625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

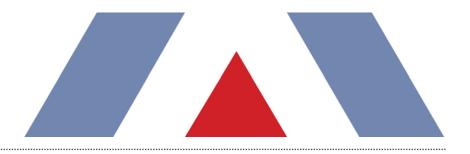
May 27, 2015

CERTIFIED MAIL # 7014 0150 0000 0208 2543

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: Class II Administrative Update EQT Production Company OXF-149 and OXF-150 Natural Gas Production Sites

Dear Mr. Durham,


Enclosed are two electronic copies and one original hardcopy of a G70-A General Air Permit Application for the OXF-149 and OXF-150 Natural Gas Production Well Sites that are currently operating under permit number G70-A031. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF-149 and OXF-150 Pad

Class II Administrative Update

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

May 2015

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-A APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration (PSD) Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	7
3.3.1. NSPS Subparts D, Da, Db, and Dc	8
3.3.2. NSPS Subparts K, Ka, and Kb	8
3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution 3.3.4. Non-Applicability of All Other NSPS	8 9
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	9
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	9
3.4.2. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	9
3.5. West Virginia SIP Regulations	9
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Hea Exchangers	t 10
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Cont to an Objectionable Odor	ributes 10
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	10
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	10
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Prepar Storage and Other Sources of Eugitius Particulate Matter	ration, 10
Storage and Other Sources of Fugitive Particulate Matter 3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	10
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	11
3.5.8. Non-Applicability of Other SIP Rules	11
4. G70-A APPLICATION FORMS	12
ATTACHMENT A: CURRENT BUSINESS CERTIFICATE	
ATTACHMENT B: PROCESS DESCRIPTION	
ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: AREA MAP	
ATTACHMENT G: EMISSION UNIT DATA SHEETS AND G70-A SECTION APPLICABILITY FORM	
ATTACHMENT H: AIR POLLUTION CONTROL DEVICE DATA SHEET	

ATTACHMENT I: EMISSION CALCULATIONS ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT ATTACHMENT K: ELECTRONIC SUBMITTAL ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE ATTACHMENT M: SITING CRITERIA WAIVER (*NOT APPLICABLE*) ATTACHMENT N: MATERIAL SAFETY DATA SHEET (*NOT APPLICABLE*) ATTACHMENT O: EMISSION SUMMARY SHEET EQT Production Company (EQT) is submitting this Class II Administrative update for a General Permit (G70-A) to the West Virginia Department of Environmental Protection (WVDEP) for the OXF-149 and OXF-150 facilities, two natural gas production wellpads, located in Doddridge County, West Virginia. The wellpads are currently permitted under General Permit G70-A031.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-149 and OXF-150 wellpads are existing natural gas production facilities that consist of twelve (12) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The OXF-149 and OXF-150 pads currently consist of the following equipment:

- > Twelve (12) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by two (2) combustors, each rated at 11.66 MMBtu/hr;
- > One (1) line heater, rated at 0.77 MMBtu/hr heat input (Note that the current permit incorrectly lists the capacity of this unit as 0.5 MMBtu/hr);
- > Seven (7) line heaters, each rated at 1.54 MMBtu/hr heat input (Note that the current permit incorrectly lists the capacity of these units as 1.5 MMBtu/hr); and
- > Four (4) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr heat input (Note that the current permit incorrectly lists the capacity of these units as 0.13 MMBtu/hr).

As part of this application, EQT seeks to install the following equipment at the wellpads:

- > Two (2) 140 bbl storage tanks for sand and produced fluids from the sand separator (Vapors from these tanks may be controlled by the aforementioned combustor. For emission calculation purposes, no control is assumed.);
- > Two (2) line heaters, each rated at 1.54 MMBtu/hr heat input; and
- > Increase the site wide produced fluids throughput (condensate and produced water) at both wellpads

Additionally, this application seeks to remove the following equipment from the wellpads:

- > Six (6) 400 bbl loading battery storage tanks for produced fluids;
- > One (1) line heater, rated at 0.77 MMBtu/hr heat input (Note that the current permit incorrectly lists the capacity of this unit as 0.5 MMBtu/hr).

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

OXF 149 and 150 are separate wellpads that are functionally independent of each other. The pads are separated by about 0.5 miles and the production of each wellpad is independent of the other. WVDEP had previously determined that the OXF149 and OXF 150 wellpad should be aggregated as a single stationary source since both sites share a

common loading battery area. Although the loading battery storage tanks are being removed with this application, both wellpads will continue to be considered a single stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. G70-A APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-A permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-A Application Forms;
- > Attachment A: Current Business Certificate;
- > Attachment B: Process Description;
- > Attachment C: Description of Fugitive Emissions;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Plot Plan;
- > Attachment F: Area Map;
- > Attachment G: Emission Unit Data Sheets and G70-A Section Applicability Form;
- > Attachment H: Air Pollution Control Device Sheets;
- > Attachment I: Emission Calculations;
- > Attachment J: Class I Legal Advertisement;
- > Attachment K: Electronic Submittal;
- > Attachment L: General Permit Registration Application Fee;
- > Attachment M: Siting Criteria Waver (*not applicable*);
- > Attachment N: Material Safety Data Sheet (*not applicable*); and
- > Attachment 0: Emissions Summary Sheet.

The characteristics of air emissions from the existing natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment I of this application.

Emissions from this project will result from natural gas combustion in the line heaters and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters and TEGs: Potential emissions of criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.² Please note that potential emissions of NO_x, CO, PM, SO₂ and GHGs from the combustors are also calculated according to the aforementioned methodologies.
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with Table 2-4: Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated in gas service at 0&G Production Operations. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the condensate/water stored in the tanks at the facility are calculated using API E&P TANK v2.0.
- > **Tank Truck Loading:** Emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using U.S. EPA's AP-42 Chapter 5 Section 2 factors.⁴
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-A permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants.⁶ The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

⁶ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad.

3.3.1. NSPS Subparts D, Da, Db, and Dc

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart OOOO–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. This NSPS was published in the Federal Register on August 16, 2012, and amended in the Federal Register on September 23, 2013⁷. The list of potentially affected facilities includes:

- > Gas wellheads
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment
- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment (excluding natural gas processing plants)
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants
- > Storage vessels in the production, processing, or transmission and storage segments
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells

There are twelve (12) produced fluids storage vessels and two (2) sand separator storage vessel at the wellpad. Emissions from the produced fluids storage vessels will be controlled by two (2) enclosed combustors with a destruction efficiency greater than 95 percent. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-A permit. As such, per 60.5365(e), the tanks are not storage vessel affected facilities under the rule.

7 78 FR 54816 (http://www.gpo.gov/fdsys/pkg/FR-2013-09-23/pdf/2013-22010.pdf)

EQT Production, LLC | OXF-149 and OXF-150 Pad Trinity Consultants

The pneumatic controllers were ordered and installed after August 23, 2011 and are therefore potentially subject to NSPS 0000. Per 60.5365(d)(2), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000.

3.3.4. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol (TEG) dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The proposed heaters at the wellpad are natural gas fired and are specifically exempt from this subpart. Therefore, the requirements of this subpart do not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent. Per 45 CSR 2-4, PM emissions from the unit will not exceed a level of 0.09 multiplied by the heat design input in MMBtu/hr of the unit.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-A application forms including the required attachments.

ST WEST	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTEC DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov.		F CO/	PLICATION FOR GENERAL PERMIT REGISTRATION DNSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE TIONARY SOURCE OF AIR POLLUTANTS	
		-			
		-	-		
	CHECK WHICH TYPE OF GENERAL PE	RMIT R	EGISTRATIO	ON YOU ARE APPLYING FOR:	
G20-B – Hot f G30-D – Natu G33-A – Spar	Preparation and Handling /lix Asphalt ral Gas Compressor Stations k Ignition Internal Combustion Engines al Gas Compressor Stations (Flare/Glycol Dehydra	tion Unit		 40-C – Nonmetallic Minerals Processing 50-B – Concrete Batch 60-C - Class II Emergency Generator 65-C – Class I Emergency Generator 670-A – Class II Oil and Natural Gas Production Facility 	
	SECTION I. GE		L INFORMATI	ΓΙΟΝ	
1. Name of applica EQT Production	ant (as registered with the WV Secretary of State's			2. Federal Employer ID No. (FEIN): 25-0724685	
3. Applicant's mail	ing address:	4.	4. Applicant's physical address:		
625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222			Co Rte 11/4 West Union, WV 26456		
5. If applicant is a	subsidiary corporation, please provide the name of	parent c	corporation:		
 6. WV BUSINESS REGISTRATION. Is the applicant a resident of the State of West Virginia? XES NO IF YES, provide a copy of the Certificate of Incorporation/ Organization / Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. IF NO, provide a copy of the Certificate of Authority / Authority of LLC / Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 					
	SECTION II. F		Y INFORMATI	ΓΙΟΝ	
modified, relocated	facility (stationary source) to be constructed, or administratively updated (e.g., coal primary crusher, etc.): Natural gas production	8a. Sta Classif	fication (SIC) co	ial AND 8b. North American Industry	
9. DAQ Plant ID N 017-00040	o. (for existing facilities only):	with thi	is process (for e	SCSR13 and other General Permit numbers associated existing facilities only):	

A: PRIMARY OPERATING SITE INFORMATION

11A. Facility name of primary operating site:	12A. Address of primary operating site:				
OXF-149 and OXF-150 Pads	Mailing: 625 Liberty Avenue, Suite 1700, Pittsburgh, PA 15222				
	Physical:				
13A. Does the applicant own, lease, have an optic	on to buy, or otherwise have control of the prop	oosed site? XES NO			
 IF YES, please explain: Property is leased 	d and held under production rights				
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS SOURCE.				
14A. – For Modifications or Administrative U nearest state road;	pdates at an existing facility, please provide d	irections to the present location of the facility from the			
 For Construction or Relocation permits, MAP as Attachment F. 	please provide directions to the proposed new	site location from the nearest state road. Include a			
OXF-149:					
From Charleston take 1-77 north to exit		imately 40.6 miles. Take a right on Punkin Center Road (Co. Rt. 11/4) (Note			
		ter Road"). Continue for approximately 3.3			
miles (road turns to dirt after 3.1 miles) a					
and go approximately 0.3 miles to the we		a steep hill on the right. Take the steep hill			
OXF-150:					
From Charleston take 1-77 north to exit					
google maps calls this "Left Fork Run Ro		Punkin Center Road (Co. Rt. 11/4) (Note oad"). Continue for approximately 3.3			
miles (road turns to dirt after 3.1 miles) a	nd veer left to an access gate. After	going through gate go 0.5 miles and cross			
a stream on the access road. After cross					
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:			
West Union	Doddridge	OXF-149:			
		Northing (KM): 4,341.348 Easting (KM): 517.205			
		Zone: 17			
		OXF-150:			
		Northing (KM): 4,341.558			
		Easting (KM): 518.021 Zone: 17			
18A. Briefly describe the proposed new operation	or change (s) to the facility:	19A. Latitude & Longitude Coordinates (NAD83,			
EQT is proposing to increase the throughput of produced fluids (condensate and		Decimal Degrees to 5 digits):			
produced water) at the wellpad, install two (2) sand separator storage tanks, and install two (2) line heaters, each rated at 1.54 MMBtu/hr (heat input).		OXF-149			
		Latitude: <u>39.221247</u>			
		Longitude: <u>-80.800687</u>			
		OXF-150:			
		Latitude: <u>39.223119</u>			
		Longitude: <u>-80.791219</u>			

B: 1 ST ALTERNATE OPERA	TING SITE INFORMATION (only a	vailable for G20, G40, & G50 General	Permits)
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate op	erating site:	
_N/A	Mailing:	Physical:	
13B. Does the applicant own, lease, have an o	ption to buy, or otherwise have contr	ol of the proposed site?	
 IF YES, please explain: 			
– IF NO . YOU ARE NOT ELIGIBLE FOR A			
14B. – For Modifications or Administrative nearest state road:		se provide directions to the present loc	cation of the facility from the
 For Construction or Relocation permit MAP as Attachment F. 	ts, please provide directions to the p	roposed new site location from the nea	rest state road. Include a
15B. Nearest city or town:	16B. County:	17B. UT	M Coordinates:
		Northing (KM): Easting (KM):	
		Zone:	
18B. Briefly describe the proposed new operation	on or change (s) to the facility:	19B. Latitude & Lon (NAD83, Decimal De	
		Latitude: Longitude:	
C: 2 ND ALTERNATE OPERA	TING SITE INFORMATION (only av	vailable for G20, G40, & G50 General	Permits):

_____ Mailing:_____ Physical:_____

12C. Address of 2nd alternate operating site:

- IF NO, YOU ARE NOT ELIGIBLE FOR A PERMIT FOR THIS SOURCE.

