

May 29, 2015

BY: U.S. CERTIFIED MAIL, RETURN RECEIPT REQUESTED

7014 3490 0000 0448 3979

William F. Durham Director, Division of Air Quality WVDEP 601 57th Street Charleston, WV 25304

RE: <u>Dominion Transmission, Inc. – R13 Class II Administrative Update Application</u> <u>Smithburg Compressor Station</u>

Dear Mr. Durham:

Pursuant to Condition 2.7 of Permit R13-2695A, Dominion Transmission, Inc. ("DTI") is submitting the attached R13 Class II Administrative Update application. Enclosed are one complete original and two (2) cd copies. We ask that the West Virginia Department of Environmental Protection ("WVDEP") amend our permit consistent with this application. DTI is submitting this application to amend emission limitation based on actual operating conditions rather than vendor information provided at the time the original application was submitted.

In the permit application dated May 20, 2010, DTI provided vendor design criteria relating to the operation of the Dehydration Unit (DEHY01), specifically, the Contactor pressure (200 psi) and temperature (65 °F). These parameters were used in GLYCalc[™] to estimate the emissions that WVDEP incorporated into the permit as limits at Condition 7.1.2. Actual operating data indicate that the Contactor pressure ranges between 160 and 355 psi, while the temperature ranges between 60°F and 120°F. Therefore, while the design data are within the range of actual operating data, those operating data were arguably not "representative of actual operating data" as required by 40 CFR 63 Subpart HH. To ensure that the limits in Section 7.1.2 reflect GLYCalc [™] using inputs that are representative of actual operating data, DTI is requesting, in the attached application, that the limits in Condition 7.1.2 be revised to address the variability in actual operating conditions. More specifically, DTI is requesting that the emission limits in Section 7.1.2 be amended to reflect the GLYCalc [™] calculations using the upper range of the actual operating conditions. As a result, the new emission limits are as follows (and in Attachment D):

Pollutant	(lbs/hr)	(tons/yr)
VOC	3.80	16.63
Benzene	0.05	0.22
Ethylbenzene	0.02	0.10
n-Hexane	0.05	0.23
Toluene	0.15	0.67
Xylene	0.22	0.95
Total HAPs	0.49	2.16

This requested revision does not affect the facility's status as an area source of hazardous air pollutants or its exemption from 40 CFR 63, Subpart HH, because the facility still complies with the applicable limits in Sections 4.1.2 and 8.1.1 using values from high end of the actual operating data as inputs to GLYCalc[™].

If you require any additional information, please contact Rebekah Remick at (804) 273-3536 or via email at Rebekah.J.Remick@dom.com.

Sincerely,

Braber marde

Amanda B. Tornabene Director, Gas Environmental Services

DEP - The original and copies

Please scan signed original/attachments and name file as: Smithburg – R13 Application for Increase in Dehy Limits – May 2015

Please upload to Documentum

Facility:	Smithburg Compressor Station
Title:	Smithburg – R13 Application for Increase in Dehy Limits – May 2015
Document Type:	Permit Applications
Environmental	Air – State Permits
Program:	

Send document link electronically to:

Pam Faggert Mandy Tornabene Paul Dickens Becky Remick Abby Credicott Brian Sheppard Phyllis Hinterer Nick Cabo Tyler Moyers Shawnie Davis

DOMINION TRANSMISSION, INC. SMITHBURG COMPRESSOR STATION

TABLE OF CONTENTS

Application for Permit to Construct, Modify, Relocate or Administratively Update a Stationary Source of Air Pollutants

ATTACHMENTS

- Attachment A. Business Certificate
- Attachment B. Maps
- Attachment D. Regulatory Discussion
- Attachment E. Plot Plan
- Attachment F. Detailed Process Flow Diagrams
- Attachment G. Process Description
- Attachment J. Emission Points Data Summary Sheet
- Attachment L. Emissions Unit Data Sheet
- Attachment M. Air Pollution Control Device Sheet
- Attachment N. Supporting Emissions Calculations
- Attachment P. Public Notice

**Note – There are no Attachments C, H, I, K, O, R, and S for this permit application

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)					
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO	DWN): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF AN					
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FAC	IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION					
	Revision Guidance" in order to determine your Title V Revision options bility to operate with the changes requested in this Permit Application.					
Secti	ion I. General					
1. Name of applicant (as registered with the WV Secretary Dominion Transmission, Inc.	y of State's Office): 2. Federal Employer ID No. (FEIN): 550629203					
3. Name of facility (if different from above):	4. The applicant is the:					
Smithburg Compressor Station	□ OWNER □ OPERATOR ⊠ BOTH					
5A. Applicant's mailing address: 445 West Main Street Clarksburg, WV 26301	5B. Facility's present physical address: Route 2, Box 45-A West Union, WV 26456					
change amendments or other Business Registration Ce	tion/Organization/Limited Partnership (one page) including any nan ertificate as Attachment A. Authority of L.L.C./Registration (one page) including any name chang					
 If applicant is a subsidiary corporation, please provide the 						
8. Does the applicant own, lease, have an option to buy or o						
 If YES, please explain: Own 						
 If NO, you are not eligible for a permit for this source. 						
	administratively updated or temporarily permitted (e.g., coal preparation plant, primary Classification System					
11A. DAQ Plant ID No. (for existing facilities only): 017-00002	 1B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-2695A G60-C027 					
All of the required forms and additional information can be fou	ound under the Permitting Section of DAQ's website, or requested by pho					

12A.		
- For Modifications , Administrative Updates or Te		please provide directions to the
 present location of the facility from the nearest stat For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 		site location from the nearest state
From intersection of Rt. 50 and Rt. 98, go West of Road and travel 0.3 miles to the station (on the left		oad. Turn left onto the Snowbird
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	Smithburg	Doddridge
12.E. UTM Northing (KM): 4348113	12F. UTM Easting (KM): 522900	12G. UTM Zone: 17
 Briefly describe the proposed change(s) at the facili Revising GLYCalc input operating parameters to rep 	-	nditions
 14A. Provide the date of anticipated installation or chan If this is an After-The-Fact permit application, providence did happen: / / 		14B. Date of anticipated Start-Up if a permit is granted: N/A
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one un		units proposed in this permit
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	of activity/activities outlined in this applicative Weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing fa	cility involved? YES NO	
17. Risk Management Plans. If this facility is subject to	o 112(r) of the 1990 CAAA, or will becom	ne subject due to proposed
changes (for applicability help see www.epa.gov/cep	po), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and State	air pollution control regulations that you	believe are applicable to the
proposed process (if known). A list of possible application	able requirements is also included in Att	achment S of this application
(Title V Permit Revision Information). Discuss application	ability and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional att	achments and supporting d	ocuments.
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	1 fee (per 45CSR22 and
20. Include a Table of Contents as the first page of you	ur application package.	
21. Provide a Plot Plan , e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (R	cch(es) showing the location of the prope efer to <i>Plot Plan Guidance</i>) .	erty on which the stationary
- Indicate the location of the nearest occupied structure	e (e.g. church, school, business, residen	ice).
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	wing each proposed or modified emissio	ns unit, emission point and control
23. Provide a Process Description as Attachment G.		
 Also describe and quantify to the extent possible 	all changes made to the facility since the	e last permit review (if applicable).
All of the required forms and additional information can be	e found under the Permitting Section of DA	AQ's website, or requested by phone.
24. Provide Material Safety Data Sheets (MSDS) for a	Il materials processed, used or produce	d as Attachment H.
 For chemical processes, provide a MSDS for each control 	ompound emitted to the air.	

26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.							
27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.							
28. Check all applicable Emissions Unit Data Sheets listed below:							
Bulk Liquid Transfer Operations Haul Road Emissions Quarry							
Chemical Processes Hot Mix Asphalt Plant Solid Materials Sizing, Handling and Storage							
Concrete Batch Plant Incinerator Facilities							
Grey Iron and Steel Foundry Indirect Heat Exchanger Storage Tanks							
General Emission Unit, specify Dehydration Unit							
Fill out and provide the Emissions Unit Date Sheet(a) as Attackment I							
Fill out and provide the Emissions Unit Data Sheet(s) as Attachment L.							
29. Check all applicable Air Pollution Control Device Sheets listed below:							
Absorption Systems Baghouse Service (Vapor Incinerator)							
Adsorption Systems Condenser Mechanical Collector							
Afterburner Electrostatic Precipitator Wet Collecting System							
Other Collectors, specify							
Fill out and provide the Air Pollution Control Device Sheet(s) as Attachment M.							
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in							
Items 28 through 31.							
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .							
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.							
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general							
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal							
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.							
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?							
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.							
Section III. Certification of Information							
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:							
Authority of Corporation or Other Business Entity							
Authority of Governmental Agency							
Submit completed and signed Authority Form as Attachment R.							

