

07/11/2016

Ms. Beverly McKeone Program Manager Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street Charleston, WV 25304, SE

Re:

NSR Class II Administrative Update and Title V Minor Modification to Modify Material Handling Operations at the Kingsford Manufacturing Company Parsons, WV Plant

Permit No. R13-1608G and R30-09300004-2014

Dear Ms. McKeone:

Kingsford Manufacturing Company (KMC) owns and operates a charcoal briquet manufacturing facility located in Parsons, Tucker County, West Virginia. During KMC's maintenance outage starting September 3, 2016, KMC plans to replace one (1) existing screening operations (E-02-03) on their existing raw material handling system, remove the existing retort char surge bin (E-06-0G) and its associated fabric filter dust collector (C-33), install a pneumatic conveyor to transfer lime from the existing bulk lime unloading operation (EU-02-0E) to the existing bulk lime tank (EU-06-06) and replace an existing fabric filter (C-15) on the lime use tank (EU-06-09). KMC is requesting that the permit be revised through an NSR administrative update under Regulation 13 and as a minor modification under Regulation 30.

Screen Replacement

KMC currently operates a primary (E-02-02) and secondary (E-02-03) screen as part of their raw material handling operations. The screens are used to size the wood used as raw material in the char manufacturing process. No changes in its screening fractions are anticipated. The new secondary screening operations will continue to be designated E-02-03, the same Source ID number as the screen it is replacing. The new secondary screener will continue to use Emission Point ID number S-09. A process flow diagram for the raw material handling operation, shows both the existing and proposed operations, is provided in Attachment F. Potential emission calculations are provided in Attachment N.

Retort Char Surge Bin Removal

Retort Char Surge Bin (E-06-0G) and its associated fabric filter (C-33) will be removed. The surge bin was used to store retort char when the pneumatic conveying system to the retort char silos (E-06-05) was down. Instead, Kingsford intends to use closed mechanical conveyors to fill trucks when this condition occurs. The trucks will then be used to transport the char to the High existing Beryl Char and Coal Unloading Operation (E-02-09). Because of the high moisture

PO Box 464 Parsons, WV 26287

(304) 478-2911 FAX: (304) 478-2129 content of the char being transferred, the amount of fugitive dust from the char transfer operations is negligible.

Lime Receipt and Transfer Modifications

Kingsford currently has two (2) methods of receiving lime. The first is by pneumatic truck. The second is by bulk truck. The pneumatic truck system allows lime to be blown directly from the truck to the bulk lime tank (EU-06-06), controlled by a bin vent filter (C-12) and then pneumatically conveyed to the lime use tank (EU-06-09, controlled by a bin vent filter C-15). The bulk truck unloading system (EU-02-0E, added in 2015) consists of receiving lime from covered trucks that back into an existing "shed" (three-sided roofed enclosure), and dumping the lime onto an open pad. The lime is then transferred from the resulting pile into a hopper using a front-end loader. The limestone is then transferred via covered conveyor systems to the existing charcoal briquet mixing process operations.

Kingsford would like the option of pneumatically conveying the bulk truck lime to the existing lime silo and then pneumatically conveying the lime to the existing use tank. This will require installation of a new pneumatic line and blower to convey the lime from the lime hopper to the lime silo, and replacement of the existing bin vent filter (C-15) on the lime use tank. The existing bin vent filter has an exhaust volumetric flowrate of 200 cfm. The new bin vent filter will have an exhaust volumetric flowrate of 600 cfm.

WVDEP applications forms and supporting information are attached for the proposed modifications to begin September 3, 2016. Once the permit application has been determined "administratively complete" we will pay the \$300 NSR Class II Administrative update fee by credit card. A Class I legal Advertisement will also be run at that time in a local newspaper and proof of publication will be submitted to WVDEP after it is received. If you have any questions or require any additional information, please feel free to contact Scott Stephenson, Plant Engineering Manager, at (304) 478-5529 or our environmental consultant, Gavin Biebuyck with Liberty Environmental at (610) 375-9301.

Very truly yours,

KINGSFORD MANUFACTURING COMPANY

Scott Stephenson

Plant Engineering Manager

cc: Carey Preston

Mike Young

Gavin Biebuyck - Liberty Environmental

Kingsford Manufacturing Company

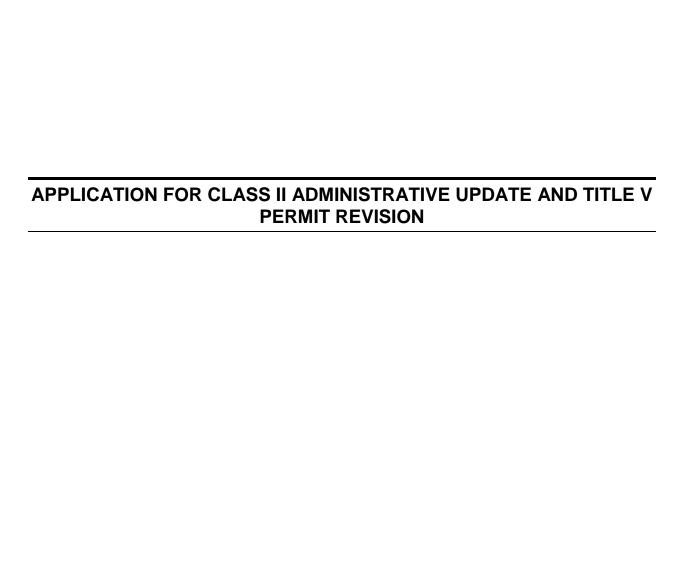
Class II Administrative Update and Title V Minor Permit Revision for Product Handling Modifications at a Charcoal Manufacturing Facility

Parsons, West Virginia
July 2016

Submitted to:

Prepared by:

West Virginia DEP
Division of Air Quality
601 57th Street, SE
Charleston, WV 25304



Liberty Environmental, Inc. 50 N. 5th Street, 5th Floor Reading, PA 19601

TABLE OF CONTENTS

WVDEP APPLICATION FORMS

- APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE AND TITLE V PERMIT REVISION
- ATTACHMENT A CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B AREA MAP
- ATTACHMENT C INSTALLATION AND STARTUP SCHEDULE
- ATTACHMENT D REGULATORY DISCUSSION
- ATTACHMENT E PLOT PLAN
- ATTACHMENT F PROCESS FLOW DIAGRAM
- ATTACHMENT G PROCESS DESCRIPTION
- ATTACHMENT H MSDS INFORMATION
- ATTACHMENT I EMISSION UNITS TABLE
- ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET
- ATTACHMENT K FUGITIVE EMISSION DATA SUMMARY SHEET
- ATTACHMENT L EMISSIONS UNIT DATA SHEET
- ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET
- ATTACHMENT N SUPPORTING EMISSION CALCULATIONS
- ATTACHMENT O MONTORING/RECORDKEEPING PLANS (NOT APPLICABLE)
- ATTACHMENT P CLASS I LEGAL ADVERTISMENT (TO BE PROVIDED UPON PUBLICATION)
- ATTACHMENT Q BUSINESS CONFIDENTIALITY CLAIMS (NOT APPLICABLE)
- ATTACHMENT R AUTHORITY OF CORPORATION
- ATTACHMENT S TITLE V PERMIT REVISION INFORMATION

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

APPLICATION FOR NSR PERMIT

601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN CONSTRUCTION MODIFICATION TELLOCATION TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-F	☐ ADMINISTRATION SIGNIFICANT IF ANY BOX ABO	TIVE AMENDMENT MODIFICATION OVE IS CHECKED, INCLUDE	_		
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and a					
Sec	tion I. General				
Name of applicant (as registered with the WV Secretal Kingsford Manufacturing Company	ry of State's Office):	2. Federal Employer II 9432	D No. <i>(FEIN):</i> 40524		
 Name of facility (if different from above): Kingsford Manufacturing Company – Parsons Plant 		4. The applicant is the: ☐ OWNER ☐ OPERATOR ☒ BOTH			
5A. Applicant's mailing address: P.O Box 464		. Facility's present physical address: ute 219, about 2 miles south of Parsons			
Parsons, WV 26287 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? ☐ YES ☒ NO — If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. — If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A.					
 If applicant is a subsidiary corporation, please provide to Does the applicant own, lease, have an option to buy of 					
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site?</i> ✓ YES ☐ NO If YES, please explain: Owner 					
 If NO, you are not eligible for a permit for this source 					
 Type of plant or facility (stationary source) to be cons administratively updated or temporarily permitted crusher, etc.): New wood screening operations and a to be installed at a charcoal manufacturing plant 	(e.g., coal preparation pl	lant, primary Class	American Industry iffication System cs) code for the facility:		
11A. DAQ Plant ID No. (for existing facilities only): 03-54-09300004 11B. List all current 45CSR13 and 45CSR30 (Title V) associated with this process (for existing facilitie R30-09300004-2014, R13-1608G, R14-0001D, G60-0			cilities only):		