11C. Name of 2nd alternate operating site:

14C. – For **Modifications or Administrative Updates** at an existing facility, please provide directions to the present location of the facility from the nearest state road;

For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment F.

Page 3 of 5

N/A

15C. Nearest city or town:	16C. County:		17C. UTM Coordinates:
			Northing (KM):
			Easting (KM):
			Zone:
18C. Briefly describe the proposed new operation	n or change (s) to the	e facility:	19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
			Latitude:
			Longitude:
20. Provide the date of anticipated installation or o	chance.	21. Date of anticipated Start-	up if registration is granted:
	shange.		
//		/ / ASAP	
		/ASAP	
If this is an After-The-Fact permit application, upon which the proposed change did happen: :	provide the date		
11			
22. Provide maximum projected Operating Sche other than 24/7/52 may result in a restriction to the			if other than 8760 hours/year. (Note: anything
literen ana dari		Demotore	
Hours per day Days per week	vveeks per	year Percentage	or operation
SECTION I	II. ATTACHMEN	TS AND SUPPORTING DO	CUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.
All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.
25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.
 ATTACHMENT A : CURRENT BUSINESS CERTIFICATE ATTACHMENT B: PROCESS DESCRIPTION ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS ATTACHMENT D: PROCESS FLOW DIAGRAM ATTACHMENT E: PLOT PLAN ATTACHMENT F: AREA MAP ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS ATTACHMENT I: EMISSIONS CALCULATIONS ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT ATTACHMENT K: ELECTRONIC SUBMITTAL ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
 ATTACHMENT M: SITING CRITERIA WAIVER (<i>Not Applicable</i>) ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS) (<i>Not Applicable</i>) ATTACHMENT O: EMISSIONS SUMMARY SHEETS OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.) (<i>Not Applicable</i>)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION
This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.
FOR A CORPORATION (domestic or foreign) I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation
FOR A PARTNERSHIP I certify that I am a General Partner
FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager
FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors
FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor
I hereby certify that (please print or type) <u>Kenneth Kirk</u> is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Office of Air Quality immediately, and/or,
I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information best of the state of
Signature State 5-27-15
(please use blue ink) Responsible Official Date
Name & Title Kenneth Kirk, Executive Vice President
Signature
(please use blue ink) Authorized Representative (if applicable) Date
Applicant's Name Alex Bosiljevac – Environmental Coordinator
Phone & Fax
Phone Fax
Emailabosiljevac@eqt.com

ATTACHMENT A

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Process Description

ATTACHMENT B - PROCESS DESCRIPTION

The project seeks to increase the produced fluids (produced water and condensate) throughputs at two existing natural gas production wellpads (OXF-149 and OXF-150), install two (2) line heaters, and two (2) sand trap tanks.

OXF-149 and 150 are currently authorized under general permit G70-A031. The wellpads consist of twelve (12) wells. The incoming gas stream from the underground well passes through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank. The gas then flows into a separator which separates produced water and condensate from the gas stream. The produced water and condensate are transferred to storage vessels, where vapors are controlled by a combustor. Once the tanks are filled, the liquid is loaded into trucks for transport. At the wellpad, heat is provided by line heaters and electricity are provided by thermoelectric generators.

A process flow diagram is included as Attachment D.

ATTACHMENT C

Description of Fugitive Emissions

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ² Ib/hr ton/yr		Maximum Potential Controlled Emissions ³ Ib/hr ton/yr		Est. Method Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	N/A				ton/yr	
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}	4.51 1.15 0.11	19.76 5.04 0.50	4.51 1.15 0.11	19.76 5.04 0.50	O ^A
Loading/Unloading Operations	VOC HAP	0.35 0.01	1.53 0.04	0.12 <0.01	0.51 0.01	O ^B
Equipment Leaks	VOC CO₂e HAP	Does not apply	13.00 1,409 0.45	Does not apply	13.00 1,409 0.45	Oc
Blowdown Emissions	N/A					
Other	N/A					

^AAP-42, Section 13.2.2.

^B AP-42 Section 5.2.

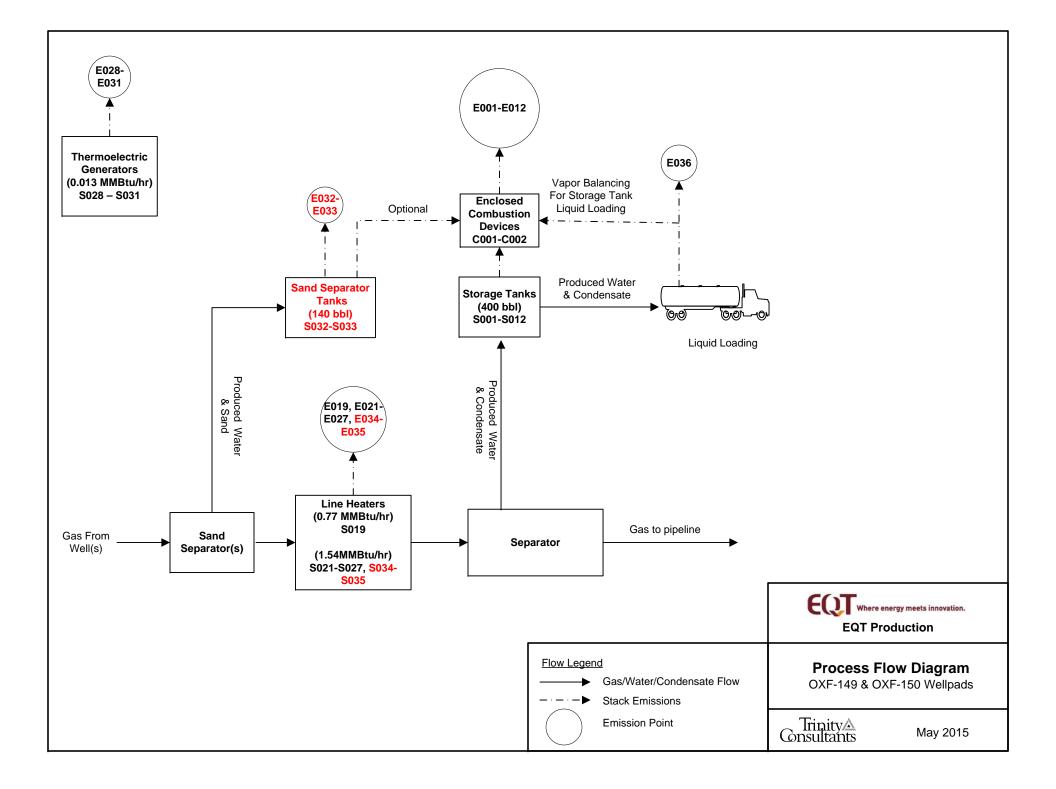
^c Protocol for Equipment Leak Estimates (EPA-453/R-95-017), Table 2-1, Nov. 1995.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

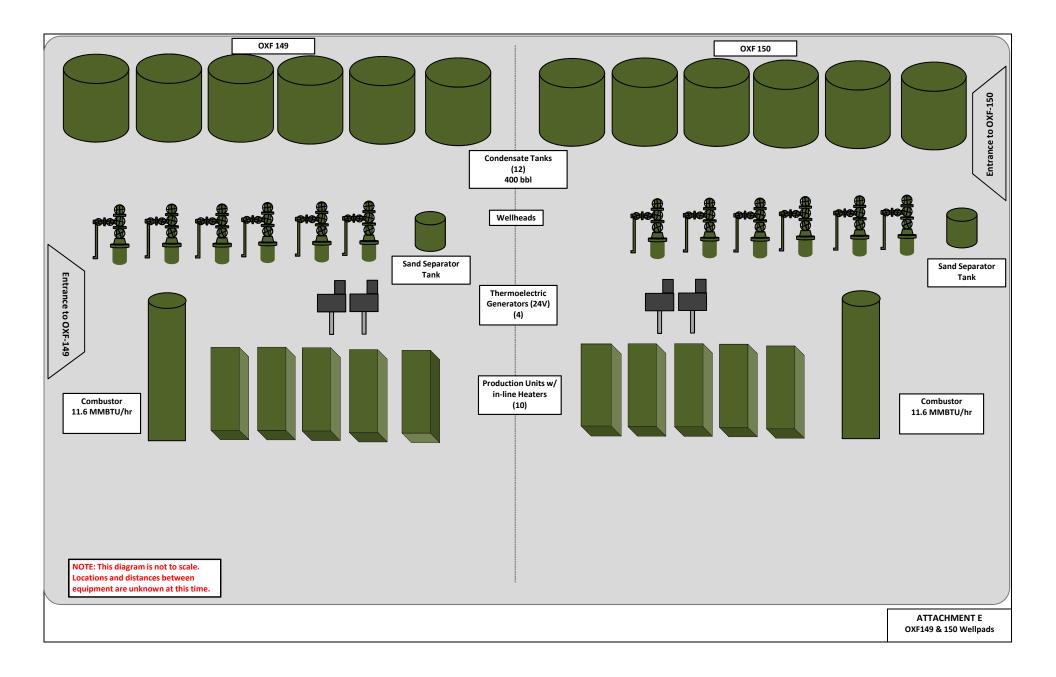
³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).


LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components	Number of Components Monitored by Frequency	Average Time to Repair (days)	Estimated Annual Emission Rate (Ib/yr) ¹
Pumps	light liquid VOC	1	TBD	TBD	384
	heavy liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Valves	Gas VOC	436	TBD	TBD	7,878
	Light Liquid VOC		TBD	TBD	
	Heavy Liquid VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Safety Relief Valves	Gas VOC	25	TBD	TBD	7,869
	Non VOC		TBD	TBD	
Open-ended Lines	VOC	8	TBD	TBD	41
	Non-VOC		TBD	TBD	
Sampling Connections	VOC		TBD	TBD	
Connections	Non-VOC		TBD	TBD	
Compressors	VOC		TBD	TBD	
	Non-VOC		TBD	TBD	
Flanges	VOC	1,775	TBD	TBD	9,831
	Non-VOC		TBD	TBD	
Other	VOC		TBD	TBD	
	Non-VOC		TBD	TBD	

