

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275 (412) 787-7300 (412) 787-6002 fax

May 28, 2015 (Via Federal Express)

Beverly McKeone New Source Review Program Manager Division of Air Quality **West Virginia Department of Environmental Protection** 601 57th Street SE Charleston, WV 25304-2345

Subject: Application for 45CSR13 NSR Modification Permit Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS) Marshall County, West Virginia

Dear Ms. McKeone,

Williams Ohio Valley Midstream LLC (OVM) is submitting an Application for 45CSR13 New Source Review (NSR) Modification Permit for the existing Snyder Compressor Station (CS) located off McCreary's Ridge Rd, approx. 5.4 mi east-northeast of Moundsville, in Marshall County, West Virginia.

The existing Cummins GTA855 compressor engine will be replaced with another Cummins GTA855 compressor engine at the site. Although the new engine will result in an emissions decrease and emissions will be below the 45CSR13 permit exemption thresholds, the new engine will be subject to NSPS Subpart JJJJ requirements. Approval to change the engine prior to obtaining a permit modification was granted by Mr. Robert Keatley via e-mail dated May 19, 2015. This approval is contingent upon the submittal of a permit modification application by June 1, 2015. Accordingly, this application for 45CSR13 NSR Modification Permit has been prepared and submitted to request authorization for construction and operation of the facility, as follows:

Beverly McKeone WVDEP – Division of Air Quality May 28, 2015 Page 02 of 02

Emission Units Unit Point Year **Emission Unit Description Design Capacity** ID ID Installed **CE-01** 1E 68 bhp Arrow VRG-330-A-54 Compressor Engine 2012 68 bhp CE-02 2E 225 bhp Cummins GTA-855 Compressor Engine 2015 225 bhp Rod Packing/Crankcase Leaks RPC 3E 2012 293 bhp (tot) SSM 4E Startup/Shutdown/Maintenance (Blowdown (BD)) 2012 208 BD/unit/yr 5.0 MMscfd Dehydrator - Flash Tank **DFT-01** 5E 2012 5.0 MMscfd **DSV-01** 5.0 MMscfd Dehydrator - Regenerator/Still Vent 5.0 MMscfd 6E 2012 **RBV-01** 7E 0.22 MMBtu/hr Reboiler Vent 2012 0.22 MMBtu/hr TK-01 8E Produced Water - Storage Tank 2014 210 bbl Produced Water - Truck Load-Out TLO 9E 2014 2,520 bbl/yr Piping and Equipment Fugitives FUG 10E 2012 na

(NEW and Modified Units are in Shaded Cells)

The facility continues to qualify as a Minor Source under Non-Attainment New Source Review (NNSR), Prevention of Significant Deterioration (PSD), and Title V Operating Permits. The facility is also an Area Source for Hazardous Air Pollutants (HAP) under the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations.

If you have any questions concerning this submittal or need additional information, please contact me at (412) 787-4259 or danell.zawaski@williams.com.

Sincerely,

<

Smell Jacobi

R. Danell Zawaski, PE Environmental Specialist

Enclosures:

Application for NSR Modification Permit w/ Attachments A through S Check for Application Fee

APPLICATION FOR 45CSR13 NEW SOURCE REVIEW (NSR) MODIFICATION PERMIT

For the:

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Marshall County, West Virginia

Submitted to:

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

Submitted by:

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111

May 2015

APPLICATION FOR NEW SOURCE REVIEW (NSR) MODIFICATION PERMIT

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Marshall County, West Virginia

TABLE OF CONTENTS

COVER LETTER

APPLICATION FOR NSR PERMIT

ATTACHMENTS TO APPLICATION

- ATTACHMENT A Business Certificate
- ATTACHMENT B Location/Topographic Map
- ATTACHMENT C Installation and Start-Up Schedule
- ATTACHMENT D Regulatory Discussion
- ATTACHMENT E Plot Plan
- ATTACHMENT F Detailed Process Flow Diagram (PFD)
- ATTACHMENT G Process Description
- ATTACHMENT H Material Safety Data Sheets (MSDS)
 - (And Representative Extended Gas Analysis)
- ATTACHMENT I Emission Units Table
- ATTACHMENT J Emission Points Data Summary Sheet(s)
- ATTACHMENT K Fugitive Emissions Data Summary Sheet(s)
- ATTACHMENT L Emissions Unit Data Sheet(s)
- ATTACHMENT M Air Pollution Control Device Sheet(s)
- ATTACHMENT N Supporting Emissions Calculations
- ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans
- ATTACHMENT P Public Notice
- ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)
- ATTACHMENT R Authority Forms (NOT APPLICABLE)
- ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

APPLICATION FEE

APPLICATION FOR 45CSR13 NSR MODIFICATION PERMIT

- Section I. General
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 <u>WWW.dep.wv.gov/dag</u>	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): □ CONSTRUCTION □ MODIFICATION □ RELOCATION □ CLASS I ADMINISTRATIVE UPDATE □ TEMPORARY □ CLASS II ADMINISTRATIVE UPDATE □ AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT SIGNIFICANT MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION

FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.

Section I. General

1.	Name of applicant (as registered with the WV Secretary of WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM)	2. Federal Employer ID No. (FEIN): 2 7 – 0 8 5 6 7 0 7					
3.	Name of facility (if different from above): SNYDER COMPRESSOR STATION (CS)		 4. The applicant is the: ☐ OWNER ☐ OPERATOR ⊠ BOTH 				
5A.	Applicant's mailing address: PARK PLACE CORPORATE CENTER 2 2000 COMMERCE DRIVE, PITTSBURGH, PA 15275	MCCREA	oresent physical address: RY'S RIDGE RD LL COUNTY, WV 26033				
6.	West Virginia Business Registration. Is the applicant a re- If YES, provide a copy of the Certificate of Incorporation name change amendments or other Business Registration If NO, provide a copy of the Certificate of Authority/Au- change amendments or other Business Certificate as Attace	on/Organization/L Certificate as Atta thority of L.L.C./F	imited Partnership (one page) including any achment A.				
7.	If applicant is a subsidiary corporation, please provide the r	name of parent co	rporation: THE WILLIAMS COMPANIES, INC.				
8.	 B. Does the applicant own, lease, have an option to buy, or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: APPLICANT OWNS THE COMPRESSOR STATION (CS) If NO, you are not eligible for a permit for this source. 						
9.	relocated, administratively updated or temporarily permitted (e.g., coal		10. North American Industry Classification System (NAICS) code for the facility:				
	preparation plant, primary crusher, etc.): NATURAL GAS PRODUCTION FACILITY		213112 – SUPPORT ACTIVITIES FOR OIL AND GAS OPERATIONS				
11A.	DAQ Plant ID No. (existing facilities): 051-00166		rent 45CSR13 and 45CSR30 (Title V) permit associated with this process (existing facilities):				
12A.	Directions to the facility:	1					
	 For Modifications, Administrative Updates or Tempor present location of the facility from the nearest state road; 	ary permits at an	existing facility, please provide directions to the				
	 For Construction or Relocation permits, please provid state road. Include a MAP as Attachment B. 	e directions to the	proposed new site location from the nearest				
	DIRECTIONS FROM WHEELING AVE IN MOUNDSVILLE: A. HEAD EAST ONTO JEFFERSON AVE ~ 0.7 MI; B. TURN LEFT ONTO 1ST ST ~ 0.8 MI; C. TURN LEFT ONTO US-250/WAYNESBURG PK ~ 6.2 MI; J. TURN LEFT ONTO GRAVEL ACCESS ROAD ~ 0.4 MI; F. ENTRANCE TO SITE IS ON THE LEFT.						
All o	f the required forms and additional information can be found ur	der the Permitting	Section of DAQ's website, or requested by phone.				
	WILLIAMS OHIO VALLE SNYDER COMPRES						

APPLICATION FOR 45CSR13 NSR MODIFICATION PERMIT PAGE 01 OF 04

12.B.	New site address (if applicable): MCCREARY'S RIDGE RD	12C. Nearest city or town: MOUNDSVILLE	12D. County: MARSHALL								
12.E.	UTM Northing (KM): 4,421.38 KM NORTHING	12F. UTM Easting (KM): 531.70 km EASTING	12G. UTM Zone: 17S								
13.											
14A.	Provide the date of anticipated installation o – If this is an After-The-Fact permit applica proposed change did happen: NA	-	 14B. Date of anticipated Start-Up if a permit is granted: 05/22/15 (per approval from WVDEP e-mail dated 05/19/15) 								
14C.	Provide a Schedule of the planned Installa application as Attachment C (if more than or		of the units proposed in this permit								
15.	Provide maximum projected Operating Sch Hours Per Day: 24 Days Per Wee	-	application:								
16.	Is demolition or physical renovation at an ex	isting facility involved? 🛛 YES 🖂 N	10								
17.	Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.										
18.											
-	Section II. Additiona	al attachments and supportin	ng documents.								
19.	Include a check payable to WVDEP – Divisi 45CSR13).	on of Air Quality with the appropriate apr	lication fee (per 45CSR22 and								
20.	Include a Table of Contents as the first page	ge of your application package.									
21.	Provide a Plot Plan , e.g. scaled map(s) and source(s) is or is to be located as Attachme		e property on which the stationary								
	- Indicate the location of the nearest occup	bied structure (e.g. church, school, busine	ess, residence).								
22.	Provide a Detailed Process Flow Diagram device as Attachment F.	(s) showing each proposed or modified e	emissions unit, emission point and control								
23.	Provide a Process Description as Attachn	nent G.									
	 Also describe and quantify to the extent p 	ossible all changes made to the facility s	ince the last permit review (if applicable).								
24.	Provide Material Safety Data Sheets (MSD	(S) for all materials processed, used or p	roduced as Attachment H.								
	 For chemical processes, provide a MSDS 	for each compound emitted to the air.									
25.	Fill out the Emission Units Table and provi	de it as Attachment I.									
26.	Fill out the Emission Points Data Summar	y Sheet (Table 1 and Table 2) and prov	ide it as Attachment J.								
27.	Fill out the Fugitive Emissions Data Summ	nary Sheet and provide it as Attachmen	t K.								
All o	f the required forms and additional information	can be found under the Permitting Section	of DAQ's website, or requested by phone.								

28.	Check all applicable Emissions Unit Data Sh	heets listed below:					
	Bulk Liquid Transfer Operations (TLO)	Haul Road Emissions	Quarry				
	Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling				
	Concrete Batch Plant	Incinerator	and Storage Facilities				
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks (TK-01)				
	🛛 General Emission Unit, specify:						
	COMPRESSOR/GENERATOR ENGINE - 68		· ·				
	COMPRESSOR/GENERATOR ENGINE – 22 DEHYDRATOR – 5.0 MMSCFD W/ FLASH T		. ,				
	Fill out and provide the Emissions Unit Data S						
29.	Check all applicable Air Pollution Control						
	Advantion Systems	Baghouse	Flare				
	Adsorption Systems	Condenser	Mechanical Collector				
	Afterburner	Electrostatic Precipitator	Wet Collecting System				
	☑ Other Collectors, specify: Non-Selective Catalytic Reduction (NSCR)						
	Non-Selective Catalytic Reduction (NSCR)						
	Fill out and provide the Air Pollution Control E	Device Sheet(s) as Attachment M.					
30.	Provide all Supporting Emissions Calcula Items 28 through 31.	tions as Attachment N, or attach the c	alculations directly to the forms listed in				
31.	Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.						
>	Please be aware that all permits must be pra measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve	e able to accept all measures proposed	by the applicant. If none of these plans				
32.	Public Notice. At the time that the applica circulation in the area where the source is o <i>Advertisement</i> for details). Please submit the	r will be located (See 45CSR§13-8.3	through 45CSR§13-8.5 and Example Legal				
33.	Business Confidentiality Claims. Does this	s application include confidential inform	nation (per 45CSR31)?				
>	If YES, identify each segment of information segment claimed confidential, including the c Notice – Claims of Confidentiality" guidance f	riteria under 45CSR§31-4.1, and in ac	cordance with the DAQ's "Precautionary				
	Section I	III. Certification of Informat	tion				
34.	Authority/Delegation of Authority. Only re Check applicable Authority Form below:	quired when someone other than the r NA	esponsible official signs the application.				
	Authority of Corporation or Other Busi	ness Entity 🛛 Authority of Pa	rtnership				
	Authority of Governmental Agency	Authority of Lin	nited Partnership				
	Submit completed and signed Authority F	orm as Attachment R.					
All of	the required forms and additional information ca		of DAQ's website, or requested by phone.				

35A. Certification of Information. To certify this permit application, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIC	SNATURE: (Please use blue ipk)		DATE	5	5/21/2015 (Please use blue ink)	_
35B.	Printed name of signee:	35C.	Title:			
	DON WICBURG		VICE PRESIDENT AND G	ENER/	AL MANAGER	
35D.	E-mail:	36E.	Phone:	36F.	FAX:	
	DON.WICBURG@WILLIAMS.COM		(304) 843-3158		(304) 843-3131	
36A.	Printed name of contact person:	36B.	Title:	0		
	R. DANELL ZAWASKI, PE		ENVIRONMENTAL SPEC	IALIST		
36C.	E-mail:	36D.	Phone:	36E.	FAX:	
	DANELL.ZAWASKI@WILLIAMS.COM		(412) 787-4259		(412) 787-6002	

🛛 Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet
🛛 Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)
🛛 Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations
🛛 Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
🛛 Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice
Attachment G: Process Description	Attachment Q: Business Confidential Claims) (NA)
🛛 Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms) (NA)
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information) (NA)
Attachment J: Emission Points Data Summary Sheet	Application Fee

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and

□ For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit

For Title V Minor Modifications:

□ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- NSR permit writer should notify a Title V permit writer of draft permit,
- □ Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM) SNYDER COMPRESSOR STATION (CS) APPLICATION FOR 45CSR13 NSR MODIFICATION PERMIT PAGE 04 OF 04

ATTACHMENT A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

- Certificate of Amendment to the Certificate of Authority
 - From: CAIMAN EASTERN MIDSTREAM, LLC
 - To: WILLIAMS OHIO VALLEY MIDSTREAM LLC
 - Date: May 15, 2012
- Certificate of Authority of a Foreign Limited Liability Company
 - To: CAIMAN EASTERN MIDSTREAM, LLC
 - Date: September 11, 2009

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

Secretary of State

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

متوردة فيعدمه مرمورين المدهم متدا

Secretary of State

ATTACHMENT B

Location/Topographic Map

"12A. For **Modifications, Administrative Updates** or **Temporary** permits at an existing facility, please provide directions to the present location of the facility from the nearest state road. Include a MAP as Attachment B."

Address:

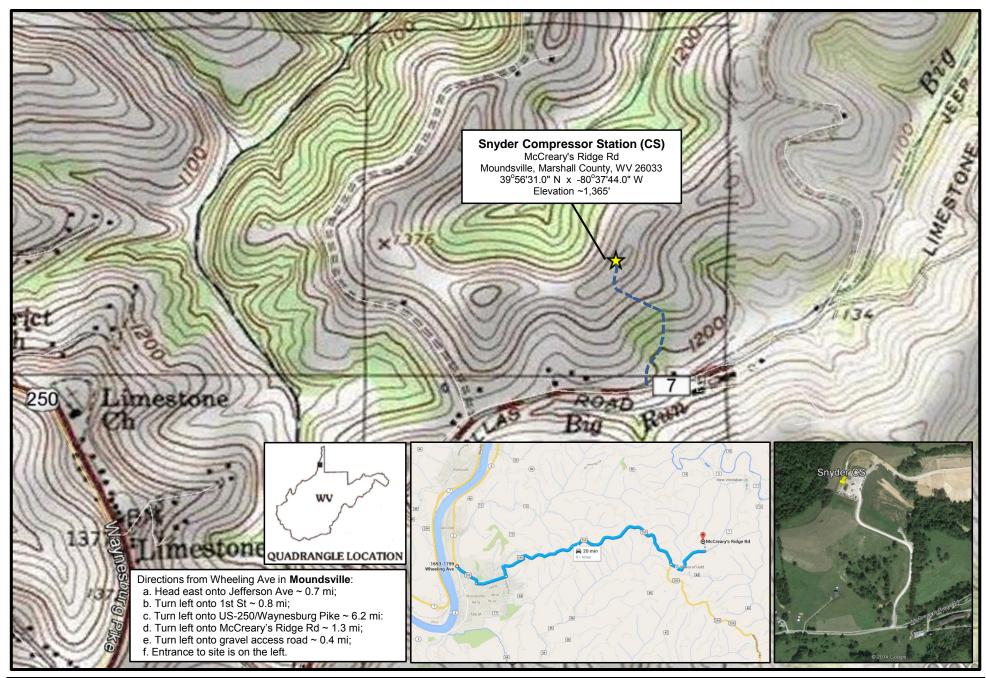
McCreary Rd Moundsville, WV 26033

Latitude and Longitude:

39°56'31.0" North x -80°37'44.0" West (39.9419° North x -80.6289° West)

UTM:

531.70 km Easting x 4,421.38 km Northing x Zone: 17S


Directions:

From Wheeling Ave in Moundsville:

- a. Head east onto Jefferson Ave ~ 0.7 mi;
- b. Turn left onto 1st St ~ 0.8 mi;
- c. Turn left onto US-250/Waynesburg Pike ~ 6.2 mi:
- d. Turn left onto McCreary's Ridge Rd ~ 1.3 mi;
- e. Turn left onto gravel access road ~ 0.4 mi;
- f. Entrance to site is on the left.
- USGS –7.5 Minute Topographic Moundsville, WV-OH
- USGS 7.5 Minute Topographic Majorsville, WV-PA

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS) Application for 45CSR13 NSR Construction Permit

Attachment B - Location/Topographic Map

SNYDER COMPRESSOR STATION (CS)

ATTACHMENT C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

- The OVM Snyder CS is an existing operation, including:
 - One (1) 68 bhp Arrow VRG-330-A-54 Compressor Engine (CE-01)
 - Rod Packing and Crankcase Emissions (RPC)
 - Startup/Shutdown/Maintenance Emissions (SSM)
 - One (1) 225 bhp Cummins GTA-855 Compressor Engine (CE-02)
 - Rod Packing and Crankcase Emissions (RPC)
 - Startup/Shutdown/Maintenance Emissions (SSM)
 - One 5.0 MMscfd TEG Dehydrator (DFT-01 and DSV-01)
 - One (1) 0.22 MMBtu/hr Reboiler (RBV-01)
 - One (1) 210 bbl Produced Water Storage Tank (TK-01)
 - Produced Water Truck Load-out (TLO)
 - Fugitive Emissions from Piping and Equipment (FUG)
- OVM proposes to replace the existing Cummins GTA-855 compressor engine with a different Cummins GTA-855 compressor engine:
- The new Cummins GTA-855 is anticipated to be installed on May 22, 2015. Approval to change the engine prior to obtaining a permit modification was granted by Mr. Robert Keatley via e-mail dated May 19, 2015 (see following page). This approval is contingent upon the submittal of a permit modification application by June 1, 2015.

From: Keatley, Robert L [mailto:Robert.L.Keatley@wv.gov]
Sent: Tuesday, May 19, 2015 9:20 AM
To: Zawaski, Danell
Cc: McKeone, Beverly D; Durham, Shanda; Fernald, Don; Adkins, Jesse D; Jarrett, James F; Carey, Angela E; Weisenborn, Eric P
Subject: RE: Snyder and Hazlet Engines

Danell,

The DAQ has reviewed your request for a like-kind engine (225 hp) replacement at both Snyder and Hazlet locations prior to obtaining a permit modification. The DAQ approves your request as long as Williams submits permit modification applications by June 1, 2015 and updates the associated permits timely. If you have any questions, please contact myself. Thanks

Rob

Robert Keatley, PE

Senior Engineer Supervisor, Compliance and Enforcement Division of Air Quality 601 57th Street, SE Charleston, WV 25304 **Direct** (304) 926-0499 ext. 1695 | **Fax** (304) 926-0479 e-mail: <u>Robert.L.Keatley@wv.gov</u> west virginia department of environmental protection "Promoting a healthy environment"

From: Zawaski, Danell [mailto:Danell.Zawaski@williams.com]
Sent: Thursday, May 14, 2015 11:01 AM
To: Keatley, Robert L
Cc: McKeone, Beverly D; Durham, Shanda; Fernald, Don
Subject: Snyder and Hazlet Engines

Hi Robert,

The Cummins GTA 855 engines have been installed at our Snyder and Hazlet compressor stations in accordance with Permits R13-3210 and R13-3209. We have found that the units will not work and have been unable to keep the engines running for any length of time. We need to get this problem corrected quickly and the fastest way to do this is to replace the units completely. We have identified two like-kind engines that are the same make and model that should work. The difference is that the replacement engines are newly manufactured units and would be subject to NSPS JJJJ. The existing engines are not subject to NSPS JJJJ. Since the replacement engines are subject to NSPS JJJJ they would require a catalyst and have significantly lower emissions than the current engines. Pedigrees for the replacement engines and existing engines are attached.

<u>New Engines</u> Pedigree 6736 Pedigree 6737 <u>Old Engines</u> Pedigree 5102 Pedigree 5103

We understand that this change may require a permit modification and have started working on the permit application. We would like permission to install the new engines before the permit modification is issued by WVDEP. Thank you for your consideration.

Regards, Danell

R. Danell Zawaski, FE

Environmental Specialist NEGP Environmental Services 304-843-3133 Moundsville 412/787-4259 Pittsburgh 505/787-7926 cell 412/787-6002 fax Danell.zawaski@williams.com

ATTACHMENT D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

• Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Attachment D **Regulatory Discussion**

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas production facilities. Applicability to the subject facility has been determined as follows:

1. Prevention of Significant Deterioration (PSD)

This rule does not apply. The facility is a "PSD Minor Source" for each regulated pollutant, as follows:

- PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy • NOx:
- CO: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- VOC: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy SO2:
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy

2. Non-Attainment New Source Review (NNSR)

This rule does not apply. The facility location is designated as either "Maintenance" or "Attainment/Unclassified" for all criteria pollutants.

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule does not apply. The facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Individual HAP PTE < 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy

4. Title V Operating Permit (TVOP)

This rule does not apply. The facility qualifies as a "Title V Minor Source" as follows:

- NOx: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- CO: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpv
- VOC: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- SO2: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- PM10/2.5: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- Each HAP: Title V Natural Minor Source with Pre-Controlled PTE < 10 tpy
- Total HAPs: Title V Natural Minor Source with Pre-Controlled PTE < 25 tpy

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

Attachment D - Regulatory Discussion - Page 01 of 08

B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

1. NSPS Dc, Steam Generating Units

40CFR§60.40c-§60.48c

This rule <u>does not apply</u> because there is no steam generating unit at the facility with a maximum design heat input capacity \geq 10 MMBtu/hr and \leq 100 MMBtu/hr (§60.40c(a)).

2. NSPS Kb, Volatile Organic Liquid Storage Vessels

40CFR§60.110b-§60.117b

This rule <u>does not apply</u> because there is no tank used to store volatile organic liquids (VOL) with a design capacity \geq 75 m3 (19,815 gal, 471.79 bbl) (§60.110b(a)).

3. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule <u>does not apply</u> because there is no stationary gas turbine at the facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired (§60.330).

4. NSPS KKK, Leaks from Natural Gas Processing Plants

40CFR§60.630-§60.636

This rule <u>does not apply</u> because the facility is not a natural gas processing plant (§60.630(a)).

5. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions 40CFR§60.640-§60.648

This rule <u>does not apply</u> because there is no gas sweetening operation at the facility (§60.640(a)).

 6. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines

 40CFR§60.4200-§60.4219
 [Not Applicable]

This rule <u>does not apply</u> because there is no stationary compression ignition engine at the facility (§60.4200(a)).

 7. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE)

 40CFR§60.4230-§60.4248
 [Applicable]

This rule <u>does not apply</u> to the existing 68 bhp Arrow VRG-330-A-54 Compressor Engine (CE-01) because the maximum engine power is less than 500 HP and the manufacture date of the engine is prior to 07/01/08 (§60.4230(a)(4)(iii)). This rule <u>does</u> <u>apply</u> to the NEW 225 bhp Cummins GTA-855 Compressor Engine (CE-02) because the maximum engine power is less than 500 HP and the manufacture date of the engine is after 07/01/08 (§60.4230(a)(4)(iii)).

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

8. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour, based on the higher heating value of the fuel (§60.4305).

9. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

[Applicable]

[Not Applicable]

This rule <u>does not apply</u> to the reciprocating compressor driven by CE-01 because it commenced construction before 08/23/11 (§60.5360 and §60.5365(c)). This rule <u>does</u> <u>apply</u> to the reciprocating compressor driven by CE-02 because it commenced construction after 08/23/11 (§60.5360 and §60.5365(c)).

This rule <u>does not apply</u> to the produced water storage tank (TK-01) because it does not have the potential to emit > 6 tpy of VOC ((60.5365(d)(3)(e))). However, there is a requirement to maintain documentation that the VOC emission rate is < 6 tpy per tank ((60.5420(b)(6)(i)) and (c)(5)(ii)).

This rule <u>does not apply</u> to the pneumatic controllers because they are located between the wellhead and point of custody transfer, are not located at a natural gas processing plant, and their bleed rate is $\leq 6 \operatorname{scfh}(\$60.5365(d)(i))$.

10. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

[Applicable]

This rule <u>does apply</u> to the triethylene glycol (TEG) dehydrator (DFT-01 and DSV-01). However, because the TEG dehydrator will have an actual annual average benzene emissions < 0.9 megagrams per year, it is exempt from all requirements except to maintain records of actual annual average benzene emissions to demonstrate continuing exemption status (\S 63.764(e)(1)).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

11. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

12. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

[Not Applicable]

This rule <u>does not apply</u> because the facility is not a major HAP source (§63.6085).

13. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675 [Applicable]

This rule <u>does apply</u> to the existing 68 bhp Arrow VRG-330-A-54 Compressor Engine (CE-01). Requirements include changing oil/filter, and inspecting/replacing spark plugs and hoses/belts on a specified schedule; and the development and implementation of a maintenance plan. Note: There are no emission limitations, no initial or subsequent performance test requirements, and no monitoring, notification, or reporting requirements.

This rule <u>does apply</u> to the NEW 225 bhp Cummins GTA-855 Compressor Engine (CE-02), however; because it is "new" (i.e., construction or reconstruction commenced on or after 06/12/06); the only requirement is compliance with NSPS JJJJ for Spark Ignition Internal Combustion Engines (§63.6590(a)(2)(iii)).

14. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

 $40 CFR \S 63.7480 - \S 63.7575$

[Not Applicable]

This rule does not apply because the facility is not a major source of HAP (§63.7485).

15. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources

40CFR§63.11193 - §63.11237

[Not Applicable]

This rule <u>does not apply</u> because gas-fired boilers are not subject to the requirements of this subpart (§63.11195(e)). Specifically, "boiler" is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water

16. Chemical Accident Prevention Provisions

40CFR§68.1-§68.220

This rule <u>does not apply</u> because the facility does not store more than a threshold quantity of a regulated substance in a process (§68.115).

17. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u>. The facility is not subject to a listed source category and the aggregate maximum heat input capacity is < 30 MMBtu/hr from all stationary fuel combustion sources combined (§98.2(a)).

C. Applicability of Source Aggregation

For New Source Review (NSR) and Title V permitting, the three-part regulatory criteria to determine whether emissions from two or more facilities should be aggregated and treated as a single source are whether the activities:

- i) Belong to the same industrial grouping; and
- ii) Are located on one or more contiguous or adjacent properties; and
- iii) Are under control of the same person (or persons under common control).

i) Same Industrial Grouping

The subject facility will operate under SIC code 1321 (Natural Gas Liquids Extraction). The upstream gas production wells will operate under SIC code 1311 (Crude Petroleum and Natural Gas). Therefore, the subject facility shares the same two-digit major SIC code of 13 as the upstream gas production wells.

ii) Contiguous or Adjacent

The determination of whether two or more facilities are "contiguous" or "adjacent" is made on a case-by-case basis. This determination is proximity based, and it is important to focus on this criteria and whether it meets the common sense notion of a plant. The functional interrelationship of the two or more facilities is not a relevant inquiry in determining whether the facilities are "contiguous" or "adjacent."

Neither West Virginia nor federal regulations define the terms "contiguous" or "adjacent" or place any definitive restrictions on how distant two emission units can be and still be considered located on contiguous or adjacent properties for the purposes of a single source determination. It is clear, however, that the determination of whether two or more facilities are 'contiguous" or "adjacent" is based on the plain meaning of the terms "adjacent" and "contiguous", which consider the physical distance between the facilities. The term contiguous is defined in the dictionary as being in actual contact; touching along a boundary or at a point. The term "adjacent" is defined in the dictionary as not distant, nearby, having a common endpoint or border.

The location of the subject facility was chosen because of suitable characteristics for construction and operation, such as the availability of a reasonably flat grade and accessibility for large trucks and equipment. Williams' business model is to construct scalable capacity that contemplates additional production from multiple operators and the initial configuration is merely a foundation for additional opportunities in the area. The subject facility does not need to be located in the immediate vicinity of the upstream wells in order to operate properly. Had suitable land been available elsewhere, the subject facility could have been located further from the upstream wells and could theoretically be moved further from the wells without affecting operations. Therefore, despite the fact that the subject facility is located in close proximity to one or many upstream wells does not meet the common sense notion of a plant.

iii) Common Control

Williams OVM operates under its parent company The Williams Companies, Inc. (Williams) and is the sole operator of the subject facility. The closest Williams-operated facility to the subject facility is the Bardall Compressor Station (CS), which is located approximately 2.7 miles away. The production wells that send natural gas to the subject facility are owned and operated by other companies, which are unaffiliated with Williams. Williams has no ownership stake in any production well that may send natural gas to the subject facility.

Furthermore, neither Williams OVM, nor Williams, exercise operational control over any equipment owned or operated by any natural gas producer upstream of the subject facility. All employees at the subject facility are under the exclusive direction of Williams and are not under the control of any other entity. Similarly, Williams has no authority over employees of the production wells. These companies operate wholly independent of one another. No employees are expected to shuttle back and forth between the subject facility and any production well.

At this time, contracts are in place for the subject facility to process natural gas produced from multiple upstream production wells. As future commercial opportunities are identified, the subject facility will potentially receive gas from other producers. Williams will not have ownership or control of any future wellhead facilities. The producers are, and will be responsible for, any decisions to produce or shut-in wellhead facilities and have no control over the equipment installed, owned, and operated by Williams. Similarly, Williams cannot control the installation or operation of any equipment located at a well site that may be considered an air contamination source.

Summary

The subject facility and the upstream production wells should not be aggregated and treated as a single source of emissions because the subject facility is not under common control with any of the upstream wells. Additionally, the subject facility and the upstream production wells, considered together, do not meet the common sense notion of a plant because the subject facility is expected to service multiple production wells and because the location of the facility was selected for reasons unrelated to the location of the production wells. Accordingly, the subject facility should not be aggregated with the upstream wells in determining major source or PSD status.

D. Applicability of State Regulations

The following State regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers 45CSR2 [Applicable]

This rule does apply, however, because the dehydrator reboiler (RBV-01) has a maximum design heat input (MDHI) rating < 10 MMBtu/hr, the only requirement is to limit visible emissions to < 10% opacity during normal operations ($\S45-02-3.1$). The reboiler combusts only natural gas which inherently conforms to the visible emission standards.

2. Prevent and Control the Discharge of Air Pollutants into the Open Air which Causes or Contributes to an Objectionable Odor or Odors 45CSR4 [Applicable]

This rule does apply and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable. No odors have been deemed objectionable.

3. Control of Air Pollution from Combustion of Refuse 45CSR6 [Not Applicable]

This rule does not apply because there is no refuse combustion performed at the facility.

4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides 45CSR10

This rule does not apply because there are no "fuel burning units" at the facility w/ a Maximum Design Heat Input (MDHI) rating > 10 MMBtu/hr.

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, **Temporary Permits, General Permits, and Procedures for Evaluation** 45CSR13 [Applicable]

This rule does apply. Williams OVM has published the required Class I legal advertisement notifying the public of their permit application, and paid the appropriate application fee.

6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants [Not Applicable]

45CSR14

This rule does not apply because the facility is not a major source of pollutants.

[Not Applicable]

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Not Applicable]

This rule <u>does not apply</u> because the facility is not subject to any New Source Performance Standards (NSPS).

 Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contribute to Nonattainment 45CSR19 [Not Applicable]

This rule <u>does not apply</u> because the facility is a minor (or "deferred") source of all regulated pollutants.

