6E-03                        | 7.0E-03           | 1.6E-03      | 7.0E-03                                       | Gas                                                                      | EPA                                 |                                                                                |
| ( - ,                                                               |                                        | ( - /                                             | ( - /                                                                 |                                                       |                            |                                     |                         | Xylenes                                                                              | 1.6E-03                        | 7.0E-03           | 1.6E-03      | 7.0E-03                                       | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | Other HAP                                                                            |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | Total HAP                                                                            | 9.6E-03                        | 0.04              | 9.6E-03      | 0.04                                          | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | СО                                                                                   |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | CH4                                                                                  |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | N2O                                                                                  |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                        |                                                   |                                                                       |                                                       |                            |                                     |                         | CO2e                                                                                 |                                |                   |              |                                               | Gas                                                                      |                                     |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Produced Water - Truck Load-Out 01**

|                                                                     |                                                                                                         |         |                          |                                  |                |                                     | Table 1: E              | missions Data                                                            |               |                                                 |                                                              |         |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|--------------------------|----------------------------------|----------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------|---------------|-------------------------------------------------|--------------------------------------------------------------|---------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission Unit Vented Through This Point (Must match Emission Units Type <sup>1</sup> Table & Plot Plan) |         |                          | (Must match Emission Units  (Che |                | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Pote<br>Uncor | mum<br>ential<br>atrolled<br>sions <sup>4</sup> | Maximum<br>Potential<br>Controlled<br>Emissions <sup>5</sup> |         | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                                                                                         | ID No.  | Source                   | ID No.                           | Device<br>Type | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | & HAPS)                                                                  | lb/hr         | ton/yr                                          | lb/hr                                                        | ton/yr  | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | NOX                                                                      |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         | Duaduas | d Water T                |                                  | 04.04          |                                     |                         | CO                                                                       |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         | Produce | ed Water - Ti<br>(TLO-01 |                                  | Out 01         |                                     |                         | VOC                                                                      |               | 0.45                                            |                                                              | 0.45    | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         |         | (                        | (//                              |                |                                     |                         | SO2                                                                      |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | PM10/2.5                                                                 |               |                                                 |                                                              |         | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | Benzene                                                                  |               | 2.2E-02                                         |                                                              | 2.2E-02 | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | Ethylbenzene                                                             |               | 2.2E-02                                         |                                                              | 2.2E-02 | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | HCHO                                                                     |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | n-Hexane                                                                 |               | 0.02                                            |                                                              | 0.02    | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | Methanol                                                                 |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     | Llourord                                                                                                | TLO-01  | TLO-01                   |                                  |                |                                     |                         | Toluene                                                                  |               | 2.2E-02                                         |                                                              | 2.2E-02 | Gas                                                                      | AP-42                               |                                                                                |
| TLO-01 (14E)                                                        | Upward<br>Vertical                                                                                      | (14E)   | (14E)                    | na                               | na             | С                                   | 8,760                   | 2,2,4-TMP                                                                |               | 2.2E-02                                         |                                                              | 2.2E-02 | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         | ( )     | ,                        |                                  |                |                                     |                         | Xylenes                                                                  |               | 2.2E-02                                         |                                                              | 2.2E-02 | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | Other HAP                                                                |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | Total HAP                                                                |               | 0.13                                            |                                                              | 0.13    | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | CO                                                                       |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | CH4                                                                      |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | N2O                                                                      |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                         |         |                          |                                  |                |                                     |                         | CO2e                                                                     |               |                                                 |                                                              |         | Gas                                                                      |                                     |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## Condensate - Truck Load-Out 02

|                                                                     |                                                                                                                       |        |                        |                 |                |                            | Table 1: E     | missions Data                                                            |               |                                                 |              |                                                |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|------------------------|-----------------|----------------|----------------------------|----------------|--------------------------------------------------------------------------|---------------|-------------------------------------------------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission Unit Vented Through This Point (Must match Emission Units Type <sup>1</sup> Emission Unit Table & Plot Plan) |        |                        | (Must match     |                |                            |                | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Pote<br>Uncor | mum<br>ential<br>htrolled<br>sions <sup>4</sup> | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FIOL FIAIT)                                                         |                                                                                                                       | ID No. | Source                 | ID No.          | Device<br>Type | Short<br>Term <sup>2</sup> | Max<br>(hr/yr) | & HAPS)                                                                  | lb/hr         | ton/yr                                          | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | NOX                                                                      |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       | 0      | T                      | ala I a a al O. | ·+ 00          |                            |                | CO                                                                       |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       | Conde  | nsate - Tru<br>(TLO-02 |                 | It UZ          |                            |                | VOC                                                                      |               | 2.47                                            |              | 2.47                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       |        | (                      | ()              |                |                            |                | SO2                                                                      |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | PM10/2.5                                                                 |               |                                                 |              |                                                | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | Benzene                                                                  |               | 3.5E-02                                         |              | 3.5E-02                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | Ethylbenzene                                                             |               | 3.5E-02                                         |              | 3.5E-02                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | HCHO                                                                     |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | n-Hexane                                                                 |               | 0.03                                            |              | 0.03                                           | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | Methanol                                                                 |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     | Upward                                                                                                                | TLO-02 | TLO-02                 |                 |                |                            |                | Toluene                                                                  |               | 3.5E-02                                         |              | 3.5E-02                                        | Gas                                                                      | AP-42                               |                                                                                |
| TLO-02 (15E)                                                        | Vertical                                                                                                              | (15E)  | (15E)                  | na              | na             | С                          | 8,760          | 2,2,4-TMP                                                                |               | 3.5E-02                                         |              | 3.5E-02                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       | ,      | ,                      |                 |                |                            |                | Xylenes                                                                  |               | 3.5E-02                                         |              | 3.5E-02                                        | Gas                                                                      | AP-42                               |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | Other HAP                                                                |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | Total HAP                                                                |               | 0.21                                            |              | 0.21                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | CO                                                                       |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | CH4                                                                      |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | N2O                                                                      |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                                       |        |                        |                 |                |                            |                | CO2e                                                                     |               |                                                 |              |                                                | Gas                                                                      |                                     |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **Produced Water Storage Tank**

|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     | Table 1: E              | missions Data                                                            |                                |                  |                                                              |        |                                                                          |                                     |                                                                                |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------|-----------------------|----------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------|--------------------------------|------------------|--------------------------------------------------------------|--------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & Plot Plan) | Emission Unit Vented Through This Point (Must match Point Type <sup>1</sup> Emission Units Table & Plot Plan) |           | Through<br>Point<br><i>match</i><br>on <i>Unit</i> s | (Must match           |                | Vent T<br>Emissi<br>(Che<br>process | on Unit<br><i>mical</i> | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Maxi<br>Pote<br>Uncon<br>Emiss | ntial<br>trolled | Maximum<br>Potential<br>Controlled<br>Emissions <sup>5</sup> |        | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| FlotFlally                                                          |                                                                                                               | ID No.    | Source                                               | ID No.                | Device<br>Type | Short<br>Term <sup>2</sup>          | Max<br>(hr/yr)          | /yr)                                                                     | lb/hr                          | ton/yr           | lb/hr                                                        | ton/yr | or<br>Gas/Vapor)                                                         |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     | i                       | NOX                                                                      |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               | 240 661 5 | )voduced \A                                          | latar Staran          | a Tank         |                                     |                         | CO                                                                       |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               | 210 DDI P | 70aucea w<br>(T02 (2                                 | /ater Storag<br>21E)) | e rank         |                                     |                         | VOC                                                                      | 0.14                           | 0.62             | 0.14                                                         | 0.62   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     | SO2                     |                                                                          |                                |                  |                                                              | Gas    |                                                                          |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | PM10/2.5                                                                 |                                |                  |                                                              |        | Solid/Gas                                                                |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Benzene                                                                  | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Ethylbenzene                                                             | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | НСНО                                                                     |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | n-Hexane                                                                 | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Methanol                                                                 |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
| T02                                                                 | Upward                                                                                                        | T02       | T02                                                  |                       |                |                                     |                         | Toluene                                                                  | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
| (21E)                                                               | Vertical                                                                                                      | (21E)     | (21E)                                                | na                    | na             | С                                   | 8,760                   | 2,2,4-TMP                                                                | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Xylenes                                                                  | 7.0E-03                        | 0.03             | 7.0E-03                                                      | 0.03   | Gas                                                                      | EPA                                 |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Other HAP                                                                |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | Total HAP                                                                | 0.04                           | 0.18             | 0.04                                                         | 0.18   | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | CO                                                                       |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | CH4                                                                      |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | N2O                                                                      |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |
|                                                                     |                                                                                                               |           |                                                      |                       |                |                                     |                         | CO2e                                                                     |                                |                  |                                                              |        | Gas                                                                      |                                     |                                                                                |

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

## **FACILITY-WIDE SUMMARY**

|                                                          |                                        |                                                                                       |             |                                                                              |                | Table                                                          | 1: Emissio     | ns Data - Continue                                                       | ed            |                                                 |              |                                                |                                                                          |                                     |                                                                                |
|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|----------------|--------------------------------------------------------------------------|---------------|-------------------------------------------------|--------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Emission Point ID No. (Must match Emission Units Table & | Emission<br>Point<br>Type <sup>1</sup> | Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan) |             | h Air Pollution Control Device (Must match Emission Units Table & Plot Plan) |                | Vent Time for<br>Emission Unit<br>(Chemical<br>processes only) |                | All Regulated Pollutants - Chemical Name/CAS <sup>3</sup> (Speciate VOCs | Pote<br>Uncor | mum<br>ential<br>htrolled<br>sions <sup>4</sup> | Pote<br>Cont | imum<br>ential<br>rolled<br>sions <sup>5</sup> | Emission<br>Form or<br>Phase<br>(At exit<br>conditions,<br>Solid, Liquid | Est.<br>Method<br>Used <sup>6</sup> | Emission<br>Concen-<br>tration <sup>7</sup><br>(ppmv or<br>mg/m <sup>3</sup> ) |
| Plot Plan)                                               |                                        | ID No.                                                                                | Source      | ID No.                                                                       | Device<br>Type | Short<br>Term <sup>2</sup>                                     | Max<br>(hr/yr) | & HAPS)                                                                  | lb/hr         | ton/yr                                          | lb/hr        | ton/yr                                         | or<br>Gas/Vapor)                                                         |                                     | ,                                                                              |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | NOX                                                                      | 11.71         | 51.31                                           | 5.53         | 24.20                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | CO                                                                       | 27.12         | 119                                             | 5.43         | 23.78                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        | Ε.                                                                                    | CILITY-WII  | DE CUMMA                                                                     | DV             |                                                                |                | Point - VOC                                                              | 236.72        | 1,083                                           | 10.13        | 89.52                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                          | l a                                    |                                                                                       | ugitives (F |                                                                              |                | ≣)                                                             |                | Fugitive - VOC                                                           | 9.12          | 39.93                                           | 9.12         | 39.93                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                | -,                                                             |                | Total - VOC                                                              | 245.69        | 1,122                                           | 19.11        | 129.45                                         | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | SO2                                                                      | 0.03          | 0.11                                            | 0.03         | 0.13                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | PM10/2.5                                                                 | 0.40          | 1.77                                            | 0.45         | 1.98                                           | Solid/Gas                                                                | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Benzene                                                                  | 4.11          | 18.09                                           | 0.20         | 0.94                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Ethylbenzene                                                             | 4.26          | 18.75                                           | 0.20         | 0.93                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | HCHO                                                                     | 2.30          | 10.08                                           | 0.64         | 2.82                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | n-Hexane                                                                 | 4.86          | 22.45                                           | 0.24         | 2.19                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Methanol                                                                 | 0.06          | 0.27                                            | 0.01         | 0.05                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Toluene                                                                  | 18.22         | 79.96                                           | 0.34         | 1.62                                           | Gas                                                                      | Sum                                 |                                                                                |
| na                                                       | na                                     | na                                                                                    | na          | na                                                                           | na             | na                                                             | na             | 2,2,4-TMP                                                                | 3.58          | 16.26                                           | 0.19         | 1.42                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Xylenes                                                                  | 38.05         | 167                                             | 0.53         | 2.52                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Other HAP                                                                | 0.34          | 1.49                                            | 0.04         | 0.19                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | Total HAP                                                                | 76.02         | 335                                             | 2.38         | 12.68                                          | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | CO2                                                                      | 5,634         | 24,678                                          | 6,388        | 27,982                                         | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | CH4                                                                      | 80.11         | 426                                             | 35.28        | 229.95                                         | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | N2O                                                                      | 0.05          | 0.20                                            | 0.06         | 0.26                                           | Gas                                                                      | Sum                                 |                                                                                |
|                                                          |                                        |                                                                                       |             |                                                                              |                |                                                                |                | CO2e                                                                     | 7,650         | 35,395                                          | 7,288        | 33,808                                         | Gas                                                                      | Sum                                 |                                                                                |

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment J - Emission Points Data Summary Sheet**

#### **Table 1 Notes**

| Criteria Pollutants |            |  |  |  |  |  |  |  |
|---------------------|------------|--|--|--|--|--|--|--|
| Pollutant           | CAS        |  |  |  |  |  |  |  |
| NO2                 | 10102-44-0 |  |  |  |  |  |  |  |
| CO                  | 630-08-0   |  |  |  |  |  |  |  |
| VOC                 | na         |  |  |  |  |  |  |  |
| Propane             | 74-98-6    |  |  |  |  |  |  |  |
| i-Butane            | 75-28-5    |  |  |  |  |  |  |  |
| n-Butane            | 106-97-8   |  |  |  |  |  |  |  |
| SO2                 | 7446-09-5  |  |  |  |  |  |  |  |
| PM10/2.5            | na         |  |  |  |  |  |  |  |

| Hazardous Air | r Pollutants (HAPs) |
|---------------|---------------------|
| Pollutant     | CAS                 |
| Benzene       | 71-43-2             |
| Ethylbenzene  | 100-41-4            |
| Formadehyde   | 50-00-0             |
| n-Hexane      | 110-54-3            |
| Methanol      | 67-56-1             |
| Toluene       | 108-88-3            |
| 2,2,4-TMP     | 540-84-1            |
| Xylenes       | 1330-20-7           |
| Other HAP     | na                  |
| Total HAP     | na                  |

| Greenhouse Gas (GHG) Pollutants |            |  |  |  |  |  |  |
|---------------------------------|------------|--|--|--|--|--|--|
| Pollutant                       | CAS        |  |  |  |  |  |  |
| CO2                             | 124-38-9   |  |  |  |  |  |  |
| CH4                             | 74-82-8    |  |  |  |  |  |  |
| N2O                             | 10024-97-2 |  |  |  |  |  |  |
| CO2e                            | na         |  |  |  |  |  |  |

Table 1: Notes

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows:
  - MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- 7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment J - Emission Points Data Summary Sheet**

#### **Release Parameter Data**

| Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                    |          |          | Table 2: Re                                  | elease Parame | eter Data                 |                                                    |           |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------|----------|----------------------------------------------|---------------|---------------------------|----------------------------------------------------|-----------|-------------|
| Point ID   No.   Inner   Diameter   (ft.)   (ft.) |                                 |                    |          |          | Exit Gas                                     |               | Emission Poin             | t Elevation (ft)                                   | UTM Coord | inates (km) |
| CE-02         2E         1.0         1,016         9,268         200         1,230         15.0         4,414.56         521.65           CE-03         3E         0.4         1,064         970         150         1,230         15.0         4,414.56         521.65           RBV-1         4E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-1         5E         na - See Thermal Oxidizer (COMB-1 (10E))           RBV-2         7E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-2         8E         na - See Thermal Oxidizer (COMB-1 (10E))           9E         na - See Thermal Oxidizer (COMB-1 (10E))           COMB-1         10E         3.0         1,500         6,188         24.1         1,230         20.0         4,414.56         521.65           HTR-01         11E         600         1,230         10.0         4,414.56         521.65           TLO-1         14E         1,230         4,414.56         521.65           TLO-1         14E         1,230         4,414.56         521.65           TLO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Point<br>No<br>(Must m<br>Emiss | ID<br>natch<br>ion | Diameter |          | Flow <sup>1</sup><br>(acfm)<br>(At operating | •             | (Height above<br>mean sea | (Release<br>height of<br>emissions<br>above ground | Northing  | Easting     |
| CE-03         3E         0.4         1,064         970         150         1,230         15.0         4,414.56         521.65           RBV-1         4E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-1         5E         na - See Thermal Oxidizer (COMB-1 (10E))           RBV-2         7E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-2         8E         na - See Thermal Oxidizer (COMB-1 (10E))           9E         na - See Thermal Oxidizer (COMB-1 (10E))           COMB-1         10E         3.0         1,500         6,188         24.1         1,230         20.0         4,414.56         521.65           HTR-01         11E         600         1,230         10.0         4,414.56         521.65           HTR-02         12E         600         1,230         10.0         4,414.56         521.65           TLO-1         14E         1,230         4,414.56         521.65           TLO-2         15E         1,230         4,414.56         521.65           RPC**         18E         1,230         4,414.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CE-01                           | 1E                 | 1.0      | 1,016    | 9,268                                        | 200           | 1,230                     | 15.0                                               | 4,414.56  | 521.65      |
| RBV-1         4E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-1         5E         na - See Thermal Oxidizer (COMB-1 (10E))           RBV-2         7E         0.6         120         1,230         10.0         4,414.56         521.65           RSV-2         8E         na - See Thermal Oxidizer (COMB-1 (10E))           9E         na - See Thermal Oxidizer (COMB-1 (10E))           COMB-1         10E         3.0         1,500         6,188         24.1         1,230         20.0         4,414.56         521.65           HTR-01         11E         600         1,230         10.0         4,414.56         521.65           HTR-02         12E         600         1,230         10.0         4,414.56         521.65           TLO-1         14E         1,230         4,414.56         521.65           TLO-2         15E         1,230         4,414.56         521.65           SSM****         16E         1,230         4,414.56         521.65           RPC***         18E         1,230         4,414.56         521.65           HTR-03         19E         1,230         4,414.56         521.65      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CE-02                           | 2E                 | 1.0      | 1,016    | 9,268                                        | 200           | 1,230                     | 15.0                                               | 4,414.56  | 521.65      |
| SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CE-03                           | 3E                 | 0.4      | 1,064    | 970                                          | 150           | 1,230                     | 15.0                                               | 4,414.56  | 521.65      |
| RSV-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RBV-1                           | 4E                 | 0.6      | 120      |                                              |               | 1,230                     | 10.0                                               | 4,414.56  | 521.65      |
| RBV-2   7E   0.6   120   1,230   10.0   4,414.56   521.65     RSV-2   7E   0.6   120   1,230   10.0   4,414.56   521.65     RSV-2   8E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DQ\/_1                          | 5E                 |          | <b>=</b> | na - S                                       | ee Thermal O  | xidizer (COMB-1           | (10E))                                             |           |             |
| RSV-2         8E         na - See Thermal Oxidizer (COMB-1 (10E))           COMB-1         10E         3.0         1,500         6,188         24.1         1,230         20.0         4,414.56         521.65           HTR-01         11E         600         1,230         10.0         4,414.56         521.65           HTR-02         12E         600         1,230         10.0         4,414.56         521.65           TO1         13E         1,230         4,414.56         521.65           TLO-1         14E         1,230         4,414.56         521.65           TLO-2         15E         1,230         4,414.56         521.65           SSM***         16E         1,230         4,414.56         521.65           RPC**         18E         1,230         4,414.56         521.65           HTR-04         20E         1,230         4,414.56         521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00-1                          | 6E                 |          |          | na - S                                       | ee Thermal O  | xidizer (COMB-1           | (10E))                                             |           |             |
| RSV-2   9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBV-2                           | 7E                 | 0.6      | 120      |                                              |               | 1,230                     | 10.0                                               | 4,414.56  | 521.65      |
| 9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RSV-2                           | 8E                 |          |          | na - S                                       | ee Thermal O  | xidizer (COMB-1           | (10E))                                             |           |             |
| HTR-01       11E       600       1,230       10.0       4,414.56       521.65         HTR-02       12E       600       1,230       10.0       4,414.56       521.65         T01       13E       1,230       4,414.56       521.65         TLO-1       14E       1,230       4,414.56       521.65         TLO-2       15E       1,230       4,414.56       521.65         SSM***       16E       1,230       4,414.56       521.65         RPC**       18E       1,230       4,414.56       521.65         HTR-03       19E       1,230       4,414.56       521.65         HTR-04       20E       1,230       4,414.56       521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00-2                          | 9E                 |          |          | na - S                                       | ee Thermal O  | xidizer (COMB-1           | (10E))                                             |           |             |
| HTR-02       12E       600       1,230       10.0       4,414.56       521.65         T01       13E       1,230       4,414.56       521.65         TLO-1       14E       1,230       4,414.56       521.65         TLO-2       15E       1,230       4,414.56       521.65         SSM****       16E       1,230       4,414.56       521.65         RPC***       18E       1,230       4,414.56       521.65         HTR-03       19E       1,230       4,414.56       521.65         HTR-04       20E       1,230       4,414.56       521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMB-1                          | 10E                | 3.0      | 1,500    | 6,188                                        | 24.1          | 1,230                     | 20.0                                               | 4,414.56  | 521.65      |
| T01       13E       1,230       4,414.56       521.65         TLO-1       14E       1,230       4,414.56       521.65         TLO-2       15E       1,230       4,414.56       521.65         SSM***       16E       1,230       4,414.56       521.65         RPC**       18E       1,230       4,414.56       521.65         HTR-03       19E       1,230       4,414.56       521.65         HTR-04       20E       1,230       4,414.56       521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HTR-01                          | 11E                |          | 600      |                                              |               | 1,230                     | 10.0                                               | 4,414.56  | 521.65      |
| TLO-1       14E       1,230       4,414.56       521.65         TLO-2       15E       1,230       4,414.56       521.65         SSM***       16E       1,230       4,414.56       521.65         RPC**       18E       1,230       4,414.56       521.65         HTR-03       19E       1,230       4,414.56       521.65         HTR-04       20E       1,230       4,414.56       521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HTR-02                          | 12E                |          | 600      |                                              |               | 1,230                     | 10.0                                               | 4,414.56  | 521.65      |
| TLO-2       15E       1,230       4,414.56       521.65         SSM***       16E       1,230       4,414.56       521.65         RPC**       18E       1,230       4,414.56       521.65         HTR-03       19E       1,230       4,414.56       521.65         HTR-04       20E       1,230       4,414.56       521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T01                             | 13E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
| SSM***     16E     1,230     4,414.56     521.65       RPC**     18E     1,230     4,414.56     521.65       HTR-03     19E     1,230     4,414.56     521.65       HTR-04     20E     1,230     4,414.56     521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TLO-1                           | 14E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
| RPC**     18E     1,230     4,414.56     521.65       HTR-03     19E     1,230     4,414.56     521.65       HTR-04     20E     1,230     4,414.56     521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TLO-2                           | 15E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
| HTR-03     19E     1,230     4,414.56     521.65       HTR-04     20E     1,230     4,414.56     521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSM***                          | 16E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
| HTR-04 20E 1,230 4,414.56 521.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RPC**                           | 18E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HTR-03                          | 19E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
| T02 21E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HTR-04                          | 20E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T02                             | 21E                |          |          |                                              |               | 1,230                     |                                                    | 4,414.56  | 521.65      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                    |          |          |                                              |               |                           |                                                    |           |             |

<sup>&</sup>lt;sup>1</sup> Give at operating conditions. Include inerts. 2 Release height of emissions above ground level.

## **ATTACHMENT K**

## **Fugitive Emissions Data Summary Sheet**

"27. Fill out the **Fugitive Emissions Data Summary Sheet** and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Summary
- Leak Source Data Sheet

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment K - Fugitive Emissions**

#### **FUGITIVE EMISSIONS DATA SUMMARY SHEET**

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

|     |            | APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                           |                           |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1.) | Will there | e be haul road activities?                                                                                                                                 |                           |
|     | □ Yes      | ☑ No                                                                                                                                                       |                           |
|     | ☐ If Yes,  | then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                     |                           |
| 2.) | Will there | e be Storage Piles?                                                                                                                                        |                           |
|     | □ Yes      | ☑ No                                                                                                                                                       |                           |
|     | ☐ If Yes,  | then complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA S                                                                         | HEET.                     |
| 3.) | Will there | e be Liquid Loading/Unloading Operations?                                                                                                                  |                           |
|     | ☑ Yes      | □ No Included in Point Source Emissions                                                                                                                    |                           |
|     | ☐ If Yes,  | then complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                               |                           |
| 4.) | Will there | e be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                    |                           |
|     | □ Yes      | ☑ No                                                                                                                                                       |                           |
|     | ☐ If Yes,  | then complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                       |                           |
|     |            | e be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief de nnections, flanges, agitators, cooling towers, etc.)? | vices, open-ended valves, |
|     | ☑ Yes      | □ No                                                                                                                                                       |                           |
|     | ☑ If Yes,  | , then complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISS                                                                         | SIONS UNIT                |
|     | DATA       | SHEET.                                                                                                                                                     |                           |
| 6.) | Will there | e be General Clean-up VOC Operations?                                                                                                                      |                           |
|     | □ Yes      | ☑ No                                                                                                                                                       |                           |
|     | ☐ If Yes,  | then complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                       |                           |
| 7.) | Will there | e be any other activities that generate fugitive emissions?                                                                                                |                           |
|     | □ Yes      | ☑ No                                                                                                                                                       |                           |
|     | ☐ If Yes,  | then complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                          |                           |
|     | If you ans | swered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Em                                                   | issions Summary."         |

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment K - Fugitive Emissions**

#### FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

| FUGITIVE EMISSIONS SUMMARY     | All Regulated Pollutants Chemical  |       | n Potential<br>ed Emissions <sup>2</sup> |       | n Potential<br>Emissions <sup>3</sup> | Est. Method |  |  |  |  |  |
|--------------------------------|------------------------------------|-------|------------------------------------------|-------|---------------------------------------|-------------|--|--|--|--|--|
|                                | Name/CAS <sup>1</sup>              | lb/hr | ton/yr                                   | lb/hr | ton/yr                                | − Used⁴     |  |  |  |  |  |
| Paved Haul Roads               | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |
| Unpaved Haul Roads             | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |
| Storage Pile Emissions         | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |
| Loading/Unloading Operations   | Included in Point Source Emissions |       |                                          |       |                                       |             |  |  |  |  |  |
| Wastewater Treatment           | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |
|                                | VOC                                | 9.12  | 39.93                                    | 9.12  | 39.93                                 | AP-42       |  |  |  |  |  |
|                                | Benzene                            | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
|                                | E-Benzene                          | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
|                                | Formaldehyde (HCHO)                |       |                                          |       |                                       |             |  |  |  |  |  |
|                                | n-Hexane                           | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
|                                | Methanol (MeOH)                    |       |                                          |       |                                       |             |  |  |  |  |  |
| Equipment Leaks                | Toluene                            | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
| (FUG-G and FUG-L (17E)         | 2,2,4-TMP                          | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
| (Total)                        | Xylenes                            | 0.11  | 0.48                                     | 0.11  | 0.48                                  | AP-42       |  |  |  |  |  |
|                                | Other HAP                          |       |                                          |       |                                       |             |  |  |  |  |  |
|                                | Total HAP                          | 0.65  | 2.86                                     | 0.65  | 2.86                                  | Sum         |  |  |  |  |  |
|                                | CO2                                | 0.04  | 0.16                                     | 0.04  | 0.16                                  | AP-42       |  |  |  |  |  |
|                                | CH4                                | 7.91  | 34.63                                    | 7.91  | 34.63                                 | AP-42       |  |  |  |  |  |
|                                | N2O                                |       |                                          |       |                                       |             |  |  |  |  |  |
|                                | CO2e                               | 198   | 866                                      | 198   | 866                                   | Wgt Sum     |  |  |  |  |  |
| General Clean-up VOC Emissions | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |
| Other                          | na                                 |       |                                          |       |                                       |             |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases, etc. DO NOT LIST H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

<sup>&</sup>lt;sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

<sup>&</sup>lt;sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

<sup>&</sup>lt;sup>4</sup> Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment K - Fugitive Emissions**

## **DESCRIPTION OF FUGITIVE EMISSIONS**

| Soure Category                     | Pollutant                       | Number of Source<br>Components <sup>1</sup> | Number of Components<br>Monitored by Frequency <sup>2</sup> | Average Time to<br>Repair (Days) <sup>3</sup> | Estimated Annual<br>Emission Rate (lb/yr) <sup>4</sup> |  |  |  |  |
|------------------------------------|---------------------------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--|--|--|--|
| _                                  | Light Liquid VOC <sup>6,7</sup> |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Pumps <sup>5</sup>                 | Heavy Liquid VOC8               |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Non-VOC <sup>9</sup>            |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Valves <sup>10</sup>               | Light Liquid VOC                |                                             |                                                             |                                               |                                                        |  |  |  |  |
| vaives                             | Heavy Liquid VOC                |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Safety Relief Valves <sup>11</sup> | Light Liquid VOC                |                                             | This Facility is NOT Subject to                             |                                               |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         | L                                           | eak Detection and Repa                                      |                                               |                                                        |  |  |  |  |
| Open Ended Lines <sup>12</sup>     | Light Liquid VOC                |                                             | •                                                           | , ,                                           |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             | Please Reference the                                        |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         |                                             | Fugitive Emissions Su                                       | mmary Data Sheet .                            |                                                        |  |  |  |  |
| Sampling Connections <sup>13</sup> | Light Liquid VOC                |                                             | _                                                           | -                                             |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Campraga                           | Gas VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Compressors                        | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Flanges / Connectors               | Light Liquid VOC                |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Gas VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
| Other*                             | Light Liquid VOC                |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    | Non-VOC                         |                                             |                                                             |                                               |                                                        |  |  |  |  |
|                                    |                                 |                                             |                                                             | TOTAL (lb/yr)                                 | 79,850                                                 |  |  |  |  |
|                                    |                                 |                                             |                                                             | TOTAL (tpy)                                   | 39.93                                                  |  |  |  |  |

<sup>\*</sup>Other components include compressor seals, relief valves, diaphragms, drains, meters, etc.

#### CONNER COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

# Attachment K DESCRIPTION OF FUGITIVE EMISSIONS - Continued

#### Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows:

  Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EPA emission factors established by EPA (cite document used); EE engineering estimate; 0 other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.
- 9. LIST CO, H2S, mineral acids, NO, SO, etc. DO NOT LIST H, H2O, N, O, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

### ATTACHMENT L

## **Emissions Unit Data Sheet(s)**

"28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

- NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET
  - 1,380 bhp Caterpillar G3516B (4SLB) Compressor Engine Vendor Data
  - 203 bhp Caterpillar G3306TA (4SRB) Compressor Engine Vendor Data
- DISPERSION STACK VENDOR DATA
- NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET
  - Glycol Dehydration Units 60.0 MMscfd GRI-GLYCalc
    - Summary of Emissions
    - Summary of Input Values
    - Aggregate Calculations Report
    - 40 CFR Part 63; Subpart HH & HHH Registration Forms
- NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET
- STORAGE TANK DATA SHEET
- EMISSIONS UNIT DATA SHEETS STORAGE TANKS
  - ProMax Summary
- EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

## **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment L - Emission Unit Data Sheet**

## NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

| Compress                         | sor Station                    | Conn      | er CS      | Conn      | er CS     | Conn      | er CS     |
|----------------------------------|--------------------------------|-----------|------------|-----------|-----------|-----------|-----------|
| Source Identifi                  | cation Number <sup>1</sup>     | CE-0      | 1 (1E)     | CE-02     | 2 (2E)    | CE-03     | 3 (3E)    |
| Engine Manufac                   | cturer and Model               | CAT G     | 3516B      | CAT G     | 3516B     | CAT G3    | 306B TA   |
| Manufacturer's                   | Rated bhp/rpm                  | 1,380     | / 1,400    | 1,380     | / 1,400   | 203 /     | 1,800     |
| Source                           | Status <sup>2</sup>            | Е         | S          | E         | S         | Е         | S         |
| Date Installed/Mo                | odified/Removed <sup>3</sup>   | Februa    | ry 2015    | Februa    | ry 2015   | Februa    | ry 2015   |
| Manufactured/Re                  | construction Date <sup>4</sup> | After Aug | gust 2011  | After Aug | gust 2011 | After Aug | just 2011 |
| Certified Engine (40             | CFR60 NSPS JJJJ)⁵              | N         | lo         | N         | lo        | N         | 0         |
|                                  | Engine Type <sup>6</sup>       | LB        | 48         | LB        | 48        | RB        | 48        |
|                                  | APCD Type <sup>7</sup>         | Ox        | Cat        | Ox        | Cat       | NS        | CR        |
|                                  | Fuel Type <sup>8</sup>         | R         | G          | R         | G         | R         | G         |
| Fasing Footpast                  | H <sub>2</sub> S (gr/100 scf)  | 0         | .2         | 0.        | .2        | 0.        | .2        |
| Engine, Fuel and Combustion Data | Operating bhp/rpm              | 1,380     | / 1,400    | 1,380     | / 1,400   | 203 /     | 1,800     |
| Jana                             | BSFC (Btu/bhp-hr)              | 7,4       | 142        | 7,4       | 142       | 8,2       | 240       |
|                                  | Fuel (ft <sup>3</sup> /hr)     | 11,       | 163        | 11,       | 163       | 1,8       | 18        |
|                                  | Fuel (MMft <sup>3</sup> /yr)   | 97.79     |            | 97        | .79       | 15.       | .93       |
|                                  | Operation (hrs/yr)             | 8,7       | <b>'60</b> | 8,760     |           | 8,760     |           |
| Reference <sup>9</sup>           | PTE <sup>10</sup>              | lbs/hr    | tons/yr    | lbs/hr    | tons/yr   | lbs/hr    | tons/yr   |
| MD                               | NOx                            | 1.52      | 6.66       | 1.52      | 6.66      | 0.20      | 0.90      |
| MD                               | СО                             | 0.50      | 2.20       | 0.50      | 2.20      | 0.89      | 3.89      |
| MD                               | VOC                            | 0.56      | 2.47       | 0.56      | 2.47      | 0.20      | 0.86      |
| AP                               | SOx                            | 0.01      | 0.03       | 0.01      | 0.03      | 1.1E-03   | 4.8E-03   |
| AP                               | PM10/2.5                       | 0.11      | 0.50       | 0.11      | 0.50      | 0.04      | 0.16      |
| AP                               | Benzene                        | 4.6E-04   | 2.0E-03    | 4.6E-04   | 2.0E-03   | 2.9E-03   | 0.01      |
| AP                               | Ehtylbenzene                   | 4.2E-05   | 1.8E-04    | 4.2E-05   | 1.8E-04   | 4.6E-05   | 2.0E-04   |
| MD                               | Formaldehyde                   | 0.27      | 1.17       | 0.27      | 1.17      | 0.09      | 0.39      |
| AP                               | n-Hexane                       | 1.2E-03   | 0.01       | 1.2E-03   | 0.01      |           |           |
| AP                               | Methanol                       | 2.6E-03   | 0.01       | 2.6E-03   | 0.01      | 0.01      | 0.02      |
| AP                               | Toluene                        | 4.3E-04   | 1.9E-03    | 4.3E-04   | 1.9E-03   | 1.0E-03   | 4.5E-03   |
| AP                               | 2,2,4-TMP                      | 2.6E-04   | 1.2E-03    | 2.6E-04   | 1.2E-03   |           |           |
| AP                               | Xylene                         | 1.9E-04   | 8.5E-04    | 1.9E-04   | 8.5E-04   | 3.6E-04   | 1.6E-03   |
| AP                               | Other HAP                      | 0.02      | 0.07       | 0.02      | 0.07      | 0.01      | 0.05      |
| Sum                              | Total HAP                      | 0.29      | 1.26       | 0.29      | 1.26      | 0.11      | 0.49      |
| MD                               | CO2                            | 1,570     | 6,876      | 1,570     | 6,876     | 254       | 1,113     |
| MD                               | CH4                            | 5.99      | 26.25      | 5.99      | 26.25     | 0.19      | 0.84      |
| AP                               | N2O                            | 2.5E-03   | 0.01       | 2.5E-03   | 0.01      | 4.1E-04   | 1.8E-03   |
| Weighted Sum                     | CO2e                           | 1,720     | 7,536      | 1,720     | 7,536     | 259       | 1,135     |
|                                  |                                |           |            |           |           |           |           |
|                                  |                                |           |            |           |           |           |           |
|                                  |                                |           |            |           |           |           |           |
|                                  |                                |           |            |           |           |           |           |

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### Attachment L - Emission Unit Data Sheet

#### NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

(Continued)

#### Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
  - NS = Construction of New Source (installation)
  - ES = Existing Source
  - MS = Modification of Existing Source
  - RS = Removal of Source
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

#### Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
  - LB2S = Lean Burn Two Stroke
  - RB4S = Rich Burn Four Stroke
  - LB4S = Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:
  - A/F = Air/Fuel Ratio
  - IR = Ignition Retard
  - HEIS = High Energy Ignition System
  - SIPC = Screw-in Precombustion Chambers
  - PSC = Prestratified Charge
  - LEC = Low Emission Combustion
  - NSCR = Non-Selective Catalytic Reduction
  - SCR = Lean Burn & Selective Catalytic Reduction
- 8. Enter the Fuel Type using the following codes:
  - PQ = Pipeline Quality Natural Gas
  - RG = Raw Natural Gas
- 9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).
  - MD = Manufacturer's Data
  - AP = AP-42
  - GR = GRI-HAPCalcTM
  - OT = Other (please list)
- 10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

## G3516B

SET POINT TIMING:

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



GAS COMPRESSION APPLICATION

NOx EMISSION LEVEL (g/bhp-hr NOx):