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction


ATTACHMENT D

Process Flow Diagram

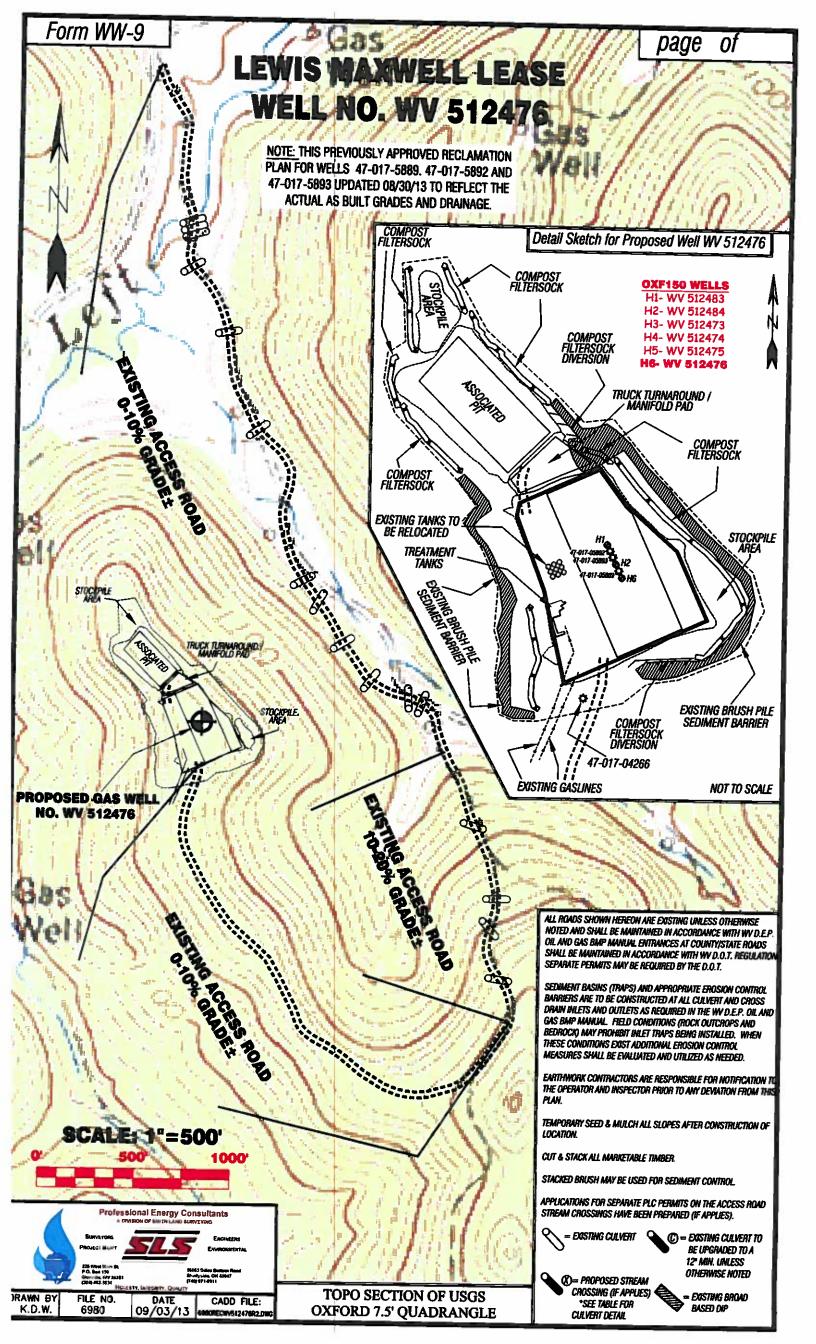
ATTACHMENT E

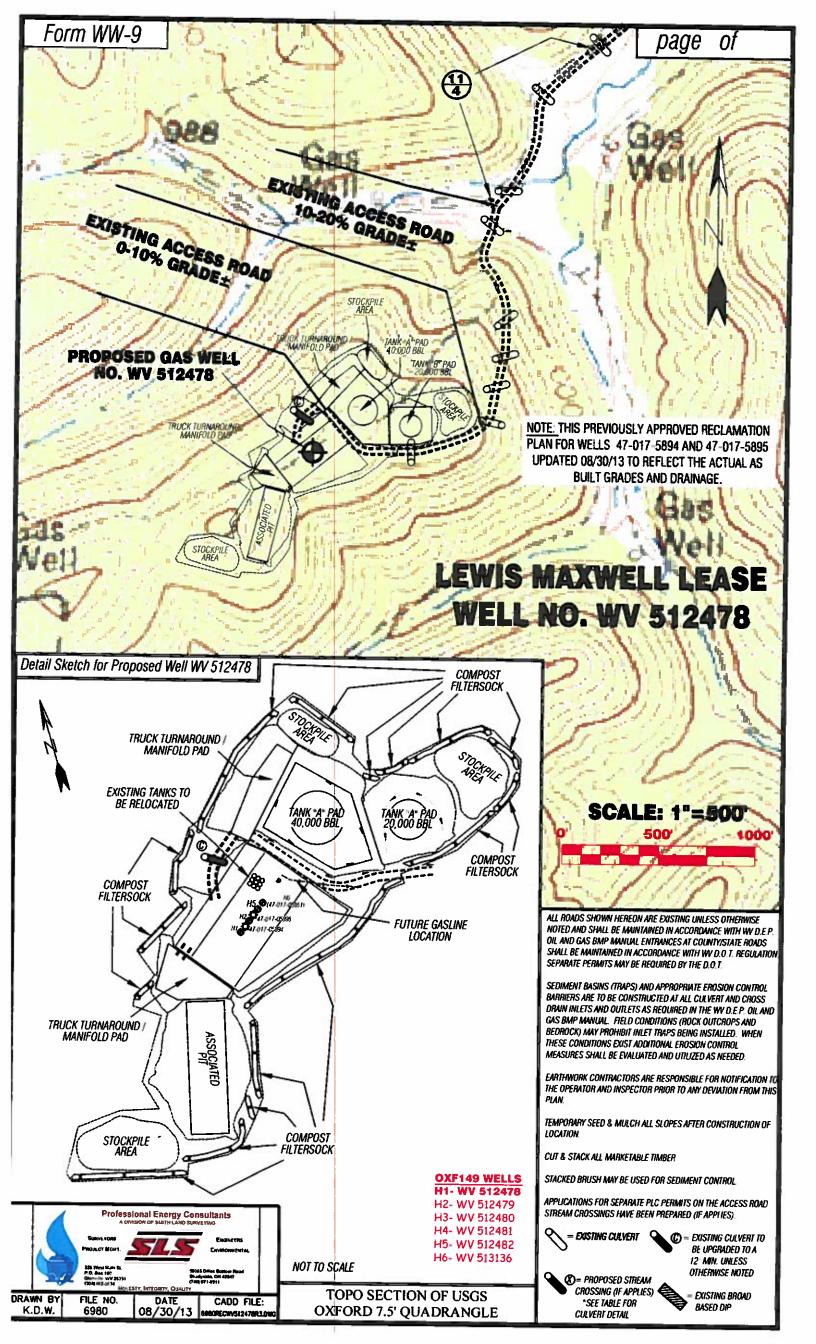
Plot Plan

ATTACHMENT F

Area Map

ATTACHMENT F


Figure 1 - Map of OXF-149 and OXF-150 Locations


OXF-149

UTM Northing (KM):	4,341.348
UTM Easting (KM):	517.205
Elevation:	~1,250 ft

OXF-150

UTM Northing (KM):	4,341.558
UTM Easting (KM):	518.021
Elevation:	~1,270 ft

ATTACHMENT G

Emission Unit Data Sheets and G70-A Section Applicability Form

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol Dehydration Reboilers	\bowtie
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
	Reserved	
Section 9		
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants for Stationary	
	Reciprocating Internal Combustion Engines (40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	
	and Localed Within an OA/OC (40CI K05, Subpart IIII)	

* Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S002	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S003	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S004	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S005	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S006	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S007	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S008	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S009	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S010	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S011	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S012	C001/C002	Produced Fluid Storage Tanks	2014	400 bbl	Increase throughput	C001/C002
S013	E013	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S014	E014	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S015	E015	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S016	E016	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S017	E017	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S018	E018	Loading Battery Storage Tanks	2013	210 bbl	Removed	None
S019	E019	Line Heater	2011	0.77 MMBtu/hr	Existing; No change	None
S020	E020	Line Heater	2011	0.77 MMBtu/hr	Removed	None
S021	E021	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S022	E022	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S023	E023	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S024	E024	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S025	E025	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S026	E026	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S027	E027	Line Heater	2014	1.54 MMBtu/hr	Existing; No change	None
S028	E028	Thermoelectric Generator	2011	0.013 MMBtu/hr	Existing; No change	None
S029	E029	Thermoelectric Generator	2011	0.013 MMBtu/hr	Existing; No change	None

G70-A Oil and Natural Gas Production Facilities Instructions and Forms

S030	E030	Thermoelectric Generator	2014	0.013 MMBtu/hr	Existing; No change	None
S031	E031	Thermoelectric Generator	2014	0.013 MMBtu/hr	Existing; No change	None
C001	C001	Enclosed Combustor	2014	11.66 MMBtu/hr	Existing; No change	NA
C002	C002	Enclosed Combustor	2014	11.66 MMBtu/hr	Existing; No change	NA
S032	E032	Sand Separator Tank	TBD	140 bbl	New	C001/C002 (Optional)
S033	E033	Sand Separator Tank	TBD	140 bbl	New	C001/C002 (Optional)
S034	E034	Line Heater	TBD	1.54 MMBtu/hr	New	None
S035	E035	Line Heater	TBD	1.54 MMBtu/hr	New	None
S036	E036	Liquid Loading	2011	NA	Increase throughput	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

047-017-512480	047-017-512474
047-017-512481	047-017-512473
047-017-512478	047-017-512475
047-017-512479	047-017-512483
047-017-512482	047-017-512476
047-017-513136	047-017-512484

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001 = Well number. Each well will have a unique well number.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name:	2. Tank Name				
OXF 149 and OXF 150 Pads	Produced Fluid Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
S001-S006 (149 Pad)	E001-E006				
S007-S012 (150 Pad)	E007-E012				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
2014	\Box New construction \Box New stored material \boxtimes Other				
7A. Description of Tank Modification (if applicable) Increase in produced fluid throughput.					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.					
🗌 Yes 🛛 No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.) None					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
400 bbl				
9A. Tank Internal Diameter (ft.): 12	9B. Tank Internal Height (ft.): 20			
10A. Maximum Liquid Height (ft.): 20	10B. Average Liquid Height (ft.): 10			
11A. Maximum Vapor Space Height (ft.): 20	11B. Average Vapor Space Height (ft.): 10			
12. Nominal Capacity (specify barrels or gallons). This is also I	known as "working volume.: 400 bbl			
13A. Maximum annual throughput (gal/yr):	13B. Maximum daily throughput (gal/day):			
~1,465,380 (each tank)	bbl 9B. Tank Internal Height (ft.): 20 10B. Average Liquid Height (ft.): 10 11B. Average Vapor Space Height (ft.): 10 nown as "working volume.: 400 bbl 13B. Maximum daily throughput (gal/day): ~4,015 (each tank) 15. Maximum tank fill rate (gal/min) TBD □ Bottom Loading △ No (gal)? ear? of _X_ cone roof dome roof other (describe) le deck roof self-supporting			
14. Number of tank turnovers per year (annual net	9B. Tank Internal Height (ft.): 20 10B. Average Liquid Height (ft.): 10 11B. Average Vapor Space Height (ft.): 10 nown as "working volume.: 400 bbl 13B. Maximum daily throughput (gal/day): ~4,015 (each tank) 15. Maximum tank fill rate (gal/min) TBD ☐ Bottom Loading ☑ No gal)? ear? f _X_ cone roof dome roof other (describe) e deck roof self-supporting			
throughput/maximum tank liquid volume): ~88 (each tank)	TBD			
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? Yes	🔀 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per y	ear?			
18. Type of tank (check all that apply):				
\boxtimes Fixed RoofX verticalhorizontalflat roofAome roofother (describe)				
 External Floating Roof pontoon roof double deck roof Domed External (or Covered) Floating Roof 				
☐ Internal Floating Roofvertical column support	self-supporting			
Variable Vapor Space				
Pressurized spherical cylindric				
Underground				
Other (describe)				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANK	KS Summary Sheets
------------------------	-------------------

 \boxtimes Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets	
Refer to the responses to items $27 - 33$ in section	VII

V. LIQUID INFORMATION (check which one applies)

	Refer	to	enclosed	TANKS	Summary	Sheets
--	-------	----	----------	-------	---------	--------

Refer to the responses to items 34 - 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):									
Does Not Apply Rupture Disc (psig)									
Carbon Adsorption ¹	Carbon Adsorption ¹ Inert Gas Blanket of								
Vent to Vapor Combus	stion Dev	rice1 (vapo	or combus	tors, flares	, therma	l oxidizers)			
Condenser ¹				Conse	ervation	Vent (psig)	– Enardo	Valve	
\Box Other ¹ (describe)				Vacuu	n Setting	g Pre	essure Sett	ing	
				🛛 Emer	gency Re	elief Valve	(psig)		
¹ Complete appropriate Air	Pollutio	n Control	Device S	heet					
41. Expected Emission Ra	te (subm	it Test Da	ta or Calc	ulations he	ere or els	ewhere in t	he applica	tion).	
Material Name and	Flashi	ng Loss	Breath	ing Loss	Work	ing Loss	Total		Estimation Method ¹
CAS No.							Emissio	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
			See Atta	ched Emis	sion Cal	lculations			

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION						
19. Tank Shell Construction:						
☐ Riveted ☐ Gunite lined ☐ Epot	xy-coated rivets 🛛 Other (describe) Weld	ed				
20A. Shell Color: Gray	20B. Roof Color: Gray	20C. Year Last Painted:				
21. Shell Condition (if metal and unlined):	·	·				
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable					
22A. Is the tank heated? Yes X No	22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?					
23. Operating Pressure Range (psig): -0.03 to 0.70 psig						
24. Is the tank a Vertical Fixed Roof Tank? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft):						
\boxtimes Yes \square No 0.06						
25. Complete item 25 for Floating Roof Tanks Does not apply						