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned 🖾 **Responsible Official** / 🛄 **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	DATE:	05-22-15 (Please use blue ink)	
35B. Printed name of signee: Brian Sheppard		35C. Titl Operatio	e: Vice President, Pipeline
35D. E-mail: Brian.C.Sheppard@dom.com	36E. Phone: 304-627-3733	36F. FA	X: 304-627-3323
36A. Printed name of contact person (if differe	nt from above): Rebekah Remick	36B. Title	e: Environmental Specialist III
36C. E-mail: Rebekah.J.Remick@dom.com	36D. Phone: 804-273-3536	36E. FAX	X : 804-273-2964

 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
	ermit application with the signature(s) to the DAQ, Permitting Section, at the application. Please DO NOT fax permit applications.

□ Forward 1 copy of the application to the Title V Permitting Group and:

For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Dublic notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Attachment A

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION

CERTIFICATE

ISSUED TO: DOMINION TRANSMISSION INC 445 W MAIN ST CLARKSBURG, WV 26301-2843

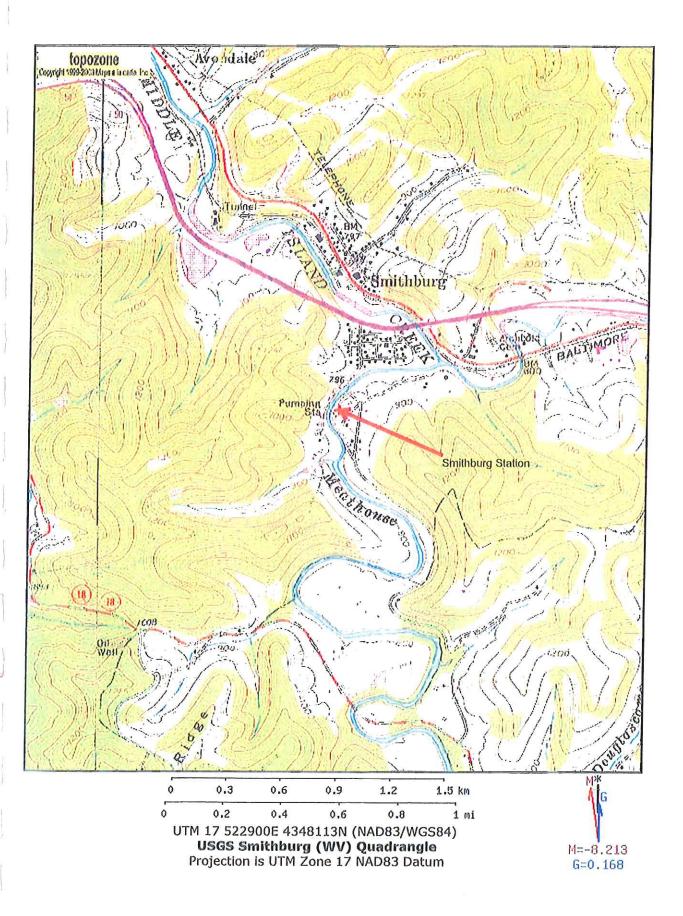
BUSINESS REGISTRATION ACCOUNT NUMBER: 1038-3470

This certificate is issued on: 06/8/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration, was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0228957312

Attachment B

Мар

Attachment D

Regulatory Discussion

REGULATORY DISCUSSION

This section provides an air quality regulatory review of the proposed Class II Administrative Update to Smithburg Compressor Station. To determine the regulations of concern, a regulatory applicability analysis has been conducted. Regulations that require an applicability determination include:

- Classification of Ambient Air Quality (40 CFR 81)
- Prevention of Significant Deterioration (PSD) Regulations (40 CFR 52.21)
- Non-Attainment New Source Review (NSR) Regulations (40 CFR 52.24)
- West Virginia Minor Source Permitting (WV Regulation 13)
- National Emissions Standards for Hazardous Air Pollutants (40 CFR 63)

Classification of Air Quality

Smithburg Compressor Station is located on a property near Smithburg, Doddridge County, West Virginia. The area is classified as attainment with respect to the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants.

Prevention of Significant Deterioration (PSD)

The WVDEP is delegated the authority to implement federal air quality requirements. West Virginia's PSD regulations are found in 45 CSR 14. The PSD program is a new source review process used to ensure that a new source will not cause a significant deterioration of local ambient air quality. PSD applies only to "major" new sources or "major" modifications to an existing source located in attainment areas. A "major" stationary source is defined as one of the 28 source categories identified in 40 CFR 52.21, which has a potential to emit of 100 tons or more per year of any regulated pollutant, OR any other stationary source which has the potential to emit 250 tons or more per year of a regulated pollutant. Smithburg Compressor Station is not one of the 28 categories identified in 40 CFR 52.21 and has potential emissions below 250 tons per year of all regulated pollutants. Therefore, is not classified as a major source and the PSD regulations do not apply.

Non-Attainment New Source Review

As identified above, Doddridge County, West Virginia, is currently classified as attainment with respect to the NAAQS for all criteria pollutants. Therefore, the nonattainment regulations are not applicable.

West Virginia Minor Source Permitting (R13)

The requirement for new or modified sources to make application to the WVDEP is provided in 45 CSR 13 (Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants) – Regulation 13. Regulation 13 is applicable to new sources or modifications that result in an emissions increase of:

- 6 lbs/hr and 10 tons/yr of any regulated pollutant, or
- 144 lbs/day of any regulated pollutant, OR
- 2 lbs/hr or 5 tons/yr of HAPs

Since the proposed increase in emissions from the dehydration unit are not above these threshold levels, this permit action will be a Class II Administrative Update to a Regulation 13 permit.

Pollutant	Current PTE of Dehy Unit			PTE with Dehy Limits	Chang	e in PTE Ei	nissions
	(lbs/hr)	(tons/yr)	(lbs/hr) (tons/yr) ((lbs/hr)	(lbs/day)	(tons/yr)
VOC	0.85	3.74	3.80	16.63	+2.95	+70.8	+12.89
Benzene	0.01	0.05	0.05	0.22	+0.04	+0.96	+0.17
Ethylbenzene	0.03	0.13	0.02	0.10	-0.01	-0.24	-0.03
n-Hexane	0.01	0.05	0.05	0.23	+0.04	+0.96	+0.18
Toluene	0.05	0.21	0.15	0.67	+0.1	+2.4	+0.46
Xylene	0.06	0.26	0.22	0.95	+0.16	+3.84	+0.69
Total HAPs	0.16	0.7	0.49	2.16	+0.33	+7.92	+1.46

****Note:** The potential to emit (PTE) calculations for the dehydration unit have been updated to represent actual operations at worst case scenarios. A new GLYCalc run has been processed and a 20% safety factor has been included to the VOC and HAP limits to help with variability in operating parameters and wet gas samples.

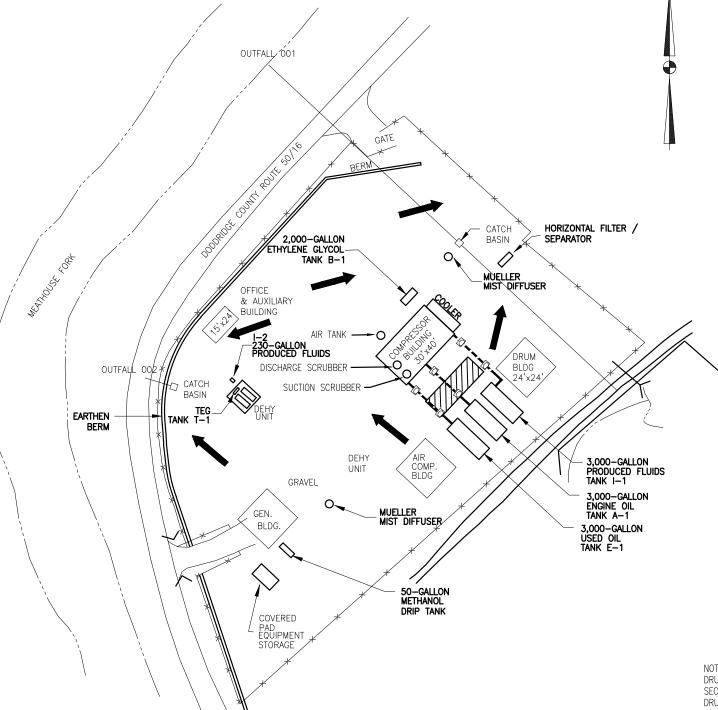
For example: VOC

GLYCalc = 13.8544 tons/yr

PTE Limits = 13.8544 * 1.2 = 16.63 tons VOC/yr

National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart HH

Section 112 of the Clean Air Act provides the EPA with a vehicle for developing standards for potentially hazardous air pollutants (HAPs) for specific categories of sources. The regulations that have been developed to implement Section 112(b) are presented in 40 CFR Part 63: National Emission Standards for Hazardous Air Pollutants (NESHAP). Sources located at a facility with potential emission levels of 10 tons/yr of any single HAP or 25 tons/yr total HAPs are potentially subject to these requirements.