All of the required forms and additional information can be	e found under the Permitting Section of D	AQ's website, or requested by phone	
12A.			
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the	
 For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	provide directions to the proposed new s	site location from the nearest state	
Route 219 North of Elkins. The plant is located about 2	2 miles South of Parsons on route 219.		
	T	T	
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
	Parsons, WV	Tucker	
12.E. UTM Northing (KM): 4,326.20	12F. UTM Easting (KM): 613.20	12G. UTM Zone: 17	
13. Briefly describe the proposed change(s) at the facili	hv.		
Kingsford Manufacturing Company (KMC) owns and ope	erates a charcoal manufacturing facility I		
KMC plans to replace one (1) existing screening operation existing retort char surge bin (E-06-0G) and its associated			
lime from the existing bulk lime unloading operation (EU			
fabric filter (C-15) on the lime use tank (EU-06-09).		· 	
 14A. Provide the date of anticipated installation or chan If this is an After-The-Fact permit application, prov 	• • • •	14B. Date of anticipated Start-Up if a permit is granted:	
change did happen: / /	ide the date upon which the proposed	Beginning September 3, 2016	
14C. Provide a Schedule of the planned Installation of	Change to and Start-Up of each of the	I	
application as Attachment C (if more than one uni			
15. Provide maximum projected Operating Schedule of		ation:	
Hours Per Day 24 Days Per Week 7	Weeks Per Year 52		
16. Is demolition or physical renovation at an existing fa	-		
17. Risk Management Plans. If this facility is subject to			
changes (for applicability help see www.epa.gov/cep	po), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.	
18. Regulatory Discussion. List all Federal and State	air pollution control regulations that you	believe are applicable to the	
proposed process (if known). A list of possible application	able requirements is also included in Att	achment S of this application	
(Title V Permit Revision Information). Discuss applica	ability and proposed demonstration(s) of	compliance (if known). Provide this	
information as Attachment D.			
Section II. Additional att	achments and supporting d	ocuments.	
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	n fee (per 45CSR22 and	
45CSR13). \$300 fee for Class II Adminstrative Am	endment included		
20. Include a Table of Contents as the first page of you	ur application package.		
21. Provide a Plot Plan , e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (R		erty on which the stationary	
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 			
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	wing each proposed or modified emissio	ns unit, emission point and control	

23. Provide a Process Description as A	ttachment G.				
 Also describe and quantify to the ex 	xtent possible all changes made	to the facility since the last permit review (if applicable).			
All of the required forms and additional info	rmation can be found under the Pe	ermitting Section of DAQ's website, or requested by phone.			
24. Provide Material Safety Data Sheets	(MSDS) for all materials proces	sed, used or produced as Attachment H.			
 For chemical processes, provide a MSI 	DS for each compound emitted to	the air.			
25. Fill out the Emission Units Table and	d provide it as Attachment I.				
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and Tab	ole 2) and provide it as Attachment J.			
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it	as Attachment K.			
28. Check all applicable Emissions Unit	Data Sheets listed below:				
☐ Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry			
☐ Chemical Processes	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage			
☐ Concrete Batch Plant	☐ Incinerator	Facilities			
☐ Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks			
☐ General Emission Unit, specify:					
KMC plans to replace one (1) existing screenisting retort char surge bin (E-06-0G) and	eening operations (E-02-03) on the dits associated fabric filter dust operation (EU-02-0E) to the exist	nanufacturing facility located in Parsons, West Virginia. neir existing raw material handling system, remove the collector (C-33), install a pneumatic conveyor to transfer ting bulk lime tank (EU-06-06) and replace an existing			
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment L.				
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed below	W:			
☐ Absorption Systems	□ Baghouse	☐ Flare			
☐ Adsorption Systems	☐ Condenser	☐ Mechanical Collector			
☐ Afterburner	☐ Electrostatic Precipitat	or			
☐ Other Collectors, specify Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attachr	ment M.			
30. Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N, o	r attach the calculations directly to the+ forms listed in			
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general					
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal					
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?					
☐ YES ⊠ NO					
➢ If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.					

Section III. Certification of Information

34. Authority/Delegation of Authority. Only Check applicable Authority Form below:	required when someone o	her than the responsible of	ficial signs the application.
□ Authority of Corporation or Other Business	Entity \square	Authority of Partnership	
☐ Authority of Governmental Agency		Authority of Limited Partne	rship
Submit completed and signed Authority Form	as Attachment R.		
All of the required forms and additional information	tion can be found under the	Permitting Section of DAQ's	website, or requested by phone.
35A. Certification of Information. To certify 2.28) or Authorized Representative shall check	this permit application, a R the appropriate box and si	esponsible Official (per 450 gn below.	SR§13-2.22 and 45CSR§30-
Certification of Truth, Accuracy, and Compa	leteness		
I, the undersigned Responsible Official / Description and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordant Environmental Protection, Division of Air Quality and regulations of the West Virginia Division of business or agency changes its Responsible Contified in writing within 30 days of the official of	pended hereto, is true, accu- esponsibility for the constru- nce with this application and ty permit issued in accordal of Air Quality and W.Va. Coo Official or Authorized Repres	rate, and complete based o ction, modification and/or re any amendments thereto, nce with this application, alo e § 22-5-1 et seg. (State Ai	on information and belief after elocation and operation of the as well as the Department of long with all applicable rules or Pollution Control Act). If the
Compliance Certification Except for requirements identified in the Title Northalt, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	fter reasonable inquiry, all a	ir contaminant sources ide	ne undersigned hereby certify ntified in this application are in
	use blue ink)		(Please use blue ink)
35B. Printed name of signee: Carey Preston Scott Step	henson (for Carey	Preston) 35C. Title:	Plant Manager
35D. E-mail: carey.preston@clorox.com	36E. Phone: 304-478-29		: 304-478-2129
36A. Printed name of contact person (if differe	nt from above): Scott Step	nenson 36B. Title:	Plant Engineering Manager
36C. E-mail: scott.stephenson@clorox.com 36D. Phone: 304-478-5529			304-478-2129
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS PE	RMIT APPLICATION:	
	Attachm dule	ent P: Public Notice ent Q: Business Confidentia ent R: Authority Forms ent S: Title V Permit Revisio	Sheet(s) Device Sheet(s) s Calculations eping/Reporting/Testing Plans

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:
☐ Forward 1 copy of the application to the Title V Permitting Group and:
☐ For Title V Administrative Amendments:
☐ NSR permit writer should notify Title V permit writer of draft permit,
☐ For Title V Minor Modifications:
☐ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
☐ NSR permit writer should notify Title V permit writer of draft permit.
☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:
☐ NSR permit writer should notify a Title V permit writer of draft permit,
☐ Public notice should reference both 45CSR13 and Title V permits,
☐ EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A CURRENT BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

KINGSFORD MANUFACTURING COMPANY RT 219 SOUTH PARSONS, WV 26287

BUSINESS REGISTRATION ACCOUNT NUMBER:

1052-8044

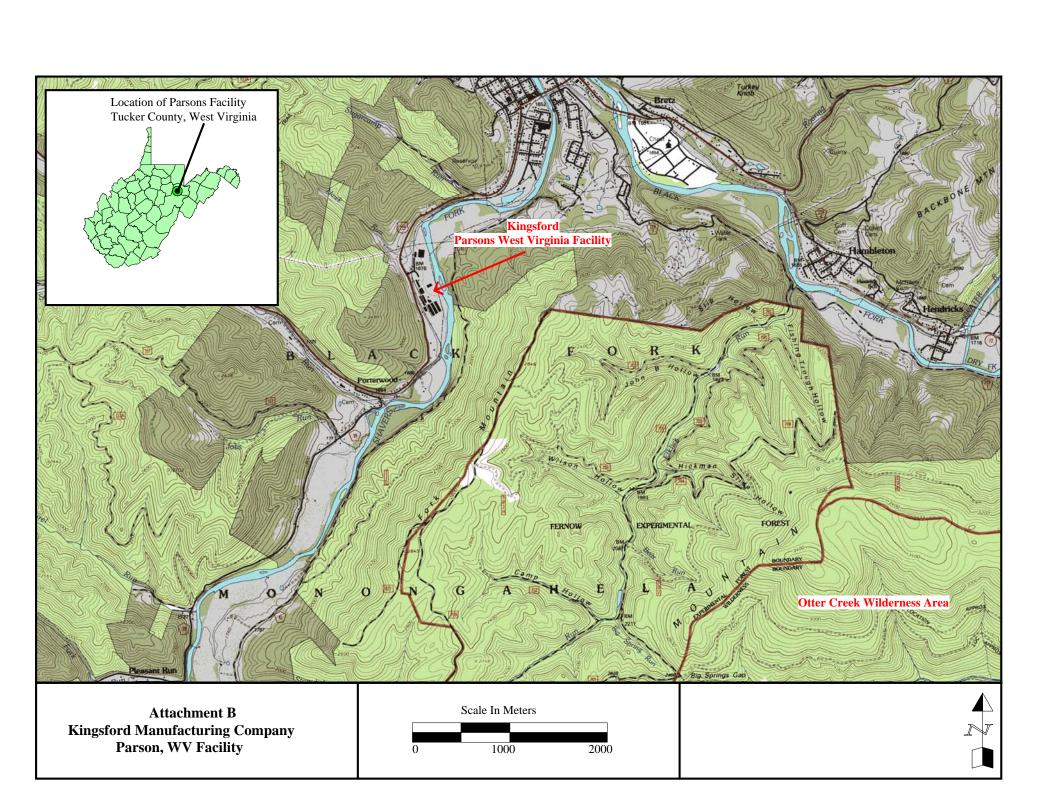
This certificate is issued on:

06/14/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L1485527808

ATTACHMENT B AREA MAP

ATTACHMENT C INSTALLATION AND STARTUP SCHEDULE

Attachment C

Installation/Startup Schedule

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Date of Modification	Date of Startup	Type of Change	Control Device 3
Screen Rep	lacement					
E-02-03	S-09	Secondary Screening	Beginning 9/3/2016	Beginning 9/3/2016	Replacement of Screen	None
Retort Char	Surge Bin I	Removal				
E-06-0G	S-24	Retort Char Surge Bin	Beginning 9/3/2016	N/A	Removal of surge bin and fabric filter (C- 33)	Fabric filter C-33
Lime Recei	pt and Trans	sfer Operations				
E-02-0E	S-09	Bulk Lime Truck Unloading System	Beginning 9/3/2016	Beginning 9/3/2016	Installation of a new blower and pneumatic line to convey lime from the from	Full enclosure
E-06-06	S-14	Bulk Lime Tank	Beginning 9/3/2016	Beginning 9/3/2016	the bulk lime truck unloading system to the bulk lime tank	Fabric filter C-12
E-06-09	S-17	Lime Use Tank	Beginning 9/3/2016	Beginning 9/3/2016	Fabric filter to be replaced	Fabric filter C-15
E-09-01	S-09	Paved Plant Roads	Beginning 9/3/2016	Beginning 9/3/2016	Slight increase in plant traffic due to Surge Char Truck Traffic	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT D REGULATORY DISCUSSION

ATTACHMENT D – REGULATORY DISCUSSION

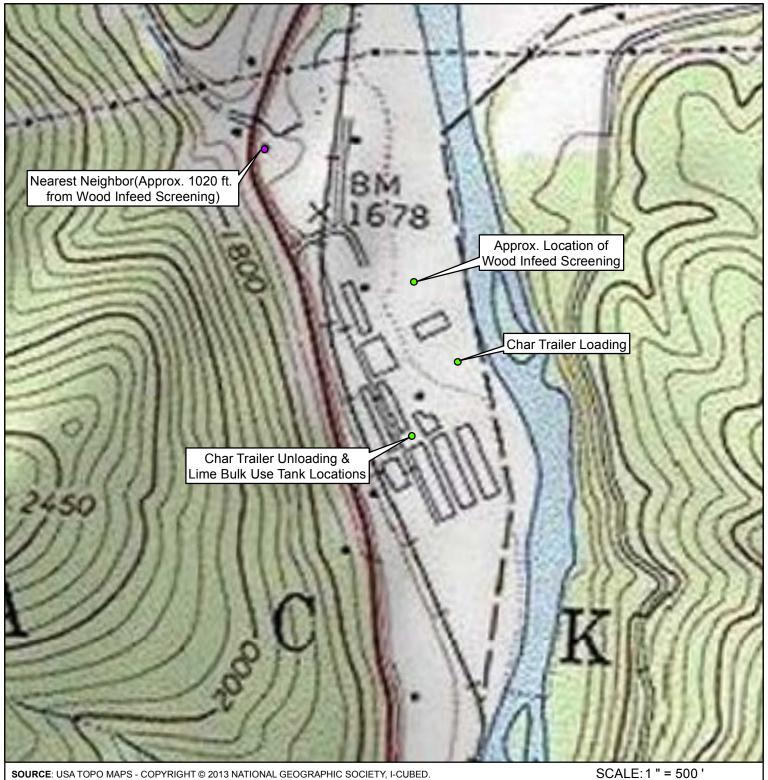
Screen Replacement

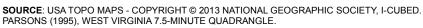
KMC currently operates a primary (E-02-02) and secondary (E-02-03) screen as part of their raw material handling operations. The screens are used to size the wood used as raw material in the char manufacturing process. KMC intends to replace the existing secondary screen with a new screen. KMC will continue to ensure compliance with the requirements of 45-CSR7 using the daily visible emission checks listed in Section 3.2 of Permit No. R30-09300004-2014. The screen is not equipped with control equipment so the provisions of the federal Compliance Assurance Monitoring (CAM) requirements of 40 CFR Part 64 are not applicable.

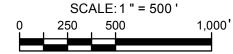
Retort Char Surge Bin Removal

Retort Char Surge Bin (E-06-0G) and its associated fabric filter (C-33) will be removed. The surge bin was used to store retort char when the pneumatic conveying system to the retort char silos (E-06-05) was down. Instead, Kingsford intends to use closed mechanical conveyors to fill trucks when this condition occurs. Due to the high moisture percentage of the char being transferred, the amount of fugitive dust from the char transfer operations is negligible. The Parsons Title V operating permit identifies applicable emissions limitations for the char tanks and transfer operations in section 8.0 of Permit No. R30-09300004-2014.