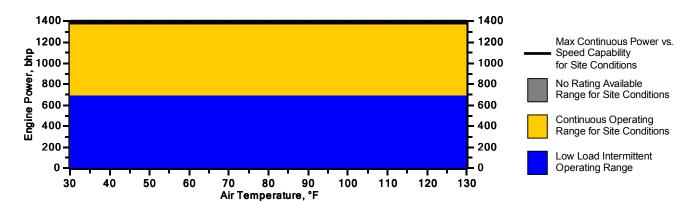
0.5

28

ENGINE SPEED (rpm): 1400 FUEL SYSTEM: CAT WIDE RANGE COMPRESSION RATÍO: 8:1 WITH AIR FUEL RATIO CONTROL AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): 130 SITE CONDITIONS: 201 Gas Analysis JACKET WATER OUTLET (°F): 210 FUEL PRESSURE RANGE(psig): 7.0-50.0 FUEL METHANE NUMBER: ASPIRATION: TΑ 50.5 COOLING SYSTEM: JW+OC+1AC, 2AC FUEL LHV (Btu/scf): 1170 IGNITION SYSTEM: EXHAUST MANIFOLD: ALTITUDE(ft):
MAXIMUM INLET AIR TEMPERATURE(°F):
STANDARD RATED POWER: ADEM3 1311 DRY 100 COMBUSTION: Ultra Lean Burn 1380 bhp@1400rpm

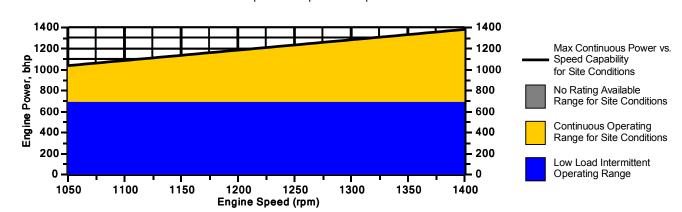
| SET POINT HIVIING. 20                                                                   |        |         |            |                   |                                              |       |       |
|-----------------------------------------------------------------------------------------|--------|---------|------------|-------------------|----------------------------------------------|-------|-------|
|                                                                                         |        |         |            | MAXIMUM<br>RATING | SITE RATING AT MAXIMUM INLET AIR TEMPERATURE |       | _     |
| RATING                                                                                  |        | OTES    | LOAD       | 100%              | 100%                                         | 75%   | 50%   |
| ENGINE POWER (WITHOUT I                                                                 | -AN)   | (1)     | bhp        | 1380              | 1380                                         | 1035  | 690   |
| INLET AIR TEMPERATURE                                                                   |        |         | °F         | 100               | 100                                          | 100   | 100   |
| ENGINE DATA                                                                             |        |         |            |                   |                                              |       |       |
| FUEL CONSUMPTION (LHV)                                                                  |        | (2)     | Btu/bhp-hr | 7415              | 7415                                         | 7942  | 8530  |
| FUEL CONSUMPTION (HHV)                                                                  |        | (2)     | Btu/bhp-hr | 8171              | 8171                                         | 8751  | 9400  |
| · · · · · · = - · · · · · · · · · · · ·                                                 |        | 3)(4)   | scfm       | 3147              | 3147                                         | 2469  | 1726  |
| ,··                                                                                     |        | 3)(4)   | lb/hr      | 13954             | 13954                                        | 10946 | 7653  |
| INLET MANIFOLD PRESSURE                                                                 |        | (5)     | in Hg(abs) | 92.8              | 92.8                                         | 75.4  | 53.0  |
| EXHAUST TEMPERATURE - ENGINE OUTLET                                                     |        | (6)     | °F         | 1016              | 1016                                         | 1009  | 1029  |
|                                                                                         |        | 7)(4)   | ft3/min    | 9268              | 9268                                         | 7248  | 5142  |
| EXHAUST GAS MASS FLOW (V                                                                | VET) ( | 7)(4)   | lb/hr      | 14445             | 14445                                        | 11341 | 7935  |
| EMISSIONS DATA - ENGINE OUT                                                             |        |         |            |                   |                                              |       |       |
| NOx (as NO2)                                                                            | (1     | 8)(9)   | g/bhp-hr   | 0.50              | 0.50                                         | 0.50  | 0.50  |
| CO                                                                                      | (8     | 8)(9)   | g/bhp-hr   | 3.02              | 3.02                                         | 3.24  | 3.18  |
| THC (mol. wt. of 15.84)                                                                 | (6     | 8)(9)   | g/bhp-hr   | 4.29              | 4.29                                         | 4.59  | 4.66  |
| NMHC (mol. wt. of 15.84)                                                                | (6     | 8)(9)   | g/bhp-hr   | 1.95              | 1.95                                         | 2.09  | 2.12  |
| NMNEHC (VOCs) (mol. wt. of 15.84)                                                       | (8)    | (9)(10) | g/bhp-hr   | 0.94              | 0.94                                         | 1.01  | 1.03  |
| HCHO (Formaldehyde)                                                                     | (8     | 8)(9)   | g/bhp-hr   | 0.38              | 0.38                                         | 0.37  | 0.37  |
| CO2                                                                                     |        | 8)(9)   | g/bhp-hr   | 516               | 516                                          | 550   | 598   |
| EXHAUST OXYGEN                                                                          | (8     | 3)(11)  | % DRY      | 9.1               | 9.1                                          | 8.8   | 8.4   |
| HEAT REJECTION                                                                          |        |         |            |                   |                                              |       |       |
| HEAT REJ. TO JACKET WATER (JW)                                                          |        | (12)    | Btu/min    | 21892             | 21892                                        | 20445 | 19118 |
| HEAT REJ. TO ATMOSPHERE                                                                 |        | (12)    | Btu/min    | 6110              | 6110                                         | 5092  | 4074  |
| HEAT REJ. TO LUBE OIL (OC)                                                              |        | (12)    | Btu/min    | 4475              | 4475                                         | 3978  | 3363  |
| HEAT REJ. TO A/C - STAGE 1 (1AC)                                                        | (1:    | 2)(13)  | Btu/min    | 12060             | 12060                                        | 9999  | 3481  |
| HEAT REJ. TO A/C - STAGE 2 (2AC)                                                        | (1:    | 2)(13)  | Btu/min    | 5601              | 5601                                         | 5265  | 3419  |
| COOLING SYSTEM SIZING CRITERIA                                                          |        |         |            |                   |                                              |       |       |
| TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)                                                  | (1:    | 3)(14)  | Btu/min    | 42114             |                                              |       |       |
| TOTAL AFTERCOOLER CIRCUIT (2AC)                                                         |        | 3)(14)  | Btu/min    | 5881              |                                              |       |       |
| A cooling system safety factor of 0% has been added to the cooling system sizing criter |        |         |            |                   |                                              |       |       |
|                                                                                         |        |         |            |                   |                                              |       |       |

#### CONDITIONS AND DEFINITIONS


Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

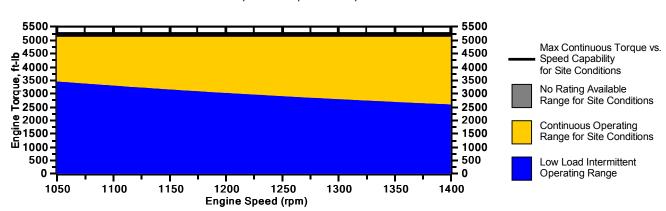
For notes information consult page three.




## **Engine Power vs. Inlet Air Temperature**

Data represents temperature sweep at 1311 ft and 1400 rpm




## **Engine Power vs. Engine Speed**

Data represents speed sweep at 1311 ft and 100 °F



## **Engine Torque vs. Engine Speed**

Data represents speed sweep at 1311 ft and 100 °F



Note: At site conditions of 1311 ft and 100°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

# G3516B

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



#### **NOTES**

- 1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 2. Fuel consumption tolerance is ± 3.0% of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of  $\pm$  6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.
- 9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 10. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is  $\pm$  0.5.
- 12. Heat rejection values are nominal. Tolerances, based on treated water, are  $\pm$  10% for jacket water circuit,  $\pm$  50% for radiation,  $\pm$  20% for lube oil circuit, and  $\pm$  5% for aftercooler circuit.
- 13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

SET POINT TIMING:

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: EXHAUST OXYGEN (% O2):

1800 RATING STRATEGY: 8:1 SCAC RATING LEVEL: FUEL SYSTEM: 130

210

TA

WC

0.3

22

JW+OC, AC

CATALYST SETTING

ADEM4

STANDARD CONTINUOUS HPG IMPCO WITH AIR FUEL RATIO CONTROL

SITE CONDITIONS:

FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft):

MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

1000 77 203 bhp@1800rpm

**OVM Gas** 

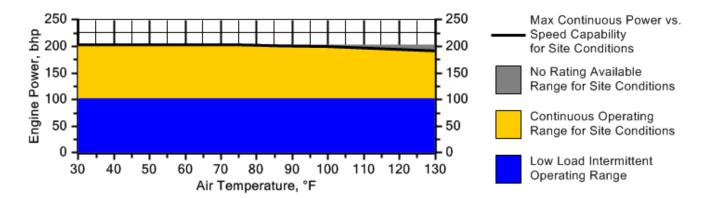
12.0-24.9

38.7

1227

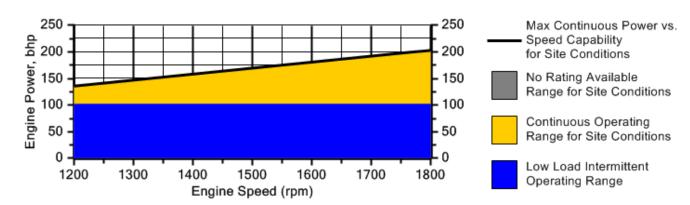
|                                                                                            |            |            | MAXIMUM<br>RATING | G INLET AIR TEMPERATURE |       |       |
|--------------------------------------------------------------------------------------------|------------|------------|-------------------|-------------------------|-------|-------|
| RATING                                                                                     | NOTES      | LOAD       | 100%              | 100%                    | 75%   | 50%   |
| ENGINE POWER (WITHOUT FAN)                                                                 | (1)        | bhp        | 202               | 202                     | 152   | 101   |
| INLET AIR TEMPERATURE                                                                      |            | °F         | 77                | 77                      | 77    | 77    |
| ENGINE DATA                                                                                |            |            |                   |                         |       |       |
| FUEL CONSUMPTION (LHV)                                                                     | (2)        | Btu/bhp-hr | 8240              | 8240                    | 8618  | 9467  |
| FUEL CONSUMPTION (HHV)                                                                     | (2)        | Btu/bhp-hr | 9070              | 9070                    | 9486  | 10420 |
| AIR FLOW (@inlet air temp, 14.7 psia) (WET)                                                | (3)(4)     | ft3/min    | 295               | 295                     | 239   | 177   |
| AIR FLOW (WET)                                                                             | (3)(4)     | lb/hr      | 1307              | 1307                    | 1058  | 783   |
| FUEL FLOW (60°F, 14.7 psia)                                                                |            | scfm       | 23                | 23                      | 18    | 13    |
| INLET MANIFOLD PRESSURE                                                                    | (5)        | in Hg(abs) | 38.2              | 38.2                    | 31.1  | 23.7  |
| EXHAUST TEMPERATURE - ENGINE OUTLET                                                        | (6)        | °F         | 1160              | 1160                    | 1118  | 1048  |
| EXHAUST GAS FLOW (@engine outlet temp, 14.5 (WET)                                          | (7)(4)     | ft3/min    | 990               | 990                     | 778   | 550   |
| psia)                                                                                      |            |            |                   |                         |       |       |
| EXHAUST GAS MASS FLOW (WET)                                                                | (7)(4)     | lb/hr      | 1387              | 1387                    | 1121  | 830   |
| EMISSIONS DATA - ENGINE OUT                                                                |            |            |                   |                         |       |       |
| NOx (as NO2)                                                                               | (8)(9)     | g/bhp-hr   | 15.26             | 15.26                   | 15.75 | 13.98 |
| co                                                                                         | (8)(9)     | g/bhp-hr   | 15.26             | 15.26                   | 15.76 | 13.98 |
| THC (mol. wt. of 15.84)                                                                    | (8)(9)     | g/bhp-hr   | 0.87              | 0.87                    | 0.91  | 1.24  |
| NMHC (mol. wt. of 15.84)                                                                   | (8)(9)     | g/bhp-hr   | 0.44              | 0.44                    | 0.46  | 0.63  |
| NMNEHC (VOCs) (mol. wt. of 15.84)                                                          | (8)(9)(10) | g/bhp-hr   | 0.24              | 0.24                    | 0.25  | 0.34  |
| HCHO (Formaldehyde)                                                                        | (8)(9)     | g/bhp-hr   | 0.20              | 0.20                    | 0.20  | 0.21  |
| CO2                                                                                        | (8)(9)     | g/bhp-hr   | 568               | 568                     | 608   | 672   |
| EXHAUST OXYGEN                                                                             | (8)(11)    | % DRY      | 0.3               | 0.3                     | 0.3   | 0.3   |
| HEAT REJECTION                                                                             |            |            |                   |                         |       |       |
| HEAT REJ. TO JACKET WATER (JW)                                                             | (12)       | Btu/min    | 9110              | 9110                    | 7602  | 6263  |
| HEAT REJ. TO ATMOSPHERE                                                                    | (12)       | Btu/min    | 1112              | 1112                    | 872   | 640   |
| HEAT REJ. TO LUBE OIL (OC)                                                                 | (12)       | Btu/min    | 1359              | 1359                    | 1134  | 934   |
| HEAT REJ. TO AFTERCOOLER (AC)                                                              | (12)(13)   | Btu/min    | 539               | 539                     | 270   | 71    |
| COOLING SYSTEM SIZING CRITERIA                                                             |            | -          |                   |                         |       |       |
| TOTAL JACKET WATER CIRCUIT (JW+OC)                                                         | (13)       | Btu/min    | 11652             |                         |       |       |
| TOTAL AFTERCOOLER CIRCUIT (AC)                                                             | (13)(14)   | Btu/min    | 566               |                         |       |       |
| A cooling system safety factor of 0% has been added to the cooling system sizing criteria. |            | Dia/IIIII  | 300               |                         |       |       |
| A dealing dystern durity laster of the section during dystern sizing different.            |            |            |                   |                         |       |       |

CONDITIONS AND DEFINITIONS


Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

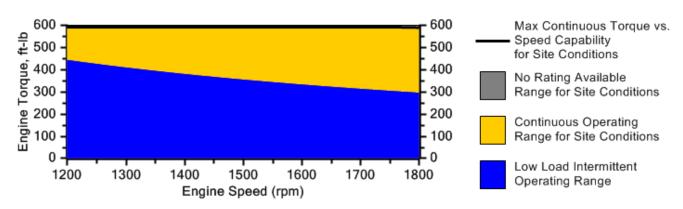
For notes information consult page three




## Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1000 ft and 1800 rpm




## **Engine Power vs. Engine Speed**

Data represents speed sweep at 1000 ft and 77 °F



## Engine Torque vs. Engine Speed

Data represents speed sweep at 1000 ft and 77 °F



Note: At site conditions of 1000 ft and 77°F inlet air temp., constant torque can be maintained down to 1200 rpm. The minimum speed for loading at these conditions is 1200 rpm.

## G3306B

#### GAS ENGINE SITE SPECIFIC TECHNICAL DATA



#### **NOTES**

- 1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 2. Fuel consumption tolerance is  $\pm$  5.0% of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of  $\pm$  5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of  $\pm$  5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.
- 9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 10. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 11. Exhaust Oxygen tolerance is ± 0.2.
- 12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

| Constituent      | Abbrev    | Mole %   | Norm     |                                     |         |
|------------------|-----------|----------|----------|-------------------------------------|---------|
| Water Vapor      | H2O       | 0.0000   | 0.0000   |                                     |         |
| Methane          | CH4       | 71.4260  | 71.4260  | Fuel Makeup:                        | OVM Gas |
| Ethane           | C2H6      | 17.0270  | 17.0270  | Unit of Measure:                    | English |
| Propane          | C3H8      | 6.8190   | 6.8190   |                                     |         |
| Isobutane        | iso-C4H1O | 0.7220   | 0.7220   | Calculated Fuel Properties          |         |
| Norbutane        | nor-C4H1O | 1.9740   | 1.9740   | Caterpillar Methane Number:         | 38.7    |
| Isopentane       | iso-C5H12 | 0.3660   | 0.3660   | Caterplilar Methane Number.         | 30.7    |
| Norpentane       | nor-C5H12 | 0.5030   | 0.5030   |                                     |         |
| Hexane           | C6H14     | 0.2150   | 0.2150   | Lower Heating Value (Btu/scf):      | 1227    |
| Heptane          | C7H16     | 0.1360   | 0.1360   | Higher Heating Value (Btu/scf):     | 1351    |
| Nitrogen         | N2        | 0.4650   | 0.4650   | WOBBE Index (Btu/scf):              | 1392    |
| Carbon Dioxide   | CO2       | 0.1880   | 0.1880   |                                     |         |
| Hydrogen Sulfide | H2S       | 0.0000   | 0.0000   | THC: Free Inert Ratio:              | 152.14  |
| Carbon Monoxide  | CO        | 0.0000   | 0.0000   | Total % Inerts (% N2, CO2, He):     | 0.65%   |
| Hydrogen         | H2        | 0.0000   | 0.0000   |                                     |         |
| Oxygen           | O2        | 0.0000   | 0.0000   | RPC (%) (To 905 Btu/scf Fuel):      | 100%    |
| Helium           | HE        | 0.0000   | 0.0000   |                                     |         |
| Neopentane       | neo-C5H12 | 0.0000   | 0.0000   | Compressibility Factor:             | 0.996   |
| Octane           | C8H18     | 0.1040   | 0.1040   | Stoich A/F Ratio (Vol/Vol):         | 12.70   |
| Nonane           | C9H20     | 0.0550   | 0.0550   | Stoich A/F Ratio (Mass/Mass):       | 16.35   |
| Ethylene         | C2H4      | 0.0000   | 0.0000   | Specific Gravity (Relative to Air): | 0.777   |
| Propylene        | C3H6      | 0.0000   | 0.0000   |                                     |         |
| TOTAL (Volume %) |           | 100.0000 | 100.0000 | Specific Heat Constant (K):         | 1.271   |

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

## **Attachment L - Emission Unit Data Sheet**

#### NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

|                                                                                                 |                                                   | Manufacture             | er and Model                | Frederick Logan Company, Inc. |             |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|-----------------------------|-------------------------------|-------------|--|--|
| Max Dry Gas Flow Rate (MMscf/day)  Design Heat Input (MMBtu/hr) - HHV  Design Type (DEG or TEG) |                                                   | Max Dry Gas Flow        | Rate (MMscf/day)            | 60.0                          |             |  |  |
|                                                                                                 |                                                   | Design Heat Input       | (MMBtu/hr) - HHV            | 1.66                          |             |  |  |
|                                                                                                 |                                                   | TEG                     |                             |                               |             |  |  |
|                                                                                                 | General Glycol Source Status <sup>2</sup>         |                         | E                           | S                             |             |  |  |
| •                                                                                               | Dehydration Unit                                  |                         | - 1:4: - 1/D 1 <sup>3</sup> | RSV-01 - Fe                   | bruary 2015 |  |  |
|                                                                                                 | Data Date Installed/Modified/Removed <sup>3</sup> |                         | RSV-0                       | 2 - tbd                       |             |  |  |
|                                                                                                 | Regenerato                                        |                         | till Vent APCD <sup>4</sup> | ТО                            |             |  |  |
|                                                                                                 |                                                   | Fuel HV (Btu/scf) - LHV |                             | 92                            | 20          |  |  |
|                                                                                                 | H <sub>2</sub> S Content (gr/100 scf)             |                         | t (gr/100 scf)              | 0.                            | .2          |  |  |
|                                                                                                 |                                                   | Operatio                | n (hrs/yr)                  | 8,760                         |             |  |  |
| Source ID #1                                                                                    | Vent                                              | Reference <sup>5</sup>  | PTE <sup>6</sup>            | lbs/hr                        | tons/yr     |  |  |
|                                                                                                 |                                                   | AP                      | NOX                         | 0.16                          | 0.71        |  |  |
|                                                                                                 |                                                   | AP                      | СО                          | 0.14                          | 0.60        |  |  |
|                                                                                                 |                                                   | AP                      | VOC                         | 0.01                          | 0.04        |  |  |
|                                                                                                 |                                                   | AP                      | SO2                         | 9.8E-04                       | 4.3E-03     |  |  |
|                                                                                                 | Reboiler Vent                                     | AP                      | PM10/2.5                    | 0.01                          | 0.05        |  |  |
|                                                                                                 |                                                   | AP                      | Benzene                     | 3.4E-06                       | 1.5E-05     |  |  |
|                                                                                                 |                                                   | AP                      | Ethylbenzene                |                               |             |  |  |
|                                                                                                 |                                                   | AP                      | НСНО                        | 1.2E-04                       | 5.4E-04     |  |  |
| RBV-1 (4E)                                                                                      |                                                   | AP                      | n-Hexane                    | 2.9E-03                       | 0.01        |  |  |
| RBV-2 (7E)                                                                                      |                                                   | AP                      | Methanol                    |                               |             |  |  |
| (each)                                                                                          |                                                   | AP                      | Toluene                     | 5.5E-06                       | 2.43E-05    |  |  |
|                                                                                                 |                                                   | AP                      | 2,2,4-TMP                   |                               |             |  |  |
|                                                                                                 |                                                   | AP                      | Xylenes                     |                               |             |  |  |
|                                                                                                 |                                                   | AP                      | Other HAP                   | 3.1E-06                       | 1.36E-05    |  |  |
|                                                                                                 |                                                   | Sum                     | Total HAP                   | 3.1E-03                       | 0.01        |  |  |
|                                                                                                 |                                                   | AP                      | CO2                         | 196                           | 857         |  |  |
|                                                                                                 |                                                   | AP                      | CH4                         | 3.8E-03                       | 0.02        |  |  |
|                                                                                                 |                                                   | AP                      | N2O                         | 3.6E-03                       | 0.02        |  |  |
|                                                                                                 |                                                   | Weighted Sum            | CO2e                        | 197                           | 862         |  |  |
| Source ID #1                                                                                    | Vent                                              | Reference <sup>5</sup>  | PTE <sup>6</sup>            | lbs/hr                        | tons/yr     |  |  |
|                                                                                                 | ' I Still Vant I                                  | GRI-GLYCalc             | VOC                         | 1.11                          | 4.85        |  |  |
|                                                                                                 |                                                   | GRI-GLYCalc             | Benzene                     | 0.02                          | 0.09        |  |  |
| DOV 4 (55, 05)                                                                                  |                                                   | GRI-GLYCalc             | Ethylbenzene                | 0.02                          | 0.09        |  |  |
|                                                                                                 |                                                   | GRI-GLYCalc             | n-Hexane                    | 0.02                          | 0.10        |  |  |
| RSV-1 (5E+6E)<br>RSV-2 (8E+9E)                                                                  |                                                   | GRI-GLYCalc             | Toluene                     | 0.09                          | 0.39        |  |  |
| (each)                                                                                          |                                                   | GRI-GLYCalc             | 2,2,4-TMP                   | 0.02                          | 0.07        |  |  |
| (====,                                                                                          |                                                   | GRI-GLYCalc             | c Xylenes 0.19              |                               | 0.83        |  |  |
|                                                                                                 |                                                   | Sum                     | Tot HAP                     | 0.36                          | 1.57        |  |  |
|                                                                                                 |                                                   | GRI-GLYCalc             | CH4                         | 0.23                          | 0.99        |  |  |
|                                                                                                 |                                                   | Weighted Sum            | CO2e                        | 6                             | 25          |  |  |

#### CONNER COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

#### Attachment L - Emission Unit Data Sheet

# NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET (Continued)

#### Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS = Construction of New Source

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA = None

CD = Condenser

FL = Flare

CC = Condenser/Combustion Combination

TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's Data

AP = AP-42

GR = GRI-GLYCalcTM

OT = Other (please list):

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

\*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.



# **DISPERSION TIP SPECIFICATIONS:**

# **DS-12-RO - Sonic Tip for Stack**

REF. NO: CP14.537 May 30, 2014

|                                      |                   |                      |                                    |          | May                | 30, 2014 |
|--------------------------------------|-------------------|----------------------|------------------------------------|----------|--------------------|----------|
| PROCESS DATA                         |                   |                      | UTILITIES                          |          |                    |          |
| GAS STREAM                           |                   |                      | PILOT FUEL GAS                     |          | n/a                |          |
| FLOW MAXIMUM                         | 58 n              | ımscfd               | PURGE GAS                          |          | 35 SCF             | TH .     |
| FLOW MINIMUM                         | PU                | 'RGE                 |                                    |          |                    |          |
| MOLECULAR WEIGHT                     | 2                 | 0.5                  | PILOTS                             |          |                    |          |
| TEMPERATURE                          | 60                | ) <sup>0</sup> F     | QUANTITY                           | -        | ТҮРЕ               | -        |
| INLET PRESSURE                       | 20                | psig                 | THERMOCOUPLES                      | n/a      | TYPE               | n/a      |
| SMOKELESS CAPACITY                   | 1                 | ı/a                  |                                    |          |                    |          |
| DIMENSIONS (approx.)                 |                   |                      | 1                                  |          |                    |          |
| HEIGHT 10' - 0"                      | WIDTH             | 1'-6"                |                                    |          |                    |          |
| WEIGHT                               | 725 LB            | S                    |                                    | <u> </u> |                    |          |
| MATERIALS                            |                   |                      |                                    |          |                    |          |
| UPPER BODY (5')                      | Carbo             | on Steel             | ]                                  |          |                    |          |
| LOWER BODY (5')                      | Carbo             | on Steel             | 1                                  |          | V                  |          |
| PILOT                                | 1                 | ı/a                  | 1                                  |          |                    |          |
| PILOT NOZZLE                         | 1                 | ı/a                  | 1                                  | D:       | morgion            |          |
| LIFTING LUGS                         | Carbo             | on Steel             | 1                                  |          | spersion<br>p Body |          |
| PILOT MANIFOLD                       | 1                 | ı/a                  | 1                                  |          | r 20aj             |          |
| IGNITION MANIFOLD                    | r                 | ı/a                  |                                    |          |                    |          |
| "AIR-LOCK" SEAL                      | Carbo             | on Steel             |                                    |          |                    |          |
|                                      |                   |                      | 1                                  |          |                    |          |
| NON DESTRUCTIVE                      | EXAMINAT          | ION                  |                                    |          |                    |          |
| RADIOGRAPHY                          | 10%               | 6                    |                                    |          |                    |          |
| OTHER NDE                            | non               | e                    |                                    |          |                    |          |
|                                      |                   |                      |                                    |          |                    |          |
| SURFACE FINISH / PA                  | AINT (carbon st   | eel)                 |                                    |          | <b>1</b>           |          |
| SANDBLAST                            | SSPC SP-10        |                      |                                    |          | I                  |          |
|                                      |                   | (epoxy) 5-7 mils dft |                                    |          | in Gas             |          |
| TOP COAT Sherwin William Green 4071) | s Fast clad DMT ( | urethane) (Forrest   |                                    | J        | Inlet              |          |
|                                      |                   |                      | This offer may not include all ite | ms show. |                    |          |
| TERMINAL POINTS                      |                   |                      |                                    |          |                    |          |
| G + G T T T T T                      | 16"               | Class 150 RFWN       | A-105                              |          |                    |          |
| GAS INLET                            |                   |                      |                                    |          |                    |          |
| IGNITION INLET                       |                   |                      |                                    |          |                    |          |

Case Name: Conner 60 MMscfd Dehy 13.7 gpm w/ 99% Emission Control File Name: C:\projects2\wfs\OVM\Conner\Conner CS - NSR - 60 MMscfd DEHY - 10.29.13.ddf

Date: December 11, 2013

DESCRIPTION:

Description: Ext Gas Analysis for Caveney dated 09-23-09.

Inlet gas temp = 70F, pressure = 900 psig. Electric Glycol Pump at 13.7 gpm max. Thermal Oxidizer to control flash gas and

still vent streams.

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

\_\_\_\_\_\_

Temperature: 70.00 deg. 900.00 psig 70.00 deg. F

Wet Gas Water Content: Saturated

| Component      | Conc. (vol %) |
|----------------|---------------|
| Carbon Dioxide | 0.1880        |
| Nitrogen       | 0.4650        |
| Methane        | 71.4260       |
| Ethane         | 17.0270       |
| Propane        | 6.8190        |
| Isobutane      | 0.7220        |
| n-Butane       | 1.9740        |
| Isopentane     | 0.3660        |
| n-Pentane      | 0.5030        |
| n-Hexane       | 0.1020        |
| Cyclohexane    | 0.0140        |
| Other Hexanes  | 0.0890        |
| Heptanes       | 0.1360        |
| Benzene        | 0.0020        |
| Toluene        | 0.0060        |
| Ethylbenzene   | 0.0010        |
| Xylenes        | 0.0070        |
| C8+ Heavies    | 0.1535        |

DRY GAS:

Flow Rate: 60.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

\_\_\_\_\_\_

Glycol Type: TEG
Water Content: 1.5 wt% H2O
Flow Rate: 13.7 gpm

PUMP:

Page: 2

Glycol Pump Type: Electric/Pneumatic

FLASH TANK: \_\_\_\_\_\_

Flash Control: Combustion device

Flash Control Efficiency: 99.00 % Temperature: 150.0 deg. F Pressure: 50.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device

Destruction Efficiency: 99.0 % Excess Oxygen: 5.0 %

Excess Oxygen: 5.0 %
Ambient Air Temperature: 50.0 deg. F

#### GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Conner 60 MMscfd Dehy 13.7 gpm w/ 99% Emission Control File Name: C:\projects2\wfs\OVM\Conner\Conner CS - NSR - 60 MMscfd DEHY - 10.29.13.ddf

Date: December 11, 2013

#### DESCRIPTION:

Description: Ext Gas Analysis for Caveney dated 09-23-09.

Inlet gas temp = 70F, pressure = 900 psig. Electric Glycol Pump at 13.7 gpm max. Thermal Oxidizer to control flash gas and

still vent streams.

Annual Hours of Operation: 8760.0 hours/yr

#### EMISSIONS REPORTS:

#### CONTROLLED REGENERATOR EMISSIONS

| Component                                                                                         | lbs/hr                                         | lbs/day                                   | tons/yr                                        |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|
| Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane                                             | 0.0085<br>0.0335<br>0.0496<br>0.0119<br>0.0506 | 0.204<br>0.803<br>1.189<br>0.285<br>1.215 | 0.0372<br>0.1466<br>0.2171<br>0.0520<br>0.2218 |
| Isopentane<br>n-Pentane<br>n-Hexane<br>Cyclohexane<br>Other Hexanes                               | 0.0117<br>0.0235<br>0.0111<br>0.0106<br>0.0066 | 0.280<br>0.564<br>0.267<br>0.255<br>0.159 | 0.0511<br>0.1029<br>0.0488<br>0.0466<br>0.0290 |
| Heptanes<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes<br>C8+ Heavies                          | 0.0376<br>0.0159<br>0.0734<br>0.0168<br>0.1566 | 0.903<br>0.381<br>1.760<br>0.403<br>3.757 | 0.1648<br>0.0696<br>0.3213<br>0.0736<br>0.6857 |
| Total Emissions                                                                                   | 0.6067                                         | 14.561                                    | 2.6574                                         |
| Total Hydrocarbon Emissions<br>Total VOC Emissions<br>Total HAP Emissions<br>Total BTEX Emissions | 0.6067<br>0.5647<br>0.2737<br>0.2626           | 14.561<br>13.554<br>6.569<br>6.302        | 2.6574<br>2.4736<br>1.1989<br>1.1502           |

#### UNCONTROLLED REGENERATOR EMISSIONS

| Component   | lbs/hr | lbs/day | tons/yr |
|-------------|--------|---------|---------|
|             |        |         |         |
| Methane     | 0.8499 | 20.399  | 3.7228  |
| Ethane      | 3.3462 | 80.308  | 14.6563 |
| Propane     | 4.9558 | 118.938 | 21.7063 |
| Isobutane   | 1.1867 | 28.482  | 5.1979  |
| n-Butane    | 5.0638 | 121.531 | 22.1795 |
|             |        |         |         |
| Isopentane  | 1.1668 | 28.004  | 5.1107  |
| n-Pentane   | 2.3483 | 56.360  | 10.2857 |
| n-Hexane    | 1.1132 | 26.717  | 4.8758  |
| Cyclohexane | 1.0637 | 25.528  | 4.6589  |

| Other Hexanes                                                                            | 0.6627                                          | 15.906                                           | Page: 2<br>2.9028                                 |
|------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Heptanes<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes                                | 3.7622<br>1.5889<br>7.3351<br>1.6804<br>15.6552 | 90.293<br>38.135<br>176.042<br>40.330<br>375.725 | 16.4784<br>6.9596<br>32.1277<br>7.3603<br>68.5699 |
| C8+ Heavies                                                                              | 8.8914                                          | 213.393                                          | 38.9443                                           |
| Total Emissions                                                                          | 60.6705                                         | 1456.093                                         | 265.7369                                          |
| Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 60.6705<br>56.4744<br>27.3729<br>26.2597        | 1456.093<br>1355.386<br>656.950<br>630.233       | 265.7369<br>247.3579<br>119.8933<br>115.0174      |

# FLASH GAS EMISSIONS

| Component                                                                                         | lbs/hr                                         | lbs/day                 | tons/yr                    |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|----------------------------|
| Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane                                             | 0.0262                                         | 3.806<br>0.629          | 0.6946<br>0.1148           |
| Isopentane<br>n-Pentane<br>n-Hexane<br>Cyclohexane<br>Other Hexanes                               | 0.0181<br>0.0297<br>0.0081<br>0.0019<br>0.0063 | 0.712<br>0.195          | 0.1299<br>0.0356           |
| Heptanes<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes                                         |                                                | 0.011<br>0.035<br>0.005 | 0.0021<br>0.0063<br>0.0009 |
| C8+ Heavies                                                                                       | 0.0048                                         | 0.114                   | 0.0208                     |
| Total Emissions                                                                                   | 0.7500                                         | 18.000                  | 3.2851                     |
| Total Hydrocarbon Emissions<br>Total VOC Emissions<br>Total HAP Emissions<br>Total BTEX Emissions | 0.7500<br>0.3584<br>0.0116<br>0.0034           |                         | 1.5698<br>0.0507           |

# FLASH TANK OFF GAS

| Component     | lbs/hr  | lbs/day | tons/yr |
|---------------|---------|---------|---------|
| Methane       | 18.0597 | 433.432 | 79.1013 |
| Ethane        | 21.1019 | 506.447 | 92.4265 |
| Propane       | 15.8591 | 380.619 | 69.4630 |
| Isobutane     | 2.6216  | 62.919  | 11.4828 |
| n-Butane      | 8.7419  | 209.807 | 38.2897 |
| Isopentane    | 1.8072  | 43.372  | 7.9154  |
| n-Pentane     | 2.9661  | 71.186  | 12.9915 |
| n-Hexane      | 0.8130  | 19.511  | 3.5608  |
| Cyclohexane   | 0.1900  | 4.560   | 0.8323  |
| Other Hexanes | 0.6274  | 15.057  | 2.7479  |
| Heptanes      | 1.3946  | 33.471  | 6.1085  |
| Benzene       | 0.0468  | 1.124   | 0.2051  |

| Toluene<br>Ethylbenzene<br>Xylenes                                                       | 0.1449<br>0.0199<br>0.1324             | 3.479<br>0.478<br>3.178                | Page: 3<br>0.6348<br>0.0872<br>0.5800    |
|------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|
| C8+ Heavies                                                                              | 0.4753                                 | 11.408                                 | 2.0820                                   |
| Total Emissions                                                                          | 75.0020                                | 1800.048                               | 328.5087                                 |
| Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 75.0020<br>35.8404<br>1.1570<br>0.3441 | 1800.048<br>860.169<br>27.769<br>8.258 | 328.5087<br>156.9809<br>5.0678<br>1.5071 |

# COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

| Component                   | lbs/hr | lbs/day | tons/yr |
|-----------------------------|--------|---------|---------|
| Methane                     | 0.1891 | 4.538   | 0.8282  |
| Ethane                      | 0.2445 | 5.868   | 1.0708  |
| Propane                     | 0.2081 | 4.996   | 0.9117  |
| Isobutane                   | 0.0381 | 0.914   | 0.1668  |
| n-Butane                    | 0.1381 | 3.313   | 0.6047  |
| Isopentane                  | 0.0297 | 0.714   | 0.1303  |
| n-Pentane                   | 0.0531 | 1.275   | 0.2328  |
| n-Hexane                    | 0.0193 | 0.462   | 0.0844  |
| Cyclohexane                 | 0.0125 |         |         |
| Other Hexanes               | 0.0129 | 0.310   | 0.0565  |
| Heptanes                    | 0.0516 | 1.238   | 0.2259  |
| Benzene                     | 0.0164 | 0.393   | 0.0716  |
| Toluene                     | 0.0748 | 1.795   | 0.3276  |
| Ethylbenzene                |        |         |         |
| Xylenes                     | 0.1579 | 3.789   | 0.6915  |
| C8+ Heavies                 | 0.0937 | 2.248   | 0.4103  |
| Total Emissions             | 1.3567 | 32.561  | 5.9425  |
| Total Hydrocarbon Emissions | 1.3567 | 32.561  | 5.9425  |
| Total VOC Emissions         | 0.9231 | 22.156  | 4.0434  |
| Total HAP Emissions         | 0.2853 | 6.847   | 1.2496  |
| Total BTEX Emissions        | 0.2660 | 6.385   | 1.1652  |

# COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

\_\_\_\_\_

| Component                                                           | Uncontrolled tons/yr                             | Controlled<br>tons/yr                          | % Reduction                      |
|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------|
| Methane                                                             | 82.8241                                          | 0.8282                                         | 99.00                            |
| Ethane                                                              | 107.0827                                         | 1.0708                                         | 99.00                            |
| Propane                                                             | 91.1693                                          | 0.9117                                         | 99.00                            |
| Isobutane                                                           | 16.6807                                          | 0.1668                                         | 99.00                            |
| n-Butane                                                            | 60.4692                                          | 0.6047                                         | 99.00                            |
| Isopentane<br>n-Pentane<br>n-Hexane<br>Cyclohexane<br>Other Hexanes | 13.0262<br>23.2772<br>8.4366<br>5.4912<br>5.6507 | 0.1303<br>0.2328<br>0.0844<br>0.0549<br>0.0565 | 99.00<br>99.00<br>99.00<br>99.00 |
| Heptanes                                                            | 22.5869                                          | 0.2259                                         | 99.00                            |
| Benzene                                                             | 7.1646                                           | 0.0716                                         | 99.00                            |
| Toluene                                                             | 32.7625                                          | 0.3276                                         | 99.00                            |

| Ethylbenzene<br>Xylenes                                                                  | 7.4475<br>69.1499                            | 0.0745<br>0.6915                     | Page: 4<br>99.00<br>99.00        |
|------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|
| C8+ Heavies                                                                              | 41.0263                                      | 0.4103                               | 99.00                            |
| Total Emissions                                                                          | 594.2456                                     | 5.9425                               | 99.00                            |
| Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 594.2456<br>404.3388<br>124.9611<br>116.5245 | 5.9425<br>4.0434<br>1.2496<br>1.1652 | 99.00<br>99.00<br>99.00<br>99.00 |

EQUIPMENT REPORTS:

#### COMBUSTION DEVICE

Ambient Temperature: 50.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 99.00 %

Supplemental Fuel Requirement: 2.70e-001 MM BTU/hr

| Component                                                           | Emitted                                   | Destroyed                                      |
|---------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|
| Methane<br>Ethane<br>Propane<br>Isobutane<br>n-Butane               | 1.00%<br>1.00%<br>1.00%<br>1.00%<br>1.00% | 99.00%<br>99.00%<br>99.00%<br>99.00%<br>99.00% |
| Isopentane<br>n-Pentane<br>n-Hexane<br>Cyclohexane<br>Other Hexanes | 1.00%<br>1.00%<br>1.00%<br>1.00%          | 99.00%<br>99.00%<br>99.00%<br>99.00%           |
| Heptanes<br>Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes           | 1.00%<br>1.00%<br>1.00%<br>1.00%          | 99.00%<br>99.00%<br>99.00%<br>99.00%<br>99.00% |
| C8+ Heavies                                                         | 1.00%                                     | 99.00%                                         |

#### ABSORBER

 ${\tt NOTE:}$  Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25
Calculated Dry Gas Dew Point: 0.92 lbs. H2O/MMSCF

Temperature: 70.0 deg. 900.0 psig 70.0 deg. F

Dry Gas Flow Rate: 60.0000 MMSCF/day
Glycol Losses with Dry Gas: 0.5667 lb/hr
Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 25.28 lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio: 13.48 gal/lb H2O

| Component      | Remaining<br>in Dry Gas | Absorbed<br>in Glycol |
|----------------|-------------------------|-----------------------|
| Water          | 3.62%                   | 96.38%                |
| Carbon Dioxide | 99.62%                  | 0.38%                 |
| Nitrogen       | 99.97%                  | 0.03%                 |
| Methane        | 99.97%                  | 0.03%                 |
| Ethane         | 99.93%                  | 0.07%                 |
| Propane        | 99.89%                  | 0.11%                 |
| Isobutane      | 99.86%                  | 0.14%                 |
| n-Butane       | 99.82%                  | 0.18%                 |
| Isopentane     | 99.83%                  | 0.17%                 |
| n-Pentane      | 99.78%                  | 0.22%                 |
| n-Hexane       | 99.67%                  | 0.33%                 |
| Cyclohexane    | 98.39%                  | 1.61%                 |
| Other Hexanes  | 99.74%                  | 0.26%                 |
| Heptanes       | 99.43%                  | 0.57%                 |
| Benzene        | 84.12%                  | 15.88%                |
| Toluene        | 79.48%                  | 20.52%                |
| Ethylbenzene   | 75.70%                  | 24.30%                |
| Xylenes        | 67.77%                  | 32.23%                |
| C8+ Heavies    | 99.46%                  | 0.54%                 |

# FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 99.00  $\ensuremath{\$}$ 

Flash Temperature: 150.0 deg. F Flash Pressure: 50.0 psig

| Component      | Left in<br>Glycol | Removed in Flash Gas |
|----------------|-------------------|----------------------|
| Water          | 99.92%            | 0.08%                |
| Carbon Dioxide | 31.85%            | 68.15%               |
| Nitrogen       | 4.42%             | 95.58%               |
| Methane        | 4.49%             | 95.51%               |
| Ethane         | 13.69%            | 86.31%               |
| Propane        | 23.81%            | 76.19%               |
| Isobutane      | 31.16%            | 68.84%               |
| n-Butane       | 36.68%            | 63.32%               |
| Isopentane     | 39.54%            | 60.46%               |
| n-Pentane      | 44.47%            | 55.53%               |
| n-Hexane       | 58.00%            | 42.00%               |
| Cyclohexane    | 85.33%            | 14.67%               |
| Other Hexanes  | 51.86%            | 48.14%               |
| Heptanes       | 73.09%            | 26.91%               |
| Benzene        | 97.28%            | 2.72%                |
| Toluene        | 98.22%            | 1.78%                |
| Ethylbenzene   | 98.95%            | 1.05%                |
| Xylenes        | 99.27%            | 0.73%                |
| C8+ Heavies    | 95.53%            | 4.47%                |

#### REGENERATOR

| Component                                                       | Remaining<br>in Glycol  | Page:<br>Distilled<br>Overhead | 6 |
|-----------------------------------------------------------------|-------------------------|--------------------------------|---|
| Water<br>Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane        | 0.00%<br>0.00%<br>0.00% | 100.00%<br>100.00%<br>100.00%  |   |
| Propane<br>Isobutane<br>n-Butane<br>Isopentane<br>n-Pentane     | 0.00%                   | 100.00%<br>100.00%<br>98.74%   |   |
| n-Hexane<br>Cyclohexane<br>Other Hexanes<br>Heptanes<br>Benzene | 1.93%                   | 96.25%<br>98.07%<br>99.32%     |   |
| Toluene<br>Ethylbenzene<br>Xylenes<br>C8+ Heavies               |                         | 89.48%                         |   |

#### STREAM REPORTS:

# WET GAS STREAM

Temperature: 70.00 deg. F
Pressure: 914.70 psia
Flow Rate: 2.50e+006 scfh

| Component                                | Conc. (vol%)                                                  | Loading<br>(lb/hr)                  |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Carbon Dioxide<br>Nitrogen<br>Methane    | 5.33e-002<br>1.88e-001<br>4.65e-001<br>7.14e+001<br>1.70e+001 | 5.45e+002<br>8.59e+002<br>7.55e+004 |
| Isobutane<br>n-Butane<br>Isopentane      | 6.82e+000<br>7.22e-001<br>1.97e+000<br>3.66e-001<br>5.03e-001 | 2.77e+003<br>7.56e+003<br>1.74e+003 |
| Cyclohexane<br>Other Hexanes<br>Heptanes |                                                               | 7.77e+001<br>5.06e+002<br>8.98e+002 |
| Ethylbenzene<br>Xylenes<br>C8+ Heavies   | 7.00e-003<br>1.53e-001                                        | 7.00e+000<br>4.90e+001<br>1.72e+003 |
| Total Components                         | 100.00                                                        | 1.49e+005                           |

DRY GAS STREAM

-----

Temperature: 70.00 deg. F Pressure: 914.70 psia Flow Rate: 2.50e+006 scfh

Component Conc. Loading (vol%) (lb/hr) Water 1.93e-003 2.29e+000 Carbon Dioxide 1.87e-001 5.43e+002 Nitrogen 4.65e-001 8.58e+002 Methane 7.14e+001 7.55e+004 Ethane 1.70e+001 3.37e+004 Propane 6.82e+000 1.98e+004 Isobutane 7.21e-001 2.76e+003 n-Butane 1.97e+000 7.55e+003 Isopentane 3.66e-001 1.74e+003 n-Pentane 5.02e-001 2.39e+003 n-Hexane 1.02e-001 5.78e+002 Cyclohexane 1.38e-002 7.64e+001 Other Hexanes 8.88e-002 5.04e+002 Heptanes 1.35e-001 8.93e+002 Benzene 1.68e-003 8.66e+000 Toluene 4.77e-003 2.90e+001 Ethylbenzene 7.57e-004 5.30e+000 Xylenes 4.75e-003 3.32e+001 C8+ Heavies 1.53e-001 1.71e+003 -----Total Components 100.00 1.49e+005

#### LEAN GLYCOL STREAM

-----

Temperature: 70.00 deg. F Flow Rate: 1.37e+001 gpm

| Component                                | Conc. (wt%)                                                   | Loading<br>(lb/hr)                               |
|------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|
| Water<br>Carbon Dioxide<br>Nitrogen      | 9.84e+001<br>1.50e+000<br>2.66e-012<br>3.41e-013<br>8.24e-018 | 1.16e+002<br>2.05e-010<br>2.63e-011              |
| Propane<br>Isobutane                     | 1.50e-007<br>1.10e-008<br>1.48e-009<br>4.44e-009<br>1.94e-004 | 8.47e-007<br>1.14e-007<br>3.42e-007              |
| n-Hexane<br>Cyclohexane<br>Other Hexanes |                                                               | 9.67e-003<br>4.14e-002<br>1.30e-002              |
| Toluene<br>Ethylbenzene                  | 3.04e-002<br>1.66e-002                                        | 6.42e-001<br>1.97e-001<br>2.34e+000<br>1.28e+000 |

Page: 8

#### RICH GLYCOL STREAM

\_\_\_\_\_

Temperature: 70.00 deg. F
Pressure: 914.70 psia
Flow Rate: 1.41e+001 gpm
NOTE: Stream has more than one phase.

| Component                                | Conc. (wt%)                                                   | Loading (lb/hr)                     |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Water<br>Carbon Dioxide<br>Nitrogen      | 9.60e+001<br>2.23e+000<br>2.59e-002<br>3.34e-003<br>2.39e-001 | 1.77e+002<br>2.05e+000<br>2.64e-001 |
| Propane<br>Isobutane                     | 3.09e-001<br>2.63e-001<br>4.82e-002<br>1.75e-001<br>3.78e-002 | 2.08e+001<br>3.81e+000<br>1.38e+001 |
| n-Hexane<br>Cyclohexane<br>Other Hexanes |                                                               | 1.94e+000<br>1.30e+000<br>1.30e+000 |
| Toluene<br>Ethylbenzene                  | 2.29e-001                                                     | 8.12e+000<br>1.90e+000<br>1.81e+001 |
| Total Components                         | 100.00                                                        | 7.91e+003                           |

#### FLASH TANK OFF GAS STREAM

Temperature: 150.00 deg. F Pressure: 64.70 psia Flow Rate: 9.63e+002 scfh

| Component                                |                                                               | Loading<br>(lb/hr)                  |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Carbon Dioxide<br>Nitrogen<br>Methane    | 3.20e-001<br>1.25e+000<br>3.55e-001<br>4.44e+001<br>2.77e+001 | 1.40e+000<br>2.52e-001<br>1.81e+001 |
| Isobutane<br>n-Butane<br>Isopentane      | 1.42e+001<br>1.78e+000<br>5.93e+000<br>9.87e-001<br>1.62e+000 | 2.62e+000<br>8.74e+000<br>1.81e+000 |
| Cyclohexane<br>Other Hexanes<br>Heptanes |                                                               | 1.90e-001<br>6.27e-001<br>1.39e+000 |
| Ethylbenzene                             | 6.20e-002<br>7.39e-003<br>4.92e-002                           | 1.99e-002                           |

-----Total Components 100.00 7.68e+001

#### FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F
Flow Rate: 1.39e+001 gpm

| Component                                | Conc. (wt%)                                                   | Loading<br>(lb/hr)                  |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Water<br>Carbon Dioxide<br>Nitrogen      | 9.69e+001<br>2.25e+000<br>8.34e-003<br>1.49e-004<br>1.09e-002 | 1.76e+002<br>6.53e-001<br>1.17e-002 |
| Propane<br>Isobutane                     | 4.27e-002<br>6.33e-002<br>1.52e-002<br>6.47e-002<br>1.51e-002 | 4.96e+000<br>1.19e+000<br>5.06e+000 |
| n-Hexane<br>Cyclohexane<br>Other Hexanes |                                                               | 1.12e+000<br>1.11e+000<br>6.76e-001 |
| Toluene<br>Ethylbenzene                  | 2.30e-001                                                     | 7.98e+000<br>1.88e+000<br>1.80e+001 |
| Total Components                         | 100.00                                                        | 7.83e+003                           |

#### FLASH GAS EMISSIONS

\_\_\_\_\_

Flow Rate: 4.71e+003 scfh

Control Method: Combustion Device

Control Efficiency: 99.00

| Component                                | Conc. (vol%)                                                  | Loading (lb/hr)                     |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Carbon Dioxide<br>Nitrogen<br>Methane    | 5.96e+001<br>4.01e+001<br>7.27e-002<br>9.08e-002<br>5.66e-002 | 2.19e+002<br>2.52e-001<br>1.81e-001 |
| Isobutane<br>n-Butane<br>Isopentane      | 2.90e-002<br>3.64e-003<br>1.21e-002<br>2.02e-003<br>3.31e-003 | 2.62e-002<br>8.74e-002<br>1.81e-002 |
| Cyclohexane<br>Other Hexanes<br>Heptanes |                                                               | 1.90e-003<br>6.27e-003<br>1.39e-002 |
| Toluene                                  | 1.27e-004                                                     | 1.45e-003                           |

Page: 10

#### REGENERATOR OVERHEADS STREAM

-----

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.60e+003 scfh

| Component                                | Conc. (vol%)                                                  | Loading<br>(lb/hr)                  |
|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Carbon Dioxide<br>Nitrogen<br>Methane    | 8.02e+001<br>3.52e-001<br>9.90e-003<br>1.26e+000<br>2.64e+000 | 6.53e-001<br>1.17e-002<br>8.50e-001 |
| Isobutane<br>n-Butane<br>Isopentane      | 2.67e+000<br>4.85e-001<br>2.07e+000<br>3.84e-001<br>7.73e-001 | 1.19e+000<br>5.06e+000<br>1.17e+000 |
| Cyclohexane<br>Other Hexanes<br>Heptanes |                                                               | 1.06e+000<br>6.63e-001<br>3.76e+000 |
| Ethylbenzene                             | 3.50e+000<br>1.24e+000                                        | 1.68e+000<br>1.57e+001              |

#### COMBUSTION DEVICE OFF GAS STREAM

\_\_\_\_\_\_

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 3.11e+000 scfh

| Component                          |                                                               | Loading<br>(lb/hr)                  |
|------------------------------------|---------------------------------------------------------------|-------------------------------------|
| Ethane<br>Propane<br>Isobutane     | 6.47e+000<br>1.36e+001<br>1.37e+001<br>2.49e+000<br>1.06e+001 | 3.35e-002<br>4.96e-002<br>1.19e-002 |
|                                    | 3.97e+000<br>1.58e+000<br>1.54e+000                           | 2.35e-002<br>1.11e-002<br>1.06e-002 |
| Benzene<br>Toluene<br>Ethylbenzene | 4.58e+000<br>2.48e+000<br>9.72e+000<br>1.93e+000<br>1.80e+001 | 1.59e-002<br>7.34e-002<br>1.68e-002 |

Page: 11

C8+ Heavies 6.37e+000 8.89e-002
Total Components 100.00 6.07e-001

# West Virginia Department of Environmental Protection Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475

 $Web\ Page:\ http:\\ \ www.wvdep.org$ 

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

| Section A: Facility Description                                                                                                                                                                                      |                                                                                   |                             |                                 |                    |                     |                                 |                    |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|---------------------------------|--------------------|---------------------|---------------------------------|--------------------|------|
| Affected facility actual annual average r                                                                                                                                                                            | natural g                                                                         | as throughp                 | out (scf/day):                  | •                  |                     |                                 | 120                | ММ   |
| Affected facility actual annual average h                                                                                                                                                                            | Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day): |                             |                                 |                    |                     | a                               |                    |      |
| The affected facility processes, upgrade                                                                                                                                                                             | s, or stor                                                                        | es hydroca                  | rbon liquids                    | prior to           | custody             | transfer.                       | Yes                | ⊠ No |
| The affected facility processes, upgrade (NG) enters the NG transmission and sto  The affected facility is:  prior to a  prior to a                                                                                  | orage son                                                                         | urce catego<br>ocessing pla | ry or is delivent               | vered to<br>a NG p | the end uprocessing | iser.                           | Yes                | ⊠ No |
| The affected facility transports or stores company or to a final end user (if there is                                                                                                                               |                                                                                   |                             |                                 |                    | ne to a loc         | cal distribution                | Yes                | ⊠ No |
| The affected facility exclusively process. Initial producing gas-to-oil ratio (GOR)                                                                                                                                  |                                                                                   |                             | ers black oil<br>API gra        |                    | d                   | legrees                         | Yes                | ⊠ No |
| Se                                                                                                                                                                                                                   | ection l                                                                          | B: Dehyo                    | dration U                       | nit (if            | applica             | ble) <sup>1</sup>               |                    |      |
| Description: 60 MM                                                                                                                                                                                                   | scfd -                                                                            | TEG De                      | hydrator                        | (RSV               | /-1 and             | I RSV-2)                        |                    |      |
| Date of Installation: Feb-26 (RSV                                                                                                                                                                                    |                                                                                   | Annual O                    | perating Hou                    | ars:               | 8,760               | Burner rating (MM               | IBtu/hr)<br>- HHV: | 1.66 |
| Exhaust Stack Height (ft): ~ 10                                                                                                                                                                                      | )                                                                                 | Stac                        | k Diameter (                    | (ft):              | ~ 0.5               | Stack Ten                       | np. (°F):          |      |
| Glycol Type: 🛛 TEG                                                                                                                                                                                                   |                                                                                   | EG [                        | Other: <b>na</b>                | 1                  |                     |                                 |                    |      |
| Glycol Pump Type: 🛛 Electr                                                                                                                                                                                           | ric 🗌 (                                                                           | Gas If                      | gas, what is                    | the vol            | lume ratio          | ?: <b>na</b>                    |                    |      |
| Condenser installed?                                                                                                                                                                                                 | <b>I</b>                                                                          | No E                        | xit Temp:                       | na                 | Conden              | ser Pressure: <b>na</b>         |                    |      |
| Incinerator/flare installed? Xes                                                                                                                                                                                     |                                                                                   | No D                        | estruction E                    | ff.:               | 99% VC              | C/HAPs                          |                    |      |
| Other controls installed?                                                                                                                                                                                            | [                                                                                 | No D                        | escribe: <b>na</b>              | <b>a</b>           |                     |                                 |                    |      |
| Wet Gas <sup>2</sup> : G (Upstream of Contact Tower) S                                                                                                                                                               | as Temp<br>aturated                                                               |                             |                                 | ressure:<br>] No   |                     | psig<br>ter content?: na        |                    |      |
| <i>y</i>                                                                                                                                                                                                             | as Flow<br>ater Co                                                                |                             | tual: 60 N<br>7.0 lb/Ml         |                    | d                   | Design: 60 MMs                  | cfd                |      |
| Lean Glycol:                                                                                                                                                                                                         | irculatio                                                                         | on rate:<br>ke/model:       | Actual <sup>3</sup> : <b>na</b> | 13.7               | Max                 | imum <sup>4</sup> : <b>13.7</b> |                    |      |
| Temp: 150 °F Pressure: 50 psig Vented:  Yes No Glycol Flash Tank (if applicable): If no, describe vapor control: Vapors Typically Sent to Thermal Oxidizer Vapors may also be used as fuel gas for various equipment |                                                                                   |                             |                                 |                    |                     |                                 |                    |      |
| Stripping Gas (if applicable): S                                                                                                                                                                                     | ource of                                                                          | gas: <b>na</b>              | Rate:                           | na                 |                     |                                 |                    |      |

### Please attach the following required dehydration unit information: System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream, including mole percent of C<sub>1</sub>-C<sub>8</sub>, benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput. Detailed calculations of gas or hydrocarbon flow rate. Section C: Facility NESHAPS Subpart HH/HHH status Subject to Subpart HH Affected facility Subject to Subpart HHH status: Not Subject (choose only one) because: Affected facility exclusively handles black oil

No affected source is present

Facility-wide actual annual average NG throughput is < 650 thousand scf/day and facility-wide actual annual average hydrocarbon liquid is < 250 bpd

# NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

(Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.)

| Source ID #1 | Status <sup>2</sup> | Design Heat Input (MMBtu/hr) <sup>3</sup> | Hours of Operation (hrs/yr) <sup>4</sup> | Fuel Heating Value (Btu/scf) <sup>5</sup> |  |
|--------------|---------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|--|
| HTR-01       | Existing            | 1.55 (HHV)                                | 8,760                                    | 920 (LHV)                                 |  |
| HTR-02       | Existing            | 2.55 (HHV)                                | 8,760                                    | 920 (LHV)                                 |  |
| HTR-03       | New                 | 1.66 (HHV)                                | 8,760                                    | 920 (LHV)                                 |  |
| HTR-04       | New                 | 9.70 (HHV)                                | 8,760                                    | 920 (LHV)                                 |  |
|              |                     |                                           |                                          |                                           |  |
|              |                     |                                           |                                          |                                           |  |
|              |                     |                                           |                                          |                                           |  |
|              |                     |                                           |                                          |                                           |  |

# Notes to NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc.
- 2. Enter the Status for each boiler or line heater using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter boiler or line heater design heat input in MMBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

# STORAGE TANK DATA SHEET

| Source ID #1 | Status <sup>2</sup> | Content <sup>3</sup> | Volume <sup>4</sup> (gal) | Dia <sup>5</sup><br>(ft) | Throughput <sup>6</sup><br>(gal/yr) | Orientation <sup>7</sup> | Ave Liq<br>Ht <sup>8</sup> (Ft) |
|--------------|---------------------|----------------------|---------------------------|--------------------------|-------------------------------------|--------------------------|---------------------------------|
| T01          | EXIST               | Produced Water**     | 2,000                     | 5.3                      | 104,000                             | HORZ                     | 3                               |
| T02          | NEW                 | Produced Water**     | 8,820                     | 10                       | 458,640                             | VERT                     | 7                               |
| Т03          | EXIST               | Slop Oil             | 2,000                     | na                       | 24,000                              | HORZ                     | 3                               |
| T04          | EXIST               | Make-Up Oil          | 3,000                     | na                       | 36,000                              | HORZ                     | 4                               |
| T05          | EXIST               | Lube Oil             | 55                        | na                       | 660                                 | na                       | na                              |
| T06          | EXIST               | Engine Oil           | 520                       | na                       | 6,240                               | na                       | na                              |
| T07          | EXIST               | Engine Oil           | 520                       | na                       | 6,240                               | na                       | na                              |
| T08          | EXIST               | Engine Oil           | 520                       | na                       | 6,240                               | na                       | na                              |
| Т09          | EXIST               | Engine Oil           | 520                       | na                       | 6,240                               | na                       | na                              |
| T10          | EXIST               | Triethylene Glycol   | 1,000                     | na                       | 12,000                              | na                       | na                              |
| T11          | EXIST               | Monoethylene Glycol  | 1,000                     | na                       | 12,000                              | na                       | na                              |
| T12          | EXIST               | Monoethylene Glycol  | 2,000                     | na                       | 24,000                              | na                       | na                              |

<sup>\*\*</sup> Storage tanks are heated to approximately 60 degrees Fahrenheit to prevent freezing.

#### **Notes to STORAGE TANK DATA SHEET**

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:

VERT Vertical Tank

HORZ Horizontal Tank

8. Enter storage tank average liquid height in feet.

# Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <a href="https://www.epa.gov/tnn/tanks.html">www.epa.gov/tnn/tanks.html</a>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<a href="https://www.epa.gov/tnn/chief/">http://www.epa.gov/tnn/chief/</a>).

# I. GENERAL INFORMATION (required)

| Bulk Storage Area Name                                                                                         | 2. Tank Name                                                                      |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| CONNER STATION                                                                                                 | 48 BBL PRODUCED WATER TANK                                                        |
| Tank Equipment Identification No. (as assigned on<br>Equipment List Form)     T01                              | Emission Point Identification No. (as assigned on<br>Equipment List Form)     13E |
| 5. Date of Commencement of Construction (for existing                                                          | tanks) 2014                                                                       |
| 6. Type of change ☐ New Construction ☐ I                                                                       | New Stored Material                                                               |
| 7. Description of Tank Modification (if applicable) NA                                                         |                                                                                   |
| 7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tank | k?)                                                                               |
| 7B. If YES, explain and identify which mode is covere completed for each mode). NA                             | ed by this application (Note: A separate form must be                             |
| 7C. Provide any limitations on source operation affecting variation, etc.):  NA                                | emissions, any work practice standards (e.g. production                           |
| II. TANK INFORM                                                                                                | ATION (required)                                                                  |
| height.                                                                                                        | the internal cross-sectional area multiplied by internal 8 BBL                    |
| 9A. Tank Internal Diameter (ft)                                                                                | 9B. Tank Internal Height (or Length) (ft)                                         |
| 5.3                                                                                                            | 12                                                                                |
| 10A. Maximum Liquid Height (ft)                                                                                | 10B. Average Liquid Height (ft)                                                   |
| 5                                                                                                              | 3                                                                                 |
| 11A. Maximum Vapor Space Height (ft)                                                                           | 11B. Average Vapor Space Height (ft)                                              |
| 5                                                                                                              | 3                                                                                 |
| liquid levels and overflow valve heights.                                                                      | is also known as "working volume" and considers design 8 BBL                      |

| 13A. Maximum annual throughput (gal/yr)                                                                                                                                                                     | 13B. Maximum daily throughput (gal/day)                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 104,000 GAL/YR  14. Number of Turnovers per year (annual net throughput)                                                                                                                                    | t/maximum tank liquid volumo)                            |
| 14. Number of Furnovers per year (annualmet throughpt                                                                                                                                                       | 52                                                       |
| 15. Maximum tank fill rate (gal/min) 200 GAL/MIN                                                                                                                                                            |                                                          |
| 16. Tank fill method                                                                                                                                                                                        |                                                          |
| 17. Complete 17A and 17B for Variable Vapor Space Ta                                                                                                                                                        |                                                          |
| 17A. Volume Expansion Capacity of System (gal)                                                                                                                                                              | 17B. Number of transfers into system per year CONTINUOUS |
| 18. Type of tank (check all that apply):  ☑ Fixed Roof vertical X horizontal  other (describe)  ☐ External Floating Roof pontoon roof                                                                       | flat roof cone roof dome roof double deck roof           |
| <ul> <li>□ Domed External (or Covered) Floating Roof</li> <li>□ Internal Floating Roof</li> <li>□ Variable Vapor Space</li> <li>□ Pressurized</li> <li>□ Underground</li> <li>□ Other (describe)</li> </ul> | diaphragm                                                |
| III. TANK CONSTRUCTION & OPERATION INFORM                                                                                                                                                                   | ATION (optional if providing TANKS Summary Sheets)       |
| 19. Tank Shell Construction:  ☐ Riveted ☐ Gunite lined ☐ Epoxy-coate                                                                                                                                        | d rivets    Other (describe) WELDED                      |
| 1                                                                                                                                                                                                           | or GREEN 20C. Year Last Painted na                       |
| 21. Shell Condition (if metal and unlined):                                                                                                                                                                 |                                                          |
| No Rust ☐ Light Rust ☐ Dense F                                                                                                                                                                              | Rust  Not applicable                                     |
| 22A. Is the tank heated?   ✓ YES   NO  22B. If YES, provide the operating temperature (°F)                                                                                                                  | 60                                                       |
| 22C. If YES, please describe how heat is provided to                                                                                                                                                        |                                                          |
| 23. Operating Pressure Range (psig): ATM to 0.7                                                                                                                                                             |                                                          |
| 24. Complete the following section for Vertical Fixed Ro                                                                                                                                                    |                                                          |
| 24A. For dome roof, provide roof radius (ft)                                                                                                                                                                | <del>_</del> ,                                           |
| 24B. For cone roof, provide slope (ft/ft)                                                                                                                                                                   |                                                          |
| 25. Complete the following section for Floating Roof Ta                                                                                                                                                     | nks 🖂 Does Not Apply                                     |
| 25A. Year Internal Floaters Installed: NA                                                                                                                                                                   |                                                          |
| 25B. Primary Seal Type:                                                                                                                                                                                     | <u> </u>                                                 |
| 25C. Is the Floating Roof equipped with a Secondary                                                                                                                                                         | Seal? YES NO                                             |
| 25D. If YES, how is the secondary seal mounted? (ch                                                                                                                                                         | eck one)                                                 |
| 25E. Is the Floating Roof equipped with a weather shi                                                                                                                                                       | eld? YES NO                                              |

| 25F. Describe deck fittings; indicat          | e the number of eac | ch type of fitting:                               |                                                 |  |  |
|-----------------------------------------------|---------------------|---------------------------------------------------|-------------------------------------------------|--|--|
|                                               |                     | S HATCH                                           |                                                 |  |  |
| BOLT COVER, GASKETED:                         | UNBOLTED COVI       |                                                   | UNBOLTED COVER, UNGASKETED:                     |  |  |
|                                               | ALITOMATIC CAL      | JGE FLOAT WELL                                    |                                                 |  |  |
| BOLT COVER, GASKETED:                         | UNBOLTED COVI       |                                                   | UNBOLTED COVER, UNGASKETED:                     |  |  |
|                                               | COLLIM              | N1 \A/F1 1                                        |                                                 |  |  |
| BUILT-UP COLUMN – SLIDING<br>COVER, GASKETED: |                     |                                                   | PIPE COLUMN – FLEXIBLE<br>FABRIC SLEEVE SEAL:   |  |  |
|                                               | I ADDE              | R WELL                                            |                                                 |  |  |
| PIP COLUMN – SLIDING COVER, G.                |                     |                                                   | SLIDING COVER, UNGASKETED:                      |  |  |
|                                               | GAUGF-HATCH         | /SAMPLE PORT                                      |                                                 |  |  |
| SLIDING COVER, GASKETED:                      | 0,1002 11,11011     | SLIDING COVER,                                    | UNGASKETED:                                     |  |  |
|                                               | ROOF LEG OR         | HANGER WELL                                       |                                                 |  |  |
| WEIGHTED MECHANICAL ACTUATION, GASKETED:      |                     | MECHANICAL                                        | SAMPLE WELL-SLIT FABRIC SEAL<br>(10% OPEN AREA) |  |  |
|                                               | VACIIIIM            | BREAKER                                           | 1                                               |  |  |
| WEIGHTED MECHANICAL ACTUAT                    |                     |                                                   | ANICAL ACTUATION, UNGASKETED:                   |  |  |
|                                               | DIM                 | /ENIT                                             |                                                 |  |  |
| WEIGHTED MECHANICAL ACTUAT                    |                     | VENT   WEIGHTED MECHANICAL ACTUATION, UNGASKETED: |                                                 |  |  |
|                                               | DECK DDAIN (2.1     |                                                   |                                                 |  |  |
| OPEN:                                         | DECK DRAIN (3-1     | NCH DIAMETER)<br>90% CLOSED:                      |                                                 |  |  |
|                                               | STUB                | <br>DDAIN                                         |                                                 |  |  |
| 1-INCH DIAMETER:                              | 2108                | DRAIN                                             |                                                 |  |  |
| OTHER (DESCR                                  | RIBE, ATTACH ADD    | DITIONAL PAGES I                                  | F NECESSARY)                                    |  |  |
|                                               |                     |                                                   |                                                 |  |  |
|                                               |                     |                                                   |                                                 |  |  |
|                                               |                     |                                                   |                                                 |  |  |

| 26. Complete the following section for Internal Floating F                                         | Roof Tanks 🔀 Does Not Apply                                         |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 26A. Deck Type:                                                                                    |                                                                     |
| 26B. For Bolted decks, provide deck construction:                                                  |                                                                     |
|                                                                                                    |                                                                     |
| 26C. Deck seam:                                                                                    |                                                                     |
| Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide                |                                                                     |
| Continuous sheet construction 7 feet wide                                                          |                                                                     |
| ☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide |                                                                     |
| Other (describe)                                                                                   |                                                                     |
| 2CD Dook oppose lawath (ft)                                                                        | OCE Area of deals (# <sup>2</sup> )                                 |
| 26D. Deck seam length (ft)  For column supported tanks:                                            | 26E. Area of deck (ft <sup>2</sup> )  26G. Diameter of each column: |
| 26F. Number of columns:                                                                            | 20G. Diameter of each column.                                       |
|                                                                                                    | if providing TANKS Summary Sheets)                                  |
| 27. Provide the city and state on which the data in this s                                         | · · · · · · · · · · · · · · · · · · ·                               |
|                                                                                                    |                                                                     |
| 28. Daily Average Ambient Temperature (°F)                                                         |                                                                     |
| 29. Annual Average Maximum Temperature (°F)                                                        |                                                                     |
| 30. Annual Average Minimum Temperature (°F)                                                        |                                                                     |
| 31. Average Wind Speed (miles/hr)                                                                  |                                                                     |
| 32. Annual Average Solar Insulation Factor (BTU/(ft²·da                                            | y))                                                                 |
| 33. Atmospheric Pressure (psia)                                                                    |                                                                     |
|                                                                                                    | if providing TANKS Summary Sheets)                                  |
| 34. Average daily temperature range of bulk liquid:                                                | 1                                                                   |
| 34A. Minimum (°F)                                                                                  | 34B. Maximum (°F)                                                   |
| 35. Average operating pressure range of tank:                                                      |                                                                     |
| 35A. Minimum (psig)                                                                                | 35B. Maximum (psig)                                                 |
| 36A. Minimum Liquid Surface Temperature (°F)                                                       | 36B. Corresponding Vapor Pressure (psia)                            |
| 37A. Average Liquid Surface Temperature (°F)                                                       | 37B. Corresponding Vapor Pressure (psia)                            |
| 38A. Maximum Liquid Surface Temperature (°F)                                                       | 38B. Corresponding Vapor Pressure (psia)                            |
| 30A. Maximum Liquid Surface Temperature (1)                                                        | Sob. Corresponding vapor ressure (psia)                             |
| 39. Provide the following for each liquid or gas to be sto                                         | red in tank. Add additional pages if necessary.                     |
| 39A. Material Name or Composition                                                                  |                                                                     |
| 39B. CAS Number                                                                                    |                                                                     |
| 39C. Liquid Density (lb/gal)                                                                       |                                                                     |
| 39D. Liquid Molecular Weight (lb/lb-mole)                                                          |                                                                     |
| 39E. Vapor Molecular Weight (lb/lb-mole)                                                           |                                                                     |
|                                                                                                    | · · · · · · · · · · · · · · · · · · ·                               |

| Maximum Vapor Press                     | sure                      |                  |                 |                         |                                |
|-----------------------------------------|---------------------------|------------------|-----------------|-------------------------|--------------------------------|
| 39F. True (psia)                        |                           |                  |                 |                         |                                |
| 39G. Reid (psia)  Months Storage per Ye | -ar                       |                  |                 |                         |                                |
| 39H. From                               | Jul                       |                  |                 |                         |                                |
| 39I. To                                 |                           |                  |                 |                         |                                |
|                                         | VI. EMISSIONS A           | ND CONTR         | OL DEVIC        | E DATA (required)       |                                |
| 40. Emission Control [                  | Devices (check as man     | v as apply):     | Does No         | ot Apply                |                                |
| ☐ Carbon Adsorp                         |                           | , ,,             |                 | ,                       |                                |
| ☐ Condenser <sup>1</sup>                |                           |                  |                 |                         |                                |
| ☐ Conservation V                        | 'ent (psia)               |                  |                 |                         |                                |
| Vacuum S                                | •,                        |                  | Pressure So     | ettina                  |                                |
|                                         | lief Valve (psig)         |                  |                 | ŭ                       |                                |
| ☐ Inert Gas Blank                       |                           |                  |                 |                         |                                |
| ☐ Insulation of Ta                      |                           |                  |                 |                         |                                |
| Liquid Absorption                       |                           |                  |                 |                         |                                |
| ☐ Refrigeration of                      | , ,                       |                  |                 |                         |                                |
| ☐ Rupture Disc (p                       |                           |                  |                 |                         |                                |
| ☐ Vent to Incinera                      |                           |                  |                 |                         |                                |
| ☐ Other¹ (describ                       |                           |                  |                 |                         |                                |
| · ·                                     | oriate Air Pollution Con  | trol Device S    | Sheet.          |                         |                                |
| 41. Expected Emission                   |                           |                  |                 | or elsewhere in the ani | olication)                     |
| l '                                     | 1                         | 1                |                 |                         | 1                              |
|                                         | Dunathina I asa           | Workin           | a l nee         | A                       |                                |
| Material Name & CAS No.                 | Breathing Loss<br>(lb/hr) |                  | g Loss          | Annual Loss<br>(lb/vr)  | Estimation Method <sup>1</sup> |
| Material Name & CAS No.                 | Breathing Loss<br>(lb/hr) | Workin<br>Amount | g Loss<br>Units | Annual Loss<br>(lb/yr)  |                                |
|                                         |                           |                  | i               |                         | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 |                                |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.                                 |                           |                  | i               | (lb/yr)                 | EPA-450/3-85-001a +            |
| CAS No.  Produced Water                 | (lb/hr)                   | Amount           | Units           | (lb/yr)<br>280          | EPA-450/3-85-001a + ProMax     |
| CAS No.  Produced Water                 | ion Factor, MB = Ma       | Amount           | Units           | (lb/yr)<br>280          | EPA-450/3-85-001a +            |

# Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <a href="https://www.epa.gov/tnn/tanks.html">www.epa.gov/tnn/tanks.html</a>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<a href="https://www.epa.gov/tnn/chief/">http://www.epa.gov/tnn/chief/</a>).