9. Requirements for Operating Permits 45CSR30

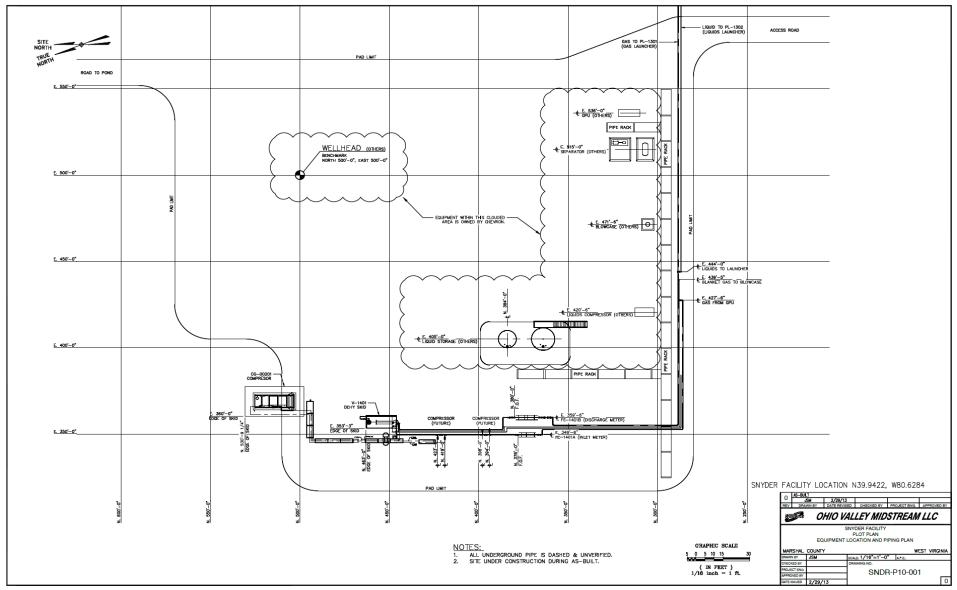
[Not Applicable]

This rule <u>does not apply</u> because the facility is a minor (or "deferred") source of all regulated pollutants.

ATTACHMENT E

Plot Plan

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."


• Plot Plan – OVM Snyder CS

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

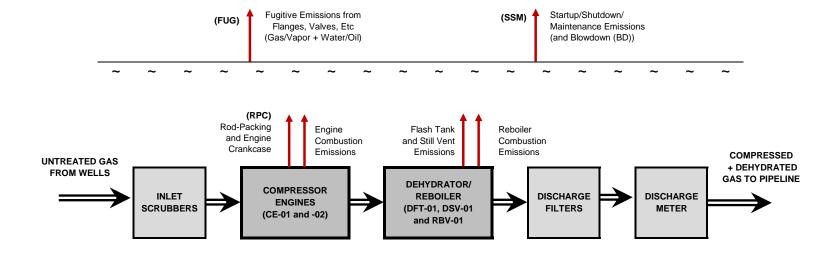
Application for 45CSR13 NSR Modification Permit

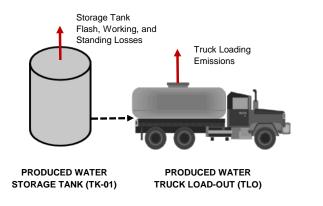
Attachment E - Plot Plan

ATTACHMENT F

Detailed Process Flow Diagram

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."


• Process Flow Diagram (PFD)


Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

Process Flow Diagram (PFD)

ID No.	EQUIPMENT
CE-01	68 bhp Arrow VRG-330-A-54 Compressor Engine
CE-02	225 bhp Cummins GTA-855 Compressor Engine
RPC	Compressor Rod-Packing / Reciprocating Engine-Crankcase
SSM	Startup/Shutdown/Maintenance (Includes Blowdown)
DFT-01	5.0 MMscfd TEG Dehydrator Flash Tank
DSV-01	5.0 MMscfd TEG Dehydrator Regenerator/Still Vent
RBV-01	0.22 MMBtu/hr Reboiler
TK-01	210 bbl Produced Water Storage Tank
TLO	Produced WaterTruck Load-Out
FUG	Disting and Drasses Fusitives (Cash/anary, Water/Oil)

FUG Piping and Process Fugitives (Gas/Vapor + Water/Oil)

ATTACHMENT G

Process Description

"23. Provide **a Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable)."

Process Description

- A. Project Overview
- B. Compressor Engines (CE-01 and -02) (1E and 2E)
- C. Rod Packing/Crankcase Leaks (RPC) (3E)
- D. Startup/Shutdown/Maintenance (SSM) (4E)
- E. Tri-Ethylene Glycol (TEG) Dehydrator (DFT-01 and DSV-01) (5E and 6E)
- F. Reboiler (RBV-01) (7E)
- G. Produced Water Storage Tank (TK-01) (8E)
- H. Produced Water Truck Load-Out (TLO) (9E)
- I. Fugitive Emissions (FUG) (10E)

ATTACHMENT G Process Description

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 Modification Permit

A. Project Overview

Williams Ohio Valley Midstream, LLC (OVM) is proposing to replace the existing Cummins GTA-855 compressor engine (CE-02) with a different Cummins GTA-855 compressor engine at the existing Snyder Compressor Station (CS), near Moundsville, in Marshall County, West Virginia. (See Appendix B – Location/Topographic Map). Although the modification will not result in potential emissions exceeding the permit exemption thresholds provided in 45CSR13, the new engine will be subject to NSPS Subpart JJJJ requiring a permit modification.

B. Compressor Engines (CE-01 and -02) (1E and 2E)

One (1) existing 68 bhp Arrow VRG-330-A-54 Natural Gas-fueled Compressor Engine and One (1) NEW 225 bhp Cummins GTA-855 Natural Gas-fueled Compressor Engine will be utilized at the facility.

C. Rod Packing and Crankcase Leaks (RPC) (3E)

The Compressor Rod Packing and Engine Crankcase (RPC) generate emissions from mechanical joints, seals, and rotating surfaces.

D. Startup/Shutdown/Maintenance (SSM) (4E)

During routine operation of the facility the compressor engines will undergo periods of startup and shutdown. Often when the engines are shutdown, the natural gas contained within the compressor and associated piping is vented to atmosphere. Additionally, there will be other infrequent and (often) de-minimis emissions from various maintenance activities at the facility that are not necessarily associated with compressor blowdowns.

E. Tri-Ethylene Glycol (TEG) Dehydrator (DFT-01 and DSV-02) (5E and 6E)

One (1) Tri-Ethylene Glycol (TEG) Dehydrator is utilized at the facility. The dehydrator is comprised of a Contactor/Absorber Tower (no vented emissions), Flash Tank (DFT-01), and Regenerator/Still Vent (DSV-01).

The TEG dehydrator is used to remove water vapor from the inlet wet gas stream to meet pipeline specifications. In the dehydration process, the wet inlet gas stream flows through a contactor tower where the gas is contacted with lean glycol. The lean glycol absorbs the water in the gas stream and becomes rich glycol laden with water and trace amounts of hydrocarbons.

The rich glycol is then routed to a flash tank where the glycol pressure is reduced to liberate the lighter end hydrocarbons. Whenever practical, the lighter end hydrocarbons are routed from the flash tank to the reboiler for use as fuel; otherwise these off-gases are vented to the atmosphere.

The rich glycol is then sent from the flash tank to the regenerator/still where the TEG is heated to drive off the water vapor and any remaining hydrocarbons. Once boiled, the glycol is

returned to a lean state and used again in the process.

F. Reboiler (RBV-01) (7E)

One (1) 0.22 MMBtu/hr Reboiler (RBV-01) is utilized to supply heat for the Tri-Ethylene Glycol (TEG) Regeneration/Still (DSV-01).

G. Produced Water/Condensate Storage Tank (TK-01) (8E)

The 210 bbl Produced Water Tank (TK-01) receives liquids from the dehydrator and suction scrubber. The inlet separator removes entrained fluids (primarily water) and these liquids are also sent to the atmospheric storage tank.

A HYSYS process simulation was completed, indicating that there are negligible flash gas emissions. A natural gas blanket will be used on the produced water tank to prevent air from entering the tank and causing an explosion.

H. Produced Water/Condensate Truck Load-Out (TLO) (9E)

Loading of Produced Water into tanker trucks (TLO) will produce small quantities of VOC emissions.

I. Fugitive Emissions (FUG) (10E)

During routine operation of the facility there will be leaks from process piping components such as valves, flanges, connectors, etc. Leaks from the process piping components results in VOC and HAP emissions to the atmosphere.

ATTACHMENT H

Material Safety Data Sheets (MSDS) (And Representative Gas Analysis)

"24. Provide **Material Safety Data Sheets (MSDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a MSDS for each compound emitted to the air."

- INLET GAS ANALYSIS SUMMARY
- INLET GAS CERTIFICATE OF ANALYSIS
- MATERIAL SAFETY DATA SHEETS (MSDS):
 - Natural Gas
 - Tri-Ethylene Glycol (TEG)
 - Lube Oil
 - Produced Water

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT H - Gas Analysis Summary

Gas Analysis for Snyder Master - Sampled 07/02/13

Component	Formula	Molecular Weight (MW)	Mole % (M%)	Mole Fraction (M%/Sum-M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)
Nitrogen	N2	32.00	0.40880	0.004088	0.1308	0.620	344.71
Hydrogen Sulfide	H2S	34.08	0.00000	0.000000	0.0000	0.000	0.00
Carbon Dioxide	CO2	44.01	0.11040	0.001104	0.0486	0.230	128.03
Methane*	CH4	16.04	75.63650	0.756370	12.1340	57.550	31,975.27
Ethane*	C2H6	30.07	16.03050	0.160306	4.8203	22.862	12,702.19
Propane**	C3H8	44.10	5.34580	0.053458	2.3573	11.180	6,211.84
i-Butane**	C4H10	58.12	0.55090	0.005509	0.3202	1.519	843.78
n-Butane**	C4H10	58.12	1.18030	0.011803	0.6860	3.254	1,807.78
Cyclopentane**	C5H10	70.13	0.00000	0.000000	0.0000	0.000	0.00
i-Pentane**	C5H12	72.15	0.22710	0.002271	0.1639	0.777	431.78
n-Pentane**	C5H12	72.15	0.23570	0.002357	0.1701	0.807	448.13
Cyclohexane**	C6H12	84.16	0.01440	0.000144	0.0121	0.057	31.94
Other Hexanes**	C6H14	86.18	0.09050	0.000905	0.0780	0.370	205.52
Heptanes**	C7H16	100.20	0.05540	0.000554	0.0555	0.263	146.28
Methylcyclohexane**	C7H14	98.19	0.01110	0.000111	0.0109	0.052	28.72
C8+ Heavies**	C8H18	114.23	0.02750	0.000275	0.0314	0.149	82.78
n-Hexane***	C6H14	86.18	0.06550	0.000655	0.0564	0.268	148.74
Benzene***	C6H6	78.11	0.00110	0.000011	0.0009	0.004	2.26
Toluene***	C7H8	92.14	0.00280	0.000028	0.0026	0.012	6.80
Ethylbenzene***	C8H10	106.17	0.00005	0.000001	0.0001	0.000	0.14
Xylenes***	C8H10	106.17	0.00490	0.000049	0.0052	0.025	13.71
2,2,4-Trimethylpentane***	C8H18	114.23	0.00005	0.000001	0.0001	0.000	0.15

Totals:	100.00	1.000	21.08	100.00	55,561
Total VOC:	7.81	0.08	3.95	18.74	10,410
Total HAP:	0.07	0.001	0.07	0.31	172

* = Hydrocarbon (HC)

(HC) ** = also Volatile Organic Compound (VOC)

*** = also Hazardous Air Pollutant (HAP) Pound "X"/scf = M% of "X" * MW of "X" / UGC

 $^{\rm #}{\rm UGC}$ (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 $^{\circ}{\rm F}$ and 14.696 psia.

To be conservative, and to account for potential future changes in the gas quality, the following "worst-case" values were assumed:

Component	Formula	Rep	epresentative Gas Analysis		Assumed "Worst-Case" Gas Analysis		
component	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	CO2	0.11	0.23	128	0.13	0.28	155
Methane	CH4	75.64	57.55	31,975	100.00	100.00	42,275
VOC	C3 thru C10+	7.81	18.74	10,410	9.38	22.50	12,500
n-Hexane	C6H14	0.0655	0.2677	148.74	0.0793	0.3240	180
Benzene	C6H6	0.0011	0.0041	2.26	0.0024	0.0090	5
Toluene	C7H8	0.0028	0.0122	6.80	0.0041	0.0180	10
Ethylbenzene	C8H10	0.0001	0.0003	0.14	0.0018	0.0090	5
Xylenes	C8H10	0.0049	0.0247	13.71	0.0071	0.0360	20
2,2,4-Trimethylpentane	C8H18	0.0001	0.0003	0.15	0.0017	0.0090	5
Total HAP	C6 thru C8	0.0744	0.3092	171.80	0.0964	0.4050	225

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT Hb - Extended Gas Analysis

J-W Measurement Company Go							
		Canonsburg, PA					
		724-749-5180					
Customer	: 2259 - WILLIAMS		Date Sampled	: 07/30/2013			
Station ID	: 52057-50		Date Analyzed	: 08/06/2013			
Cylinder ID	: W1166		Effective Date	: 08/01/2013			
Producer	:		Cyl Pressure	: 938			
Lease	: SNYDER MASTER		Temp	: 73			
Area	: 500 - OHIO VALLEY MID		Cylinder Type	: Spot			
State	: WV		Sample By	: JR			
	COMPONENT	MOL%	GPM@14.73(PSIA)				
	Oxygen	0.0000	0.000)			
	Nitrogen	0.4088	0.000)			
	Methane	75.6365	0.000)			
	Carbon-Dioxide	0.1104	0.000)			
	Ethane	16.0305	4.302	2			
	Propane	5.3458	1.478	3			
	Iso-Butane	0.5509	0.181	l			
	Normal-Butane	1.1803	0.373	3			
	Iso-Pentane	0.2271	0.083	3			
	Normal-Pentane	0.2357					
	2,2-Dimethylbutane	0.0053					
	2,3-Dimethylbutane/CycloC5	0.0100					
	2-methylpentane	0.0471	0.020				
	3-methylpentane	0.0281	0.012				
	Normal-Hexane	0.0655					
	2,2-Dimethylpentane	0.0006					
	Methylcyclopentane	0.0080					
	BENZENE	0.0011	0.000				
	3,3-Dimethylpentane	0.0000					
	CYCLOHEXANE 2 Methodocom	0.0064					
	2-Methylhexane 2,3-Dimethylpentane	0.0031	0.001				
	3-Methylhexane	0.0126					
	1,t2-DMCYC5 / 2,2,4-TMC5	0.0003					
	1,t3-Dimethylcyclopentane	0.0002		-			
	N-Heptane	0.0203					
	METHYLCYCLOHEXANE	0.0111					
	2,5-Dimethylhexane	0.0008					
	2,3-Dimethylhexane	0.0013					
	TOLUENE	0.0028	0.001				
	2-Methylheptane	0.0043					
	4-Methylheptane	0.0018	0.001	l i i i i i i i i i i i i i i i i i i i			
	3-Methylheptane	0.0027	0.001	l i i i i i i i i i i i i i i i i i i i			
	1,t4-Dimethylcyclohexane	0.0018	0.001	l i i i i i i i i i i i i i i i i i i i			
	N-OCTANE / 1,T2-DMCYC6	0.0061	0.003	3			
	1,t3-DMCYC6/1,C4-	0.0000	0.000)			
	DMCYC6/1,C2,C3-TMCYC5	0.0000	0.000				
	2,4,4 TMC6 2,6-Dimethylheptane / 1,C2-	0.0006					
	DMCYC6						
	Ethylcyclohexane	0.0005					
	ETHYLBENZENE	0.0000					
	M-XYLENE	0.0029					
	P-XYLENE	0.0018					
	O-XYLENE	0.0002					
	NONANE	0.0029					
		0.0027					
	N-UNDECANE	0.0026		_			
	TOTAL	100.0000	6.619	,			

Williams.

Wellhead Natural Gas

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Revision Date: 10/02/2013

Version: 1.0

SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY

Product Identifier

Product Form: Mixture

Product Name: Wellhead Natural Gas

Synonyms: Wellhead Gas, Raw Gas, Methane, Residue Gas, Natural Gas Sweet, Marsh Gas, Fuel Gas, Petroleum Gas.

Intended Use of the Product

Use of the Substance/Mixture: Fuel.

Name, Address, and Telephone of the Responsible Party

Company

Williams, Inc. One Williams Center Tulsa, OK 74172, US T 800-688-7507

enterpriseehs@williams.com

Emergency Telephone Number Emergency number : 800-424-9300

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

Classification (GHS-US)

Simple Asphy Flam. Gas 1 H220 Compressed gas H280

Label Elements

GHS-US Labeling

Hazard	Pictograms	(GHS-US)
--------	------------	----------

Signal Word (GHS-US)	: Danger
Hazard Statements (GHS-US)	: H220 - Extremely flammable gas
	H280 - Contains gas under pressure; may explode if heated
	May displace oxygen and cause rapid suffocation
Precautionary Statements (GHS-US)	: P210 - Keep away from heat, sparks, open flames, hot surfaces No smoking.
	P377 - Leaking gas fire: Do not extinguish, unless leak can be stopped safely.
	P381 - Eliminate all ignition sources if safe to do so.
	P403 - Store in a well-ventilated place.
	P410+P403 - Protect from sunlight. Store in a well-ventilated place.

Other Hazards

Other Hazards Not Contributing to the Classification: Contains hydrogen sulfide. Hydrogen sulfide is a highly flammable, explosive gas under certain conditions, is a toxic gas, and may be fatal. Gas can accumulate in the headspace of closed containers, use caution when opening sealed containers. Heating the product or containers can cause thermal decomposition of the product and release hydrogen sulfide. Exposure may aggravate those with pre existing eye, skin, or respiratory conditions.

Unknown Acute Toxicity (GHS-US) Not available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

<u>Mixture</u>

Name	Product identifier	% (w/w)	Classification (GHS-US)
Methane	(CAS No) 74-82-8	> 75	Simple Asphy

10/02/2013

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

			Flam. Gas 1, H220
			Liquefied gas, H280
Ethane	(CAS No) 74-84-0	< 20	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Propane	(CAS No) 74-98-6	< 10	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Carbon dioxide	(CAS No) 124-38-9	< 10	Simple Asphy
			Compressed gas, H280
Butane	(CAS No) 106-97-8	< 5	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Nitrogen	(CAS No) 7727-37-9	< 5	Simple Asphy
			Compressed gas, H280
Hydrogen sulfide	(CAS No) 7783-06-4	<= 0.0004	Flam. Gas 1, H220
			Liquefied gas, H280
			Acute Tox. 2 (Inhalation:gas), H330
			Aquatic Acute 1, H400

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First Aid Measures

General: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible). If frostbite or freezing occurs, immediately flush with plenty of lukewarm water to GENTLY warm the affected area. Do not use hot water. Do not rub affected area. Get immediate medical attention.

Inhalation: When symptoms occur: go into open air and ventilate suspected area.Remove to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER/doctor/physician if you feel unwell

Skin Contact: Remove contaminated clothing. Drench affected area with water for at least 15 minutes. Obtain medical attention if irritation persists. Thaw frosted parts with lukewarm water. Do not rub affected area.

Eye Contact: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.Obtain medical attention if irritation persists

Ingestion: Rinse mouth.Do NOT induce vomiting.Get immediate medical attention.

Most Important Symptoms and Effects Both Acute and Delayed

General: May cause frostbite on contact with the liquid.Butane is an asphyxiant. Lack of oxygen can be fatal

Inhalation: Gas can be toxic as a simple asphyxiant by displacing oxygen from the air.Asphyxia by lack of oxygen: risk of death.May cause drowsiness or dizziness

Skin Contact: Contact with the liquid may cause cold burns/frostbite

Eye Contact: This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns

Ingestion: Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

Chronic Symptoms: Contains a small amount of Hydrogen Sulfide, symptoms of overexposure are headaches, dizziness, nausea, coughing, respiratory irritation, eye irritation, skin irritation, pain in the nose, and loss of consciousness. Heating of the product may release higher amounts of Hydrogen Sulfide (H₂S).

Indication of Any Immediate Medical Attention and Special Treatment Needed

If exposed or concerned, get medical advice and attention.

SECTION 5: FIREFIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Foam, dry chemical, carbon dioxide, water spray, fog

Unsuitable Extinguishing Media: Do not use a heavy water stream. Use of heavy stream of water may spread fire

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Extremely flammable gas

Explosion Hazard: May form flammable/explosive vapor-air mixture.Heating may cause an explosion.Heat may build pressure,

rupturing closed containers, spreading fire and increasing risk of burns and injuries.

Reactivity: Hazardous reactions will not occur under normal conditions.

Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire

Firefighting Instructions: Leaking gas fire: Do not extinguish, unless leak can be stopped safely. In case of leaking gas fire, eliminate all ignition sources if safe to do so. Use water spray or fog for cooling exposed containers. In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

Protection During Firefighting: Do not enter fire area without proper protective equipment, including respiratory protection.

Hazardous Combustion Products: Carbon oxides (CO, CO₂).Hydrocarbon, sulfur dioxide (SO₂), and Hydrogen sulfide (H₂S) fatal and irritating gases

Other information: Do not allow run-off from fire fighting to enter drains or water courses

Reference to Other Sections

Refer to section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Use special care to avoid static electric charges.Eliminate every possible source of ignition.Keep away from heat/sparks/open flames/hot surfaces - No smoking.Avoid breathing (dust, vapor, mist, gas).Use only outdoors or in a well-ventilated area.Ruptured cylinders may rocket.Do not allow product to spread into the environment

For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protection equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel.

For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Ventilate area.

Environmental Precautions

Prevent entry to sewers and public waters. Avoid release to the environment

Methods and Material for Containment and Cleaning Up

For Containment: Notify authorities if liquid enters sewers or public waters. Use only non-sparking tools

Methods for Cleaning Up: Clear up spills immediately and dispose of waste safely. Isolate area until gas has dispersed. Use water spray to disperse vapors. For water based spills contact appropriate authorities and abide by local regulations for hydrocarbon spills into waterways. Contact competent authorities after a spill

Reference to Other Sections

See heading 8, Exposure Controls and Personal Protection.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Additional Hazards When Processed: Handle empty containers with care because residual vapors are flammable.Extremely flammable gas.Do not pressurize, cut, or weld containers. Do not puncture or incinerate container.Liquid gas can cause frost-type burns. If stored under heat for extended periods or significantly agitated, this material might evolve or release hydrogen sulfide, a toxic, flammable gas, which can raise and widen this material's actual flammability limits and significantly lower its auto-ignition temperature. Hydrogen sulfide can be fatal.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures. Wash hands and other exposed areas with mild soap and water before eating, drinking, or smoking and again when leaving work. Do no eat, drink or smoke when using this product

Technical Measures: Proper grounding procedures to avoid static electricity should be followed. Comply with applicable regulations.

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Storage Conditions: Store in a dry, cool and well-ventilated place.Keep container closed when not in use. Keep in fireproof place.Store in a well-ventilated place. Keep container tightly closed.Keep/Store away from extremely high or low temperatures, ignition sources, direct sunlight, incompatible materials. Store in original container.

Incompatible Materials: strong acids, Strong bases, Strong oxidizers, chlorine, Halogenated compounds

Conditions for Safe Storage, Including Any Incompatibilities Not available

Specific End Use(s)

Fuel.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

Hydrogen sulfide (7783-06-4	.)	
USA ACGIH	ACGIH TWA (ppm)	1 ppm
USA ACGIH	ACGIH STEL (ppm)	5 ppm
USA OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm
USA NIOSH	NIOSH REL (ceiling) (mg/m3)	15 mg/m ³
USA NIOSH	NIOSH REL (ceiling) (ppm)	10 ppm
USA IDLH	US IDLH (ppm)	100 ppm
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ³
Alberta	OEL Ceiling (ppm)	15 ppm
Alberta	OEL TWA (mg/m³)	14 mg/m ³
Alberta	OEL TWA (ppm)	10 ppm
British Columbia	OEL Ceiling (ppm)	10 ppm
Manitoba	OEL STEL (ppm)	5 ppm
Manitoba	OEL TWA (ppm)	1 ppm
New Brunswick	OEL STEL (mg/m ³)	21 mg/m ³
New Brunswick	OEL STEL (ppm)	15 ppm
New Brunswick	OEL TWA (mg/m³)	14 mg/m ³
New Brunswick	OEL TWA (ppm)	10 ppm
Newfoundland & Labrador	OEL STEL (ppm)	5 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1 ppm
Nova Scotia	OEL STEL (ppm)	5 ppm
Nova Scotia	OEL TWA (ppm)	1 ppm
Nunavut	OEL Ceiling (mg/m ³)	28 mg/m ³
Nunavut	OEL Ceiling (ppm)	20 ppm
Nunavut	OEL STEL (mg/m³)	21 mg/m ³
Nunavut	OEL STEL (ppm)	15 ppm
Nunavut	OEL TWA (mg/m³)	14 mg/m ³
Nunavut	OEL TWA (ppm)	10 ppm
Northwest Territories	OEL Ceiling (mg/m ³)	28 mg/m ³
Northwest Territories	OEL Ceiling (ppm)	20 ppm
Northwest Territories	OEL STEL (mg/m³)	21 mg/m ³
Northwest Territories	OEL STEL (ppm)	15 ppm
Northwest Territories	OEL TWA (mg/m³)	14 mg/m ³
Northwest Territories	OEL TWA (ppm)	10 ppm
Ontario	OEL STEL (ppm)	15 ppm
Ontario	OEL TWA (ppm)	10 ppm
Prince Edward Island	OEL STEL (ppm)	5 ppm
Prince Edward Island	OEL TWA (ppm)	1 ppm
Québec	VECD (mg/m ³)	21 mg/m ³
Québec	VECD (ppm)	15 ppm

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

	$\lambda (\text{ENAD} / \dots - / \dots 3)$	1.1
Québec	VEMP (mg/m ³)	14 mg/m ³
Québec	VEMP (ppm)	10 ppm
Saskatchewan	OEL STEL (ppm)	15 ppm
Saskatchewan	OEL TWA (ppm)	10 ppm
Yukon	OEL STEL (mg/m ³)	27 mg/m ³
Yukon	OEL STEL (ppm)	15 ppm
Yukon	OEL TWA (mg/m³)	15 mg/m ³
Yukon	OEL TWA (ppm)	10 ppm
Propane (74-98-6)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
USA OSHA	OSHA PEL (TWA) (mg/m3)	1800 mg/m³
USA OSHA	OSHA PEL (TWA) (ppm)	1000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	1800 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	1000 ppm
USA IDLH	US IDLH (ppm)	2100 ppm (10% LEL)
Alberta	OEL TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Québec	VEMP (mg/m ³)	1800 mg/m ³
Québec	VEMP (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Butane (106-97-8)		1000 pp.m
, ,		1000 nnm
	ACGIH TWA (ppm)	1000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	1900 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	800 ppm
Alberta British Columbia	OEL TWA (ppm)	1000 ppm
	OEL STEL (ppm)	750 ppm
British Columbia	OEL TWA (ppm)	600 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
New Brunswick	OEL TWA (mg/m ³)	1900 mg/m ³
New Brunswick	OEL TWA (ppm)	800 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Nunavut	OEL STEL (mg/m ³)	2576 mg/m ³
Nunavut	OEL STEL (ppm)	1000 ppm
Nunavut	OEL TWA (mg/m ³)	1901 mg/m ³
Nunavut	OEL TWA (ppm)	800 ppm
Northwest Territories	OEL STEL (mg/m ³)	2576 mg/m ³
Northwest Territories	OEL STEL (ppm)	1000 ppm
Northwest Territories	OEL TWA (mg/m³)	1901 mg/m³
Northwest Territories	OEL TWA (ppm)	800 ppm
Ontario	OEL TWA (ppm)	800 ppm
		1000 mm
Prince Edward Island	OEL TWA (ppm)	1000 ppm

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Québec	VEMP (ppm)	800 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Yukon	OEL STEL (mg/m³)	1600 mg/m³
Yukon	OEL STEL (ppm)	750 ppm
Yukon	OEL TWA (mg/m³)	1400 mg/m³
Yukon	OEL TWA (ppm)	600 ppm
Carbon dioxide (124-38-9)		
USA ACGIH	ACGIH TWA (ppm)	5000 ppm
USA ACGIH	ACGIH STEL (ppm)	30000 ppm
USA OSHA	OSHA PEL (TWA) (mg/m3)	9000 mg/m ³
USA OSHA	OSHA PEL (TWA) (ppm)	5000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	9000 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	5000 ppm
USA NIOSH	NIOSH REL (STEL) (mg/m3)	54000 mg/m ³
USA NIOSH	NIOSH REL (STEL) (ppm)	30000 ppm
USA IDLH	US IDLH (ppm)	40000 ppm
Alberta	OEL STEL (mg/m ³)	54000 mg/m ³
Alberta	OEL STEL (ppm)	30000 ppm
Alberta	OEL TWA (mg/m ³)	9000 mg/m ³
Alberta	OEL TWA (ng/m)	5000 ppm
British Columbia	OEL STEL (ppm)	15000 ppm
British Columbia	OEL TWA (ppm)	5000 ppm
Manitoba	OEL STEL (ppm)	30000 ppm
Manitoba	OEL TWA (ppm)	5000 ppm
New Brunswick	OEL STEL (mg/m ³)	54000 mg/m ³
New Brunswick	OEL STEL (mg/m) OEL STEL (ppm)	30000 ppm
New Brunswick	OEL TWA (mg/m ³)	9000 mg/m ³
New Brunswick	OEL TWA (ng/n)	5000 ppm
Newfoundland & Labrador	OEL STEL (ppm)	30000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	5000 ppm
Nova Scotia	OEL STEL (ppm)	30000 ppm
Nova Scotia	OEL TWA (ppm)	5000 ppm
	OEL TWA (ppin) OEL STEL (mg/m ³)	27000 mg/m ³
Nunavut	OEL STEL (mg/m ²) OEL STEL (ppm)	15000 ppm
Nunavut	OEL STEL (ppff) OEL TWA (mg/m ³)	
Nunavut	OEL TWA (mg/m²)	9000 mg/m ³
Nunavut	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5000 ppm
Northwest Territories	OEL STEL (mg/m ³)	27000 mg/m ³
Northwest Territories	OEL STEL (ppm)	15000 ppm
Northwest Territories	OEL TWA (mg/m ³)	9000 mg/m ³
Northwest Territories	OEL TWA (ppm)	5000 ppm
Ontario	OEL STEL (ppm)	30000 ppm
Ontario	OEL TWA (ppm)	5000 ppm
Prince Edward Island	OEL STEL (ppm)	30000 ppm
Prince Edward Island	OEL TWA (ppm)	5000 ppm
Québec	VECD (mg/m ³)	54000 mg/m ³
Québec	VECD (ppm)	30000 ppm
Québec	VEMP (mg/m ³)	9000 mg/m³
Québec	VEMP (ppm)	5000 ppm
Saskatchewan	OEL STEL (ppm)	30000 ppm
10/02/2013	EN (English US)	6/17

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Saskatchewan	OEL TWA (ppm)	5000 ppm
Yukon	OEL STEL (mg/m ³)	27000 mg/m³
Yukon	OEL STEL (ppm)	15000 ppm
Yukon	OEL TWA (mg/m³)	9000 mg/m³
Yukon	OEL TWA (ppm)	5000 ppm
Nitrogen (7727-37-9)		
Methane (74-82-8)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Ethane (74-84-0)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
Alberta	OEL TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm

Exposure Controls

Appropriate Engineering Controls: Gas detectors should be used when flammable gases/vapours may be released.Ensure adequate ventilation, especially in confined areas.Proper grounding procedures to avoid static electricity should be followed.Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure.Use explosion-proof equipment

Personal Protective Equipment: Protective goggles.Protective clothing.Respiratory protection of the dependent type.Insulated gloves

Materials for Protective Clothing: Chemically resistant materials and fabrics.Wear fire/flame resistant/retardant clothing Hand Protection: Wear chemically resistant protective gloves.Insulated gloves

Eye Protection: Chemical goggles or face shield.

Skin and Body Protection: Not available

Respiratory Protection: Use a NIOSH-approved self-contained breathing apparatus whenever exposure may exceed established Occupational Exposure Limits.

Thermal Hazard Protection: Wear suitable protective clothing.

Other Information: When using, do not eat, drink or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State

: Gas

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Appearance	:	Clear, Colorless gas
Odor	:	Contains Ethyl Mercaptan for leak detection, which has a skunk-like odor,
		odorless.
Odor Threshold	:	Not available
рН	:	Not available
Relative Evaporation Rate (butylacetate=1)	:	Not available
Melting Point	:	Not available
Freezing Point	:	Not available
Boiling Point	:	-157 °C (-250.6°F)
Flash Point	:	-187 °C (-304.6°F)
Auto-ignition Temperature	:	> 288 °C (>550.4°F)
Decomposition Temperature	:	Not available
Flammability (solid, gas)	:	Extremely flammable gas
Lower Flammable Limit	:	3 %
Upper Flammable Limit	:	17 %
Vapor Pressure	:	40 mm Hg @25°C (77°F)
Relative Vapor Density at 20 °C	:	0.6
Relative Density	:	Not available
Specific Gravity	:	Not available
Solubility	:	Not available
Log Pow	:	Not available
Log Kow	:	Not available
Viscosity, Kinematic	:	Not available
Viscosity, Dynamic	:	Not available
Explosion Data – Sensitivity to Mechanical Impact	:	Not available
Explosion Data – Sensitivity to Static Discharge	:	Not available

SECTION 10: STABILITY AND REACTIVITY

Reactivity: Hazardous reactions will not occur under normal conditions.

Chemical Stability: Extremely flammable gas. Stable at standard temperature and pressure.

Possibility of Hazardous Reactions: Hazardous polymerization will not occur.

Conditions to Avoid: Direct sunlight.Extremely high or low temperatures.Open flame.Overheating.Heat.Sparks.Incompatible materials. Avoid ignition sources

Incompatible Materials: Strong acids.Strong bases.Strong oxidizers.Halogenated compounds.Chlorine

Hazardous Decomposition Products: Carbon oxides (CO, CO2).hydrocarbons. Sulfur dioxide and hydrogen sulfide are fatal and irritating gases.