On June 17, 1999 the USEPA issued the NESHAP for Oil and Natural Gas Production facilities (Subpart HH). These rules contain air pollution emission control and monitoring requirements for new and existing glycol dehydration units.

On January 3, 2007 the USEPA amended Subpart HH, promulgating standards for area sources. Area sources are facilities that have potential emission levels of less than 10 tons/yr of any single HAP and less than 25 tons/yr total HAPs. Smithburg Compressor Station, having the existing thermal oxidizer permitted for control efficiency, is considered an area source and thus is subject to the requirements of Subpart HH. The unit is exempted under §63.764(e)(1)(ii) from the requirements of the Subpart due to actual benzene emissions being less than 1 ton/yr as shown by the potential to emit for the unit.

Attachment E

Plot Plan

OIL-CONTAINING MECHANICAL EQUIPMENT						
QUANTITY	MATERIAL	LOCATION				
112-GALLONS	LUBE OIL	COMPRESSOR ENGINE COMPRESSOR BUILDING				
171-GALLONS	PRODUCED FLUIDS	SUCTION SCRUBBER				
102-GALLONS	PRODUCED FLUIDS	DISCHARGE SCRUBBER				
149-GALLONS	PRODUCED FLUIDS	FILTER / SEPARATOR				
(2) 216-GALLONS	PRODUCED FLUIDS	MUELLER MIST DIFFUSER (2)				

LEGEND:

FLOW DIRECTION

TRUCK LOADING/UNLOADING

ABOVEGROUND OIL CONTAINING PIPE

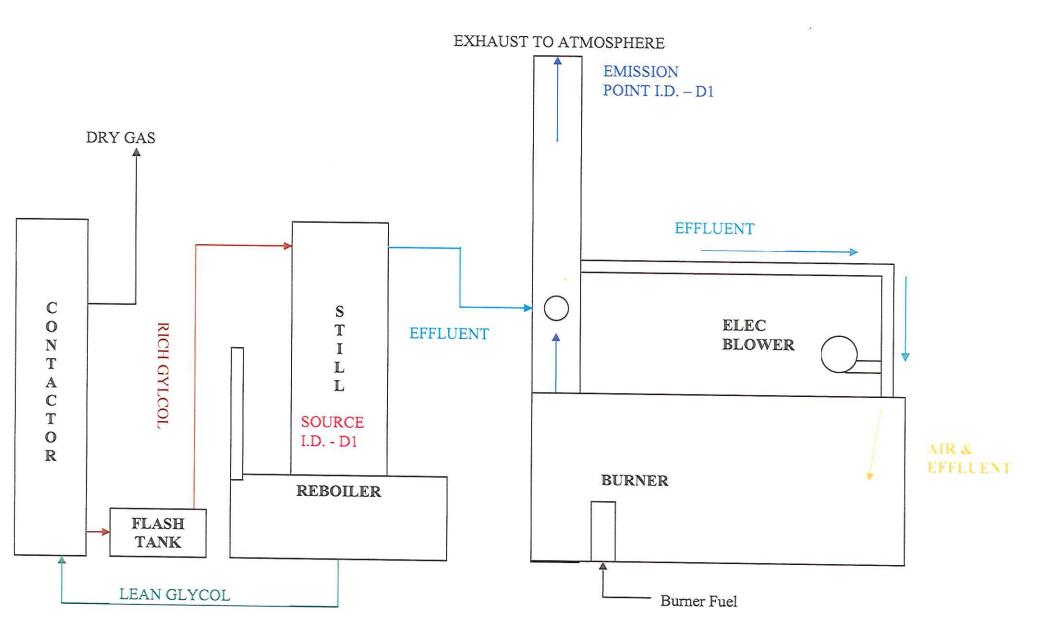
UNDERGROUND OIL CONTAINING PIPE

NOTES:

1. LOCATIONS OF ALL BUILDINGS, AREAS, AND SITE FEATURES ARE APPROXIMATE.

SYN	I. DATE	BY	REVISION DESCRIPTION	PRJ/TSK	APP.	SCALE	N.T.S.	DATE		
						DRAWN	DJF SE TECH.			445 V
						CHECKED			TITLE:	
]	ΕNV
2	3/24/11	JDB	PER TIM JACKSON MARK UPS						DIR:	
$\int 1$	4/27/10	JDB	PER RUSS EVANS MARK UPS						FILE:	

	NOTES: DRUMS STORED AT DEHY SECONDARY CONTAINMENT DRUM BLDG. CAN BE USF A NUMBER OF DRUMS AN DRUMS CAN VARY DURING	AND ALSO ED TO STORE ND TYPE OF		
	ominion Tra in St. Clarksburg, West Vir		Ssion, Inc. 01 / Phone: (304) 623-8000	
DOI	HBURG COMI DDRIDGE CO. NMENTAL EM	, WES		
PR	J/TSK:	GROUP	dwg. no. X.3720C	REV.


Printed: Mar 24, 2011 @07:14, By: jerem35, Filename: PDX3720C.dwg

Ν

Attachment F

Detailed Process Flow Diagram

PROCESS FLOW DIAGRAMS

Attachment G

Process Description

PROCESS DESCRIPTION

Natural gas comes into the facility and is compressed by one reciprocating internal combustion engine (E1) burning natural gas. The compressed natural gas then proceeds to the dehydration unit. The purpose of the dehydration unit is to remove moisture from the gas stream to comply with gas quality specifications. The process to remove the moisture begins with the incoming gas being passed through a triethylene glycol dehydration unit (D1) consisting of a contactor bed, a reboiler (RB1), and associated equipment. During this process, a small amount of hydrocarbons are extracted from the gas stream. The wet gas enters the contactor where moisture and some hydrocarbons are absorbed into the lean glycol. The glycol, which has become rich with absorbed moisture and hydrocarbons, is regenerated by heat in the natural gas fired reboiler (RB1) to liberate the moisture and hydrocarbons prior to release to the atmosphere. The compressed, dehydrated gas then enters the pipeline.

Attachment J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data																								
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissio Vent Througl Poi <i>(Must r Emissiol</i> Table & P	ted h This nt <i>match</i> n Units	Contro (Musi Emissi	ollution I Device t match ion Units Plot Plan)	Vent Time for Emission Unit (chemical processes only)		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		Emission Unit (chemical processes		sion Unit Pollutants - I processes Chemical		Maximum Potential Uncontrolled Emissions ⁴		Potential Uncontrolled		al Potential led Controlled		Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr*	ton/yr*	or Gas/Vapor)												
D1	Horizontal Stack	Dehy Still	11	11	Vapor Incin- erator	N/A	N/A	VOC Benzene Ethylbenzene n-Hexane Toluene Xylene	63.26 0.85 0.38 0.86 2.54 3.60	63.26 0.85 0.38 0.86 2.54 3.60	3.80 0.05 0.02 0.05 0.15 0.22	16.63 0.22 0.10 0.23 0.67 0.95	Gas	Other - GLYCalc	N/A										
											*Includes factor	20% safety													

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Table 2: Release Parameter Data											
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)				
	(ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting			
D1	0.69	455	65.8	3	N/A	19.2	4348113	522900			

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

Attachment L

Emissions Unit Data Sheet

		Manufac	turer and Model	Q.B. Johnson		
		Max Dry Gas H	Flow Rate (mmscf/day)	7.75 MMscf/day		
		Design Hea	t Input (mmBtu/hr)	0.375 MMBtu/hr		
		Design Ty	pe (DEG or TEG)	TE	ËG	
	l Glycol	Sou	arce Status ²	Exis	ting	
	tion Unit ata	Date Installed	/Modified/Removed ³	20	07	
		Regenerato	r Still Vent APCD ⁴	F	L	
	F	Fuel	HV (Btu/scf)	1,0	00	
	ľ	H ₂ S Con	tent (gr/100 scf)	0 p	pm	
		Oper	ation (hrs/yr)	8,760		
Source ID # ¹	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP	NO _X	0.04	0.15	
		AP	СО	0.03	0.13	
RBR01	Reboiler Vent	AP	VOC	0.00	0.01	
		AP	SO ₂	0.00	0.00	
		AP	PM ₁₀	0.00	0.01	
		GR	VOC	3.80	16.63	
		GR	Benzene	0.05	0.22	
D1	Glycol Regenerator	GR	Ethylbenzene	0.02	0.10	
DI	Still Vent	GR	Toluene	0.15	0.67	
		GR	Xylenes	0.22	0.95	
		GR	n-Hexane	0.05	0.23	