# I. GENERAL INFORMATION (required)

| Bulk Storage Area Name                                                                                         | 2. Tank Name                                                                      |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| CONNER STATION                                                                                                 | 210 BBL PRODUCED WATER TANK                                                       |
| Tank Equipment Identification No. (as assigned on<br>Equipment List Form)     T02                              | Emission Point Identification No. (as assigned on<br>Equipment List Form)     21E |
| 5. Date of Commencement of Construction (for existing                                                          | tanks) 2015                                                                       |
|                                                                                                                | New Stored Material                                                               |
| 7. Description of Tank Modification (if applicable) NA                                                         |                                                                                   |
| 7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tark | ık?)                                                                              |
| 7B. If YES, explain and identify which mode is covered completed for each mode).  NA                           | ed by this application (Note: A separate form must be                             |
| 7C. Provide any limitations on source operation affecting variation, etc.):  NA                                | g emissions, any work practice standards (e.g. production                         |
| II. TANK INFORM                                                                                                | IATION (required)                                                                 |
| height.                                                                                                        | the internal cross-sectional area multiplied by internal                          |
| 9A. Tank Internal Diameter (ft)                                                                                | 9B. Tank Internal Height (or Length) (ft)                                         |
| 10                                                                                                             | 15                                                                                |
| 10A. Maximum Liquid Height (ft)                                                                                | 10B. Average Liquid Height (ft)                                                   |
| 14                                                                                                             | 7                                                                                 |
| 11A. Maximum Vapor Space Height (ft)                                                                           | 11B. Average Vapor Space Height (ft)                                              |
| 7                                                                                                              | 7                                                                                 |
| liquid levels and overflow valve heights.                                                                      | is also known as "working volume" and considers design 10 BBL                     |

| 13A. Maximum annual throughput (gal/yr)                                                                                    | 13B. Maximum daily throughput (gal/day)             |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 458,640 GAL/YR  14. Number of Turnovers per year (annual net throughput)                                                   | 1,257                                               |
| The standard of tames are per year (armaar net arreagnet                                                                   | 52                                                  |
| 15. Maximum tank fill rate (gal/min) 200 GAL/MIN                                                                           |                                                     |
| 16. Tank fill method                                                                                                       | ⊠ Splash ☐ Bottom Loading                           |
| 17. Complete 17A and 17B for Variable Vapor Space Ta                                                                       | ank Systems Does Not Apply                          |
| 17A. Volume Expansion Capacity of System (gal)                                                                             | 17B. Number of transfers into system per year       |
| 19. Type of tank (check all that apply):                                                                                   | CONTINUOUS                                          |
| 18. Type of tank (check all that apply):  ☐ Fixed Roof X vertical horizontal horizontal                                    | flat roof X cone roof dome roof                     |
| other (describe)  External Floating Roof pontoon roof                                                                      | double deck roof                                    |
| <ul><li>☐ Domed External (or Covered) Floating Roof</li><li>☐ Internal Floating Roof</li><li> vertical column st</li></ul> | upport self-supporting                              |
| ☐ Variable Vapor Space lifter roof                                                                                         |                                                     |
| Pressurized spherical cylindrica                                                                                           | al                                                  |
| Underground                                                                                                                |                                                     |
| Other (describe)                                                                                                           | IATION (astronal formal disa TANKO Osmona Obsata)   |
| 19. Tank Shell Construction:                                                                                               | IATION (optional if providing TANKS Summary Sheets) |
| ☐ Riveted ☐ Gunite lined ☐ Epoxy-coate                                                                                     | ed rivets   Other (describe) WELDED                 |
| T                                                                                                                          | or GREEN 20C. Year Last Painted na                  |
| 21. Shell Condition (if metal and unlined):                                                                                | <u> </u>                                            |
| No Rust ☐ Light Rust ☐ Dense R                                                                                             | Rust                                                |
| 22A. Is the tank heated?  YES NO                                                                                           |                                                     |
| 22B. If YES, provide the operating temperature (°F)                                                                        | NA                                                  |
| 22C. If YES, please describe how heat is provided to                                                                       | tank. NA                                            |
| 23. Operating Pressure Range (psig): ATM to 0.7                                                                            | PSIG                                                |
| 24. Complete the following section for Vertical Fixed Ro                                                                   | pof Tanks Does Not Apply                            |
| 24A. For dome roof, provide roof radius (ft)                                                                               |                                                     |
| 24B. For cone roof, provide slope (ft/ft)                                                                                  |                                                     |
| 25. Complete the following section for Floating Roof Ta                                                                    | nks Does Not Apply                                  |
| 25A. Year Internal Floaters Installed: NA                                                                                  |                                                     |
| 25B. Primary Seal Type:                                                                                                    | <i>'</i> — — ·                                      |
| 25C. Is the Floating Roof equipped with a Secondary                                                                        | Seal? YES NO                                        |
| 25D. If YES, how is the secondary seal mounted? (ch                                                                        | eck one)                                            |
| 25E. Is the Floating Roof equipped with a weather shi                                                                      | ield? YES NO                                        |

| 25F. Describe deck fittings; indicat          | e the number of ea | ch type of fitting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
|-----------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                               |                    | S HATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| BOLT COVER, GASKETED:                         | UNBOLTED COVI      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNBOLTED COVER, UNGASKETED:                     |
|                                               | ALITOMATIC CAL     | JGE FLOAT WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
| BOLT COVER, GASKETED:                         | UNBOLTED COVI      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNBOLTED COVER, UNGASKETED:                     |
|                                               | COLLIN             | N WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |
| BUILT-UP COLUMN – SLIDING<br>COVER, GASKETED: |                    | JMN - SLIDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PIPE COLUMN – FLEXIBLE<br>FABRIC SLEEVE SEAL:   |
|                                               | !<br>LADDE         | R WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |
| PIP COLUMN – SLIDING COVER, G.                |                    | t and the second | SLIDING COVER, UNGASKETED:                      |
|                                               | GAUGE-HATCH        | I/SAMPLE PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
| SLIDING COVER, GASKETED:                      |                    | SLIDING COVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , UNGASKETED:                                   |
|                                               | ROOF LEG OR        | HANGER WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |
| WEIGHTED MECHANICAL ACTUATION, GASKETED:      |                    | MECHANICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE WELL-SLIT FABRIC SEAL<br>(10% OPEN AREA) |
|                                               | VACUUM             | BREAKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                               |
| WEIGHTED MECHANICAL ACTUAT                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANICAL ACTUATION, UNGASKETED:                   |
|                                               | DIM                | ⊹<br>VENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| WEIGHTED MECHANICAL ACTUAT                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANICAL ACTUATION, UNGASKETED:                   |
|                                               | DECK DDVIVI (3.1   | INCH DIAMETER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
| OPEN:                                         | DECK DRAIN (3-1    | 90% CLOSED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |
|                                               | OTUD               | DDAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |
| 1-INCH DIAMETER:                              | 2108               | DRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |
| OTHER (DECCE                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IE NIECESSADVI                                  |
| OTHER (DESCR                                  | RIBE, ATTACH ADI   | JITIONAL PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IF NECESSARY)                                   |
|                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |

| 26. Complete the following section for Internal Floating I                                         | Roof Tanks 🔲 Does Not Apply                     |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 26A. Deck Type:                                                                                    |                                                 |
| 26B. For Bolted decks, provide deck construction:                                                  |                                                 |
|                                                                                                    |                                                 |
| 26C. Deck seam:                                                                                    |                                                 |
| ☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide            |                                                 |
| Continuous sheet construction 7 feet wide                                                          |                                                 |
| ☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide |                                                 |
| Other (describe)                                                                                   |                                                 |
|                                                                                                    |                                                 |
| 26D. Deck seam length (ft)                                                                         | 26E. Area of deck (ft²)                         |
| For column supported tanks:                                                                        | 26G. Diameter of each column:                   |
| 26F. Number of columns:                                                                            | if providing TANKS Company Chapte)              |
| 27. Provide the city and state on which the data in this s                                         | if providing TANKS Summary Sheets)              |
| 21. Flowide the city and state on which the data in this s                                         | ection are based.                               |
| 28. Daily Average Ambient Temperature (°F)                                                         |                                                 |
| 29. Annual Average Maximum Temperature (°F)                                                        |                                                 |
| 30. Annual Average Minimum Temperature (°F)                                                        |                                                 |
| 31. Average Wind Speed (miles/hr)                                                                  |                                                 |
| 32. Annual Average Solar Insulation Factor (BTU/(ft²·da                                            | y))                                             |
| 33. Atmospheric Pressure (psia)                                                                    |                                                 |
| V. LIQUID INFORMATION (optional                                                                    | if providing TANKS Summary Sheets)              |
| 34. Average daily temperature range of bulk liquid:                                                |                                                 |
| 34A. Minimum (°F)                                                                                  | 34B. Maximum (°F)                               |
| 35. Average operating pressure range of tank:                                                      |                                                 |
| 35A. Minimum (psig)                                                                                | 35B. Maximum (psig)                             |
| 36A. Minimum Liquid Surface Temperature (°F)                                                       | 36B. Corresponding Vapor Pressure (psia)        |
| 37A. Average Liquid Surface Temperature (°F)                                                       | 37B. Corresponding Vapor Pressure (psia)        |
|                                                                                                    |                                                 |
| 38A. Maximum Liquid Surface Temperature (°F)                                                       | 38B. Corresponding Vapor Pressure (psia)        |
| 39. Provide the following for each liquid or gas to be sto                                         | red in tank. Add additional pages if necessary. |
| 39A. Material Name or Composition                                                                  |                                                 |
| 39B. CAS Number                                                                                    |                                                 |
| 39C. Liquid Density (lb/gal)                                                                       |                                                 |
| 39D. Liquid Molecular Weight (lb/lb-mole)                                                          |                                                 |
| 39E. Vapor Molecular Weight (lb/lb-mole)                                                           |                                                 |
|                                                                                                    |                                                 |

| Maximum Vapor Press                                                             | sure                      |               |                   |                                      |                                                  |
|---------------------------------------------------------------------------------|---------------------------|---------------|-------------------|--------------------------------------|--------------------------------------------------|
| 39F. True (psia)                                                                |                           |               |                   |                                      |                                                  |
| 39G. Reid (psia)  Months Storage per Yo                                         | oor                       |               |                   |                                      |                                                  |
| 39H. From                                                                       | cai                       |               |                   |                                      |                                                  |
| 39I. To                                                                         |                           |               |                   |                                      |                                                  |
|                                                                                 | VI. EMISSIONS A           | ND CONTR      | OL DEVICI         | E DATA (required)                    |                                                  |
| 40. Emission Control I                                                          | Devices (check as man     |               |                   | · · · · ·                            |                                                  |
| ☐ Carbon Adsorp                                                                 |                           | )   -   - ) / |                   |                                      |                                                  |
| ☐ Condenser <sup>1</sup>                                                        |                           |               |                   |                                      |                                                  |
| ☐ Conservation V                                                                | /ent (nsia)               |               |                   |                                      |                                                  |
| Vacuum S                                                                        | •                         |               | Pressure So       | ettina                               |                                                  |
|                                                                                 | lief Valve (psig)         |               | 1 1033410 0       | citing                               |                                                  |
| ☐ Inert Gas Blank                                                               | •,                        |               |                   |                                      |                                                  |
| ☐ Insulation of Ta                                                              |                           |               |                   |                                      |                                                  |
| <u> </u>                                                                        |                           |               |                   |                                      |                                                  |
| Liquid Absorpti                                                                 | , ,                       |               |                   |                                      |                                                  |
| Refrigeration of                                                                |                           |               |                   |                                      |                                                  |
| ☐ Rupture Disc (p                                                               |                           |               |                   |                                      |                                                  |
|                                                                                 |                           |               |                   |                                      |                                                  |
| Other¹ (describ                                                                 | •                         |               | N                 |                                      |                                                  |
|                                                                                 | oriate Air Pollution Conf |               |                   |                                      |                                                  |
| 41. Expected Emission                                                           | n Rate (submit Test Da    | ta or Calcul  | ations here       | or elsewhere in the ap               | plication).                                      |
|                                                                                 |                           | <b>NA/</b>    |                   |                                      |                                                  |
| Material Name &                                                                 | Breathing Loss            | workin        | g Loss            | Annual Loss                          | Estimation Mathad <sup>1</sup>                   |
| Material Name & CAS No.                                                         | Breathing Loss<br>(lb/hr) | Amount        | g Loss<br>Units   | Annual Loss<br>(lb/yr)               | Estimation Method <sup>1</sup>                   |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
|                                                                                 |                           |               | i                 |                                      |                                                  |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| CAS No.                                                                         |                           |               | i                 | (lb/yr)                              | EPA-450/3-85-001a +                              |
| Produced Water                                                                  | (lb/hr)                   | Amount        | Units             | (lb/yr) 1,240                        | EPA-450/3-85-001a + ProMax                       |
| CAS No.  Produced Water                                                         | (lb/hr)                   | Amount        | Units             | (lb/yr) 1,240                        | EPA-450/3-85-001a +                              |
| CAS No.  Produced Water  Produced Water  1 EPA = EPA Emiss Throughput Data, O = | (lb/hr)                   | Amount        | Units  Once, SS = | (lb/yr)  1,240  Similar Source, ST = | EPA-450/3-85-001a + ProMax  Similar Source Test, |

# Conner Produced Water Tank ProMax Summary

| Produced Liquids           |       |        |  |
|----------------------------|-------|--------|--|
| Temperature                | °F    | 111.92 |  |
| Pressure                   | psig  | 0.60   |  |
| Std Liquid Volumetric Flow | bbl/d | 2.81   |  |

| Emissions to Atmosphere |             |  |  |
|-------------------------|-------------|--|--|
| Component               | tons/year   |  |  |
| Nitrogen                | 0.0001      |  |  |
| Carbon Dioxide          | 0.0009      |  |  |
| Methane                 | 0.0105      |  |  |
| Ethane                  | 0.0230      |  |  |
| Propane                 | 0.0262      |  |  |
| Isobutane               | 0.0017      |  |  |
| n-Butane                | 0.0080      |  |  |
| Propane, 2,2-Dimethyl-  | 0.0000      |  |  |
| Isopentane              | 0.0008      |  |  |
| n-Pentane               | 0.0008      |  |  |
| 2-2-Dimethylbutane      | 0.0000      |  |  |
| 2-3-Dimethylbutane      | 0.0000      |  |  |
| 2-Methylpentane         | 0.0000      |  |  |
| 3-Methylpentane         | 0.0001      |  |  |
| n-Hexane                | 0.0000      |  |  |
| Methylcyclopentane      | 0.0000      |  |  |
| Benzene                 | 0.0000      |  |  |
| Cyclohexane             | 0.0000      |  |  |
| 2-Methylhexane          | 0.0000      |  |  |
| 3-Methylhexane          | 0.0000      |  |  |
| n-Heptane               | 0.0000      |  |  |
| Methylcyclohexane       | 0.0000      |  |  |
| Toluene                 | 0.0000      |  |  |
| n-Octane                | 0.0000      |  |  |
| Ethylbenzene            | 0.0000      |  |  |
| o-Xylene                | 0.0000      |  |  |
| n-Nonane                | 0.0000      |  |  |
| n-Decane                | 0.0000      |  |  |
| Undecane                | 0.0000      |  |  |
| Water                   | 0.003898961 |  |  |

# Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

| Identification Number (as assigned on Equipment List Form): TLO-1 and TLO-2                                                                       |                                                                                                       |            |              |             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------|--------------|-------------|--|
| 1. Loading Area Name: CONNER STATION                                                                                                              |                                                                                                       |            |              |             |  |
| 2. Type of cargo                                                                                                                                  | 2. Type of <b>cargo vessels</b> accommodated at this rack or transfer point (check as many as apply): |            |              |             |  |
| ☐ Drums                                                                                                                                           | ☐ Marine Vesse                                                                                        | els 🗌 Rail | Tank Cars    | Tank Trucks |  |
| 3. Loading Rack of                                                                                                                                | or Transfer Point Dat                                                                                 | a:         |              |             |  |
| Number of pum                                                                                                                                     | ips                                                                                                   | 2          |              |             |  |
| Number of liqui                                                                                                                                   | ds loaded                                                                                             | 2          |              |             |  |
| Maximum number of marine vessels, 1 tank trucks, tank cars, and/or drums loading at one time                                                      |                                                                                                       |            |              |             |  |
| l`                                                                                                                                                | 4. Does ballasting of <b>marine vessels</b> occur at this loading area?  ☐ Yes ☐ No ☐ Does not apply  |            |              |             |  |
| <ol> <li>Describe cleaning location, compounds and procedure for cargo vessels using this transfer<br/>point:<br/>NA</li> </ol>                   |                                                                                                       |            |              |             |  |
| 6. Are cargo vessels <b>pressure tested</b> for leaks at this or any other location? <b>NA</b> ☐ Yes ☐ No ☐ Does not apply  If YES, describe:  NA |                                                                                                       |            |              |             |  |
| 7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):                                                                  |                                                                                                       |            |              |             |  |
| Maximum                                                                                                                                           | Jan Mar.                                                                                              | Apr June   | July - Sept. | Oct Dec.    |  |
| hours/day                                                                                                                                         | 24                                                                                                    | 24         | 24           | 24          |  |
| days/week                                                                                                                                         | 7                                                                                                     | 7          | 7            | 7           |  |
| weeks/quarter                                                                                                                                     | 13                                                                                                    | 13         | 13           | 13          |  |

| 8. Bulk Liquid Data (add pages as necessary):                       |                         |              |                |  |  |  |
|---------------------------------------------------------------------|-------------------------|--------------|----------------|--|--|--|
| Pump ID No.                                                         |                         | 1            | 2              |  |  |  |
| Liquid Name                                                         |                         | Prod.<br>H2O | Stab.<br>Cond. |  |  |  |
| Max. daily thre                                                     | oughput (1000 gal/day)  | 1.54         | 0.68           |  |  |  |
| Max. annual t                                                       | hroughput (1000 gal/yr) | 563          | 250            |  |  |  |
| Loading Meth                                                        | od <sup>1</sup>         | SP           | SP             |  |  |  |
| Max. Fill Rate (gal/min)                                            |                         | 200          | 200            |  |  |  |
| Average Fill Time (min/loading)                                     |                         | 60           | 60             |  |  |  |
| Max. Bulk Liquid Temperature (°F)                                   |                         | 60           | 60             |  |  |  |
| True Vapor Pressure <sup>2</sup>                                    |                         | 1.5          | 10.0           |  |  |  |
| Cargo Vessel Condition <sup>3</sup>                                 |                         | U            | U              |  |  |  |
| Control Equipment or Method <sup>4</sup>                            |                         | None         | None           |  |  |  |
| Minimum control efficiency (%)                                      |                         | N/A          | N/A            |  |  |  |
| Maximum                                                             | Loading (lb/hr)         |              |                |  |  |  |
| Emission<br>Rate (VOC)                                              | Annual (lb/yr)          | 900          | 4,940          |  |  |  |
| Estimation Method <sup>5</sup>                                      |                         | EPA          | EPA            |  |  |  |
| <sup>1</sup> BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill |                         |              |                |  |  |  |

<sup>&</sup>lt;sup>2</sup> At maximum bulk liquid temperature

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

NOTE: STABILIZED CONDENSATE WILL BE LOADED INTO TANKER TRUCKS ONLY IN THE EVENT OF A PIPELINE OUTAGE. THE NORMAL OPERATING MODE IS TO SEND STABILIZED CONDENSATE OFFSITE VIA PIPELINE.

<sup>&</sup>lt;sup>3</sup>B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

<sup>&</sup>lt;sup>4</sup> List as many as apply (complete and submit *Air Pollution Control Device Sheets*):

CA = Carbon Adsorption, LOA = Lean Oil Adsorption, CO = Condensation, SC = Scrubber (Absorption), CRA = Compressor-Refrigeration-Absorption, TO = Thermal Oxidation or Incineration, CRC = Compression-Refrigeration-Condensation, VB = Dedicated Vapor Balance (closed system), O = other (describe)

<sup>&</sup>lt;sup>5</sup> EPA = EPA Emission Factor as stated in AP-42

| 9. <b>Proposed Monitoring, Recordkeeping, Reporting, and Testing</b> Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. |               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| MONITORING                                                                                                                                                                                                                                                                                            | RECORDKEEPING |  |  |  |
| REPORTING                                                                                                                                                                                                                                                                                             | TESTING       |  |  |  |
| MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.                                                                      |               |  |  |  |
| RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.                                                                                                                                                                                                         |               |  |  |  |
| REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.                                                                                                                                                                                                                  |               |  |  |  |
| <b>TESTING.</b> PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.                                                                                                                                                                               |               |  |  |  |
| 10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.                                                                                                                                                                                           |               |  |  |  |

# **ATTACHMENT M**

# **Air Pollution Control Device Sheet(s)**

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

- 1,380 bhp CAT G3516B Compressor Engine
  - o Oxidation Catalyst (OxCat) Vendor (EMIT) Data
- 203 bhp CAT G3306B TA Compressor Engine
  - o Non-Selective Catalytic Reduction (NSCR) Vendor (Miratech) Data
- 6.4 MMBtu/hr Thermal Oxidizer

# Attachment M Air Pollution Control Device Sheet

(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-OxCat and 02-OxCat

# **Equipment Information**

| 1.  | Manufacturer: EMIT Technologies<br>Model No. RE-3050-H (or equiv.)                                                                                                                                               |         | Control Device Nan     Type: OxCat     | ne: Catalytic Converter          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|----------------------------------|
| 3.  | Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. |         |                                        |                                  |
| 4.  | On a separate sheet(s) supply all data and calc                                                                                                                                                                  | ulatio  | ns used in selecting or de             | esigning this collection device. |
| 5.  | Provide a scale diagram of the control device sh                                                                                                                                                                 | howin   | g internal construction.               |                                  |
| 6.  | Submit a schematic and diagram with dimensio                                                                                                                                                                     | ns an   | d flow rates.                          |                                  |
| 7.  | Guaranteed minimum collection efficiency for ea                                                                                                                                                                  | ach p   | ollutant collected:                    |                                  |
| CO  | ) (≥94.6%), NMNEHC (≥90.8%) and HCHO (≥75.                                                                                                                                                                       | .7%)    |                                        |                                  |
| 8.  | Attached efficiency curve and/or other efficiency                                                                                                                                                                | y infor | mation.                                |                                  |
| 9.  | Design inlet volume: SC                                                                                                                                                                                          | CFM     | 10. Capacity:                          |                                  |
| 11. | 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.                                                                                                |         |                                        |                                  |
| 12. | 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment.                                                                                 |         |                                        |                                  |
| 13. | 13. Description of method of handling the collected material(s) for reuse of disposal.                                                                                                                           |         |                                        |                                  |
|     | Gas Stream Characteristics                                                                                                                                                                                       |         |                                        |                                  |
| 14. | Are halogenated organics present? Are particulates present? Are metals present?                                                                                                                                  |         | ☐ Yes ☐ No<br>☐ Yes ☐ No<br>☐ Yes ☐ No |                                  |
| 15. | Inlet Emission stream parameters:                                                                                                                                                                                |         | Maximum                                | Typical                          |
|     | Pressure (mmHg):                                                                                                                                                                                                 |         |                                        |                                  |
|     | Heat Content (BTU/scf):                                                                                                                                                                                          |         |                                        |                                  |
|     | Oxygen Content (%):                                                                                                                                                                                              |         |                                        |                                  |
|     | Moisture Content (%):                                                                                                                                                                                            |         |                                        |                                  |
|     | Relative Humidity (%):                                                                                                                                                                                           |         |                                        |                                  |

Page 1 of 3 REVISED 03/15/2007

| 16. Type of pollutant(s ☐ Particulate (typ                                                                                        |                     | □ SO <sub>x</sub> | ☐ Odor<br>☑ Other CO,                                       | NMNEHC and I                         | НСНО       |                 |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------------------------|--------------------------------------|------------|-----------------|
| 17. Inlet gas velocity:                                                                                                           |                     | ft/sec            | 18. Pollutant                                               | specific gravity:                    |            |                 |
| 19. Gas flow into the o                                                                                                           |                     | PSIA              | 20. Gas strea                                               | am temperature:<br>Inlet:<br>Outlet: | 1026       | °F<br>°F        |
| 21. Gas flow rate:  Design Maximum: 8996 ACFM Average Expected: 8996 ACFM                                                         |                     |                   | 22. Particulate Grain Loading in grains/scf: Inlet: Outlet: |                                      |            |                 |
| 23. Emission rate of e                                                                                                            | ach pollutant (spec | ify) into and out | of collector:                                               |                                      |            |                 |
| Pollutant                                                                                                                         | IN Pol              | lutant            |                                                             |                                      | Control    |                 |
|                                                                                                                                   | g/bhp-hr            | grains/acf        | Capture<br>Efficiency<br>%                                  | g/bhp-hr                             | grains/acf | Efficiency<br>% |
| CO                                                                                                                                | 3.08                |                   | 100                                                         | 0.17                                 |            | 94.6            |
| NMNEHC                                                                                                                            | 1.06                |                   | 100                                                         | 0.10                                 |            | 90.8            |
| НСНО                                                                                                                              | 0.36                |                   | 100                                                         | 0.09                                 |            | 75.7            |
|                                                                                                                                   |                     |                   |                                                             |                                      |            |                 |
| 24. Dimensions of stack: Height ft. Diameter ft.                                                                                  |                     |                   |                                                             | ft.                                  |            |                 |
| 25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector. |                     |                   |                                                             |                                      |            |                 |

# **Particulate Distribution**

| 26. Complete the table:          | Particle Size Distribution at Inlet to Collector | Fraction Efficiency of Collector |
|----------------------------------|--------------------------------------------------|----------------------------------|
| Particulate Size Range (microns) | Weight % for Size Range                          | Weight % for Size Range          |
| 0 – 2                            |                                                  |                                  |
| 2 – 4                            |                                                  |                                  |
| 4 – 6                            |                                                  |                                  |
| 6 – 8                            |                                                  |                                  |
| 8 – 10                           |                                                  |                                  |
| 10 – 12                          |                                                  |                                  |
| 12 – 16                          |                                                  |                                  |
| 16 – 20                          |                                                  |                                  |
| 20 – 30                          |                                                  |                                  |
| 30 – 40                          |                                                  |                                  |
| 40 – 50                          |                                                  |                                  |
| 50 – 60                          |                                                  |                                  |
| 60 – 70                          |                                                  |                                  |
| 70 – 80                          |                                                  |                                  |
| 80 – 90                          |                                                  |                                  |
| 90 – 100                         |                                                  |                                  |
| >100                             |                                                  |                                  |

| 27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):                                                                                                                                               |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| 28. Describe the collect                                                                                                                                                                                                                                                                        | 28. Describe the collection material disposal system:                                                                                                                                                                                                                                                   |                                                                                                     |  |  |  |
| 29. Have you included                                                                                                                                                                                                                                                                           | Other Collectores Control Device                                                                                                                                                                                                                                                                        | e in the Emissions Points Data Summary Sheet?                                                       |  |  |  |
| 30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
| MONITORING:                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         | RECORDKEEPING:                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
| REPORTING:                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                         | TESTING:                                                                                            |  |  |  |
| MONITORING:                                                                                                                                                                                                                                                                                     | IONITORING: Please list and describe the process parameters and ranges that are proposed to monitored in order to demonstrate compliance with the operation of this process parameters and ranges that are proposed to monitored in order to demonstrate compliance with the operation of this process. |                                                                                                     |  |  |  |
| RECORDKEEPING:<br>REPORTING:                                                                                                                                                                                                                                                                    | Please describe the proposed re-<br>Please describe any proposed                                                                                                                                                                                                                                        | cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air |  |  |  |
| TESTING:                                                                                                                                                                                                                                                                                        | pollution control device.  STING: Please describe any proposed emissions testing for this process equipment on a pollution control device.                                                                                                                                                              |                                                                                                     |  |  |  |
| 31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
| CO (≥94.6%), NMNEHC (≥90.8%) and HCHO (≥75.7%)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
| 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |
| 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |



WILLIAMS FIELD SERVICES

10497 Town & Country Way, Ste. 940 Houston, TX 77024

Office: 307.673.0883 | Direct: 307.675.5073

cparisi@emittechnologies.com

Prepared For:

Jose Parilli

To the Department of the Control of t

Expires: December 14, 2013

INFORMATION PROVIDED BY CATERPILLAR

Engine: G3516B
Horsepower: 1343
RPM: 1400
Compression Ratio: 8.0

Exhaust Flow Rate: 8996 CFM Exhaust Temperature: 1026 °F

Reference: DM8800-07-001 Fuel: Natural Gas

Annual Operating Hours: 8760

#### **Uncontrolled Emissions**

|         | <u>g/bhp-hr</u> | <u>Lb/Hr</u> | <u>Tons/Year</u> |
|---------|-----------------|--------------|------------------|
| NOx:    | 0.50            | 1.48         | 6.48             |
| CO:     | 3.08            | 9.12         | 39.94            |
| THC:    | 3.97            | 11.75        | 51.48            |
| NMHC    | 2.00            | 5.92         | 25.94            |
| NMNEHC: | 1.06            | 3.14         | 13.75            |
| HCHO:   | 0.36            | 1.07         | 4.67             |
| O2:     | 9.10 %          |              |                  |

#### **POST CATALYST EMISSIONS**

|       | g/bhp-hr   | <u>Lb/Hr</u>   | Tons/Year |
|-------|------------|----------------|-----------|
| NOx:  | Unaffected | by Oxidation ( | Catalyst  |
| CO:   | <0.17      | < 0.50         | <2.20     |
| VOC:  | <0.10      | < 0.30         | <1.30     |
| HCHO: | < 0.09     | <0.27          | <1.17     |

#### **CONTROL EQUIPMENT**

#### **Catalyst Element**

Model: RE-3050-H

Catalyst Type: Oxidation, Premium Precious Group Metals

Substrate Type: BRAZED

Manufacturer: EMIT Technologies, Inc

Element Quantity: 2

Element Size: Round 30.5" x 3.25"

Estimated Lead Time: In Stock

## Attachment M Air Pollution Control Device Sheet

(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-NSCR

#### **Equipment Information**

| 1.  | Manufacturer: Miratech<br>Model No. VXC-1610-05-XC1 (or equiv.)                                                                                                                                                  | Control Device Nan     Type: NSCR      | ne: Catalytic Converter          |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| 3.  | Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. |                                        |                                  |  |  |  |  |  |  |  |
| 4.  | On a separate sheet(s) supply all data and calculation                                                                                                                                                           | ns used in selecting or de             | esigning this collection device. |  |  |  |  |  |  |  |
| 5.  | Provide a scale diagram of the control device showing                                                                                                                                                            | g internal construction.               |                                  |  |  |  |  |  |  |  |
| 6.  | Submit a schematic and diagram with dimensions and                                                                                                                                                               | d flow rates.                          |                                  |  |  |  |  |  |  |  |
| 7.  | Guaranteed minimum collection efficiency for each po                                                                                                                                                             | ollutant collected:                    |                                  |  |  |  |  |  |  |  |
| NO  | NOx (≥97%) and CO (≥87%)                                                                                                                                                                                         |                                        |                                  |  |  |  |  |  |  |  |
| 8.  | 8. Attached efficiency curve and/or other efficiency information.                                                                                                                                                |                                        |                                  |  |  |  |  |  |  |  |
| 9.  | . Design inlet volume: SCFM 10. Capacity:                                                                                                                                                                        |                                        |                                  |  |  |  |  |  |  |  |
|     | 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.                                                                                                |                                        |                                  |  |  |  |  |  |  |  |
| 12. | Attach any additional data including auxiliary equip-<br>control equipment.                                                                                                                                      | ment and operation del                 | and to thoroughly evaluate the   |  |  |  |  |  |  |  |
| 13. | 13. Description of method of handling the collected material(s) for reuse of disposal.                                                                                                                           |                                        |                                  |  |  |  |  |  |  |  |
|     | Gas Stream C                                                                                                                                                                                                     | haracteristics                         |                                  |  |  |  |  |  |  |  |
| 14. | Are halogenated organics present? Are particulates present? Are metals present?                                                                                                                                  | ☐ Yes ☐ No<br>☐ Yes ☐ No<br>☐ Yes ☐ No |                                  |  |  |  |  |  |  |  |
| 15. | Inlet Emission stream parameters:                                                                                                                                                                                | Maximum                                | Typical                          |  |  |  |  |  |  |  |
|     | Pressure (mmHg):                                                                                                                                                                                                 |                                        |                                  |  |  |  |  |  |  |  |
|     | Heat Content (BTU/scf):                                                                                                                                                                                          |                                        |                                  |  |  |  |  |  |  |  |
|     | Oxygen Content (%):                                                                                                                                                                                              |                                        |                                  |  |  |  |  |  |  |  |
|     | Moisture Content (%):                                                                                                                                                                                            |                                        |                                  |  |  |  |  |  |  |  |
|     | Relative Humidity (%):                                                                                                                                                                                           |                                        |                                  |  |  |  |  |  |  |  |

Page 1 of 3 REVISED 03/15/2007

| 16. | Type of pollutant(s) ☐ Particulate (type)                    |                        | □ SO <sub>x</sub> | ☐ Odor<br>⊠ Other NOx      | and CO                              |                  |                 |  |
|-----|--------------------------------------------------------------|------------------------|-------------------|----------------------------|-------------------------------------|------------------|-----------------|--|
| 17. | Inlet gas velocity:                                          |                        | ft/sec            | 18. Pollutant              | specific gravity:                   |                  |                 |  |
| 19. | Gas flow into the col<br>970 ACFM @                          | llector:<br>1064°F and | PSIA              | 20. Gas strea              | m temperature:<br>Inlet:<br>Outlet: | °F<br>°F         |                 |  |
| 21. | Gas flow rate: Design Maximum: Average Expected:             | 970<br>970             | ACFM<br>ACFM      | 22. Particulate            |                                     |                  |                 |  |
| 23. | Emission rate of each                                        | h pollutant (spec      | ify) into and out | of collector:              |                                     |                  |                 |  |
|     | Pollutant                                                    | IN Po                  | llutant           | Emission                   | OUT Po                              | OUT Pollutant Co |                 |  |
|     |                                                              | g/bhp-hr               | grains/acf        | Capture<br>Efficiency<br>% | g/bhp-hr                            | grains/acf       | Efficiency<br>% |  |
|     | NOx                                                          | 15.26                  |                   | 100                        | 0.50                                |                  | 97              |  |
|     | CO                                                           | 15.26                  |                   | 100                        | 2.00                                |                  | 87              |  |
|     |                                                              |                        |                   |                            |                                     |                  |                 |  |
|     |                                                              |                        |                   |                            |                                     |                  |                 |  |
| 24. | Dimensions of stack                                          | : Heig                 | ıht               | ft.                        | Diameter                            | 1                | ft.             |  |
|     | Dimensions of stack Supply a curve show rating of collector. |                        | ,                 |                            |                                     |                  |                 |  |

#### **Particulate Distribution**

| 26. Complete the table:          | Particle Size Distribution at Inlet to Collector | Fraction Efficiency of Collector |
|----------------------------------|--------------------------------------------------|----------------------------------|
| Particulate Size Range (microns) | Weight % for Size Range                          | Weight % for Size Range          |
| 0 – 2                            |                                                  |                                  |
| 2 – 4                            |                                                  |                                  |
| 4 – 6                            |                                                  |                                  |
| 6 – 8                            |                                                  |                                  |
| 8 – 10                           |                                                  |                                  |
| 10 – 12                          |                                                  |                                  |
| 12 – 16                          |                                                  |                                  |
| 16 – 20                          |                                                  |                                  |
| 20 – 30                          |                                                  |                                  |
| 30 – 40                          |                                                  |                                  |
| 40 – 50                          |                                                  |                                  |
| 50 – 60                          |                                                  |                                  |
| 60 – 70                          |                                                  |                                  |
| 70 – 80                          |                                                  |                                  |
| 80 – 90                          |                                                  |                                  |
| 90 – 100                         |                                                  |                                  |
| >100                             |                                                  |                                  |

|                                       | 27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):                                                                                                                                                        |                                                                                                          |  |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 28. Describe the collect              | ction material disposal system:                                                                                                                                                                                                                                                                          |                                                                                                          |  |  |  |  |  |  |
| 29. Have you included                 | Other Collectores Control Device                                                                                                                                                                                                                                                                         | e in the Emissions Points Data Summary Sheet?                                                            |  |  |  |  |  |  |
| Please propose r<br>proposed operatir | 30. Proposed Monitoring, Recordkeeping, Reporting, and Testing<br>Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the<br>proposed operating parameters. Please propose testing in order to demonstrate compliance with the<br>proposed emissions limits. |                                                                                                          |  |  |  |  |  |  |
| MONITORING:                           |                                                                                                                                                                                                                                                                                                          | RECORDKEEPING:                                                                                           |  |  |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                          |  |  |  |  |  |  |
| REPORTING:                            |                                                                                                                                                                                                                                                                                                          | TESTING:                                                                                                 |  |  |  |  |  |  |
| MONITORING:                           |                                                                                                                                                                                                                                                                                                          | ocess parameters and ranges that are proposed to be strate compliance with the operation of this process |  |  |  |  |  |  |
| RECORDKEEPING:<br>REPORTING:          | Please describe the proposed re-                                                                                                                                                                                                                                                                         | cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air      |  |  |  |  |  |  |
| TESTING:                              | pollution control device.  Please describe any proposed pollution control device.                                                                                                                                                                                                                        | emissions testing for this process equipment on air                                                      |  |  |  |  |  |  |
| 31. Manufacturer's Gu                 | aranteed Control Efficiency for eac                                                                                                                                                                                                                                                                      | h air pollutant.                                                                                         |  |  |  |  |  |  |
| NOx (≥97%) and C                      | CO (≥87%)                                                                                                                                                                                                                                                                                                |                                                                                                          |  |  |  |  |  |  |
| 32. Manufacturer's Gu                 | aranteed Control Efficiency for eac                                                                                                                                                                                                                                                                      | h air pollutant.                                                                                         |  |  |  |  |  |  |
| 33. Describe all operat               | ting ranges and maintenance proce                                                                                                                                                                                                                                                                        | edures required by Manufacturer to maintain warranty.                                                    |  |  |  |  |  |  |