SECTION 11: TOXICOLOGICAL INFORMATION

Information on Toxicological Effects - Product Acute Toxicity : Not classified LD50 and LC50 Data Not available Skin Corrosion/Irritation: Not classified Serious Eye Damage/Irritation: Not classified Respiratory or Skin Sensitization: Not classified Germ Cell Mutagenicity: Not classified Teratogenicity: Not available Carcinogenicity: Not classified Specific Target Organ Toxicity (Repeated Exposure): Not classified Reproductive Toxicity: Not classified

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Aspiration Hazard: Not classified

Symptoms/Injuries After Inhalation: Gas can be toxic as a simple asphyxiant by displacing oxygen from the air. Asphyxia by lack of oxygen: risk of death. May cause drowsiness or dizziness.

Symptoms/Injuries After Skin Contact: Contact with the liquid may cause cold burns/frostbite.

Symptoms/Injuries After Eye Contact: This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns.

Symptoms/Injuries After Ingestion: Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

Information on Toxicological Effects - Ingredient(s)

LD50 and LC50 Data

Hydrogen sulfide (7783-06-4)	
LC50 Inhalation Rat (mg/l)	0.99 mg/l (Exposure time: 1 h)
ATE (gases)	100.000 ppmV/4h
Propane (74-98-6)	
LC50 Inhalation Rat (mg/l)	658 mg/l (Exposure time: 4 h)
Butane (106-97-8)	
LC50 Inhalation Rat (mg/l)	658 mg/l (Exposure time: 4 h)
Ethane (74-84-0)	
LC50 Inhalation Rat (mg/I)	658 mg/l (Exposure time: 4 h)

SECTION 12: ECOLOGICAL INFORMATION

<u>Toxicity</u>			
Wellhead Natural Gas (CAS Mixture	e)		
LC50 Fish 1	0.002 mg/l (Exposure time: 96 h - Species: Coregonus clupeaformis)		
Hydrogen sulfide (7783-06-4)			
LC50 Fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])		
EC50 Daphnia 1	0.022 mg/l (Exposure time: 96 h - Species: Gammarus pseudolimnaeus)		
LC 50 Fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])		
Persistence and Degradability			
Wellhead Natural Gas			
Persistence and Degradability	Not established.		
Bioaccumulative Potential			
Wellhead Natural Gas			
Bioaccumulative Potential	Not established.		
Hydrogen sulfide (7783-06-4)			
BCF fish 1	(no bioaccumulation expected)		
Log Pow	0.45 (at 25 °C)		
Propane (74-98-6)			
Log Pow	2.3		
Butane (106-97-8)			
Log Pow	2.89		
Carbon dioxide (124-38-9)			
BCF fish 1	(no bioaccumulation)		
Log Pow	0.83		
Ethane (74-84-0)			
Log Pow	<= 2.8		

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Mobility in Soil Not available

Other Adverse Effects

Other adverse effects: Can cause frost damage to vegetation. Has photochemical ozone creation potential.

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Recommendations: Dispose of waste material in accordance with all local, regional, national, provincial, territorial and international regulations.

Additional Information: Handle empty containers with care because residual vapors are flammable. Empty gas cylinders should be returned to the vendor for recycling or refilling.

SECTION 14: TRANSPORT INFORMATION

In Accordance With ICAO/IATA/DOT/TDG <u>UN Number</u> UN-No.(DOT): 1971 DOT NA no.: UN1971 <u>UN Proper Shipping Name</u> DOT Proper Shipping Name

Hazard Labels (DOT)

: Natural gas, compressed (with high methane content)

: 2.1 - Flammable gases

: 302

: 302

: 115

DOT Packaging Exceptions (49 CFR 173.xxx) DOT Packaging Non Bulk (49 CFR 173.xxx) DOT Packaging Bulk (49 CFR 173.xxx) Additional Information

Emergency Response Guide (ERG) Number

Transport by sea

DOT Vessel Stowage Location

: E - The material may be stowed "on deck" or "under deck" on a cargo vessel and on a passenger vessel carrying a number of passengers limited to not more than the larger of 25 passengers, or one passenger per each 3 m of overall vessel length, but is prohibited from carriage on passenger vessels in which the limiting number of passengers is exceeded.

DOT Vessel Stowage Other : 40 - Stow "clear of living quarters"

<u>Air transport</u>

DOT Quantity Limitations Passenger Aircraft/Rail (49 CFR 173.27) : Forbidden

DOT Quantity Limitations Cargo Aircraft Only (49 CFR 175.75)

SECTION 15: REGULATORY INFORMATION

US Federal Regulations

Wellhead Natural Gas		
SARA Section 311/312 Hazard Classes Fire hazard		
	Immediate (acute) health hazard	
	Sudden release of pressure hazard	
Hydrogen sulfide (7783-06-4)		
Listed on the United States TSCA (Toxic Substances Control Act) inventory		
Listed on SARA Section 302 (Specific toxic chemical listings)		
Listed on SARA Section 313 (Specific toxic chemical listings)		
SARA Section 302 Threshold Planning Quantity (TPQ) 500		
SARA Section 313 - Emission Reporting 1.0 %		

: 150 kg

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Propane (74-98-6)

Listed on the United States TSCA (Toxic Substances Control Act) inventory
Butane (106-97-8)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Carbon dioxide (124-38-9)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Nitrogen (7727-37-9)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Methane (74-82-8)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Ethane (74-84-0)
Listed on the United States TSCA (Toxic Substances Control Act) inventory

US State Regulations

Hydrogen sulfide (7783-06-4)

U.S. - California - SCAQMD - Toxic Air Contaminants - Non-Cancer Acute

U.S. - California - SCAQMD - Toxic Air Contaminants - Non-Cancer Chronic

- U.S. California Toxic Air Contaminant List (AB 1807, AB 2728)
- U.S. Colorado Hazardous Wastes Discarded Chemical Products, Off-Specification Species, Container and Spill Residues
- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Accidental Release Prevention Regulations Toxic Endpoints
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Hawaii Occupational Exposure Limits STELs
- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Acceptable Ambient Concentrations
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Emission Levels (ELs)
- U.S. Idaho Occupational Exposure Limits Acceptable Maximum Peak Above the Ceiling Concentration for an 8-Hour Shift
- U.S. Idaho Occupational Exposure Limits Ceilings
- U.S. Idaho Occupational Exposure Limits TWAs
- U.S. Louisiana Reportable Quantity List for Pollutants
- U.S. Maine Air Pollutants Hazardous Air Pollutants
- U.S. Massachusetts Allowable Ambient Limits (AALs)
- U.S. Massachusetts Allowable Threshold Concentrations (ATCs)
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Threshold Effects Exposure Limits (TELs)
- U.S. Michigan Occupational Exposure Limits STELs
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Michigan Polluting Materials List
- U.S. Michigan Process Safety Management Highly Hazardous Chemicals
- U.S. Minnesota Chemicals of High Concern
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits STELs
- U.S. Minnesota Permissible Exposure Limits TWAs

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

U.S Montana - Ambient Air Quality Standards	
U.S New Hampshire - Regulated Toxic Air Pollutants - Ambient Air Levels (AALs) - 24-Hour	
U.S New Hampshire - Regulated Toxic Air Pollutants - Ambient Air Levels (AALs) - Annual	
U.S New Jersey - Discharge Prevention - List of Hazardous Substances	
U.S New Jersey - Environmental Hazardous Substances List	
U.S New Jersey - Right to Know Hazardous Substance List	
U.S New Jersey - Special Health Hazards Substances List	
U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)	
U.S New Mexico - Air Quality - Ambient Air Quality Standards	
U.S New York - Occupational Exposure Limits - TWAs	
U.S New York - Reporting of Releases Part 597 - List of Hazardous Substances	
U.S North Carolina - Control of Toxic Air Pollutants	
U.S North Dakota - Ambient Air Quality Standards - Maximum Permissible Concentrations	
U.S North Dakota - Hazardous Wastes - Discarded Chemical Products, Off-Specification Species, Container and Spil	ll Residues
U.S Ohio - Accidental Release Prevention - Threshold Quantities	Theorem Conducts
U.S Ohio - Extremely Hazardous Substances - Threshold Quantities	
U.S Oregon - Permissible Exposure Limits - Ceilings	
U.S Oregon - Permissible Exposure Limits - STELs	
U.S Pennsylvania - RTK (Right to Know) - Environmental Hazard List	
U.S Pennsylvania - RTK (Right to Know) List	
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 1-Hour	
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 24-Hour	
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - Annual	
U.S South Carolina - Toxic Air Pollutants - Maximum Allowable Concentrations	
U.S South Carolina - Toxic Air Pollutants - Pollutant Categories	
U.S Tennessee - Occupational Exposure Limits - STELs	
U.S Tennessee - Occupational Exposure Limits - TWAs	
U.S Texas - Drinking Water Standards - Secondary Constituent Levels (SCLs)	
U.S Texas - Effects Screening Levels - Long Term	
U.S Texas - Effects Screening Levels - Short Term	
U.S Vermont - Hazardous Waste - Hazardous Constituents	
U.S Vermont - Permissible Exposure Limits - STELs	
U.S Vermont - Permissible Exposure Limits - TWAs	
U.S Virginia - Water Quality Standards - Chronic Freshwater Aquatic Life	
U.S Virginia - Water Quality Standards - Chronic Saltwater Aquatic Life	
U.S Washington - Dangerous Waste - Dangerous Waste Constituents List	
U.S Washington - Dangerous Waste - Dangerous Waste Constituents List	
U.S Washington - Permissible Exposure Limits - STELs	
U.S Washington - Permissible Exposure Limits - TWAs	
U.S Washington - Fernissible Exposure Linits - TWAS U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 25 Feet to Less Than 40 F	Foot
U.S Wisconsin - Hazardous Air Contaminants - Air Sources - Emissions From Stack Heights 25 Feet to Less Than 46 F	
U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 75 Feet or Greater	eet
U.S Wisconsin - Hazardous Air Contaminants - Air Sources - Emissions From Stack Heights / S Feet of Greater	
U.S Wyoming - Process Safety Management - Highly Hazardous Chemicals	
U.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Fresh Water	
U.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Marine Water	
Propane (74-98-6)	
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min)	
U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr)	
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities	
U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities	
U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities	

U.S. - Delaware - Pollutant Discharge Requirements - Reportable Quantities

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

U.S Hawaii - Occupational Exposure Limits - TWAs
U.S Idaho - Occupational Exposure Limits - TWAs
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
U.S Massachusetts - Right To Know List
U.S Michigan - Occupational Exposure Limits - TWAs
U.S Minnesota - Hazardous Substance List
U.S Minnesota - Permissible Exposure Limits - TWAs
U.S New Jersey - Discharge Prevention - List of Hazardous Substances
U.S New Jersey - Environmental Hazardous Substances List
U.S New Jersey - Right to Know Hazardous Substance List
U.S New Jersey - Special Health Hazards Substances List
U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
U.S New York - Occupational Exposure Limits - TWAs
U.S Ohio - Accidental Release Prevention - Threshold Quantities
U.S Oregon - Permissible Exposure Limits - TWAs
U.S Pennsylvania - RTK (Right to Know) List
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Butane (106-97-8)
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min)
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr)
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Reportable Concentration - Reporting Category 1
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Michigan - Occupational Exposure Limits - TWAs
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Michigan - Occupational Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Hazardous Substance List
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Michigan - Occupational Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Minnesota - Permissible Exposure Limits - TWAs U.S Minnesota - Permissible Exposure Limits - TWAs U.S Ninnesota - Permissible Exposure Limits - TWAs U.S Ninnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Nie Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Minnesota - Reportional Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Ninne
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention -
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Massa - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Environmental Hazardous Substances List U.S New Jersey - Special Health Hazardos Substances List U.S New Jersey - Special Health Hazardos Substances List
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Nigh To Know List U.S Minesota - Chemicals of High Concern U.S Minesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Right to Know Hazardous Substances List U.S New Jersey - Right to Know Hazardous Substances List U.S New Jersey - Special Health Hazardos Substances List U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Mawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Repicals of High Concern U.S Minnesota - Hazardous Substance List U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Special Health Hazardous Substances List U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS) U.S Ohio - Accidental Release Prevention - Threshold Quantities
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Minesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Special Health Hazardous Substances List U.S New Jersey - Right to Know Hazardous Substances List U.S New Jersey - Special Health Hazardous Substances List U.S New Jersey - TCPA - Extraordinarily Haz
 U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min) U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Mawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Repicals of High Concern U.S Minnesota - Hazardous Substance List U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Special Health Hazardous Substances List U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS) U.S Ohio - Accidental Release Prevention - Threshold Quantities

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

according to Federal Register / Vol. //, No. 58 / Monday, March 26, 2012 / Rules and Regulations
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Carbon dioxide (124-38-9)
U.S Hawaii - Occupational Exposure Limits - STELs
U.S Hawaii - Occupational Exposure Limits - TWAs
U.S Idaho - Occupational Exposure Limits - TWAs
U.S Maine - Air Pollutants - Greenhouse Gases (GHG)
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Right To Know List
U.S Massachusetts - Volatile Organic Compounds Exempt From Requirements
U.S Michigan - Occupational Exposure Limits - STELs
U.S Michigan - Occupational Exposure Limits - TWAs
U.S Minnesota - Hazardous Substance List
U.S Minnesota - Permissible Exposure Limits - STELs
U.S Minnesota - Permissible Exposure Limits - TWAs
U.S New Jersey - Right to Know Hazardous Substance List
U.S New York - Occupational Exposure Limits - TWAs
U.S Oregon - Permissible Exposure Limits - TWAs
U.S Pennsylvania - RTK (Right to Know) List
U.S Tennessee - Occupational Exposure Limits - STELs
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - STELs
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Nitrogen (7727-37-9)
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Right To Know List
U.S Minnesota - Hazardous Substance List
U.S New Jersey - Right to Know Hazardous Substance List
U.S Pennsylvania - RTK (Right to Know) List
U.S Washington - Permissible Exposure Limits - Simple Asphyxiants
Methane (74-82-8)
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities
U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities
U.S Delaware - Volatile Organic Compounds Exempt from Requirements
U.S Maine - Air Pollutants - Greenhouse Gases (GHG)
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
U.S Massachusetts - Right To Know List
U.S Massachusetts - Volatile Organic Compounds Exempt From Requirements

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

U.S Minnesota - Hazardous	Substance List			
U.S New Jersey - Discharge	Prevention - List of Hazardous Substances			
U.S New Jersey - Environme	ntal Hazardous Substances List			
U.S New Jersey - Excluded Volatile Organic Compounds				
U.S New Jersey - Right to Know Hazardous Substance List				
	U.S New Jersey - Special Health Hazards Substances List			
	raordinarily Hazardous Substances (EHS)			
-	se Prevention - Threshold Quantities			
U.S Oregon - Permissible Ex				
U.S Pennsylvania - RTK (Righ	nt to Know) List			
U.S Texas - Effects Screening	g Levels - Long Term			
U.S Texas - Effects Screening				
	e Exposure Limits - Simple Asphyxiants			
Ethane (74-84-0)				
	s Air Pollutants - HLVs (30 min)			
U.S Connecticut - Hazardous				
	elease Prevention Regulations - Sufficient Quantities			
	elease Prevention Regulations - Threshold Quantities			
	scharge Requirements - Reportable Quantities			
	anic Compounds Exempt from Requirements			
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1				
	azardous Material List - Groundwater Reportable Concentration - Reporting Category 2			
	azardous Material List - Reportable Quantity			
	azardous Material List - Soil Reportable Concentration - Reporting Category 1			
	azardous Material List - Soil Reportable Concentration - Reporting Category 2			
U.S Massachusetts - Right T				
U.S Massachusetts - Volatile	e Organic Compounds Exempt From Requirements			
U.S Minnesota - Hazardous	Substance List			
U.S New Jersey - Discharge	Prevention - List of Hazardous Substances			
U.S New Jersey - Environme	ntal Hazardous Substances List			
U.S New Jersey - Excluded V	olatile Organic Compounds			
U.S New Jersey - Right to Kn	iow Hazardous Substance List			
U.S New Jersey - Special Hea	alth Hazards Substances List			
U.S New Jersey - TCPA - Extr	raordinarily Hazardous Substances (EHS)			
U.S Ohio - Accidental Release Prevention - Threshold Quantities				
U.S Oregon - Permissible Exposure Limits - TWAs				
U.S Pennsylvania - RTK (Right to Know) List				
U.S Texas - Effects Screening	g Levels - Long Term			
U.S Texas - Effects Screening	g Levels - Short Term			
U.S Washington - Permissib	le Exposure Limits - Simple Asphyxiants			
Canadian Regulations				
Wellhead Natural Gas				
WHMIS Classification	Class B Division 1 - Flammable Gas			
	Class A - Compressed Gas			

Class A - Compressed Gas

Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List) inventory.

Listed on the Canadian Ingredient Disclosure List

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

WHMIS Classification	Class A - Compressed Gas		
	Class B Division 1 - Flammable Gas		
	Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects		
	Class D Division 2 Subdivision B - Toxic material causing other toxic effects		
Propane (74-98-6)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
WHMIS Classification	Class A - Compressed Gas		
	Class B Division 1 - Flammable Gas		
Butane (106-97-8)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
Listed on the Canadian Ingre	edient Disclosure List		
WHMIS Classification	Class A - Compressed Gas		
	Class B Division 1 - Flammable Gas		
Carbon dioxide (124-38-9)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
Listed on the Canadian Ingredient Disclosure List			
WHMIS Classification	Class A - Compressed Gas		
Nitrogen (7727-37-9)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
WHMIS Classification	Class A - Compressed Gas		
Methane (74-82-8)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
WHMIS Classification	Class A - Compressed Gas		
	Class B Division 1 - Flammable Gas		
Ethane (74-84-0)			
Listed on the Canadian DSL	Domestic Substances List) inventory.		
WHMIS Classification	Class A - Compressed Gas		
	Class B Division 1 - Flammable Gas		
This product has been classi	fied in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS		
contains all of the information required by CPR.			

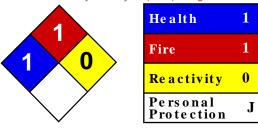
SECTION 16: OTHER INFORMATION

Revision date	: 10/02/2013
Other Information	: This document has been prepared in accordance with the SDS requirements of the OSHA
	Hazard Communication Standard 29 CFR 1910.1200

GHS Full Text Phrases:

Acute Tox. 2 (Inhalation:gas)	Acute toxicity (inhalation:gas) Category 2	
Aquatic Acute 1	Hazardous to the aquatic environment - Acute Hazard Category 1	
Compressed gas	Gases under pressure Compressed gas	
Flam. Gas 1	Flammable gases Category 1	
Liquefied gas	Gases under pressure Liquefied gas	
Simple Asphy	Simple Asphyxiant	
H220	Extremely flammable gas	
H280	Contains gas under pressure; may explode if heated	
H330	Fatal if inhaled	
H400	Very toxic to aquatic life	

Party Responsible for the Preparation of This Document


Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Williams, Inc. One Williams Center Tulsa, OK 74172, US 800-688-7507

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product North America GHS US 2012 & WHMIS

Att H - MSDS - Tri-Ethylene Glycol (TEG) - Page 1 of 5

Material Safety Data Sheet Triethylene glycol MSDS

Section 1: Chemical Product and Company Identification Product Name: Triethylene glycol **Contact Information:** Sciencelab.com, Inc. Catalog Codes: SLT2644 14025 Smith Rd. CAS#: 112-27-6 Houston, Texas 77396 US Sales: 1-800-901-7247 RTECS: YE4550000 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Triethylene glycol Order Online: ScienceLab.com Cl#: Not available. CHEMTREC (24HR Emergency Telephone), call: **Synonym:** 2,2'-[1,2-Ethanediylbis(oxy)]bisethanol 1-800-424-9300 Chemical Formula: C6H14O4 International CHEMTREC, call: 1-703-527-3887 For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Triethylene glycol	112-27-6	100

Toxicological Data on Ingredients: Triethylene glycol: ORAL (LD50): Acute: 17000 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of eye contact (irritant), of ingestion. Slightly hazardous in case of inhalation. Inflammation of the eye is characterized by redness, watering, and itching.

Potential Chronic Health Effects:

Very hazardous in case of eye contact (irritant). Slightly hazardous in case of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to kidneys, the nervous system. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Do not use an eye ointment. Seek medical attention.

Skin Contact: No known effect on skin contact, rinse with water for a few minutes.

Serious Skin Contact: Not available.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation: Not available.

Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 371°C (699.8°F)

Flash Points: CLOSED CUP: 177°C (350.6°F). OPEN CUP: 165.5°C (329.9°F).

Flammable Limits: LOWER: 0.9% UPPER: 9.2%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Absorb with an inert material and put the spilled material in an appropriate waste disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapour/spray. Avoid contact with eyes If ingested, seek medical advice immediately and show the container or the label.

Storage:

Att H - MSDS - Tri-Ethylene Glycol (TEG) - Page 3 of 5

Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Combustible materials should be stored away from extreme heat and away from strong oxidizing agents.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection: Splash goggles. Lab coat.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid. (Hygroscopic liquid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 150.18 g/mole

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 285°C (545°F)

Melting Point: -5°C (23°F)

Critical Temperature: Not available.

Specific Gravity: 1.1274 (Water = 1)

Vapor Pressure: Not available.

Vapor Density: 5.17 (Air = 1)

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff .: Not available.

lonicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility: Easily soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 17000 mg/kg [Rat].

Chronic Effects on Humans: The substance is toxic to kidneys, the nervous system.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Slightly hazardous in case of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Triethylene glycol TSCA 8(b) inventory: Triethylene glycol

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada): Not controlled under WHMIS (Canada).

DSCL (EEC): R41- Risk of serious damage to eyes.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 1

Reactivity: 0

Personal Protection: j

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Not applicable. Lab coat. Not applicable. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:31 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Material Safety Data Sheet

SECTION 1 PRODUCT AND COMPANY IDENTIFICATION

Chevron Lubricating Oil FM 32, 46, 68

Product Use: Industrial Oil Product Number(s): CPS232103, CPS255110, CPS255150 Company Identification Chevron Products Company a division of Chevron U.S.A. Inc. 6001 Bollinger Canyon Rd. San Ramon, CA 94583 United States of America www.chevronlubricants.com

Transportation Emergency Response

CHEMTREC: (800) 424-9300 or (703) 527-3887

Health Emergency

Chevron Emergency Information Center: Located in the USA. International collect calls accepted. (800) 231-0623 or (510) 231-0623

Product Information

email : lubemsds@chevron.com Product Information: (800) LUBE TEK

SECTION 2 COMPOSITION/ INFORMATION ON INGREDIENTS

COMPONENTS	CAS NUMBER	AMOUNT
White mineral oil	8042-47-5	90 - 100 %weight

SECTION 3 HAZARDS IDENTIFICATION

IMMEDIATE HEALTH EFFECTS

Eye: Not expected to cause prolonged or significant eye irritation.

Skin: Contact with the skin is not expected to cause prolonged or significant irritation. Contact with the skin is not expected to cause an allergic skin response. Not expected to be harmful to internal organs if absorbed through the skin. High-Pressure Equipment Information: Accidental high-velocity injection under the skin of materials of this type may result in serious injury. Seek medical attention at once should an accident like this occur. The initial wound at the injection site may not appear to be serious at first; but, if left untreated, could result in disfigurement or amputation of the affected part.

Ingestion: Not expected to be harmful if swallowed.

Inhalation: Not expected to be harmful if inhaled. Contains a petroleum-based mineral oil. May cause respiratory irritation or other pulmonary effects following prolonged or repeated inhalation of oil mist at airborne levels above the recommended mineral oil mist exposure limit. Symptoms of respiratory

irritation may include coughing and difficulty breathing.

SECTION 4 FIRST AID MEASURES

Eye: No specific first aid measures are required. As a precaution, remove contact lenses, if worn, and flush eyes with water.

Skin: No specific first aid measures are required. As a precaution, remove clothing and shoes if contaminated. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.

Ingestion: No specific first aid measures are required. Do not induce vomiting. As a precaution, get medical advice.

Inhalation: No specific first aid measures are required. If exposed to excessive levels of material in the air, move the exposed person to fresh air. Get medical attention if coughing or respiratory discomfort occurs.

Note to Physicians: In an accident involving high-pressure equipment, this product may be injected under the skin. Such an accident may result in a small, sometimes bloodless, puncture wound. However, because of its driving force, material injected into a fingertip can be deposited into the palm of the hand. Within 24 hours, there is usually a great deal of swelling, discoloration, and intense throbbing pain. Immediate treatment at a surgical emergency center is recommended.

SECTION 5 FIRE FIGHTING MEASURES

Leaks/ruptures in high pressure system using materials of this type can create a fire hazard when in the vicinity of ignition sources (eg. open flame, pilot lights, sparks, or electric arcs).

FLAMMABLE PROPERTIES:

Flashpoint: (Cleveland Open Cup) 192 °C (378 °F) Minimum

Autoignition: No data available

Flammability (Explosive) Limits (% by volume in air): Lower: Not Applicable Upper: Not Applicable

EXTINGUISHING MEDIA: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish flames.

PROTECTION OF FIRE FIGHTERS:

Fire Fighting Instructions: This material will burn although it is not easily ignited. For fires involving this material, do not enter any enclosed or confined fire space without proper protective equipment, including self-contained breathing apparatus.

Combustion Products: Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be evolved when this material undergoes combustion.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Protective Measures: Eliminate all sources of ignition in vicinity of spilled material.

Spill Management: Stop the source of the release if you can do it without risk. Contain release to prevent further contamination of soil, surface water or groundwater. Clean up spill as soon as possible, observing precautions in Exposure Controls/Personal Protection. Use appropriate techniques such as applying non-combustible absorbent materials or pumping. Where feasible and appropriate, remove contaminated soil. Place contaminated materials in disposable containers and dispose of in a manner consistent with applicable regulations.

Reporting: Report spills to local authorities as appropriate or required.

SECTION 7 HANDLING AND STORAGE

Precautionary Measures: DO NOT USE IN HIGH PRESSURE SYSTEMS in the vicinity of flames, sparks and hot surfaces. Use only in well ventilated areas. Keep container closed.

General Handling Information: Avoid contaminating soil or releasing this material into sewage and drainage systems and bodies of water.

Static Hazard: Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating and accumulating an electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures. For more information, refer to OSHA Standard 29 CFR 1910.106, 'Flammable and Combustible Liquids', National Fire Protection Association (NFPA 77, 'Recommended Practice on Static Electricity', and/or the American Petroleum Institute (API) Recommended Practice 2003, 'Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents'.

Container Warnings: Container is not designed to contain pressure. Do not use pressure to empty container or it may rupture with explosive force. Empty containers retain product residue (solid, liquid, and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death. Empty containers should be completely drained, properly closed, and promptly returned to a drum reconditioner or disposed of properly.

SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see Section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment. If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, the personal protective equipment listed below is recommended. The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

ENGINEERING CONTROLS:

Use in a well-ventilated area.

PERSONAL PROTECTIVE EQUIPMENT

Eye/Face Protection: No special eye protection is normally required. Where splashing is possible, wear safety glasses with side shields as a good safety practice.

Skin Protection: No special protective clothing is normally required. Where splashing is possible, select protective clothing depending on operations conducted, physical requirements and other substances in the workplace. Suggested materials for protective gloves include: Neoprene, Nitrile Rubber, Silver Shield, Viton.

Respiratory Protection: No respiratory protection is normally required. If user operations generate an oil mist, determine if airborne concentrations are below the occupational exposure limit for mineral oil mist. If not, wear an approved respirator that provides adequate protection from the measured concentrations of this material. For air-purifying respirators use a particulate cartridge.

Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

Occupational Exposure Limits:

Component	Country/ Agency	TWA	STEL	Ceiling	Notation
White mineral oil	ACGIH	5 mg/m3	10 mg/m3		

Consult local authorities for appropriate values.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Attention: the data below are typical values and do not constitute a specification.

Color: Colorless Physical State: Liquid Odor: Petroleum odor pH: Not Applicable Vapor Pressure: <0.01 mmHg @ 37.8 °C (100 °F) Vapor Density (Air = 1): >1 Boiling Point: >315 °C (599 °F) Solubility: Soluble in hydrocarbons; insoluble in water Freezing Point: Not Applicable Density: 0.867 kg/l @ 15.6 °C (60.1 °F) (Typical) Viscosity: 61.2 cSt @ 40 °C (104 °F) Minimum Evaporation Rate: No data available

SECTION 10 STABILITY AND REACTIVITY

Chemical Stability: This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.

Incompatibility With Other Materials: May react with strong acids or strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.

Hazardous Decomposition Products: None known (None expected) Hazardous Polymerization: Hazardous polymerization will not occur.

SECTION 11 TOXICOLOGICAL INFORMATION

IMMEDIATE HEALTH EFFECTS

Eye Irritation: The eye irritation hazard is based on evaluation of data for similar materials or product components.

Skin Irritation: The skin irritation hazard is based on evaluation of data for similar materials or product components.

Skin Sensitization: The skin sensitization hazard is based on evaluation of data for similar materials or product components.

Acute Dermal Toxicity: The acute dermal toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Oral Toxicity: The acute oral toxicity hazard is based on evaluation of data for similar materials or product components.

Acute Inhalation Toxicity: The acute inhalation toxicity hazard is based on evaluation of data for similar materials or product components.

SECTION 12 ECOLOGICAL INFORMATION

ECOTOXICITY

This material is not expected to be harmful to aquatic organisms. The ecotoxicity hazard is based on an evaluation of data for the components or a similar material.

ENVIRONMENTAL FATE

Ready Biodegradability: This material is not expected to be readily biodegradable. The biodegradability of this material is based on an evaluation of data for the components or a similar material.

SECTION 13 DISPOSAL CONSIDERATIONS

Use material for its intended purpose or recycle if possible. Oil collection services are available for used oil recycling or disposal. Place contaminated materials in containers and dispose of in a manner consistent with applicable regulations. Contact your sales representative or local environmental or health authorities for approved disposal or recycling methods.

SECTION 14 TRANSPORT INFORMATION

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

DOT Shipping Description: PETROLEUM LUBRICATING OIL, NOT REGULATED AS A HAZARDOUS MATERIAL FOR TRANSPORTATION UNDER 49 CFR

IMO/IMDG Shipping Description: PETROLEUM LUBRICATING OIL; NOT REGULATED AS DANGEROUS GOODS FOR TRANSPORT UNDER THE IMDG CODE

ICAO/IATA Shipping Description: PETROLEUM LUBRICATING OIL; NOT REGULATED AS DANGEROUS GOODS FOR TRANSPORT UNDER ICAO TI OR IATA DGR

SECTION 15 REGULATORY INFORMATION

REGULATORY LISTS SEARCHED:

01-1=IARC Group 1 01-2A=IARC Group 2A 01-2B=IARC Group 2B

The following components of this material are found on the regulatory lists indicated. White mineral oil 01-1

CHEMICAL INVENTORIES:

All components comply with the following chemical inventory requirements: AICS (Australia), DSL (Canada), EINECS (European Union), ENCS (Japan), IECSC (China), KECI (Korea), PICCS (Philippines), TSCA (United States).

EU RISK AND SAFETY PHRASES: S61: Avoid release to the environment. Refer to special instructions/Safety data sheets.

WHMIS CLASSIFICATION:

This product is not considered a controlled product according to the criteria of the Canadian Controlled

Products Regulations.

SECTION 16 OTHER INFORMATION

NFPA RATINGS: Health: 0 Flammability: 1 Reactivity: 0

HMIS RATINGS: Health: 0 Flammability: 1 Reactivity: 0 (0-Least, 1-Slight, 2-Moderate, 3-High, 4-Extreme, PPE:- Personal Protection Equipment Index recommendation, *- Chronic Effect Indicator). These values are obtained using the guidelines or published evaluations prepared by the National Fire Protection Association (NFPA) or the National Paint and Coating Association (for HMIS ratings).

LABEL RECOMMENDATION:

Label Category : INDUSTRIAL OIL 1 - IND1

REVISION STATEMENT: This is a new Material Safety Data Sheet. **Revision Date:** OCTOBER 28, 2010

ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:

TLV - Threshold Limit Value	TWA - Time Weighted Average
STEL - Short-term Exposure Limit	PEL - Permissible Exposure Limit
	CAS - Chemical Abstract Service Number
ACGIH - American Conference of Governmental	IMO/IMDG - International Maritime Dangerous Goods
Industrial Hygienists	Code
API - American Petroleum Institute	MSDS - Material Safety Data Sheet
CVX - Chevron	NFPA - National Fire Protection Association (USA)
DOT - Department of Transportation (USA)	NTP - National Toxicology Program (USA)
IARC - International Agency for Research on	OSHA - Occupational Safety and Health
Cancer	Administration

Prepared according to the International Standard (ISO 11014-1) & (NBR 14725) by the Chevron Energy Technology Company, 100 Chevron Way, Richmond, California 94802.

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.

EnCana Corporation	Material Safety Data Sheet	Produced Water – Sweet	Page 1 of 2
--------------------	----------------------------	------------------------	-------------

SECTION 1 – MATERIAL IDENTIFICATION AND USE

Material Name: PRODUCED WATER (SWEET - FROM CRUDE OIL OR DEEP GAS PRODUCTION) Use: Process stream, waste WHMIS Classification: Class B, Div. 2; Class D, Div. 2, Sub-Div. A and B NFPA: Fire: 3 Reactivity: 0 Health: 2 TDG: **UN**: 1267 Class: 3 Packing Group: II Shipping Name: PETROLEUM CRUDE OIL

Manufacturer/Supplier: ENCANA CORPORATION #1800, 855 - 2nd Street S.W., P.O. BOX 2850 CALGARY, ALBERTA, T2P 2S5 (403) 645-3333 **Emergency Telephone**: Chemical Family: Water with C5+ aliphatic and aromatic hydrocarbons.