25A. Year Internal Floaters Installe	ed:					
25B. Primary Seal Type (check one	e): 🗌 Met	tallic (mechanical) sho	e seal	Liquid mo	ounted resili	ent seal
	🗌 Vaj	por mounted resilient s	eal	Other (de	scribe):	
25C. Is the Floating Roof equipped	l with a seco	ndary seal? 🗌 Yes	No			
25D. If yes, how is the secondary s	eal mounted	? (check one) Sho	be	Rim 🗌 Ot	ther (describ	be):
25E. Is the floating roof equipped v	with a weath	er shield? Yes		No		
25F. Describe deck fittings:						
26. Complete the following section	for Interna	l Floating Roof Tanks		Does not apply		
26A. Deck Type: Dolted		Welded	26B. 1	For bolted decks,	provide deck	construction:
26C. Deck seam. Continuous shee			— -		—	
	7 ft. wi				other (c	,
26D. Deck seam length (ft.):	26E. Area	of deck (ft^2):		For column suppo	orted	26G. For column supported
SITE INFORMATION.			tanks,	# of columns:		tanks, diameter of column:
SITE INFORMATION: 27. Provide the city and state on wh	high the date	in this santion are based	Elling	WW		
28. Daily Avg. Ambient Temperatu					mum Tompor	ature (°F): 61.15
30. Annual Avg. Minimum Tempe				vg. Wind Speed (*	ature (F): 01.13
32. Annual Avg. Solar Insulation F				mospheric Press		73
LIQUID INFORMATION:		n -day). 1,175.67	55. A	intospherie i ress	ure (psia). 15	.15
34. Avg. daily temperature range o	f bulk	34A. Minimum (°F):			34B. Maxi	mum (°F):
liquid (°F): 51.30	r ouni	2 111 11111111111 (1).	STD. Maximum (1).			
35. Avg. operating pressure range of	of tank	35A. Minimum (psig):	: 35B. Maximum (psig):			mum (psig):
(psig):						1.0
36A. Minimum liquid surface temp	perature (°F)	: 46.54	36B. (Corresponding va	por pressure	(psia): 0.1831
37A. Avg. liquid surface temperatu	ure (°F): 55.4	1	37B. Corresponding vapor pressure (psia): 0.2420			
38A. Maximum liquid surface temp			38B. Corresponding vapor pressure (psia): 0.3171			
39. Provide the following for each			Add add	litional pages if r	ecessary.	
39A. Material name and composition	on:	Produced Fluid				
39B. CAS number:		NA				
39C. Liquid density (lb/gal):						
39D. Liquid molecular weight (lb/l		18.98				
39E. Vapor molecular weight (lb/lb		22.31				
39F. Maximum true vapor pressure		0.3171				
39G. Maxim Reid vapor pressure	-					
39H. Months Storage per year. Fro		12 (All year)				
To:						

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name:	2. Tank Name				
OXF 149 and OXF 150 Pads	Sand Separator Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
S032-S033	Е032-Е033				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
TBD	\boxtimes New construction \square New stored material \square Other				
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
🗌 Yes 🛛 No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.) None					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.					
140 bbl						
9A. Tank Internal Diameter (ft.): ~10	9B. Tank Internal Height (ft.): ~10					
10A. Maximum Liquid Height (ft.): ~10	10B. Average Liquid Height (ft.): ~5					
11A. Maximum Vapor Space Height (ft.): ~10						
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume.: 140 bbl					
13A. Maximum annual throughput (gal/yr):	13B. Maximum daily throughput (gal/day):					
~70,560 (each tank)	9B. Tank Internal Height (ft.): ~10 10B. Average Liquid Height (ft.): ~5 11B. Average Vapor Space Height (ft.): ~5 known as "working volume.: 140 bbl 13B. Maximum daily throughput (gal/day): ~193 (each tank) 15. Maximum tank fill rate (gal/min) TBD □ Bottom Loading ⊠ No (gal)? rear? roof cone roof dome roof other (describe) ole deck roof self-supporting m					
14. Number of tank turnovers per year (annual net	15. Maximum tank fill rate (gal/min)					
throughput/maximum tank liquid volume): ~12 (each tank)	TBD					
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? Yes	🖂 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per y	(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):						
Fixed RoofverticalX_horizontalflat roof cone roofdome roofother (describe)						
External Floating Roof pontoon roof doub	le deck roof					
Domed External (or Covered) Floating Roof						
□ Variable Vapor Space lifter roof diaphrag	□ Internal Floating Roof					
Pressurized result of the space interval of the space int						
Underground	u					
U Other (describe)						

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 19 - 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets
Refer to the responses to items $27 - 33$ in section VII
V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \boxtimes Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devi	ces (cheo	ck as man	y as apply	r):					
Does Not Apply				🗌 Ruptu	re Disc ((psig)			
Carbon Adsorption ¹				Inert C	Gas Blan	ket of			
Vent to Vapor Combus	tion Dev	ice1 (vapo	or combus	tors, flares	, thermal	oxidizers)	- Optiona	al	
Condenser ¹				Conse	ervation '	Vent (psig)			
Other ¹ (describe)				Vacuu	n Setting	g Pre	ssure Set	ing	
				Emer	gency Re	elief Valve	(psig)		
¹ Complete appropriate Air	Pollution	n Control	Device Sl	heet					
41. Expected Emission Rat	te (submi	it Test Da	ta or Calc	ulations he	ere or els	ewhere in the	he applica	tion).	
Material Name and	Flashi	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissi	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
			See Atta	ched Emis	sion Cal	culations			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION								
19. Tank Shell Construction:								
Riveted Gunite lined Epot	Riveted Gunite lined Epoxy-coated rivets Other (describe) Welded							
20A. Shell Color: Gray20B. Roof Color: Gray20C. Year Last Painted:								
21. Shell Condition (if metal and unlined):								
🛛 No Rust 🗌 Light Rust 🗌 Dense Rust 🗌 Not applicable								
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig): -0.03 to 0	.70 psig							
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):						
\Box Yes \boxtimes No								
25. Complete item 25 for Floating Roof Tanks	25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:								

	25B. Primary Seal Type (check one): D Metallic (mechanical) shoe seal Liquid mounted resilient seal							
☐ Vapor mounted resilient seal ☐ Other (describe):								
25C. Is the Floating Roof equipped with a secondary seal? Yes No								
25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):								
25E. Is the floating roof equipped with a weather shield? Yes No								
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply								
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:								
26C. Deck seam. Continuous sheet construction:								
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)								
26D. Deck seam length (ft.): 26E. Area of deck (ft ²): 26F. For column supported 26G. For column supported								
tanks, # of columns: tanks, diameter of column:								
SITE INFORMATION: 27. Provide the city and state on which the data in this section are based: Elkins, WV								
27. Provide the city and state on which the data in this section are based: Eikins, wv 28. Daily Avg. Ambient Temperature (°F): 49.06 29. Annual Avg. Maximum Temperature (°F): 61.15								
20. Darly Avg. Amolent Temperature (1), 45,00 25. Amount Avg. Maximum Temperature (1), 01.15 30. Annual Avg. Minimum Temperature (°F): 39.97 31. Avg. Wind Speed (mph): 6.17								
30. Annual Avg. Vinimum Temperature (T): 39.97 31. Avg. wind Speed (hpi): 0.17 32. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,193.87 33. Atmospheric Pressure (psia): 13.73								
LIQUID INFORMATION:								
34. Avg. daily temperature range of bulk 34A. Minimum (°F): 34B. Maximum (°F):								
liquid (°F): 51.30								
35. Avg. operating pressure range of tank35A. Minimum (psig):35B. Maximum (psig):								
(psig):								
36A. Minimum liquid surface temperature (°F): 46.5436B. Corresponding vapor pressure (psia): 0.1831								
37A. Avg. liquid surface temperature (°F): 55.4137B. Corresponding vapor pressure (psia): 0.2420								
38A. Maximum liquid surface temperature (°F): 64.2738B. Corresponding vapor pressure (psia): 0.3171								
39. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.								
39A. Material name and composition: Produced Fluid								
39B. CAS number:								
39C. Liquid density (lb/gal):								
39D. Liquid molecular weight (lb/lb-mole): 18.98 20E. Vener melewide weight (lb/lb-mole): 22.21								
39E. Vapor molecular weight (lb/lb-mole): 22.31 20E. Maximum transmission (axis): 0.2171								
39F. Maximum true vapor pressure (psia): 0.3171 39G. Maxim Reid vapor pressure (psia): 0.3171								
39G. Maxim Reid vapor pressure (psia): 39H. Months Storage per year. From: 12 (All year)								
To:								

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
S019	E019	Line Heater	2011	Existing; No change	None	0.77 (each)	~1,050
S020	E020	Line Heater	2011	Removed	None	0.77 (each)	~1,050
S021- S027	E021- E027	Seven (7) Line Heaters	2014	Existing	None	1.54 (each)	~1,050
S028- S029	E028- E029	Two (2) Thermoelectric Generators	2011	Existing	None	0.013 (each)	~1,050
S030- S031	E030- E031	Two (2) Thermoelectric Generators	2014	Existing	None	0.013 (each)	~1,050
S034- S035	E034- E035	Line Heater	TBD	New	None	1.54 (each)	~1,050

Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1,

LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit I	D:	2. Emission Point ID: Liquid Load	ding 3. Year Installe	ed/ Modified: 2011			
S036		E036	-				
4. Emission Unit Descri	iption: Liquid Load	ling Operations for the OXF 149 a	nd 150 pads				
5. Loading Area Data:							
5A. Number of pumps:	1	5B. Number of liquids loaded: 1	5C. Maximum				
			tank trucks lo	pading at one time:1			
6. Describe cleaning location, compounds and procedure for tank trucks: N/A							
7 Ano tople trades proce	una tastad fan laals	at this or any other leastion?					
\square Yes \square No	ure tested for leaks	s at this or any other location?					
If YES, describe:							
II TED, deseribe.							
8. Projected Maximum	Operating Schedul	e (for rack or transfer point as a wh	nole):				
			· ·				
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.			
hours/day	As Needed	As Needed	As Needed	As Needed			
days/week	As Needed	As Needed	As Needed	As Needed			

Liquid Name	Produced Fluid	
Max. daily throughput (1000 gal/day)	Variable	
Max. annual throughput (1000 gal/yr)	17,725 (1000 gal/yr.)	
Loading Method ¹	VB	
Max. Fill Rate (gal/min)		
Average Fill Time (min/loading)		
Max. Bulk Liquid Temperature (°F)	~51.30	
True Vapor Pressure ²	0.3171 psia	
Cargo Vessel Condition ³	Unknown	
Control Equipment or Method ⁴	VB,ECD	
Minimum collection efficiency (%)	70	
Minimum control efficiency (%)	95	

Maximum	Loading (lb/hr)	0.12 lb/hr VOC and
Emission Rate		<0.01 lb/hr. HAPs
	Annual (ton/yr)	0.51 tpy VOC and
		0.01 tpy HAPs
Estimation Metho	d ⁵	EPA
Notes:	*	
1 BF = Bottom Fill	SP = Splash Fill SUB = Submer	erged Fill
² At maximum bulk		
	el, $C = Cleaned$, $U = Uncleaned$ (dedica	cated service). $O = other (describe)$
		Air Pollution Control Device Sheets as Attachment "H"):
CA = Carbon Adsor		
VB = Dedicated Var	oor Balance (closed system)	
ECD = Enclosed Co	ombustion Device	
$\mathbf{F} = \mathbf{F}$ lare		
TO = Thermal Oxida		
	ion Factor as stated in AP-42	
MB = Material Bal		
	rement based upon test data submittal	
O = other (describe)	2)	
Please propose m parameters. Pleas MONITORING P and ranges that a demonstrate compl	pointoring, Recordkeeping, Report onitoring, recordkeeping, and rep- e propose testing in order to demor clease list and describe the process pare proposed to be monitored in iance with the operation of this /air pollution control device.	porting in order to demonstrate compliance with the proposed operating instrate compliance with the proposed emissions limits. parameters order to RECORDKEEPING Please describe the proposed recordkeeping that will accompany the monitoring.
REPORTING Plea of the recordkeeping	use describe the proposed frequency of	f reporting TESTING Please describe any proposed emissions testing for this process equipment/air pollution control device.
None		None
11 Describe all o	perating ranges and maintenance p	procedures required by Manufacturer to maintain warranty: N/A
11. Describe an o	perating ranges and maintenance p	procedures required by Manufacturer to maintain warranty. 1971