#### **MIRATECH Emissions Control Equipment Specification Summary**

Proposal Number: JC-13-2686 Rev(2)

Engine Data

Number of Engines:

Application: Gas Compression
Engine Manufacturer: Caterpillar
Model Number: G 3306 TA HCR

Power Output: 203 bhp

Lubrication Oil: 0.6 wt% sulfated ash or less

Type of Fuel:

Exhaust Flow Rate:

Exhaust Temperature:

Natural Gas

970 acfm (cfm)

1,064°F

System Details

Housing Model Number: VXC-1610-05-HSG Element Model Number: VX-RE-10XC

Number of Catalyst Layers: 1
Number of Spare Catalyst Layers: 1

System Pressure Loss: 4.0 inches of WC (Fresh)
Sound Attenuation: 28-32 dBA insertion loss

Exhaust Temperature Limits: 750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number: VXC-1610-05-XC1
Material: Carbon Steel
Approximate Diameter: 16 inches

Inlet Pipe Size & Connection: 5 inch FF Flange, 150# ANSI standard bolt pattern
Outlet Pipe Size & Connection: 5 inch FF Flange, 150# ANSI standard bolt pattern

Overall Length: 65 inches
Weight Without Catalyst: 191 lbs
Weight Including Catalyst: 205 lbs

Instrumentation Ports: 1 inlet/1 outlet (1/2" NPT)

#### Emission Requirements

|               |                |               | Warranted         |                   |
|---------------|----------------|---------------|-------------------|-------------------|
|               | Engine Outputs |               | Converter Outputs | Requested         |
| Exhaust Gases | (g/ bhp-hr)    | Reduction (%) | (g/ bhp-hr)       | Emissions Targets |
| NOx           | 15.26          | 97%           | 0.50              | 0.50 g/bhp-hr     |
| CO            | 15.26          | 87%           | 2.00              | 2.00 g/bhp-hr     |
| NMNEHC        | 0.12           | 0%            | 0.70              | 0.70 g/bhp-hr     |
| Oxygen        | 0.5%           |               |                   |                   |

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

MIRATECH Catalyzer (TM) 1/10/2014

## Attachment M Air Pollution Control Device Sheet

(FLARE SYSTEM)

 $\begin{tabular}{ll} \begin{tabular}{ll} Control Device ID No. (must match Emission Units Table): $COMB-1$ \\ \hline & Equipment Information \\ \end{tabular}$ 

| 1.  | Manufacturer: Frederick Logan Company, Inc.  Model No. na                                                                           | 2. Method:                                                                                                  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3.  | Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state                            | I em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency. |  |  |  |  |  |  |  |
| 4.  | Method of system used:  Steam-assisted Air-assisted                                                                                 | ☐ Pressure-assisted ☐ Non-assisted                                                                          |  |  |  |  |  |  |  |
| 5.  | Maximum capacity of flare:                                                                                                          | 6. Dimensions of stack:                                                                                     |  |  |  |  |  |  |  |
| ٥.  | scf/min                                                                                                                             | Diameter 3.0 ft.                                                                                            |  |  |  |  |  |  |  |
|     |                                                                                                                                     |                                                                                                             |  |  |  |  |  |  |  |
| 7.  | Estimated combustion efficiency: (Waste gas destruction efficiency)  Estimated: 99 %  Minimum guaranteed: 99 %                      | Height 20.0 ft.  8. Fuel used in burners:  ☐ Natural Gas ☐ Fuel Oil, Number ☐ Other, Specify:               |  |  |  |  |  |  |  |
| 9.  | Number of burners:                                                                                                                  | 11. Describe method of controlling flame:                                                                   |  |  |  |  |  |  |  |
|     | Rating: BTU/hr                                                                                                                      |                                                                                                             |  |  |  |  |  |  |  |
| 10. | Will preheat be used? ☐ Yes ☐ No                                                                                                    |                                                                                                             |  |  |  |  |  |  |  |
| 12. | Flare height: ft                                                                                                                    | 14. Natural gas flow rate to flare pilot flame per pilot light: scf/min                                     |  |  |  |  |  |  |  |
| 13. | Flare tip inside diameter: ft                                                                                                       | 500 scf/hr                                                                                                  |  |  |  |  |  |  |  |
| 15. | Number of pilot lights:                                                                                                             | 16. Will automatic re-ignition be used?                                                                     |  |  |  |  |  |  |  |
|     | Total BTU/hr                                                                                                                        | ☐ Yes ☐ No                                                                                                  |  |  |  |  |  |  |  |
| 17. | If automatic re-ignition will be used, describe the met                                                                             | hod:                                                                                                        |  |  |  |  |  |  |  |
| 18. | Is pilot flame equipped with a monitor?                                                                                             | □ No                                                                                                        |  |  |  |  |  |  |  |
|     | 8. Is pilot flame equipped with a monitor?  If yes, what type?  Ultra Violet  Camera with monitoring control room  Other, Describe: |                                                                                                             |  |  |  |  |  |  |  |
| 19. | Hours of unit operation per year: 8,760                                                                                             |                                                                                                             |  |  |  |  |  |  |  |

#### Steam Injection

| 20. Will steam injection be used? Yes No 21. Steam pressure Minimum Expected:  22. Total Steam flow rate: LB/hr 23. Temperature: °F  24. Velocity ft/sec 25. Number of jet streams  26. Diameter of steam jets: in 27. Design basis for steam injected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22. Total Steam flow rate:  24. Velocity  25. Number of jet streams  26. Diameter of steam jets:  27. Design basis for steam injected:  28. How will steam flow be controlled if steam injection is used?  Characteristics of the Waste Gas Stream to be Burned  29. Name  Quantity  Grains of H <sub>2</sub> S/100 ft <sup>3</sup> Waste Gas + Pilot Gas  Reg.  30. Estimate total combustible to flare:  (Maximum mass flow rate of waste gas)  108.5  scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26. Diameter of steam jets:  in 27. Design basis for steam injected: LB steam/LB hydrocarbon  28. How will steam flow be controlled if steam injection is used?  Characteristics of the Waste Gas Stream to be Burned  29. Name Quantity Grains of H <sub>2</sub> S/100 ft <sup>3</sup> (LB/hr, ft <sup>3</sup> /hr, etc) Source of Material Waste Gas + Pilot Gas neg. 5,626 scfh Dehydrators  30. Estimate total combustible to flare: //Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.: LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28. How will steam flow be controlled if steam injection is used?  Characteristics of the Waste Gas Stream to be Burned  29. Name Quantity Grains of H <sub>2</sub> S/100 ft <sup>3</sup> (LB/hr, ft <sup>3</sup> /hr, etc) Source of Material  Waste Gas + Pilot Gas neg. 5,626 scfh Dehydrators  30. Estimate total combustible to flare: LB/hr or ACF/hr  //Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29. Name Quantity Grains of H <sub>2</sub> S/100 ft <sup>3</sup> (LB/hr, ft <sup>3</sup> /hr, etc) Source of Material  Waste Gas + Pilot Gas neg. 5,626 scfh Dehydrators  30. Estimate total combustible to flare: LB/hr or ACF/hr  (Maximum mass flow rate of waste gas) 108 5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Characteristics of the Waste Gas Stream to be Burned  29. Name Quantity Grains of H <sub>2</sub> S/100 ft <sup>3</sup> (LB/hr, ft <sup>3</sup> /hr, etc) Source of Material  Waste Gas + Pilot Gas neg. 5,626 scfh Dehydrators  30. Estimate total combustible to flare: LB/hr or ACF/hr  (Maximum mass flow rate of waste gas) 108 5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Part of the second seco |
| Waste Gas + Pilot Gas neg. 5,626 scfh Dehydrators  30. Estimate total combustible to flare:  (Maximum mass flow rate of waste gas) 108 5  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30. Estimate total combustible to flare:  (Maximum mass flow rate of waste gas) 108 5  Scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Maximum mass flow rate of waste gas) 108.5 scfm  31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:  LB/hr or ACF/hr  32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32. Give composition of carrier gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33. Temperature of emission stream: 34. Identify and describe all auxiliary fuels to be burned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 °F  Heating value of emission stream:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Heating value of emission stream:  2,200 BTU/ft <sup>3</sup> BTU/sef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mean molecular weight of emission stream:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IVIVV = 47.0 ID/ID-MOIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35. Temperature of flare gas: °F 36. Flare gas flow rate: scf/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37. Flare gas heat content: 901 BTU/ft <sup>3</sup> 38. Flare gas exit velocity: scf/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39. Maximum rate during emergency for one major piece of equipment or process unit: scf/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>40. Maximum rate during emergency for one major piece of equipment or process unit:</li> <li>BTU/min</li> <li>41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| reheating, gas humidification):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42. Describe the collection material disposal system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43. Have you included <i>Flare Control Device</i> in the Emissions Points Data Summary Sheet? yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| proposed operating parameters proposed emissions limits.          | cordkeeping, and re                         | reporting in order to demonstrate compliance with the e testing in order to demonstrate compliance with the |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| MONITORING:                                                       | C 1 4 G                                     | RECORDKEEPING:                                                                                              |  |  |  |  |  |  |
| Continuously monitor presence of                                  | a pilot flame.                              | Keep records of time periods when pilot flame is                                                            |  |  |  |  |  |  |
|                                                                   |                                             | absent and waste gases are sent to the flare.                                                               |  |  |  |  |  |  |
| REPORTING:                                                        |                                             | TESTING:                                                                                                    |  |  |  |  |  |  |
| Not applicable                                                    |                                             | Not applicable                                                                                              |  |  |  |  |  |  |
| monitored in                                                      |                                             | ocess parameters and ranges that are proposed to be strate compliance with the operation of this process    |  |  |  |  |  |  |
| RECORDKEEPING: Please desc                                        | ribe the proposed rec<br>cribe any proposed | cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air         |  |  |  |  |  |  |
| TESTING: Please desc<br>pollution con                             | cribe any proposed<br>ntrol device.         | emissions testing for this process equipment on air                                                         |  |  |  |  |  |  |
| 45. Manufacturer's Guaranteed Capt                                |                                             |                                                                                                             |  |  |  |  |  |  |
| 46. Manufacturer's Guaranteed Cont 99% destruction efficiency for | r VOC and HAPs                              |                                                                                                             |  |  |  |  |  |  |
| 47. Describe all operating ranges and                             | d maintenance proce                         | edures required by Manufacturer to maintain warranty.                                                       |  |  |  |  |  |  |

#### ATTACHMENT N

#### **Supporting Emissions Calculations**

"30. Provide all **Supporting Emissions Calculations** as Attachment N."

#### Emission Summary Spreadsheets

- Controlled Emissions Criteria Pollutants
- Controlled Emissions Hazardous Air Pollutants (HAP)
- Greenhouse Gas Emissions
- PRE-Controlled Emissions Criteria Pollutants
- PRE-Controlled Emissions Hazardous Air Pollutants (HAP)

#### Unit-Specific Emission Spreadsheets

- Compressor Engine 01 and 02 1,380 bhp CAT G3516B (4SLB)
- o Compressor Engine 03 203 bhp CAT G3306B (4SRB)
- Rod Packing/Crankcase Leaks (RPC)
- Startup, Shutdown and Maintenance (and Blowdown) (SSM)
- o Reboilers 01 and 02 1.66 MMBtu/hr
- o Dehydrators 01 and 02 (Still Vents and Flash Tanks) 60 MMscfd
- Dehydrators 01 and 02 (Summary) 60 MMscfd
- Thermal Oxidizer 01 6.4 MMBtu/hr
- Heater Treater 01 1.55 MMBtu/hr
- o Condensate Stabilizer Heater 01 2.55 MMBtu/hr
- Station Recycle Line Heater 01 1.66 MMBtu/hr
- Condensate Stabilizer Heater 02 9.70 MMBtu/hr
- Produced Water Storage Tanks 48 bbl and 210 bbl Capacity
- o Produced Water Truck Load-Out 01
- Condensate Truck Load-Out 02
- Piping and Equipment Fugitives Gas & Light Oil (Condensate)
- AP-42 and GHG Emission Factors

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### **Controlled Emissions - Criteria Pollutants**

| Unit ID | Point                   | Control  | Decemention                       | Design Conseity     | NOx              |                  | СО                      |                  | VOC               |                  | SOx               |                  | PM10/2.5         |                  |
|---------|-------------------------|----------|-----------------------------------|---------------------|------------------|------------------|-------------------------|------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|
| Unit ID | ID                      | ID       | Description                       | Design Capacity     | lb/hr            | tpy              | lb/hr                   | tpy              | lb/hr             | tpy              | lb/hr             | tpy              | lb/hr            | tpy              |
| CE-01   | 1E                      | 01-OxCat | Caterpillar G3516B Engine         | 1,380 bhp           | 1.52             | 6.66             | 0.50                    | 2.20             | 0.56              | 2.47             | 0.01              | 0.03             | 0.11             | 0.50             |
| CE-02   | 2E                      | 02-OxCat | Caterpillar G3516B Engine         | 1,380 bhp           | 1.52             | 6.66             | 0.50                    | 2.20             | 0.56              | 2.47             | 0.01              | 0.03             | 0.11             | 0.50             |
| CE-03   | 3E                      | 01-NSCR  | Caterpillar G3306B TA Engine      | 203 bhp             | 0.20             | 0.90             | 0.89                    | 3.89             | 0.20              | 0.86             | 1.1E-03           | 4.8E-03          | 0.04             | 0.16             |
| RBV-1   | 4E                      | na       | Dehydrator Reboiler 01            | 1.66 MMBtu/hr       | 0.16             | 0.71             | 0.14                    | 0.60             | 0.01              | 0.04             | 9.8E-04           | 4.3E-03          | 0.01             | 0.05             |
| RSV-1   | 5E                      | 01-COMB  | Dehydrator Still Vent 01          | 60 MMscfd           |                  |                  |                         |                  | 0.68              | 2.97             |                   |                  |                  |                  |
| K3V-1   | 6E                      | 01-COMB  | Dehydrator Flash Tank 01          | 00 IVIIVISCIU       |                  |                  |                         |                  | 0.43              | 1.88             |                   |                  |                  |                  |
| RBV-2   | 7E                      | na       | Dehydrator Reboiler 02            | 1.66 MMBtu/hr       | 0.16             | 0.71             | 0.14                    | 0.60             | 0.01              | 0.04             | 9.8E-04           | 4.3E-03          | 0.01             | 0.05             |
| RSV-2   | 8E                      | 01-COMB  | Dehydrator Still Vent 02          | 60 MMscfd           |                  |                  |                         |                  | 0.68              | 2.97             |                   |                  |                  |                  |
| K3V-2   | 9E                      | 01-COMB  | Dehydrator Flash Tank 02          | 60 IVIIVISCIU       |                  |                  |                         |                  | 0.43              | 1.88             |                   |                  |                  |                  |
| COMB-1  | 10E                     | na       | Thermal Oxidizer 01               | 6.41 MMBtu/hr       | 0.44             | 1.91             | 1.99                    | 8.71             | See RSV           | '-1 and -2       | 3.8E-03           | 0.02             | 0.05             | 0.21             |
| HTR-01  | 11E                     | na       | Heater Treater 01                 | 1.55 MMBtu/hr       | 0.15             | 0.67             | 0.13                    | 0.56             | 0.01              | 0.04             | 9.1E-04           | 4.0E-03          | 0.01             | 0.05             |
| HTR-02  | 12E                     | na       | Condensate Stabilizer Heater 01   | 2.55 MMBtu/hr       | 0.25             | 1.10             | 0.21                    | 0.92             | 0.01              | 0.06             | 1.5E-03           | 0.01             | 0.02             | 0.08             |
| T01     | 13E                     | na       | Produced Water Tank 01            | 48 bbl              |                  |                  |                         |                  | 0.03              | 0.14             |                   |                  |                  |                  |
| TLO-1   | 14E                     | na       | Truck Load-Out 01 - Prod. Water   | 10,400 gal/yr       |                  |                  |                         |                  |                   | 0.45             |                   |                  |                  |                  |
| TLO-2   | 15E                     | na       | Truck Load-Out 02 - Stab. Cond.   | 250,000 gal/yr      |                  |                  |                         |                  |                   | 2.47             |                   |                  |                  |                  |
| SSM***  | 16E                     | na       | Start/Stop/Maintenance (Blowdown) | 3,363 bhp           |                  |                  |                         |                  |                   | 42.84            |                   |                  |                  |                  |
| RPC**   | 18E                     | na       | Rod Packing/Crankcase Leaks       | 5 Recips            |                  |                  |                         |                  | 6.32              | 27.66            |                   |                  |                  |                  |
| HTR-03  | 19E                     | na       | Station Recycle Line Heater 01    | 1.66 MMBtu/hr       | 0.16             | 0.71             | 0.14                    | 0.60             | 0.01              | 0.04             | 9.8E-04           | 4.3E-03          | 0.01             | 0.05             |
| HTR-04  | 20E                     | na       | Condensate Stabilizer Heater 02   | 9.7 MMBtu/hr        | 0.95             | 4.17             | 0.80                    | 3.50             | 0.05              | 0.24             | 0.01              | 0.02             | 0.07             | 0.32             |
| T02     | 21E                     | na       | Produced Water Tank 02            | 210 bbl             |                  |                  |                         |                  | 0.14              | 0.62             |                   |                  |                  |                  |
|         | TOTAL POINT SOURCE PTE: |          | 5.53                              | 24.20               | 5.43             | 23.78            | 10.13                   | 90.14            | 0.03              | 0.13             | 0.45              | 1.98             |                  |                  |
|         |                         |          | WV-DEI                            | P Permit Threshold: | 6 lb/hr <u>A</u> | <b>ND</b> 10 tpy | 6 lb/hr <u><b>A</b></u> | <b>ND</b> 10 tpy | 6 lb/hr <u>A/</u> | <u>VD</u> 10 tpy | 6 lb/hr <u>A/</u> | <b>ND</b> 10 tpy | 6 lb/hr <u>A</u> | <u>ID</u> 10 tpy |
|         |                         |          | Title <sup>v</sup>                | V Permit Threshold: |                  | 100              |                         | 100              |                   | 100              |                   | 100              |                  | 100              |
|         |                         |          |                                   |                     |                  |                  |                         |                  |                   |                  |                   |                  |                  |                  |
| FUG-G   | 17E                     | na       | Process Piping Fugitives - Gas    | 1,953 fittings      |                  |                  |                         |                  | 2.40              | 10.52            |                   |                  |                  |                  |
| FIIC I  | '/L                     | IIa      | Process Dining Engitives Liquid   | 2 400 6441000       |                  |                  |                         |                  | C 74              | 20.44            |                   |                  |                  |                  |

| FUG-G                      | 17E | na  | Process Piping Fugitives - Gas    | 1,953 fittings | <br>     | -     | <br>2.40 | 10.52 | <br> | <br> |
|----------------------------|-----|-----|-----------------------------------|----------------|----------|-------|----------|-------|------|------|
| FUG-L                      | 176 | IIa | Process Piping Fugitives - Liquid | 2,468 fittings | <br>     |       | <br>6.71 | 29.41 | <br> | <br> |
| TOTAL FUGITIVE SOURCE PTE: |     |     | <br>                              |                | <br>9.12 | 39.93 | <br>     | <br>  |      |      |
|                            |     |     |                                   |                |          |       |          |       |      |      |

Grey/Bold cells indicate
New or Modified Sources

TOTAL PTE:

5.53 24.20 5.43 23.78 19.25 130.06 0.03 0.13 0.45 1.98

- 1 Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM) and Truck Load-Out (TLO-1 and -2) emission generating activities are infrequent.
- 2 VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).
- 3 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 4 Fugitive criteria pollutant emissions are not considered in major source determinations (45CSR30 Section 2.26.b.)

<sup>\*\*</sup> RPC was previously designated FUG2. Includes Compressor Rod Packing Leaks and Engine Crankcase Leaks.

<sup>\*\*\*</sup> SSM emissions are vented thru a "Dispersion Stack". Including Blowdown, Purge Gas and Condensate Filter Change-Out Emissions.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### **Controlled Emissions - Hazardous Air Pollutants (HAP)**

| Unit ID  | Point | Benz    | zene      | Ethylbo | enzene     | нсно    | (HAP)   | n-He    | xane       | Meth    | anol | Tolu    | iene       | 2,2,4   | -TMP      | Xyle    | enes       | Othe    | r HAP   | Total   | I HAP   |
|----------|-------|---------|-----------|---------|------------|---------|---------|---------|------------|---------|------|---------|------------|---------|-----------|---------|------------|---------|---------|---------|---------|
| Ollit ID | ID    | lb/hr   | tpy       | lb/hr   | tpy        | lb/hr   | tpy     | lb/hr   | tpy        | lb/hr   | tpy  | lb/hr   | tpy        | lb/hr   | tpy       | lb/hr   | tpy        | lb/hr   | tpy     | lb/hr   | tpy     |
| CE-01    | 1E    | 4.6E-04 | 2.0E-03   | 4.2E-05 | 1.8E-04    | 0.27    | 1.17    | 1.2E-03 | 0.01       | 2.6E-03 | 0.01 | 4.3E-04 | 1.9E-03    | 2.6E-04 | 1.2E-03   | 1.9E-04 | 8.5E-04    | 0.02    | 0.07    | 0.29    | 1.26    |
| CE-02    | 2E    | 4.6E-04 | 2.0E-03   | 4.2E-05 | 1.8E-04    | 0.27    | 1.17    | 1.2E-03 | 0.01       | 2.6E-03 | 0.01 | 4.3E-04 | 1.9E-03    | 2.6E-04 | 1.2E-03   | 1.9E-04 | 8.5E-04    | 0.02    | 0.07    | 0.29    | 1.26    |
| CE-03    | 3E    | 2.9E-03 | 1.3E-02   | 4.6E-05 | 2.0E-04    | 0.09    | 0.39    |         |            | 5.7E-03 | 0.02 | 1.0E-03 | 4.5E-03    |         |           | 3.6E-04 | 1.6E-03    | 0.01    | 0.05    | 0.11    | 0.49    |
| RBV-1    | 4E    | 3.4E-06 | 1.5E-05   |         |            | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01       |         |      | 5.5E-06 | 2.4E-05    |         |           |         |            | 3.1E-06 | 1.4E-05 | 3.1E-03 | 0.01    |
| RSV-1    | 5E    | 0.02    | 0.08      | 2.0E-02 | 8.8E-02    |         |         | 0.01    | 0.06       |         |      | 0.09    | 0.39       | 0.01    | 0.04      | 0.19    | 0.82       |         |         | 0.34    | 1.48    |
| KSV-1    | 6E    | 5.6E-04 | 2.5E-03   | 2.4E-04 | 1.0E-03    |         |         | 0.01    | 0.04       |         |      | 1.7E-03 | 0.01       | 0.01    | 0.03      | 1.6E-03 | 0.01       |         |         | 0.02    | 0.09    |
| RBV-2    | 7E    | 3.4E-06 | 1.5E-05   |         |            | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01       |         |      | 5.5E-06 | 2.4E-05    |         |           |         |            | 0.00    | 0.00    | 3.1E-03 | 0.01    |
| RSV-2    | 8E    | 0.02    | 0.08      | 0.02    | 0.09       |         |         | 0.01    | 0.06       |         |      | 0.09    | 0.39       | 0.01    | 0.04      | 0.19    | 0.82       |         |         | 0.34    | 1.48    |
| K3V-2    | 9E    | 5.6E-04 | 2.5E-03   | 2.4E-04 | 1.0E-03    |         |         | 0.01    | 0.04       |         |      | 1.7E-03 | 0.01       | 0.01    | 0.03      | 1.6E-03 | 0.01       |         |         | 0.02    | 0.09    |
| COMB-1   | 10E   | See RSV | -1 and -2 | See RSV | '-1 and -2 | 4.7E-04 | 2.1E-03 | See RSV | '-1 and -2 |         |      | See RSV | '-1 and -2 | See RSV | -1 and -2 | See RSV | /-1 and -2 | 1.2E-05 | 5.2E-05 | 4.8E-04 | 2.1E-03 |
| HTR-01   | 11E   | 3.2E-06 | 1.4E-05   |         |            | 1.1E-04 | 5.0E-04 | 2.7E-03 | 0.01       |         |      | 5.2E-06 | 2.3E-05    |         |           |         |            | 2.9E-06 | 1.3E-05 | 2.9E-03 | 0.01    |
| HTR-02   | 12E   | 5.3E-06 | 2.3E-05   |         |            | 1.9E-04 | 8.2E-04 | 4.5E-03 | 0.02       |         |      | 8.5E-06 | 3.7E-05    |         |           |         |            | 4.7E-06 | 2.1E-05 | 4.7E-03 | 0.02    |
| T01      | 13E   | 1.6E-03 | 0.01      | 1.6E-03 | 0.01       |         |         | 1.6E-03 | 0.01       |         |      | 1.6E-03 | 0.01       | 1.6E-03 | 0.01      | 1.6E-03 | 0.01       |         |         | 0.01    | 0.04    |
| TLO-1    | 14E   |         | 2.2E-02   |         | 2.2E-02    |         |         |         | 2.2E-02    |         |      |         | 2.2E-02    |         | 2.2E-02   |         | 2.2E-02    |         |         |         | 0.13    |
| TLO-2    | 15E   |         | 0.03      |         | 0.03       |         |         |         | 0.03       |         |      |         | 0.03       |         | 0.03      |         | 0.03       |         |         |         | 0.21    |
| SSM***   | 16E   |         | 0.02      |         | 0.02       |         |         |         | 1.10       |         |      |         | 0.09       |         | 0.54      |         | 0.13       |         |         |         | 1.89    |
| FUG-G    | 17E   | 0.01    | 0.06      | 0.01    | 0.06       |         |         | 0.01    | 0.06       |         |      | 0.01    | 0.06       | 0.01    | 0.06      | 0.01    | 0.06       |         |         | 0.08    | 0.36    |
| FUG-L    | 1,,_  | 0.10    | 0.42      | 0.10    | 0.42       | -       |         | 0.10    | 0.42       |         |      | 0.10    | 0.42       | 0.10    | 0.42      | 0.10    | 0.42       |         |         | 0.57    | 2.50    |
| RPC**    | 18E   | 0.04    | 0.16      | 0.04    | 0.16       | 0.02    | 0.09    | 0.04    | 0.16       |         |      | 0.04    | 0.16       | 0.04    | 0.16      | 0.04    | 0.16       |         |         | 0.24    | 1.05    |
| HTR-03   | 19E   | 3.4E-06 | 1.5E-05   |         |            | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01       |         |      | 5.5E-06 | 2.4E-05    |         |           |         |            | 3.1E-06 | 1.4E-05 | 3.1E-03 | 0.01    |
| HTR-04   | 20E   | 2.0E-05 | 8.7E-05   |         |            | 7.1E-04 | 3.1E-03 | 0.02    | 0.07       |         |      | 3.2E-05 | 1.4E-04    |         |           | -       |            | 1.8E-05 | 7.9E-05 | 0.02    | 80.0    |
| T02      | 21E   | 7.0E-03 | 0.03      | 7.0E-03 | 0.03       |         |         | 7.0E-03 | 0.03       |         |      | 7.0E-03 | 0.03       | 7.0E-03 | 0.03      | 7.0E-03 | 0.03       |         |         | 0.04    | 0.18    |

TOTAL PTE: WV-DEP: Title V:

| E: | 0.20             | 0.94              | 0.20             | 0.93            | 0.64             | 2.82             | 0.24             | 2.19            | 0.01             | 0.05            | 0.34             | 1.62            | 0.19             | 1.42            | 0.53             | 2.52            | 0.04             | 0.19            | 2.38             | 12.68           |
|----|------------------|-------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|
| P: | 2 lb/hr <u>C</u> | <u>OR</u> 0.5 tpy | 2 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 2 lb/hr <u>O</u> | <u>R</u> 0.5 tpy | 2 lb/hr <u>(</u> | <b>DR</b> 5 tpy | 2 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 2 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 3 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 2 lb/hr <u>(</u> | <b>DR</b> 5 tpy | 3 lb/hr <u>C</u> | <b>OR</b> 5 tpy | 2 lb/hr <u>C</u> | <u>DR</u> 5 tpy |
| V: |                  | 10                |                  | 10              |                  | 10               |                  | 10              |                  | 10              |                  | 10              |                  | 10              |                  | 10              |                  | 10              |                  | 25              |

Grey/Bold cells indicate New or Modified Sources

Notes: \*\* RPC was previously designated FUG2. Includes Compressor Rod Packing Leaks and Engine Crankcase Leaks.

- 1 Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM) and Truck Load-Out (TLO-1 and -2) emission generating activities are infrequent.
- 2 HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

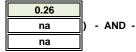
<sup>\*\*\*</sup> SSM emissions are vented thru a "Dispersion Stack". Including Blowdown, Purge Gas and Condensate Filter Change-Out Emissions.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### **Greenhouse Gas (GHG) Emissions**

| Unit<br>ID | Point<br>ID | Control<br>ID | Description                       | Heat Input<br>MMBtu/hr | Hours of<br>Operation | kg/MMBtu:<br>GWP:<br>CO2 | 53.06<br>1<br>CO2e | kg/MMBtu:<br>GWP:<br>CH4 | 1.00E-03<br>25<br>CO2e | kg/MMBtu:<br>GWP:<br>N2O | 1.00E-04<br>298<br>CO2e | TOTAL<br>CO2e |
|------------|-------------|---------------|-----------------------------------|------------------------|-----------------------|--------------------------|--------------------|--------------------------|------------------------|--------------------------|-------------------------|---------------|
|            |             |               |                                   | (HHV)                  | hr/yr                 | tpy                      | tpy                | tpy                      | tpy                    | tpy                      | tpy                     | tpy           |
| CE-01      | 1E          | 01-OxCat      | Caterpillar G3516B Engine         | 11.41                  | 8,760                 | 6,876                    | 6,876              | 26                       | 656                    | 0.01                     | 3                       | 7,536         |
| CE-02      | 2E          | 02-OxCat      | Caterpillar G3516B Engine         | 11.41                  | 8,760                 | 6,876                    | 6,876              | 26                       | 656                    | 0.01                     | 3                       | 7,536         |
| CE-03      | 3E          | 01-NSCR       | Caterpillar G3306B TA Engine      | 1.86                   | 8,760                 | 1,113                    | 1,113              | 1                        | 21                     | 1.8E-03                  | 1                       | 1,135         |
| RBV-1      | 4E          | na            | Dehydrator Reboiler 01            | 1.66                   | 8,760                 | 857                      | 857                | 0.02                     | 0.4                    | 0.02                     | 4.7                     | 862           |
| RSV-1      | 5E          | 01-COMB       | Dehydrator Still Vent 01          |                        | 8,760                 |                          |                    | 0.04                     | 1                      |                          |                         | 1             |
| RSV-1      | 6E          | 01-COMB       | Dehydrator Flash Tank 01          |                        | 8,760                 |                          |                    | 1                        | 24                     |                          |                         | 24            |
| RBV-2      | 7E          | na            | Dehydrator Reboiler 02            | 1.66                   | 8,760                 | 857                      | 857                | 0.02                     | 0.4                    | 0.02                     | 4.7                     | 862           |
| RSV-2      | 8E          | 01-COMB       | Dehydrator Still Vent 02          |                        | 8,760                 |                          |                    | 0.04                     | 1                      |                          |                         | 1             |
| K3V-2      | 9E          | 01-COMB       | Dehydrator Flash Tank 02          |                        | 8,760                 |                          |                    | 1                        | 24                     |                          |                         | 24            |
| COMB-1     | 10E         | na            | Thermal Oxidizer 01               | 6.41                   | 8,760                 | 3,304                    | 3,304              |                          |                        | 0.06                     | 18                      | 3,322         |
| HTR-01     | 11E         | na            | Heater Treater 01                 | 1.55                   | 8,760                 | 800                      | 800                | 0.02                     | 0                      | 0.01                     | 4                       | 805           |
| HTR-02     | 12E         | na            | Condensate Stabilizer Heater 01   | 2.55                   | 8,760                 | 1,314                    | 1,314              | 0.03                     | 1                      | 0.02                     | 7                       | 1,322         |
| T01        | 13E         | na            | Produced Water Tank 01            |                        | 8,760                 |                          |                    |                          |                        |                          |                         |               |
| TLO-1      | 14E         | na            | Truck Load-Out 01 - Prod. Water   |                        | 8,760                 |                          |                    |                          |                        |                          |                         |               |
| TLO-2      | 15E         | na            | Truck Load-Out 02 - Stab. Cond.   |                        | 8,760                 |                          |                    |                          |                        |                          |                         |               |
| SSM***     | 16E         | na            | Start/Stop/Maintenance (Blowdown) |                        | 8,760                 |                          |                    | 75                       | 1,886                  |                          |                         | 1,886         |
| FUG-G      | 17E         | na            | Process Piping Fugitives - Gas    |                        | 8,760                 | 0.15                     | 0.15               | 35                       | 863                    |                          |                         | 863           |
| FUG-L      | 1/2         | IIa           | Process Piping Fugitives - Liquid |                        | 8,760                 | 0.00                     | 0.00               | 0.12                     | 2.97                   |                          |                         | 3             |
| RPC**      | 18E         | na            | Rod Packing/Crankcase Leaks       |                        | 8,760                 | 128                      | 128                | 64                       | 1,609                  |                          |                         | 1,738         |
| HTR-03     | 19E         | na            | Station Recycle Line Heater 01    | 1.66                   | 8,760                 | 857                      | 857                | 0.02                     | 0                      | 0.02                     | 5                       | 862           |
| HTR-04     | 20E         | na            | Condensate Stabilizer Heater 02   | 9.70                   | 8,760                 | 4,999                    | 4,999              | 0.10                     | 2                      | 0.09                     | 27                      | 5,029         |
| T02        | 21E         | na            | Produced Water Tank 02            |                        | 8,760                 |                          |                    |                          |                        |                          |                         |               |


TOTAL FACILITY-WIDE PTE: WV-DEP Threshold: ( Title V Permit Threshold:

27,982 ( na na

- OR -

| 230 |
|-----|
| na  |
| na  |

- OR -



33,808 na na

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except TLO and SSM emissions are intermittent (and infrequent).