SECTION 2 – HAZARDOUS INGREDIENTS OF MATERIAL

Hazardous Ingredients	Approximate Concentrations (%)	C.A.S. Nos.	LD50/LC50 (Incl. Species & Route)	Exposure Limits
Sodium chloride	5-20	7647-14-05	N.Av.	N.Av.
n-Hexane	0.1-1	110-54-3	LD50,rat,oral,28.7 g/kg	50 ppm (OEL,TLV)
Benzene	0.1-1	71-43-2	LD50,rat,oral,930 mg/kg	0.5 ppm (OEL)
			LC50,rat,4 hr,13200 ppm	0.5 ppm (TLV)

OEL = 8 hr. Alberta Occupational Exposure Limit; TLV = Threshold Limit Value (8 hrs)

SECTION 3 – PHYSICAL DATA FOR MATERIAL

Physical State: Liquid	Vapour Pressure (mmHg): 20 @ 20 deg. C.
Specific Gravity: 1,0 - 1.1 @ 20 degrees C	Odour Threshold (ppm): N.Av.
Vapour Density (air=1): 2.5-3.0	Evaporation Rate: N.Av.
Percent Volatiles, by volume: 100	Boiling Pt. (deg.C) : 50 to 100
pH: N.Av.	Freezing Pt . (deg.C): -10 to 0 (est.)
Coefficient of Water/Oil Distribution: >100 / 1	
Odour & Appearance: colorless/straw coloured liquid, hydr	rocarbon odour
(N.AV. = not available N.App. = not applicable)	

SECTION 4 – FIRE AND EXPLOSION

Flammability: Yes Conditions: Bulk of material is water, and will not ignite. However, sufficient hydrocarbon vapour may be present to cause flash fire at normal temperatures*.

Means of Extinction: Foam, CO2, dry chemical. Explosive accumulations can build up in areas of poor ventilation*. Special Procedures: Use water spray to cool fire-exposed containers, and to disperse vapors if spill has not

ignited. If safe to do so, cut off supply and allow flame to burn out*.

Flash Point (deg.C) & Method: <-40 (TCC) (hydrocarbons)*

Upper Explosive Limit (% by vol.): 8* Sensitivity to Impact: No Lower Explosive Limit (% by vol.): 1* Sensitivity to Static Discharge: Yes, may ignite* Auto Ignition Temp. (deg.C): 260* **TDG Flammability Classification:** Class 3* Hazardous Combustion Products: Carbon monoxide, carbon dioxide*

*Assuming hydrocarbon content is high enough to ignite. Hydrocarbons may derive from the original produced water or contamination through transportation in a tank that had previously contained crude oil.

SECTION 5 – REACTIVITY DATA

Chemical Stability: Yes Conditions: Heat Incompatibility: Yes Substances: Oxidizing agents (e.g. chlorine, compressed oxygen) Reactivity: Yes Conditions: Heat, strong sunlight Hazardous Decomposition Products: Carbon monoxide, carbon dioxide

SECTION 6 – TOXICOLOGICAL PROPERTIES OF PRODUCT

Routes of Entry: Skin Absorption Yes Skin Contact: Yes (liquid) Eye Contact: Yes Inhalation: Acute: Yes Chronic: Yes Ingestion: Yes Effects of Acute Exposure: Vapour may cause irritation of eyes, nose and throat, dizziness and drowsiness. Contact with skin may cause irritation and possibly dermatitis. Hydrocarbons absorbed through intact skin. Contact of liquid with eyes may cause severe irritation. Effects of Chronic Exposure: Due to presence of benzene and n-hexane, long term exposure may increase the risk of anaemia, leukaemia and nervous system damage. Sensitization to Product: N.Av. **Exposure Limits of Product**: 0.5 ppm (8 hr Alberta OEL for benzene) Irritancy: Yes Synergistic Materials: None reported Carcinogenicity: Yes **Reproductive Effects**: Possibly Teratogenicity: Possibly Mutagenicity: Possibly

SECTION 7 – PREVENTIVE MEASURES

Personal Protective Equipment: Use positive pressure self-contained breathing apparatus, supplied air breathing apparatus, or cartridge respirator approved for organic vapours where concentrations may exceed exposure limits. **Gloves**: Viton (nitrile adequate for short exposure to liquid)

Respiratory: SCBA, SABA or cartridge respirator approved for organic vapours. **Eye**: Chemical splash goggles **Footwear**: As per safety policy. **Clothing**: As per fire protection policy.

Engineering Controls: Use only in well ventilated areas. Mechanical ventilation required in confined areas. Equipment must be explosion proof.

Leaks & Spills: Stop leak if safe to do so. Use personal protective equipment. Use water spray to cool containers. Remove all ignition sources. Provide explosion-proof clearing ventilation, if possible. Prevent from entering confined spaces, or from contaminating land and water courses. Dyke and pump into containers for recycling or disposal. Notify appropriate regulatory authorities.

Waste Disposal: Contact appropriate regulatory authorities for disposal requirements.

Handling Procedures & Equipment: Avoid contact with liquid. Avoid inhalation. Bond and ground all transfers. Avoid sparking conditions.

Storage Requirements: Store in a cool, dry, well ventilated area away from heat, strong sunlight, and ignition sources. **Special Shipping Information**: N.Av.

SECTION 8 – FIRST AID MEASURES

Skin:	Flush skin with water, removing contaminated clothing.	Get medical attention if irritation persists or
	large areas of contact.	

Eye: Immediately flush with large amounts of luke warm water for 15 minutes, lifting upper and lower lids at intervals. Get medical attention if irritation persists.

Inhalation: Ensure own safety. Remove victim to fresh air. Give oxygen, artificial respiration, or CPR if needed. Get immediate medical attention.

Ingestion: Give 2-3 glasses of milk or water to drink. DO NOT INDUCE VOMITING. Keep warm and at rest. Get immediate medical attention.

SECTION 9 – PREPARATION DATE OF MSDS

Prepared By: Encana Environment, Health and Safety (EHS) Phone Number: (403) 645-2000 Preparation Date: July 1, 2011 Ex

Expiry Date: July 1, 2014

ATTACHMENT I

Emission Units Table

"25. Fill out the Emission Units Table and provide it as Attachment I."

• Emissions Unit Table

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT I - EMISSION UNITS TABLE

(Include all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status.)

			· · · ·	;	-	
Unit ID ¹	Pt ID ²	Description	Installed	Capacity	Type ³	Control ⁴
CE-01	1E	68 bhp Arrow VRG-330-A-54 Compressor Engine	2012	68 bhp	Existing	na
CE-02	2E	225 bhp Cummins GTA-855 Compressor Engine	2015	225 bhp	NEW	01-NSCR
RPC	3E	Rod Packing/Crankcase Leaks	2012	293 bhp	Existing	na
SSM	4E	Startup/Shutdown/Maintenance (Blowdown (BD))	2012	na	Existing	na
DFT-01	5E	5.0 MMscfd Dehydrator - Flash Tank	2012	5.0 MMscfd	Existing	na
DSV-01	6E	5.0 MMscfd Dehydrator - Regenerator/Still Vent	2012	5.0 MMscfd	Existing	na
RBV-01	7E	0.22 MMBtu/hr Reboiler Vent	2012	0.22 MMBtu/hr	Existing	na
TK-01	8E	Produced Water - Storage Tank	2014	210 bbl	Existing	na
TLO	9E	Produced Water - Truck Load-Out	2014	2,520 bbl/yr	Existing	na
FUG	10E	Piping and Equipment Fugitives	2012	na	Existing	na
			(NI	EW/Modified Units	are in Shadeo	l Cells)

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

- Table 1 Emissions Data
- Table 2 Release Parameter Data

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT J - EMISSION POINTS DATA SUMMARY SHEET

							Table 1: E	Emissions Dat	ta						
Unit	- 1	Emissi	ion Unit	Contro	Control Device		Time	5 1	Pre-Co	ntrolled ⁴	Contr	olled ⁵	Emission	Est.	Concen-
ID	Type ¹	Point	Source	ID	Туре	Term ²	hr/yr	Pollutant ³	lb/hr	ton/yr	lb/hr	ton/yr	Phase	Method ⁶	tration ⁷
								NOX	2.59	11.35	2.59	11.35	gas	Vendor	
		68 t	hp Arrow	VRG-330-	A-54			CO	2.93	12.84	2.93	12.84	gas	Vendor	
			•	1,800 rpm				VOC	0.02	0.10	0.02	0.10	gas	Vendor	
			Compres	sor Engine	•			SO2	4.0E-04	1.7E-03	4.0E-04	1.7E-03	gas	AP-42	
								PM10/2.5	0.01	0.06	0.01	0.06	solid/gas	AP-42	
								HCHO	0.02	0.07	0.02	0.07	gas	Vendor	
								n-Hexane					gas	AP-42	
	Upward		Comp-					Benzene	1.1E-03	0.00	1.1E-03	0.00	gas	AP-42	
CE-01	Vertical	1E	ressor	na	na	С	8,760	Toluene	3.8E-04	1.7E-03	3.8E-04	1.7E-03	gas	AP-42	
	Stack		Engines					E-benzene	1.7E-05	7.4E-05	1.7E-05	7.4E-05	gas	AP-42	
								Xylenes	1.3E-04	5.8E-04	1.3E-04	5.8E-04	gas	AP-42	
								Total HAP	0.02	0.10	0.02	0.10	gas	AP-42	
								CO2e	123	538	123	538	gas	Vendor	
								NOX	6.00	26.29	0.50	2.17	gas	Vendor	
		224	5 bhp Cum	mins GTA	855			СО	1.44	6.30	0.99	4.35	gas	Vendor	
		220		1,800 rpm				VOC	0.17	0.73	0.17	0.73	gas	Vendor	
			Compres	sor Engine	•			SO2	1.2E-03	0.01	1.2E-03	0.01	gas	AP-42	
								PM10/2.5	0.04	0.18	0.04	0.18	solid/gas	AP-42	
								НСНО	0.04	0.19	0.04	0.19	gas	Vendor	
								n-Hexane					gas	AP-42	
	Upward		Comp-					Benzene	3.3E-03	0.01	3.3E-03	0.01	gas	AP-42	
CE-02	Vertical	2E	ressor Engines	01- NSCR	NSCR	С	8,760	Toluene	1.2E-03	0.01	1.2E-03	0.01	gas	AP-42	
	Stack							E-benzene	5.3E-05	2.3E-04	5.3E-05	2.3E-04	gas	AP-42	
								Xylenes	4.1E-04	1.8E-03	4.1E-04	1.8E-03	gas	AP-42	
								Total HAP	0.07	0.30	0.07	0.30	gas	AP-42	
								CO2e	324	1,420	85	1,420	gas	Vendor	
								VOC	1.30	5.68	1.30	5.68	gas	EE	
				1	1			НСНО	9.4E-04	4.1E-03	9.4E-04	4.1E-03	gas	EE	
	Compre	essor Rod	Packing a	•	Crankcas	e Leaks		n-Hexane	0.00	6.8E-03	0.00	6.8E-03	gas	EE	
			(TOTAL Site-Wide)					Benzene	0.00	2.1E-02	0.00	2.1E-02	gas	EE	
			1					Toluene	0.00	2.1E-02	0.00	2.1E-02	gas	EE	
			Comp-					E-benzene	0.00	2.1E-02	0.00	2.1E-02	gas	EE	
RPC	na	3E	ressors and Engines	na	na	С	8,760	Xylenes	0.00	2.1E-02	0.00	2.1E-02	gas	EE	
								Total HAP	0.02	0.11	0.02	0.11	gas	EE	
			3.05					CO2e	116	510	116	510	gas	EE	1
								VOC		4.19		4.19	gas	MB	
								n-Hexane		0.06		0.06	gas	MB	
	Startu	p/Shutdov	vn/Mainten	· ·	Blowdowr	n (BD))		Benzene		1.7E-03		1.7E-03	gas	MB	
			(IUTAL S	Site-Wide)				Toluene		3.3E-03		3.3E-03	gas	MB	
			Come					E-benzene		1.7E-03		1.7E-03	gas	MB	1
			Comp- ressors			Ave 3.0 BD/wk	Approx.	Xylenes		0.01		0.01	gas	MB	
SSM	na	4E	and	na	na	@ 30	78	Total HAP		0.08		0.08	gas	MB	
			Piping			Min/BD		CO2e		354		354	gas	MB	
								VOC	2.93	12.83	2.93	12.83	gas	GLYCalc	
				1	1	1		n-Hexane	0.06	0.25	0.06	0.25	gas	GLYCalc	
	5.0 MMscfd TEG Dehydrator							Benzene	5.8E-03	0.03	5.8E-03	2.6E-02	gas	GLYCalc	
			Flash	Tank				Toluene	0.02	0.00	1.6E-02	7.1E-02	gas	GLYCalc	
								E-benzene	2.3E-03	1.0E-02	2.3E-03	1.0E-02	gas	GLYCalc	
	Upward		TEG Deby					Xylenes	2.3E-02	0.10	2.3E-02	1.0E-01	gas	GLYCalc	
DFT-01	Vertical	5E	Dehy Flash	na	na	С	8,760	Total HAP	0.11	0.46	0.11	0.46	gas	GLYCalc	
	Stack		Tank					CO2e	147	646	147	646	gas	GLYCalc	
								0026	1777	0-10	171	0-10	yas	JLIUait	

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT J - EMISSION POINTS DATA SUMMARY SHEET - Continued

							Table 1: E	missions Dat	a						
Unit	- 1	Emissi	on Unit	Control	Device	Vent	Time	D H (3	Pre-Controlled ⁴		Controlled ⁵		Emission	Est.	Concen-
ID	Type ¹	Point	Source	ID	Туре	Term ²	hr/yr	Pollutant ³	lb/hr	ton/yr	lb/hr	ton/yr	Phase	Method ⁶	tration ⁷
								VOC	1.59	6.97	1.59	6.97	gas	GLYCalc	
		5.0						n-Hexane	0.02	0.09	0.02	0.09	gas	GLYCalc	
			MMscfd TI Regenerat					Benzene	0.05	0.24	0.05	0.24	gas	GLYCalc	
								Toluene	0.23	1.00	0.23	1.00	gas	GLYCalc	
								E-benzene	0.01	0.03	0.01	0.03	gas	GLYCalc	
DSV-01	Upward Vertical	6E	TEG Dehy	na	na	с	8.760	Xylenes	0.78	3.44	0.78	3.44	gas	GLYCalc	
000-01	Stack	0L	Still Vent	Па	Па	C	0,700	Total HAP	1.09	4.78	1.09	4.78	gas	GLYCalc	
								CO2e	1.65	7.22	1.65	7.22	gas	GLYCalc	
								NOX	0.02	0.10	0.02	0.10	gas	AP-42	
			0.00 M					CO	0.02	0.08	0.02	0.08	gas	AP-42	
	0.22 MMBtu/hr TEG Reboiler							VOC	1.2E-03	0.01	1.2E-03	0.01	gas	AP-42	
								SO2	1.3E-04	5.7E-04	1.3E-04	5.7E-04	gas	AP-42	
	Upward Vertical	7E	TEG Reboiler					PM10/2.5	1.7E-03	0.01	1.7E-03	0.01	solid/gas	AP-42	
				na	na	С	8,760	НСНО	1.6E-05	7.2E-05	1.6E-05	7.2E-05	gas	AP-42	
								n-Hexane	3.9E-04	1.7E-03	3.9E-04	1.7E-03	gas	AP-42	
RBV-01								Benzene	4.6E-07	2.0E-06	4.6E-07	2.0E-06	gas	AP-42	
	Stack							Toluene	7.4E-07	3.2E-06	7.4E-07	3.2E-06	gas	AP-42	
								Total HAP	4.1E-04	1.8E-03	4.1E-04	1.8E-03	gas	AP-42	
								CO2e	26	114	26	114	gas	40CFR98	
								VOC	1.1E-02	1.3E-01	1.1E-02	1.3E-01	gas	EE	
			oduced W	otor and C	andanaata			n-Hexane	5.6E-04	2.7E-03	5.6E-04	2.7E-03	gas	EE	
	4			e Tank	ondensate	;		Benzene	5.6E-04	2.7E-03	5.6E-04	2.7E-03	gas	EE	
			5					Toluene	5.6E-04	2.7E-03	5.6E-04	2.7E-03	gas	EE	
	Upward							E-benzene	5.6E-04	2.7E-03	5.6E-04	2.7E-03	gas	EE	
TK-01	Vertical	8E	Tank	na	na	С	8,760	Xylenes	5.6E-04	2.7E-03	5.6E-04	2.7E-03	gas	EE	
	Stack							Total HAP	2.8E-03	1.4E-02	2.8E-03	1.4E-02	gas	EE	
								VOC		0.26		0.26	gas	AP-42	
	Produced Water and Condensate Truck Load-Out							n-Hexane		0.01		0.01	gas	AP-42	
								Benzene		0.01		0.01	gas	AP-42	
								Toluene		0.01		0.01	gas	AP-42	
	Upward		Lood			Ave 1.0	Approx.	E-benzene		0.01		0.01	gas	AP-42	
TLO	Vertical	9E	Load- Out	na	na	TLO/wk @ 15	13	Xylenes		0.01		0.01	gas	AP-42	
	Stack					Min/TLO		Total HAP		0.06		0.01	gas	AP-42	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk)

3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv). If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT J - EMISSION POINTS DATA SUMMARY SHEET

			Та	able 2: Release P	arameter Data					
	Emission			Exit Gas		Emission Poir	t Elevation (ft)	UTM Coordinates (km)		
Unit ID	Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
CE-01	1E	0.2	1,238	406	50	1,365	12	4,421.38	531.71	
CE-02	2E	1.0	1,304	945	50	1,365	12	4,421.38	531.71	
RPC	3E	na	AMBIENT	na	na	1,365	4	4,421.38	531.71	
SSM	4E	0.5	AMBIENT	100	na	1,365	12	4,421.38	531.71	
DFT-01	5E	0.3	140	10	na	1,365	12	4,421.38	531.71	
DSV-01	6E	0.3	212	10	na	1,365	12	4,421.38	531.71	
RBV-01	7E	0.3	600	na	na	1,365	12	4,421.38	531.71	
TK-01	8E	na	AMBIENT	na	na	1,365	12	4,421.38	531.71	
TLO	9E	0.3	AMBIENT	30	na	1,365	12	4,421.38	531.71	
			-							
1										

¹ Give at operating conditions. Include inerts.

² Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

"27. Fill out the **Fugitive Emissions Data Summary Sheet** and provide it as Attachment K."

- Table 1 Emissions Data
- Application Forms Checklist
- Fugitive Emissions Summary

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT K - FUGITIVE EMISSIONS SUMMARY SHEET

	Table 1: Emissions Data														
Unit _ 1		Emission Unit		Control Device		Vent Time		Pollutant ³	Pre-Controlled ⁴		Controlled ⁵		Emission	Est.	Concen-
ID	Type'	Point	Source	ID	Туре	Term ²	hr/yr	Pollutant	lb/hr	ton/yr	lb/hr	ton/yr	Phase	Method ⁶	tration ⁷
								VOC	2.10	9.19	2.10	9.19	gas	AP-42	
							n-Hexane	0.10	0.45	0.10	0.45	gas	AP-42		
	Process Piping and Equipment Fugitives - GAS + WATER/OIL					Benzene	0.03	0.12	0.03	0.12	gas	AP-42			
								Toluene	0.03	0.12	0.03	0.12	gas	AP-42	
	Fugitive							E-benzene	0.03	0.12	0.03	0.12	gas	AP-42	
FUG	(Gas +	10E	Station	na	na	С	8,760	Xylenes	0.03	0.12	0.03	0.12	gas	AP-42	
FUG	Oil/Wate	IUE	Piping	na	na	C	0,700	Total HAP	0.24	1.06	0.24	1.06	gas	AP-42	
	r)							CO2e	136	595	136	595	gas	AP-42	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk)

3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv). If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS) Application for 45CSR13 NSR Modification Permit

ATTACHMENT K - FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET p a stack, chimney, vent or other functionally equiva on the appropriate EMISSIONS UNIT DATA SHE Please note that total emissions from the source a	lent opening. Note that uncaptured pr ET and on the EMISSION POINTS DA	rocess emissions	are not typically SHEET.	considered to be fu	gitive, and must b	
	APPLICATION FORMS CHECK	LIST - FUGITIVI	E EMISSIONS			
1.) Will there be haul road activities?						
□ Yes						
□ If Yes, then complete the HAUL ROAD EMISSI	ONS UNIT DATA SHEET.					
2.) Will there be Storage Piles?						
□ Yes						
□ If Yes, then complete Table 1 of the NONMET	ALLIC MINERALS PROCESSING EM	ISSIONS UNIT I	DATA SHEET.			
3.) Will there be Liquid Loading/Unloading Opera	tions?					
☑ Yes □ No						
If Yes, then complete the If Yes, then complete	e the BULK LIQUID TRANSFER OPE	RATIONS EMIS	SIONS UNIT DAT	A SHEET.		
4.) Will there be emissions of air pollutants from V				-		
□Yes ☑ No						
□ If Yes, then complete the GENERAL EMISSIO	ONS UNIT DATA SHEET.					
 Will there be Equipment Leaks (e.g. leaks fror sampling connections, flanges, agitators, cooli 	n pumps, compressors, in-line process	s valves, pressur	e relief devices, o	pen-ended valves,		
☑ Yes □ No						
 ☑ If Yes, then complete the LEAK SOURCE DA 	TA SHEET section of the CHEMICAL	PROCESSES E	MISSIONS LINIT I	DATA SHEET		
6.) Will there be General Clean-up VOC Operatio						
□ Yes □ No						
□ If Yes, then complete the GENERAL EMISSION						
7.) Will there be any other activities that generate						
□ Yes ☑ No						
□ If Yes, then complete the GENERAL EMISSION	IS LINIT DATA SHEET or the most an	propriate form				
If you answered "NO" to all of the items above, it is			e Emissions Sun	imary "		
	,		n Potential	Maximum Pote	ntial Controlled	
FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical		d Emissions ²	Emiss		Est. Method
	Name/CAS ¹	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Paved Haul Roads	na					
Unpaved Haul Roads	na					
Storage Pile Emissions	na					
	VOC		0.26		0.26	AP
Liquid Loading (TLO)	n-Hexane, BTEX (ea)		0.20		0.20	AP
	Total HAP		0.01		0.01	AP
Wastewater Treatment	na		0.08		0.08	AF
	VOC		9.19			
		2.10		2.10	9.19	EE
	n-Hexane	0.10	0.45	0.10	0.45	EE
	Benzene	0.03	0.12	0.03	0.12	EE
Equipment Leaks - (FUG-G and FUG-W) (10E) (Note, the facility is NOT subject to LDAR)	Toluene	0.03	0.12	0.03	0.12	EE
	E-Benzene	0.03	0.12	0.03	0.12	EE
	Xylenes	0.03	0.12	0.03	0.12	EE
	Total HAP	0.24	1.06	2.4E-01	1.06	EE
	CO2e	136	595	136	595	EE
General Clean-up VOC Emissions	na					
Other	na					

 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases, etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

2. Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

3. Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emissions Unit Data Sheet(s)

"28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

- Compressor/Generator Engine Data Sheet
 - Specs 68 bhp Arrow VRG-330-A-54 Compressor Engine (CE-01)
 - Specs 225 bhp Cummins GTA-855 Compressor Engine (CE-02)
- Natural Gas Glycol Dehydration Unit Data Sheets
 - TEG Dehydrator Flash Tank (DFT-01)
 - TEG Dehydrator Regenerator/Still Vent (DSV-01)
 - TEG Dehydrator Reboiler (RBV-01)
- 40 CFR Part 63; Subpart HH & HHH Registration Form
 - TEG Dehydrator (DFT-01 and DSV-01)
- Storage Tank Data Sheet
 - Emission Unit Data Sheet Storage Tank (TK-01)
 - Emission Unit Data Sheet Bulk Transfer Operations (TLO)
- Leak Source Data Sheet (FUG)

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT L - COMPRESSOR/GENERATOR ENGINE DATA SHEET

Compressor Source Identificat Engine Manufactur Manufacturer's Ra Source Sta	tion Number ¹ rer and Model	CE	-	er CS	00		
Engine Manufactur Manufacturer's Ra Source St	rer and Model		CE-01		CE-02		
Manufacturer's Ra		Arrow VRG-330-A-54		Cummins	s GTA855		
	ated bhp/rpm	68 / 1	,800	225 /	1,800		
	tatus ²	E	S	N	IS		
Date Installed/Modif	ified/Removed ³	20	12	20	15		
Manufactured/Recor		01/0	3/03	01/0	1/15		
Certified Engine (Certified Engine (NSPS JJJJ) ⁵		0	Ν	ю		
	Engine Type ⁶	RB	4S	RB	84S		
	APCD Type ⁷	No	ne	NS	CR		
	Fuel Type ⁸	R	G	R	G		
	H ₂ S (gr/100 scf)	0.	.2	0	.2		
Engine, Fuel and Combustion Data	Operating bhp/rpm	68 / 1	,800	225 /	1,800	Ì	
B	BSFC (Btu/bhp-hr)	9,0	000	8,4	196		
	Fuel (ft ³ /hr)	66	65	2,0)78		
	Fuel (MMft ³ /yr)	5.8	83	18	.20		
(Operation (hrs/yr)	8,7	60	8,760			
Reference ⁹	PTE ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr		
MD	NOX	2.59	11.35	0.50	2.17		
MD	CO	2.93	12.84	0.99	4.35		
MD	VOC	0.02	0.10	0.17	0.73		
AP	SO2	4.0E-04	1.7E-03	1.2E-03	0.01		
AP	PM10/2.5	0.01	0.06	0.04	0.18		
MD	НСНО	0.02	0.07	0.04	0.19		
MD/AP	Total HAP	0.02	0.10	0.07	0.30		

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT L - COMPRESSOR/GENERATOR ENGINE DATA SHEET - Continued

Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

- NS = Construction of New Source (installation)
- ES = Existing Source
- MS = Modification of Existing Source
- RS = Removal of Source
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

- LB2S = Lean Burn Two Stroke
- RB4S = Rich Burn Four Stroke
- LB4S = Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

- A/F = Air/Fuel Ratio
- IR = Ignition Retard
- HEIS = High Energy Ignition System
- SIPC = Screw-in Precombustion Chambers
- PSC = Prestratified Charge
- LEC = Low Emission Combustion
- NSCR = Non-Selective Catalytic Reduction
- SCR = Lean Burn & Selective Catalytic Reduction
- 8. Enter the Fuel Type using the following codes:
 - PQ = Pipeline Quality Natural Gas
 - RG = Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this

- Compressor/Generator Data Sheet(s).
 - MD = Manufacturer's Data
 - AP = AP-42
 - GR = GRI-HAPCalcTM
 - OT = Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

ENGINE MODEL:	K-6	C-46	C-66	C-96	C-101	C-106	C-255	L-795	A-42 (VRG 260)	A-54 (VRG 330)	A-54 CF (VRG 330 CF)	A-62 (VRG 380)	A-62 TA (VRG 380 TA)
									1		1	(
Rich/Lean Burn	Rich	Lean	Rich	Rich	Rich	Rich	Rich						
2 or 4 Cycle	4	4	4	4	4	4	4	2	4	4	4	4	4
Bore	4.00	5.00	5.25	7.00	7.50	7.50	7.50	7.50	4.134	3.875	3.875	4.134	4.134
Stroke	4.50	6.25	7.50	8.50	8.50	8.50	7.50	9.00	4.724	4.665	4.665	4.724	4.724
Displacement (CI.)	56.5	122.7	195	327	376	376	660	795	253	330	330	380.8	380.8
No. Cylinders	1	1	1	1	1	1	2	2	4	6	6	6	6
RPM Max/Min.	800/400	800/400	700/350	600/300	800/400	800/400	750/400	600/300	1800/1000	1800/1000	1800/1000	1800/1000	1800/1000
Max HP (cont.)	4.8	9	13	19	24.5	32	55	65	47	<mark>68</mark>	72	80	115
BMEP	84	73	75	77	65	84	88	54	82	91	96	92	133
BSFC (BTU/HP-HR)	14950	11640	11450	13000	13050	10350	11900	13500	8900	9000	8800	8268	8580
Exhaust Stack													
NPT Dia. (in.)	1 1/4"	1 1/2"	2"	2 1/2"	2 1/2"	2 1/2"	4"	4"	2"	2 1/2"	2 1/2"	*3"	*3"
Height (in.) **	©28.5"	"5.5"	"7.5"	"11"	"11"	"11"	©20"	©7"	27 ⁿ	28"	27 1/4"	28"	29 1/2"
Temp. (Deg. F)	1260	1300	1300	1300	1275	1302	1300	900	1230	1238	1238	1230	1350
Flow (acfm)	31	70	97	139	210	213	350	625	310	406	406	466	1331
Emissions (g/hp-hr)													
Pre-Cat Nox	N/A	N/A	N/A	N/A	N/A	14	IP	1.89	12.8	14.4	12.3	14.7	15.5
Pre-Cat CO	N/A	N/A	N/A	N/A	N/A	11.5	IP	2.58	5.1	16.3	11	5.8	11.15
Pre-Cat VOC	N/A	N/A	N/A	N/A	N/A	N/A	IP	N/A	0.04	0.04	0.04	0.04	0.10
Pre-Cat HCHO	N/A	N/A	N/A	N/A	N/A	N/A	IP	N/A	0.09	0.09	0.09	0.09	0.09
Post Cat Nox	*6@	*6@	*6@	*60	*6®	*2.8	*2.8	*2.8	*2.8	*2.8	*2.8	*2.8	*1.0
Post Cat CO	*455®	*455®	*455®	*455®	*455®	*4.8	*4.8	*4.8	*4.8	*4.8	*4.8	*4.8	*2.0
Post Cat VOC	N/A	N/A	N/A	N/A	N/A	N/A	IP	N/A	0.02	0.05	0.02	0.02	.06/*0.7
Post Cat HCHO	N/A	N/A	N/A	N/A	N/A	N/A	IP	N/A	0	0	0	0	0
Max. Exhaust Back													
Pressure ("W.C.)	20	20	20	20	20	20	20	TE	20	20	20	20	20
Weight (lb.)Dry	670	1360	1640	2580	2690	2690	3980	4510	1234	1000	1000	1851	1900

* = EPA emission regulation limits as of March 1, 2011. Check with your local DEQ, as they maybe lower than the EPA requirements.

** = Stack height is from the base of the mounting feet to the exhaust manifold outlet.

*= Catalyst equiped engines.

ⁿ = MUF-1 standard muffler outlet height.

TE = Tuned Exhaust.

IP = In Process

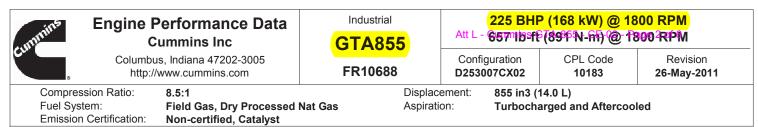
Emissions vary depending on AFR set point and emission equipment from engine to engine. This information is for reference only.

© = Center of exhaust outlet

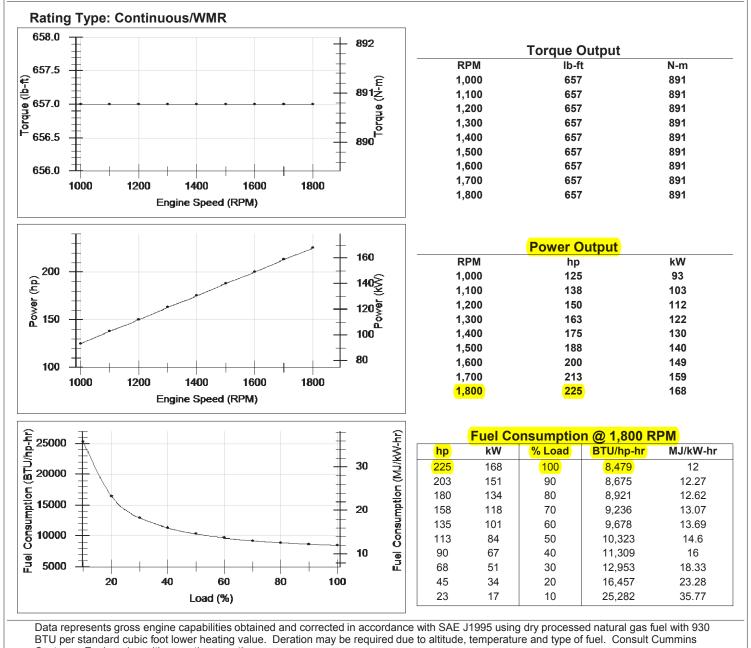
N/A = Not available at this time.