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

NA	None	CD	Condenser
FL	Flare	CC	Condenser/Combustion Combination

TO Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

West Virginia Department of Environmental Protection

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description							
Affected facility actual annual average natural gas throughput (scf/day): 7.75 MMscf/day							
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):							
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes	No					
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	<u>No</u>					
(NG) enters the NG transmission and storage source category or is delivered to the end user.							
The affected facility is: prior to a NG processing plant a NG processing plant							
prior to the point of custody transfer and there is no NG processing plant							
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	No					
distribution company or to a final end user (if there is no local distribution company).							
The affected facility exclusively processes, stores, or transfers black oil.	Yes	No					
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees							
Section B: Dehydration Unit (if applicable) ¹							
Description: Q.B. Johnson 7.75 MMscf/day Dehydration Unit							
Date of Installation: 2007 Annual Operating Hours: Burner rating (M	[Mbtu/hr):						
8,760 0.375 M	IMBtu/hr						
Exhaust Stack Height (ft): 19.2 Stack Diameter (ft): 0.69 Stack T	emp. (°F):	455					
Glycol Type: TEG EG Other:							
Glycol Pump Type:	ACH	FM/gpm					
Condenser installed? Yes No Exit Temp.	Pressure	psig					
Incinerator/flare installed? Yes No Destruction Eff. <u>95</u> %							
Other controls installed? Yes No Describe:							
Wet Gas ² : Gas Temp.: <u>120</u> °F Gas Pressure <u>355</u> psig							
(Upstream of Contact Tower) Saturated Gas? Xes In No If no, water content	nt lb/	MMSCF					
Dry Gas: Gas Flowrate(MMSCFD) Actual Design _7.75 MMs							
(Downstream of Contact Tower) Water Content lb/MMSCF							
Lean Glycol: Circulation rate (gpm) Actual ³ Maximum ⁴ 3.0 gal	l/lb H ₂ O						
Pump make/model:							
Glycol Flash Tank (if applicable): Temp.: <u>150</u> °F Pressure <u>70</u> psig Vented? Yes No							
If no, describe vapor control: Recycle/recompression							
Stripping Gas (if applicable): Source of gas: Dry Gas Rate							

 applicant provide th accomplished by su more detailed inform Extended gas analy Association (GPA) entrained liquids fro EPA Method TO-14 3. GRI-GLYCalc Ver. 	 applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream including mole percents of C₁-C₈, benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput. 						
	Section C: Facility NESHAPS Subpart HH/HHH status Subject to Subpart HH – Benzene Exemption Claimed						
Affected facility	Subject to Subpart HHT Benzene Exemption channed Subject to Subpart HHH						
status:	\Box Not Subject \Box < 10/25 TPY						
(choose only one)	because: Affected facility exclusively handles black oil						
	\Box The facility wide actual annual average NG throughput is < 650 thousand						
	scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd						
	No affected source is present						

Attachment M

Air Pollution Control Device Sheet

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No.	(must match	Emission U	nits Table): I1	(no changes	with pern	nit action)
		-	• •				

	Equipment	Into	rmation	
1.	Manufacturer: Q.B. Johnson	2.	Method: Elevated flare Ground flare	
	Model No.		⊠ Other	
			Describe Vapor Incinerator	
			vapor memerator	
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state			
4.	Method of system used:			
	Steam-assisted	□ F	Pressure-assisted 🗌 Non-a	ssisted
5.	Maximum capacity of flare:	6.	Dimensions of stack:	
	scf/min		Diameter	ft.
	scf/hr		Height	ft.
7.	Estimated combustion efficiency:	8.	Fuel used in burners:	
	(Waste gas destruction efficiency)		🔀 Natural Gas	
	Estimated: %		Fuel Oil, Number	
	Minimum guaranteed: 95 %		Other, Specify:	
9.	Number of burners:	11.	Describe method of controlling flame:	
	Rating: 700,000 BTU/hr			
10.	Will preheat be used? Yes No			
12.	Flare height: ft	14.	Natural gas flow rate to flare pilot light: 11.67	flame per pilot scf/min
13.	Flare tip inside diameter: 2 inch burner nozzle ft		700	scf/hr
15.	Number of pilot lights:	16.	Will automatic re-ignition be used?	
	Total BTU/hr		🖂 Yes 📃 N	lo
17.	If automatic re-ignition will be used, describe the met	hod:		
	Honeywell temperature control actuator			
18.	Is pilot flame equipped with a monitor?		No	
	If yes, what type?	-Rec	L	
	🗌 Ultra Violet 🛛 🗌 Cam	era	with monitoring control room	
	Other, Describe:			
19.	Hours of unit operation per year: 8,760			

20.	Will steam injection be used	l? 🗌 Yes	⊠No 2	21.	Steam pressure		PSIG		
					Minimum Expected:				
22.	Total Steam flow rate:		LB/hr 2	23.	Temperature:		°F		
24.	Velocity		ft/sec 2	25.	Number of jet streams				
26.	Diameter of steam jets:		in 2	27.	Design basis for steam i	njected:			
28	How will steam flow be cont	trolled if steam ir	niection is u			<u>B steam/LB hvd</u>	rocarbon		
20.				100					
	Chr	prostoriction of	the Weste	6	s Stream to be Burned				
29.		Quant			Quantity				
	Name	Grains of H ₂	S/100 ft ³		(LB/hr, ft ³ /hr, etc)	Source of M	A aterial		
	Regen Stream	0			2,670 cf/hr	D1			
30.	Estimate total combustible t	o flare:	2,670 cf/l	hr	LB/h	r or ACF/hr			
	(Maximum mass flow rate o	f waste das)	60.5		scfm				
31.	Estimated total flow rate to t	-		be	burned, carrier gases, au	ixiliary fuel, etc.:			
32	Give composition of carrier		or ACF/hr						
02.	Cive composition of camer	guoco.							
33.	Temperature of emission st 212	ream: °F	3	34.	Identify and describe all	•			
	Heating value of emission s	•		BTU/scf BTU/scf					
		BTU/ft ³					BTU/scf		
	Mean molecular weight of e						BTU/scf		
0.5	MW = lb/lb-mo								
	Temperature of flare gas:	900 - 1100 °F BTU/ft ³			Flare gas flow rate: Flare gas exit velocity:	scf/min scf/min			
	Flare gas heat content: Maximum rate during emerg						in		
	Maximum rate during emerg				•••				
	Describe any air pollution of reheating, gas humidificatio	control device in	, ,						
42.	Describe the collection mate	erial disposal sys	stem:						
43	Have you included <i>Flare Co</i>	ontrol Device in	the Emisei	on	s Points Data Summary	Sheet? Yes			
- -	have you moluded i late of			016	s i onno Data Ourninaly (5110011 103			

Steam Injection

Please propose m proposed operatin proposed emission MONITORING:	g parameters. Please propose	porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING:
REPORTING:		TESTING:
MONITORING:		ocess parameters and ranges that are proposed to be trate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
	aranteed Capture Efficiency for ea	
46. Manufacturer's Gua	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Attachment N

Supporting Emissions Calculations

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Smithburg File Name: Q:\Facilities\DTI\West Virginia\Smithburg Station\Air\Dehy Re-Permit 2015\Smithburg 2015 PTE GLYCalc\Smithburg PTE GLYCacl 4-22-2015.ddf Date: May 11, 2015 DESCRIPTION: _____ Description: Smithburg Glycalc Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 120.00 deg. F Pressure: 355.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.1060

 Nitrogen
 1.3180

 Methane
 76.5890

 Ethane
 11.9450

 Propane
 5.2320
 Isobutane 0.8810 n-Butane 1.6620 Isopentane 0.5970 n-Pentane 0.4960 n-Heyape 0.1910 n-Hexane 0.1910 Cyclohexane 0.0390 Other Hexanes 0.2840 Heptanes 0.3140 Benzene 0.0070 Toluene 0.0120 Ethylbenzene 0.0010 Xylenes 0.0070 C8+ Heavies 0.3190 DRY GAS: _____ Flow Rate: 7.8 MMSCF/day Absorber Stages: 4.0 LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Recirculation Ratio: 3.0 gal/lb H2O PUMP: _____

Page: 1

Glycol Pump Type: Electric/Pneumatic

FLASH TANK:

Flash Control: Recycle/recompression Temperature: 150.0 deg. F Pressure: 70.0 psig