- 2 Engine CO2 and CH4 emissions are based on vendor specifications.
- 3 Dehydrator CH4 emissions are based on "Worst Case" GRI-GLYCalc Model Output.
- 4 SSM CH4 emissions are based on vendor specifications and operational experience.
- 5 Fugitive CH4 emissions are based on EPA Fugitive Emission Factors for Oil and Gas Production Operations.
- 6 All other GHG emissions are based on default values in 40CFR98, Subpart C, Table C-1.
- 7 CO2e is aggregated Greenhouse Gas (GHG), comprised of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as adjusted for Global Warming Potential (GWP).
- 8 WV-DEP and Title V Permit Major Source Thresholds are applicable only if other regulated air pollutants exceed the corresponding Thresholds.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### **PRE-Controlled Emissions - Criteria Pollutants**

| Unit ID  | Point | Control  | Description                       | Design Capacity | NO                | Эx               | C                | 0                | V                | oc        | SC                | Ox               | PM1               | 0/2.5            |
|----------|-------|----------|-----------------------------------|-----------------|-------------------|------------------|------------------|------------------|------------------|-----------|-------------------|------------------|-------------------|------------------|
| Ollit ID | ID    | ID       | Description                       | Design Capacity | lb/hr             | tpy              | lb/hr            | tpy              | lb/hr            | tpy       | lb/hr             | tpy              | lb/hr             | tpy              |
| CE-01    | 1E    | 01-OxCat | Caterpillar G3516B Engine         | 1,380 bhp       | 1.52              | 6.66             | 9.37             | 41.04            | 4.32             | 18.92     | 0.01              | 0.03             | 0.11              | 0.50             |
| CE-02    | 2E    | 02-OxCat | Caterpillar G3516B Engine         | 1,380 bhp       | 1.52              | 6.66             | 9.37             | 41.04            | 4.32             | 18.92     | 0.01              | 0.03             | 0.11              | 0.50             |
| CE-03    | 3E    | 01-NSCR  | Caterpillar G3306B TA Engine      | 203 bhp         | 6.83              | 29.91            | 6.83             | 29.91            | 0.20             | 0.86      | 1.1E-03           | 4.8E-03          | 0.04              | 0.16             |
| RBV-1    | 4E    | na       | Dehydrator Reboiler 01            | 1.7 MMBtu/hr    | 0.16              | 0.71             | 0.14             | 0.60             | 0.01             | 0.04      | 9.8E-04           | 4.3E-03          | 0.01              | 0.05             |
| RSV-1    | 5E    | 01-COMB  | Dehydrator Still Vent 01          | 60 MMscfd       |                   |                  |                  |                  | 67.77            | 296.83    |                   |                  |                   |                  |
| K3V-1    | 6E    | 01-COMB  | Dehydrator Flash Tank 01          | 00 Miniscia     |                   |                  |                  |                  | 43.01            | 188.38    |                   |                  |                   |                  |
| RBV-2    | 7E    | na       | Dehydrator Reboiler 02            | 1.7 MMBtu/hr    | 0.16              | 0.71             | 0.14             | 0.60             | 0.01             | 0.04      | 9.8E-04           | 4.3E-03          | 0.01              | 0.05             |
| RSV-2    | 8E    | 01-COMB  | Dehydrator Still Vent 02          | 60 MMscfd       |                   |                  |                  |                  | 67.77            | 296.83    |                   |                  |                   |                  |
| K3V-2    | 9E    | 01-COMB  | Dehydrator Flash Tank 02          | 60 Ministra     |                   |                  |                  |                  | 43.01            | 188.38    |                   |                  |                   |                  |
| COMB-1   | 10E   | na       | Thermal Oxidizer 01               | 6.4 MMBtu/hr    |                   |                  |                  |                  | r                | na        |                   |                  |                   |                  |
| HTR-01   | 11E   | na       | Heater Treater 01                 | 1.55 MMBtu/hr   | 0.15              | 0.67             | 0.13             | 0.56             | 0.01             | 0.04      | 9.1E-04           | 4.0E-03          | 0.01              | 0.05             |
| HTR-02   | 12E   | na       | Condensate Stabilizer Heater 01   | 2.55 MMBtu/hr   | 0.25              | 1.10             | 0.21             | 0.92             | 0.01             | 0.06      | 0.02              | 0.08             | 0.02              | 0.08             |
| T01      | 13E   | na       | Produced Water Tank 01            | 48 bbl          |                   |                  |                  |                  | 0.03             | 0.14      |                   |                  |                   |                  |
| TLO-1    | 14E   | na       | Truck Load-Out 01 - Prod. Water   | 10,400 gal/yr   |                   |                  |                  |                  |                  | 0.45      |                   |                  |                   |                  |
| TLO-2    | 15E   | na       | Truck Load-Out 02 - Stab. Cond.   | 250,000 gal/yr  |                   |                  |                  |                  |                  | 2.47      |                   |                  |                   |                  |
| SSM***   | 16E   | na       | Start/Stop/Maintenance (Blowdown) | 3,363 bhp       |                   |                  |                  |                  |                  | 42.84     |                   |                  |                   |                  |
| RPC**    | 18E   | na       | Rod Packing/Crankcase Leaks       | 5 Recips        |                   |                  |                  |                  | 6.32             | 27.66     |                   |                  |                   |                  |
| HTR-03   | 19E   | na       | Station Recycle Line Heater 01    | 1.66 MMBtu/hr   | 0.16              | 0.71             | 0.14             | 0.60             | 0.01             | 0.04      | 9.8E-04           | 4.3E-03          | 0.01              | 0.05             |
| HTR-04   | 20E   | na       | Condensate Stabilizer Heater 02   | 9.7 MMBtu/hr    | 0.95              | 4.17             | 0.80             | 3.50             | 0.05             | 0.24      | 0.01              | 0.02             | 0.07              | 0.32             |
| T02      | 21E   | na       | Produced Water Tank 02            | 210 bbl         |                   |                  |                  |                  | 0.14             | 0.62      |                   |                  |                   |                  |
|          |       |          | TOTAL POINT SOURCE PTE:           |                 | 11.71             | 51.31            | 27.12            | 118.78           | 236.99           | 1,083.75  | 0.04              | 0.19             | 0.40              | 1.77             |
|          |       |          | WV-DEP Permit Threshold:          |                 | 6 lb/hr <u>A/</u> | <b>VD</b> 10 tpy | 6 lb/hr <u>A</u> | <b>ND</b> 10 tpy | 6 lb/hr <u>A</u> | ND 10 tpy | 6 lb/hr <u>A/</u> | <b>VD</b> 10 tpy | 6 lb/hr <u>A/</u> | <b>VD</b> 10 tpy |
|          |       |          | Title V Permit Threshold:         |                 |                   | 100              |                  | 100              |                  | 100       |                   | 100              |                   | 100              |
|          |       |          |                                   | •               |                   |                  |                  |                  |                  |           |                   |                  |                   |                  |
| FUG-G    | 17E   | na       | Process Piping Fugitives - Gas    |                 |                   |                  |                  |                  | 2.40             | 10.52     |                   |                  |                   |                  |
| FUG-L    | .,_   | i i d    | Process Piping Fugitives - Liquid |                 |                   |                  |                  |                  | 6.71             | 29.41     |                   |                  |                   |                  |
| -        |       | <u> </u> | TOTAL FUGITIVE SOURCE PTE:        |                 |                   |                  |                  |                  | 9.12             | 39.93     |                   |                  |                   |                  |
| _        |       |          |                                   |                 |                   |                  |                  |                  |                  |           |                   |                  |                   |                  |

New or Modified Sources

Grey/Bold cells indicate

**TOTAL PTE:** 

11.71 51.31 27.12 118.78 246.10 1123.68 0.04 0.19 0.40 1.77

s: \*\* RPC was previously designated FUG2. Includes Compressor Rod Packing Leaks and Engine Crankcase Leaks.

- \*\*\* SSM emissions are vented thru a "Dispersion Stack". Including Blowdown, Purge Gas and Condensate Filter Change-Out Emissions.
- 1 VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.
- 4 Fugitive emissions are not considered in major source determinations (45CSR30 Section 2.26.b.)

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### PRE-Controlled Emissions - Hazardous Air Pollutants (HAP)

| Unit ID | Point | Benz    | zene    | Ethylb  | enzene  | НСНО    | (HAP)   | n-He    | xane    | Metha   | anol | Tolu    | iene    | 2,2,4   | -TMP    | Xyle    | nes     | Othe    | HAP     | Total   | HAP    |
|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| Unit ID | ID    | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy  | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy     | lb/hr   | tpy    |
| CE-01   | 1E    | 0.01    | 0.02    | 4.5E-04 | 2.0E-03 | 1.10    | 4.80    | 0.01    | 0.06    | 0.03    | 0.12 | 4.7E-03 | 0.02    | 2.9E-03 | 0.01    | 2.1E-03 | 0.01    | 0.16    | 0.72    | 1.32    | 5.76   |
| CE-02   | 2E    | 0.01    | 0.02    | 4.5E-04 | 2.0E-03 | 1.10    | 4.80    | 0.01    | 0.06    | 0.03    | 0.12 | 4.7E-03 | 0.02    | 2.9E-03 | 0.01    | 2.1E-03 | 0.01    | 0.16    | 0.72    | 1.32    | 5.76   |
| CE-03   | 3E    | 2.9E-03 | 1.3E-02 | 4.6E-05 | 2.0E-04 | 0.09    | 0.39    |         |         | 5.7E-03 | 0.02 | 1.0E-03 | 4.5E-03 |         |         | 3.6E-04 | 1.6E-03 | 0.01    | 0.05    | 0.11    | 0.49   |
| RBV-1   | 4E    | 3.4E-06 | 1.5E-05 |         |         | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01    |         |      | 5.5E-06 | 2.4E-05 |         |         |         |         | 3.1E-06 | 1.4E-05 | 3.1E-03 | 0.01   |
| RSV-1   | 5E    | 1.91    | 8.35    | 2.02    | 8.83    |         |         | 1.34    | 5.85    |         |      | 8.80    | 38.55   | 0.99    | 4.36    | 18.79   | 82.28   |         |         | 33.84   | 148.23 |
| KSV-I   | 6E    | 0.06    | 0.25    | 0.02    | 0.10    |         |         | 0.98    | 4.27    |         |      | 0.17    | 0.76    | 0.71    | 3.13    | 0.16    | 0.70    |         |         | 2.10    | 9.21   |
| RBV-2   | 7E    | 3.4E-06 | 1.5E-05 |         |         | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01    |         |      | 5.5E-06 | 2.4E-05 |         |         |         |         | 0.00    | 0.00    | 3.1E-03 | 0.01   |
| RSV-2   | 8E    | 1.91    | 8.35    | 2.02    | 8.83    |         |         | 1.34    | 5.85    |         |      | 8.80    | 38.55   | 0.99    | 4.36    | 18.79   | 82.28   |         |         | 33.84   | 148.23 |
| KSV-2   | 9E    | 0.06    | 0.25    | 0.02    | 0.10    |         |         | 0.98    | 4.27    |         |      | 0.17    | 0.76    | 0.71    | 3.13    | 0.16    | 0.70    |         |         | 2.10    | 9.21   |
| COMB-1  | 10E   |         |         | •       |         | •       |         |         |         | •       | r    | na      |         |         |         |         |         | •       |         |         |        |
| HTR-01  | 11E   | 3.2E-06 | 1.4E-05 |         |         | 1.1E-04 | 5.0E-04 | 2.7E-03 | 0.01    |         |      | 5.2E-06 | 2.3E-05 |         |         |         |         | 2.9E-06 | 1.3E-05 | 2.9E-03 | 0.01   |
| HTR-02  | 12E   | 5.3E-06 | 2.3E-05 |         |         | 1.9E-04 | 8.2E-04 | 4.5E-03 | 0.02    |         |      | 8.5E-06 | 3.7E-05 |         |         |         |         | 4.7E-06 | 2.1E-05 | 4.7E-03 | 0.02   |
| T01     | 13E   | 1.6E-03 | 0.01    | 1.6E-03 | 0.01    |         |         | 1.6E-03 | 0.01    |         |      | 1.6E-03 | 0.01    | 1.6E-03 | 0.01    | 1.6E-03 | 0.01    |         |         | 0.01    | 0.04   |
| TLO-1   | 14E   |         | 2.2E-02 |         | 2.2E-02 |         |         |         | 2.2E-02 |         |      |         | 2.2E-02 |         | 2.2E-02 |         | 2.2E-02 |         |         |         | 0.13   |
| TLO-2   | 15E   |         | 3.5E-02 |         | 3.5E-02 |         |         |         | 3.5E-02 |         |      |         | 3.5E-02 |         | 3.5E-02 |         | 3.5E-02 |         |         |         | 0.21   |
| SSM***  | 16E   |         | 0.02    |         | 0.02    |         |         |         | 1.10    |         |      |         | 0.09    |         | 0.54    |         | 0.13    |         |         |         | 1.89   |
| FUG-G   | 17E   | 1.4E-02 | 0.06    | 1.4E-02 | 0.06    |         |         | 1.4E-02 | 0.06    |         |      | 1.4E-02 | 0.06    | 1.4E-02 | 0.06    | 1.4E-02 | 0.06    |         |         | 0.08    | 0.36   |
| FUG-L   | 17.   | 0.10    | 0.42    | 0.10    | 0.42    |         |         | 0.10    | 0.42    |         |      | 0.10    | 0.42    | 0.10    | 0.42    | 0.10    | 0.42    |         |         | 0.57    | 2.50   |
| RPC**   | 18E   | 0.04    | 0.16    | 0.04    | 0.16    | 0.02    | 0.09    | 0.04    | 0.16    |         |      | 0.04    | 0.16    | 0.04    | 0.16    | 0.04    | 0.16    |         |         | 0.24    | 1.05   |
| HTR-03  | 19E   | 3.4E-06 | 1.5E-05 |         |         | 1.2E-04 | 5.4E-04 | 2.9E-03 | 0.01    |         |      | 5.5E-06 | 2.4E-05 |         |         |         |         | 3.1E-06 | 1.4E-05 | 3.1E-03 | 0.01   |
| HTR-04  | 20E   | 2.0E-05 | 8.7E-05 |         |         | 7.1E-04 | 3.1E-03 | 0.02    | 0.07    |         |      | 3.2E-05 | 1.4E-04 |         |         |         |         | 1.8E-05 | 7.9E-05 | 0.02    | 0.08   |
| T02     | 21E   | 7.0E-03 | 0.03    | 7.0E-03 | 0.03    |         |         | 7.0E-03 | 0.03    |         |      | 7.0E-03 | 0.03    | 7.0E-03 | 0.03    | 7.0E-03 | 0.03    |         |         | 0.04    | 0.18   |

TOTAL PTE: WV-DEP: Title V:

| <b>:</b> : | 4.09             | 18.00            | 4.24             | 18.63           | 2.30             | 10.08              | 4.84    | 22.34           | 0.06             | 0.27            | 18.12            | 79.50           | 3.58             | 16.26           | 38.05            | 166.84          | 0.34             | 1.49            | 75.61     | 333.42          |
|------------|------------------|------------------|------------------|-----------------|------------------|--------------------|---------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|-----------|-----------------|
| P:         | 2 lb/hr <u>O</u> | <u>R</u> 0.5 tpy | 2 lb/hr <u>(</u> | <u>OR</u> 5 tpy | 2 lb/hr <u>C</u> | <u>0.5</u> 0.5 tpy | 2 lb/hr | <u>OR</u> 5 tpy | 2 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 2 lb/hr <u>C</u> | <u>0R</u> 5 tpy | 2 lb/hr <u>C</u> | <u>OR</u> 5 tpy | 2 lb/hr <u>C</u> | <u>OR</u> 5 tpy | 2 lb/hr <u>C</u> | <b>DR</b> 5 tpy | 2 lb/hr ( | <u>OR</u> 5 tpy |
| <b>/</b> : |                  | 10               |                  | 10              |                  | 10                 |         | 10              |                  | 10              |                  | 10              |                  | 10              |                  | 10              |                  | 10              |           | 25              |

Grey/Bold cells indicate New or Modified Sources

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM) and Truck Load-Out (TLO-1 and -2) emission generating activities are infrequent.

<sup>\*\*</sup> RPC was previously designated FUG2. Includes Compressor Rod Packing Leaks and Engine Crankcase Leaks.

<sup>\*\*\*</sup> SSM emissions are vented thru a "Dispersion Stack". Including Blowdown, Purge Gas and Condensate Filter Change-Out Emissions.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Compressor Engine 01 and 02 – 1,380 bhp CAT G3516B (4SLB)

| Unit ID  | Description             | Reference           | Pollutant    |          | Pre-Cor<br>Emiss |         |         | Control<br>Efficiency |          | Contr<br>Emiss |         |         |
|----------|-------------------------|---------------------|--------------|----------|------------------|---------|---------|-----------------------|----------|----------------|---------|---------|
|          |                         |                     |              | g/bhp-hr | lb/MMBtu         | lb/hr   | tpy     | Lineloney             | g/bhp-hr | lb/MMBtu       | lb/hr   | tpy     |
|          | Engines 01 thru 02      | Vendor Guarantee    | NOx          | 0.50     | 0.13             | 1.52    | 6.66    |                       | 0.50     | 0.13           | 1.52    | 6.66    |
|          | Linginies of till doz   | Vendor Guarantee    | CO           | 3.08     | 0.82             | 9.37    | 41.04   | 94.6%                 | 0.17     | 0.04           | 0.50    | 2.20    |
|          | Caterpillar (CAT)       | Vendor Guarantee    | THC          | 3.97     | 1.06             | 12.08   | 52.90   | 24.2%                 | 3.01     | 0.80           | 9.15    | 40.08   |
|          | G3516B                  | Vendor Guarantee    | NMHC         | 2.00     | 0.53             | 6.08    | 26.65   | 48.1%                 | 1.04     | 0.28           | 3.16    | 13.83   |
|          | 1,380 bhp (Site Rating) | Vendor Guarantee    | NMNEHC       | 1.06     | 0.28             | 3.22    | 14.13   | 90.8%                 | 0.10     | 0.03           | 0.30    | 1.30    |
|          | 1,400 rpm               | NMNEHC+HCHO         | VOC          | 1.42     | 0.38             | 4.32    | 18.92   | 86.9%                 | 0.19     | 0.05           | 0.56    | 2.47    |
|          | 4SLB / AFRC             | AP-42 Table 3.2-2   | SOx          | 2.2E-03  | 5.9E-04          | 0.01    | 0.03    |                       | 2.2E-03  | 5.9E-04        | 0.01    | 0.03    |
|          | EMIT OxCat              | AP-42 Table 3.2-2   | PM10/2.5     | 0.04     | 0.01             | 0.11    | 0.50    |                       | 0.04     | 0.01           | 0.11    | 0.50    |
|          | NSPS JJJJ Affected      | AP-42 Table 3.2-2   | Benzene      | 1.6E-03  | 4.4E-04          | 0.01    | 0.02    | 90.8%                 | 1.5E-04  | 4.1E-05        | 4.6E-04 | 2.0E-03 |
|          | 8,760 hr/yr             | AP-42 Table 3.2-2   | Ethylbenzene | 1.5E-04  | 4.0E-05          | 4.5E-04 | 2.0E-03 | 90.8%                 | 1.4E-05  | 3.7E-06        | 4.2E-05 | 1.8E-04 |
| CE-01/1E | 920 Btu/scf (LHV)       | Vendor Guarantee    | HCHO         | 0.36     | 0.10             | 1.10    | 4.80    | 75.7%                 | 0.09     | 0.02           | 0.27    | 1.17    |
| CE-02/2E | 1,020 Btu/scf (HHV)     | AP-42 Table 3.2-2   | n-Hexane     | 4.2E-03  | 1.1E-03          | 0.01    | 0.06    | 90.8%                 | 3.8E-04  | 1.0E-04        | 1.2E-03 | 0.01    |
| (each)   | 7,442 Btu/bhp-hr (LHV)  | AP-42 Table 3.2-2   | Methanol     | 0.01     | 2.5E-03          | 0.03    | 0.12    | 90.8%                 | 8.7E-04  | 2.3E-04        | 2.6E-03 | 0.01    |
|          | 8,264 Btu/bhp-hr (HHV)  | AP-42 Table 3.2-2   | Toluene      | 1.5E-03  | 4.1E-04          | 4.7E-03 | 0.02    | 90.8%                 | 1.4E-04  | 3.8E-05        | 4.3E-04 | 1.9E-03 |
|          | 10.27 MMBtu/hr (LHV)    | AP-42 Table 3.2-2   | 2,2,4-TMP    | 9.4E-04  | 2.5E-04          | 2.9E-03 | 0.01    | 90.8%                 | 8.7E-05  | 2.3E-05        | 2.6E-04 | 1.2E-03 |
|          | 11.41 MMBtu/hr (HHV)    | AP-42 Table 3.2-2   | Xylenes      | 6.9E-04  | 1.8E-04          | 2.1E-03 | 0.01    | 90.8%                 | 6.4E-05  | 1.7E-05        | 1.9E-04 | 8.5E-04 |
|          | 89,965 MMBtu/yr (LHV)   | AP-42 Table 3.2-2   | Other HAP    | 0.05     | 0.01             | 0.16    | 0.72    | 90.8%                 | 5.0E-03  | 1.3E-03        | 0.02    | 0.07    |
|          | 99,961 MMBtu/yr (HHV)   | Sum                 | Total HAP    | 0.43     | 0.12             | 1.32    | 5.76    | 78.2%                 | 0.09     | 0.03           | 0.29    | 1.26    |
|          | 11,163 scf/hr           | Vendor Guarantee    | CO2          | 516      | 117              | 1,570   | 6,876   |                       | 516      | 117            | 1,570   | 6,876   |
|          | 0.27 MMscfd             | THC-NMHC            | CH4          | 1.97     | 0.53             | 5.99    | 26.25   |                       | 1.97     | 0.53           | 5.99    | 26.25   |
|          | 1.88 MMscf/wk           | 40CFR98 - Table C-2 | N2O          | 8.3E-04  | 2.2E-04          | 2.5E-03 | 0.01    |                       | 8.3E-04  | 2.2E-04        | 2.5E-03 | 0.01    |
|          | 97.79 MMscf/yr          | 40CFR98 - Table A-1 | CO2e         | 565      | 130              | 1,720   | 7,536   |                       | 565      | 130            | 1,720   | 7,536   |

- 1 The emissions are based on operation at 100% of rated load for 8,760 hrs/yr.
- 2 As per vendor specifications, emission values of NOx, CO, NMNEHC, and CO2 are "Not to Exceed" (i.e., vendor guarantee).
- 3 As per vendor specifications, THC, NMHC, and NMNEHC (non-methane/non-ethane hydrocarbon) do not include HCHO. VOC is the sum of NMNEHC and HCHO.
- 4 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5
- 5 HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP, acetaldehyde, acrolein, and methanol.
- 6 The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.
- 7 Only the calculations based on vendor guarantees should be used to establish emission limitations.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Compressor Engine 03 – 203 bhp CAT G3306B (4SRB)

| Unit ID  | Description            | Reference           | Pollutant    |          | Pre-Cor<br>Emiss |         |         | Control<br>Efficiency |          | Contr<br>Emiss |         |         |
|----------|------------------------|---------------------|--------------|----------|------------------|---------|---------|-----------------------|----------|----------------|---------|---------|
|          |                        |                     |              | g/bhp-hr | lb/MMBtu         | lb/hr   | tpy     | Linoichoy             | g/bhp-hr | lb/MMBtu       | lb/hr   | tpy     |
|          | Engine 03              | Vendor Guarantee    | NOx          | 15.26    | 3.71             | 6.83    | 29.91   | 97.0%                 | 0.50     | 0.11           | 0.20    | 0.90    |
|          | Engine 03              | Vendor Guarantee    | CO           | 15.26    | 3.71             | 6.83    | 29.91   | 87.0%                 | 2.00     | 0.48           | 0.89    | 3.89    |
|          | Caterpillar (CAT)      | Vendor Guarantee    | THC          | 0.87     | 0.21             | 0.39    | 1.71    |                       | 0.87     | 0.21           | 0.39    | 1.71    |
|          | G3306B TA              | Vendor Guarantee    | NMHC         | 0.44     | 0.11             | 0.20    | 0.86    |                       | 0.44     | 0.11           | 0.20    | 0.86    |
|          | 203 bhp (Site Rating)  | Vendor Guarantee    | NMNEHC       | 0.24     | 0.06             | 0.11    | 0.47    |                       | 0.24     | 0.06           | 0.11    | 0.47    |
|          | 1,800 rpm              | NMNEHC+HCHO         | VOC          | 0.44     | 0.11             | 0.20    | 0.86    |                       | 0.44     | 0.11           | 0.20    | 0.86    |
|          | 4SRB / AFRC            | AP-42 Table 3.2-3   | SOx          | 2.4E-03  | 5.9E-04          | 1.1E-03 | 4.8E-03 |                       | 2.4E-03  | 5.9E-04        | 1.1E-03 | 4.8E-03 |
|          | Miratech NSCR          | AP-42 Table 3.2-3   | PM10/2.5     | 0.08     | 0.02             | 0.04    | 0.16    |                       | 0.08     | 0.02           | 0.04    | 0.16    |
|          | NSPS JJJJ Affected     | AP-42 Table 3.2-3   | Benzene      | 0.01     | 1.6E-03          | 0.00    | 0.01    |                       | 0.01     | 1.6E-03        | 2.9E-03 | 1.3E-02 |
|          | 8,760 hr/yr            | AP-42 Table 3.2-3   | Ethylbenzene | 1.0E-04  | 2.5E-05          | 4.6E-05 | 2.0E-04 |                       | 1.0E-04  | 2.5E-05        | 4.6E-05 | 2.0E-04 |
| CE-03/3E | 920 Btu/scf (LHV)      | Vendor Guarantee    | HCHO         | 0.20     | 0.05             | 0.09    | 0.39    |                       | 0.20     | 0.05           | 0.09    | 0.39    |
| CE-03/3E | 1,022 Btu/scf (HHV)    | AP-42 Table 3.2-3   | n-Hexane     |          |                  |         |         |                       |          |                |         |         |
|          | 8,240 Btu/bhp-hr (LHV) | AP-42 Table 3.2-3   | Methanol     | 0.01     | 3.1E-03          | 0.01    | 0.02    |                       | 1.3E-02  | 3.1E-03        | 5.7E-03 | 0.02    |
|          | 9,070 Btu/bhp-hr (HHV) | AP-42 Table 3.2-3   | Toluene      | 2.3E-03  | 5.6E-04          | 1.0E-03 | 0.00    |                       | 2.3E-03  | 5.6E-04        | 1.0E-03 | 4.5E-03 |
|          | 1.67 MMBtu/hr (LHV)    | AP-42 Table 3.2-3   | 2,2,4-TMP    |          |                  |         |         |                       |          |                |         |         |
|          | 1.86 MMBtu/hr (HHV)    | AP-42 Table 3.2-3   | Xylenes      | 8.1E-04  | 1.95E-04         | 3.6E-04 | 0.00    |                       | 8.1E-04  | 2.0E-04        | 3.6E-04 | 1.6E-03 |
|          | 14,653 MMBtu/yr (LHV)  | AP-42 Table 3.2-3   | Other HAP    | 0.03     | 0.01             | 0.01    | 0.05    |                       | 0.03     | 0.01           | 0.01    | 0.05    |
|          | 16,281 MMBtu/yr (HHV)  | Sum                 | Total HAP    | 0.25     | 0.06             | 0.11    | 0.49    |                       | 0.25     | 0.06           | 0.11    | 0.49    |
|          | 1,818 scf/hr           | Vendor Guarantee    | CO2          | 568      | 138              | 254     | 1,113   |                       | 568      | 138.06         | 254     | 1,113   |
|          | 0.04 MMscfd            | THC-NMHC            | CH4          | 0.43     | 0.10             | 0.19    | 0.84    |                       | 0.43     | 0.10           | 0.19    | 0.84    |
|          | 0.31 MMscf/wk          | 40CFR98 - Table C-2 | N2O          | 9.2E-04  | 2.2E-04          | 4.1E-04 | 1.8E-03 |                       | 9.2E-04  | 2.2E-04        | 4.1E-04 | 1.8E-03 |
|          | 15.93 MMscf/yr         | 40CFR98 - Table A-1 | CO2e         | 579      | 141              | 259     | 1,135   |                       | 579      | 141            | 259     | 1,135   |

- 1 The emissions are based on operation at 100% of rated load for 8,760 hrs/yr.
- 2 As per vendor specifications, emission values of NOx, CO, NMNEHC, and CO2 are "Not to Exceed" (i.e., vendor guarantee).
- 3 As per vendor specifications, THC, NMHC, and NMNEHC (non-methane/non-ethane hydrocarbon) do not include HCHO. VOC is the sum of NMNEHC and HCHO.
- 4 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5
- 5 HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP, acetaldehyde, acrolein, and methanol.
- 6 The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.
- 7 Only the calculations based on vendor guarantees should be used to establish emission limitations.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Rod Packing/Crankcase Leaks (RPC)

#### **Rod Packing Leaks (Natural Gas)**

|         |                   | Number               | Cvl's per | _               |                  | Total                 | V     | ос                 | НС    | НО         | n-Hex, B7  |      | Total      | НАР  | cc         | )2  | CH            | 14  | cc    | )2e           |
|---------|-------------------|----------------------|-----------|-----------------|------------------|-----------------------|-------|--------------------|-------|------------|------------|------|------------|------|------------|-----|---------------|-----|-------|---------------|
| Unit ID | Unit Description  | of Comp-<br>ressors* |           | scfh per<br>Cyl | Contin-<br>gency | Fugitive<br>Leak Rate | ,     | 18,074<br>lb/MMscf |       | a<br>Viscf | 10<br>lb/M |      | 62<br>Ib/M |      | 26<br>lb/M |     | 42,2<br>lb/MI |     | -     | 7,137<br>Mscf |
|         |                   |                      |           |                 |                  | MMscf/yr              | lb/hr | tpy                | lb/hr | tpy        | lb/hr      | tpy  | lb/hr      | tpy  | lb/hr      | tpy | lb/hr         | tpy | lb/hr | tpy           |
| RPC     | Rod Packing Leaks | 5                    | 4         | 15              | 15%              | 3.02                  | 6.24  | 27.31              | na    | na         | 0.04       | 0.16 | 0.22       | 0.95 | 0.1        | 0.4 | 15            | 64  | 365   | 1,597         |

<sup>\*</sup> Includes Two (2) 200 bhp Electric Motor Driven Compressors

#### Crankcase Emissions (Combustion Gas)

|         |                     | Total Reciprocating           | Crankcase<br>Leak Rate |                  | VC          | С    | нс         | но   | ,       | TEX, 2,2,4·<br>' (ea) | Total      | НАР        | CC           | )2  | CH          | 14  | CO            | 2e  |
|---------|---------------------|-------------------------------|------------------------|------------------|-------------|------|------------|------|---------|-----------------------|------------|------------|--------------|-----|-------------|-----|---------------|-----|
| Unit ID | Unit Description    | Engine<br>Horsepower<br>(bhp) | 0.50<br>scf/bhp-hr     | Safety<br>Factor | 21.<br>lb/M |      | 5.<br>lb/M |      | -       | 19<br>Mscf            | 6.<br>Ib/M | 62<br>Mscf | 7,8<br>lb/Ml |     | 30<br>Ib/MI |     | 8,64<br>lb/MN |     |
|         |                     |                               | MMscf/yr               |                  | lb/hr       | tpy  | lb/hr      | tpy  | lb/hr   | tpy                   | lb/hr      | tpy        | lb/hr        | tpy | lb/hr       | tpy | lb/hr         | tpy |
| RPC     | Crankcase Emissions | 2,963                         | 12.98                  | 250%             | 0.08        | 0.35 | 0.02       | 0.09 | 6.9E-04 | 3.0E-03               | 0.02       | 0.11       | 29           | 128 | 0           | 0   | 32            | 140 |

| VC    | ос    | HCI   | Ю    | n-Hex, B1<br>TMP |      | Total | HAP  | CC    | )2  | CH    | 14  | cc    | )2e   |
|-------|-------|-------|------|------------------|------|-------|------|-------|-----|-------|-----|-------|-------|
| lb/hr | tpy   | lb/hr | tpy  | lb/hr            | tpy  | lb/hr | tpy  | lb/hr | tpy | lb/hr | tpy | lb/hr | tpy   |
| 6.32  | 27.66 | 0.02  | 0.09 | 0.04             | 0.16 | 0.24  | 1.05 | 29    | 128 | 15    | 64  | 397   | 1,738 |

TOTAL RPC EMISSIONS:

Notes: 1 - Fugitive equipment leaks from misc. equipment is a broad category covering leaks of natural gas from sealed surfaces, such as packing and gaskets, resulting from the wear of mechanical joints, seals, and rotating surfaces over time.

- 2 Emission are based upon 40CFR98, Subpart W and manufacturer's data.
- 3 To be conservative, and to account for potential future changes, the following "worst-case" gas characteristics were assumed:

| Pollutant | Gas Analysis    | Worst-Case<br>Assumption |
|-----------|-----------------|--------------------------|
| CO2       | 218 lb/MMscf    | 262 lb/MMscf             |
| CH4       | 30,195 lb/MMscf | 42,275 lb/MMscf          |
| VOC       | 15,061 lb/MMscf | 18,074 lb/MMscf          |
| BTEX (ea) | 87 lb/MMscf     | 105 lb/MMscf             |
| Total HAP | 523 lb/MMscf    | 627 lb/MMscf             |

- 4 Total Misc. Equipment Fugitive Leak Rate (scf/yr) = No. of Compressors \* Cylinders/Compressor \* scfh/Cylinder \* 8760 hr/yr \* (1 + Contingency)
- 5 Total Facility-Wide bhp is determined as follows:

| TOTAL               | 2,963 | 2,963    |
|---------------------|-------|----------|
| CE-03 (8,760 hr/yr) | 203   | 203      |
| CE-02 (8,760 hr/yr) | 1,380 | 1,380    |
| CE-01 (8,760 hr/yr) | 1,380 | 1,380    |
| Unit ID             | BHP   | Prorated |

- 6 Engine crankcase emissions are based on vendor data: "As a general rule, blow-by (i.e., crankcase emissions) on a <u>new</u> engine is approximately 0.5 scf/bhp-hr." A "safety factor" is used to account for increasing blow-by as the engines "wear".
- 7 Crankcase emissions are estimated as follows:

(Data from CAT G3516B Data Sheet and Emissions Calculation Spreadsheet.)

| Total Engine Exhaust (TEEx) (Volume) | 9,268 ft3/min (acf/min) | 1,743 MMscf/yr TEEx*           |
|--------------------------------------|-------------------------|--------------------------------|
| <u>Pollutant</u>                     | G3516B PTE              | Crankcase Emission Factor**    |
| Crankcase THC emissions (Mass)       | 52.90 tpy THC           | 60.72 lb THC / MMscf TEEx      |
| Crankcase VOC emissions (Mass)       | 18.92 tpy VOC           | 21.72 lb VOC / MMscf TEEx      |
| Crankcase HCHO emissions (Mass)      | 4.80 tpy HCHO           | 5.51 lb HCHO / MMscf TEEx      |
| Crankcase BTEX (ea) emissions (Mass) | 0.16 tpy BTEX (ea)      | 0.19 lb BTEX (ea) / MMscf TEEx |
| Crankcase HAP emissions (Mass)       | 5.76 tpy HAP            | 6.62 lb HAP / MMscf TEEx       |
| Crankcase CO2 emissions (Mass)       | 6,876 tpy CO2           | 7,892 lb CO2 / MMscf TEEx      |
| Crankcase CH4 emissions (Mass)       | 26 tpy CH4              | 30 lb CH4 / MMscf TEEx         |
| Crankcase CO2e emissions (Mass)      | 7,536 tpy CO2e          | 8,649 lb CO2e /MMscf TEEx      |
|                                      |                         |                                |

- \* Conversion from acf/min to scf/yr based on 8,760 hr/yr, 1016 oF exhaust temp, and 68 oF std temp.
- \*\* Crankcase Emission Factor = PTE (tpy) from a G3516B Engine ÷ Total Engine Exhaust (TEEx) (MMscfy/yr).

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Startup, Shutdown and Maintenance (and Blowdown) (SSM)

| Unit ID   | Description                        | No of<br>Units | Total<br>bhp | a. "Cold- | Start" Gas | b. Blowd | lown Gas | Site-Wide<br>SSM Events | Total Gas Vented |
|-----------|------------------------------------|----------------|--------------|-----------|------------|----------|----------|-------------------------|------------------|
|           |                                    | Omics          | ыр           | scf/Unit  | scf/SSM    | scf/bhp  | scf/SSM  | SSM/yr                  | MMscf/yr         |
| SSM-Gas   | Compressor Blowdown*               | 5              | 3,363        | na        | na         | 6.22     | 20,902   | 156                     | 3.26             |
| SSM-Gas   | Purge Gas (Continuous @ 35 scf/hr) | na             | na           | na        | na         | na       | 35       | 8,760                   | 0.31             |
| SSM-Cond. | Filter Changeouts (Condensate)     | 2              | na           | na        | na         | na       | 20,362   | 4                       | 0.08             |

<sup>\*</sup> Includes Two (2) 200 bhp Electric Motor Driven Compressors

|            | VOC           | Benzene     | Ethylbenzene | n-Hexane       | Toluene       | 2,2,4-TMP  | Xylenes       | Total HAP      | CH4          | CO2e            |
|------------|---------------|-------------|--------------|----------------|---------------|------------|---------------|----------------|--------------|-----------------|
|            | 18,074 - Gas  | 4.94 - Gas  | 3.36 - Gas   | 278 - Gas      | 17.48 - Gas   | 300 - Gas  | 23.50 - Gas   | 627 - Gas      | 42,275 - Gas | 1,056,875 - Gas |
| Unit ID    | 260,391 Cond. | 222 - Cond. | 255 - Cond.  | 14,920 - Cond. | 1,468 - Cond. | 65 - Cond. | 2,045 - Cond. | 18,975 - Cond. | 903 - Cond.  | 22,587 - Cond.  |
|            | lb/MMscf      | lb/MMscf    | lb/MMscf     | lb/MMscf       | lb/MMscf      | lb/MMscf   | lb/MMscf      | lb/MMscf       | lb/MMscf     | lb/MMscf        |
|            | tpy           | tpy         | tpy          | tpy            | tpy           | tpy        | tpy           | tpy            | tpy          | tpy             |
| SSM-Gas    | 29.47         | 0.01        | 5.5E-03      | 0.45           | 0.03          | 0.49       | 0.04          | 1.02           | 68.92        | 1,723           |
| SSM-Gas    | 2.77          | 7.6E-04     | 5.1E-04      | 0.04           | 2.7E-03       | 4.6E-02    | 3.6E-03       | 0.10           | 6.48         | 162             |
| SSM-Cond.  | 10.60         | 9.1E-03     | 1.0E-02      | 0.61           | 6.0E-02       | 2.6E-03    | 8.3E-02       | 0.77           | 0.04         | 1               |
| -          | •             |             | •            |                |               |            | •             | •              |              |                 |
| TOTAL SSM: | 42.84         | 0.02        | 0.02         | 1.10           | 0.09          | 0.54       | 0.13          | 1.89           | 75.44        | 1,886           |

#### Notes:

- 1 SSM Emissions include natural gas blowdown from compressors and associated piping/equipment, purge gas used to prevent air from entering the line, and condensate filter change-outs.
- 2 Starting gas quantity and blowdown (B-D) gas quantity as per engineering department (e.g., 8,577 scf/B-D of a compressor with a 1,380 bhp engine equals 6.22 scf/bhp/B-D.)
- 3 To be conservative, the following gas characteristics were assumed:

| Pollutant | Gas A           | nalysis         | Condensa         | te Analysis      |
|-----------|-----------------|-----------------|------------------|------------------|
| Poliutant | Actual          | Assumed         | Actual           | Assumed          |
| CH4       | 30,195 lb/MMscf | 42,275 lb/MMscf | 753 lb/MMscf     | 903 lb/MMscf     |
| VOC       | 15,061 lb/MMscf | 18,074 lb/MMscf | 216,992 lb/MMscf | 260,391 lb/MMscf |
| Benzene   | 4 lb/MMscf      | 4.94 lb/MMscf   | 185 lb/MMscf     | 222 lb/MMscf     |
| E-benzene | 3 lb/MMscf      | 3.36 lb/MMscf   | 213 lb/MMscf     | 255 lb/MMscf     |
| n-Hexane  | 232 lb/MMscf    | 278 lb/MMscf    | 12,433 lb/MMscf  | 14,920 lb/MMscf  |
| Toluene   | 15 lb/MMscf     | 17.48 lb/MMscf  | 1,224 lb/MMscf   | 1,468 lb/MMscf   |
| 2,2,4-TMP | 250 lb/MMscf    | 300 lb/MMscf    | 54 lb/MMscf      | 65 lb/MMscf      |
| Xylenes   | 20 lb/MMscf     | 23.50 lb/MMscf  | 1,704 lb/MMscf   | 2,045 lb/MMscf   |
| Total HAP | 523 lb/MMscf    | 627 lb/MMscf    | 15,813 lb/MMscf  | 18,975 lb/MMscf  |

4 - To be conservative, these SSM estimates are based on

3.0

facility-wide blowdowns each week.