I = Does not require a catalyst to meet the current requirements BSFC (BTU/HP-HR) @ max rated RPM

ARROW ENGINE COMPANY - 2301 EAST INDEPENDENCE - TULSA, OKLAHOMA, USA 74110 TELEPHONE: 918-583-5711 - FAX: 918-388-3206 - www.arrowengine.com


Emissions Report

Att L - Cummins GTA-855 - CE-02 - Page 1 of 8


05/13/2015

	USA Comp	oressi	on Unit		6736	GTA855/	JGQ2				
Engine Serial Number :	25398582			Engin	e Manu	factured Date	e :	01	/01/2015		
Max HP :	<mark>225</mark>			Max F				18	00		
Number of Engine Cylinders :	6			Total I	Displac	ement (in3) :		85	<mark>5</mark>		
Combustion Type & Setting :	4 Stroke Rich Burr	1		Fuel D	elivery	Method:		Са	rburetor		
Compression Ratio :	8.5:1				-	Air Treatment	:	Tur	bocharge	d and Af	tercooled
Engine Modified/Reconstructed? :	Tier 2 - EMD after	1/1/11							-		
Compressor Frame Serial # :	F49532			Unit P	ackage	d Date :		03	/26/2015		
Compressor Frame Max RPM :	1800			# of Co	mpres	sor Throws :		2			
AIR ENVIRONMENTAL REGULATIO											
County and State Selected for Quot	<mark>ite:</mark> Ma	rshall				WV					
NSPS JJJJ	NOx	1.00	g/hp-hr	CO	2.0	g/hp-hr	VOC	0.7	g/hp-hr		
Ozone Non-Attainment / General Po	ermit NOx		g/hp-hr	CO		g/hp-hr	VOC		g/hp-hr	CH20	O g/hp-ł
RAW ENGINE EMISSIONS											
based on assumption of burning 90		or 80-8	85 Fuel Me	ethane #	Fuel G	Bas with little	to no H2	2S)			
Euel Consumption : 9,420) HHV BTU/bhp-hr		_								_
			<mark>g/</mark>	<u>bhp-hr</u>		Ib/MMB	<u>ru</u>			<u>lb/hr</u>	<u>TPY</u>
<mark>litrogen Oxides (NOx)</mark> :				<mark>12.10</mark>					e	6.002	26.289
Carbon Monoxide (CO) :				<mark>2.90</mark>					1	1.438	6.298
/olatile Organic Compounds (NMN	IEHC excluding CH2C)):				0.03			C	0.063	0.276
ormaldehyde (CH2O) :						0.02			C	0.043	0.188
Particulate Matter (PM) Filterable+0	Condensable :					0.0194			C	0.041	0.180
Sulfur Dioxide (SO2) :						0.0006			C	0.001	0.005
						0.0000			C C		
			g/	bhp-hr		Ib/MMB				<u>p/hr</u>	Metric Tonne/yr
Carbon Dioxide (CO2) :				<u>bhp-hr</u> 24.00					<u>lb</u>		<u>Metric Tonne/yr</u> 1,032.61
									<u>lb</u> 2	<u>o/hr</u>	-
Methane (CH4):						<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Nethane (CH4) :	el:)			24.00	1 0	<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Vethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode	el:)		5	24.00	3	<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Vethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type:			5 VXC-1610	24.00	3	<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements curre		(5 VXC-1610 3-Way	24.00	3	<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements curre Nir/Fuel Ratio Control :	ently in Housing:	(,	5 VXC-1610 3-Way 1	24.00	3	<u>lb/MMB</u>			<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements curre Nir/Fuel Ratio Control :	ently in Housing:	, I	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements curre Number of Catalyst Elements curre Number of Catalyst Elements curre Differ Engine Emissions Control Eq	ently in Housing:	, I	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to	<u>lb/MMB</u> 0.23	<u>г∪</u>		<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements curre Nir/Fuel Ratio Control : Other Engine Emissions Control Eq	ently in Housing:	, I	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb</u> 2	<u>o/hr</u> 59.92	1,032.61 1.94
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements curre Number of Catalyst Elem	ently in Housing:	, I	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb/hr</u>	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u>
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements curre Nir/Fuel Ratio Control : Dther Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) :	ently in Housing: quipment :	<u>, 111</u>	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to <u>nt / Ge</u> 92	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb/hr</u> 0.496	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173
Aethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements curre Nir/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Yolatile Organic Compounds (NMN)	ently in Housing: quipment :	<u>, 111</u>	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to <u>nt / Ge</u> 92 31	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb/hr</u> 0.496 0.992	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345
Aethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements currer Nir/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Yolatile Organic Compounds (NMN) Formaldehyde (CH2O) :	ently in Housing: quipment : IEHC excluding CH2O	<u>, 111</u>	VXC-1610 3-Way 1 Yes None % Reduc	24.00	juired to <u>nt / Ge</u> 92 31 0	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb/hr</u> 0.496 0.992 0.063	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345 0.276
Aethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements currer Nir/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Colatile Organic Compounds (NMN Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+(ently in Housing: quipment : IEHC excluding CH2O	<u>, 111</u>	VXC-1610 3-Way 1 Yes None % Reduc	24.00	uired tr <u>nt / Ge</u> 92 31 0 0	<u>Ib/MMB</u> 0.23 o Comply with	<u>г∪</u>		<u>lb/hr</u> 0.496 0.992 0.063 0.043	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345 0.276 0.188
Aethane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Jumber of Catalyst Elements currer Nir/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Colatile Organic Compounds (NMN Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+(ently in Housing: quipment : IEHC excluding CH2O	; , , , ; , (,	VXC-1610 3-Way 1 Yes None % Reduc JJ & Non-A	24.00 -05-HSC tion Rec Attainme	uired tr <u>nt / Ge</u> 92 31 0 0 0 0 0	<u>Ib/MMB</u> 0.23 o Comply with neral Permit I	TU imits		<u>lb/hr</u> 0.496 0.992 0.063 0.043 0.041	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345 0.276 0.188 0.180
Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements currer Air/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : /olatile Organic Compounds (NMN Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+(ently in Housing: quipment : IEHC excluding CH2O	; , , , ; , (,	VXC-1610 3-Way 1 Yes None % Reduc JJ & Non-A	24.00 -05-HSC tion Rec Attainme	uired tr <u>nt / Ge</u> 92 31 0 0 0 0 0	<u>Ib/MMB</u> 0.23 o Comply with neral Permit I	TU imits		<u>lb/hr</u> 0.496 0.992 0.063 0.043 0.041	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345 0.276 0.188 0.180
Carbon Dioxide (CO2) : Methane (CH4) : CONTROLLED EMISSIONS Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements curre Air/Fuel Ratio Control : Other Engine Emissions Control Eq Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Volatile Organic Compounds (NMN Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+(C Sulfur Dioxide (SO2) :	ently in Housing: quipment : IEHC excluding CH2O	; , , , ; , (,	VXC-1610 3-Way 1 Yes None % Reduc JJ & Non-A	24.00 -05-HSC tion Rec Attainme	uired tr <u>nt / Ge</u> 92 31 0 0 0 0 0	<u>Ib/MMB</u> 0.23 o Comply with neral Permit I	TU imits		<u>Ib/hr</u> 0.496 0.992 0.063 0.043 0.041 0.001	<u>o/hr</u> 59.92	1,032.61 1.94 <u>TPY</u> 2.173 4.345 0.276 0.188 0.180 0.005

1) g/bhp-hr are based on Engine Manufacturer Specifications assuming a "Pipeline Quality" fuel gas composition, 1200 ft elevation, and 100- 110 F Max Air Inlet. Note that g/bhp-hr values are based on 100% engine load operation and some g/hp-hr values are Nominal and are not representative of Not- To-Exceed values. It is recommended to apply safety factor (i.e. increase the value by a nominal percentage) to the g/hp- hr values for Air Permitting to allow for operational flexibility and variations in fuel gas composition .
2) Ib/MBTU emission Factors are based on EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines).

All data is based on the engine operating with fuel system, water pump, and 8 in H2O (1.99 kPa) inlet air restriction with 5 in (127 mm) inner diameter, and with 1.1 in Hg (4 kPa) exhaust restriction with 4 in (102 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.

Customer Engineering with operating questions.

STATUS FOR CURVES AND DATA: Beta-(Measured data) Tolerance: Within +/- 5% CHIEF ENGINEER: Alfred S Weber

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

FR10688 (Continued) Page: 2

			(000.000	,
Intake Air System	Att L - Cummins G	TA-855 - CE-02 -	Page 3 of 8	}
Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)		delta deg F	8.3	delta deg C
Low Temperature Aftercooling System				
Coolant temperature from the Aftercooler outlet @ Maximum engine coolant out temperature at Limiting Ambient Temperature				
Maximum coolant temperature into the Aftercooler @ 25C (77F) ambient				
Maximum coolant temperature into Aftercooler @ Limiting Ambient conditions	130	deg F	54	deg C
Maximum coolant temperature for engine protection controls	212	deg F	100	deg C
Maximum coolant operating temperature at engine outlet (max. top tank temp):	204	deg F	96	deg C
Exhaust System				
Maximum exhaust back pressure:	2	in-Hg	7	kPa
Recommended exhaust piping size (inner diameter):	4	in	102	mm
Lubrication System				
Nominal operating oil pressure				
@ minimum low idle	15	psi	103	kPa
@ maximum rated speed	60	psi	414	kPa
Minimum engine oil pressure for engine protection devices				
@ minimum low idle	15	psi	103	kPa
Fuel System				
Minimum fuel inlet pressure:	0	psi	2	kPa
Maximum fuel inlet pressure:		psi	5	kPa
Performance Data				
Engine low idle speed:	900	RPM		
Maximum low idle speed:	1.980	RPM		
Minimum low idle speed:	,	RPM		
Engine high idle speed		RPM		
Governor break speed:	,			
Maximum torque available at closed throttle low idle speed:	0	lb-ft	0	N-m
	0		Ũ	

	100% Load			75% Load					50% L	50% Load		
Engine Speed	1,800 R	RPM		1,800	RPM			1,800	RPM			
Output Power	225 h	168 In 199	kW	169	hp	126	kW	113	hp	84	kW	
Torque	657 lb	b-ft 891	N-m	493	lb-ft	668	N-m	330	lb-ft	447	N-m	
Intake Manifold Pressure	9 in	n-Hg 30	kPa	2	in-Hg	7	kPa	-3	in-Hg	-11	kPa	
Turbo Comp. Outlet Pressure	22 in	n-Hg 73	kPa	15	in-Hg	49	kPa	8	in-Hg	28	kPa	
Turbo Comp. Outlet Temperature	235 de	leg F 113	deg C	196	deg F	91	deg C	159	deg F	71	deg C	
Inlet Air Flow	411 ft	t3/min 194	L/s	329	ft3/min	155	L/s	236	ft3/min	111	L/s	
Exhaust Gas Flow	945 ft	t <mark>3/min</mark> 446	L/s	757	ft3/min	357	L/s	553	ft3/min	261	L/s	
Exhaust Gas Temperature	1,304 d	leg F 707	deg C	1,254	deg F	679	deg C	1,195	deg F	646	deg C	
Heat Rejection to Coolant	11,445 B	3TU/min 201	kW	9,835	BTU/min	173	kW	8,237	BTU/min	145	kW	
Heat Reject to Aftercooler Coolant	807 B	3TU/min 14	kW	584	BTU/min	10	kW	401	BTU/min	7	kW	
Heat Rejection to Ambient	1,904 B	33 STU/min	kW	1,707	BTU/min	30	kW	1,742	BTU/min	31	kW	
Heat Rejection to Exhaust	8,137 B	3TU/min 143	kW	6,320	BTU/min	111	kW	4,287	BTU/min	75	kW	
Fuel Consumption			MJ/kW-hr		BTU/hp-hr	13	MJ/kW-hr		BTU/hp-hr	15	MJ/kW-hr	
Air Fuel Ratio (dry)	16.6 vo				vol/vol				vol/vol			
Ignition timing (BTDC) Total Hydrocarbons	26 d		deg		deg	26	deg		deg	26	deg	
VOC ppm w/o Catalyst	<mark>1.43 g</mark> /	prip-rir		1.55	g/hp-hr			1.49	g/hp-hr			
VOC ppm with Catalyst												
NOx	<mark>12.1 g</mark> /	<mark>J/hp-hr</mark> 16.23	g/kW-hr	10.8	g/hp-hr	14.48	g/kW-hr	8.4	g/hp-hr	11.26	g/kW-hr	
NOx ppm w/o Catalyst												
NOx ppm with Catalyst	2.0		a.//.).//. ha			5.0	a. // . \ A / . a. a.	4 5	a. //a.a la.a.	c 02	a.//	
CO ppm w/o Catalyst	<mark>2.9 g</mark> /	<mark>J/hp-hr</mark> 3.89	g/kW-hr	4.4	g/hp-hr	5.9	g/kW-hr	4.5	g/hp-hr	6.03	g/kW-hr	
CO ppm with Catalyst												
CO2	<mark>524 g</mark> /	<mark>J/hp-hr</mark> 703	g/kW-hr	555	g/hp-hr	744	g/kW-hr	588	g/hp-hr	789	g/kW-hr	
02	0.41 %	6	-	0.42	%		-	0.42	%		-	

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

ranking System (Cold Starting Capability)	Att L - Cummins GTA-855 - CE-02 - Page 4 of 8
Unaided Cold Start:	
Minimum cranking speed	150 RPM
Breakaway torque at minimum unaided cold start temperature:	375 lb-ft 508 N-r
Cold starting aids available	Block Heater, Oil Pan Heater
Maximum parasitic load at 10 deg F @	
oise Emissions	
Тор	94.2 dBa
Right Side	91 dBa
Left Side	93.4 dBa
Front	92.9 dBa
Exhaust noise emissions	106.9 dBa
Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)	

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

				Ambient Temp	deg F (deg C)		
		120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)
	0 (0)	896 (15.8)	839 (14.8)	775 (13.6)	718 (12.6)	654 (11.5)	597 (10.5)
	1000 (305)	944 (16.6)	880 (15.5)	823 (14.5)	759 (13.3)	702 (12.3)	638 (11.2)
	2000 (610)	993 (17.5)	928 (16.3)	863 (15.2)	807 (14.2)	742 (13.0)	686 (12.1)
	3000 (914)	1,041 (18.3)	976 (17.2)	912 (16.0)	855 (15.0)	791 (13.9)	726 (12.8)
	4000 (1219)	1,081 (19.0)	1,025 (18.0)	960 (16.9)	896 (15.8)	831 (14.6)	767 (13.5)
Altitude	5000 (1524)	1,138 (20.0)	1,073 (18.9)	1,009 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)
ft (m)	6000 (1829)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)
	7000 (2134)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)
	8000 (2438)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)
	9000 (2743)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)
	10000 (3048)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)

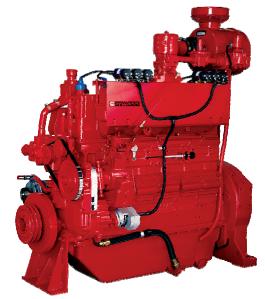
Change Log

Date

Author

Cary A McFarden

Change Description


7/3/2007

Add noise data

End of Report

G855 & GTA855 Gas Compression Applications

The demands of wellhead and gathering compression applications require an engine that is reliable and durable. For dependable operations and world class support, you need the Cummins G855 and GTA855 – a high-performance natural gas engine that shares the proven heritage of the Cummins diesel engines and many of the same heavy-duty components. You can depend on Cummins engines to keep maintenance costs down and the gas flowing. Every day.

General Specifications Inline 6-cylinder, 4-Cycle, Natural Gas

Bore	5.5 in (140 mm)
Stroke	6.0 in (152 mm)
Displacement	14.0 L <mark>(855 cubic in)</mark>
Engine Power*	157-286 hp (117-213 kW)
Compression Ratio	NA: 10:1 TA: 8.5:1
Aspiration	Naturally aspirated or turbocharged aftercooled
Exhaust Type	Watercooled manifold
Weight**	2970 lb (1347 kg)
Coolant Capacity	5.5 gal (20.8 L)
Lube Oil Capacity	15.0 gal (57.0 L)
Rotation	Counterclockwise

* Rating dependent

** Weight is approximate and varies with options.

Features

Designed for the oil and gas market, the G855 and GTA855 deliver exceptional dependability and low cost of operation.

Base Engine – Most major components, including block, crank, cam, gears and liners are common with the proven N series diesel.

Emissions – The G855 and GTA855 have catalyst ratings available to allow the engine to be operated as a rich burn engine and can be customer equipped with an AFR and catalyst to meet NSPS emissions requirements. The GTA855 also has export only ratings available.

Air Handling – The naturally aspirated G855 and turbocharged and aftercooled GTA855 deliver reliable performance and life.

Fuel System – Impco carburetor provides stable operation and fuel tracking through all load ranges.

Speed Control – Adjustable pressure-compensated hydraulic governor provides precise and stable rpm control under all load conditions.

Ignition System – Altronic V integral electronic ignition system with easily accessible spark plug location and single coil per cylinder for lower maintenance costs.

Lubrication System – High-capacity oil pan and combination full-flow and bypass oil filter reduces maintenance costs and extend service intervals.

Warranty – Cummins one year, unlimited hours. Backed by a worldwide distributor network.

Rating Details.

Model	Curve Number	Rating	Emissions	Combustion
G855	FR-10523	157 hp @ 1500 rpm	(1)	Rich
G855	FR-10526	188 hp @ 1800 rpm	(1)	Rich
GTA855	FR-10688	225 hp @ 1800 rpm	<mark>(1)</mark>	Rich
GTA855	FR-10533	256 hp @ 1800 rpm	Export Only	Standard
GTA855	FR-10531	281 hp @ 1800 rpm	Export Only	Standard
GTA855	FR-10529	286 hp @ 1800 rpm	Export Only	Standard
GTA855	FR-10539	213 hp @ 1500 rpm	Export Only	Standard
GTA855	FR-10537	234 hp @ 1500 rpm	Export Only	Standard
GTA855E	FR-10535	238 hp @ 1500 rpm	Export Only	Standard
(1) NSPS compli	ant with customer i	nstalled Air-fuel ratio (AFR) c	ontroller and catalyst	

(1) NSPS compliant with customer installed Air-fuel ratio (AFR) controller and catalyst.
 * Requires EPA site validation testing.

Standard Equipment.

Air Inlet System

Factory installed heavy duty air cleaner

Cooling System

- Two pump / two loop cooling system GTA855
- Gear driven jacket water pump
- Gear driven auxiliary coolant pump GTA855
- Thermostat controlled jacket water circuit
- Coolant filter for added corrosion protection
- Auxiliary coolant pump optional for compressor cooling - G855

Exhaust System

Watercooled manifold

Fuel System

- Impco carburetor
- Maxitrol regulator

Speed Control System

- Gear driven Woodard hydraulic / mechanical governor
- Electronic governor optional

Ignition System

- Altronic V ignition system
- Altronic III ignition system optional
- Altronic V shielded ignition optional
- Altronic III shielded ignition optional

Lube Oil System

- Crankcase breather
- High capacity oil pan for extended oil drain intervals
- Combination full flow and bypass oil filter

Safety Shutoff Protection

Electric fuel valve

Mounting Arrangement

- Front and rear engine mounting
- Lift provisions on engine

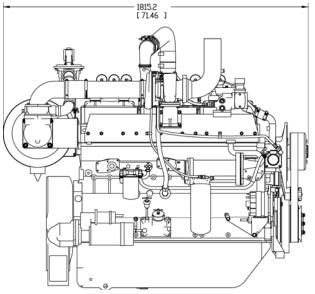
Flywheel and Flywheel Housing

- Flywheel SAE #1
- Flywheel housing SAE #1 Cast-iron, machined to accommodate starter mounting

Electrical System

24-volt alternator

Starting System


- 24-volt starter
- Gas starter optional

Power Take-Off

Front crankshaft pulley

Engine Technical Data.

Model		G855	GTA855	GTA855
Curve Number		FR-10523 (2)	FR-10688 (2)	FR-10529 (2)
Exhaust Type		Dry Manifold	Wet Manifold	Wet Manifold
Output Power (1)				
<mark>100%</mark>	HP (kW)	188 (140)	<mark>225</mark> (168)	286 (213)
75%	HP (kW)	141 (105)	169 (126)	215 (160)
Engine Speed				
<mark>100%</mark>	RPM	1800	<mark>1800</mark>	1800
Max Turn Down	RPM	1350	1350	1350
After-Cooler Water Inl	et Temperature			
	°F (°C)	N/A	130 (54.4)	130 (54.4)
Compression Ratio		10:1	8.5:1	8.5:1
Emissions Data – Eng	ine-Out Emissions (1)			
NOx	<mark>g/hp-hr</mark> (g-kW-hr)	5.9 (7.91)	12.1 (16.23)	7.6 (10.2)
CO	g/hp-hr (g-kW-hr)	26.7 (35.81)	<mark>2.9</mark> (3.89)	1.1 (1.48)
NMHC	g/hp-hr			
THC	<mark>g/hp-hr</mark>	1.90	<mark>1.43</mark>	0.52
O ₂	%	0.54	0.41	4.20
Fuel Consumption (1)				
100%	BTU/hp-hr (MJ/kW-hr)	8605 (12.2)	8478 (12.0)	8224 (11.6)
75%	BTU/hp-hr (MJ/kW-hr)	9870 (14.0)	9077 (12.8)	8631 (12.2)
Heat Rejection (1)				
Jacket Water	BTU/min (kW)	8154 (143.38)	11445 (201.3)	12677 (223)
After-cooler	BTU/min (kW)	N/A	807 (14.19)	1902 (33.5)
Exhaust	BTU/min (kW)	5674 (99.77)	8137 (143.08)	11792 (207.4)
Exhaust System (1)				
Flow Rate	<mark>ft³/min</mark> (L/s)	866 (409)	<mark>945</mark> (446)	1851 (874)
Stack temp	°F (°C)	1196 (647)	<mark>1304</mark> (707)	1337 (725)
Max Back Pres.	in-Hg	2	2	2
Intake System (1)				
Flow Rate	ft ³ /min (L/s)	260 (123)	411 (194)	605 (286)
Max Restriction	in-H2O	15	15	15
Gas Pressure				
Min - Max	psi	10-20	10-20	10-20

Turbocharged model pictured above

Dim	ensions*	NA	TA
Length	Inches (mm)	67.7 (1718)	71.5 (1815)
Width	Inches (mm)	35.9 (912)	38.1 (966)
Height	Inches (mm)	53.9 (1368)	61.7 (1567)

* Dimensions are approximate and vary with options.

Disclaimers.

(2) All data is based on the engine operating with fuel system, water pump, and 8 in H2O (1.991 kPa) inlet air restriction with 5 in (127 mm) inner diameter, and with 1.1 in Hg (4 kPa) exhaust restriction with 4 in (102 mm) inner diameter; not included are alternator, fan, optional equipment and driven components. Coolant flows and heat rejection data based on coolants as 50% ethylene glycol/50% water. All data is subject to change without notice.

Cummins Inc. Box 3005 Columbus, IN 47202-3005 U.S.A.

Phone: 1-800-343-7357 Fax: 1-812-232-6393 Internet: www.CumminsOilandGas.com

Rev 10/09 ©2009 Cummins Inc.

General Dimensions.

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT L - NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Compress	or Station	Snyd	er CS		
			and Model	TE	3D		
		Max Dry Gas Flow Rate (MMscfd)		5.0			
		Heat Input (MMBtu/hr) - HHV		0.22			
General Glycol Dehydration Unit Data		Design Type (DEG or TEG)		TE	EG		
		Source	Status ²	E	S		
		Date Installed/Mo	dified/Removed ³	20	12		
		Regenerator Sti	II Vent APCD ⁴	No	one		
		Fuel HV (Btu		1,()20		
		H ₂ S Content	(gr/100 scf)	0	.2		
		Operation	ı (hrs/yr)	8,7	760		
Source ID # ¹	Vent	Reference ⁵ PTE ⁶		lbs/hr	tons/yr	lbs/hr	tons/yr
		GRI-GLYCalc	VOC	2.93	12.83		
	Dehydrator 01	GRI-GLYCalc	n-Hexane	0.06	0.25		
DFT-01	Flash Tank	GRI-GLYCalc	Benzene	5.8E-03	0.03		
	-01 (50% "Recycle" as Fuel in the Reboiler)	GRI-GLYCalc	Toluene	0.02	0.07		
		GRI-GLYCalc	Ethylbenzene	0.00	0.01		
		GRI-GLYCalc	Xylenes	0.02	0.10		
		GRI-GLYCalc	Tot HAP	0.11	0.46		
		GRI-GLYCalc	CO2e	147	646		
		GRI-GLYCalc	VOC	1.59	6.97		
		GRI-GLYCalc	n-Hexane	0.02	0.09		
	Debudroter 01	GRI-GLYCalc	Benzene	0.05	0.24		
DSV-01	Dehydrator 01 Glycol Regenerator	GRI-GLYCalc	Toluene	0.23	1.00		
201 01	Still Vent	GRI-GLYCalc	Ethylbenzene	5.7E-03	0.03		
		GRI-GLYCalc	Xylenes	0.78	3.44		
		GRI-GLYCalc	Tot HAP	1.09	4.78		
		GRI-GLYCalc	CO2e	2	7		
		AP	NOX	0.02	0.10		
		AP	CO	0.02	0.08		
	Dehydrator 01	AP	VOC	1.2E-03	0.01		
RBV-01	Reboiler Vent	AP	SO2	1.3E-04	5.7E-04		
		AP	PM10/2.5	1.7E-03	0.01		
		AP	Tot HAP	4.1E-04	1.8E-03		
		40CFR98	CO2e	26	114		

Williams Ohio Valley Midstream LLC (OVM) SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

ATTACHMENT L - NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET - Continued

Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

- NS = Construction of New Source
- ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

- NA = None
- CD = Condenser
- FL = Flare
- CC = Condenser/Combustion Combination
- TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's DataAP = AP-42GR = GRI-GLYCalcTMOT = Other (please list):

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

West Virginia Department of Environmental Protection

Division of Air Quality

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

40 CFR Part 63; Subpart HH & HHH Registration Form Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description							
Affected facility actual annual average natural gas throughput (scf/day): 5.0 MM							
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	na						
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes No						
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas Image: Store in the image: Store in the point is the point at which natural gas NG) enters the NG transmission and storage source category or is delivered to the end user. Image: Store in the point is the point of a NG processing plant Image: Store in the point is the point of point is the point of custody transfer and there is no NG processing plant Image: Store in the point of plant							
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company).	🗌 Yes 🛛 No						
The affected facility exclusively processes, stores, or transfers black oil .Initial producing gas-to-oil ratio (GOR): scf/bbl API gravity: degrees	🗌 Yes 🛛 No						
Section B: Dehydration Unit (if applicable) ¹ Description: 5.0 MMscfd - TEG Dehy 01 (DFT-01 and DSV-01)							
Date of Installation: 2012 Annual Operating Hours: 8,760 Burner rating (Note: Note: No	MMbtu/hr): 0.22						
Exhaust Stack Height (ft): na Stack Diameter (ft): na Stack T	Temp. (°F): na						
Glycol Type: 🖾 TEG 🗌 EG 🗌 Other: na							
Glycol Pump Type: 🗌 Electric 🖾 Gas If gas, what is the volume ratio?: 0.08 acfr	n/gpm						
Condenser installed? 🗌 Yes 🛛 No Exit Temp: na Condenser Pressure: r	าล						
Incinerator/flare installed? Yes No Destruction Eff.: na							
Other controls installed? Yes No Describe: na							
Wet Gas ² : Gas Temp: 60 ° F Gas Pressure: 1,000 psig (Upstream of Contact Tower) Saturated Gas?: Xes No If no, water content?: na	3						
Dry Gas: Gas Flowrate: Actual: 5.0 MMscfd Design: 5.0 M (Downstream of Contact Tower) Water Content: 7.0 lb/MMscf	IMscfd						
Lean Glycol:Circulation rate:Actual3:0.67 gpmMaximum4:Pump make/model:Kimray 4015	0.67 gpm						
Glycol Flash Tank (if applicable): Temp: 140 °F Pressure: 40 psig Vented: Ye If no, describe vapor control: Recycle to Reboiler, Otherv	s						
Stripping Gas (if applicable): Source of gas: na Rate: na							

Please attach the following required dehydration unit information:

		Thease attach the following required denyuration unit information.				
1.	It is not intended where the custo	dicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. Ed that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish dy transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to sary decisions.				
2.	Extended gas analysis from the Wet Gas Stream, including mole percent of C_1 - C_8 , benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used.					
3.	GRI-GLYCalc	Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput.				
4.	Detailed calcul	ations of gas or hydrocarbon flow rate.				
		Section C: Facility NESHAPS Subpart HH/HHH status				
	Affected facility status: Subject to Subpart HH However, <u>EXEMPT</u> because the facility is an area source of HAP emissions <u>and</u> the actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy); see 40CFR§63.764(e)(1)(ii).					
		Subject to Subpart HHH				
		\Box Not Subject \Box < 10/25 TPY				
		because: Affected facility exclusively handles black oil				
		☐ Facility-wide actual annual average NG throughput is < 650 thousand scf/day				
		and facility-wide actual annual average hydrocarbon liquid is < 250 bpd				

Attachment L – Emission Units

STORAGE TANK DATA SHEET										
Status ²	Content ³	Volume ⁴ (gal)	Dia ⁵ (ft)	Throughput ⁶ (gal/yr)	Orientation ⁷	Ave Liq Ht ⁸ (Ft)				
	Produced Water	8,820	10	106,000	VERT	8				
	Lube Oil	500	4	6,000	HORZ	2				
	Lube Oil	500	4	6,000	HORZ	2				
	Triethylene Glycol	500	4	6,000	HORZ	2				
	Methanol	325	3	3,900	HORZ	2				
	Status ²	Status ² Content ³ Produced Water Lube Oil Lube Oil Lube Oil Triethylene Glycol Image: Content of the second of the	Status2Content3Volume4 (gal)Produced Water8,820Lube Oil500Lube Oil500Triethylene Glycol500	Status2Content3Volume4 (gal)Dia5 (ft)Produced Water8,82010Lube Oil5004Lube Oil5004Triethylene Glycol5004	Status2Content3Volume4 (gal)Dia5 (ft)Throughput6 (gal/yr)Produced Water8,82010106,000Lube Oil50046,000Lube Oil50046,000Triethylene Glycol50046,000	Status2Content3Volume4 (gal)Dia5 (ft)Throughput6 (gal/yr)Orientation7Produced Water8,82010106,000VERTLube Oil50046,000HORZLube Oil50046,000HORZTriethylene Glycol50046,000HORZ				

STORAGE TANK DATA SHEET

Notes to STORAGE TANK DATA SHEET

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- Enter storage tank orientation using the following: VERT Vertical Tank HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name
	SNYDER COMPRESSOR STATION		210 BBL PRODUCED WATER
3.	(Tassik Equipment Identification No. (as assigned on	4.	
	Equipment List Form)		Equipment List Form)
	TK-01		8E
5.	Date of Commencement of Construction (for existing	tanł	(S) na
6.	Type of change New Construction N	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
	NA		
7A.	Does the tank have more than one mode of operation	ן?	☐ Yes
	(e.g. Is there more than one product stored in the tan		
7B.	If YES, explain and identify which mode is covered	ed b	y this application (Note: A separate form must be
	completed for each mode).		
	NA		
7C.	Provide any limitations on source operation affecting	em	issions, any work practice standards (e.g. production
	variation, etc.):		
	NA		
_	II. TANK INFORM	ΑΤΙ	ON (required)
8.		the	internal cross-sectional area multiplied by internal
	height.	0 BI	
٩A	Tank Internal Diameter (ft)		. Tank Internal Height (or Length) (ft)
эΑ.		90.	
10A		10	
107		101	8
11A		11	
,			8
12.	Nominal Capacity (specify barrels or gallons). This i	s als	
•	liquid levels and overflow valve heights.	o un	
	•	0 BF	ST.