STRIPPING GAS:

Source of Gas: Dry Gas Gas Flow Rate: 5.830 scfm

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen: 15.0 % Ambient Air Temperature: 60.0 deg. F GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Smithburg
File Name: Q:\Facilities\DTI\West Virginia\Smithburg Station\Air\Dehy Re-Permit
2015\Smithburg 2015 PTE GLYCalc\Smithburg PTE GLYCacl 4-22-2015.ddf
 Date: May 11, 2015

DESCRIPTION:

Description: Smithburg Glycalc

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.5851	14.042	2.5626
Ethane	0.2077	4.984	0.9096
Propane	0.1830	4.392	0.8015
Isobutane	0.0515	1.237	
n-Butane	0.1189	2.854	0.5208
Isopentane	0.0571	1.371	0.2502
n-Pentane	0.0574	1.377	0.2514
n-Hexane	0.0430	1.032	0.1883
Cyclohexane	0.0347	0.833	0.1521
Other Hexanes	0.0500	1.199	0.2189
Heptanes	0.1556	3.734	0.6814
Benzene	0.0423	1.015	0.1852
Toluene	0.1271	3.051	0.5567
Ethylbenzene	0.0189	0.454	0.0828
Xylenes	0.1801	4.323	0.7890
C8+ Heavies	2.0435	49.043	8.9504
Total Emissions	3.9558	94.940	17.3266
Total Hydrocarbon Emissions	3.9558	94.940	17.3266
Total VOC Emissions	3.1631	75.914	
Total HAP Emissions		9.875	
Total BTEX Emissions	0.3684	8.843	1.6138

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	11.7015	280.836	51.2526
Ethane	4.1533	99.680	18.1916
Propane	3.6598	87.835	16.0298
Isobutane	1.0305	24.732	4.5136
n-Butane	2.3780	57.072	10.4156
Isopentane	1.1424	27.418	5.0039
n-Pentane	1.1478	27.547	5.0272
n-Hexane	0.8600	20.640	3.7667
Cyclohexane	0.6944	16.666	3.0415
Other Hexanes	0.9995	23.989	4.3779
Heptanes	3.1113	74.671	13.6275

Page: 1

			Page: 2
Benzene	0.8457	20.297	3.7041
Toluene	2.5422	61.013	11.1349
Ethylbenzene	0.3783	9.079	1.6570
Xylenes	3.6027	86.465	15.7799
C8+ Heavies	40.8694	980.867	179.0082
Total Emissions	79.1169	1898.806	346.5321
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	79.1169 63.2621 8.2289 7.3689	1898.806 1518.290 197.494 176.854	346.5321 277.0879 36.0426 32.2759

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.9634	47.121	8.5995
Ethane	1.3853	33.247	6.0676
Propane	1.1682	28.036	5.1166
Isobutane	0.3004	7.210	1.3159
n-Butane	0.6257	15.018	2.7408
Isopentane	0.2811	6.746	1.2312
n-Pentane	0.2523	6.056	1.1052
n-Hexane	0.1292	3.101	0.5660
Cyclohexane	0.0321	0.770	0.1406
Other Hexanes	0.1819	4.365	0.7966
Heptanes	0.2706	6.494	1.1851
Benzene	0.0065	0.156	0.0284
Toluene	0.0133	0.320	0.0584
Ethylbenzene	0.0012	0.029	0.0053
Xylenes	0.0079	0.190	0.0346
C8+ Heavies	0.5717	13.721	2.5040
Total Emissions	7.1908	172.580	31.4958
Total Hydrocarbon Emissions	7.1908	172.580	31.4958
Total VOC Emissions	3.8422	92.212	16.8287
Total HAP Emissions	0.1582	3.796	0.6928
Total BTEX Emissions	0.0289	0.695	0.1268

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 15.00 % Combustion Efficiency: 95.00 % Supplemental Fuel Requirement: 3.81e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	5.00%	95.00%
Ethane	5.00%	95.00%
Propane	5.00%	95.00%
Isobutane	5.00%	95.00%
n-Butane	5.00%	95.00%
Isopentane	5.00%	95.00%
n-Pentane	5.00%	95.00%
n-Hexane	5.00%	95.00%
Cyclohexane	5.00%	95.00%
Other Hexanes	5.00%	95.00%
Heptanes	5.00%	95.00%
Benzene	5.00%	95.00%
Toluene	5.00%	95.00%
Ethylbenzene	5.00%	95.00%
Xylenes	5.00%	95.00%
C8+ Heavies	5.00%	95.00%
ABSORBER		

Specified Absorber Stages:4.00Calculated Dry Gas Dew Point:8.16 lbs. H2O/MMSCFTemperature:120.0 deg. FPressure:355.0 psigDry Gas Flow Rate:7.8000 MMSCF/dayGlycol Losses with Dry Gas:0.1352 lb/hrWet Gas Water Content:SaturatedCalculated Wet Gas Water Content:236.65 lbs. H2O/MMSCFSpecified Lean Glycol Recirc. Ratio:3.00 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.43%	96.57%
Carbon Dioxide	99.75%	0.25%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.93%	0.02%
Propane	99.86%	0.14%
Isobutane	99.80%	0.20%
n-Butane	99.74%	0.26%
Isopentane	99.72%	0.28%
n-Pentane	99.65%	0.35%
n-Hexane	99.41%	0.59%
Cyclohexane	97.52%	2.48%
Other Hexanes	99.54%	0.46%
Heptanes	98.85%	1.15%
Benzene	81.91%	18.09%
Toluene	73.12%	26.88%
Ethylbenzene	58.36%	41.64%
Xylenes	43.36%	56.64%
C8+ Heavies	91.20%	8.80%

FLASH TANK

Page: 4

Component	Left in Glycol	Removed in Flash Gas
Water	99.98%	0.02%
Carbon Dioxide	64.96%	35.04%
Nitrogen	14.71%	85.29%
Methane	15.89%	84.11%
Ethane	37.81%	62.19%
Propane	56.77%	43.23%
Isobutane	65.05%	34.95%
n-Butane	70.41%	29.59%
Isopentane	72.77%	27.23%
n-Pentane	76.56%	23.44%
n-Hexane	84.66%	15.34%
Cyclohexane	95.54%	4.46%
Other Hexanes	81.18%	18.82%
Heptanes	91.30%	8.70%
Benzene	99.27%	0.73%
Toluene	99.52%	0.48%
Ethylbenzene	99.72%	0.28%
Xylenes	99.81%	0.19%
C8+ Heavies	98.77%	1.23%

REGENERATOR

Regenerator Stripping Gas: Dry Product Gas Stripping Gas Flow Rate: 5.8300 scfm Remaining Distilled Component in Glycol Overhead
 Water
 29.60%
 70.40%

 Carbon Dioxide
 0.00%
 100.00%

 Nitrogen
 0.00%
 100.00%

 Methane
 0.00%
 100.00%

 Ethane
 0.00%
 100.00%

 Propane
 0.00%
 100.00%

 Isobutane
 0.00%
 100.00%

 n-Butane
 0.00%
 100.00%

 Isopentane
 0.69%
 99.31%

 n-Pentane
 0.65%
 99.35%
 n-Hexane0.59%99.41%Cyclohexane3.35%96.65%Other Hexanes1.23%98.77%Heptanes0.55%99.45%Benzene5.04%94.96% Toluene7.94%92.06%Ethylbenzene10.44%89.56%Xylenes12.95%87.05%C8+ Heavies12.15%87.85%