ATTACHMENT H

Air Pollution Control Device Data Sheets

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE IN	NSTRUCTI	ONS ACCOMPA	ANYING THIS FO	RM BEFOR	E COM	PLETING.
		General Iı	nformation			
1. Control Device ID#: C001and	1 C002 (ident	tical)	2. Installation Dat	te: 2014		☐ New
3. Maximum Rated Total Flow Capacity: ~131 scf/min4. Maximum I 11.66 MMB			Design Heat Input: u/hr	5. Design ~ 1,050	Heat Co BTU/sc	
		Control Devi	ice Information			
6. Select the type c	of vapor com	oustion control de	evice being used: 🗵	Enclosed C	ombustic	on Device
Elevated Flare	Ground I	Flare Thern	nal Oxidizer 🗌 (Completion C	ombusti	on Device
7. Manufacturer: LEED Fabricat	tion		8. Hours of operation	ation per year:	:	
Model No.: Enclosed Combustor		8,760			_	
9. List the emissio	(Emis	ssion Point ID#: <u>H</u>	controlled by this vap E001-E012, E032-E		n contro	ol device:
10. Emission Unit ID#		sion Source scription:	Emission Unit ID#		Emissi	on Source Description:
S001-S006 controlled by C001 (149 Pad)	Produced F	•				
S007-S012 controlled by C002 (150 Pad)	Produced F					
S032-S033 (Optional)	Sand Separ (Optional)	ator Tanks				
If this vapor combustor	controls emi	ssions from more	than six emission u	nits, please at	tach add	litional pages.
11. Assist	t Type		12. Flare Height	13. Tip Dia	ameter:	14. Was the design per §60.18?
Steam - Air - Pro	essure -	Non - NA	~25 ft	4 ft	, ,	□Yes □No NA
		Waste Gas	Information			
15. Maximum waste gas flow rate (scfm):		value of waste um (BTU/ft3)	17. Temperature of the 18. Exit Velocity		Exit Velocity of the ssions stream (ft/s)	
~190	V	ariable	~70			
19. Provide an attachment with t	the character	istics of the waste	gas stream to be bu	ırned.	<u>I</u>	

Pilot Information								
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23 Heat input per 24 Will automatic					
Pipeline quality Natural Gas	1	~25	0.03 MMBtu/hr	Yes 🗌 No				
25. If automatic re-i	25. If automatic re-ignition will be used, describe the method: N/A							
26. Describe the	e method of controlling flar	ne:						
3 flame cells to stop	the main flame front; One 2	2" flame arrestor on piping f	rom drip pot to burner ass	sembly.				
_								
	27. Is pilot flame equipped with a monitor to detect the presence of the flame?							
\square Camera with monitoring control room \square Other, describe:								

29. Pollutant(s) Controlled	30. % Capture Efficiency	 Manufacturer's Guaranteed Control Efficiency (%) 					
НС	100	95					
VOC	100	95					
НАР	100	95					
32. Has the control device been tested by the manufa	cturer and certified? Yes – pending	certification from EPA					
33. Describe all operating ranges and maintenance procedures required by the manufacturer to maintain warranty: See Attached							
34. Additional Information Attached? XES							
Please attach a copy of manufacturer's data sheet. Please attach a copy of manufacturer's drawing. Please attach a copy of the manufacturer's performance testing.							

If any of the requested information is not available, please contact the manufacturer.

ATTACHMENT I

Emission Calculations

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	12	total			
Storage Tank(s)	12	total	S001 - S012	E001- E012	Combustor
Loading Battery Storage Tanks	0	total	S013 - S018 (Removed)	E013 - E018 (Removed)	None
Sand Separator Tank(s)	2	total	S032 - S033	E032 - E033	None
Line Heater(s) (0.77 MMBtu/hr)	1	total	S019	E019	None
Line Heater(s) (1.54 MMBtu/hr)	9	total	S021 - S027, S034 - S035	E021 - E027, E034 - E035	None
Thermoelectric Generator(s) (TEGs)	4	total	S028 - S031	E028 - E031	None
Dehydrator(s)	0	per pad			
Reboiler(s)	0	per pad			
Dehy Drip Tank	0	per pad			
Tank Combustor(s)	2	total	C001 - C002	C001 - C002	
Dehy Combustor(s)	0	per pad			
Length of lease road	5,410	feet			

Constituent	Produced Fluid Storage Tanks (includes Combustors) (tpy)	Sand Separator Tank (tpy)	Line Heaters 0.77 MMBtu/hr (tpy)	Line Heaters 1.54 MMBtu/hr (tpy)	TEGs (tpy)	Fugitive Components (tpy)	Liquid Loading (tpy)	Haul Roads (tpy)	Total Emissions (tpy)
Criteria Pollutants									
NO _X	9.75		0.32	5.78	0.02				15.87
CO	8.19		0.27	4.85	0.02				13.33
PM Total	0.74		0.02	0.44	1.6E-03			19.76	20.97
PM ₁₀ Total	0.74		0.02	0.33	1.6E-03			5.04	6.13
PM _{2.5} Total	0.74		0.02	0.11	1.6E-03			0.50	1.38
SO ₂	0.06		1.9E-03	0.03	1.3E-04				0.10
VOC	14.15	0.70	0.02	0.32	1.2E-03	13.00	0.46		28.65
Greenhouse Gases									
CO,	11.977.28		394.19	7.095.44	26.56	0.36			19.494
CH ₄	5.78	0.28	0.01	0.13	5.0E-04	56.33			62.53
N ₂ O	0.02		7.4E-04	0.01	5.0E-05	50.55			0.04
		6.90				1 400 64			
CO ₂ e	12,128.55	6.90	394.60	7,102.76	26.59	1,408.64			21,068
Hazardous Air Pollutants									1 1
Methylnaphthalene (2-)			7.7E-08	1.4E-06	5.2E-09				1.5E-06
Methylchloranthrene (3-)			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Dimethybenz(a)anthracene (7,12-)			5.1E-08	9.2E-07	3.5E-09				9.8E-07
Acenaphthene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Acenaphthylene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Anthracene			7.7E-09	1.4E-07	5.2E-10				1.5E-07
Benz(a)anthracene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Benzene	1.2E-02	< 0.001	6.7E-06	1.2E-04	4.5E-07	7.9E-03	2.7E-05		2.0E-02
Benzo(a)pyrene			3.9E-09	6.9E-08	2.6E-10				7.3E-08
Benzo(b)fluoranthene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Benzo(g,h,i)perylene			3.9E-09	6.9E-08	2.6E-10				7.3E-08
Benzo(k)fluoranthene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Chrysene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Dibenzo(a,h)anthracene			3.9E-09	6.9E-08	2.6E-10				7.3E-08
Dichlorobenzene			3.9E-06	6.9E-05	2.6E-07				7.3E-05
Fluoranthene			9.6E-09	1.7E-07	6.5E-10				1.8E-07
Fluorene			9.0E-09	1.6E-07	6.1E-10				1.7E-07
Formaldehyde			2.4E-04	4.3E-03	1.6E-05				4.6E-03
Hexane, n-	2.6E-01	1.4E-02	5.8E-03	1.0E-01	3.9E-04	2.4E-01	1.1E-03		6.3E-01
Indeno(1,2,3-cd)pyrene			5.8E-09	1.0E-07	3.9E-10				1.1E-07
Naphthalene			2.0E-06	3.5E-05	1.3E-07				3.7E-05
Phenanthrene			5.5E-08	9.8E-07	3.7E-09				1.0E-06
Pyrene			1.6E-08	2.9E-07	1.1E-09				3.1E-07
Toluene	1.2E-02	< 0.001	1.1E-05	2.0E-04	7.4E-07	1.7E-02	5.1E-05		2.9E-02
Arsenic			6.4E-07	1.2E-05	4.3E-08				1.2E-05
Beryllium			3.9E-08	6.9E-07	2.6E-09				7.3E-07
Cadmium			3.5E-06	6.4E-05	2.4E-07				6.7E-05
Chromium			4.5E-06	8.1E-05	3.0E-07				8.6E-05
Cobalt			2.7E-07	4.9E-06	1.8E-08				5.1E-06
Manganese			1.2E-06	2.2E-05	8.2E-08				2.3E-05
Mercury			8.3E-07	1.5E-05	5.6E-08				1.6E-05
Nickel			6.7E-06	1.2E-04	4.5E-07				1.3E-04 1.5E-06
Selenium	<0.001	<0.001	7.7E-08	1.4E-06	5.2E-09		2.95.06		1.5E-06 2.8E-06
Ethylbenzene Trimethylaentene (2.2.4.)						<0.001	2.8E-06		
Trimethylpentane (2,2,4-) Xylene	<0.001 1.2E-02	<0.001 <0.001				1.7E-01 8.6E-03	2.4E-06 3.8E-05		1.7E-01 2.1E-02
Ayiciic	0.29	<0.001	0.01	0.11	4.1E-04	0.45	3.8E-05 1.2E-03		0.87

Produced Fluid Storage Tanks

Throughput Parameter	Value	Units	
Operational Hours	8,760	hrs/yr	
Total Produced Fluid Throughput for E&P ¹	6.7	bbl/day	
Total Condensate Throughput	2,103	bbl/month	
Total Produced Water Throughput	32,787	bbl/month	

Description	Potential Throughput ¹ (gal/yr)
Produced Water and Condensate	17,584,560

¹ For the purposes of establishing PTE, produced water is conservatively assumed to contain 1% condensate.

² Based on maximum historical produced water and condensate throughput for OXF-149 and OXF-150 wellpads, with an added compliance margin.

Storage Tanks (400 bbl, each) - Uncontrolled (Per tank)

	Total En	Total Emissions ¹		
Constituent	lb/hr	tpy		
Methane	2.112	9.250		
Ethane	2.283	9.998		
Propane	2.303	10.085		
Isobutane	0.579	2.536		
n-Butane	1.223	5.357		
Isopentane	0.436	1.911		
n-Pentane	0.376	1.649		
n-Hexane	0.100	0.437		
Cyclohexane	< 0.001	< 0.001		
Other Hexanes	0.135	0.592		
Heptanes	0.137	0.598		
Benzene	0.004	0.016		
Toluene	0.006	0.026		
Ethylbenzene	< 0.001	0.001		
Xylenes	0.003	0.011		
2,2,4-Trimethylpentane	< 0.001	0.001		
C8+ Heavies	0.062	0.271		
Total Emissions:	9.799	42.919		
Total VOC Emissions:	5.363	23.492		
Total HAP Emissions:	0.112	0.490		

¹ E&P TANK v2.0 calculates working, breathing and flashing losses and reports the sum as one total.

 2 E&P TANK v2.0 emission calculations are based on 4/29/2013 condensate sample from OXF-150 wellpad.

Control Efficiency of Combustor	95%	Guaranteed efficiency for Leed Enclosed Combustor
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Combustor Rating	11.66 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual

Produced Fluid Storage Tanks

Storage Tanks (400 bbl, each) - Controlled (Per tank)

	Total E	missions
Constituent	lb/hr	tpy
Methane	0.106	0.463
Ethane	0.114	0.500
Propane	0.115	0.504
Isobutane	0.029	0.127
n-Butane	0.061	0.268
Isopentane	0.022	0.096
n-Pentane	0.019	0.082
n-Hexane	0.005	0.022
Cyclohexane	< 0.001	< 0.001
Other Hexanes	0.007	0.030
Heptanes	0.007	0.030
Benzene	< 0.001	0.001
Toluene	< 0.001	0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.004	0.013
Total Emissions:	0.490	2.146
Total VOC Emissions:	0.268	1.175
Total HAP Emissions:	0.006	0.024

Enclosed Combustor Emissions¹

	Emission Factor			Pilot Potential Emissions	
Pollutant ²	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.095	1.110	4.864	0.003	0.011
СО	0.080	0.933	4.086	0.002	0.009
PM/PM ₁₀	0.007	0.084	0.370	1.9E-04	0.001
SO ₂	5.7E-04	0.007	0.029	1.5E-05	6.59E-05
CO ₂ (Natural Gas Firing)	116.997	1364.189	5975.146	3.081	13.495
CH ₄ (Natural Gas Firing)	0.002	0.026	0.113	5.8E-05	2.54E-04
N ₂ O (Natural Gas Firing)	2.2E-04	0.003	0.011	5.8E-06	2.54E-05

¹ Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at this facility. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

² GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Sand Separator Tanks

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Total Produced Water and Sand Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)

Constituent	Total En lb/hr	nissions ¹ tpy
Methane	0.032	0.138
Ethane	0.034	0.149
Propane	0.034	0.151
Isobutane	0.009	0.038
n-Butane	0.018	0.080
Isopentane	0.007	0.029
n-Pentane	0.006	0.025
n-Hexane	0.002	0.007
Cyclohexane	< 0.001	< 0.001
Other Hexanes	0.002	0.009
Heptanes	0.002	0.009
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.001	0.004
Total Emissions:	0.147	0.642
Total VOC Emissions:	0.080	0.351
Total HAP Emissions:	0.002	0.010

¹ E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

 2 E&P TANK v2.0 emission calculations are based on 4/29/2013 condensate sample from OXF-150 wellpad.

Line Heaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,050	BTU/scf
Heat Input	0.77	MMBtu/hr (each)
Fuel Consumption	7.33E-04	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
NO _x	100	7.3E-02	3.2E-01
СО	84	6.2E-02	2.7E-01
SO ₂	0.6	4.4E-04	1.9E-03
PM Total	7.6	5.6E-03	2.4E-02
PM Condensable	5.7	4.2E-03	1.8E-02
PM ₁₀ (Filterable)	1.9	1.4E-03	6.1E-03
PM _{2.5} (Filterable)	1.9	1.4E-03	6.1E-03
VOC	5.5	4.0E-03	1.8E-02
Lead	5.00E-04	3.7E-07	1.6E-06
CO2 (Natural Gas Firing) ⁴	122,847	90	394
CH_4 (Natural Gas Firing) ⁴	2.3	1.7E-03	7.4E-03
N_2O (Natural Gas Firing) ⁴	0.23	1.7E-04	7.4E-04