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
106,000 GAL/YR	8,000
14. Number of Turnovers per year (annual net throughput	t/maximum tank liquid volume) 12
15. Maximum tank fill rate (gal/min) 200 GAL/MIN	12
	Splash 🛛 Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tai	nk Systems 🛛 Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year CONTINUOUS
 18. Type of tank (check all that apply): □ Fixed Roof X vertical horizontal other (describe) □ External Floating Roof pontoon roof □ Domed External (or Covered) Floating Roof 	
 Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrical Underground Other (describe) 	diaphragm
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coated 20A. Shell Color GREEN 20B. Roof Colo	
21. Shell Condition (if metal and unlined):	r GREEN 20C. Year Last Painted na
No Rust Light Rust Dense R	ust 🗌 Not applicable
22A. Is the tank heated?	
22B. If YES, provide the operating temperature (°F)	NA
22C. If YES, please describe how heat is provided to t	ank. NA
23. Operating Pressure Range (psig): ATM to 0.7 I	PSIG
24. Complete the following section for Vertical Fixed Ro	of Tanks 🛛 Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tail	nks 🛛 Does Not Apply
25A. Year Internal Floaters Installed: NA	
25B. Primary Seal Type:	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO

25F. Describe deck fittings; indicat	e the number of eac	ch type of fitting:	
	ACCESS	S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	UNBOLTED COVI	JGE FLOAT WELL	UNBOLTED COVER, UNGASKETED:
BOET COVER, GASRETED.		LN, OAGNETED.	UNBOLIED COVER, UNGASKETED.
		N WELL	
BUILT-UP COLUMN - SLIDING		JMN – SLIDING	
COVER, GASKETED:	COVER, UNGASH	ETED:	FABRIC SLEEVE SEAL:
		RWELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
		 /SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
		HANGER WELL	
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UN(SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
ACTUATION, GASKETED.	ACTUATION, UN	JASKETED.	(10% OF EN AREA)
		BREAKER	
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	RIM	I √ENT	
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
UTHER (DESCH	RIBE, ATTACH ADI	DITIONAL PAGES I	F NECESSARY)

26. Complete the following section for Internal Floa	ating Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Dolted Welder	ed
26B. For Bolted decks, provide deck constructio	on:
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
 ☐ Continuous sheet construction 5 × 7.5 feet v ☐ Continuous sheet construction 5 × 12 feet v 	
Other (describe)	wide
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	tional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/((ft ² ·day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (op	otional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	:
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)) 36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to b	be stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure								
39F. True (psia)									
<u>39G.</u> Reid (psia) Months Storage per Y	00r								
39H. From	cai								
39I. To									
	VI. EMISSIONS A			DATA (required)					
40. Emission Control	Devices (check as man			· · · ·					
Carbon Adsorp	otion ¹								
Condenser ¹									
Conservation \	/ent (psig)								
Vacuum S			Pressure Se	etting					
Emergency Re	Emergency Relief Valve (psig)								
Inert Gas Blan									
Insulation of Ta	ank with								
Liquid Absorpti	ion (scrubber) ¹								
Refrigeration o									
Rupture Disc (
Vent to Incinera									
Other ¹ (describe	e):								
¹ Complete approp	priate Air Pollution Cont	rol Device S	Sheet.						
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the ap	plication).				
-	l ·	1		or elsewhere in the ap					
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (lb/hr)	1	ations here og Loss Units	or elsewhere in the ap Annual Loss (lb/yr)	Estimation Method ¹				
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss	Workin	ig Loss	Annual Loss (lb/yr)	Estimation Method ¹				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Num	ber (as assigned or	n Equipment List Fo	orm): TLO					
1. Loading Area N	lame: SNYDER C	OMPRESSOR STA	TION (CS)					
2. Type of cargo	2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): Drums Marine Vessels Rail Tank Cars Tank Trucks							
3. Loading Rack of	or Transfer Point Da	ta:						
Number of pum	ips	1						
Number of liqui	ds loaded	1						
Maximum num tank trucks, tai loading at one	nk cars, and/or di	ssels, 1 rums						
	 4. Does ballasting of marine vessels occur at this loading area? ☐ Yes ☐ No							
5. Describe clean point: NA	 Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: 							
☐ Yes □	If YES, describe:							
7. Projected Max	imum Operating ۹	Schedule (for rack of	or transfer point as	a whole):				
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.				
hours/day	24	24	24	24				
days/week	7	7	7	7				
weeks/quarter	13	13	13	13				

Pump ID No.		1					
Liquid Name		Prod. H2O					
Max. daily thre	oughput (1000 gal/day)	8					
Max. annual t	hroughput (1000 gal/yr)	106					
Loading Meth	od ¹	SP					
Max. Fill Rate	(gal/min)	200					
Average Fill Time (min/loading)		60					
Max. Bulk Liq	uid Temperature (°F)	60					
True Vapor Pi	ressure ²	1.5					
Cargo Vessel Condition ³		U					
Control Equipment or Method ⁴		None					
Minimum cont	rol efficiency (%)	N/A					
Maximum	Loading (lb/hr)						
Emission Rate (VOC)	Annual (lb/yr)	520					
Estimation Me	ethod ⁵	EPA					
¹ BF = Bottom Fi	I SP = Splash Fill SU	3 = Submer	ged Fill		ł		
² At maximum bu	lk liquid temperature						
³ B = Ballasted V	essel, C = Cleaned, U = Uncle	aned (dedic	ated service	e), O = othe	r (describe))	
CA = Carbon A Compressor-Re	apply (complete and submit A dsorption, LOA = Lean Oil Ads efrigeration-Absorption, TO = T ondensation, VB = Dedicated Y	orption, CO hermal Oxid	= Condens	sation, SC = cineration, C	Scrubber (CRC = Com	pression-	n), CRA =
MB = Material	surement based upon test data						

9. Proposed Monitoring, Recordkeeping, R Please propose monitoring, recordkeeping, and with the proposed operating parameters. Plea compliance with the proposed emissions limits	d reporting in order to demonstrate compliance se propose testing in order to demonstrate
MONITORING	RECORDKEEPING
REPORTING	TESTING
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PA MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH TH POLLUTION CONTROL DEVICE.	· · · · · · · · · · · · · · · · · · ·
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	ORDKEEPING THAT WILL ACCOMPANY THE MONITORING.
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENC	Y OF REPORTING OF THE RECORDKEEPING.
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TES DEVICE.	TING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL
10. Describe all operating ranges and mainter maintain warranty.	nance procedures required by Manufacturer to

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹		Attachment N for	Emissions S	ummary.
Valves ¹⁰	Gas VOC				-
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC				
	Non-VOC				Ī
Other	VOC				Ē
	Non-VOC				_ _

LEAK SOURCE DATA SHEET

ATTACHMENT M

Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

• NSCR on 225 bhp Cummins GTA-855 Compressor Engine (CE-02)

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-NSCR

Equipment Information

1.	Manufacturer: Miratech Model No. VXC-1610-05 HSG (or equiv.)		Control Device Nan Type: NSCR	ne: Catalytic Converter
3.	Provide diagram(s) of unit describing capture systection capacity, horsepower of movers. If applicable, state			
4.	On a separate sheet(s) supply all data and calculation	ns us	ed in selecting or de	esigning this collection device.
5.	Provide a scale diagram of the control device showing	ig inte	rnal construction.	
6.	Submit a schematic and diagram with dimensions ar	d flow	v rates.	
7.	Guaranteed minimum collection efficiency for each p	ollutar	nt collected:	
NO	0x (≥92%) and CO (≥31%)			
8.	Attached efficiency curve and/or other efficiency info	rmatio	ın.	
9.	Design inlet volume: SCFM	10. (Capacity:	
11.	Indicate the liquid flow rate and describe equipment	provid	ed to measure pres	sure drop and flow rate, if any.
12.	Attach any additional data including auxiliary equi control equipment.	pment	and operation def	ails to thoroughly evaluate the
13.	Description of method of handling the collected mate	rial(s)	for reuse of dispos	al.
	Gas Stream 0	harac	cteristics	
14.	Are halogenated organics present? Are particulates present? Are metals present?	Ye Ye Ye	es 🗌 No	
15.	Inlet Emission stream parameters:	Ма	aximum	Typical
	Pressure (mmHg):			
	Heat Content (BTU/scf):			
	Oxygen Content (%):			
	Moisture Content (%):			
	Relative Humidity (%):			

16. Type of pollutant(s) controlled: □ SO _x □ Odor □ Particulate (type): □ Other NOx and CO	
17. Inlet gas velocity: ft/sec 18. Pollutant specific gravity:	
19. Gas flow into the collector: 945 ACFM @ 1304°F and PSIA20. Gas stream temperature: Inlet: Outlet:13. Outlet:13.	04 °F °F
21. Gas flow rate:22. Particulate Grain Loading in grains/Design Maximum:945ACFMAverage Expected:945ACFMOutlet:Outlet:	scf:
23. Emission rate of each pollutant (specify) into and out of collector:	
PollutantIN PollutantEmissionOUT Pollutantg/bhp-hrgrains/acfCapture Efficiency %g/bhp-hrgrains/	acf Control ###Control ###Control ###Control ###Control ###Control ###Control ###Control ###Control
NOx 12.10 100 1.00	92%
CO 2.90 100 2.00	31%
24. Dimensions of stack: Height ft. Diameter	ft.
25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 p rating of collector.	ercent of design
Particulate Distribution	
26. Complete the table: Particle Size Distribution at Inlet to Collector	y of Collector
Particulate Size Range (microns) Weight % for Size Range Weight % for Size Ran	Size Range
0-2	
2-4	
4 - 6	
6-8	
8 – 10	
10 – 12	
12 – 16	
<u>16 – 20</u> 20 – 30	

27. Describe any air p reheating, gas hum		utlet gas conditioning processes (e.g., gas cooling, gas
28. Describe the collect	ction material disposal system:	
29. Have you included	Other Collectores Control Devic	ce in the Emissions Points Data Summary Sheet?
Please propose n	ng parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
REPORTING:		TESTING:
MONITORING:		bcess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
31. Manufacturer's Gu NOx (≥92%) and C0	aranteed Control Efficiency for eac	h air pollutant.
32. Manulaciurei S Gu	aranteed Control Efficiency for eac	n all pollutant.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

ATTACHMENT N

Supporting Emissions Calculations

"30. Provide all Supporting Emissions Calculations as Attachment N."

Emission Summary Spreadsheets

- Potential to Emit (PTE)
- Greenhouse Gas (GHG)

Unit-Specific Emission Spreadsheets

- Compressor Engine 68 bhp Arrow VRG-330-A-54
- Compressor Engine 225 bhp Cummins GTA-855
- Rod Packing/Crankcase (RPC)
- Startup, Shutdown and Maintenance (SSM)
- Dehydrator 5.0 MMscfd
- Reboiler 0.22 MMBtu/hr
- Produced Water Storage Tank 210 bbl
- Produced Water Truck Load-Out 2,520 bbl/yr
- Process Piping Fugitives GAS/VAPOR and WATER/OIL

GRI-GLYCalc Analysis

• Dehydrator – 5.0 MMscfd

HYSYS Model Output

• Produced Water Storage Tank – 210 bbl

Williams Ohio Valley Midstream LLC (OVM) **SNYDER COMPRESSOR STATION (CS)** Application for 45CSR13 NSR Modification Permit

Facility Total - Potential to Emit (PTE)

Unit	Point	Control	Description	NC	ХС	C	0	VC	C	SC	02	PM10)/2.5
ID	ID	ID	Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	na	68 bhp Arrow VRG-330-A-54 Compressor Engine	2.59	11.35	2.93	12.84	0.02	0.10	4.0E-04	1.7E-03	0.01	0.06
CE-02	2E	01-NSCR	225 bhp Cummins GTA-855 Compressor Engine	0.50	2.17	0.99	4.35	0.17	0.73	1.2E-03	0.01	0.04	0.18
RPC	3E	na	Rod Packing/Crankcase Leaks					1.30	5.68				
SSM	4E	na	Startup/Shutdown/Maintenance (Blowdown (BD))						4.19				
DFT-01	5E	na	5.0 MMscfd Dehydrator - Flash Tank					2.93	12.83				
DSV-01	6E	na	5.0 MMscfd Dehydrator - Regenerator/Still Vent					1.59	6.97				
RBV-01	7E	na	0.22 MMBtu/hr Reboiler Vent	0.02	0.10	0.02	0.08	1.2E-03	0.01	1.3E-04	5.7E-04	1.7E-03	0.01
TK-01	8E	na	Produced Water - Storage Tank					0.01	0.13				
TLO	9E	na	Produced Water - Truck Load-Out						0.26				

TOTAL PTE (w/o FUG):	3.11	13.61	3.94	17.27	6.02	30.89	1.8E-03	0.01	0.06	0.25
WV-DEP NSR Permit Threshold:	6 lb/hr <u>A</u>	<u>ND</u> 10 tpy	6 lb/hr <u>A/</u>	V <u>D</u> 10 tpy	6 lb/hr <u>A/</u>	<u>VD</u> 10 tpy	6 lb/hr <u>AN</u>	<u>D</u> 10 tpy	6 lb/hr <u>A/</u>	<u>/D</u> 10 tpy
Title V Permit Threshold:		100		100		100		100		100

FUG	10E	na	Piping and Equipment Fugitives					2.10	9.19				
			TOTAL PTE (w/FUG):	3.11	13.61	3.94	17.27	8.12	40.09	1.8E-03	0.01	0.06	0.25

Unit	Point	Control	HC	НО	n-Hex	ane	Bena	zene	Tolu	iene	Ethylb	enzene	Xyle	enes	Total	HAP
ID	ID	ID	lb/hr	tpy												
CE-01	1E	na	0.02	0.07			1.1E-03	0.00	3.8E-04	1.7E-03	1.7E-05	7.4E-05	1.3E-04	5.8E-04	0.02	0.10
CE-02	2E	01-NSCR	0.04	0.19			3.3E-03	0.01	1.2E-03	0.01	5.3E-05	2.3E-04	4.1E-04	1.8E-03	0.07	0.30
RPC	3E	na	9.4E-04	4.1E-03	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.02	0.11
SSM	4E	na				0.06		1.7E-03		3.3E-03		1.7E-03		0.01		0.08
DFT-01	5E	na			0.06	0.25	5.8E-03	2.6E-02	0.02	0.07	2.3E-03	1.0E-02	0.02	0.10	0.11	0.46
DSV-01	6E	na			0.02	0.09	0.05	0.24	0.23	1.00	5.7E-03	2.5E-02	0.78	3.44	1.09	4.78
RBV-01	7E	na	1.6E-05	7.2E-05	3.9E-04	1.7E-03	4.6E-07	2.0E-06	7.4E-07	3.2E-06					4.1E-04	1.8E-03
TK-01	8E	na			5.6E-04	2.7E-03	5.6E-04	2.7E-03	5.6E-04	2.7E-03	5.6E-04	2.7E-03	2.7E-03	2.7E-03	1.4E-02	0.01
TLO	9E	na				0.01		0.01		0.01		0.01		0.01		0.06

PTE (w/o FUG):	0.06	0.27	0.08	0.43	0.07	0.32	0.25	1.12	0.01	0.07	0.82	3.58	1.33	5.91
WV-DEP:	2 lb/hr <u>O</u>	R 0.5 tpy	2 lb/hr <u>O</u>	<u>R</u> 5 tpy	2 lb/hr <u>O</u>	<u>R</u> 0.5 tpy	2 lb/hr <u>C</u>	<u>)R</u> 5tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy	2 lb/hr <u>(</u>	<u>OR</u> 5 tpy
Title V:		10		10		10		10		10		10		25

FUG	10E	na			0.10	0.45	0.03	0.12	0.03	0.12	0.03	0.12	0.03	0.12	0.24	1.06
	PTE (w/FUG):		0.06	0.27	0.18	0.88	0.10	0.44	0.28	1.24	0.04	0.20	0.84	3.70	1.57	6.97

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except TLO and SSM are infrequent.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP (i-octane), acetaldehyde, acrolein, and methanol.

Williams Ohio Valley Midstream LLC (OVM) **SNYDER COMPRESSOR STATION (CS)**

Application for 45CSR13 NSR Modification Permit

Greenhouse Gas (GHG) Potential-to-Emit (PTE)

Unit ID	Point ID	Control ID	Description	Heat Input MMBtu/hr (HHV)	Hours of Operation hr/yr	kg/MMBtu: GWP: CO2 tpy	53.06 1 CO2e tpy	kg/MMBtu: GWP: CH4 tpy	1.00E-03 25 CO2e tpy	kg/MMBtu: GWP: N2O tpy	1.00E-04 298 CO2e tpy	TOTAL CO2e tpy
CE-01	1E	na	68 bhp Arrow VRG-330-A-54 Compressor Engine	0.68	8,760	512	512	1	25	9.7E-04	0.3	538
CE-02	2E	01-NSCR	225 bhp Cummins GTA-855 Compressor Engine	2.12	8,760	1,366	1,366	2	53	2.0E-03	1	1,420
RPC	3E	na	Rod Packing/Crankcase Leaks		8,760	30	30	19	480			510
SSM	4E	na	Startup/Shutdown/Maintenance (Blowdown (BD))		8,760			14	354			354
DFT-01	5E	na	5.0 MMscfd Dehydrator - Flash Tank		8,760			26	646			646
DSV-01	6E	na	5.0 MMscfd Dehydrator - Regenerator/Still Vent		8,760			0.3	7			7
RBV-01	7E	na	0.22 MMBtu/hr Reboiler Vent	0.22	8,760	114	114	0.00	0.1	2.1E-04	0.1	114
TK-01	8E	na	Produced Water - Storage Tank		8,760							
TLO	9E	na	Produced Water - Truck Load-Out									

TOTAL FACILITY-WIDE PTE (w/o FUG): NSR/PSD Threshold: (

Title V Major Source Threshold:

	63
- OR -	250
	na

	-			
AND -	3,589			
	100,000			
	100,000			

0.00

250

na

-

FUG	10E	na	Piping and Equipment Fugitives		8,760		 24	595		 595
TOTAL FACILITY-WIDE PTE (w/ FUG):				2,022	86		0.00	4,184		

2,022

250

na

Notes: 1 - Emissions are based on operation at 100% of rated load.

2 - Engine CO2 and CH4 emissions are based on vendor specifications.

3 - Fugitive CH4 emissions are based on EPA Fugitive Emission Factors for Oil and Gas Production Operations. 4 - All other GHG emissions are based on default values in 40CFR98, Subpart C, Table C-1.

- OR -

5 - High Heat Value (HHV) = Low Heat Value (LHV) / 0.90.

6 - GHG NSR/PSD Thresholds and Title V Major Source Thresholds are applicable only if other regulated air pollutants exceed the corresponding Thresholds.

Application for 45CSR13 NSR Modification Permit

Compressor Engine – 68 bhp Arrow VRG-330-A-54

Unit ID	Description	Reference	Pollutant		Pre-Controlled Emissions		Control Efficiency		Controlled Emissions	
				g/bhp-hr	lb/hr	tpy	Linciency	g/bhp-hr	lb/hr	tpy
	Engine 01	Vendor Data (+20% sf)	NOX	17.28	2.59	11.35	0.0%	17.28	2.59	11.35
	Engine VI	Vendor Data (+20% sf)	CO	19.56	2.93	12.84	0.0%	19.56	2.93	12.84
	Arrow (4SRB)	AP-42 Table 3.2-3	THC	1.62	0.24	1.06	0.0%	1.62	0.24	1.06
	VRG-330-A-54	AP-42 Table 3.2-3	NMHC	0.58	0.09	0.38	0.0%	0.58	0.09	0.38
	68 bhp	Vendor Data (+20% sf)	NMNEHC	0.05	0.01	0.03	0.0%	0.05	0.01	0.03
	1,800 rpm (AFRC)	NMNEHC+HCHO	VOC	0.16	0.02	0.10	0.0%	0.16	0.02	0.10
		AP-42 Table 3.2-3	SO2	2.7E-03	4.0E-04	1.7E-03	0.0%	2.7E-03	4.0E-04	1.7E-03
	8,760 hr/yr	AP-42 Table 3.2-3	PM10/2.5	0.09	0.01	0.06	0.0%	0.09	0.01	0.06
		Vendor Data (+20% sf)	HCHO	0.11	0.02	0.07	0.0%	0.11	0.02	0.07
	January 3, 2003	AP-42 Table 3.2-3	n-Hexane				0.0%			
CE-01	Pre-NSPS JJJJ	AP-42 Table 3.2-3	Benzene	0.01	1.1E-03	0.00	0.0%	0.01	1.1E-03	4.7E-03
	"Existing" NESHAP ZZZZ	AP-42 Table 3.2-3	Toluene	2.5E-03	3.8E-04	1.7E-03	0.0%	2.5E-03	3.8E-04	1.7E-03
	920 Btu/scf (LHV)	AP-42 Table 3.2-3	Ethylbenzene	1.1E-04	1.7E-05	7.4E-05	0.0%	1.1E-04	1.7E-05	7.4E-05
	1,020 Btu/scf (HHV)	AP-42 Table 3.2-3	Xylenes	8.8E-04	1.3E-04	5.8E-04	0.0%	8.8E-04	1.3E-04	5.8E-04
	9,000 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	2,2,4-TMP				0.0%			
	9,978 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Other HAP	0.04	0.01	0.03	0.0%	0.04	0.01	0.03
	0.61 MMBtu/hr (LHV)	Sum	Total HAP	0.16	0.02	0.10	0.0%	0.16	0.02	0.10
	0.68 MMBtu/hr (HHV)	AP-42 Table 3.2-3	CO2	529	117	512	0.0%	529	117	512
	665 scf/hr	AP-42 Table 3.2-3	CH4	1.04	0.23	1.01	0.0%	1.04	0.23	1.01
	5.83 MMscf/yr	40CFR98 - Table C-2	N2O	1.0E-03	2.2E-04	9.7E-04	0.0%	1.0E-03	2.2E-04	9.7E-04
		40CFR98 - Table A-1	CO2e	556	123	538	0.0%	556	123	538

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hrs/yr.

2 - As per vendor specifications, THC, NMHC, and NMNEHC (non-methane/non-ethane hydrocarbon) do not include HCHO. VOC is the sum of NMNEHC and HCHO.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP, acetaldehyde, acrolein, and MeOH.

5 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

6 - Vendor data are not representative of Not-to-Exceed values. The vendor recommends a "nominal percentage" be added to the emissions factors to allow for operational flexibility and variation in fuel gas composition.

7 - Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

Application for 45CSR13 NSR Modification Permit

Compressor Engine – 225 bhp Cummins GTA855

Unit ID	Description	Reference	Pollutant		Pre-Controlled Emissions		Control Efficiency		Controlled Emissions	
				g/bhp-hr	lb/hr	tpy	Emclency	g/bhp-hr	lb/hr	tpy
	Engine 02	Vendor Data	NOX	12.10	6.00	26.29	92%	1.00	0.50	2.17
	Lingine 02	Vendor Data	CO	2.90	1.44	6.30	31%	2.00	0.99	4.35
	Cummins	Vendor Data	THC	1.43	0.71	3.11	0%	1.43	0.71	3.11
	GTA-855 (4SRB)	AP-42 Table 3.2-3	NMHC	0.55	0.27	1.19	0%	0.55	0.27	1.19
	225 bhp	AP-42 Table 3.2-3	NMNEHC	0.25	0.12	0.53	0%	0.25	0.12	0.53
	1,800 rpm	NMNEHC + HCHO	VOC	0.33	0.17	0.73	0%	0.33	0.17	0.73
	NSCR	AP-42 Table 3.2-3	SO2	2.5E-03	1.2E-03	5.5E-03	0%	2.5E-03	1.2E-03	0.01
	8,760 hr/yr	AP-42 Table 3.2-3	PM10/2.5	8.3E-02	0.04	0.18	0%	0.08	0.04	0.18
		AP-42 Table 3.2-3	НСНО	0.09	0.04	0.19	0%	0.09	0.04	0.19
	Manufactured: 01/01/15	AP-42 Table 3.2-3	n-Hexane				0%			
CE-02	NSPS JJJJ	AP-42 Table 3.2-3	Benzene	0.01	3.3E-03	0.01	0%	0.01	3.3E-03	0.01
	"New" NESHAP ZZZZ	AP-42 Table 3.2-3	Toluene	2.4E-03	1.2E-03	0.01	0%	2.4E-03	1.2E-03	0.01
	920 Btu/scf (LHV)	AP-42 Table 3.2-3	Ethylbenzene	1.1E-04	5.3E-05	2.3E-04	0%	1.1E-04	5.3E-05	2.3E-04
	1,020 Btu/scf (HHV)	AP-42 Table 3.2-3	Xylenes	8.3E-04	4.1E-04	1.8E-03	0%	8.3E-04	4.1E-04	1.8E-03
	8,496 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	2,2,4-TMP							
	9,420 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Other HAP	0.04	0.02	0.09	0%	0.04	0.02	0.09
	1.91 MMBtu/hr (LHV)	Sum	Total HAP	0.14	0.07	0.30	0%	0.14	0.07	0.30
	2.12 MMBtu/hr (HHV)	Vendor Data	CO2	629	312	1,366	0%	629	312	1,366
	2,078 scf/hr	AP-42 Table 3.2-3	CH4	0.98	0.49	2.14	0%	0.98	0.49	2.14
	18.20 MMscf/yr	40CFR98 - Table C-2	N2O	9.4E-04	4.7E-04	0.00	0%	9.4E-04	4.7E-04	2.0E-03
		40CFR98 - Table A-1	CO2e	525	324	1,420	0%	525	324	1,420

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hrs/yr.

2 - As per vendor specifications, THC, NMHC, and NMNEHC (non-methane/non-ethane hydrocarbon) do not include HCHO. VOC is the sum of NMNEHC and HCHO.

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5

4 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP, acetaldehyde, acrolein, and MeOH.

5 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

6 - Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

Application for 45CSR13 NSR Modification Permit

Rod Packing/Crankcase (RPC)

Unit Description	Number of Comp- ressors	Cylinders per Comp- ressor	scfh per Cylinder	Contin- gency	Total Fugitive Leak Rate	VC 12,- Ib/M	500	HCI n: Ib/MI	a	n-Hex, (Eac 4 Ib/MM	ch) 5	Total 22 Ib/MI	25	CC 15 Ib/MI	55	CF 42,2 Ib/MI	275	CO 1,057 Ib/MI	,030
					MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Rod Packing Emissions (Gas)	1	4	15	15%	0.60	0.86	3.78	na	na	3.1E-03	0.01	0.02	0.07	0.01	0.05	3	13	73	319
Rod Packing Emissions (Gas)	1	2	15	15%	0.30	0.43	1.89	na	na	1.6E-03	0.01	0.01	0.03	0.01	0.0	1	6	36	160

	Total Effective (Prorated for hr/yr) Horsepower (bhp)	Crankcase Leak Rate		vo	с	нс	но	n-Hex, (Ea	BTEX ich)	Total	HAP	co	2	CI	-14	со	2e							
Unit Description		• • •	Horsepower	Horsepower	Horsepower	Horsepower	Horsepower	Horsepower	Horsepower 0.50	0.50 scf/bhp-hr	Factor	9.7 Ib/MM	-		56 Mscf	0.: Ib/Mi		4.0 Ib/MN		18,3 Ib/MM		2 Ib/M	9 Mscf	19,0 Ib/MM
		MMscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy							
Crankcase Emissions (Exhaust)	293	1.28	250%	3.6E-03	0.02	9.4E-04	4.1E-03	1.1E-04	4.7E-04	1.5E-03	0.01	7	29	0.01	0.05	7	31							

	voc		нсно		n-Hex, BTEX (Each)		Total HAP		CO2		CH4		CO2e	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Total RPC Emissions:	1.30	5.68	9.4E-04	4.1E-03	4.8E-03	0.02	0.02	0.11	7	30	4	19	116	510

- Notes . .

5 - Total Rod Packing Emissions (Gas) Leak Rate (scf/yr)

= No. of Compresors * Cylinders/Compressor * scfh/Cylinder * 8,760 hr/yr * (1 + Contingency)

6 - Engine crankcase emissions are based on vendor data: "As a general rule, blow-by (i.e., crankcase emissions) on a new engine is approximately 0.5 scf/bhp-hr." A "safety factor" is used to account for increasing blow-by as the engines "wear".

7 - Crankcase emissions are estimated as follows:

(Data from Cummins GTA855 Data Sheet and Emissions Calculation Spreadsheet.)

Total Engine Exhaust (TEEx) (Volume)	945 ft3/min (acf/min)	148.67 MMscf/yr TEEx*
Pollutant	Cummins GTA855	Crankcase Emission Factor**
Crankcase THC emissions (Mass)	3.11 tpy THC	41.80 lb THC / MMscf TEEx
Crankcase VOC emissions (Mass)	0.73 tpy VOC	9.75 lb VOC / MMscf TEEx
Crankcase HCHO emissions (Mass)	0.19 tpy HCHO	2.56 lb HCHO / MMscf TEEx
Crankcase n-Hex, BTEX (ea) emissions (Mass)	0.02 tpy n-Hex, BTEX (ea)	0.29 lb n-Hex, BTEX (ea) / MMscf TEEx
Crankcase HAP emissions (Mass)	0.30 tpy HAP	4.03 lb HAP / MMscf TEEx
Crankcase CO2 emissions (Mass)	1,366 tpy CO2	18,379 lb CO2 / MMscf TEEx
Crankcase CH4 emissions (Mass)	2.14 tpy CH4	28.72 lb CH4 / MMscf TEEx
Crankcase CO2e emissions (Mass)	1,420 tpy CO2e	19,105 lb CO2e / MMscf TEEx

* Conversion from acf/min to scf/yr based on 8,760 hr/yr, 1,304 oF exhaust temp, and 68 oF std temp.

** Crankcase Emission Factor = PTE (tpy) from a Cummins GTA855 Engine ÷ Total Engine Exhaust (TEEx) (MMsfy/yr).

oles:	1 - Fugitive equipment leaks from misc.equipment is a broad category covering leaks
	of natural gas from sealed surfaces, such as packing and gaskets, resulting from the
	wear of mechanical joints, seals, and rotating surfaces over time.

2 - Emission are based upon 40CFR98, Subpart W and manufacturer's data.

3 - To be conservative, and to account for potential future changes, the following "worst-case" gas characteristics were assumed:

Pollutant	Representative Gas Analysis	Worst-Case Assumption
CO2	128 lb/MMscf	155 lb/MMscf
CH4	31,975 lb/MMscf	42,275 lb/MMscf
VOC	10,410 lb/MMscf	12,500 lb/MMscf
n-Hex, BTEX (ea)	34 lb/MMscf	45 lb/MMscf
Total HAP	172 lb/MMscf	225 lb/MMscf

4 - Total Facility-Wide bhp is determined as follows:

TOTAL	293		293
CE-02	225	8,760	225
CE-01	68	8,760	68
Unit ID	BHP	Hr/Yr	Prorated

Application for 45CSR13 NSR Modification Permit

Startup, Shutdown and Maintenance (SSM)

Unit ID	Description	No of Units	Total bhp	a. "Cold-s	Start" Gas scf/SSM	b. Blowo scf/bhp	lown Gas scf/SSM	Site-Wide SSM Events SSM/vr	Total Gas Vented MMscf/vr
SSM	a. Cold-Start Engine	2	na	700	1,400	na	na	208	0.29
33M	b. Compressor Blowdown	2	293	na	na	6.22	1,821	208	0.38

Unit ID	Description	CH4 42,275 Ib/MMscf	CO2e 1,056,875 Ib/MMscf	VOC 12,500 Ib/MMscf	n-Hexane 180.00 Ib/MMscf	Benzene 5.00 Ib/MMscf	Toluene 10.00 Ib/MMscf	E-benzene 5.00 Ib/MMscf	Xylenes 20.00 Ib/MMscf	Total HAP 225.00 Ib/MMscf
		tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
SSM	a. Cold-Start Engine	6	154	1.82	0.03	7.3E-04	1.5E-03	7.3E-04	2.9E-03	0.03
001	b. Compressor Blowdown	8	200	2.37	0.03	9.5E-04	1.9E-03	9.5E-04	3.8E-03	0.04
TOTAL	FACILITY-WIDE SSM EMISSIONS:	14	354	4.19	0.06	1.7E-03	3.3E-03	1.7E-03	0.01	0.08

Notes: 1 - SSM Emissions are the sum of:

a. Unburned fuel resulting from "cold-start" of the idle gas-fired engine; and

b. Natural gas that is purged (aka blowdown) from the compressor and associated piping and equipment.

2 - Starting gas quantity and blowdown (B-D) gas quantity as per engineering department. (e.g., 8,577 scf/B-D of a compressor with a 1,380 bhp engine equals 6.22 scf/bhp/B-D.)

3 - To be conservative, the following gas characteristics were assumed:

Pollutant	Analysis	Assumed
CH4	31,975 lb/MMscf	42,275 lb/MMscf
VOC	10,410 lb/MMscf	12,500 lb/MMscf
n-Hexane	148.74 lb/MMscf	180.00 lb/MMscf
Benzene	2.26 lb/MMscf	5.00 lb/MMscf

4 - To be conservative, these SSM estimates are based on

facility-wide blowdowns each week.

Pollutant

Toluene

E-benzene

Xylenes

Total HAP

Analysis

6.80 lb/MMscf

0.14 lb/MMscf

13.71 lb/MMscf

171.80 lb/MMscf

5 - This estimate of SSM emissions is sufficient to account for other infrequent and (often) de-minimis emissions from various activities at the facility that are not necessarily associated with compressor blowdowns.

Assumed 10.00 lb/MMscf

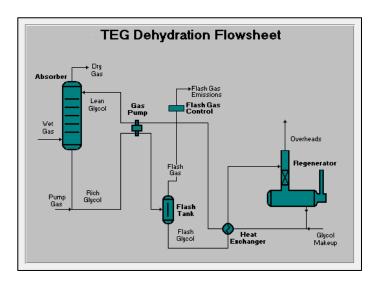
5.00 lb/MMscf 20.00 lb/MMscf

225.00 lb/MMscf

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit


Tri-Ethylene Glycol (TEG) Dehydrator - 5.0 MMscfd

Unit ID	Description	Capacity	Reference	Pollutant		LYCalc I Emission	"Worst Pre-Control		Control Efficiency	Contr Emiss	
					lb/hr	tpy	lb/hr	tpy	%	lb/hr	tpy
			GRI-GLYCalc 4.0	VOC	2.44	10.69	2.93	12.83	0.0%	2.93	12.83
			GRI-GLYCalc 4.0	n-Hexane	0.05	0.21	0.06	0.25	0.0%	0.06	0.25
		Flow Rate	GRI-GLYCalc 4.0	Benzene	0.00	0.02	0.01	0.03	0.0%	0.01	0.03
	Tri-Ethylene Glycol (TEG) Dehydrator 01	5.0	GRI-GLYCalc 4.0	Toluene	0.01	0.06	0.02	0.07	0.0%	0.02	0.07
DFT-01	-	MMscfd	GRI-GLYCalc 4.0	Ethylbenzene	2.1E-04	9.0E-04	2.3E-03	0.01	0.0%	2.3E-03	0.01
DF1-01	Flash Tank Vent		GRI-GLYCalc 4.0	Xylenes	0.02	0.08	0.02	0.10	0.0%	0.02	0.10
	(≥ 50% Recycle)		GRI-GLYCalc 4.0	2,2,4-TMP	3.7E-04	1.6E-03	2.3E-03	0.01	0.0%	2.3E-03	0.01
	(_ 00 /0 1 00 /0.0)	8,760	GRI-GLYCalc 4.0	Tot HAP	0.08	0.37	0.11	0.46	0.0%	0.11	0.46
		hr/yr	GRI-GLYCalc 4.0	CH4	4.92	21.53	5.90	25.84	0.0%	5.90	25.84
			40CFR98 - Table A-1	CO2e	123	538	147	646	0.0%	147	646
			GRI-GLYCalc 4.0	VOC	1.33	5.81	1.59	6.97	0.0%	1.59	6.97
			GRI-GLYCalc 4.0	n-Hexane	0.02	0.07	0.02	0.09	0.0%	0.02	0.09
		Flow Rate	GRI-GLYCalc 4.0	Benzene	0.04	0.20	0.05	0.24	0.0%	0.05	0.24
	Tri-Ethylene Glycol (TEG)	5.0	GRI-GLYCalc 4.0	Toluene	0.19	0.83	0.23	1.00	0.0%	0.23	1.00
DSV-01	Dehydrator 01	MMscfd	GRI-GLYCalc 4.0	Ethylbenzene	0.00	0.02	5.7E-03	0.03	0.0%	5.7E-03	0.03
034-01	-		GRI-GLYCalc 4.0	Xylenes	0.65	2.86	0.78	3.44	0.0%	0.78	3.44
	Regenerator/Still Vent		GRI-GLYCalc 4.0	2,2,4-TMP	1.4E-04	6.0E-04	2.3E-03	0.01	0.0%	2.3E-03	0.01
		8,760	GRI-GLYCalc 4.0	Tot HAP	0.91	3.99	1.09	4.78	0.0%	1.09	4.78
		hr/yr	GRI-GLYCalc 4.0	CH4	0.05	0.24	0.07	0.29	0.0%	0.07	0.29
			40CFR98 - Table A-1	CO2e	1	6	2	7	na	2	7

Notes: 1 - Used GRI-GLYCalc V4.0 to calculate combined regenerator vent/flash gas emissions.