Lime Receipt and Transfer Modifications

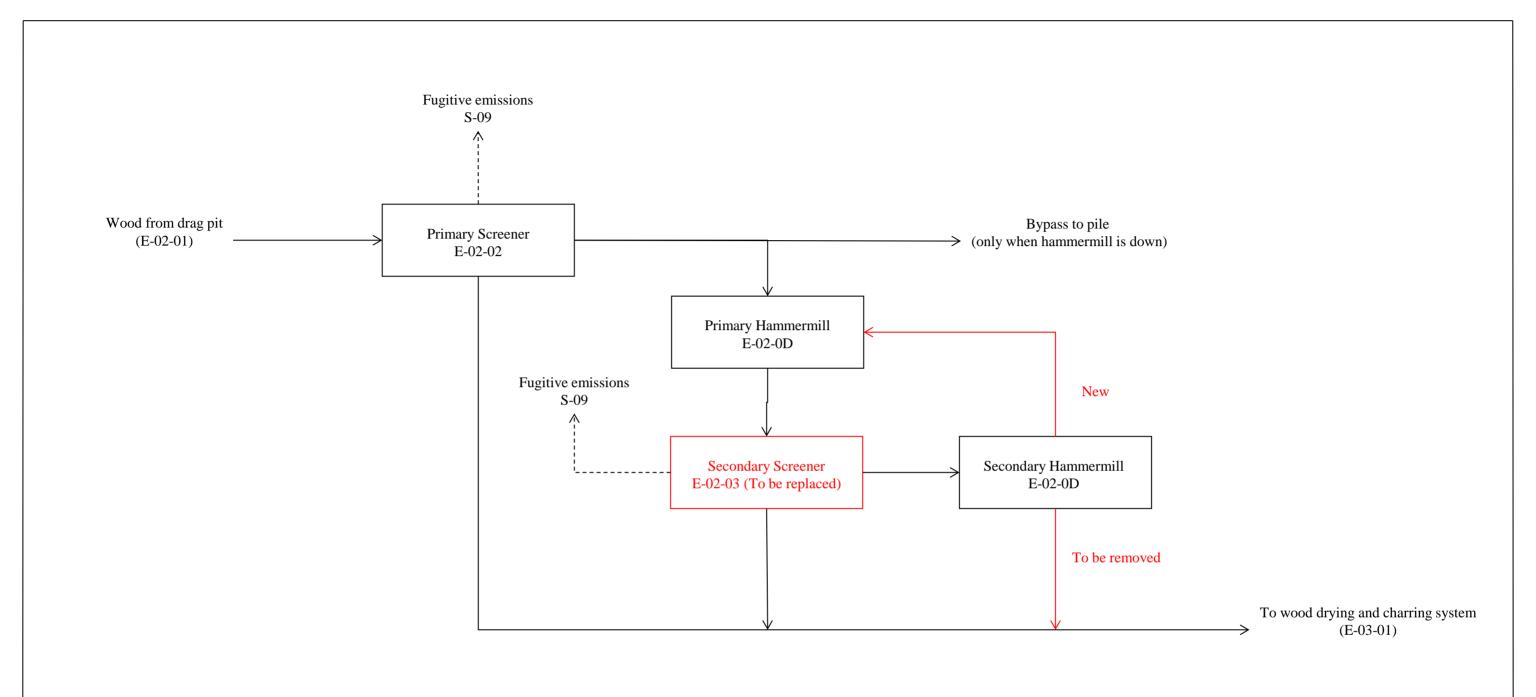

Kingsford currently has two (2) methods of receiving lime. The first is by pneumatic truck. The second is by bulk truck. The pneumatic truck system allows lime to be blown directly from the truck to the bulk lime tank (EU-06-06, controlled by a bin vent filter C-12) and then pneumatically conveyed to the lime use tank (EU-06-09, controlled by a bin vent filter C-15). The bulk truck unloading system (EU-02-0E, added in 2015) consists of receiving lime from covered trucks that back into an existing "shed" (three-sided roofed enclosure), and dumping the lime onto an open pad. The lime is then transferred from the resulting pile into a hopper using a front-end loader. The limestone is then transferred via covered conveyor systems to the existing charcoal briquet mixing process operations.


Kingsford would like the option of pneumatically conveying the bulk truck lime to the existing lime silo and then pneumatically conveying the lime to the existing use tank. This will require installation of a new pneumatic line and blower to convey the lime from the lime hopper to the lime silo, and replacement of the existing bin vent filter (C-15) on the lime use tank. The existing bin vent filter has an exhaust volumetric flowrate of 200 cfm. The new bin vent filter will have an exhaust volumetric flowrate of 600 cfm.

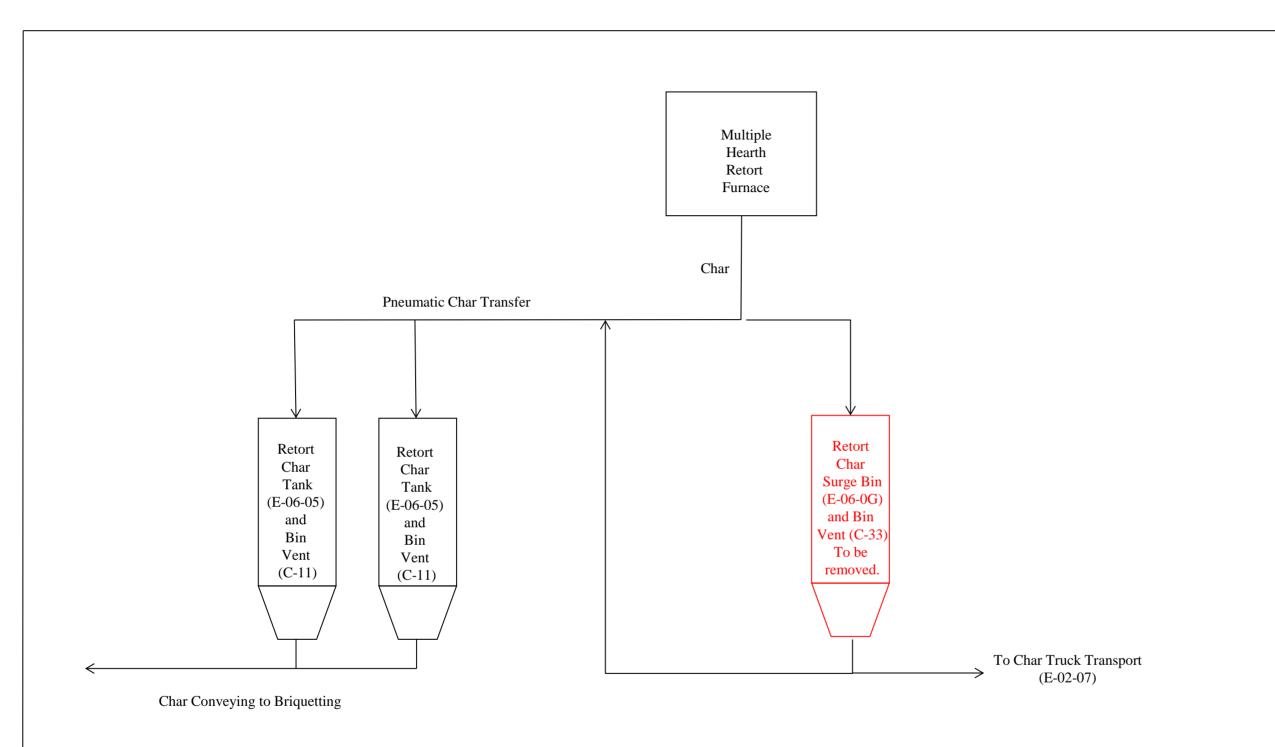

The Parsons Title V operating permit identifies applicable emissions limitations for the lime receipt and transfer operations in section 8.0 of Permit No. R30-09300004-2014.

Miscellaneous RegulationsCharcoal briquet manufacturing and handling operations are not subject to federal NSPS or NESHAP standards.