STRE	EAN	4 I	REI	PO	RT	s:																								
							 	 	 	 _	 	_	 	 	_	 	 _	 	 _	 	_	 	 _	 	 _	_	 	_	_	_

Temperature:	120.00 deg. F			
Pressure:	120.00 deg. F 369.70 psia			
Flow Rate:	3.27e+005 scfh			
	Component	Conc	Loading	
		(vol%)	(lb/hr)	
	Water	4.99e-001		
	Carbon Dioxide			
	Nitrogen	1.31e+000	3.16e+002	
	Methane	7.62e+001	1.05e+004	
	Ethane	1.19e+001	3.08e+003	
	Propane	5.21e+000	1.98e+003	
	Isobutane	8.77e-001	4.39e+002	
		1.65e+000		
	Isopentane			
	n-Pentane	4.94e-001	3.0/e+002	
		1.90e-001		
	Cyclohexane			
	Other Hexanes	2.83e-001 3.12e-001		
		6.97e-003		
		1.19e-002		
	Ethylbenzene	9.95e-004 6.97e-003		
	C8+ Heavies	3.17e-001	4.66e+002	
	Total Components	100.00	1.91e+004	
GAS STREAM Temperature: Pressure:	120.00 deg. F 369.70 psia		1.91e+004	
Temperature: Pressure:				
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia	Conc. (vol%)	Loading (lb/hr)	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component	Conc. (vol%)	Loading (1b/hr)	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide	Conc. (vol%) 1.72e-002 1.06e-001	Loading (1b/hr) 2.65e+000 3.99e+001	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 1.98e+003 4.38e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000	Loading (lb/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 1.98e+003 4.38e+002 8.26e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 1.98e+003 4.38e+002 8.26e+002 3.68e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 1.98e+003 4.38e+002 8.26e+002 3.68e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Hexane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+003 4.38e+002 8.26e+002 3.68e+002 3.06e+002 1.40e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Hexane Cyclohexane	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+003 4.38e+002 8.26e+002 3.68e+002 3.06e+002 1.40e+002 2.74e+001	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Pentane Other Hexanes	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+003 4.38e+002 8.26e+002 3.68e+002 3.06e+002 1.40e+002 2.74e+001 2.09e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Other Hexanes Heptanes	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001 3.11e-001	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+003 4.38e+002 8.26e+002 3.68e+002 3.06e+002 2.74e+001 2.09e+002 2.67e+002	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Pentane Other Hexanes Heptanes Benzene	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001 3.11e-001 5.74e-003	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+002 8.26e+002 3.06e+002 3.06e+002 1.40e+002 2.74e+001 2.09e+002 2.67e+002 3.84e+000	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene Toluene	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001 3.11e-001 5.74e-003 8.78e-003	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+002 8.26e+002 3.06e+002 3.06e+002 1.40e+002 2.74e+001 2.09e+002 2.67e+002 3.84e+000 6.93e+000	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene Toluene Ethylbenzene	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001 3.11e-001 5.74e-003 8.78e-003 5.84e-004	Loading (lb/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+002 8.26e+002 3.06e+002 3.06e+002 1.40e+002 2.74e+001 2.09e+002 2.67e+002 3.84e+000 6.93e+000 5.31e-001	
Temperature: Pressure: Flow Rate:	120.00 deg. F 369.70 psia 3.25e+005 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene Toluene Ethylbenzene	Conc. (vol%) 1.72e-002 1.06e-001 1.32e+000 7.66e+001 1.19e+001 5.23e+000 8.80e-001 1.66e+000 5.96e-001 4.95e-001 1.90e-001 3.81e-002 2.83e-001 3.11e-001 5.74e-003 8.78e-003 5.84e-004 3.04e-003	Loading (1b/hr) 2.65e+000 3.99e+001 3.16e+002 1.05e+004 3.08e+003 4.38e+003 4.38e+002 8.26e+002 3.68e+002 3.68e+002 2.74e+001 2.09e+002 2.74e+001 2.09e+002 2.67e+002 3.84e+000 6.93e+000 5.31e-001 2.76e+000	

LEAN GLYCOL STREAM Temperature: 120.00 deg. F Flow Rate: 3.72e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.82e+001 2.06e+003 Water 1.50e+000 3.14e+001 Carbon Dioxide 4.83e-013 1.01e-011 Nitrogen 3.34e-013 7.00e-012 Methane 3.74e-018 7.84e-017 Ethane 5.02e-008 1.05e-006 Propane 5.25e-009 1.10e-007 Isobutane 1.23e-009 2.58e-008 n-Butane 2.50e-009 5.24e-008 Isopentane 2.47e-004 5.16e-003 n-Pentane 2.57e-004 5.38e-003 n-Hexane 2.01e-004 4.21e-003 Cyclohexane 1.10e-003 2.30e-002 Other Hexanes 4.61e-004 9.66e-003 Heptanes 7.43e-004 1.55e-002 Benzene 2.13e-003 4.46e-002 Toluene 1.04e-002 2.19e-001 Ethylbenzene 2.10e-003 4.40e-002 Xylenes 2.56e-002 5.36e-001 C8+ Heavies 2.67e-001 5.59e+000 ----- -----Total Components 100.00 2.09e+003 RICH GLYCOL STREAM _____ Temperature:120.00 deg. FPressure:369.70 psiaFlow Rate:4.01e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.20e+001 2.05e+003 Water 4.75e+000 1.06e+002 Carbon Dioxide 4.53e-003 1.01e-001 Nitrogen 3.13e-003 7.00e-002 Methane 1.05e-001 2.33e+000 Ethane 9.98e-002 2.23e+000 Propane 1.21e-001 2.70e+000 Isobutane 3.85e-002 8.59e-001 n-Butane 9.48e-002 2.11e+000 Isopentane 4.63e-002 1.03e+000 n-Pentane 4.82e-002 1.08e+000 n-Hexane 3.78e-002 8.42e-001 Cyclohexane 3.23e-002 7.20e-001 Other Hexanes 4.33e-002 9.66e-001 Heptanes 1.39e-001 3.11e+000 Benzene 4.00e-002 8.93e-001 Toluene 1.24e-001 2.77e+000

Ethylbenzene 1.90e-002 4.23e-001 Xylenes 1.86e-001 4.14e+000 C8+ Heavies 2.09e+000 4.66e+001 Total Components 100.00 2.23e+003

FLASH TANK OFF GAS STREAM _____ Temperature: 150.00 deg. F Pressure: 84.70 psia Flow Rate: 8.84e+001 scfh Conc. Component Loading (vol%) (lb/hr) Water 5.54e-001 2.32e-002 Carbon Dioxide 3.45e-001 3.54e-002 Nitrogen 9.15e-001 5.97e-002 Methane 5.26e+001 1.96e+000 Ethane 1.98e+001 1.39e+000 Propane 1.14e+001 1.17e+000 Isobutane 2.22e+000 3.00e-001 n-Butane 4.62e+000 6.26e-001 Isopentane 1.67e+000 2.81e-001 n-Pentane 1.50e+000 2.52e-001 n-Hexane 6.44e-001 1.29e-001 Cyclohexane 1.64e-001 3.21e-002 Other Hexanes 9.06e-001 1.82e-001 Heptanes 1.16e+000 2.71e-001 Benzene 3.57e-002 6.49e-003 Toluene 6.22e-002 1.33e-002 Ethylbenzene 4.85e-003 1.20e-003 Xylenes 3.20e-002 7.91e-003 C8+ Heavies 1.44e+000 5.72e-001 _____ ____ Total Components 100.00 7.31e+000 FLASH TANK GLYCOL STREAM Temperature: 150.00 deg. F Flow Rate: 3.99e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.23e+001 2.05e+003 Water 4.77e+000 1.06e+002 Carbon Dioxide 2.95e-003 6.56e-002 Nitrogen 4.63e-004 1.03e-002 Methane 1.67e-002 3.71e-001 Ethane 3.79e-002 8.42e-001 Propane 6.90e-002 1.53e+000 Isobutane 2.51e-002 5.59e-001 n-Butane 6.69e-002 1.49e+000 Isopentane 3.38e-002 7.51e-001

> n-Pentane 3.71e-002 8.24e-001 n-Hexane 3.21e-002 7.13e-001 Cyclohexane 3.09e-002 6.88e-001 Other Hexanes 3.53e-002 7.84e-001 Heptanes 1.28e-001 2.84e+000

Benzene 3.98e-002 8.86e-001 Toluene 1.24e-001 2.75e+000 Ethylbenzene 1.90e-002 4.22e-001 Xylenes 1.86e-001 4.14e+000 C8+ Heavies 2.07e+000 4.60e+001 Total Components 100.00 2.22e+003

FLASH GAS EMISSIONS

- Control Method: Recycle/recompression Control Efficiency: 100.00
- Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.12e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 7.43e+001 7.47e+001 Carbon Dioxide 4.42e-002 1.09e-001 Nitrogen 2.24e-001 3.51e-001 Methane 1.31e+001 1.17e+001 Ethane 2.48e+000 4.15e+000 Propane 1.49e+000 3.66e+000 Isobutane 3.18e-001 1.03e+000 n-Butane 7.33e-001 2.38e+000 Isopentane 2.84e-001 1.14e+000 n-Pentane 2.85e-001 1.15e+000 n-Hexane 1.79e-001 8.60e-001 Cyclohexane 1.48e-001 6.94e-001 Other Hexanes 2.08e-001 1.00e+000 Heptanes 5.56e-001 3.11e+000 Benzene 1.94e-001 8.46e-001 Toluene 4.94e-001 2.54e+000 Ethylbenzene 6.39e-002 3.78e-001 Xylenes 6.08e-001 3.60e+000 C8+ Heavies 4.30e+000 4.09e+001 Total Components 100.00 1.54e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 2.69e+001 scfh Component Conc. Loading (vol%) (lb/hr) Methane 5.15e+001 5.85e-001 Ethane 9.74e+000 2.08e-001 Propane 5.85e+000 1.83e-001 Isobutane 1.25e+000 5.15e-002 n-Butane 2.89e+000 1.19e-001 Isopentane 1.12e+000 5.71e-002 n-Pentane 1.12e+000 5.74e-002 n-Hexane 7.04e-001 4.30e-002 Cyclohexane 5.82e-001 3.47e-002 Other Hexanes 8.18e-001 5.00e-002 Heptanes 2.19e+000 1.56e-001 Benzene 7.64e-001 4.23e-002 Toluene 1.95e+000 1.27e-001 Ethylbenzene 2.51e-001 1.89e-002 Xylenes 2.39e+000 1.80e-001 C8+ Heavies 1.69e+001 2.04e+000 Total Components 100.00 3.96e+000