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	1.8E-08	7.7E-08
3-Methylchloranthrene	1.8E-06	1.3E-09	5.8E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.2E-08	5.1E-08
Acenaphthene	1.8E-06	1.3E-09	5.8E-09
Acenaphthylene	1.8E-06	1.3E-09	5.8E-09
Anthracene	2.4E-06	1.8E-09	7.7E-09
Benz(a)anthracene	1.8E-06	1.3E-09	5.8E-09
Benzene	2.1E-03	1.5E-06	6.7E-06
Benzo(a)pyrene	1.2E-06	8.8E-10	3.9E-09
Benzo(b)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Benzo(g,h,i)perylene	1.2E-06	8.8E-10	3.9E-09
Benzo(k)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Chrysene	1.8E-06	1.3E-09	5.8E-09
Dibenzo(a,h) anthracene	1.2E-06	8.8E-10	3.9E-09
Dichlorobenzene	1.2E-03	8.8E-07	3.9E-06
Fluoranthene	3.0E-06	2.2E-09	9.6E-09
Fluorene	2.8E-06	2.1E-09	9.0E-09
Formaldehyde	7.5E-02	5.5E-05	2.4E-04
Hexane	1.8E+00	1.3E-03	5.8E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.3E-09	5.8E-09
Naphthalene	6.1E-04	4.5E-07	2.0E-06
Phenanthrene	1.7E-05	1.2E-08	5.5E-08
Pyrene	5.0E-06	3.7E-09	1.6E-08
Toluene	3.4E-03	2.5E-06	1.1E-05
Arsenic	2.0E-04	1.5E-07	6.4E-07
Beryllium	1.2E-05	8.8E-09	3.9E-08
Cadmium	1.1E-03	8.1E-07	3.5E-06
Chromium	1.4E-03	1.0E-06	4.5E-06
Cobalt	8.4E-05	6.2E-08	2.7E-07
Manganese	3.8E-04	2.8E-07	1.2E-06
Mercury	2.6E-04	1.9E-07	8.3E-07
Nickel	2.1E-03	1.5E-06	6.7E-06
Selenium	2.4E-05	1.8E-08	7.7E-08
Total HAP		1.4E-03	6.1E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,050	BTU/scf
Heat Input	1.54	MMBtu/hr (each)
Fuel Consumption	1.47E-03	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	1.5E-01	6.4E-01
СО	84	1.2E-01	5.4E-01
SO ₂	0.6	8.8E-04	3.9E-03
PM Total	7.6	1.1E-02	4.9E-02
PM Condensable	5.7	8.4E-03	3.7E-02
PM ₁₀ (Filterable)	1.9	2.8E-03	1.2E-02
PM _{2.5} (Filterable)	1.9	2.8E-03	1.2E-02
VOC	5.5	8.1E-03	3.5E-02
Lead	5.00E-04	7.3E-07	3.2E-06
CO2 (Natural Gas Firing) ⁴	122,847	180	788
CH_4 (Natural Gas Firing) ⁴	2.3	3.4E-03	1.5E-02
N_2O (Natural Gas Firing) ⁴	0.23	3.4E-04	1.5E-03

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.2E-08
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Chrysene	1.8E-06	2.6E-09	1.2E-08
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.2E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	5.0E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.8E-08	7.7E-08
Cadmium	1.1E-03	1.6E-06	7.1E-06
Chromium	1.4E-03	2.1E-06	9.0E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.6E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.8E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators (TEGs)

Parameter	Value	Units
Manufacturer	Global Thermoelectric	
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,050	BTU/scf
Heat Input	0.013	MMBtu/hr (each)
Fuel Consumption ¹	1.23E-05	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

¹ Global Themoelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
NO _x	100	1.2E-03	5.4E-03
со	84	1.0E-03	4.5E-03
SO ₂	0.6	7.4E-06	3.2E-05
PM Total	7.6	9.4E-05	4.1E-04
PM Condensable	5.7	7.0E-05	3.1E-04
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04
VOC	5.5	6.8E-05	3.0E-04
Lead	5.00E-04	6.2E-09	2.7E-08
CO ₂ (Natural Gas Firing) ⁴	122,847	2	7
CH_4 (Natural Gas Firing) ⁴	2.3	2.9E-05	1.3E-04
N_2O (Natural Gas Firing) ⁴	0.23	2.9E-06	1.3E-05

Thermoelectric Generators (TEGs)

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pyrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fugitive Components

Component Counts

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Productior

Fugitive Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Total Fugitive Emissions (lb/hr)	TOC Annual Fugitive Emissions (tpy)
Valves	Gas	5.97E-03	436	5.74	25.13
Pump Seals	Light Liquid	1.99E-02	1	0.04	0.19
Pressure Relief Valves	Gas	1.04E-01	25	5.73	25.11
Connectors	All	1.83E-03	1,775	7.16	31.37
Open-Ended Lines	All	1.70E-03	8	0.03	0.13
			Emission Totals:	18.71	81.93

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction.

² Assumes one pump for liquid loading, no compressors or dehydrators, and one meter per wellhead. Pressure relief valves count includes an Enardo valve and Emergency Pressure Relief valve for each storage tank.

VOC and HAP Weight Fractions¹

Service	Weight Fraction VOC	Weight Fraction Hexane	Weight Fraction Benzene	Weight Fraction Toluene	Weight Fraction Ethylbenzene	Weight Fraction 2,2,4- trimethylpentane	Weight Fraction Xylene
Gas	0.157	3.0E-03	9.7E-05	2.1E-04	<0.001	2.1E-03	1.1E-04
Light Liquid	1.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
All	0.157	3.0E-03	9.7E-05	2.1E-04	<0.001	2.1E-03	1.1E-04

¹ All weight fractions from the same representative gas analyses used for other emission calculation

Fugitive Components

VOC and HAP Fugitive Emissions

Pollutant	Hourly Fugitive Emissions (lb/hr)	Annual Fugitive Emissions (tpy)
VOC	2.969	13.00
Hexane	5.6E-02	2.4E-01
Benzene	1.8E-03	7.9E-03
Toluene	3.8E-03	1.7E-02
Ethylbenzene	< 0.001	< 0.001
2,2,4-trimethylpentane	3.9E-02	1.7E-01
Xylene	2.0E-03	8.6E-03
Total HAP	1.0E-01	4.5E-01

GHG Fugitive Emissions from Component Leaks

Component	Component Count ¹	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Connectors	1,775	3.0E-03	7.9E-01	5.1E-03	2.0E+01
Open-Ended Lines	8	6.1E-02	7.3E-02	4.7E-04	1.8E+00
Pressure Relief Devices	25	4.0E-02	1.5E-01	9.6E-04	3.7E+00
Pneumatic Devices	60	6.0E+00	5.4E+01	3.5E-01	1.3E+03
Valves	436	2.7E-02	1.8E+00	1.1E-02	4.4E+01
	Total	·	56.3	0.364	1409

¹ The component count for pneumatics assumes 5 pneumatics per well ² Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W, except for pneumatics, which are set at NSPS OOOO limits.

³ Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.

⁴ Mole fractions of CH₄ and CO₂ based on gas analysis: $CH_{4:}$ 80.26% CO₂: 0.19% ⁵ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: Carbon Dioxide (CO₂): Methane (CH₄): 1 25

Liquid Loading

Liquid Loading Losses:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - collection efficiency * control efficiency)

Parameter	Value	Description	
S	1.00	saturation factor for vapor balancing (AP-42 Table 5.2-1)	
Collection Efficiency	70%	collection efficiency for non-NSPS/MACT annual leak tested trucks	
Control Efficiency	95%	control efficiency of combustor	
Р	0.32	max true vapor pressure of liquid loaded (psia) - EPA TANKS Data	
М	22.31	molecular weight of vapors (lb/lb-mol) - EPA TANKS Data	
Т	511.0	temperature of liquids loaded (deg R) - EPA TANKS Data	

Description	Loading Losses (lb/10 ³ gal)	Maximum Throughput ¹ (gal)	Total Uncontrolled (tpy)	VOC Emissions Uncontrolled Uncaptured (tpy)	Controlled Captured ² (tpy)
Liquids Hauling	0.2	17,725,680	1.53	0.46	0.05

¹ Sum of the annual throughput from each well at the pad including the sand separator tank.

² Represents all vapors captured during liquid loading operations that are routed to the combustor for control.

Speciated HAP Emission Potential:

Constituent	mol% ¹	True Vapor Pressure of Organic Compounds in liquid (psia) ²	Partial Vapor Pressure (psia)	Mole Fraction	Molecular Weight	VOC Vapor Weight	Speciated Weight Fraction	Speciated Liquid Loading Emissions (tpy) ³
Methane	0.095							
Ethane	0.602							
Propane	1.646	127.310	2.10	3.2E-01	44.10	14.13	2.0E-01	1.0E-02
Isobutane	0.867	46.110	4.0E-01	6.1E-02	58.12	3.55	4.9E-02	2.6E-03
n-Butane	2.986	32.045	9.6E-01	1.5E-01	58.12	8.51	1.2E-01	6.3E-03
Isopentane	3.103	12.530	3.9E-01	5.9E-02	72.15	4.29	5.9E-02	3.2E-03
n-Pentane	3.943	8.433	3.3E-01	5.1E-02	72.15	3.67	5.1E-02	2.7E-03
n-Hexane	4.692	2.436	1.1E-01	1.7E-02	85.67	1.50	2.1E-02	1.1E-03
Other Hexanes	4.939	2.436	1.2E-01	1.8E-02	86.18	1.59	2.2E-02	1.2E-03
Heptanes	14.686	0.735	1.1E-01	1.7E-02	97.88	1.62	2.2E-02	1.2E-03
Benzene	0.200	1.508	3.0E-03	4.6E-04	78.11	0.04	5.0E-04	2.7E-05
Toluene	1.138	0.425	4.8E-03	7.4E-04	92.14	0.07	9.4E-04	5.1E-05
Ethylbenzene	0.155	0.151	2.3E-04	3.6E-05	106.17	3.8E-03	5.3E-05	2.8E-06
Xylenes	1.763	0.180	3.2E-03	4.8E-04	106.17	0.05	7.1E-04	3.8E-05
2,2,4-Trimethylpentane	0.031	0.596	1.8E-04	2.8E-05	114.23	3.2E-03	4.5E-05	2.4E-06
C8+ Heavies	59.154	3.400	2.01	3.1E-01	107.73	33.14	4.6E-01	2.5E-02
	100.0		6.54			72.15	1.00	
Total VOC Emissions: Total HAP Emissions:								0.05 0.00

¹An atmospheric analysis of a representative condensate sample (from wellpad OXF-131, Well #512441) is utilized to estimate the composition.

² Emission factors from AP-42 Section 7.1 "Liquid Storage Tanks" Tables 7.1-2, 7.1-3 and 7.1-5 (at 70 deg F or \sim 21 deg C) and Handbook of Chemistry and Physics: 84th Edition (at 295 K) ³ Speciated emissions (tpy) = Speciated Weight Fraction x Calculated Controlled Liquid Loading Emissions (tpy). As methane and ethane will flash off prior to loading, the emissions from these constituents are not included in the speciation.

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

paveu Roau Emissions				
Unpaved Roads:	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$)*[(365-p)/36	55]
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀	PM _{2.5}
Liquids Hauling	20	40	30	2.05	4,431	9,081	0	19.45	4.96	0.496
Employee Vehicles	3	3	3	2.05	200	410	0	0.31	0.08	0.008
Total Potential Emissions								19.76	5.04	0.50

Combustor Flow Rate Calculations

Component	lb/hr	lb-mol/hr	mol%	MW lb/lb-mol	MW in Mixture
Carbon Dioxide	0.183	0.004	0.001	44.01	0.05
Nitrogen	< 0.001	< 0.001	< 0.001	28.00	< 0.001
Methane	25.376	1.582	0.429	16.04	6.87
Ethane	27.430	0.912	0.247	30.07	7.43
Propane	27.670	0.627	0.170	44.10	7.49
sobutane	6.957	0.120	0.032	58.12	1.88
n-Butane	14.694	0.253	0.068	58.12	3.98
sopentane	5.239	0.073	0.020	72.15	1.42
n-Pentane	4.518	0.063	0.017	72.15	1.22
1-Hexane	1.202	0.014	0.004	85.67	0.33
Cyclohexane	< 0.001	< 0.001	< 0.001	84.16	< 0.001
Other Hexanes	1.622	0.019	0.005	86.18	0.44
Heptanes	1.646	0.017	0.005	97.88	0.45
2,2,4-Trimethylpentane	< 0.001	< 0.001	< 0.001	114.23	< 0.001
Benzene	0.048	6.1E-04	1.7E-04	78.11	0.01
Foluene	0.072	0.001	2.1E-04	92.14	0.02
Ethylbenzene	< 0.001	< 0.001	< 0.001	106.17	< 0.001
Xylenes	0.036	3.4E-04	9.2E-05	106.17	0.01
C8 + Heavies	0.745	0.007	0.002	107.73	0.202
					01 01
Гotal	117.44	3.69			31.81

1. Representative gas stream from the produced water storage tanks, sand separator tank, and dehy tank flowing to the combustor.