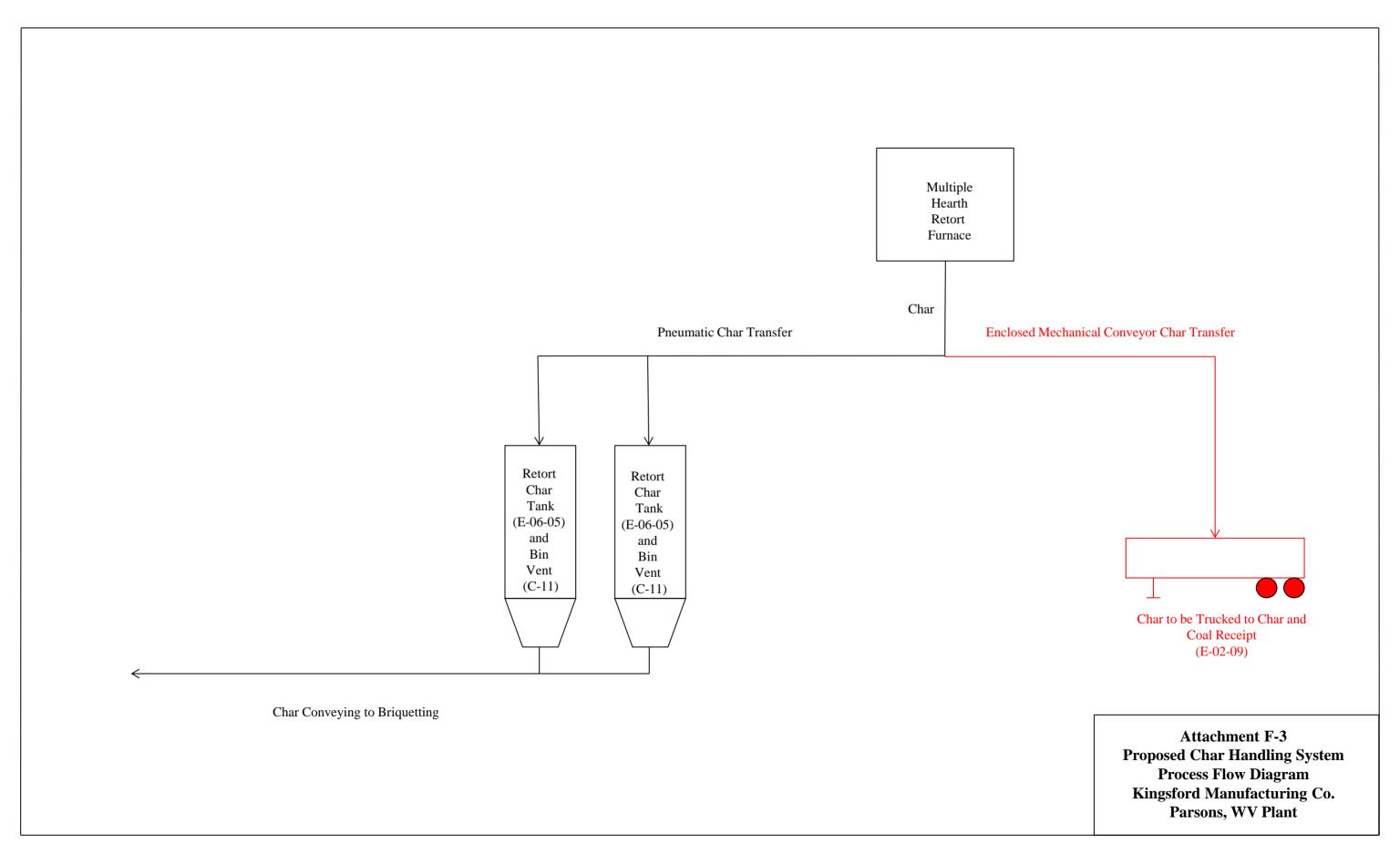
ATTACHMENT E PLOT PLAN

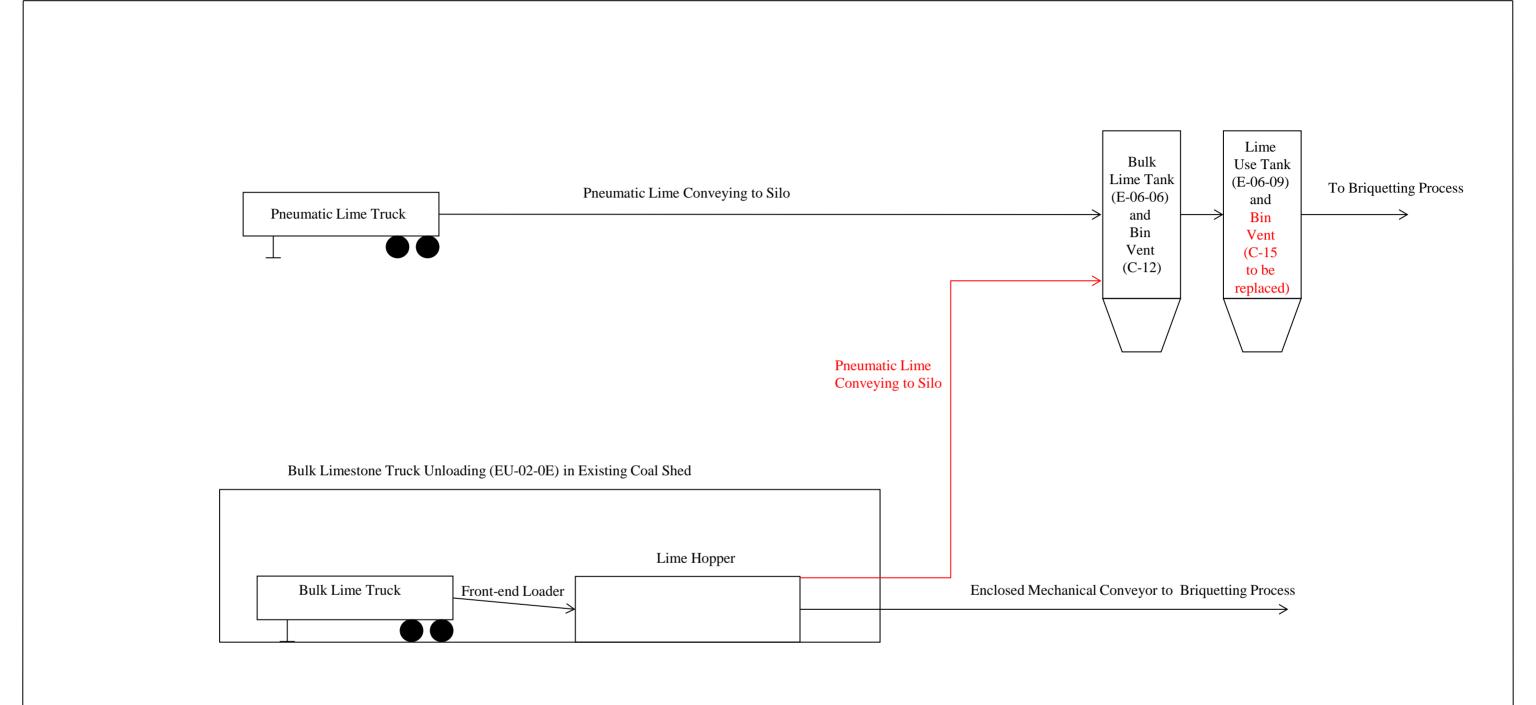

Attachment E - Plot Plan

Kingsford Manufacturing Co.: Parsons Facility


US Route 219 South Parons, Tucker County, West Virginia

0 N. Fifth St. 5th Floor Reading, PA 19601 Phone: 610-375-9301	PROJECT NO.: 160004	REV: 0	PREPARED BY: SJR
Fax: 610-375-9302 ww.libertyenviro.com	DATE: JULY 11, 2016	SCALE: 1" = 500'	APPROVED BY: MDZ


ATTACHMENT F PROCESS FLOW DIAGRAM



Attachment F-1
Wood Sizing Operations
Process Flow Diagram
Kingsford Manufacturing Co.
Parsons, WV Plant

Attachment F-2
Existing Char Handling System
Process Flow Diagram
Kingsford Manufacturing Co.
Parsons, WV Plant

Attachment F-4
Proposed Lime Handling System
Process Flow Diagram
Kingsford Manufacturing Co.
Parsons, WV Plant

ATTACHMENT G PROCESS DESCRIPTION

ATTACHMENT G – PROCESS DESCRIPTION

Kingsford Manufacturing Company (KMC) owns and operates a charcoal manufacturing facility located in Parsons, West Virginia. KMC plans to replace one (1) existing screening operations (E-02-03) on their existing raw material handling system, remove the existing retort char surge bin (E-06-0G) and its associated fabric filter dust collector (C-33), install a pneumatic conveyor to transfer lime from the existing bulk lime unloading operation (EU-02-0E) to the existing bulk lime tank (EU-06-06) and replace an existing fabric filter (C-15) on the lime use tank (EU-06-09). Additional details follow below.

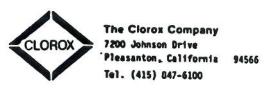
Screen Replacement

KMC currently operates a primary (E-02-02) and secondary (E-02-03) screen as part of their raw material handling operations. The screens are used to size the wood used as raw material in the char manufacturing process. No changes in its screening fractions are anticipated. The new secondary screening operations will continue to be designated E-02-03, the same Source ID number as the screen it is replacing. The new secondary screener will continue to use Emission Point ID number S-09. A process flow diagram for the raw material handling operation, shows both the existing and proposed operations, is provided in Attachment F. Potential emission calculations are provided in Attachment N.

Retort Char Surge Bin Removal

Retort Char Surge Bin (E-06-0G) and its associated fabric filter (C-33) will be removed. The surge bin was used to store retort char when the pneumatic conveying system to the retort char silos (E-06-05) was down. Instead, Kingsford intends to use closed mechanical conveyors to fill trucks when this condition occurs. The trucks will then be used to transport the char to the existing Beryl Char and Coal Unloading Operation (E-02-09). Because of the high moisture content of the char being transferred, the amount of fugitive dust from the char transfer operations is negligible.

Lime Receipt and Transfer Modifications


Kingsford currently has two (2) methods of receiving lime. The first is by pneumatic truck. The second is by bulk truck. The pneumatic truck system allows lime to be blown directly from the truck to the bulk lime tank (EU-06-06), controlled by a bin vent filter C-12) and then pneumatically conveyed to the lime use tank (EU-06-09, controlled by a bin vent filter C-15). The bulk truck unloading system (EU-02-0E, added in 2015) consists of receiving lime from covered trucks that back into an existing "shed" (three-sided roofed enclosure), and dumping the lime onto an open pad. The lime is then transferred from the resulting pile into a hopper using a front-end loader. The limestone is then transferred via covered conveyor systems to the existing charcoal briquet mixing process operations.

Kingsford would like the option of pneumatically conveying the bulk truck lime to the existing lime silo and then pneumatically conveying the lime to the existing use tank. This will require installation of a new pneumatic line and blower to convey the lime from

the lime hopper to the lime silo, and replacement of the existing bin vent filter (C-15) on the lime use tank. The existing bin vent filter has an exhaust volumetric flowrate of 200 cfm. The new bin vent filter will have an exhaust volumetric flowrate of 600 cfm.

Emissions from the proposed modifications are shown in Attachment N. The emissions are below the permitting thresholds of 45CSR13 for construction permits.