ł

CERTIFICATE OF ANALYSIS

Number: 2011020476-004A

Dominion Transmission W. Steven Kiser 335 US Highway 33 West

Weston, West Virginia 26452

Field:	Weston, WV
Station:	Smithburg Station
Station No.:	-
Sample Point:	Discharge
Cylinder # :	1522
•	

Report Date: Sample Of; Sample Date: Sample Conditions; PO / Ref. No.;

02/28/11 Spol - Gas 02/15/2011 09:30 219.2 psi ,85.5° F

Comments:

Field Water Content: 15.0 Lbs./mmscf 23.0 Dew Point °F ANALYTICAL DATA

Components	Mol %	Wt%	GPM at 14.696 psla	Method	Lab Tech.	Date Analyzed
• ••				GPA-2286	JL	02/28/11
Nitrogen	1.318	1.677		(MC14)		
Methane	76.589	55.852		-		
Carbon Dioxide	0.106	0.214				
Elhane	11.945	16.329	3.186			
Propane	5.232	10.487	1.438			
Iso Butane	0.881	2.327	0.288			
n-Bulane	1.662	4.391	0.523			
lso Pentane	0.597	1,959	0.218			
n-Pentane	0.496	1.627	0.179			
Hexanes Plus	<u> </u>	5.137	0.507			
	100.000	100.000	6.339			
				TOTAL		C6+
Relative Density at 60 °F (air =1)	Real Gas			0.7621		3.3306
Calculated Molecular Weight				21.998		96.246
Compressibility Factor	*******			0.9961		
Calculated Gross BTU per ft3 @	14.696 psia & 60 ⁴	۴F				
Real Gas	Dry Basis 🕒			1309.8		5236.6
	Saturated Ba	sis		1287.8		5146.1

Cho Staling

Hydrocarbon Laboratory Manager

HOUSTON LABORATORIES 0820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

÷

CERTIFICATE OF ANALYSIS

Number: 2011020476-004A

Dominion Transmission W. Steven Kiser 335 US Highway 33 West

Comments:

Weston, West Virginia 26452

Field:	Weston, WV	Report Date:	02/28/11
Station:	Smithburg Station	Sample Of:	Spot - Gas
Station No.:		Sample Date:	02/15/2011 09:30
Sample Point:	Discharge	Sample Conditions:	219.2 psi ,85.5° F
Cylinder # :	1522	PO/Ref. No.;	•

Field Water Content: 15.0 Lbs./mmscf 23.0 Dew Point °F ANALYTICAL DATA

	P					
Components	Mol %	Wt%	GPM at	Method	Lab	Date
			14.696 psia			Analyzed
				GPA-2286	JL	02/28/11
Nitrogen	1.318	1.677		(MC14)		
Methane	76.589	55,852				
Carbon Dioxide	0.106	0.214				
Ethane	11.945	16.329	3.186			
Propane	5,232	10.487	1.438			
iso Bulane	0.881	2,327	0.288			
n-Bulane	1.662	4.391	0.523			
iso Pentane	0.597	1.959	0.218			
n-Pentane	0.496	1.627	0.179			
Hexanes	0.475	1.817	0.190			
Heptanes Plus	0.699	3.320	0.317			
•	100.000	100.000	6.339			
				TOTAL		C7+
Relative Density at 60 °F (air =1)	Real Gas 👘 🖓			0.7621		3.5838
Calculated Molecular Weight				21,998		103.456
Compressibility Factor				0.9961		
Calculated Gross BTU per ft3 @	14.696 psia & 60 '	٩F				
Real Gas	Dry Basis -	<i></i> .		1309.8		5590.2
	Saturated Ba	isis		1287.8		5493.6

Cas Staley

Hydrocarbon Laboratory Manager

CERTIFICATE OF ANALYSIS

Number: 2011020476-004A

Dominion Transmission W. Steven Kiser 335 US Highway 33 West Weston, West Virginia 26452

Field: Station:	Weston, WV Smithburg Station	Report Date: Sample Of:	02/28/11 Spot - Gas
Station No.:		Sample Date:	02/15/2011 09:30
Sample Point:	Discharge	Sample Conditions:	219.2 psi ,85.5° F
Cylinder # :	1522	PO / Ref. No.:	
Comments:	Field Water Content: 15.0 Lbs.	/mmscf `23.0 Dew Point °F	
	ANA	LYTICAL DATA	

Components	Mol %	W1%	GPM at	Method	Lab	Date
			14.696 psia			Analyzed
				GPA-2286	JL	02/28/1
Nitrogen	1.318	1.677		(MC14)		
Melhane	76.589	55.852				
Carbon Dioxide	0.106	0.214				
Ethane	11.945	16.329	3.186			
Propane	5.232	10.487	1,438			
iso Bulane	0.881	2.327	0.288			
n-Bulane	1.662	4.391	0.523			
iso Pentane	0.597	1,959	0.218			
n-Pentane	0.496	1.627	0.179			
i-Hexanes	0.284	1.092	0.114			
n-Hexane	0.191	0.725	0.076			
Benzene	0.007	0.025	0.002			
Cyclohexane	0.039	0.149	0.013			
I-Heptanes	0.215	0.958	0.094			
n-Heplane	0.099	0.450	0.046			
Toluene	0.012	0.048	0.004			
i-Octanes	0.200	0.978	0.092			
n-Octane	0.041	0.215	0.021			
*e-Benzene	0.001	0.005	NIL			
*m,o,&p-Xylene	0.007	0.039	0.003			
-Nonanes	0.050	0.291	0.027			
n-Nonane	0.012	0.071	0.007			
-Decanes	0.013	0.072	0.006	`		
n-Decane	0.003	0.019	0.002			
Undecanes	NIL	NIL	NIL			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
Totals	100.000	100.000	6.339			
Calculated Values	TOTAL	C10+				
	21,998	123.333				
Molecular Weight	21,990	7742.9				
Real Dry BTU @ 14.696 psia, 60 °F	1287.8	7608.7				
Real Wet BTU @ 14.696 psia, 60 °F		4,9126				
Relative Density	0.7621	4.8120				

GPM's at 14.696 psia, 60 °F Compressibility Factor

6.339 0.9961

Cas Staley

Hydrocarbon Laboratory Manager

HOUSTON LABORATORIES 8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

CERTIFICATE OF ANALYSIS Number: 2011020476-004A

Dominion Transmission W. Steven Kiser 335 US Highway 33 West

Weston , West Virginia 26452

Field: Station: Station No.: Sample Point: Cylinder # : Comments:	Weston, WV Smithburg Station Discharge 1522 Field Water Content: 15.0 Lbs./mmscf	Report Date: Sample Of: Sample Date: Sample Conditions: PO / Ref. No.; 23 0 Dew Point °E		02/28/11 Spot - Gas 02/15/2011 09:3 219.2 psl ,85.5° F	
Components	Mol %	20.0 Dew 1 Onic 1	Method	Lab	Date
anipononia	mor 3a	***70	method		Date Analyzed
			GPA-2286	JL	02/28/11
			(MC14)	V L	0212011
Nitrogen	1.318	1.677	(
Methane	76.589	55.852			
Carbon Dioxide	0.106	0.214			
Elhane	11.945	16.329			
Propane	5.232	10.487			
I-butane	0.881	2.327			
n-Bulane	1.662	4.391			
i-Penlane	0.597	1.959			
n-Pentane	0.496	1,627			
2,2-dimethylbutane	0.018	0.069			
2,3-dimethylbutane	0.018	0.071			
Cyclopentane	0.022	0.071			
2-methylpentane	0.143	0.558			
3-methylpentane	0.083	0.323			
N-Hexane	0.191	0.725			
2,2-dimethylpentane	0.007	0.032			
Methylcyclopentane	0.038	0.146			
2.4-dimethylpentane	0.011	0.051			
2,2,3-trimethylbutane Benzene	0.002	0.011			
3,3-dimethylpentane	0.007	0.025			
Cyclohexane	0.003	0.016			
2-methylhexane	0.039 0.054	0.149			
2,3-dimethylpentane	0.034	0.247			
1,1-dimethylcyclopentane	0.005	0.052 0.024			
3-methylhexane	0.053	0.243			
1,t3-dimethylcyclopentane		0.034			
1,c3-dimethylcyclopentane		0.046			
1.12-dimethylcyclopentane		0.046			
N-Heptane	0.099	0.450			
Methylcyclohexane	0.078	0.350			
1,1,3-trimethylcyclopen		0.027			
2,2-dimethylhexane	0.002	0.012			
2,5-dimethylhexane	0.006	0.028			
2.4-dimethylhexane	0.002	0.013			
ethylcyclopentane	0.008	0.036			
2,2,3-trimethylpenta		0.003			

HOUSTON LABORATORIES

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

.