5 - At Conner Compressor Station, the compressor blowdowns are routed to a dispersion stack. A continuous purge gas stream is used to prevent infiltration of air into the dispersion stack. The dispersion stack vendor estimates that 35 scf/hr of purge gas will be used.

6 - Two condensate vessels (370 gal and 320 gal) will have their filters changed-out up to four times per year.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Reboilers 01 and 02 - 1.66 MMBtu/hr

| Unit ID  | Description         | Reference             | Pollutant    | Emissio  | n Factor | Pre-Co  | ntrolled | Control | Cont    | rolled  |
|----------|---------------------|-----------------------|--------------|----------|----------|---------|----------|---------|---------|---------|
| Offic 1D | Description         | Reference             | Pollutant    | lb/MMscf | lb/MMBtu | lb/hr   | tpy      | %       | lb/hr   | tpy     |
|          |                     | EPA AP-42 Table 1.4-2 | NOX          | 100.00   | 0.10     | 0.16    | 0.71     | na      | 0.16    | 0.71    |
|          | Reboiler 01 and 02  | EPA AP-42 Table 1.4-2 | CO           | 84.00    | 80.0     | 0.14    | 0.60     | na      | 0.14    | 0.60    |
|          |                     | EPA AP-42 Table 1.4-2 | VOC          | 5.68     | 0.01     | 0.01    | 0.04     | na      | 0.01    | 0.04    |
|          |                     | EPA AP-42 Table 1.4-2 | SO2          | 0.60     | 5.88E-04 | 9.8E-04 | 4.3E-03  | na      | 9.8E-04 | 4.3E-03 |
|          | 1.50 MMBtu/hr (LHV) | EPA AP-42 Table 1.4-2 | PM10/2.5     | 7.60     | 0.01     | 1.2E-02 | 0.05     | na      | 0.01    | 0.05    |
|          | 1.66 MMBtu/hr (HHV) | EPA AP-42 Table 1.4-3 | Benzene      | 2.1E-03  | 2.06E-06 | 3.4E-06 | 1.5E-05  | na      | 3.4E-06 | 1.5E-05 |
|          |                     | EPA AP-42 Table 1.4-3 | Ethylbenzene |          |          |         |          |         |         |         |
|          | 8,760 hr/yr         | EPA AP-42 Table 1.4-3 | HCHO         | 0.08     | 7.35E-05 | 1.2E-04 | 5.4E-04  | na      | 1.2E-04 | 5.4E-04 |
| RBV-1/4E |                     | EPA AP-42 Table 1.4-3 | n-Hexane     | 1.80     | 1.76E-03 | 2.9E-03 | 1.3E-02  | na      | 2.9E-03 | 1.3E-02 |
| RBV-2/7E |                     | EPA AP-42 Table 1.4-3 | Methanol     |          |          |         |          |         |         |         |
| (Each)   | 920 Btu/scf (LHV)   | EPA AP-42 Table 1.4-3 | Toluene      | 0.00     | 3.33E-06 | 5.5E-06 | 2.4E-05  |         | 5.5E-06 | 2.4E-05 |
|          | 1,020 Btu/scf (HHV) | EPA AP-42 Table 1.4-3 | 2,2,4-TMP    |          |          |         |          | na      |         |         |
|          |                     | EPA AP-42 Table 1.4-3 | Xylenes      |          |          |         |          |         |         |         |
|          |                     | EPA AP-42 Table 1.4-3 | Other HAP    | 1.9E-03  | 1.86E-06 | 3.1E-06 | 1.4E-05  | na      | 3.1E-06 | 1.4E-05 |
|          | 1,630 scf/hr        | EPA AP-42 Table 1.4-3 | Total HAP    | 1.88     | 1.85E-03 | 3.1E-03 | 0.01     | na      | 3.1E-03 | 0.01    |
|          | 39.13 Mscfd         | EPA AP-42 Table 1.4-2 | CO2          | 120,000  | 118      | 196     | 857      | na      | 196     | 857     |
|          | 14.28 MMscf/yr      | EPA AP-42 Table 1.4-2 | CH4          | 2.30     | 2.25E-03 | 3.8E-03 | 0.02     | na      | 3.8E-03 | 0.02    |
|          |                     | EPA AP-42 Table 1.4-2 | N2O          | 2.20     | 2.16E-03 | 3.6E-03 | 0.02     | na      | 3.6E-03 | 0.02    |
|          |                     | 40CFR98 - Table A-1   | CO2e         | 120,713  | 118      | 197     | 862      | na      | 197     | 862     |

- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Dehydrators 01 and 02 (Still Vents and Flash Tanks) - 60 MMscfd

| Unit ID         | Description                          | Capacity  | Reference           | Pollutant    | Pre-Co | lc Estimated<br>introlled<br>issions | Pre-Co | t-Case<br>ntrolled<br>sions | Control<br>Efficiency |       | rolled<br>ssions |
|-----------------|--------------------------------------|-----------|---------------------|--------------|--------|--------------------------------------|--------|-----------------------------|-----------------------|-------|------------------|
|                 |                                      |           |                     |              | lb/hr  | tpy                                  | lb/hr  | tpy                         | %                     | lb/hr | tpy              |
|                 |                                      |           | GRI-GLYCalc 4.0     | VOC          | 56.47  | 247.36                               | 67.77  | 296.83                      | 99%                   | 0.68  | 2.97             |
|                 |                                      |           | GRI-GLYCalc 4.0     | Benzene      | 1.59   | 6.96                                 | 1.91   | 8.35                        | 99%                   | 0.02  | 80.0             |
|                 | Dehy 01 (RSV-1)<br>Dehy 02 (RSV-2)   | Flow Rate | GRI-GLYCalc 4.0     | Ethylbenzene | 1.68   | 7.36                                 | 2.02   | 8.83                        | 99%                   | 0.02  | 0.09             |
|                 | Derly 02 (RSV-2)                     | 60        | GRI-GLYCalc 4.0     | n-Hexane     | 1.11   | 4.88                                 | 1.34   | 5.85                        | 99%                   | 0.01  | 0.06             |
| RSV-1<br>RSV-2  | Still Vent                           | MMscfd    | GRI-GLYCalc 4.0     | Toluene      | 7.34   | 32.13                                | 8.80   | 38.55                       | 99%                   | 0.09  | 0.39             |
| (Each)          | (Still Vent Off-Gas is               |           | GRI-GLYCalc 4.0     | 2,2,4-TMP    | 0.83   | 3.63                                 | 0.99   | 4.36                        | 99%                   | 0.01  | 0.04             |
| (2001)          | Routed to the<br>Thermal Oxidizer)   |           | GRI-GLYCalc 4.0     | Xylenes      | 15.66  | 68.57                                | 18.79  | 82.28                       | 99%                   | 0.19  | 0.82             |
|                 | (Each)                               | 8,760     | GRI-GLYCalc 4.0     | Tot HAP      | 28.20  | 123.52                               | 33.84  | 148.23                      | 99%                   | 0.34  | 1.48             |
|                 | , ,                                  | hr/yr     | GRI-GLYCalc 4.0     | CH4          | 1      | 4                                    | 1      | 4                           | 99%                   | 0.01  | 0.04             |
|                 |                                      |           | 40CFR98 - Table A-1 | CO2e         | 20     | 88                                   | 24     | 106                         | 99%                   | 0.24  | 1.06             |
|                 |                                      |           | GRI-GLYCalc 4.0     | VOC          | 35.84  | 156.98                               | 43.01  | 188.38                      | 99%                   | 0.43  | 1.88             |
|                 | Dehy 01 (RSV-1)                      |           | GRI-GLYCalc 4.0     | Benzene      | 0.05   | 0.20                                 | 0.06   | 0.25                        | 99%                   | 0.00  | 0.00             |
|                 | Dehy 01 (RSV-1)                      | Flow Rate | GRI-GLYCalc 4.0     | Ethylbenzene | 0.02   | 0.09                                 | 0.02   | 0.10                        | 99%                   | 0.00  | 0.00             |
|                 |                                      | 60        | GRI-GLYCalc 4.0     | n-Hexane     | 0.81   | 3.56                                 | 0.98   | 4.27                        | 99%                   | 0.01  | 0.04             |
| RSV-1           | Flash Tank                           | MMscfd    | GRI-GLYCalc 4.0     | Toluene      | 0.14   | 0.63                                 | 0.17   | 0.76                        | 99%                   | 0.00  | 0.01             |
| RSV-2<br>(Each) | (Flash Tank Off-Gas is Routed to the |           | GRI-GLYCalc 4.0     | 2,2,4-TMP    | 0.59   | 2.61                                 | 0.71   | 3.13                        | 99%                   | 0.01  | 0.03             |
| (Luon)          | Thermal Oxidizer                     |           | GRI-GLYCalc 4.0     | Xylenes      | 0.13   | 0.58                                 | 0.16   | 0.70                        | 99%                   | 0.00  | 0.01             |
|                 | or Used as Fuel Gas)                 | 8,760     | GRI-GLYCalc 4.0     | Tot HAP      | 1.75   | 7.67                                 | 2.10   | 9.21                        | 99%                   | 0.02  | 0.09             |
|                 | (Each)                               | hr/yr     | GRI-GLYCalc 4.0     | CH4          | 18     | 79                                   | 22     | 95                          | 99%                   | 0.22  | 0.95             |
|                 |                                      |           | 40CFR98 - Table A-1 | CO2e         | 451    | 1,978                                | 542    | 2,373                       | 99%                   | 5.42  | 23.73            |
|                 |                                      |           | GRI-GLYCalc 4.0     | VOC          | 92.31  | 404.34                               | 110.78 | 485.21                      | 99%                   | 1.11  | 4.85             |
|                 |                                      |           | GRI-GLYCalc 4.0     | Benzene      | 1.64   | 7.16                                 | 1.96   | 8.60                        | 99%                   | 0.02  | 0.09             |
|                 | Dehy 01 (RSV-1)                      | Flow Rate | GRI-GLYCalc 4.0     | Ethylbenzene | 1.70   | 7.45                                 | 2.04   | 8.94                        | 99%                   | 0.02  | 0.09             |
|                 | Dehy 02 (RSV-2)                      | 60        | GRI-GLYCalc 4.0     | n-Hexane     | 1.93   | 8.44                                 | 2.31   | 10.12                       | 99%                   | 0.02  | 0.10             |
| RSV-1           |                                      | MMscfd    | GRI-GLYCalc 4.0     | Toluene      | 7.48   | 32.76                                | 8.98   | 39.31                       | 99%                   | 0.09  | 0.39             |
| RSV-2<br>(Each) | Total<br>Dehydrator                  |           | GRI-GLYCalc 4.0     | 2,2,4-TMP    | 1.42   | 6.2358                               | 1.71   | 7.48                        | 99%                   | 0.02  | 0.07             |
| (Lacii)         | Emissions                            |           | GRI-GLYCalc 4.0     | Xylenes      | 15.79  | 69.15                                | 18.95  | 82.98                       | 99%                   | 0.19  | 0.83             |
|                 | (Each)                               | 8,760     | GRI-GLYCalc 4.0     | Tot HAP      | 29.95  | 131.20                               | 35.94  | 157.44                      | 99%                   | 0.36  | 1.57             |
|                 |                                      | hr/yr     | GRI-GLYCalc 4.0     | CH4          | 19     | 83                                   | 23     | 99                          | 99%                   | 0.23  | 0.9917           |
|                 |                                      |           | 40CFR98 - Table A-1 | CO2e         | 472    | 2,066                                | 566    | 2,479                       | 99%                   | 5.66  | 24.79            |

- 1 Used GRI-GLYCalc V4.0 to calculate combined regenerator vent/flash gas emissions.
- 2 Total HAP includes n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), and other components.
- 3 A 20% contingency has been added to the GRI-GLYCalc results to account for potential future changes in gas quality.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Dehydrators 01 and 02 (Summary) - 60 MMscfd

| Unit ID | Description            | Reference           | Pollutant    | Emissio  | n Factor | Pre-Controlle | ed Emissions | Control Eff | Controlled | Emissions |
|---------|------------------------|---------------------|--------------|----------|----------|---------------|--------------|-------------|------------|-----------|
| Unit ID | Description            | Reference           | Pollutant    | lb/MMscf | lb/MMBtu | lb/hr         | tpy          | %           | lb/hr      | tpy       |
|         |                        |                     | NOX          |          |          |               |              |             |            |           |
|         | Dehydrators 01 and 02  |                     | CO           |          |          |               |              |             |            | -         |
|         | (Sum of Still Vent and | GRI-GLYCalc 4.0     | VOC          |          |          | 110.64        | 484.62       | 99.0%       | 1.11       | 4.85      |
|         | Flash Tank Emissions)  |                     | SO2          |          |          |               |              |             |            |           |
|         |                        |                     | PM10/2.5     |          |          |               |              |             |            |           |
|         |                        | GRI-GLYCalc 4.0     | Benzene      |          |          | 1.97          | 8.64         | 99.0%       | 0.02       | 0.09      |
|         | 60.0 MMscfd            | GRI-GLYCalc 4.0     | Ethylbenzene |          |          | 2.05          | 9.00         | 99.0%       | 0.02       | 0.09      |
|         | (Each)                 |                     | HCHO         |          |          |               |              |             |            |           |
| RSV-01  |                        | GRI-GLYCalc 4.0     | n-Hexane     |          |          | 2.3E+00       | 10.18        | 99.0%       | 0.02       | 0.10      |
| RSV-02  | 8,760 Hr/yr            | GRI-GLYCalc 4.0     | Methanol     |          |          |               |              |             |            |           |
| (Each)  |                        | GRI-GLYCalc 4.0     | Toluene      |          |          | 9.03          | 39.55        | 99.0%       | 0.09       | 0.39      |
|         |                        | GRI-GLYCalc 4.0     | 2,2,4-TMP    |          |          | 1.71          | 7.48         | 99.0%       | 0.02       | 0.07      |
|         |                        | GRI-GLYCalc 4.0     | Xylenes      |          |          | 18.95         | 82.98        | 99.0%       | 0.19       | 0.83      |
|         | 21,900 MMscf/yr        | GRI-GLYCalc 4.0     | Other HAP    |          |          |               |              |             |            |           |
|         | 2.50 MMscf/hr          | GRI-GLYCalc 4.0     | Total HAP    |          |          | 36.15         | 158.33       | 99.0%       | 0.36       | 1.57      |
|         | NESHAP HH - Exempt     |                     | CO2          |          |          |               |              |             |            |           |
|         |                        | GRI-GLYCalc 4.0     | CH4          |          |          | 22.64         | 99.17        | 99.0%       | 0.23       | 0.99      |
|         |                        |                     | N2O          |          |          |               |              |             |            | -         |
|         |                        | 40CFR98 - Table A-1 | CO2e         |          |          | 566           | 2,479        | 99.0%       | 6          | 25        |

Notes: 1 - To be conservative, and to account for potential future changes in gas quality, the following worst-case emissions were assumed:

| 60.0 MMscfd<br>Dehydrator 02 | GRI-GLYO<br>Model R |            | Worst-<br>Assum |            |                               | *Dehydrator Opera<br>(See Attachments L - | GRI-GLYCalc Model          |                    |
|------------------------------|---------------------|------------|-----------------|------------|-------------------------------|-------------------------------------------|----------------------------|--------------------|
| Donyarator 02                | PRE-Control         | Controlled | PRE-Control     | Controlled |                               | and H - Extended                          | l Gas Analysis)            |                    |
| THC                          | 579.73 tpy          | 5.80 tpy   | 695.68 tpy      | 6.96 tpy   | Dry Gas Flow Rate:            | 60.0 MMscfd                               | Extended Gas Analysis:     | 09/23/09 (Caveney) |
| NMNEHC = VOC                 | 390.03 tpy          | 3.90 tpy   | 484.62 tpy      | 4.85 tpy   | Wet Gas Temperature:          | 70 oF                                     | Flash Tank Temperature:    | 150 oF             |
| Benzene                      | 7.20 tpy            | 0.07 tpy   | 8.64 tpy        | 0.09 tpy   | Wet Gas Pressure:             | 900 psig                                  | Flash Tank Pressure:       | 50 psig            |
| Ethylbenzene                 | 7.50 tpy            | 0.07 tpy   | 9.00 tpy        | 0.09 tpy   | Wet Gas Water Content:        | Saturated                                 | Flash Tank Off-Gas:        | 99% COMB-1         |
| HCHO                         |                     |            |                 |            | Dry Gas Water Content:        | 7.0 lb H2O/MMscf                          | Stripping Gas:             | na                 |
| n-Hexane                     | 8.48 tpy            | 0.08 tpy   | 10.18 tpy       | 0.10 tpy   | Lean Glycol Water Content:    | 1.5 wt% H2O                               | Stripping Gas Flow Rate:   | na                 |
| Methanol                     |                     |            |                 |            | Glycol Pump Type:             | Electric/Pneumatic                        | Regen Overhead Control:    | 99% COMB-1         |
| Toluene                      | 32.96 tpy           | 0.33 tpy   | 39.55 tpy       | 0.39 tpy   | Glycol Pump Model:            | na                                        | Condenser Temperature:     | na                 |
| 2,2,4-TMP                    | 6.24 tpy            | 0.06 tpy   | 7.48 tpy        | 0.07 tpy   | Lean Glycol Circulation Rate: | 13.70 gpm                                 | Condenser Pressure:        | na                 |
| Xylenes                      | 69.57 tpy           | 0.70 tpy   | 82.98 tpy       | 0.83 tpy   |                               |                                           |                            |                    |
| Other HAP                    |                     |            |                 |            |                               | Additional GRI-GLYCa                      | lc 4.0 Model Results:      |                    |
| Total HAP                    | 131.94 tpy          | 1.32 tpy   | 158.33 tpy      | 1.57 tpy   | Flash Tank Off-Gas Flow:      | 964 scfh                                  | Wet Gas Water Content:     | 0.053 Vol%         |
| CH4                          | 82.64 tpy           | 0.83 tpy   | 99.17 tpy       | 0.99 tpy   | Regen Overhead Stream:        | 1,590 scfh                                | Dry Gas Water Content:     | 0.002 Vol%         |
| CO2e                         | 2,066 tpy           | 21 tpy     | 2,479 tpy       | 25 tpy     | Lean Glycol Recirc Ratio:     | 13.5 gal/lb-H2O                           | Rich Glycol Water Content: | 2.230 wt%          |
|                              |                     |            |                 |            |                               |                                           |                            |                    |

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Thermal Oxidizer 01 - 6.41 MMBtu/hr

| Unit ID             | Description         | Reference               | Pollutant    | Emissio  | n Factor | Pre-Co | ntrolled        | Control | Conti   | rolled  |
|---------------------|---------------------|-------------------------|--------------|----------|----------|--------|-----------------|---------|---------|---------|
| Official            | Description         | Reference               | Pollutant    | lb/MMscf | lb/MMBtu | lb/hr  | tpy             | %       | lb/hr   | tpy     |
|                     |                     | EPA AP-42 Table 13.5-1* | NOX          | 69.36    | 0.068    | na     | na              | na      | 0.44    | 1.91    |
|                     | Thermal Oxidizer 01 | EPA AP-42 Table 13.5-2* | CO           | 316.20   | 0.31     | na     | na              | na      | 1.99    | 8.71    |
|                     | (Combustion Only)   | GRI-GLYCalc             | VOC          |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
|                     |                     | EPA AP-42 Table 1.4-2   | SO2          | 0.60     | 5.88E-04 | na     | na              | na      | 3.8E-03 | 0.02    |
|                     | 5.78 MMBtu/hr (LHV) | EPA AP-42 Table 1.4-2   | PM10/2.5     | 7.60     | 0.01     | na     | na              | na      | 0.05    | 0.21    |
|                     | 6.41 MMBtu/hr (HHV) | GRI-GLYCalc             | Benzene      |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
| COMP 4              |                     | GRI-GLYCalc             | Ethylbenzene |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
| COMB-1<br>(Controls | 8,760 hr/yr         | EPA AP-42 Table 1.4-3   | HCHO         | 0.08     | 7.35E-05 | na     | na              | na      | 4.7E-04 | 2.1E-03 |
| Dehydrator          |                     | GRI-GLYCalc             | n-Hexane     |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
| Still Vent and      |                     | EPA AP-42 Table 1.4-3   | Methanol     |          |          | na     | na              | na      |         |         |
| Flash Tank          | 920 Btu/scf (LHV)   | GRI-GLYCalc             | Toluene      |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
| Off-Gas<br>Streams) | 1,020 Btu/scf (HHV) | GRI-GLYCalc             | 2,2,4-TMP    |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
| Streams)            |                     | GRI-GLYCalc             | Xylenes      |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
|                     |                     | EPA AP-42 Table 1.4-3   | Other HAP    | 1.9E-03  | 1.86E-06 | na     | na              | na      | 1.2E-05 | 5.2E-05 |
|                     | 6,286 scf/hr        | Sum                     | Total HAP    | 0.08     | 7.54E-05 | na     | na              | na      | 4.8E-04 | 2.1E-03 |
|                     | 150.87 Mscfd        | EPA AP-42 Table 1.4-2   | CO2          | 120,000  | 118      | na     | na              | na      | 754     | 3,304   |
|                     | 55.07 MMscf/yr      | GRI-GLYCalc             | CH4          |          |          | See    | Dehy-01 and Del | ny-02   |         |         |
|                     |                     | EPA AP-42 Table 1.4-2   | N2O          | 2.20     | 2.16E-03 | na     | na              | na      | 1.4E-02 | 0.06    |
|                     |                     | 40CFR98 - Table A-1     | CO2e         | 120,656  | 118      | na     | na              | na      | 758     | 3,322   |

Notes:

- \* AP-42 Flare Emission Factors Revised by EPA in April 2015.
- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Max Heat Input calculated as follows:

| lash Tank Offgas (GRI-            | -GLYCalc):                                              | Pilot Gas:                             |           |                                |
|-----------------------------------|---------------------------------------------------------|----------------------------------------|-----------|--------------------------------|
|                                   | 1,926 scf/hr Total Flash Tank Off-Gas                   |                                        | 500 scf/h | r - Vendor                     |
|                                   | 1,269 Btu/scf (LHV)                                     |                                        | 920 Btu/s | scf (LHV)                      |
| SubTotal:                         | 2.44 MMBtu/hr                                           | SubTotal:                              | 0.46 MMB  | Btu/hr                         |
|                                   |                                                         |                                        |           |                                |
| egenerator/Still Vents            | (GRI-GLYCalc):                                          | Total Heat Input:                      |           |                                |
| egenerator/Still Vents            | (GRI-GLYCalc):<br>3,200 scf/hr Total Flash Tank Off-Gas | <b>Total Heat Input:</b><br>Flash Tank | : Offgas: | 2.44 MMBtu/hr                  |
| egenerator/Still Vents            | ` ,                                                     | •                                      | J         | 2.44 MMBtu/hr<br>2.12 MMBtu/hr |
| Regenerator/Still Vents SubTotal: | 3,200 scf/hr Total Flash Tank Off-Gas                   | Flash Tank<br>Regenerator/Sti          | J         |                                |

TOTAL:

5.78 MMBtu/hr (LHV)

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Heater Treater 01 - 1.55 MMBtu/hr

| Unit ID    | Description         | Reference             | Pollutant    | Emissio  | n Factor | Pre-Co  | ntrolled | Control | Contr   | olled   |
|------------|---------------------|-----------------------|--------------|----------|----------|---------|----------|---------|---------|---------|
| Unit ID    | Description         | Reference             | Poliulani    | lb/MMscf | lb/MMBtu | lb/hr   | tpy      | %       | lb/hr   | tpy     |
|            |                     | EPA AP-42 Table 1.4-2 | NOX          | 100.00   | 0.10     | 0.15    | 0.67     | na      | 0.15    | 0.67    |
|            | Heater Treater 01   | EPA AP-42 Table 1.4-2 | CO           | 84.00    | 80.0     | 0.13    | 0.56     | na      | 0.13    | 0.56    |
|            |                     | EPA AP-42 Table 1.4-2 | VOC          | 5.68     | 0.01     | 0.01    | 0.04     | na      | 0.01    | 0.04    |
|            |                     | EPA AP-42 Table 1.4-2 | SO2          | 0.60     | 5.88E-04 | 9.1E-04 | 4.0E-03  | na      | 9.1E-04 | 4.0E-03 |
|            | 1.40 MMBtu/hr (LHV) | EPA AP-42 Table 1.4-2 | PM10/2.5     | 7.60     | 0.01     | 1.2E-02 | 0.05     | na      | 0.01    | 0.05    |
|            | 1.55 MMBtu/hr (HHV) | EPA AP-42 Table 1.4-3 | Benzene      | 2.1E-03  | 2.06E-06 | 3.2E-06 | 1.4E-05  | na      | 3.2E-06 | 1.4E-05 |
|            |                     | EPA AP-42 Table 1.4-3 | Ethylbenzene |          |          |         |          |         |         |         |
|            | 8,760 hr/yr         | EPA AP-42 Table 1.4-3 | HCHO         | 0.08     | 7.35E-05 | 1.1E-04 | 5.0E-04  | na      | 1.1E-04 | 5.0E-04 |
|            |                     | EPA AP-42 Table 1.4-3 | n-Hexane     | 1.80     | 1.76E-03 | 2.7E-03 | 0.01     | na      | 2.7E-03 | 0.01    |
| HTR-01/11E |                     | EPA AP-42 Table 1.4-3 | Methanol     |          |          |         |          |         |         |         |
|            | 920 Btu/scf (LHV)   | EPA AP-42 Table 1.4-3 | Toluene      | 0.00     | 3.33E-06 | 5.2E-06 | 2.3E-05  |         | 5.2E-06 | 2.3E-05 |
|            | 1,020 Btu/scf (HHV) | EPA AP-42 Table 1.4-3 | 2,2,4-TMP    |          |          |         |          | na      |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Xylenes      |          |          |         |          |         |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Other HAP    | 1.9E-03  | 1.86E-06 | 2.9E-06 | 1.3E-05  | na      | 2.9E-06 | 1.3E-05 |
|            | 1,522 scf/hr        | EPA AP-42 Table 1.4-3 | Total HAP    | 1.88     | 1.85E-03 | 2.9E-03 | 0.01     | na      | 2.9E-03 | 0.01    |
|            | 36.52 Mscfd         | EPA AP-42 Table 1.4-2 | CO2          | 120,000  | 118      | 183     | 800      | na      | 183     | 800     |
|            | 13.33 MMscf/yr      | EPA AP-42 Table 1.4-2 | CH4          | 2.30     | 2.25E-03 | 3.5E-03 | 0.02     | na      | 3.5E-03 | 0.02    |
|            |                     | EPA AP-42 Table 1.4-2 | N2O          | 2.20     | 2.16E-03 | 3.3E-03 | 0.01     | na      | 3.3E-03 | 0.01    |
|            |                     | 40CFR98 - Table A-1   | CO2e         | 120,713  | 118      | 184     | 805      | na      | 184     | 805     |

- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Condensate Stabilizer Heater 01 - 2.55 MMBtu/hr

| Unit ID    | Description         | Reference             | Pollutant    | Emissio  | n Factor | Pre-Co  | ntrolled | Control | Contr   | olled   |
|------------|---------------------|-----------------------|--------------|----------|----------|---------|----------|---------|---------|---------|
| Offic ID   | Description         | Reference             | Poliutant    | lb/MMscf | lb/MMBtu | lb/hr   | tpy      | %       | lb/hr   | tpy     |
|            | Condensate          | EPA AP-42 Table 1.4-2 | NOX          | 100.00   | 0.10     | 0.25    | 1.10     | na      | 0.25    | 1.10    |
|            | Stabilizer          | EPA AP-42 Table 1.4-2 | CO           | 84.00    | 0.08     | 0.21    | 0.92     | na      | 0.21    | 0.92    |
|            | Heater 01           | EPA AP-42 Table 1.4-2 | VOC          | 5.68     | 0.01     | 0.01    | 0.06     | na      | 0.01    | 0.06    |
|            |                     | EPA AP-42 Table 1.4-2 | SO2          | 0.60     | 5.88E-04 | 1.5E-03 | 0.01     | na      | 1.5E-03 | 0.01    |
|            | 2.30 MMBtu/hr (LHV) | EPA AP-42 Table 1.4-2 | PM10/2.5     | 7.60     | 0.01     | 0.02    | 0.08     | na      | 0.02    | 80.0    |
|            | 2.55 MMBtu/hr (HHV) | EPA AP-42 Table 1.4-3 | Benzene      | 2.1E-03  | 2.06E-06 | 5.3E-06 | 2.3E-05  | na      | 5.3E-06 | 2.3E-05 |
|            |                     | EPA AP-42 Table 1.4-3 | Ethylbenzene |          |          |         |          |         |         |         |
|            | 8,760 hr/yr         | EPA AP-42 Table 1.4-3 | HCHO         | 0.08     | 7.35E-05 | 1.9E-04 | 8.2E-04  | na      | 1.9E-04 | 8.2E-04 |
|            |                     | EPA AP-42 Table 1.4-3 | n-Hexane     | 1.80     | 1.76E-03 | 4.5E-03 | 0.02     | na      | 4.5E-03 | 0.02    |
| HTR-02/12E |                     | EPA AP-42 Table 1.4-3 | Methanol     |          |          |         |          |         |         |         |
|            | 920 Btu/scf (LHV)   | EPA AP-42 Table 1.4-3 | Toluene      | 0.00     | 3.33E-06 | 8.5E-06 | 3.7E-05  |         | 8.5E-06 | 3.7E-05 |
|            | 1,020 Btu/scf (HHV) | EPA AP-42 Table 1.4-3 | 2,2,4-TMP    |          |          |         |          | na      |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Xylenes      |          |          |         |          |         |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Other HAP    | 1.9E-03  | 1.86E-06 | 4.7E-06 | 2.1E-05  | na      | 4.7E-06 | 2.1E-05 |
|            | 2,500 scf/hr        | EPA AP-42 Table 1.4-3 | Total HAP    | 1.88     | 1.85E-03 | 4.7E-03 | 0.02     | na      | 4.7E-03 | 0.02    |
|            | 60.00 Mscfd         | EPA AP-42 Table 1.4-2 | CO2          | 120,000  | 118      | 300     | 1,314    | na      | 300     | 1,314   |
|            | 21.90 MMscf/yr      | EPA AP-42 Table 1.4-2 | CH4          | 2.30     | 2.25E-03 | 5.8E-03 | 0.03     | na      | 5.8E-03 | 0.03    |
|            |                     | EPA AP-42 Table 1.4-2 | N2O          | 2.20     | 2.16E-03 | 5.5E-03 | 0.02     | na      | 5.5E-03 | 0.02    |
|            |                     | 40CFR98 - Table A-1   | CO2e         | 120,713  | 118      | 302     | 1,322    | na      | 302     | 1,322   |

- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Station Recycle Line Heater 01 - 1.66 MMBtu/hr

| Unit ID    | Description                       | Reference             | Pollutant    | Emissio  | n Factor | Pre-Co  | ntrolled | Control | Cont    | rolled  |
|------------|-----------------------------------|-----------------------|--------------|----------|----------|---------|----------|---------|---------|---------|
| Onit iD    | Description                       | Reference             | Poliulani    | lb/MMscf | lb/MMBtu | lb/hr   | tpy      | %       | lb/hr   | tpy     |
|            | 0 5                               | EPA AP-42 Table 1.4-2 | NOX          | 100.00   | 0.10     | 0.16    | 0.71     | na      | 0.16    | 0.71    |
|            | Station Recycle<br>Line Heater 01 | EPA AP-42 Table 1.4-2 | CO           | 84.00    | 0.08     | 0.14    | 0.60     | na      | 0.14    | 0.60    |
|            | Line ricuter or                   | EPA AP-42 Table 1.4-2 | VOC          | 5.68     | 0.01     | 0.01    | 0.04     | na      | 0.01    | 0.04    |
|            |                                   | EPA AP-42 Table 1.4-2 | SO2          | 0.60     | 5.88E-04 | 9.8E-04 | 4.3E-03  | na      | 9.8E-04 | 4.3E-03 |
|            | 1.50 MMBtu/hr (LHV)               | EPA AP-42 Table 1.4-2 | PM10/2.5     | 7.60     | 0.01     | 1.2E-02 | 0.05     | na      | 0.01    | 0.05    |
|            | 1.66 MMBtu/hr (HHV)               | EPA AP-42 Table 1.4-3 | Benzene      | 2.1E-03  | 2.06E-06 | 3.4E-06 | 1.5E-05  | na      | 3.4E-06 | 1.5E-05 |
|            |                                   | EPA AP-42 Table 1.4-3 | Ethylbenzene |          |          |         |          |         |         |         |
|            | 8,760 hr/yr                       | EPA AP-42 Table 1.4-3 | HCHO         | 0.08     | 7.35E-05 | 1.2E-04 | 5.4E-04  | na      | 1.2E-04 | 5.4E-04 |
|            |                                   | EPA AP-42 Table 1.4-3 | n-Hexane     | 1.80     | 1.76E-03 | 2.9E-03 | 0.01     | na      | 2.9E-03 | 0.01    |
| HTR-03/19E |                                   | EPA AP-42 Table 1.4-3 | Methanol     |          |          |         |          |         |         |         |
|            | 920 Btu/scf (LHV)                 | EPA AP-42 Table 1.4-3 | Toluene      | 0.00     | 3.33E-06 | 5.5E-06 | 2.4E-05  |         | 5.5E-06 | 2.4E-05 |
|            | 1,020 Btu/scf (HHV)               | EPA AP-42 Table 1.4-3 | 2,2,4-TMP    |          |          |         |          | na      |         |         |
|            |                                   | EPA AP-42 Table 1.4-3 | Xylenes      |          |          |         |          |         |         |         |
|            |                                   | EPA AP-42 Table 1.4-3 | Other HAP    | 1.9E-03  | 1.86E-06 | 3.1E-06 | 1.4E-05  | na      | 3.1E-06 | 1.4E-05 |
|            | 1,630 scf/hr                      | EPA AP-42 Table 1.4-3 | Total HAP    | 1.88     | 1.85E-03 | 3.1E-03 | 0.01     | na      | 3.1E-03 | 0.01    |
|            | 39.13 Mscfd                       | EPA AP-42 Table 1.4-2 | CO2          | 120,000  | 118      | 196     | 857      | na      | 196     | 857     |
|            | 14.28 MMscf/yr                    | EPA AP-42 Table 1.4-2 | CH4          | 2.30     | 2.25E-03 | 3.8E-03 | 0.02     | na      | 3.8E-03 | 0.02    |
|            |                                   | EPA AP-42 Table 1.4-2 | N2O          | 2.20     | 2.16E-03 | 3.6E-03 | 0.02     | na      | 3.6E-03 | 0.02    |
|            |                                   | 40CFR98 - Table A-1   | CO2e         | 120,713  | 118      | 197     | 862      | na      | 197     | 862     |

- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Condensate Stabilizer Heater 02 - 9.70 MMBtu/hr

| Unit ID    | Description         | Reference             | Pollutant    | Emissio  | n Factor | Pre-Co  | ntrolled | Control | Cont    | olled   |
|------------|---------------------|-----------------------|--------------|----------|----------|---------|----------|---------|---------|---------|
| Onitib     | Description         | Reference             | Pollutant    | lb/MMscf | lb/MMBtu | lb/hr   | tpy      | %       | lb/hr   | tpy     |
|            | Condensate          | EPA AP-42 Table 1.4-2 | NOX          | 100.00   | 0.10     | 0.95    | 4.17     | na      | 0.95    | 4.17    |
|            | Stabilizer          | EPA AP-42 Table 1.4-2 | CO           | 84.00    | 0.08     | 0.80    | 3.50     | na      | 0.80    | 3.50    |
|            | Heater 02           | EPA AP-42 Table 1.4-2 | VOC          | 5.68     | 0.01     | 0.05    | 0.24     | na      | 0.05    | 0.24    |
|            |                     | EPA AP-42 Table 1.4-2 | SO2          | 0.60     | 5.88E-04 | 0.01    | 0.02     | na      | 0.01    | 0.02    |
|            | 8.75 MMBtu/hr (LHV) | EPA AP-42 Table 1.4-2 | PM10/2.5     | 7.60     | 0.01     | 0.07    | 0.32     | na      | 0.07    | 0.32    |
|            | 9.70 MMBtu/hr (HHV) | EPA AP-42 Table 1.4-3 | Benzene      | 2.1E-03  | 2.06E-06 | 2.0E-05 | 8.7E-05  | na      | 2.0E-05 | 8.7E-05 |
|            |                     | EPA AP-42 Table 1.4-3 | Ethylbenzene |          |          |         |          |         |         |         |
|            | 8,760 hr/yr         | EPA AP-42 Table 1.4-3 | HCHO         | 0.08     | 7.35E-05 | 7.1E-04 | 3.1E-03  | na      | 7.1E-04 | 3.1E-03 |
|            |                     | EPA AP-42 Table 1.4-3 | n-Hexane     | 1.80     | 1.76E-03 | 0.02    | 0.07     | na      | 0.02    | 0.07    |
| HTR-04/20E |                     | EPA AP-42 Table 1.4-3 | Methanol     |          |          |         |          |         |         |         |
|            | 920 Btu/scf (LHV)   | EPA AP-42 Table 1.4-3 | Toluene      | 3.4E-03  | 3.33E-06 | 3.2E-05 | 1.4E-04  | na      | 3.2E-05 | 1.4E-04 |
|            | 1,020 Btu/scf (HHV) | EPA AP-42 Table 1.4-3 | 2,2,4-TMP    |          |          |         |          |         |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Xylenes      |          |          |         |          |         |         |         |
|            |                     | EPA AP-42 Table 1.4-3 | Other HAP    | 1.9E-03  | 1.86E-06 | 1.8E-05 | 7.9E-05  | na      | 1.8E-05 | 7.9E-05 |
|            | 9,511 scf/hr        | EPA AP-42 Table 1.4-3 | Total HAP    | 1.88     | 1.85E-03 | 0.02    | 0.08     | na      | 0.02    | 0.08    |
|            | 228.26 Mscfd        | EPA AP-42 Table 1.4-2 | CO2          | 120,000  | 118      | 1,141   | 4,999    | na      | 1,141   | 4,999   |
|            | 83.32 MMscf/yr      | EPA AP-42 Table 1.4-2 | CH4          | 2.30     | 2.25E-03 | 0.02    | 0.10     | na      | 0.02    | 0.10    |
|            |                     | EPA AP-42 Table 1.4-2 | N2O          | 2.20     | 2.16E-03 | 0.02    | 0.09     | na      | 0.02    | 0.09    |
|            |                     | 40CFR98 - Table A-1   | CO2e         | 120,713  | 118      | 1,148   | 5,029    | na      | 1,148   | 5,029   |

- 1 The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).
- 2 PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.
- 3 Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Application for 45CSR13 NSR Modification Permit

**Attachment N - Supporting Emissions Calculations** 

#### Produced Water Storage Tanks - 48 bbl and 210 bbl Capacity

| Unit ID | Material Stored | Сара  | city | Turnovers per Year | Throu   | (Working and (Flashing Los |                   | VOC Emission Factor | I VOC |      | n-Hexane and<br>BTEX (Each)<br>5.00% of VOC |      | Total HAP |      |
|---------|-----------------|-------|------|--------------------|---------|----------------------------|-------------------|---------------------|-------|------|---------------------------------------------|------|-----------|------|
|         |                 |       | bbl  |                    | gal/yr  | bbl/yr                     | Breathing Losses) | <b>, 3</b> ,        | lb/hr | tpy  | lb/hr                                       | tpy  | lb/hr     | tpy  |
| T01     | Produced Water  | 2,000 | 48   | 52                 | 104,000 | 2,476                      | 0.039 lb/bbl      | 0.074 lb/bbl        | 0.03  | 0.14 | 1.6E-03                                     | 0.01 | 0.01      | 0.04 |
| T02     | Produced Water  | 8,820 | 210  | 52                 | 458,640 | 10,920                     | 0.039 lb/bbl      | 0.074 lb/bbl        | 0.14  | 0.62 | 7.0E-03                                     | 0.03 | 0.04      | 0.18 |

| -             |        |     |    |         |        |
|---------------|--------|-----|----|---------|--------|
| TOTAL VOLUME: | 10,820 | 258 | 52 | 562,640 | 13,396 |

TOTAL EMISSIONS:

| 0.17 | 0.75 | 8.6E-03 | 0.04 | 0.05 | 0.23 |
|------|------|---------|------|------|------|

- 1 EPA-450/3-85-001a "Volatile Organic Compound Emissions from Petroleum Refinery Wastewater Systems Background Information for Proposed Standards" is a reasonable protocol for estimating potential produced water storage tank working and breathing emissions. EPA-450/3-85-001a, page 3-39, gives a VOC emission factor of 420 kg/MMgal wastewater produced in an oil-water separator. (0.420 g/gal \* 0.0022 lb/g \* 42 gal/bbl = 0.039 lb/bbl)
- 2 These emission estimates are nearly 4X more conservative than emission factors required by the TCEQ on the Barnett Shale produced water tanks at gas-only sites. (http://www.tceq.texas.gov/assets/public/implementation/air/ie/pseiforms/producedwaterstoragetank.pdf):

Table 1. Produced Water Storage Tank Flash Loss Emissions Factors for Barnett Shale Special Inventory Purposes ONLY

| Pollutant    | Average Produc            | ed Water Emission Factor (lb/bbl)           |
|--------------|---------------------------|---------------------------------------------|
|              | Gas Production Only Sites | Liquid Hydrocarbon and Gas Production Sites |
| VOC          | 0.01                      | 0.0402                                      |
| Benzene      | 0.0001                    | 0.000054                                    |
| Toluene      | 0.0003                    | 0.000130                                    |
| Ethylbenzene | 0.000006                  | 0.000003                                    |
| Xylene(s)    | 0.00006                   | 0.000049                                    |
| n-Hexane     | NA                        | 0.000987                                    |

- 3 Produced water storage tank flashing losses are estimated using the ProMax process simulation software.
- 4 Benzene is estimated at 5% of VOC emissions and Total HAP is estimated at 30.0% of VOC emissions. These is a very conservative estimate based on an investigation of other water and condensate emission estimating protocols, as exemplified above (e.g., Total HAP = (0.0001+0.00003+0.000006+0.00006)/0.01 = 4.7%).
- 5 Produced water storage tanks are heated to approximately 60 degrees Fahrenheit to prevent freezing.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Produced Water - Truck Load-Out 01

| Unit ID | Description                     | S         | Р    | М         | Т   | CE   | L <sub>L</sub> | T-Put   | VOC<br>AP-42 Sect 5.2 | n-Hexane, BTEX,<br>and 2,2,4-TMP (Ea)<br>5.00% of VOC | Total HAP |
|---------|---------------------------------|-----------|------|-----------|-----|------|----------------|---------|-----------------------|-------------------------------------------------------|-----------|
|         |                                 | sat. fac. | psia | lb/lb-mol | °R  | %    | lb/Mgal        | Mgal/yr | tpy                   | tpy                                                   | tpy       |
| TLO-1   | Truck Load-Out - Produced Water | 1.45      | 1.5  | 30.0      | 510 | 0.0% | 1.59           | 563     | 0.45                  | 2.2E-02                                               | 0.13      |

| TOTAL TLO: | 0.45 | 2.2E-02 | 0.13 |
|------------|------|---------|------|

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

 $L_L = 12.46 \times S \times P \times M / T \times (1 - CE)$ 

where:  $L_L$  = loading loss, lb/1000 gal of liquid loaded

S = saturation factor, use 1.45 for splash loading

P = true vapor pressure of liquid loaded, psia.

(Conservative estimate - Measured RVP (100 °F) ranges from 1.0 to 1.3 psia; so the actual TVP is expected to be less than 0.7 psia at common storage temperature.)

M = molecular weight of vapors, lb/lb-mol (Conservative estimate.)

T = temperature of bulk liquid loaded, °R = °F + 460 (Conservatively assumed 50 °F.)

CE = overall emission reduction efficiency (collection efficiency x control efficiency)

2 - Molecular weight and vapor pressure are based on operator experience and sampling data at various locations in the Marcellus Shale basin.

3 - The total storage tank capacity at the facility is:

258 bbl = 10,820 gal. 52 t-o/yr = 13,396 bbl/yr

4 - It is estimated that each tank will be emptied up to:

5 - n-Hexane, each BTEX, and 2,2,4-TMP components are estimated at 5% of VOC emissions and Total HAP is estimated at 30% of VOC emissions.  $\Box$ 

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Condensate - Truck Load-Out 02

| Unit ID | Description                 | s         | Р    | М         | т   | CE   | L       | T-Put   | VOC                   | n-Hexane, BTEX,<br>and 2,2,4-TMP (Ea) | Total HAP           |
|---------|-----------------------------|-----------|------|-----------|-----|------|---------|---------|-----------------------|---------------------------------------|---------------------|
|         |                             | sat. fac. | psia | lb/lb-mol | °R  | %    | lb/Mgal | Mgal/yr | AP-42 Sect 5.2<br>tpy | 1.41% of VOC<br>tpy                   | 8.49% of VOC<br>tpy |
|         | T 11 10 10 1                |           | •    |           |     | 70   |         |         |                       |                                       |                     |
| TLO-1   | Truck Load-Out - Condensate | 1.45      | 10.0 | 55.7      | 510 | 0.0% | 19.72   | 250     | 2.47                  | 0.03                                  | 0.21                |

| TOTAL TLO: | 2.47 | 0.03 | 0.21 |
|------------|------|------|------|

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

 $L_L = 12.46 \times S \times P \times MW / T \times (1 - CE)$ 

where:  $L_L = Loading loss, lb/1000 gal of liquid loaded.$ 

S = Saturation factor, use 1.45 for "splash loading".

P = True vapor pressure of liquid loaded, psia. Maximum of 10 psia.

IW = molecular weight of vapors, lb/lb-mol (taken from EPA Tanks 4.0 program).

T = Temperature of bulk liquid loaded, °R = °F + 460. (Conservatively assumed 60 °F.)

CE = Overall emission reduction efficiency (collection efficiency x control efficiency).

2 - The stabilized condensate product will be pumped down a pipeline for transport off-site. In the event of a pipline stoppage, the stabilized condensate will be loaded into tanker trucks for transport off-site.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### **Attachment N - Supporting Emissions Calculations**

#### Piping and Equipment Fugitives - Gas & Light Oil (Condensate)

| Unit ID | Description                 | Component<br>(Unit) Type | Unit  | THC<br>Factor | •     | arbons<br>IC) |       | OC<br>Wgt% | <b>'</b> | EX,TMP<br>Wgt% |         | HAP<br>Wgt% |         | O2<br>Wgt% | CI<br>100.00 | H4<br>Wgt% |        | )2e<br>' = 25 |
|---------|-----------------------------|--------------------------|-------|---------------|-------|---------------|-------|------------|----------|----------------|---------|-------------|---------|------------|--------------|------------|--------|---------------|
|         |                             | (Gas)                    | Count | lb/hr/Unit    | lb/hr | tpy           | lb/hr | tpy        | lb/hr    | tpy            | lb/hr   | tpy         | lb/hr   | tpy        | lb/hr        | tpy        | lb/hr  | tpy           |
|         |                             | Valves                   | 505   | 0.00992       | 5.01  | 21.94         | 1.53  | 6.69       | 8.8E-03  | 0.04           | 0.05    | 0.23        | 0.02    | 0.10       | 5.01         | 21.94      | 125.27 | 548.69        |
|         |                             | Pump Seals               |       |               |       |               |       |            |          |                |         |             |         |            |              |            |        |               |
| FUG-G   | Process Piping<br>Fugitives | Other                    | 98    | 0.01940       | 1.90  | 8.33          | 0.58  | 2.54       | 3.4E-03  | 1.5E-02        | 2.0E-02 | 0.09        | 8.4E-03 | 0.04       | 1.90         | 8.33       | 47.54  | 208.23        |
| (1F)    | (Gas)                       | Connectors               | 505   | 0.00044       | 0.22  | 0.98          | 0.07  | 0.30       | 3.9E-04  | 1.7E-03        | 2.4E-03 | 0.01        | 9.8E-04 | 0.00       | 0.22         | 0.98       | 5.57   | 24.39         |
|         | (- 332)                     | Flanges                  | 840   | 0.00086       | 0.72  | 3.16          | 0.22  | 0.96       | 1.3E-03  | 5.6E-03        | 7.6E-03 | 3.3E-02     | 3.2E-03 | 1.4E-02    | 0.72         | 3.16       | 18.06  | 79.10         |
|         |                             | Open-ended               | 5     | 0.00441       | 0.02  | 0.10          | 0.01  | 0.03       | 3.9E-05  | 1.7E-04        | 2.3E-04 | 1.0E-03     | 9.7E-05 | 4.3E-04    | 0.02         | 0.10       | 0.55   | 2.41          |
|         |                             | _                        | 1,953 |               | 7.88  | 34.51         | 2.40  | 10.52      | 1.4E-02  | 6.1E-02        | 0.08    | 0.36        | 0.03    | 0.15       | 7.88         | 34.51      | 196.99 | 862.82        |

| Unit ID | Description                 | Component (Unit) Type | Unit  | THC<br>Factor | •     | arbons<br>IC) | V0<br>100.00 | OC<br>Wgt% | ,       | EX,TMP<br>Wgt% |       | HAP<br>Wat% | 0.01    | O2<br>Wqt% | CI<br>0.40 | 14<br>Wat% | CO<br>GWP | -    |
|---------|-----------------------------|-----------------------|-------|---------------|-------|---------------|--------------|------------|---------|----------------|-------|-------------|---------|------------|------------|------------|-----------|------|
|         |                             | (Light Oil)           | Count | lb/hr/Unit    | lb/hr | tpy           | lb/hr        | tpy        | lb/hr   | tpy            | lb/hr | tpy         | lb/hr   | tpy        | lb/hr      | tpy        | lb/hr     | tpy  |
|         |                             | Valves                | 753   | 0.00551       | 4.15  | 18.18         | 4.15         | 18.18      | 0.06    | 0.26           | 0.35  | 1.54        | 4.4E-04 | 1.9E-03    | 0.02       | 0.07       | 0.42      | 1.84 |
|         | Process Piping<br>Fugitives | Pump Seals            | 15    | 0.02866       | 0.43  | 1.88          | 0.43         | 1.88       | 6.1E-03 | 0.03           | 0.04  | 0.16        | 4.6E-05 | 2.0E-04    | 0.00       | 0.01       | 0.04      | 0.19 |
| FUG-L   |                             | Other                 | 98    | 0.01653       | 1.62  | 7.10          | 1.62         | 7.10       | 0.02    | 0.10           | 0.14  | 0.60        | 1.7E-04 | 7.5E-04    | 0.01       | 0.03       | 0.16      | 0.72 |
| (2F)    | (Light Oil)                 | Connectors            | 505   | 0.00046       | 0.23  | 1.02          | 0.23         | 1.02       | 0.00    | 0.01           | 0.02  | 0.09        | 2.5E-05 | 1.1E-04    | 0.00       | 0.00       | 0.02      | 0.10 |
|         |                             | Flanges               | 1,092 | 0.00024       | 0.26  | 1.16          | 0.26         | 1.16       | 3.7E-03 | 1.6E-02        | 0.02  | 0.10        | 2.8E-05 | 1.2E-04    | 0.00       | 0.00       | 0.03      | 0.12 |
|         |                             | Open-ended            | 5     | 0.00309       | 0.02  | 0.07          | 0.02         | 0.07       | 2.2E-04 | 0.00           | 0.00  | 0.01        | 1.6E-06 | 7.2E-06    | 0.00       | 0.00       | 0.00      | 0.01 |
|         | _                           |                       | 2,468 |               | 6.71  | 29.41         | 6.71         | 29.41      | 0.10    | 0.42           | 0.57  | 2.50        | 7.1E-04 | 3.1E-03    | 0.03       | 0.12       | 0.68      | 2.98 |

| TOTAL FUGITIVE EMISSIONS: | 14.59 | 63.92 | 9.12 | 39.93 | 0.11 | 0.48 | 0.65 | 2.86 | 0.04 | 0.16 | 7.91 | 34.63 | 198 | 866 |
|---------------------------|-------|-------|------|-------|------|------|------|------|------|------|------|-------|-----|-----|

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Gas and Light Oil emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995.

| ·                |          |         |           |         |  |  |
|------------------|----------|---------|-----------|---------|--|--|
| TABLE 2.4        | Ga       | as      | Light Oil |         |  |  |
| O&G PROD (AVE)   | kg/hr    | lb/hr   | kg/hr     | lb/hr   |  |  |
| Valves           | 4.50E-03 | 0.00992 | 2.50E-03  | 0.00551 |  |  |
| Pump Seals       | na       | na      | 1.30E-02  | 0.02866 |  |  |
| Others           | 8.80E-03 | 0.01940 | 7.50E-03  | 0.01653 |  |  |
| Connectors       | 2.00E-04 | 0.00044 | 2.10E-04  | 0.00046 |  |  |
| Flanges          | 3.90E-04 | 0.00086 | 1.10E-04  | 0.00024 |  |  |
| Open-Ended Lines | 2.00E-03 | 0.00441 | 1.40E-03  | 0.00309 |  |  |

- 3 "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 4 To be conservative, the following gas characteristics were assumed:

| Pollutant           | G          | as          | Light Oil (Condensate) |             |  |  |  |
|---------------------|------------|-------------|------------------------|-------------|--|--|--|
| Fonutant            | Analysis   | Estimated   | Analysis               | Estimated   |  |  |  |
| Carbon Dioxide      | 0.37 Wgt%  | 0.44 Wgt%   | 0.01 Wgt%              | 0.01 Wgt%   |  |  |  |
| Methane             | 50.91 Wgt% | 100.00 Wgt% | 0.34 Wgt%              | 0.40 Wgt%   |  |  |  |
| VOC                 | 25.39 Wgt% | 30.47 Wgt%  | 97.09 Wgt%             | 100.00 Wgt% |  |  |  |
| n-Hex, BTEX, TMP-ea | 0.15 Wgt%  | 0.18 Wgt%   | 1.18 Wgt%              | 1.41 Wgt%   |  |  |  |
| Total HAP           | 0.88 Wgt%  | 1.06 Wgt%   | 7.07 Wgt%              | 8.49 Wgt%   |  |  |  |

#### **AP-42 and GHG EMISSION FACTORS**

(Preferentially use test data or vendor data where available)

|          |                           |          | GAS-FIRED ENGINE          |                |                                        | GAS-FIRED TURBINE |               |  |  |  |
|----------|---------------------------|----------|---------------------------|----------------|----------------------------------------|-------------------|---------------|--|--|--|
|          | Dellutent                 | AP-42    | Table 3.2-1; 3.2-2; 3.2-3 | <u>3 07/00</u> | AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00 |                   |               |  |  |  |
|          | Pollutant                 | 2SLB     | 4SLB                      | 4SRB           | Uncontrolled                           | Water Injection   | Lean Pre-Mix# |  |  |  |
|          |                           | lb/MMBtu | lb/MMBtu                  | lb/MMBtu       | lb/MMBtu                               | lb/MMBtu          | lb/MMBtu      |  |  |  |
|          | NOX (≥ 90% Load)          | 3.17E+00 | 4.08E+00                  | 2.21E+00       | 3.20E-01                               | 1.30E-01          | 9.90E-02      |  |  |  |
|          | CO (≥ 90% Load)           | 3.86E-01 | 3.17E-01                  | 3.72E+00       | 8.20E-02                               | 3.00E-02          | 1.50E-02      |  |  |  |
| ⋖        | THC (TOC)                 | 1.64E+00 | 1.47E+00                  | 3.58E-01       | 1.10E-02                               | 1.10E-02          | 1.10E-02      |  |  |  |
| CRITERIA | NMHC (THC-CH4)            | 1.90E-01 | 2.20E-01                  | 1.28E-01       | 2.40E-03                               | 2.40E-03          | 2.40E-03      |  |  |  |
| RIT      | NMNEHC (NMHC-C2H6)        | 1.19E-01 | 1.15E-01                  | 5.76E-02       | 2.10E-03                               | 2.10E-03          | 2.10E-03      |  |  |  |
| ਠ        | VOC                       | 1.20E-01 | 1.18E-01                  | 2.96E-02       | 2.10E-03                               | 2.10E-03          | 2.10E-03      |  |  |  |
|          | SO2*** (2,000 gr-S/MMscf) | 5.88E-04 | 5.88E-04                  | 5.88E-04       | 3.40E-03                               | 3.40E-03          | 3.40E-03      |  |  |  |
|          | PM10/2.5 (Filter+Cond)    | 4.83E-02 | 9.99E-03                  | 1.94E-02       | 6.60E-03                               | 6.60E-03          | 6.60E-03      |  |  |  |
|          | Benzene                   | 1.94E-03 | 4.40E-04                  | 1.58E-03       | 1.20E-05                               | 1.20E-05          | 9.10E-07      |  |  |  |
|          | Ethylbenzene              | 1.08E-04 | 3.97E-05                  | 2.48E-05       | 3.20E-05                               | 3.20E-05          | 3.20E-05      |  |  |  |
|          | Formaldehyde (HCHO)       | 5.52E-02 | 5.28E-02                  | 2.05E-02       | 7.10E-04                               | 7.10E-04          | 2.00E-05      |  |  |  |
| S        | n-Hexane                  | 4.45E-04 | 1.11E-03                  |                |                                        |                   |               |  |  |  |
| HAPs     | Methanol (MeOH)           | 2.48E-03 | 2.50E-03                  | 3.06E-03       |                                        |                   |               |  |  |  |
| I        | Toluene                   | 9.63E-04 | 4.08E-04                  | 5.58E-04       | 1.30E-04                               | 1.30E-04          | 1.30E-04      |  |  |  |
|          | TMP, 2,2,4- (i-Octane)    | 8.46E-04 | 2.50E-04                  |                |                                        |                   |               |  |  |  |
|          | Xylenes                   | 2.68E-04 | 1.84E-04                  | 1.95E-04       | 6.40E-05                               | 6.40E-05          | 6.40E-05      |  |  |  |
|          | Other HAPs                | 1.72E-02 | 1.44E-02                  | 6.36E-03       | 1.06E-04                               | 1.06E-04          | 1.06E-04      |  |  |  |
|          | CO2**** (GWP=1)           | 1.17E+02 | 1.17E+02                  | 1.17E+02       | 1.17E+02                               | 1.17E+02          | 1.17E+02      |  |  |  |
| GHG      | CH4 (GWP=25)              | 1.45E+00 | 1.25E+00                  | 2.30E-01       | 8.60E-03                               | 8.60E-03          | 8.60E-03      |  |  |  |
| 유        | N2O (GWP=298)             | 2.20E-04 | 2.20E-04                  | 2.20E-04       | 3.00E-03                               | 3.00E-03          | 3.00E-03      |  |  |  |
|          | CO2e                      | 1.53E+02 | 1.48E+02                  | 1.23E+02       | 1.18E+02                               | 1.18E+02          | 1.18E+02      |  |  |  |

|          |                            | GAS-FIR         | RED EXTERNAL COME | BUSTION          | FLARE                      | DIESEL ENGINE      |
|----------|----------------------------|-----------------|-------------------|------------------|----------------------------|--------------------|
|          |                            | AP-42 Table 1.4 |                   | //MBtu/hr) 07/98 | 13.5-1 04/15               | 3.3-1: 3.3-2 10/96 |
|          | Pollutant                  | Uncontrolled    | LoNOx Burners     | Flue Gas Recirc  | Combustion                 | Uncontrolled       |
|          |                            | lb/MMBtu        | lb/MMBtu          | lb/MMBtu         | lb/MMBtu                   | lb/MMBtu           |
|          | NOX                        | 9.80E-02        | 4.90E-02          | 3.14E-02         | 6.80E-02                   | 4.41E+00           |
|          | СО                         | 8.24E-02        | 8.24E-02          | 8.24E-02         | 3.10E-01                   | 9.50E-01           |
| ≤        | THC (TOC)                  | 1.08E-02        | 1.08E-02          | 1.08E-02         | ≥98%                       | 3.60E-01           |
| CRITERIA | NMHC (THC-CH4)             | 8.53E-03        | 8.53E-03          | 8.53E-03         | Destruction                | 3.53E-01           |
| 뭂        | NMNEHC (NMHC-C2H6)         | 5.49E-03        | 5.49E-03          | 5.49E-03         | and Removal                | 3.50E-01           |
| Ö        | VOC (NMNEHC+HCHO)          | 5.56E-03        | 5.56E-03          | 5.56E-03         | Efficiency                 | 3.60E-01           |
|          | SO2 (2,000 gr-S/MMscf)     | 5.88E-04        | 5.88E-04          | 5.88E-04         | 5.882E-04                  | 2.90E-01           |
|          | PM10/2.5 (Filter+Condense) | 7.45E-03        | 7.45E-03          | 7.45E-03         | 7.451E-03                  | 3.10E-01           |
|          | Benzene                    | 2.06E-06        | 2.06E-06          | 2.06E-06         |                            | 9.33E-04           |
|          | Ethylbenzene               |                 |                   |                  |                            |                    |
|          | HCHO (Formaldehyde)        | 7.35E-05        | 7.35E-05          | 7.35E-05         |                            | 1.18E-03           |
| ဟ        | n-Hexane                   | 1.76E-03        | 1.76E-03          | 1.76E-03         | ≥98%                       |                    |
| HAPs     | Methanol (MeOH)            |                 |                   |                  | Destruction<br>and Removal |                    |
| 1 -      | Toluene                    | 3.33E-06        | 3.33E-06          | 3.33E-06         | Efficiency                 | 4.09E-04           |
|          | 2,2,4-TMP (i-Octane)       |                 |                   |                  | ·                          |                    |
|          | Xylenes                    |                 |                   |                  |                            | 2.85E-04           |
|          | Other HAPs                 | 1.86E-06        | 1.86E-06          | 1.86E-06         |                            | 1.05E-03           |
|          | CO2 (GWP=1)                | 1.18E+02        | 1.18E+02          | 1.18E+02         | 1.18E+02                   | 1.64E+02           |
| GHG      | CH4 (GWP=25)               | 2.25E-03        | 2.25E-03          | 2.25E-03         | 98% DRE                    | 6.61E-03           |
| 효        | N2O (GWP=298)              | 2.16E-03        | 6.27E-04          | 6.27E-04         | 2.16E-03                   | 1.32E-03           |
|          | CO2e                       | 1.18E+02        | 1.18E+02          | 1.18E+02         | 1.18E+02                   | 1.65E+02           |

| 40 CFR 98 - DEFAULT EMISSION FACTORS |                  |                   |                                   |               |  |  |  |  |  |  |
|--------------------------------------|------------------|-------------------|-----------------------------------|---------------|--|--|--|--|--|--|
|                                      | Table C-1 to Sub | part C of Part 98 | Table C-2 to Subpart C of Part 98 |               |  |  |  |  |  |  |
| Fuel Type                            | Default HHV      | Carbon Dioxide    | Methane                           | Nitrous Oxide |  |  |  |  |  |  |
|                                      | Delault HHV      | lb CO2/MMBtu      | lb CH4/MMBtu                      | lb N2O/MMBtu  |  |  |  |  |  |  |
| Fuel Oil No. 2 (Diesel)              | 0.138 MMBtu/gal  | 163.05            | 6.61E-03                          | 1.32E-03      |  |  |  |  |  |  |
| Propane                              | 0.091 MMBtu/gal  | 138.60            | 6.61E-03                          | 1.32E-03      |  |  |  |  |  |  |
| Natural Gas                          | 1,026 Btu/scf    | 116.98            | 2.20E-03                          | 2.20E-04      |  |  |  |  |  |  |

| Global Warming Potential (100 Yr) (GWP) |      |      |  |  |  |  |  |  |  |
|-----------------------------------------|------|------|--|--|--|--|--|--|--|
| Table A-1 to Subpart A of Part 98       |      |      |  |  |  |  |  |  |  |
| CO2                                     | CH4* | N2O# |  |  |  |  |  |  |  |
| 1.00 25.00 298.00                       |      |      |  |  |  |  |  |  |  |

#Revised by EPA on 11/29/13

| Conversion Factors |                     |  |  |  |  |  |  |  |  |  |  |
|--------------------|---------------------|--|--|--|--|--|--|--|--|--|--|
| http://www.o       | nlineconversion.com |  |  |  |  |  |  |  |  |  |  |
| 1.0 lb =           | 453.592 g           |  |  |  |  |  |  |  |  |  |  |
| 1.0 kg =           | 2.205 lb            |  |  |  |  |  |  |  |  |  |  |
| 1.0 hp =           | 2,544.433 Btu/hr    |  |  |  |  |  |  |  |  |  |  |
| 1.0 hp =           | 745.700 Watt        |  |  |  |  |  |  |  |  |  |  |
| 1.0 kW =           | 3,412.142 Btu/hr    |  |  |  |  |  |  |  |  |  |  |
| 1.0 kW-hr =        | 1.340 hp-hr         |  |  |  |  |  |  |  |  |  |  |
| 1.0 cf =           | 7.481 gal           |  |  |  |  |  |  |  |  |  |  |
| 1.0 gal H2O =      | 8.338 lb            |  |  |  |  |  |  |  |  |  |  |
| 1.0  cf H2O =      | 62.371 gal          |  |  |  |  |  |  |  |  |  |  |
| 1.0 m =            | 3.281 ft            |  |  |  |  |  |  |  |  |  |  |
| 1.0 km =           | 0.621 mi            |  |  |  |  |  |  |  |  |  |  |
| 1.0 acre =         | 43,560.174 ft2      |  |  |  |  |  |  |  |  |  |  |
| 1.0 °F =           | (°C*9/5)+32         |  |  |  |  |  |  |  |  |  |  |
| 1.0 °R =           | °F+459.67           |  |  |  |  |  |  |  |  |  |  |
| 1.0 % =            | 10,000 ppm          |  |  |  |  |  |  |  |  |  |  |
| UGC (stp) =        | 379.48 scf/lb-mol   |  |  |  |  |  |  |  |  |  |  |
|                    |                     |  |  |  |  |  |  |  |  |  |  |

<sup>\*</sup>Converted Ext Comb Emission Factors to lb/MMBtu by dividing lb/MMscf by AP-42 default HHV of 1,020 Btu/scf.

<sup>\*\*</sup>Converted GHG Emission Factors to lb/MMBtu by multiplying kg/MMBtu by 2.2046 lb/kg.

<sup>\*\*\*</sup>Assumes 100% conversion of fuel sulfur to SOX (2,000 gr/MMscf).

<sup>\*\*\*\*</sup>Assumes 99.5% conversion of fuel carbon to CO2 for natural gas.

#### **ATTACHMENT O**

## Monitoring/Recordkeeping/Reporting/Testing Plans (NOT APPLICABLE)

| "31.    | Monitoring,     | Recordkee     | ping, Re   | porting ar   | nd Testing    | Plans.  | Attach    | proposed     |
|---------|-----------------|---------------|------------|--------------|---------------|---------|-----------|--------------|
| monito  | oring, recordke | eeping, repo  | orting and | testing plan | ns in order t | to demo | nstrate o | compliance   |
| with th | ne proposed     | emissions I   | imits and  | operating    | parameters    | in this | permit a  | application. |
| Provid  | e this informa  | tion as Attac | chment O.  | "            |               |         |           |              |

| • | Monitoring | /Recordkee | ping/Re | porting/1 | <b>Testing</b> | <b>Plans</b> |
|---|------------|------------|---------|-----------|----------------|--------------|
|   |            |            |         |           |                |              |

No changes to the current Monitoring/Recordkeeping/Reporting/Testing requirements are proposed.

### ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans

## Williams Ohio Valley Midstream LLC CONNER COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit

Williams Ohio Valley Midstream LLC proposes the following monitoring, recordkeeping, reporting and testing requirements.

#### <u>Monitoring</u>

- 1. Monitor and record quantity of natural gas combusted in each heater and engine.
- 2. Monitor and record quantity of natural gas treated in the dehydrators.
- 3. Monitor and record quantity of produced water/stabilized condensate transferred from the storage tanks.
- 4. Monitor all applicable requirements of 40CFR60 Subparts JJJJ and OOOO.

#### Recordkeeping

- 1. Maintain records of the amount of natural gas consumed and hours of operation for each heater and engine.
- 2. Maintain records of the amount of natural gas treated in the dehydrators.
- 3. Maintain records of the amount of produced water/stabilized condensate transferred from the storage tanks.
- 4. Maintain records of testing conducted in accordance with the permit. Said records will be maintained on-site or in a readily accessible off-site location.
- Maintain a record of all potential to emit (PTE) HAP calculations for the entire facility.
   These records shall include the heaters, compressor engines, dehydration units and ancillary equipment.
- Maintain records of all applicable requirements of 40CFR60 Subparts JJJJ and OOOO.
- 7. The records shall be maintained on site or in a readily available off-site location for a period of five (5) years.

#### Testing

Perform an initial compliance test on each Caterpillar G3516B and Caterpillar G3306B TA compressor engine as per requirements of 40CFR60 Subpart JJJJ. Subsequent emissions testing to be performed in accordance with 40CFR 60 Subpart JJJJ as applicable.

#### ATTACHMENT P

#### **Public Notice**

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

#### **CONNER COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

#### Attachment P - Public Notice

### AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Modification Permit for an existing natural gas compressor station located on the south side of Kull Lane Airport Access Rd., approximately 0.2 miles east of Roberts Ridge Rd (CR-21), approximately 2.3 miles south-southwest of Moundsville, Marshall County, WV.

The latitude and longitude coordinates are 39.8808° North and -80.7468° West.

| The applicant estimates the increase/(decrease) in the potential to discharge regulated air pollutants will be as follows | The applican | it estimates | the increase/ | (decrease) | in the | potential to | discharge | regulated a | ir pollutants | will be as | follows |
|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|------------|--------|--------------|-----------|-------------|---------------|------------|---------|
|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|------------|--------|--------------|-----------|-------------|---------------|------------|---------|

- 3.29 tons of nitrogen oxides per year9.86 tons of carbon monoxide per year
- 27.96 tons of volatile organic compounds per year
- 0.02 tons of sulfur dioxide per year
- 0.39 tons of particulate matter per year
- (1.41) tons of total hazardous air pollutants per year
- 6,789 tons of carbon dioxide equivalent per year

Startup of modifications are anticipated within one (1) month of authorization.

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality (DAQ), 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

| Dated this | the day of                         | 20 |
|------------|------------------------------------|----|
| Ву:        | Williams Ohio Valley Midstream LLC |    |
|            | Don Wicburg                        |    |
|            | Vice President and General Manager |    |
|            | 100 Teletech Drive, Suite 2        |    |
|            | Moundsville, WV 26041              |    |

# ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)

also

# ATTACHMENT R Authority Forms (NOT APPLICABLE)

also

# ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

#### **APPLICATION FEE**

Include a check payable to WVDEP – Division of Air Quality.

- As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **minimum fee of \$1,000** must be submitted for each 45CSR13 permit application filed with the WVDEP-DAQ.
- **Additional charges** may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:

NSPS Requirements: \$1,500 (Subpart OOOO)
 NESHAP Requirements: \$2,500 Not Applicable

• Total application fee is **\$2,500** [= \$1,000 minimum fee + \$1,500 additional charges]

| ***** End of Application for 45CSR13 NSR Modification Permit **** |
|-------------------------------------------------------------------|
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |



WILLIAMS FIELD SERVICES GROUP, INC PO BOX 21218 TULSA, OK 74121-1218

COMPANY NUMBER: 4000

CHECK NUMBER: 4000110274

| PAY DATE  | SUPPLIER NO. | SUPPLIER NAME                    | CHECK TOTAL |
|-----------|--------------|----------------------------------|-------------|
| 04-JUN-15 | 526257       | WV DEP - DIVISION OF AIR QUALITY | 2,500.00    |

|             |                                                   |             |          | 2,500.0        |
|-------------|---------------------------------------------------|-------------|----------|----------------|
| nvoice Date | Invoice Or Credit Memo /<br>Invoice Description   | Gross       | Discount | Net            |
| 2-JUN-15    | 02-JUN-2015 / AIR PERMIT APPLICATION FEE FOR CORN | 2,500.00    | 0.00     | 2,500.00       |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             | a a                                               |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             | ,                                                 |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             | 9        |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             |          |                |
|             |                                                   |             | - 1      |                |
|             |                                                   |             |          |                |
|             | Cumplion Cumpout 1 066 770 2665                   | N 577       | ***      | E. NORTH PARTY |
|             | Supplier Support 1-866-778-2665                   | Page Totals | 0.00     | 2,500.         |

VERIFY THE AUTHENTICITY OF THIS MULTI-TONE SECURITY DOCUMENT.

CHECK BACKGROUND AREA CHANGES COLOR GRADUALLY FROM TOP TO BOTTOM.



WILLIAMS FIELD SERVICES GROUP, INC

PO BOX 21218

TULSA, OK 74121-1218

Company Number: 4000

JPMorgan Chase Bank, N.A. 70-2322/719 Chicago, IL

Check Number: 4000110274

Check Date: 04-JUN-15

Two Thousand Five Hundred Dollars And Zero Cents

Pay To The Order Of:

WV DEP - DIVISION OF AIR QUALITY 601 57TH ST SE CHARLESTON, WV 25304 United States PAY (USD)

\$2,500.00

**Authorized Signature** 

From: (412) 787-4197 Danell Zawaski WILLIAMS 2000 Commerce Drive Park Place 2 Pittsburgh, PA 15275

Origin ID: OILA

Fed ₹x.

Ship Date: 12JUN15 ActWgt: 1.0 LB CAD: 104269589/INET3610

Delivery Address Bar Code

BILL SENDER

SHIP TO: (304) 926-0499 X 1269 **Beverly McKeone** WV Div of Air Quality - Permitting

601 57th Street, SE

Charleston, WV 25304

60000006200060034.6228.8325 Invoice # PO #

TUE - 16 JUN AA

TRK# 7738 2391 5428

\*\* 2DAY \*\*



25304 WVJIS HTS



- After printing this label:

  1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

  2. Fold the printed page along the horizontal line.

  3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of

your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's loss, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented limits, see current FedEx Service Guide. Written claims must be filed within strict time