ATTACHMENT H MSDS INFORMATION

Material Safety Data Sheet

I Chemical Identification					•
NAME: SLAB WOOD DUST	<u> </u>				
DESCRIPTION: PINE PARTICLES OF WOO)D			CAS no.	
Other Designations	Manuf	aci	lurar		
Sawdust Wood Flour Rog Puel Dust	Several Suppliers		iui ei	Notify your Supe Call: (303) 573- Rocky Hountain F 645 Bamock Stre Denver, CO 80204	-1014 Poison Center set
II Health Hazard Data		П	III Hazard	dous Ingred	ients
congestion, itching and bleeding of the no FIRST AID: EYE CONTACT: flush immediately least 15 minutes. See a doctor if irriskin CONTACT: low hazard. INGESTION: low to 3 glasses of water. INHALATION: remove breathing problems develop, give moist oxy studies have linked wood dust to masal car workers. Carpenters, sawmill and lumber mi appear to have this increased risk.	asthms, cough, see and sneering, with water for at tation persists. hazard. Drink 2 from exposure. If gen. Preliminary icer in furniture ll workers do not		exceeded when av 40-hour workweek. STEL = Short Tern the stated limit period. Source: Preliminary studi in furniture work workers do not ap	reraged over a nor. Source: ACGIH, 198 Exposure Level. E. during the allowab ACGIH, 1984. les have linked woo kers. Carpenters, s ppear to have this i	xposure must not exceed ple 15 minute excursion d dust to nesal cancer newmill and lumber mill ncreased risk.
IV Fire and Explosion Da	(a	Ш	V Specia	I Protection	Information
As with all organic dusts, may be explosi air in critical proportions. Minimize dus good housekeeping. Extinguishing media: dioxide. When fighting a fire wear an apprire resistant clothing and eye protection.	t by maintaining water, carbon rowed respirator,		workroom air be protection equips specific exposure splash goggles we coveralls, glov	elow l mg/m³, neert may be require e and working com- ith sideshields or es, closed shoe your supervisor o	the wood dust in the The following special and depending upon your ditions: hat, chemical face shield, apron or a and an approved r corporate safety for
VI Spill or Leak Procedur	'es		VII React	ivity Data	
When cleaning a spill or leak wear an appand suitable protective clothing and eyprevent skin and eye contact. Minimize me Nonhazardous. Scoop up and dispose of in local, state and federal regulations.	e protection to		Stable. Incomp		xidizers (peroxides, es).
VIII Special Precautions			IX Physic	al Data	
Minimize skin and eye contact. Avoid inhalat	1 on •		None.	,	

The Clorox Company

1221 Broadway Oakland, CA 94612 Tel. (510) 271-7000

Material Safety Data Sheet

I Product: RAW CHAR					
Description: BLACK PARTICULATE SC	DLID				
Other Designations	Manuf	acturer	Emergency Telephone Nos.		
WOOD CHAR 1221 Bi		facturing Company roadway CA 94612	For Medical Emergencies, call Rocky Mountain Poison Center: 1-800-446-10 For Transportation Emergencies, call Chemtrec: 1-800-424-9300	014	
II Health Hazard Data		III Hazardous Ingredients			
Dust may irritate eyes. Inhalation of dust may irritate Chronic or prolonged exposure to the dust may ca shortness of breath.		Ingredient Char dust CAS # 16291-96-6	Concentration Worker Exposure Limit varies 2 mg/m³ - TLV-TWA ab (respirable dust)		
Individuals with pulmonary and/or respiratory disease sho to dust.	ould avoid exposure	^a TLV-TWA = ACGIH	Threshold Limit Value-Time Weighted Average.		
FIRST AID:		^b Based on the ACGIF	HTLV-TWA for coal dust.		
EYE CONTACT: Flush eyes thoroughly with water for at irritation persists, call a physician.	least 15 minutes. If	None of the matericarcinogen lists.	None of the materials in this product are on the IARC, OSHA, or NTP		
SKIN CONTACT: Wash skin with soap and water.					
INGESTION: Drink a glassful of water. Call a physician.					
INHALATION: Remove to fresh air. If irritation or breathing problems persist, call a physician.					
IV Special Protection and Precautions		V Transportati	on and Regulatory Data		
Hygienic Practices: Wash hands after direct contact.		DOT Proper Shipping	Name: Spontaneously combustible material.		
Engineering Controls: Use local exhaust to minimize expo	sure to dust.	EPA - SARA Title III/CERCLA: This product is a hazardous chemical reportable			
Personal Protective Equipment: Wear safety glasses and gloves. Use NIOSH-approved respirator under conditions where TLV limits may be exceeded.		under Sections 311/3 313 or under Section	312 and contains no chemicals regulated under S 304/CERCLA.	Section	
VI Spill Procedures/Waste Disposal		VII Reactivity [Data Data		
Spill Procedures: Remove heat and ignition sources. Vacuum sweep, if necessary, to avoid generating airborne dust. Wash residual to on-site treatment area, where appropriate. Waste Disposal: Reclaim, if possible; otherwise, dispose of in accordance with all applicable federal, state, and local regulations.		Avoid contact with oxidizing agents, heat sources, and ignition sources.			
VIII Fire and Explosion Data		IX Physical Da	fa		
Explosion Hazard: Mixtures of fine particles with air ma explosive mixture.	y form a potentially		~0.5	i g/mL	
Fire Extinguishing Agents: Dry chemical, carbon dioxi water spray.	de (CO ₂), foam, or				

Material Safety Data Sheet

(Limestone)

1. IDENTIFICATION

Chemical Name:

Limestone

Chemical Formula:

N/A

Molecular Weight:

N/A

Trade Name:

Crushed Stone

DOT Identification No:

None

Synonyms: Aggregate, Aglime, Barn Lime, Coverstone, Flexible Base, Fluxing Agent, Manufactured Sand, Mineral Filler, Screenings

2. PRODUCT AND COMPONENT DATA

Component(s) Chemical Name	CAS Registry No.	% (Approx)	Exposure Limits
Limestone*	1317-65-3	100	See section 6
*Composition varies naturally - typically			
contains quartz (crystalline silica).	14808-60-7	>1	

3. PHYSICAL DATA

Appearance and odor: Angular gray, white and tan particles ranging in size from powder to boulders. No odor.

Specific Gravity: 2.6 – 2.75

Boiling point (At 1 Atm.): N/A

Vapor Density in Air (Air = 1): N/A

Vapor Pressure (mmHg @ 20°C): N/A

% Volatile, By Volume (@ 100°F): 0%

Evaporation Rate (at 1 Atm. and 25 • C; n-butyl acetate = 1): 0

Solubility in Water: 0

4. REACTIVITY DATA

Stability: Stable

Conditions to Avoid: Avoid contact with incompatible materials (see below).

Incompatibility (materials to avoid): Contact with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride may cause fire and/or explosions. Silica dissolves readily in hydrofluoric acid producing a corrosive gas – silicon tetrafluoride.

Hazardous Decomposition Products: Limestone ignites on contact with fluorine and is incompatible with acids, alum, ammonium salts, and magnesium. Silica reacts violently with powerful oxidizing agents such as fluorine, boron trifluoride, chlorine trifluoride, manganese trifluoride, and oxygen difluoride yielding possible fire and/or explosions. Silica dissolves readily in hydrofluoric acid producing a corrosive gas — silicon tetrafluoride.

Hazardous Polymerization: Not known to polymerize

5. FIRE AND EXPLOSION HAZARD DATA

Flashpoint (Method used): Not Flammable Flammable Limits in Air: Not Flammable Extinguishing Agents: None Required

Unusual Fire and Explosion Hazards: Contact with powerful oxidizing agents may cause fire and/or explosions (see section 4 of this MSDS).

6. TOXICITY AND FIRST AID

EXPOSURE LIMITS (When exposure to this product and other chemicals is concurrent, the exposure limit must be defined in the workplace.) Unless specified otherwise, limits are expressed as eight-hour time-weighted averages (TWA). Limits for cristobalite and tridymite (other forms of crystalline silica) are equal to one-half of the limits for quartz.

ABBREVIATIONS: TLV = threshold limit value of the American Conference of Governmental Industrial Hygienists (ACGIH); MSHA PEL = permissible exposure limit of the Mine Safety and Health Administration

(MSHA); OSHA PEL = permissible exposure limit of the Occupational Safety and Health Administration (OSHA); mg/m³ = milligrams of substance per cubic meter of air.

Limestone (Calcium Carbonate): ACHIH TLV® = 10mg/m³; OSHA PEL = 15mg/m³ (total dust); OSHA PEL = 5mg/m³ (respirable fraction), MSHA PEL = 10mg/m³ (total dust).

Other Particulates: 2001 ACGIH TLV® = 10mg/m³ (inhalable/total particulate, not otherwise specified), 2001 ACGIH TLV® = 3 mg/m³ (respirable particulate, not otherwise specified); OSHA PEL = 15mg/m³ (total particulate, not otherwise regulated), OSHA PEL = 5mg/m³ (respirable particulate, not otherwise regulated).

Respirable Crystalline Silica (SiO₂/quartz): ACGIH TLV® = 0.05mg/m³; MSHA and OSHA PEL = 10mg/m³ ÷ (%SiO₂+2), for respirable dust containing crystalline silica.