CERTIFICATE OF ANALYSIS

Number: 2011020476-004A

Dominion Transmission W. Steven Kiser 335 US Highway 33 West

Weston, West V Fleid: Station: Station No.: Sample Point: Cylinder #: Comments:	Virginia 26452 Weston, WV Smithburg Station Discharge 1522		Report Dat Sample Of: Sample Da Sample Co PO / Ref. N	te: nditions:	S 02/15)2/28/11 pot - Gas /2011 09:3 ? psi ,85.5° F
Components		Mol %	Wt%	Method		Date Analyzed
				GPA-2286	JL	02/28/11
1 12 og trimothylavala		0.005		(MC14)		
1,12,c3-trimethylcyclo 2,3,4-trimethylpentan		0.005	0.026			
z,o,4-mmemyipeman Toluene	e	0.002	0.011			
2,3-dimethylhexane		0.012	0.048			
1,1,2-Irimethylcyclope	antono	0.004	0.020			
2-melhylheptane	3140110	0.001	0.003			
4-methylheptane		0.025	0.129			
3,4-dimethylhexane		0.009 0.002	0.045			
3-methylheptane		0.024	0.010 0.123			
1,14-dimethylcyclohex	ane	0.015	0.123			
2,2,5-trimethylhexane		0.006	0.078			
-methyl,c3-ethylcyclo		0.001	0.003			
-methyl,t2-ethylcyclc		0.002	0.008			
2,2,4-trimethylhexa		0.001	0.008			
-methyl, 1-ethylcyclor		0.001	0.003			
Cycloheptane		0.001	0.005			
I-Octane		0.041	0.215			
1,t2-dimethylcycloh	exane	0.002	0.011			
t3-dimethylcyclohexa		0.001	0.007			
1,c4-dimethylcycloi		0.001	0.007			
1,c2,c3-trimethy		0.001	0.007			
opropylcyclopentane		0.001	0.003			
2,3,5-trimethylhexa		0.001	0.006			
2-dimethylheptane		0.002	0.012			
4-dimethylheptane		0.002	0.009			
1-methyl,c2-ethylcy	clopentane	0.002	0.009			
2,3-trimethylhexane		0.001	0.008			
c2-dimethylcyclohexa	me	0.005	0.027			
2,6-dimethylheptand		0.005	0.027			
Propylcyclopentane		0.002	0.009			
1,c3,c5-trimethylcyc	lohexane	0.002	0.009			
hylcyclohexane		0.001	0.005			
hylbenzene		0.001	0.005			
2,14-trimethylcyclohe	xane	0.003	0.020			
Xylene		0.003	0.017			
Xylene	<i>,</i>	0,003	0.017			
3,4-dimethylhept	ane	Nil	0.001			
nelhyloctane		0.004	0.026			
4-methyloctane		0.004	0.026			
nethyloctane		0.006	0.035			
2,c3-trimethylcyclohe	xane	Nil	0.002			
1,12,c4-trimethylcyclo		Nil	0.002			
(ylene		0.001	0.005			
,2-trimethylcyclohexa	ine	0.001	0.006			
known C9 naphthene		0.002	0.012			
known C9 naphthene		0.001	0.005			
Vonane		0.012	0.071			
known C10 paraffin		0.001	0.006			
known C10 paraffin		0.001	0.007			
2,13-trimethylcyclohe		0.001	0.005			

HOUSTON LABORATORIES 8820 INTERCHANGE DRIVE

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

CERTIFICATE OF ANALYSIS

Number: 2011020476-004A

		Number: 2	071020476-00	10		
Dominion Trans W. Steven Kise				** :		
335 US Highway	y 33 West					
Weston , West	Virginia 26452					
Field:	Weston, WV		Report Dat	e:	C	2/28/11
Station:	Smithburg Station		Sample Of:	:	S	pot - Gas
Station No.:			Sample Da	te;	02/15	/2011 09:30
Sample Point:	Discharge		Sample Co	nditions;	219.2	2 psi ,85.5° F
Cylinder # :	1522		PO/Ref. N	o.:		• • • • • • • • •
Comments:						
Components		Mol %	Wt%	Method	Lab	Date
					Tech.	Analyzed
				GPA-2286 (MC14)	JL	02/28/11
1,c2,c3-trimethylc	cyclohexane	0.001	0.005			
sopropylbenzene		0.003	0.016			
N-Propylbenzene		0.002	0.009			
o-Ethylloluene		0.001	0.004			
2,3-dimethyloctan	le	0.001	0.004			
2-methylnonane		0.001	0.006			
Jnknown C10 aroma		0.001	0.005			
1,2,4-Irimethylbenzer		NI	0.003			
tert-Butylbenzene		NI	0.001			
Methylcyclooct N-Decane	ane	Nil	0.001			
A-Decalle		0.003	0.019			

100.000

ł

100.000

.

Flare Design Evaluation Section 60.18 Demonstration

Smithburg						
Type Unassisted						
Throat Diameter (inches)	18					

		2120	scf/h
GLYCalc	INPUT	Compound Net	Mixture Net
	mole	Heating Value	Heating Value
Compound	percent	(Btu/scf)	(Btu/scf)
water	74.300	0	0.0
carbon dioxide	0.042	0	0.0
nitrogen	0.224	0	0.0
methane	13.100	913	119.6
ethane	2.480	1641	40.7
propane	1.490	2385	35.5
Isobutane	0.318	3105	9.9
n-butane	0.733	3113	22.8
Isopentane	0.284	3716	10.6
n-pentane	0.285	3709	10.6
cyclopentane	0.000	3516	0.0
n-hexane	0.179	4412	7.9
cyclohexane	0.148	4185	6.2
other hexanes	0.208	4870	10.1
heptane	0.556	4925	27.4
benzene	0.194	3601	7.0
toluene	0.494	4284	21.2
ethylbenzene	0.064	4977	3.2
xylene	0.608	4980	30.3
octane (C8+)	4.300	5804	249.6
hydrogen sulfide	0.000	596	0.0
TOTALS:	100		612.4

Assist gas requirements for nonassisted flare per 40 CFR 60.18(c)(3):

Minimum allowable net heating value	200	Btu/scf
Additional assist gas required	0.0	scfh
Assist (fuel) gas supplied	0	scfh
Composite net heating value	619.13	Btu/scf

Maximum allowable flare exit velocity (V_{max}) for nonassisted flare per 40 CFR 60.18(f)(5):

Lower (Net) Heating Value	Btu/scf	MJ/scm
(1000 Btu/scf = 37.3 MJ/scm)	612	22.8
Vmax = 10^[(LHV+28.2)/31.7] for Vmax in m/sec and LHV in MJ/scm	m/sec	ft/sec
(1 m = 3.28 ft)	42.6	139.6
Vmax limit based on 40 CFR 60.18(b)(4)(iii)	42.6	139.6

Actual flare exit velocity:

Total volumetric flow (vent gas + assist gas in scfh/3600 sec/hr) =	0.59	scf/sec
Total volumetric flow at 180F & atmospheric pressure =	0.76	cf/sec
Flare exit cross-sectional area based on throat diameter =	1.77	ft2
Velocity = volumetric flow / cross-sectional area =	0.4	ft/sec

Attachment P

Public Notice

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Dominion Transmission, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for the Smithburg Compressor Station located off Snowbird Road, Smithburg, in Doddridge County, West Virginia. The latitude and longitude coordinates are:

Latitude: 39.2821 Longitude: -80.7345

The applicant estimates the increased potential to discharge the following Regulated Air Pollutants will be:

VOC +12.89 tons/yr Total HAPs: +1.46 tons/yr

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours. Dated this the (Day) day of (Month), (Year).

By: Dominion Transmission, Inc. Brian Sheppard VP of Pipeline Operations 445 West Main Street Clarksburg, WV 26301