C001 & C002

Combustor Rating	11.66 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Pilot Rating	26,335 btu/hr	
Pilot Fuel Usage	25 scf/hr	
Combustor Flow Capacity	188.38 MSCFD	Max. flowrate from LEED Combustor Operations Manual
	7,849 scf/hr	
	131 scf/min	

7,849 scf	*	1 lbmole	*	31.81 lb	=	659	lb
hr		379 scf	-	lbmole			hr

Mass flow rate (lb/hr) = <u>Maximum Rated total flow capacity (scf/hr) * Vapor Molecular Weight (lb/lbmole)</u> Molar Gas Volume (scf/lbmole)

Gas Analysis

(default value)

Sample Location:	Average of OXF-1	121 and OXF-136
Sample Date:	5/30/2013	
HHV (Btu/scf):	1,050	(default va

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.190	44.01	8.3E-02	4.1E-03	4.1E-01
Nitrogen	0.524	28.01	1.5E-01	7.3E-03	7.3E-01
Methane	80.257	16.04	1.3E+01	6.4E-01	6.4E+01
Ethane	12.984	30.07	3.9E+00	1.9E-01	1.9E+01
Propane	3.842	44.10	1.7E+00	8.4E-02	8.4E+00
Isobutane	0.490	58.12	2.8E-01	1.4E-02	1.4E+00
n-Butane	0.918	58.12	5.3E-01	2.6E-02	2.6E+00
Isopentane	0.243	72.15	1.8E-01	8.7E-03	8.7E-01
n-Pentane	0.217	72.15	1.6E-01	7.7E-03	7.7E-01
n-Hexane	0.070	86.18	6.0E-02	3.0E-03	3.0E-01
Cyclohexane	0.011	84.16	9.3E-03	4.6E-04	4.6E-02
Other Hexanes	0.114	86.18	9.8E-02	4.8E-03	4.8E-01
Heptanes	0.080	100.21	8.0E-02	4.0E-03	4.0E-01
2,2,4-Trimethylpentane	0.037	114.23	4.2E-02	2.1E-03	2.1E-01
Benzene*	0.003	78.11	2.0E-03	9.7E-05	9.7E-03
Toluene*	0.005	92.14	4.1E-03	2.1E-04	2.1E-02
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001
Xylenes*	0.002	106.16	2.1E-03	1.1E-04	1.1E-02
C8 + Heavies	0.017	114.23	1.9E-02	9.6E-04	9.6E-02
Totals	100		20.17	1.00	100

TOC (Total)	99.29	98.86
VOC (Total)	6.05	15.67
HAP (Total)	0.12	0.55

2015-0424_DRAFT_EQT_0XF14-150_Produced Fluid Tanks.txt ***** * Project Setup Information ***** Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\0XF 149-150\02 Draft\2015-0424_DRAFT_EQT_0XF14-150_PF Tanks_150 Sample.ept Flowsheet Selection : 0il Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 95.0% Known Separator Stream : Low Pressure 0il Entering Air Composition : No : OXF 149 & OXF 150 Filed Name Well Name : Produced Fluid Tanks Well ID : OXF-150 Condensate Sample Date : 2015.04.24 ***** Data Input * * * * * * Separator Pressure: 316.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 70.00[F]C10+ SG: 0.7990 C10+ MW : 202.077 -- Low Pressure Oil _____ Component mol % H2S 0.0000 No. 1 0.0000 2 02 3 C02 0.1040 4 N2 0.0000 5 C1 14.6110 6 C2 8.6070 7 7.4920 С3 8 i -C4 2.1070 5.5230 3.3400 9 n-C4 10 i-C5 11 n-C5 3.8330 12 C6 3.5820 13 C7 10.2200 14 C8 11.9580 C9 6.9030 15 16. 1830 C10+ 16 0. 1480 0. 7800 17 Benzene 18 Tol uene 19 0.1060 E-Benzene 20 1.1040 Xyl enes 21 n-C6 3.3760 22 224Trimethylp 0.0230

-- Sales Oil

2015-0424_DRAFT_EQT_0XF14-150_Produced Fluid Tanks.txt												
Producti on Rate : 6.7[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 56.11 Reid Vapor Pressure : 10.60[psia]												

***** * Calculation Results												

Emission Summary												
ltem		Iton/vri	Uncontrolled [lb/hr]	Controlled [ton/yr]	Controlled [lb/hr]							
Pag	e 1				[lb/hr] E&P TANK							
	al HAPs	0. 490 42. 741	0. 112 9. 758	0. 024 2. 137	0. 006 0. 488							
Total HC VOCs, C2+ VOCs, C2+		33. 490 23. 492	7. 646 5. 363	1. 674 1. 175	0. 382							
VOCs, C3+ 23.492 5.363 1.175 0.268 Uncontrolled Recovery Info.												
	Vapor	2.8000	[MSCFD]									
	HC'Vapor GOR	2. 7900 417. 91	[MSCFD] [SCF/bbl]									
Emission Composition												
No	Component	Uncontrolled	Uncontrolled		Controlled [lb/hr]							
1	H2S	0.000	[lb/hr] 0.000	[ton/yr] 0.000	0.000							
2 3	02 C02	0. 000 0. 180	0.000 0.041	0.000 0.180	0. 000 0. 041							
4 5	N2 C1	0. 000 9. 250	0. 000 2. 112	0. 000 0. 463	0. 000 0. 106							
6 7	C2 C3	9. 998 10. 085	2.283 2.303	0.500 0.504	0. 114 0. 115							
8 9	i -C4	2. 536	0. 579	0. 127	0. 029							
10	n-C4 i -C5	5. 357 1. 911	1. 223 0. 436	0. 268 0. 096	0. 061 0. 022							
11 12	n-C5 C6	1.649 0.592	0. 376 0. 135	0. 082 0. 030	0. 019 0. 007							
13 14	C7 C8	0. 598 0. 226	0. 137 0. 052	0. 030 0. 011	0. 007 0. 003							
15	C9	0. 045	0. 010	0.002	0. 001							
16 17	C10+ Benzene	0. 000 0. 016	0.000 0.004	0.000 0.001	0. 000 0. 000							
18 19	Tol uene E-Benzene	0. 026 0. 001	0.006 0.000	0.001 0.000	0. 000 0. 000							
20	Xyl enes	0. 011	0.003	0.001	0.000							
21 22	n-C6 224Trimethylp	0. 437 0. 001	0. 100 0. 000	0. 022 0. 000	0.005 0.000							
	Total	42.919	9.799	2. 146	0. 490							
Stream Data												
No. Component MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions												
			Page 2									

2015-0424_DRAFT_EQT_0XF14-150_Produced Fluid Tanks.txt

	2015-0424 <u>-</u>	_DRAFT_EQT_	_OXF14-150 mol %	_Produced mol %	Fluid Tank mol %	s.txt mol %	mol %
mol % 1 H2S		34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02		32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2		44.01	0. 1040	0.0061	0.0002	0. 3021	0. 3628
0. 3041 4 N2		28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1		16.04	14. 6110	0. 2751	0. 0001	43. 6121	16. 9198
42.7625 6 C2		30. 07	8. 6070	1.0182	0. 2751	23. 9589	46.0051
24. 6606 7 C3		44. 10	7. 4920	2.8702	2.5774	16. 8417	20. 5971
16.9612 8 i-C4		58. 12	2. 1070	1.5523	1. 5209	3. 2292	3. 4530
3.2363 9 n-C4		58. 12	5. 5230	4.8797	4.8415	6.8243	7. 1953
6.8361 10 i-C5		72. 15	3.3400	4.0211	4.0538	1.9622	2.0427
1.9647 11 n-C5		72. 15	3.8330	4.8909	4. 9426	1. 6929	1. 7633
1.6951 12 C6		86.16	3. 5820	5.0945	5. 1697	0. 5222	0. 5465
0.5229 13 C7 0.4572		100. 20	10. 2200	15.0464	15. 2870	0. 4564	0. 4814
14 C8		114.23	11. 9580	17. 7946	18.0859	0. 1508	0. 1605
0. 1511 15 C9 0. 0270		128.28	6.9030	10. 3021	10. 4717	0. 0268	0. 0309
16 C10+ 0. 0001		202.08	16. 1830	24. 1826	24. 5820	0.0001	0. 0002
17 Benzene 0. 0155		78. 11	0. 1480	0. 2135	0. 2168	0.0155	0. 0163
18 Tol uene 0. 0207		92.13	0.7800	1. 1554	1. 1741	0. 0206	0. 0219
19 E-Benzene 0. 0008		106. 17	0. 1060	0. 1580	0. 1606	0.0008	0.0009
20 Xyl enes 0. 0074		106. 17	1. 1040	1. 6461	1. 6732	0.0074	0.0079
21 n-C6 0. 3757		86. 18	3. 3760	4.8594	4. 9332	0. 3751	0. 3935
22 224Trimeth 0.0008	yl p	114. 24	0. 0230	0.0340	0. 0345	0.0008	0.0009
0.0000							
MW 31.83			90. 32	119. 31	120. 68	31.69	36.25
Stream Mol 0.3417	e Ratio		1.0000	0. 6692	0. 6583	0. 3308	0. 0109
Heating Va 1849.86	lue	[BTU/SCF]				1842.07	2087.02
Gas Gravit	у	[Gas/Air]				1.09	1. 25
Bubble Pt.		-					
Page 2						E&	P TANK
RVP @ 100F		[psi a]	132. 93	14.66	10. 82		
Spec. Grav	ity @ 100F		0.649 Page	0. 687 3	0. 689		

2015-0424_DRAFT_EQT_0XF14-150_Produced Fluid Tanks.txt

***** Project Setup Information ***** Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\0XF 149-150\02 Draft\2015-0427_DRAFT_EQT_OXF14-150_Sand Sep Tank.ept Flowsheet Selection : 0il Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.0% Known Separator Stream : Low Pressure 0il Entering Air Composition : No Filed Name : OXF 149 & OXF 150 Well Name : Sand Separator Tank : OXF-150 Condensate Sample Well ID Date : 2015.04.27 ***** Data Input * * * * * * Separator Pressure: 316.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 70.00[F]C10+ SG: 0.7990 C10+ MW : 202.077 -- Low Pressure Oil _____ Component mol % H2S 0.0000 No. 1 0.0000 2 02 3 C02 0.1040 4 N2 0.0000 5 C1 14.6110 6 C2 8.6070 7 7.4920 С3 8 i -C4 2.1070 n-C4 5.5230 3.3400 9 10 i-C5 11 n-C5 3.8330 12 C6 3.5820 13 C7 10.2200 14 C8 11.9580 C9 6.9030 15 16. 1830 C10+ 16 0. 1480 0. 7800 17 Benzene 18 Tol uene 19 0.1060 E-Benzene 20 1.1040 Xyl enes 21 n-C6 3.3760 22 224Trimethylp 0.0230