Total dust, respirable and nonrespirable: 1973 ACGIH TLV® = $30 \text{mg/m}^3 \div (\% \text{quartz} + 3)$.

Total Dust: MSHA PEL = 10 mg/m³ (for nuisance particulates listed in Appendix E of the 1973 ACGIH TLV® booklet).

Per ACGIH, adverse effects are not likely to occur in the workplace provided exposure levels do not exceed the appropriate TLVs & PELs. However, because of the wide variation in individual susceptibility, lower exposure limits may be appropriate for some individuals including persons with pre-existing medical conditions such as those described below.

Medical Conditions Aggravated by Exposure: Inhaling respirable dust and/or crystalline silica may aggravate existing respiratory system disease(s) and/or dysfunctions. Exposure to dust may aggravate existing skin and/or eye conditions.

Primary Route(s) of Exposure

X Inhalation Skin Ingestion

Acute Toxicity

EYE CONTACT: Direct contact with dust may cause irritation by mechanical abrasion.

SKIN CONTACT: Direct contact may cause irritation by mechanical abrasion.

SKIN ABSORPTION: Not expected to be a significant exposure route.

INGESTION: Expected to be practically non-toxic. Ingestion of large amounts may cause gastrointestinal irritation and blockage.

INHALATION: Dusts may irritate the nose, throat, and respiratory tract by mechanical abrasion. Coughing, sneezing, and shortness of breath may occur following exposures in excess of appropriate exposure limits.

First Aid

EYES: Immediately flush eye(s) with plenty of clean water for at least 15 minutes, while holding the eyelids) open. Occasionally lift the eyelids) to ensure thorough rinsing. Beyond flushing, do not attempt to remove material from the eye(s). Contact a physician if irritation persists or later develops.

SKIN: Wash with soap and water. Contact a physician if irritation persists or later develops.

INGESTION: If person is conscious, give large quantity of water and induce vomiting; however, never attempt to make an unconscious person drink or vomit. Get immediate medical attention.

INHALATION: Move to fresh air. Dust in throat and nasal passages should clear spontaneously. Contact a physician if irritation persists or later develops.

Steve Sherrard 304-614-3171

For emergencies, contact Tyler Beaty 304-614-2986

(company's designated emergency contact)

Chronic Toxicity

Prolonged and repeated inhalation of respirable crystalline silica-containing dust in excess of appropriate exposure limits has caused silicosis, a lung disease. Not all individuals with silicosis will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms can appear at any time, even years

after exposure has ceased. Symptoms of silicosis may include, but are not limited to, the following: shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; right heart enlargement and/or failure. Smoking may increase the risk of developing lung disorders, including emphysema and lung cancer. Persons with silicosis have an increased risk of pulmonary tuberculosis infection.

Respirable dust containing newly broken silica particles has been shown to be more hazardous to animals in laboratory tests than respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken particles of silica.

There are reports in the literature suggesting that excessive crystalline silica exposure may be associated with adverse health effects involving the kidney, scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) and other autoimmune disorders. However, this evidence has been obtained primarily from case reports involving individuals working in high exposure situations or those who have already developed silicosis; and therefore, this evidence does not conclusively prove a causal relationship between silica or silicosis and these adverse health effects. Several studies of persons with silicosis also indicate an increased risk of developing lung cancer, a risk that increases with the duration of exposure. Some of these studies of silicotics do not account for lung cancer confounders, especially smoking.

Limestone is not listed as a carcinogen by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or the Occupational Safety and Health Administration (OSHA). In October 1996, an IARC Working Group re-assessing crystalline silica, a component of this product, designated respirable crystalline silica as carcinogenic (Group 1). The NTP's Report on Carcinogens. 9th edition, lists respirable crystalline silica as a "known human carcinogen." In year 2000, the American Conference of Governmental Industrial Hygienists (ACGIH) listed respirable crystalline silica (quartz) as a suspected human carcinogen (A-2). These classifications are based on sufficient evidence of carcinogenicity in certain experimental animals and on selected epidemiological studies of workers exposed to crystalline silica.

California Proposition 65: WARNING: This product contains chemical(s) known to the state of California to cause cancer.

7. PERSONAL PROTECTION AND CONTROLS

Respiratory Protection

For respirable quartz levels that exceed or are likely to exceed an 8-hr TWA of 0.1mg/m³, a NIOSH approved dust respirator is recommended. For respirable quartz levels that exceed or are likely to exceed an 8-hr TWA of 0.5mg/m³, a NIOSH approved HEPA filter respirator is recommended. If respirable quartz levels exceed or are likely to exceed an 8-hr TWA of 5mg/m³, a NIOSH approved positive pressure, full face respirator or equivalent is recommended. Respirator use must comply with applicable MSHA or OSHA standards, which include provisions for a user training program, respirator repair and cleaning, respirator fit testing, and other requirements.

Ventilation: Local exhaust or general ventilation adequate to maintain exposures below appropriate exposure limits.

Skin Protection

See "Hygiene" section below.

Eve Protection

Safety glasses with side shields should be worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or are anticipated.

Hygiene

Wash dust-exposed skin with soap and water before eating, drinking, smoking, and using toilet facilities. Wash work clothes after each use.

Other Control Measures

Respirable dust and quartz levels should be monitored regularly. Dust and quartz levels in excess of appropriate exposure limits should be reduced by all feasible engineering controls, including (but not limited to) wet suppression, ventilation, process enclosure, and enclosed employee work stations.

8. STORAGE AND HANDLING PRECAUTIONS

Respirable crystalline silica-containing dust may be generated during processing, handling, and storage. The personal protection and controls identified in Section 7 of the MSDS should be used as appropriate. Do not store near food and beverages or smoking material.

9. SPILL, LEAK AND DISPOSAL PRACTICES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

The personal protection and controls identified in Section 7 of the MSDS should be used as appropriate. Spilled material, where dust can be generated, may overexpose cleanup personnel to respirable crystalline silica-containing dust. Wetting of spilled material and/or use of respiratory protective equipment may be necessary. Do not dry sweep spilled material. Prevent spilled materials from inadvertently entering streams, drains, or sewers.

Steve Sherrard 304-614-3171

For emergencies, contact <u>Tyler Beaty</u> 304-614-2986

(your company's designated emergency contact)

WASTE DISPOSAL METHOD

Pick up and reuse clean materials. Dispose of waste materials only in accordance with applicable federal, state, and local laws and regulations.

10. TRANSPORTATION

DOT Hazard Classification: None

Placard Required: None

Label Required: Label as required by the OSHA Hazard Communication Standard [29 CFR 1910.1200 (f) and applicable state and local laws and regulations.

For Further Information Contact: Place here the name, address, and telephone number of the operator or responsible party who can provide more info about the hazardous chemical.

Date of Preparation:

Emergency Information: Your company's designated emergency contact.

Notice: JF Allen Company believes the information contained herein is accurate; however, JF Allen Company makes no guarantees with respect to such accuracy and assumes no liability in connection with the use of the information contained herein by any party. The provision of the information contained herein is not intended to be and should not be construed as legal advice or as ensuring compliance with any federal, state or local laws and regulations. Any party using this product should review all such laws, rules or regulations prior to use.

NO WARRANTY IS MADE, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.

ATTACHMENT I EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device 4
E-02-03	S-09	Secondary Screening	2012	45 tph	Replacement of screen	None
E-06-0G	S-24	Retort Char Surge Bin	2003	60 ton	Removal of surge bin and fabric filter (C-33)	Fabric Filter (C-33)
E-02-0E	S-09	Bulk Lime Truck Unloading System	2015	15,000 tpy	Installation of a new blower and pneumatic line to convey lime from	Full enclosure
E-06-06	S-14	Bulk Lime Tank	2001	125 ton	the from the bulk lime truck unloading system	Fabric Filter (C-12)
E-06-09	S-17	Lime Use Tank	1958	6 ton	Fabric filter to be replaced	Fabric Filter (C-15)
E-09-01	S-09	Paved Plant Roads	Various	N/A	Slight increase in plant traffic due to Surge Char Truck Traffic	None
					All changes to commence after 9/3/2016	

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission	Emission Point Type ¹	Through (Must mat	Unit Vented This Point ch Emission & Plot Plan)	Cont (Mu Emis	Pollution rol Device ust match esion Units & Plot Plan)	for Er U (che proc	Time mission Init emical esses nly)	All Regulated Pollutants - Chemical Name/CAS	Maxir Pote Uncon Emiss	ntial trolled	Pot Con	timum ential trolled ssions ⁵	Emission Form or Phase (At exit conditions,	Est. Metho d Used	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Units Table & Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
S-14 S-17	Bin vent	E-06-06 E-06-09	Bulk Lime Tank Lime Use Tank	C-12 C-15	Fabric filter Fabric filter	N/A	N/A	PM PM10 PM2.5 PM PM10 PM2.5	See Attac	chment N			PM/PM10/ PM2.5 - Solid Particulate	EE	N/D