2 - GRI-GLYCalc 4.0 Model Results are based on the following input:

- Wet Gas:60 oF and 1,000 psig, H2O Saturated (17.03 lb-H2O/MMscf)Gas Analysis:See Attachment IDry Gas:5.0 MMscfd, 7.0 lb-H2O/MMscfLean Glycol:1.5 wt% H2O, 0.67 gpm (11.75 gal/lb-H2O)Glycol Pump:Gas Injection, Kimray 4015Flash Tank:140 oF, 40 psig, 50% Recycle (354 scfh)Stripping Gas:NoneRegen Control:None (79 scfh)
- 3 Total HAP includes n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), and other components.
- 4 A 20% contingency has been added to the GRI-GLYCalc model results to account for potential future changes in gas quality.

Application for 45CSR13 NSR Modification Permit

Reboiler - 0.22 MMBtu/hr

Unit ID	Description	Reference	Pollutant		ssion ctor		ntrolled sions	Control Efficiency	Conti Emis	
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100.00	0.10	0.02	0.10	na	0.02	0.10
	Reboiler 01	EPA AP-42 Table 1.4-1	CO	84.00	0.08	0.02	0.08	na	0.02	0.08
		EPA AP-42 Table 1.4-2	VOC	5.50	0.01	0.00	0.01	na	0.00	0.01
	8,760 hr/yr	EPA AP-42 Table 1.4-2	SO2	0.60	5.9E-04	1.3E-04	5.7E-04	na	1.3E-04	5.7E-04
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	0.01	0.00	0.01	na	0.00	0.01
		EPA AP-42 Table 1.4-3	НСНО	0.08	7.4E-05	1.6E-05	7.2E-05	na	1.6E-05	7.2E-05
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.8E-03	3.9E-04	1.72E-03	na	3.9E-04	1.7E-03
	0.20 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.1E-06	4.6E-07	2.0E-06	na	4.6E-07	2.0E-06
RBV-01	0.22 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.3E-06	7.4E-07	3.2E-06	na	7.4E-07	3.2E-06
		EPA AP-42 Table 1.4-3	Ethylbenzene							
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Xylenes							
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Other HAP	1.9E-03	1.9E-06	4.1E-07	1.8E-06	na	4.1E-07	1.8E-06
	1,752 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Tot HAP	1.88	1.8E-03	4.1E-04	1.8E-03	na	4.1E-04	1.8E-03
	1,947 MMBtu/yr (HHV)	40CFR98 - Table C-1	CO2	119,317	117	26	114	na	26	114
	218 scf/hr	40CFR98 - Table C-2	CH4	2.25	2.2E-03	4.9E-04	2.1E-03	na	4.9E-04	2.1E-03
	1.91 MMscf/yr	40CFR98 - Table C-2	N2O	0.22	2.2E-04	4.9E-05	2.1E-04	na	4.9E-05	2.1E-04
		40CFR98 - Table A-1	CO2e	119,440	117	26	114	na	26	114

Notes: 1 - The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP, acetaldehyde, acrolein, and MeOH.

4 - Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

Application for 45CSR13 NSR Modification Permit

Produced Water Storage Tank

Storage Tank PTE Calculations - Working, Breathing and Flashing Emissions

Unit ID	Tank ID	Material Stored	Сара	acity	Turn- overs per Year	Throu	ghput	EPA-450/3-85-001a VOC Emission Factor (Working and	HYSYS VOC Emission Factor (Flashing Losses)	vo	oc	,	TEX (Ea) of VOC	Total 25.00%	
			gal	bbl		gal/yr	bbl/yr	Breathing Losses)	(****** 5 _*****,	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
T01	Tank 01	Produced Water	8,820	210	12	105,840	2,520	0.03889 lb/bbl	0.000 lb/bbl	0.01	0.05	5.6E-04	2.5E-03	2.8E-03	0.01

Storage Tank PTE Calculations - Blanket Gas Emissions

	Unit ID Tank ID		Cana	acity	Turnover	Storage Tank	Storage Tank	Methane	(CH4)	VC	00	n-Hex, E	BTEX (Ea)	Total	HAP
Unit I	D Tank ID	Material Stored	Capt	Joney	s per		Blanket Gas Volume	42,275 lb/MMscf		12,500	lb/MMscf	45	5 lb/MMscf	225 I	b/MMscf
			gal	bbl	Year			lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr t	ру
T01	Tank 01	Produced Water	8,820	210	12	1,100 scf	13,195 scf		0.28		0.08		3.0E-04		1.5E-03

	Methan	e (CH4)	vo	oc	n-Hex, B	TEX (Ea)	Total	HAP
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TANK EMISSIONS:		0.28	0.01	0.13	5.6E-04	2.7E-03	2.8E-03	0.01

- Notes: 1 EPA-450/3-85-001a "Volatile Organic Compound Emissions from Petroleum Refinery Wastewater Systems Background Information for Proposed Standards" is a reasonable protocol for estimating potential produced water storage tank working and breathing losses. EPA-450/3-85-001a, page 3-39, gives a VOC emission factor of 420 kg/MMgal wastewater produced in an oil-water separator. (0.420 g/gal * 0.0022 lb/g * 42 gal/bbl = 0.03889 lb/bbl)
 - 2 These emission estimates are nearly 4X more conservative than emission factors required by the TCEQ on the Barnett Shale produced water tanks at gas-only sites. (http://www.tceq.texas.gov/assets/public/implementation/air/ie/pseiforms/producedwaterstoragetank.pdf):

TOTAL

Table 1. Produced Water Storage Tank Flash Loss Emissions Factors for Barnett Shale Special Inventory Purposes ONLY

Pollutant	Average Produc	ed Water Emission Factor (lb/bbl)
Ī	Gas Production Only Sites	Liquid Hydrocarbon and Gas Production Sites
VOC	0.01	0.0402
Benzene	0.0001	0.000054
Toluene	0.0003	0.000130
Ethylbenzene	0.000006	0.000003
Xylene(s)	0.00006	0.000049
n-Hexane	NA	0.000987

- 3 Total HAP is estimated at 25.0% of VOC emissions. This is a very conservative estimate based on an investigation of other produced water emission estimating protocols, as exemplified above (e.g., (0.0001+0.0003+0.00006+0.00006)/0.01 = 4.7%).
- 4 The HYSYS Simulation software was used to estimate flashing losses from the produced water storage tank. Results were 0.000 lb-VOC/bbl.
- 5 A natural gas blanket will be used on the produced water tank to prevent air from entering the tank and causing an explosion. Field natural gas will be used as the blanket gas.

Application for 45CSR13 NSR Modification Permit

Produced Water/Condensate – Truck Load-Out

Unit ID	Description	S	Р	MW	т	CE	ել	T-Put	VOC AP-42 Sect 5.2	n-Hex, BTEX (ea) 5.00% of VOC	Total HAP 25.00% of VOC
		sat. fac.	psia	lb/lb-mol	°R	%	lb/kgal	kgal/yr	tpy	tpy	tpy
TLO	Truck Load-Out	1.45	1.5	92	510	0.0%	4.90	106	0.26	0.01	0.06
							bbl/yr:	2,520	518.20		

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x MW / T x (1 - CE)

3 - It is estimated that each tank will be emptied up to:

where: $L_L = Loading loss, lb/1000 gal of liquid loaded.$

- S = Saturation factor, use 1.45 for "splash loading".
- P = True vapor pressure of liquid loaded, psia. Estimated at 1.5 psia.
- MW = molecular weight of vapors, lb/lb-mol. (Assumed MW of toluene as it has similar RVP and density as anticipated liquids.)
 - T = Temperature of bulk liquid loaded, °R = °F + 460. (Conservatively assumed 50 °F.)
- CE = Overall emission reduction efficiency (collection efficiency x control efficiency).
 - 12 times per year.
- 4 The total storage tank capacity at the facility is: **210** bbl.
- 5 Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

Williams Ohio Valley Midstream LLC (OVM)

SNYDER COMPRESSOR STATION (CS)

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Piping and Equipment Fugitives - Gas & Water/Oil

Unit ID (Point ID)	Description	Component (Unit) Type	Unit Count	THC Factor	LDAR Control	Hydroc (TH	arbons IC)	VC 22.50		n-He 0.27	xane Wgt%	BTEX, ⁻ 0.03	TMP-ea Wgt%	Total 0.40	HAP Wgt%	CC 0.28	D2 Wgt%		H4 Wgt%	CO GWP	
(1 011112)		(Gas)	oount	lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	386	0.00992	0%	3.82	16.75	0.86	3.77	0.01	0.04	1.0E-03	0.00	0.02	0.07	0.01	0.05	3.82	16.75	96	419
		Pump Seals	0																		
FUG-G	Process Piping Fugitives	Other	45	0.01940	0%	0.87	3.82	0.20	0.86	2.3E-03	0.01	2.4E-04	1.0E-03	3.5E-03	0.02	2.4E-03	0.01	0.87	3.82	22	96
(10E)	(Gas)	Connectors	1,106	0.00044	0%	0.49	2.13	0.11	0.48	1.3E-03	0.01	1.3E-04	5.9E-04	2.0E-03	0.01	1.4E-03	0.01	0.49	2.13	12	53
	· · · ·	Flanges	180	0.00086	0%	0.15	0.68	0.03	0.15	4.1E-04	1.8E-03	4.2E-05	1.9E-04	6.3E-04	2.7E-03	4.3E-04	1.9E-03	0.15	0.68	4	17
		Open-ended	21	0.00441	0%	0.09	0.41	0.02	0.09	2.5E-04	1.1E-03	2.5E-05	1.1E-04	3.7E-04	1.6E-03	2.6E-04	1.1E-03	0.09	0.41	2	10
			1,737	Pre-C	control:	5.43	23.79	1.22	5.35	0.01	0.06	1.5E-03	6.5E-03	0.02	0.10	0.02	0.07	5.43	23.79	136	595
		-		Cont	rolled:	5.43	23.79	1.22	5.35	0.01	0.06	1.5E-03	6.5E-03	0.02	0.10	0.02	0.07	5.43	23.79	136	595

Unit ID		Component	Unit	THC	LDAR	-	arbons	VC	00	n-He	xane	BTEX,	TMP-ea	Total	HAP	C	02	Cŀ	14	CO	
(Point ID)	Description	(Unit) Type	Count	Factor	Control	(TI	IC)	100.00	Wgt%	10.00	Wgt%	3.00	Wgt%	25.00	Wgt%		Wgt%		Wgt%	GWP	= 25
((Water/Oil)		lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
		Valves	193	0.00022	0%	0.04	0.18	0.04	0.18	4.2E-03	1.8E-02	1.2E-03	5.5E-03	1.0E-02	4.6E-02						
		Pump Seals	4	0.00005	0%	2.1E-04	9.3E-04	2.1E-04	9.3E-04	2.1E-05	9.3E-05	6.3E-06	2.8E-05	5.3E-05	2.3E-04						
FUG-W	Process Piping Fugitives	Other	23	0.03086	0%	0.69	3.04	0.69	3.04	6.9E-02	3.0E-01	2.1E-02	9.1E-02	1.7E-01	7.6E-01						
(10E)	(Water/Oil)	Connectors	553	0.00024	0%	0.13	0.59	0.13	0.59	1.3E-02	5.9E-02	4.0E-03	1.8E-02	3.4E-02	0.15						
	· · · ·	Flanges	90	0.00001	0%	5.8E-04	2.5E-03	5.8E-04	2.5E-03	5.8E-05	2.5E-04	1.7E-05	7.6E-05	1.4E-04	6.3E-04						
		Open-ended	11	0.00055	0%	5.8E-03	0.03	5.8E-03	0.03	5.8E-04	2.5E-03	1.7E-04	7.6E-04	1.4E-03	6.3E-03						
-			873	Pre-C	ontrol:	0.88	3.84	0.88	3.84	8.8E-02	3.8E-01	2.6E-02	0.12	0.22	0.96						
				Cont	rolled:	0.88	3.84	0.88	3.84	8.8E-02	0.38	0.03	0.12	0.22	0.96						

TOTAL PRE-CONTROL FUGITIVE EMISSIONS:	6.31	27.63	2.10	9.19	0.10	0.45	0.03	0.12	0.24	1.06	0.02	0.07	5.43	23.79	136	595
TOTAL CONTROLLED FUGITIVE EMISSIONS:	6.31	27.63	2.10	9.19	0.10	0.45	0.03	0.12	0.24	1.06	0.02	0.07	5.43	23.79	136	595

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Gas and Water/Oil emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995.

TABLE 2.4	G	as	Wate	er/Oil
O&G PROD (AVE)	kg/hr	lb/hr	kg/hr	lb/hr
Valves	4.5E-03	0.00992	9.8E-05	0.00022
Pump Seals	na	na	2.4E-05	0.00005
Others	8.8E-03	0.01940	1.4E-02	0.03086
Connectors	2.0E-04	0.00044	1.1E-04	0.00024
Flanges	3.9E-04	0.00086	2.9E-06	0.00001
Open-Ended Lines	2.0E-03	0.00441	2.5E-04	0.00055

3 - Component in Gas Service are based on GRI-HAPCalc estimates, plus a

- 4 Components in Water/Oil Service are based on Gas Component count, times a
- 5 "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.

6 - To be conservative, the following gas characteristics were assumed:

Pollutant	G	as	Wate	er/Oil
Pollutant	Analysis	Estimated	Analysis	Estimated
Carbon Dioxide	0.23 Wgt%	0.28 Wgt%	Wgt%	Wgt%
Methane	57.55 Wgt%	100.00 Wgt%	Wgt%	Wgt%
VOC	18.74 Wgt%	22.50 Wgt%	Wgt%	100.00 Wgt%
n-Hexane	0.27 Wgt%	0.27 Wgt%	Wgt%	10.00 Wgt%
BTEX, TMP-ea	0.01 Wgt%	0.03 Wgt%	Wgt%	3.00 Wgt%
Total HAP	0.31 Wgt%	0.40 Wgt%	Wgt%	25.00 Wgt%

Potentially Applicable **AP-42 and GHG EMISSION FACTORS** (Preferentially use test data or vendor data where available)

Pollutant			GAS-FIRED ENGINES	;	GAS-FIRED TURBINES				
		<u>AP-42 1</u>	<u> Fable 3.2-1; 3.2-2; 3.2-3</u>	<u>3 07/00</u>	<u>AP-42 T</u>	<u>AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00</u>			
		2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#		
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu		
	NOX (≥ 90% Load)	3.17E+00	4.08E+00	2.21E+00	3.20E-01	1.30E-01	9.90E-02		
	CO (≥ 90% Load)	3.86E-01	3.17E-01	3.72E+00	8.20E-02	3.00E-02	1.50E-02		
₹	THC (TOC)	1.64E+00	1.47E+00	3.58E-01	1.10E-02	1.10E-02	1.10E-02		
CRITERIA	NMHC (THC-CH4)	1.90E-01	2.20E-01	1.28E-01	2.40E-03	2.40E-03	2.40E-03		
RIT	NMNEHC (NMHC-C2H6)	1.19E-01	1.15E-01	5.76E-02	2.10E-03	2.10E-03	2.10E-03		
Ö	VOC	1.20E-01	1.18E-01	2.96E-02	2.10E-03	2.10E-03	2.10E-03		
	SO2*** (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04		
	PM10/2.5 (Filter+Cond)	4.83E-02	9.99E-03	1.94E-02	6.60E-03	6.60E-03	6.60E-03		
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07		
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05		
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05		
HAPs	n-Hexane	4.45E-04	1.11E-03						
ЧA	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04		
	TMP, 2,2,4- (i-Octane)	8.46E-04	2.50E-04						
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05		
	Other HAPs	1.96E-02	1.69E-02	9.42E-03	1.06E-04	1.06E-04	1.06E-04		
	CO2**** (GWP=1)	1.17E+02	1.17E+02	1.17E+02	1.17E+02	1.17E+02	1.17E+02		
GHG	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.60E-03	8.60E-03	8.60E-03		
ц С	N2O (GWP=298)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03		
	CO2e	1.53E+02	1.48E+02	1.23E+02	1.18E+02	1.18E+02	1.18E+02		
					(#Lean Pre-Mix - aka: [Dry Low Emissions (DLE o	r DLN) and SoLoNOX)		

Pollutant			ED EXTERNAL COME	FLARES	DIESEL ENGINES	
		AP-42 Table 1.4	<u>-1; 1.4-2; 1.4-3 (<100 N</u>	<u>13.5-1 01/95</u>	<u>3.3-1; 3.3-2 10/96</u>	
		Uncontrolled	LoNOX Burners	Flue Gas Recirc	(Combustion)	Uncontrolled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX	9.80E-02	4.90E-02	3.14E-02	6.80E-02	4.41E+00
	СО	8.24E-02	8.24E-02	8.24E-02	3.70E-01	9.50E-01
₹	THC (TOC)	1.08E-02	1.08E-02	1.08E-02	1.40E-01	3.60E-01
CRITERIA	NMHC (THC-CH4)	8.53E-03	8.53E-03	8.53E-03	1.38E-01	3.53E-01
RIT	NMNEHC (NMHC-C2H6)	5.49E-03	5.49E-03	5.49E-03	5.49E-03	3.50E-01
Ö	VOC	5.39E-03	5.39E-03	5.39E-03	5.39E-03	3.60E-01
	SO2 (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04	5.88E-04	2.90E-01
	PM10/2.5 (Filter+Condense)	7.45E-03	7.45E-03	7.45E-03	7.45E-03	3.10E-01
	Benzene	2.06E-06	2.06E-06	2.06E-06	2.06E-06	9.33E-04
	Ethylbenzene					
	HCHO (Formaldehyde)	7.35E-05	7.35E-05	7.35E-05	7.35E-05	1.18E-03
HAPs	n-Hexane	1.76E-03	1.76E-03	1.76E-03	1.76E-03	
ΗA	Toluene	3.33E-06	3.33E-06	3.33E-06	3.33E-06	4.09E-04
	2,2,4-TMP (i-Octane)					
	Xylenes					2.85E-04
	Other HAPs	1.86E-06	1.86E-06	1.86E-06	1.86E-06	1.05E-03
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02	1.18E+02	1.64E+02
GHG	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03	2.25E-03	6.61E-03
ц С	N2O (GWP=298)	2.16E-03	6.27E-04	6.27E-04	2.16E-03	1.32E-03
	CO2e	1.18E+02	1.18E+02	1.18E+02	1.18E+02	1.65E+02

40 CFR 98 - DEFAULT EMISSION FACTORS					
	Table C-1 to Sub	opart C of Part 98	Table C-2 to Subpart C of Part 98		
Fuel Type	Default HHV	Carbon Dioxide	Methane	Nitrous Oxide	
	Derault HHV	lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu	
Fuel Oil No. 2 (Diesel)	0.138 MMBtu/gal	1.61E+02	6.61E-03	1.32E-03	
Natural Gas	1,028 MMBtu/scf	1.17E+02	2.20E-03	2.20E-04	

Global Warming Potential (100 Yr) (GWP)			
Table A-1 to Subpart A of Part 98			
CO2	CH4*	N2O#	
1	25	298	
#Revised by EPA on 11/29/13			

*Converted Ext Comb Emission Factors to lb/MMBtu by dividing lb/MMscf by AP-42 default HHV of 1,020 Btu/scf.

**Converted GHG Emission Factors to lb/MMBtu by multiplying kg/MMBtu by 2.2046 lb/kg.

***Assumes 100% conversion of fuel sulfur to SO2 (2,000 gr/MMscf).

****Assumes 99.5% conversion of fuel carbon to CO2 for natural gas.

Rev 03/01/14

http://www.	http://www.onlineconversion.com/						
1.0 lb	=	453.5924 g					
1.0 kg	=	2.2046 lb					
1.0 hp	=	2,544.4332 Btu/hr					
1.0 hp	=	745.6999 Watt					
1.0 kW	=	3,412.1416 Btu/hr					
1.0 kW-hr	=	1.3400 hp-hr					
1.0 cf	=	7.4805 gal					
1.0 gal H2O	=	8.3378 lb					
1.0 cf H2O	=	62.3711 lb					
1.0 m	=	3.2808 ft					
1.0 km	=	0.6214 mi					
1.0 acre	=	43,560.1742 ft2					
1.0 °F	=	(°C*9/5)+32					
1.0 °R	=	°F+459.67					
1.0 %	=	10,000 ppm					
UGC (stp)	=	379.48 scf/lb-mol					

Conversion Factors

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: OVM Snyder TEG Dehydrator File Name: C:\Users\Clyde Rhodes\Desktop\000 - EcoLogic LLC\10.513 - OVM - Snyder CS -NSR - 06.25.14\00 - Att-Nb - Snyder CS - NSR - Dehy-01 GLYCalc - 06.27.14.ddf Date: June 26, 2014

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0550	1.319	0.2408
Ethane	0.0889	2.133	0.3892
Propane	0.0959	2.302	0.4200
Isobutane	0.0209	0.502	0.0916
n-Butane	0.0642	1.541	0.2812
Isopentane	0.0164	0.393	0.0717
n-Pentane	0.0235	0.564	0.1029
n-Hexane	0.0163	0.391	0.0714
Cyclohexane	0.0322	0.772	0.1408
Other Hexanes	0.0151	0.363	0.0663
Heptanes	0.0402	0.965	0.1760
Methylcyclohexane	0.0328	0.788	0.1438
2,2,4-Trimethylpentane	0.0001	0.003	0.0006
Benzene	0.0448	1.076	<mark>0.1963</mark>
Toluene	0.1903	4.568	0.8336
Ethylbenzene	0.0048	0.114	0.0209
Xylenes	0.6537	15.688	<mark>2.8631</mark>
C8+ Heavies	0.0756	1.815	0.3312
Total Emissions	1.4707	35.297	6.4417
Total Hydrocarbon Emissions	1.4707	35.297	6.4417
Total VOC Emissions	1.3269	31.845	5.8117
Total HAP Emissions	0.9100	21.841	<mark>3.9859</mark>
Total BTEX Emissions	0.8936	21.446	3.9140

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	5.3374	128.097	23.3776
Ethane	2.4789	59.495	10.8578
Propane	1.3137	31.529	5.7540
Isobutane	0.1926	4.622	0.8435
n-Butane	0.4568	10.964	2.0009
Isopentane	0.1045	2.509	0.4578
n-Pentane	0.1210	2.904	0.5299
<mark>n-Hexane</mark>	0.0468	1.124	0.2052
Cyclohexane	0.0231	0.553	0.1010
Other Hexanes	0.0578	1.386	0.2530
Heptanes	0.0568	1.362	0.2486
Methylcyclohexane	0.0186	0.446	0.0814
<mark>2,2,4-Trimethylpentane</mark>	0.0004	0.009	0.0016
Benzene	0.0049	0.117	0.0213
Toluene	0.0135	0.323	0.0589
Ethylbenzene	0.0002	0.005	0.0009
Xylenes	0.0190	0.457	0.0834
C8+ Heavies	0.0110	0.264	0.0483

Att N - Dehy-01	(DFT-01	and	DSV-01)	- GRI-GL	YCalc -	Page 2	of 15
	Page	:	2			-	

Total	Emissions	10.2569	246.166	Page: 2 44.9253
Total Hydrocarbon	Emissions	10.2569	246.166	44.9253
Total VOC	Emissions	2.4406	58.574	10.6898
Total HAP	Emissions	0.0848	2.035	0.3714
Total BTEX	Emissions	0.0376	0.901	0.1645

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	10.6747	256.193	46.7553
Ethane	4.9579	118.989	21.7156
Propane	2.6274	63.057	11.5080
Isobutane	0.3852	9.244	1.6870
n-Butane	0.9137	21.928	4.0018
Isopentane	0.2091	5.017	0.9157
n-Pentane	0.2420	5.807	1.0598
n-Hexane	0.0937	2.249	0.4104
Cyclohexane	0.0461	1.107	0.2020
Other Hexanes	0.1155	2.773	0.5060
Heptanes	0.1135	2.725	0.4973
Methylcyclohexane	0.0372	0.892	0.1628
2,2,4-Trimethylpentane	0.0008	0.018	0.0033
Benzene	0.0097	0.234	0.0426
Toluene	0.0269	0.646	0.1179
Ethylbenzene	0.0004	0.009	0.0017
Xylenes	0.0381	0.914	0.1668
C8+ Heavies	0.0220	0.529	0.0965
Total Emissions	20.5138	492.332	89.8505
Total Hydrocarbon Emissions	20.5138	492.332	89.8505
Total VOC Emissions	4.8812	117.149	21.3797
Total HAP Emissions	0.1696	4.070	0.7427
Total BTEX Emissions	0.0751	1.803	0.3290

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	5.3923	129.416	23.6184
Ethane	2.5678	61.628	11.2470
Propane	1.4096	33.830	6.1740
Isobutane	0.2135	5.124	0.9352
n-Butane	0.5210	12.505	2.2822
Isopentane	0.1209	2.902	0.5296
n-Pentane	0.1445	3.468	0.6329
n-Hexane	0.0631	1.515	0.2766
Cyclohexane	0.0552	1.325	0.2418
Other Hexanes	0.0729	1.750	0.3193
Heptanes	0.0970	2.327	0.4247
Methylcyclohexane	0.0514	1.234	0.2252
2,2,4-Trimethylpentane	0.0005	0.012	0.0022
Benzene	0.0497	1.193	0.2176
Toluene	0.2038	4.891	0.8926
Ethylbenzene	0.0050	0.119	0.0217
Xylenes	0.6727	16.145	2.9465
C8+ Heavies	0.0866	2.079	0.3795

		Att N - Dehy-01	I (DFT-01 and DSV-01) - GRI-GLYCalc - Page 3 of 15
			Page: 3
Total Emissions	11.7276	281.463	51.3670
Total Hydrocarbon Emissions	11.7276	281.463	51.3670
Total VOC Emissions	3.7675	90.419	16.5016
Total HAP Emissions	0.9948	23.876	4.3573
Total BTEX Emissions	0.9312	22.348	4.0785

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: OVM Snyder TEG Dehydrator File Name: C:\Users\Clyde Rhodes\Desktop\000 - EcoLogic LLC\10.513 - OVM - Snyder CS -NSR - 06.25.14\00 - Att-Nb - Snyder CS - NSR - Dehy-01 GLYCalc - 06.27.14.ddf Date: June 26, 2014 DESCRIPTION: _____ Description: 5 MMscfd TEG Dehydrator Snyder extended inlet gas analysis dated 08-06-2013. Flash tank with 50% of offgas used as reboiler fuel. No still vent controls. Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 60.00 ucg 1000.00 psig 60.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.1104

 Nitrogen
 0.4088

 Methane
 75.6365

 Ethane
 16.0305

 Propane
 5.3458

 Isobutane
 0.5509

 n-Butane
 1.1803

 Isopentane
 0.2271

 n-Pentane
 0.2357

 n-Hexane
 0.0655
 Cyclohexane0.0144Other Hexanes0.0905Heptanes0.0552Methylcyclohexane0.01112,2,4-Trimethylpentane0.0005
 Benzene
 0.0011

 Toluene
 0.0028

 Ethylbenzene
 0.0000

 Xylenes
 0.0049

 C8+ Heavies
 0.0285
 DRY GAS: _____ Flow Rate: 5.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____

> Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 0.7 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 50.00 % Temperature: 140.0 deg. F Pressure: 40.0 psig

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: OVM Snyder TEG Dehydrator File Name: C:\Users\Clyde Rhodes\Desktop\000 - EcoLogic LLC\10.513 - OVM - Snyder CS -NSR - 06.25.14\00 - Att-Nb - Snyder CS - NSR - Dehy-01 GLYCalc - 06.27.14.ddf Date: June 26, 2014

DESCRIPTION:

Description: 5 MMscfd TEG Dehydrator Snyder extended inlet gas analysis dated 08-06-2013. Flash tank with 50% of offgas used as reboiler fuel. No still vent controls.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
 Methane	0.0550	1.319	0.2408
Ethane	0.0889	2.133	0.3892
Propane	0.0959	2.302	0.4200
Isobutane	0.0209	0.502	0.0916
n-Butane	0.0642	1.541	0.2812
Isopentane	0.0164	0.393	0.0717
n-Pentane	0.0235	0.564	0.1029
n-Hexane	0.0163	0.391	0.0714
Cyclohexane	0.0322	0.772	0.1408
Other Hexanes	0.0151	0.363	0.0663
Heptanes	0.0402	0.965	0.1760
Methylcyclohexane	0.0328	0.788	0.1438
2,2,4-Trimethylpentane	0.0001	0.003	0.0006
Benzene	0.0448	1.076	0.1963
Toluene	0.1903	4.568	0.8336
Ethylbenzene	0.0048	0.114	0.0209
Xylenes	0.6537	15.688	
C8+ Heavies	0.0756	1.815	0.3312
Total Emissions	1.4707	35.297	6.4417
Total Hydrocarbon Emissions	1.4707	35.297	6.4417
Total VOC Emissions	1.3269	31.845	5.8117
Total HAP Emissions	0.9100	21.841	3.9859
Total BTEX Emissions	0.8936	21.446	3.9140

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	5.3374 2.4789 1.3137 0.1926 0.4568	128.09759.49531.5294.62210.964	23.3776 10.8578 5.7540 0.8435 2.0009
Isopentane	0.1045	2.509	0.4578

			Page: 2
n-Pentane	0.1210	2.904	0.5299
n-Hexane	0.0468	1.124	0.2052
Cyclohexane	0.0231	0.553	0.1010
Other Hexanes	0.0578	1.386	0.2530
Heptanes	0.0568	1.362	0.2486
Methylcyclohexane	0.0186	0.446	0.0814
2,2,4-Trimethylpentane	0.0004	0.009	0.0016
Benzene	0.0049	0.117	0.0213
Toluene	0.0135	0.323	0.0589
Ethylbenzene	0.0002	0.005	0.0009
Xylenes	0.0190	0.457	0.0834
C8+ Heavies	0.0110	0.264	0.0483
Total Emissions	10.2569	246.166	44.9253
Total Hydrocarbon Emissions	10.2569	246.166	44.9253
Total VOC Emissions	2.4406	58.574	10.6898
Total HAP Emissions	0.0848	2.035	0.3714
Total BTEX Emissions	0.0376	0.901	0.1645

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	10.6747	256.193	46.7553
Ethane	4.9579	118.989	21.7156
Propane	2.6274	63.057	11.5080
Isobutane	0.3852	9.244	1.6870
n-Butane	0.9137	21.928	4.0018
Isopentane	0.2091	5.017	0.9157
n-Pentane	0.2420	5.807	1.0598
n-Hexane	0.0937	2.249	0.4104
Cyclohexane	0.0461	1.107	0.2020
Other Hexanes	0.1155	2.773	0.5060
Heptanes	0.1135	2.725	0.4973
Methylcyclohexane	0.0372	0.892	0.1628
2,2,4-Trimethylpentane	0.0008	0.018	0.0033
Benzene	0.0097	0.234	0.0426
Toluene	0.0269	0.646	0.1179
Ethylbenzene	0.0004	0.009	0.0017
Xylenes	0.0381	0.914	0.1668
C8+ Heavies	0.0220	0.529	0.0965
Total Emissions	20.5138	492.332	89.8505
Total Hydrocarbon Emissions	20.5138	492.332	89.8505
Total VOC Emissions	4.8812	117.149	21.3797
Total HAP Emissions	0.1696	4.070	0.7427
Total BTEX Emissions	0.0751	1.803	0.3290

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	5.3923	129.416	23.6184
Ethane	2.5678	61.628	11.2470
Propane	1.4096	33.830	6.1740
Isobutane	0.2135	5.124	0.9352
n-Butane	0.5210	12.505	2.2822
Isopentane	0.1209	2.902	0.5296