2015-0427_DRAFT_EQT_0XF14-150_Sand Sep Tank.txt

-- Sales Oil

	2015-0427_DRAFT_	_EQT_0XF14-150_	Sand Sep Tank.t	xt
Production Rate Days of Annual Oper API Gravity Reid Vapor Pressure	: 0.1[bb ration : 365 [d : 56.11 e : 10.60[lays/year]		
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****
* Calculation F	Resul ts			
**************************************	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	****
Emission Summary	/			
Item Page 1	Iton/vri	Uncontrolled [lb/hr]	Controlled [ton/yr]	Controlled [lb/hr] E&P TANK
Total HAPs Total HC VOCs, C2+ VOCs, C3+	0. 010 0. 638 0. 500 0. 351	0. 002 0. 146 0. 114 0. 080	0. 010 0. 638 0. 500 0. 351	0. 002 0. 146 0. 114 0. 080
Uncontrolled Recove	2	[10055]		
Vapor HC Vapor GOR	41.7900 x1E-3 41.6700 x1E-3 417.90			
Emission Composi	tion			
No Component 1 H2S 2 02 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i - C4 9 n - C4 10 i - C5 11 n - C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p Total D	Uncontrolled [ton/yr] 0.000 0.000 0.003 0.000 0.138 0.149 0.151 0.038 0.080 0.029 0.025 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.009 0.000 0.009 0.009 0.009 0.000 0.009 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.000 0.009 0.000 0.009 0.000 0.000 0.009 0.0000 0.0000 0.0000 0.000000	Uncontrolled [lb/hr] 0.000 0.001 0.001 0.032 0.034 0.034 0.034 0.009 0.018 0.007 0.006 0.002 0.002 0.002 0.001 0.000 0.001 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	Controlled [ton/yr] 0.000 0.000 0.003 0.000 0.138 0.149 0.151 0.038 0.080 0.029 0.025 0.009 0.009 0.009 0.009 0.009 0.009 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.009 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.009 0.000 0.000 0.009 0.0000 0.0000 0.0000 0.000000	Controlled [Ib/hr] 0.000 0.000 0.001 0.001 0.002 0.032 0.034 0.034 0.009 0.018 0.009 0.018 0.007 0.006 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.01 0.000 0.034 0.009 0.002 0.002 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
Stream Data				
No. Component Total Emissions	MW	LP Oil Flas	sh uli sale uli	Flash Gas W&S Gas

2015-0427_DRAFT_EQT_0XF14-150_Sand Sep Tank.txt

20	015-0427_DRAFT_	_EQT_OXF14 mol %	-150_Sand mol %	Sep Tank.t mol %	xt mol %	mol %
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 C02	44. 01	0. 1040	0. 0061	0.0002	0. 3021	0. 3628
0. 3041				0.0002		
4 N2 0. 0000	28.01	0.0000	0.0000		0.0000	0.0000
5 C1 42. 7625	16.04	14.6110	0. 2751	0.0001	43. 6121	16. 9198
6 C2 24. 6606	30.07	8.6070	1. 0182	0. 2751	23. 9589	46.0051
7 C3 16. 9612	44.10	7.4920	2.8702	2.5774	16. 8417	20. 5971
8 i -C4 3. 2363	58.12	2. 1070	1. 5523	1. 5209	3. 2292	3. 4530
9 n-C4 6. 8361	58.12	5. 5230	4.8797	4.8415	6.8243	7. 1953
10 i -C5 1. 9647	72.15	3.3400	4. 0211	4.0538	1. 9622	2.0427
11 n-C5	72.15	3.8330	4.8909	4. 9426	1. 6929	1. 7633
1. 6951 12C6	86.16	3. 5820	5.0945	5. 1697	0. 5222	0. 5465
0. 5229 13 C7	100. 20	10. 2200	15.0464	15. 2870	0. 4564	0. 4814
0. 4572 14 C8	114.23	11. 9580	17.7946	18.0859	0. 1508	0. 1605
0. 1511 15 C9	128.28	6. 9030	10. 3021	10. 4717	0. 0268	0. 0309
0. 0270 16 C10+	202.08	16. 1830	24. 1826	24. 5820	0. 0001	0.0002
0.0001 17 Benzene	78. 11	0. 1480	0. 2135	0. 2168	0. 0155	0. 0163
0. 0155 18 Tol uene	92.13	0. 7800	1. 1554	1. 1741	0. 0206	0. 0219
0. 0207						
19 E-Benzene 0. 0008	106. 17	0. 1060	0. 1580	0. 1606	0.0008	0.0009
20 Xyl enes 0. 0074	106.17	1. 1040	1. 6461	1.6732	0.0074	0.0079
21 n-C6 0. 3757	86.18	3.3760	4.8594	4.9332	0. 3751	0. 3935
22 224Trimethylp 0.0008	114.24	0. 0230	0. 0340	0.0345	0.0008	0.0009
MW 31.83		90. 32	119. 31	120. 68	31.69	36.25
Stream Mole Rati 0.3417	0	1.0000	0. 6692	0. 6583	0. 3308	0. 0109
Heating Value 1849.86	[BTU/SCF]				1842.07	2087.02
Gas Gravity	[Gas/Air]				1.09	1. 25
1.10 Bubble Pt. @ 100)F [psia]	553.98	26.41	13.16		
Page 2					E8	P TANK
RVP @ 100F	[psi a]	132. 93	14.66	10. 82		
Spec. Gravity @	100F	0. 649 Page		0. 689		

2015-0427_DRAFT_EQT_0XF14-150_Sand Sep Tank.txt

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	OXF-149-150 Liquid Loading Vertical Fixed Roof Tank Liquid Loading parameters for OXF-149-150 wellpads using OXF-131 atmospheric condensate analysis.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 20.00 10.00 16,800.00 1,046.70 17,584,560.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.70

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

OXF-149-150 Liquid Loading - Vertical Fixed Roof Tank

		Terr	aily Liquid Si nperature (de	eg F)	Liquid Bulk Temp		r Pressure		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Fluid	All	55.41	46.54	64.27	51.30	0.2420	0.1831	0.3171	22.3053			18.98	
2,2,4-Trimethylpentane						0.5211	0.3991	0.6729	114.2300	0.0000	0.0000	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.0267	0.7943	1.3132	78.1100	0.0001	0.0003	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4614	0.3889	0.5438	58.1200	0.0011	0.0019	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0301	0.0245	0.0369	142.2900	0.0264	0.0028	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0923	0.0669	0.1257	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5323	0.4043	0.6943	100.2000	0.0074	0.0138	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.6957	1.3330	2.1360	86.1700	0.0042	0.0253	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.0329	7.1932	11.0836	72.1500	0.0011	0.0365	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
methane						100.7917	87.8791	115.0985	44.0956	0.0000	0.0035	44.10	Option 2: A=7.3408624923, B=1104.2267744, C=291.70993941
Nonane (-n)						0.0588	0.0475	0.0729	128.2600	0.0083	0.0017	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1303	0.1035	0.1637	114.2300	0.0080	0.0037	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.1673	5.0301	7.5097	72.1500	0.0015	0.0317	72.15	Option 3: A=27691, B=7.558
Propane (-n)						100.7917	87.8791	115.0985	44.0956	0.0005	0.1666	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.2857	0.2141	0.3766	92.1300	0.0006	0.0006	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2153	0.1602	0.2863	18.0150	0.9397	0.7114	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-o)						0.0601	0.0431	0.0827	106.1700	0.0010	0.0002	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

OXF-149-150 Liquid Loading - Vertical Fixed Roof Tank

Annual Emission Calcaulations Standing Losses (lb):	8.8150
Vapor Space Volume (cu ft):	1,130.9734
Vapor Density (lb/cu ft):	0.0010
Vapor Space Expansion Factor:	0.0247
Vented Vapor Saturation Factor:	0.8863
venieu vapor Saturation Factor.	0.0005
Tank Vapor Space Volume:	4 400 0704
Vapor Space Volume (cu ft):	1,130.9734
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.0000
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	6.0000
/apor Density	
Vapor Density (lb/cu ft):	0.0010
Vapor Molecular Weight (lb/lb-mole):	22.3053
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2420
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0247
Daily Vapor Temperature Range (deg. R):	35.4636
Daily Vapor Pressure Range (psia):	0.1340
Breather Vent Press. Setting Range(psia):	0.7300
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2420
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1831
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.3171
Daily Avg. Liquid Surface Temp. (deg R):	515.0759
Daily Min. Liquid Surface Temp. (deg R):	506.2100
Daily Max. Liquid Surface Temp. (deg R):	523.9417
Daily Ambient Temp. Range (deg. R):	24.1833
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8863
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2420
Vapor Space Outage (ft):	10.0000
Vorking Losses (Ib):	441.4240
Vapor Molecular Weight (lb/lb-mole):	22.3053
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2420
Annual Net Throughput (gal/yr.):	17,584,560.0000
Annual Turnovers:	1,046.7000
Turnover Factor:	0.1953
Maximum Liquid Volume (gal):	16,800.0000
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
otal Losses (Ib):	450.2390

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

OXF-149-150 Liquid Loading - Vertical Fixed Roof Tank

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Produced Fluid	441.42	8.81	450.24				
methane	1.56	0.03	1.60				
Propane (-n)	73.53	1.47	74.99				
Butane (-n)	0.82	0.02	0.84				
Isopentane	16.12	0.32	16.44				
Pentane (-n)	13.98	0.28	14.25				
Hexane (-n)	11.16	0.22	11.38				
2,2,4-Trimethylpentane	0.02	0.00	0.02				
Benzene	0.14	0.00	0.15				
Heptane (-n)	6.11	0.12	6.23				
Toluene	0.26	0.01	0.26				
Octane (-n)	1.63	0.03	1.66				
Ethylbenzene	0.01	0.00	0.01				
Xylene (-o)	0.09	0.00	0.09				
Nonane (-n)	0.76	0.02	0.77				
Decane (-n)	1.23	0.02	1.26				
Water	314.02	6.27	320.29				

TANKS 4.0 Report

ATTACHMENT J

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update for a Class II General Permit (G70-A) for an existing natural gas production wellpad operation (OXF-149 and OXF-1450 wellpads). The facility is located off of County Route 11/4 in Doddridge County, West Virginia approximately 5 miles Southwest of West Union, WV at 39.221247, -80.800687 (OXF-149) and 39.223119, -80.791219 (OXF-150).

The applicant estimates that the potential increase to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions Increase (tons per year)				
NOx	0.96				
CO	0.81				
VOC	-4.20				
SO ₂	0.02				
РМ	6.40				
Total HAPs	-0.82				
Carbon Dioxide Equivalents (CO ₂ e)	1,282.51				

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the XX day of May, 2015.

By: EQT Production Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT K

Electronic Submittal

ATTACHMENT L

General Permit Registration Application Fee

ATTACHMENT M

Siting Criteria Waiver (not applicable)

ATTACHMENT N

Material Safety Data Sheet (not applicable)

ATTACHMENT O

Emission Summary Sheet

Emission Point ID No.	Emission Point Type ¹	V			Pollution ol Device	All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase <i>(At exit</i>	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)	
E001 – E012 (Total-All Tanks)	Upward vertical stack	S001 – S012	Produced Fluids Tanks	C001- C002	Combustor	VOC HAPs	64.36 1.34	281.90 5.88	3.22 0.07	14.10 0.29	Gas/Vapor	E&P Tank v2.0
E019, E021 – E027, E034 – E035 (Total – All units)	Upward vertical stack	S019, S021 – S027, S034 – S035	Line Heaters	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e} HAPs	$\begin{array}{c} 1.39 \\ 1.17 \\ 0.11 \\ < 0.01 \\ 0.08 \\ 1,712 \\ 0.03 \end{array}$	6.10 5.12 0.46 0.04 0.34 7,497 0.12	$\begin{array}{c} 1.39 \\ 1.17 \\ 0.11 \\ < 0.01 \\ 0.08 \\ 1,712 \\ 0.03 \end{array}$	6.10 5.12 0.46 0.04 0.34 7,497 0.12	Gas/Vapor	AP-42
E028 – E031 (Total – All units)	Upward vertical stack	S028 – S031	TEGs	None		NO _X CO PM/PM ₁₀ /PM _{2.5} SO ₂ VOC CO _{2e} HAPs	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 6 \\ < 0.01 $	0.02 0.02 <0.01 <0.01 <0.01 27 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 6 <0.01	0.02 0.02 <0.01 <0.01 <0.01 27 <0.01	Gas/Vapor	AP-42
E036 (Uncaptured, Uncontrolled)	Upward vertical stack	Fugitive	Liquid Loading	None		VOC HAPs	0.35 0.01	1.53 0.04	0.10 <0.01	0.46 0.01	Gas/Vapor	AP-42
E036 (Controlled)	Upward vertical stack	S036	Liquid Loading	C001- C002	Combustor	VOC HAPs	0.35 0.01	1.53 0.04	0.01 <0.01	0.05 <0.01	Gas/Vapor	AP-42
E033	Upward vertical stack	S033	Sand Separator Tanks	None		VOC HAPs	0.16 <0.01	0.70 0.02	0.16 <0.01	0.70 0.02	Gas/Vapor	E&P Tank v2.0
C001-C002	Upward vertical stack	C001- C002	Combustors	NA		$\begin{array}{c} NO_X\\CO\\PM/PM_{10}/PM_{2.5}\\SO_2\\CO_{2e}\end{array}$	2.23 1.87 0.17 0.01 2,769	9.75 8.19 0.74 0.06 12,129	2.23 1.87 0.17 0.01 2,769	9.75 8.19 0.74 0.06 12,129	Gas/Vapor	AP-42

G70-A EMISSIONS SUMMARY SHEET

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs,

H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).