			Page: 3
n-Pentane	0.1445	3.468	0.6329
n-Hexane	0.0631	1.515	0.2766
Cyclohexane	0.0552	1.325	0.2418
Other Hexanes	0.0729	1.750	0.3193
Heptanes	0.0970	2.327	0.4247
Methylcyclohexane	0.0514	1.234	0.2252
2,2,4-Trimethylpentane	0.0005	0.012	0.0022
Benzene	0.0497	1.193	0.2176
Toluene	0.2038	4.891	0.8926
Ethylbongono		0 110	0 0017
Ethylbenzene	0.0050 0.6727	0.119 16.145	0.0217
Xylenes C8+ Heavies	0.0866	2.079	2.9465 0.3795
Co+ Heavies	0.0866	2.079	0.3795
Total Emissions	11.7276	281.463	51.3670
Total Hydrocarbon Emissions	11.7276	281.463	51.3670
Total VOC Emissions	3.7675	90.419	16.5016
Total HAP Emissions	0.9948	23.876	4.3573
Total BTEX Emissions	0.9312	22.348	4.0785

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	46.9961 22.1048 11.9280 1.7787 4.2831	$23.6184 \\ 11.2470 \\ 6.1740 \\ 0.9352 \\ 2.2822$	$\begin{array}{r} 49.74 \\ 49.12 \\ 48.24 \\ 47.42 \\ 46.72 \end{array}$
Isopentane	0.9874	0.5296	46.37
n-Pentane	1.1628	0.6329	45.57
n-Hexane	0.4818	0.2766	42.59
Cyclohexane	0.3428	0.2418	29.46
Other Hexanes	0.5723	0.3193	44.21
Heptanes	0.6733	0.4247	36.93
Methylcyclohexane	0.3066	0.2252	26.55
2,2,4-Trimethylpentane	0.0039	0.0022	42.44
Benzene	0.2390	0.2176	8.92
Toluene	0.9515	0.8926	6.19
Ethylbenzene	0.0226	0.0217	3.81
Xylenes	3.0300	2.9465	2.75
C8+ Heavies	0.4277	0.3795	11.28
Total Emissions	96.2923	51.3670	46.66
Total Hydrocarbon Emissions	96.2923	51.3670	46.66
Total VOC Emissions	27.1914	16.5016	39.31
Total HAP Emissions	4.7287	4.3573	7.85
Total BTEX Emissions	4.2430	4.0785	3.88

EQUIPMENT REPORTS:

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 0.62	lbs. H20/MMSCF
Temperature:	60.0	deg. F
Pressure:		
Dry Gas Flow Rate:	5.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.0341	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	17.03	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	11.75	gal/lb H2O

Component	Remaining in Dry Gas	
Water Carbon Dioxide Nitrogen Methane Ethane	3.63% 99.75% 99.98% 99.98% 99.95%	96.378 0.258 0.028 0.028 0.028 0.058
Propane	99.94%	0.06%
Isobutane	99.91%	0.09%
n-Butane	99.89%	0.11%
Isopentane	99.90%	0.10%
n-Pentane	99.86%	0.14%
n-Hexane	99.79%	0.21%
Cyclohexane	98.97%	1.03%
Other Hexanes	99.84%	0.16%
Heptanes	99.64%	0.36%
Methylcyclohexane	98.98%	1.02%
2,2,4-Trimethylpentane	99.86%	0.14%
Benzene	88.58%	11.42%
Toluene	84.81%	15.19%
Ethylbenzene	82.44%	17.56%
Xylenes	75.93%	24.07%
C8+ Heavies	99.78%	0.22%

FLASH TANK

_

Flash Control:	Combustion device
Flash Control Efficiency:	50.00 %
Flash Temperature:	140.0 deg. F
Flash Pressure:	40.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.44%	0.56%
Carbon Dioxide	5.26%	94.74%
Nitrogen	0.50%	99.50%
Methane	0.51%	99.49%
Ethane	1.76%	98.24%
Propane	3.52%	96.48%
Isobutane	5.15%	94.85%
n-Butane	6.57%	93.43%
Isopentane	7.46%	92.54%
n-Pentane	9.08%	90.92%

n-Hexane	15.07%	84.93%
Cyclohexane	42.74%	57.26%
Other Hexanes	12.05%	87.95%
Heptanes	26.41%	73.59%
Methylcyclohexane	48.77%	51.23%
2,2,4-Trimethylpentane	15.74%	84.26%
Benzene	83.04%	16.96%
Toluene	88.58%	11.42%
Ethylbenzene	93.17%	6.83%
Xylenes	95.20%	4.80%
C8+ Heavies	79.15%	20.85%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water	62.62%	37.38%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	2.81%	97.19%
n-Pentane	2.69%	97.31%
n-Hexane	1.96%	98.04%
Cyclohexane	6.58%	93.42%
Other Hexanes	4.36%	95.64%
Heptanes	1.35%	98.65%
Methylcyclohexane	7.22%	92.78%
2,2,4-Trimethylpentane	4.64%	95.36%
Benzene	5.95%	94.05%
Toluene	8.84%	91.16%
Ethylbenzene	11.09%	88.91%
Xylenes	13.50%	86.50%
C8+ Heavies	9.60%	90.40%

STREAM REPORTS:

WET GAS STREAM

Temperature: Pressure: Flow Rate:	60.00 deg. F 1014.70 psia 2.08e+005 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Water Carbon Dioxide	3.59e-002 1.10e-001	

Nitrogen 4.09e-001 6.29e+001 Methane 7.56e+001 6.66e+003 Ethane 1.60e+001 2.65e+003 Propane 5.34e+000 1.29e+003 Isobutane 5.51e-001 1.76e+002 n-Butane 1.18e+000 3.77e+002 Isopentane 2.27e-001 9.00e+001 n-Pentane 2.36e-001 9.34e+001 n-Hexane 6.55e-002 3.10e+001 Cyclohexane 1.44e-002 6.66e+000 Other Hexanes 9.05e-002 4.28e+001 Heptanes 5.52e-002 3.04e+001 Methylcyclohexane 1.11e-002 5.99e+000 2,2,4-Trimethylpentane 5.00e-004 3.14e-001 Benzene 1.10e-003 4.72e-001 Toluene 2.80e-003 1.42e+000 Ethylbenzene 5.00e-005 2.92e-002 Xylenes 4.90e-003 2.86e+000 C8+ Heavies 2.85e-002 2.67e+001 Total Components 100.00 1.16e+004

DRY GAS STREAM

Temperature: 60.00 deg. F Pressure: 1014.70 psia Flow Rate: 2.08e+005 scfh Conc. Loading Component (vol%) (lb/hr) Water 1.30e-003 1.29e-001 Carbon Dioxide 1.10e-001 2.66e+001 Nitrogen 4.09e-001 6.29e+001 Methane 7.56e+001 6.66e+003 Ethane 1.60e+001 2.65e+003 Propane 5.34e+000 1.29e+003 Isobutane 5.51e-001 1.76e+002 n-Butane 1.18e+000 3.76e+002 Isopentane 2.27e-001 8.99e+001 n-Pentane 2.35e-001 9.33e+001 n-Hexane 6.54e-002 3.09e+001 Cyclohexane 1.43e-002 6.59e+000 Other Hexanes 9.04e-002 4.28e+001 Heptanes 5.50e-002 3.03e+001 Methylcyclohexane 1.10e-002 5.92e+000 2,2,4-Trimethylpentane 4.99e-004 3.13e-001 Benzene 9.75e-004 4.18e-001 Toluene 2.38e-003 1.20e+000 Ethylbenzene 4.12e-005 2.40e-002 Xylenes 3.72e-003 2.17e+000 C8+ Heavies 2.84e-002 2.66e+001 Total Components 100.00 1.16e+004

LEAN GLYCOL STREAM

Flow Rate: 6.70e-001 gpm Component Conc. Loading (lb/hr) (wt응) ----- ------TEG 9.85e+001 3.71e+002 Water 1.50e+000 5.66e+000 Carbon Dioxide 1.79e-012 6.76e-012 Nitrogen 3.23e-013 1.22e-012 Methane 9.15e-018 3.45e-017 Ethane 1.49e-007 5.62e-007 Propane 9.04e-009 3.41e-008 Isobutane 1.19e-009 4.50e-009 n-Butane 2.82e-009 1.06e-008 Isopentane 1.26e-004 4.74e-004 n-Pentane 1.73e-004 6.51e-004 n-Hexane 8.64e-005 3.26e-004 Cyclohexane 6.01e-004 2.27e-003 Other Hexanes 1.83e-004 6.90e-004 Heptanes 1.46e-004 5.50e-004 Methylcyclohexane 6.77e-004 2.55e-003 2,2,4-Trimethylpentane 1.72e-006 6.50e-006 Benzene 7.52e-004 2.84e-003 Toluene 4.90e-003 1.85e-002 Ethylbenzene 1.58e-004 5.95e-004 Xylenes 2.71e-002 1.02e-001 C8+ Heavies 2.13e-003 8.03e-003 Total Components 100.00 3.77e+002

RICH GLYCOL AND PUMP GAS STREAM

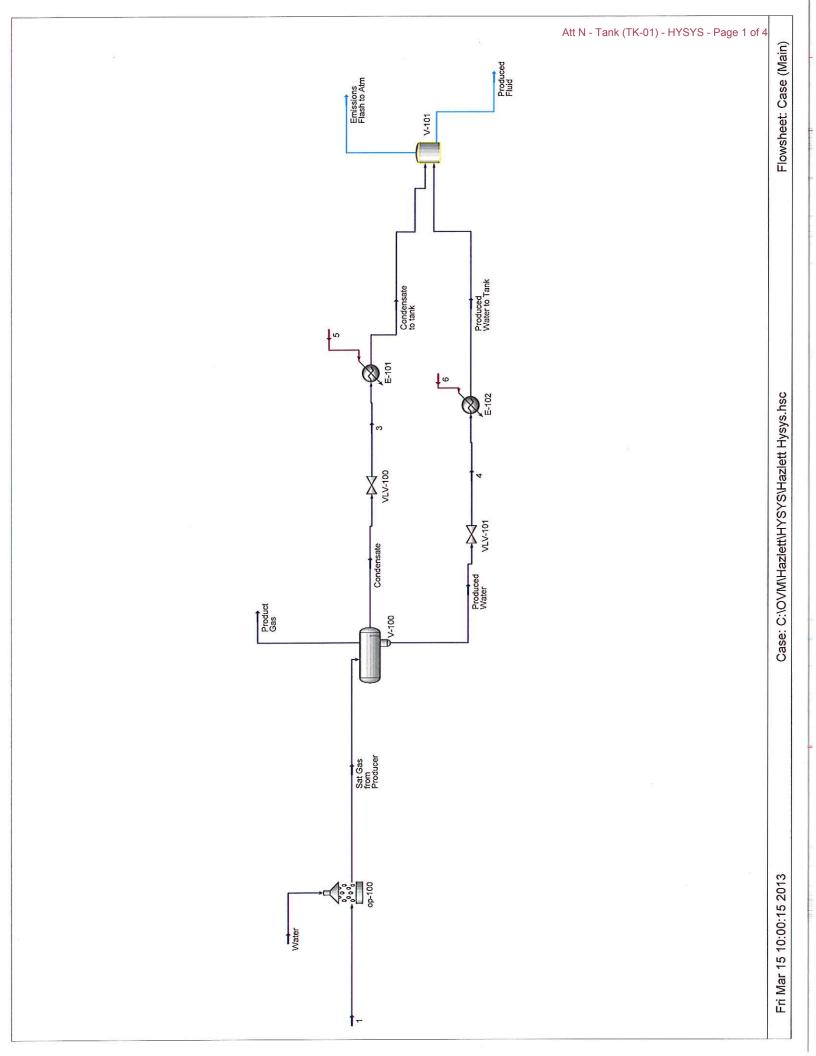
Temperature: 60.00 deg. F Pressure: 1014.70 psia Flow Rate: 7.26e-001 gpm NOTE: Stream has more than one phase.

Conc. Loading (wt%) (lb/hr) Component TEG 9.22e+001 3.71e+002 Water 2.26e+000 9.08e+000 Carbon Dioxide 2.64e-002 1.06e-001 Nitrogen 2.58e-002 1.04e-001 Methane 2.66e+000 1.07e+001 Ethane 1.25e+000 5.05e+000 Propane 6.76e-001 2.72e+000 Isobutane 1.01e-001 4.06e-001 n-Butane 2.43e-001 9.78e-001 Isopentane 5.61e-002 2.26e-001 n-Pentane 6.61e-002 2.66e-001 n-Hexane 2.74e-002 1.10e-001 Cyclohexane 2.00e-002 8.05e-002 Other Hexanes 3.26e-002 1.31e-001 Heptanes 3.83e-002 1.54e-001 Methylcyclohexane 1.80e-002 7.26e-002 2,2,4-Trimethylpentane 2.21e-004 8.90e-004 Benzene 1.43e-002 5.74e-002 Toluene 5.85e-002 2.36e-001 Ethylbenzene 1.43e-003 5.76e-003 Xylenes 1.97e-001 7.94e-001 C8+ Heavies 2.62e-002 1.06e-001 Total Components 100.00 4.03e+002

FLASH TANK OFF GAS STREAM

_____ Temperature: 140.00 deg. F Pressure: 54.70 psia Flow Rate: 3.54e+002 scfh Conc. Component Loading (vol%) (lb/hr) Water 3.02e-001 5.07e-002 Carbon Dioxide 2.46e-001 1.01e-001 Nitrogen 3.95e-001 1.03e-001 Methane 7.13e+001 1.07e+001 Ethane 1.77e+001 4.96e+000 Propane 6.39e+000 2.63e+000 Isobutane 7.10e-001 3.85e-001 n-Butane 1.69e+000 9.14e-001 Isopentane 3.11e-001 2.09e-001 n-Pentane 3.60e-001 2.42e-001 n-Hexane 1.17e-001 9.37e-002 Cyclohexane 5.87e-002 4.61e-002 Other Hexanes 1.44e-001 1.16e-001 Heptanes 1.21e-001 1.14e-001 Methylcyclohexane 4.06e-002 3.72e-002 2,2,4-Trimethylpentane 7.04e-004 7.50e-004 Benzene 1.34e-002 9.73e-003 Toluene 3.13e-002 2.69e-002 Ethylbenzene 3.97e-004 3.93e-004 Xylenes 3.85e-002 3.81e-002 C8+ Heavies 1.39e-002 2.20e-002 _____ ____ Total Components 100.00 2.08e+001 FLASH TANK GLYCOL STREAM Temperature: 140.00 deg. F Flow Rate: 6.80e-001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.72e+001 3.71e+002 Water 2.37e+000 9.03e+000 Carbon Dioxide 1.47e-003 5.60e-003 Nitrogen 1.37e-004 5.22e-004 Methane 1.44e-002 5.50e-002 Ethane 2.33e-002 8.89e-002 Propane 2.51e-002 9.59e-002 Isobutane 5.48e-003 2.09e-002 n-Butane 1.68e-002 6.42e-002 Isopentane 4.41e-003 1.69e-002 n-Pentane 6.33e-003 2.42e-002 n-Hexane 4.35e-003 1.66e-002 Cyclohexane 9.01e-003 3.44e-002

Other Hexanes 4.14e-003 1.58e-002


Methylcyclohexane 9.27e-003 3.54e-002 2,2,4-Trimethylpentane 3.67e-005 1.40e-004 Benzene 1.25e-002 4.77e-002 Toluene 5.47e-002 2.09e-001 Ethylbenzene 1.40e-003 5.36e-003 Xylenes 1.98e-001 7.56e-001 C8+ Heavies 2.19e-002 8.37e-002 _____ ____ Total Components 100.00 3.82e+002 FLASH GAS EMISSIONS _____ Flow Rate: 8.58e+002 scfh Control Method: Combustion Device Control Efficiency: 50.00 Loading Component Conc. (vol%) (lb/hr) ----- ------Water 4.99e+001 2.03e+001 Carbon Dioxide 2.95e+001 2.94e+001 Nitrogen 1.63e-001 1.03e-001 Methane 1.47e+001 5.34e+000 Ethane 3.65e+000 2.48e+000 Propane 1.32e+000 1.31e+000 Isobutane 1.47e-001 1.93e-001 n-Butane 3.48e-001 4.57e-001 Isopentane 6.41e-002 1.05e-001 n-Pentane 7.42e-002 1.21e-001 n-Hexane 2.40e-002 4.68e-002 Cyclohexane 1.21e-002 2.31e-002 Other Hexanes 2.96e-002 5.78e-002 Heptanes 2.51e-002 5.68e-002 Methylcyclohexane 8.37e-003 1.86e-002 2,2,4-Trimethylpentane 1.45e-004 3.75e-004 Benzene 2.75e-003 4.87e-003 Toluene 6.46e-003 1.35e-002 Ethylbenzene 8.20e-005 1.97e-004 Xylenes 7.93e-003 1.90e-002 C8+ Heavies 2.86e-003 1.10e-002 ----- -----Total Components 100.00 6.01e+001

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 7.93e+001 scfh Component Conc. Loading (vol%) (lb/hr) Water 8.97e+001 3.38e+000 Carbon Dioxide 6.09e-002 5.60e-003 Nitrogen 8.91e-003 5.22e-004 Methane 1.64e+000 5.50e-002 Ethane 1.41e+000 8.89e-002

Propane 1.04e+000 9.59e-002

Isobutane 1.72e-001 2.09e-002 n-Butane 5.29e-001 6.42e-002 Isopentane 1.09e-001 1.64e-002 n-Pentane 1.56e-001 2.35e-002 n-Hexane 9.05e-002 1.63e-002 Cyclohexane 1.83e-001 3.22e-002 Other Hexanes 8.40e-002 1.51e-002 Heptanes 1.92e-001 4.02e-002 Methylcyclohexane 1.60e-001 3.28e-002 2,2,4-Trimethylpentane 5.60e-004 1.34e-004 Benzene 2.75e-001 4.48e-002 Toluene 9.88e-001 1.90e-001 Ethylbenzene 2.15e-002 4.77e-003 Xylenes 2.95e+000 6.54e-001 C8+ Heavies 2.12e-001 7.56e-002 Total Components 100.00 4.85e+000

J-W MEASUREMENT COMPANY

Shreveport, LA Tyler, TX Fairfield, TX Victoria, TX Godley, TX Broussard, LA Zapata, TX WWW.JWOPERATING.COM 888-226-9110

J-WMC Number Customer Station ID Station Name Area County/Parish State Property Cd	: 20744201111117 : CAIMAN ENERGY L : 1111117 : WITZGALL 1H : MOUNDSVILLE : MARSHALL : WV	LC	Date Sampled Date Analyzed Effective Date Pressure Temperature (F) Cylinder ID Sampled by	: 09/01/2011 : 09/06/2011 : 09/01/2011 : 645.0 : 70.0 : 3104 : DB	
COMPONE	NT	MOL. %	GPM @ 14.73(P	SIA)	
Methane	<u>,,,,</u>	75.9917	0.000		
Ethane		15.5466	4.157		
Propane		5.4225	1.494		
Iso-Butan	e	0.4637	0.152		
Normal-Butane		1.1854	0.374		
Iso-Pentane		0.1943	0.071	ł	
Normal-Pentane		0.2479	0.090		
Hexanes+	-+	0.2540	0.110		
Nitrogen		0.5653	0.000		
Carbon-Dioxide		0.1265	0.000		
Oxygen		0.0020	0.000		
Hydrogen	Sulfide	0.0002	0.000		
TOTAL		100.0000	6.447		
Compressibility Fac	tor (Z) @ 14.696 PSIA (@ 60 DEG. F =		0.9964	
Real Gravity: 0.	.727		Ideal Gravity:	0.725	
BTU @ (PSIA)	@14.65	@14.696	@14.73	@15.025	
GPM	6.412	6.432	6.447	6.576	
Ideal BTU Dry	1259.61	1263.57	1266.49	1291.86	
Ideal BTU Sat	1237.57	1241.53	1244.45	1269.82	
Real BTU Dry	1264.17	1268.16	1271.10	1296.65	
Real BTU Sat	1242.46	1246.45	1249.39	1274.95	

Comments:

METHOD: GPA 2261-00 Note: Calibration, Standards, and testing procedures are archieved pursuant to GPA regulations.

This Analysis Report is not intended for submission to Lousiana Department of Environmental Quality.

Deborar Murphy J-WANALYS

WILLIAMS ENERGY SERVICES Burlington, MA USA

 Case Name:
 Hazlett Hysys.hsc
 Att N - Tank (TK-01) - HYSYS - Page 3 of 4

 Unit Set:
 Field
 Also Snyder CS

Date/Time: Fri Mar 15 10:02:38 2013

Workbook: Case (Main)

8 9 10		g: All				
11	Name	1	Water	Sat Gas from Produc	Produced Water	Condensate
12	Vapour Fraction	1.0000	0.0000	1.0000	0.0000	0.0000
13	Temperature (F)	50.00 *	40.00 *	50.00	50.00	50.00
	Pressure (psia)	1115 *	119.7 *	1115	1115	1115
14 15	Molar Flow (Ibmole/hr)	549.0 *	0.1267	549.2	0.0000	0.0000
16	Mass Flow (lb/hr)	1.151e+004	2.282	1.151e+004	0.0000	0.0000
17	Liquid Volume Flow (barrel/day)	2306	0.1566	2306	0.0000	0.0000
18	Heat Flow (Btu/hr)	-1.957e+007	-1.567e+004	-1.958e+007	-0.0000	-0.0000
19	Name	Product Gas	3	4	Condensate to tank	Produced Water to T
20	Vapour Fraction	1.0000	0.6794	0.0000	1.0000	0.0000
21	Temperature (F)	50.00	-78.63	53.05	75.00 *	75.00 *
21 22 23	Pressure (psia)	1115	14.70 *	14.70 *	14.70	14.70
23	Molar Flow (lbmole/hr)	549.2	0.0000	0.0000	0.0000	0.0000
24	Mass Flow (lb/hr)	1.151e+004	0.0000	0.0000	0.0000	0.0000
25	Liquid Volume Flow (barrel/day)	2306	0.0000	0.0000	0.0000	0.0000
26	Heat Flow (Btu/hr)	-1.958e+007	-0.0000	-0.0000	-0.0000	-0.0000
27	Name	Produced Fluid	Emissions Flash to A			
28	Vapour Fraction	0.0000	1.0000			
28 29 30 31	Temperature (F)					
30	Pressure (psia)	14.70	14.70			
31	Molar Flow (Ibmole/hr)					
32	Mass Flow (lb/hr)					
33	Liquid Volume Flow (barrel/day)					
34	Heat Flow (Btu/hr)	***				
32 33 34 35 36 37			Compositions		Fluid Pk	g: All
37	Name	1	Water	Sat Gas from Produc	Produced Water	Condensate
38	Master Comp Mass Flow (Metha(hts/hr)	6693.4085 *	0.0000	6693.4085	0.0000	0.0000
38 39 40 41	Master Comp Mass Flow (H2O) (lb/hr)	0.0000 *	2.2820	2.2820	0.0000	0.0000
40	Master Comp Mass Flow (Nitrogeb/hr)	86.9435 *	0.0000	86.9435	0.0000	0.0000
41	Master Comp Mass Flow (CO2) (lb/hr)	30.5659 *	0.0000	30.5659	0.0000	0.0000
42	Master Comp Mass Flow (n-Hexable)r)	120.1788 *	0.0000	120.1788	0.0000	0.0000
43	Master Comp Mass Flow (n-Pen(tar/lat))	98.2013 *	0.0000	98.2013	0.0000	0.0000
44	Master Comp Mass Flow (i-Pent(bb))r)	76.9686 *	0.0000	76.9686	0.0000	0.0000
45	Master Comp Mass Flow (n-Butation)	378.2846 *	0.0000	378.2846	0.0000	0.0000
46 47	Master Comp Mass Flow (i-Buta(ib)hr)	147.9759 *	0.0000	147.9759	0.0000	0.0000
	Master Comp Mass Flow (Propa(ile/nr)	1312.8252 *	0.0000	1312.8252	0.0000	0.0000
48	Master Comp Mass Flow (Ethan#p/hr)	2566.6444 *	0.0000	2566.6444	0.0000	0.0000
49 50	Master Comp Mass Flow (H2S) (lb/hr)	0.0374 *	0.0000	0.0374	0.0000	0.0000
50	Master Comp Mass Flow (Oxygetb)/hr)	0.0351 *	0.0000	0.0351	0.0000	0.0000
51 52 53 54	Name	Product Gas	3	4	Condensate to tank	Produced Water to T
52	Master Comp Mass Flow (Metha(##/hr)	6693.4085	0.0000	0.0000	0.0000	0.0000
53	Master Comp Mass Flow (H2O) (lb/hr)	2.2820	0.0000	0.0000	0.0000	0.0000
	Master Comp Mass Flow (Nitrogebu/nr)	86.9435	0.0000	0.0000	0.0000	0.0000
55 56 57 58 59 60	Master Comp Mass Flow (CO2) (lb/hr)	30.5659	0.0000	0.0000	0.0000	0.0000
56	Master Comp Mass Flow (n-Hexabati))	120.1788	0.0000	0.0000	0.0000	0.0000
57	Master Comp Mass Flow (n-Pen(taxile))	98.2013	0.0000	0.0000	0.0000	0.0000
58	Master Comp Mass Flow (i-Pent(bb)r)	76.9686	0.0000	0.0000	0.0000	0.0000
59	Master Comp Mass Flow (n-Butalizehr)	378.2846	0.0000	0.0000	0.0000	0.0000
	Master Comp Mass Flow (i-Buta(lb)hr)	147.9759	0.0000	0.0000	0.0000	0.0000
61	Master Comp Mass Flow (Propa(le/hr)	1312.8252	0.0000	0.0000	0.0000	0.0000
62	Master Comp Mass Flow (Ethan#b/hr)	2566.6444	0.0000	0.0000	0.0000	0.0000
63	Master Comp Mass Flow (H2S) (lb/hr)	0.0374	0.0000	0.0000	0.0000	0.0000
64	Master Comp Mass Flow (Oxygetb)/hr)	0.0351	0.0000	0.0000	0.0000	0.0000
62 63 64 65 66 67 68 69			HVSVS Version 8 (27			Page 1 of 2

Workbook: Case (Main) (continued)

_									
1	0			- Ee	Case Name: Ha	azlett Hysys.hsc	Att N - Tan	k (TK-01) - HYSY	S - Page 4 of 4
2 3 4 5 6 7 8	WILLIAMS ENERGY SERVICES Burlington, MA		Unit Set: Field						
4				Date/Time: Fri Mar 15 10:02:38 2013					
5 6									
7	Workbo	ook: C	Case (Mair	1) (0	continued)				
8 9 10				Con	npositions (conti	auad)		Fluid Pkg:	All
_	Nama		Produced Fluid	CON	Emissions Flash to A	lueu)		Tiulu FKg.	All
11 12	Name Master Comp Mass Flow (M	letha(itte/hr)							1
13	Master Comp Mass Flow (H								
14	Master Comp Mass Flow (N						1		
15	Master Comp Mass Flow (C Master Comp Mass Flow (n-								
16 17	Master Comp Mass Flow (n-								
18	Master Comp Mass Flow (i-	Pent(ab#)r)			1				
19	Master Comp Mass Flow (n-		and the second second second						
20 21	Master Comp Mass Flow (i- Master Comp Mass Flow (P								
22	Master Comp Mass Flow (F								
23	Master Comp Mass Flow (H								
24	Master Comp Mass Flow (O	xyge(lb)/hr)]					
25 26					Energy Streams			Fluid Pkg:	All
20	Name		5		6				
28	Heat Flow	(Btu/hr)	-0.000	00	-0.0000				
29					Unit Ops				
30 31	Operation Name	Ope	eration Type	1.3	Feeds	Products	95 - A - E	Ignored	Calc Level
	op-100		with water	1		Sat Gas from Pro		No	500.0 *
32 33	op-100	Galurale	with water	Wat	ACCONTRACT OF A DECEMBER OF A			NO	
34	V-100	3 Phase	Separator	Sat	Gas from Producer	Condensate Product Gas		No	500.0 *
35 36	V-100	5 Flidse			Produced Water		NO	000.0	
37	VLV-100	Valve			ndensate	3		No	500.0 *
38 39	VLV-101	Valve		1.1	duced Water	4 Condenants to tank		No	500.0 *
39 40	E-101	Heater		3 5		Condensate to tank		No	500.0 *
-	E 400	Ileater		4		Produced Water to Tank		No	500.0 *
41 42	E-102	Heater		6					500.0
43	V-101	Tank			idensate to tank duced Water to Tank	Produced Fluid Emissions Flash to Atm		No	500.0 *
45				1100	duced water to Tank		Emissions Flash to Atm		
46									
47									
48									
50									
51									
52									
54									
55									
56									
57									
59									
60									
61									
62									
64									
65									
66									
43 44 45 66 67 58 59 60 61 62 63 64 65 66 67 68									
69	Aspen Technology Inc	1000	٨	enon	HYSYS Version 8 (27 0	0.8138)			Page 2 of 2

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

- Monitoring/Recordkeeping/Reporting/Testing Plans
 - A. Monitoring and Recordkeeping
 - B. Notification and Reporting
 - C. Testing

ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans

Williams Ohio Valley Midstream LLC (OVM) **SNYDER COMPRESSOR STATION (CS)** Application for 45CSR13 NSR Modification Permit

Williams Ohio Valley Midstream LLC (OVM) proposes the following monitoring, recordkeeping, reporting and testing requirements at the Snyder CS.

Monitoring

- 1. Monitor and record quantity of natural gas combusted in the engines.
- 2. Monitor and record quantity of natural gas treated in the TEG dehydrator.
- 3. Monitor and record quantity of produced water transferred from the storage tank.

Recordkeeping

- 1. Maintain records of the amount of natural gas consumed and hours of operation for the compressor engines.
- 2. Maintain records of the amount of natural gas treated in the TEG dehydrator.
- 3. Maintain records of the amount of produced water transferred from the storage tanks.
- 4. Maintain a record of all potential to emit (PTE) HAP calculations for the entire facility. These records shall include the natural gas compressor engine, dehydration unit and ancillary equipment.
- 5. The records shall be maintained on site or in a readily available off-site location for a period of five (5) years.

<u>Testing</u>

No testing is required.

ATTACHMENT P Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

Williams Ohio Valley Midstream LLC (OVM) **SNYDER COMPRESSOR STATION (CS)** Application for 45CSR13 NSR Modification Permit

ATTACHMENT P Public Notice

AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Modification Permit for an existing natural gas compressor station off McCreary's Ridge Rd, approximately 5.4 mi E-NE of Moundsville, in Marshall County, West Virginia.

The latitude and longitude coordinates are 39.9419 degrees North and -80.6289 degrees West.

The applicant estimates the increase/(decrease) in the potential to discharge the following regulated air pollutants will be:

- (29.38) tons of nitrogen oxides per year
- (3.21) tons of carbon monoxide per year
- 5.72 tons of volatile organic compounds per year
- 0.00 tons of sulfur dioxide per year
- 0.00 tons of particulate matter per year
- 0.00 tons of formaldehyde per year
- 0.12 tons of xylenes per year
- 0.99 tons of total hazardous air pollutants per year
- 210 tons of carbon dioxide equivalent per year

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the _____ day of _____ 2015.

By: Mr. Don Wicburg, Vice President and General Manager
 Williams Ohio Valley Midstream LLC
 100 Teletech Drive, Suite 2
 Moundsville, WV 26041

ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)

also

ATTACHMENT R Authority Forms (NOT APPLICABLE)

also

ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

Williams Ohio Valley Midstream LLC (OVM) **Snyder Compressor Station (CS)** Application for 45CSR13 NSR Modification Permit

APPLICATION FEE NSR Modification Permit

- Include a check payable to WVDEP Division of Air Quality.
- As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **minimum fee of \$1,000** must be submitted for each 45CSR13 permit application filed with the WVDEP-DAQ.
- Additional charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
- NSPS Requirements: \$1,500 (JJJJ and OOOO)

Total application fee is **\$2,500** [= \$1,000 minimum fee + \$1,500 additional fees]

***** End of Application for 45CSR13 NSR Permit ****

(11.10) CCCI MIN

WILLIAMS FIELD SERVICES GROUP, INC PO BOX 21218 TULSA, OK 74121-1218

COMPANY NUMBER: 4000

CHECK NUMBER: 4000109009

PAY DATE	SUPPLIER NO.						
21-MAY-15	401733	STATE OF WEST VIRGINIA				2,500.00	
Invoice Date	Invoice	Or Credit Memo /		Gran	Discount	Net	
And a second state of the second s		bice Description		Gross	Discount	Net	
19-MAY-15 19-M	AY-2015A / AIR PERMIT APPLICATION FE	E FOR SNYD		2,500.00	0.00	2,500.00	
S	Supplier Support 1-866-77	8-2665		Page Totals	0.00	2,500.00	
		_					
Two Thouse Two Thouse Pay To The Orce STATE OF WI WV DEP - DIV 601 57TH ST	EST VIRGINIA /ISION OF AIR QUALITY	ES GROUP, INĆ	Chica PAY	rgan Chase Bank, N. / go, IL Chec ((USD)	k Number Check Dat	: 4000109009 e: 21-MAY-15 \$2,500.00	
II *	4000109009" :0'	1923261	0094011	6 7 "			

After printing this label: 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer. 2. Fold the printed page along the horizontal line. 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of

Warning: Use only the printed original top to stepping, using a provey of the leader of the service guide, available on fedex com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including lintinsic value of the package, loss of sales, income interest, profit, latorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits can current FedEx Service Guide. limits, see current FedEx Service Guide.