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 2: Release Parameter Data										
Emission	Inner				Emission Point E	levation (ft)	UTM Coordinates (km)				
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting			
S-14	0.67	70	525	24.8	N/D	60	N/D	N/D			
S-17	0.67	70	600	28.4	N/D	50	N/D	N/D			

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K FUGITIVE EMISSION DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	☐ Yes ☐ No
	$oxed{oxed}$ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\hfill \square$ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes
	\square If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes ☐ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
	Will there be any other activities that generate fugitive emissions? Yes, one screen (E-03-03) and some negligible issions from surge char truck loading /unloading (material is quenched).
	⊠ Yes □ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
-	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS	Maximum Potential Uncontrolled Emissions ²		Maximum Pount Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	PM/PM10/PM2.5		See Attachment N for emissions estimates			EE
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks						
General Clean-up VOC Emissions						
Other: E-02-03 Secondary Screening S-09, Negligible emissions from surge char truck loading/unloading.	PM/PM10/PM2.5	See Attachment N N/A		N/A	EE	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L EMISSIONS UNIT DATA SHEET

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form):

1. Name or type and model of proposed affected source: E-02-03 Secondary Screening - Replacement Screen: BM&M Model 10X202CS 10' X 20' Two deck screen E-02-0E Bulk Lime Truck Unloading System E-06-06 Bulk Lime Tank E-06-09 Lime Use Tank
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
E-02-03 Secondary Screening 45 tph E-02-0E Bulk Lime Truck Unloading System 27 tph E-06-06 Bulk Lime Tank 5 tph E-06-09 Lime Use Tank 5tph
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Same as above.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Not applicable

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable): Not applicable									
	(a)	(a) Type and amount in appropriate units of fuel(s) to be burned:								
	(b)	Chemical analysis of prand ash:	oposed fuel(s), e	xcluding coal, in	cluding maxim	um percent sulfur				
	(c)	Theoretical combustion	air requirement	(ACF/unit of fue	l):					
		@		°F and		psia.				
	(d)	Percent excess air:								
	(e)	Type and BTU/hr of bu	rners and all othe	er firing equipme	ent planned to b	pe used:				
	. ,	•		•	•					
	(6)	W 1 '		I C.C						
	(1)	If coal is proposed as a coal as it will be fired:	source of fuel, ic	ientify supplier a	and seams and	give sizing of the				
		ocal ac it iiii so iii cai								
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.				
7.	Pro	jected operating sched	ule:							
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52				

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: See Attachment N								
@		°F and	psia						
a.	NO _X	lb/hr	grains/ACF						
b.	SO ₂	lb/hr	grains/ACF						
c.	СО	lb/hr	grains/ACF						
d.	PM ₁₀	lb/hr	grains/ACF						
e.	Hydrocarbons	lb/hr	grains/ACF						
f.	VOCs	lb/hr	grains/ACF						
g.	Pb	lb/hr	grains/ACF						
h.	Specify other(s)								
		lb/hr	grains/ACF						
		lb/hr	grains/ACF						
		lb/hr	grains/ACF						
		lb/hr	grains/ACF						

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
KMC will monitor visible emissions from the	KMC will calculate and record emissions from the
operations in accordance with the requirements of the	operations in accordance with the requirements of the
existing Title V operating permit.	existing Title V operating permit.
REPORTING	TESTING
KMC will report emissions from the operations in	Not applicable
accordance with the requirements of the existing Title V	Two application
operating permit.	
MONITORING	
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	OSED RECORDREEPING THAT WILL ACCOMPANT THE
	DOOED EDECUENCY OF DEPOPTING OF THE
REPORTING. PLEASE DESCRIBE THE PROPERTY OF T	DPOSED FREQUENCY OF REPORTING OF THE
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	lance procedures required by Mandiacturer to
Not applicable	
11	

Attachment L – See Attachment N for Roadway Emission Estimates FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

PM PM-10

k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
p =	Number of days per year with precipitation >0.01 in.		

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1									
2									
3									
4									
5									
6									
7									
8									

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)		
w =	Mean number of wheels per vehicle		
p =	Number of days per year with precipitation >0.01 in.		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M			PM	l-10	
Item No.	Uncon	trolled	Cont	rolled	Uncon	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1								
2								
3								
4								
5								
6								
7								
8								
TOTALS								

Page 1 of 2

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

		ntrolled		rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET

Attachment M Air Pollution Control Device Sheet

(BAGHOUSE)

 ${\tt Control\ Device\ ID\ No.\ (must\ match\ Emission\ Units\ Table):\ Lime\ Use\ Tank\ Bin\ Vent\ (C-15,\ Replacement)}$

Equipment Information and Filter Characteristics Total number of compartments: 1 1. Manufacturer: AES 3. Number of compartment online for normal Model No. FRC 9X27 operation: 1 4. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. 5. Baghouse Configuration: □ Open Pressure Closed Pressure ☐ Closed Suction (check one) ☐ Electrostatically Enhanced Fabric Other, Specify 6. Filter Fabric Bag Material: 7. Bag Dimension: ☐ Nomex nylon ☐ Wool Diameter 6.5 in. □ Polyester Polypropylene 43 ft. Length Acrylics Ceramics ☐ Fiber Glass ft^2 Total cloth area: $27 \times 9 = 243$ Cotton Weight oz./sq.yd 9. Number of bags: 9 ☐ Teflon Thickness in ☐ Others, specify 2.5 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: □ Continuous ☐ Automatic Intermittent 12. Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning Reverse Air Jet Pneumatic Shaker Reverse Air Flow Other: Bag Collapse Pulse Jet Manual Cleaning Reverse Jet 13. Cleaning initiated by: ☐ Frequency if timer actuated Expected pressure drop range in. of water ☐ Other 14. Operation Hours: Max. per day: 24 15. Collection efficiency: Rating: 99+% 365 99+Max. per yr: Guaranteed minimum: % **Gas Stream Characteristics** °F and Ambient 16. Gas flow rate into the collector: 600 ACFM at 70 **PSIA** ACFM: Design: 600 **PSIA PSIA** Maximum: **PSIA** Average Expected: 17. Water Vapor Content of Effluent Stream: Amb lb. Water/lb. Dry Air ٥F 18. Gas Stream Temperature: 70 19. Fan Requirements: N/A hp ft³/min OR 20. Stabilized static pressure loss across baghouse. Pressure Drop: N/D in. H₂O High

21. Particulate Loading:

N/D

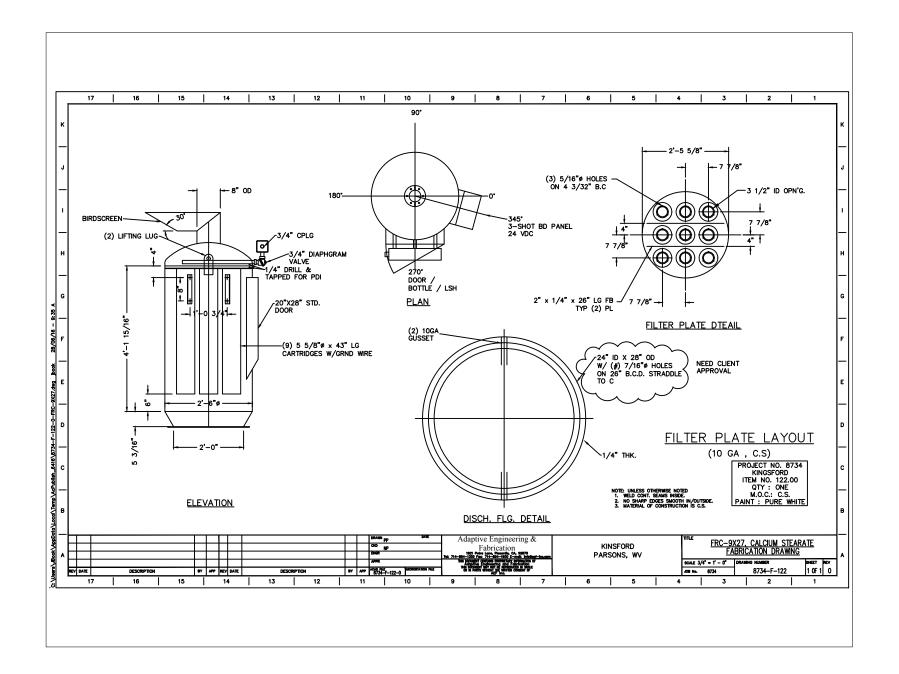
Inlet:

N/D

Outlet: <0.01

in. H₂O

grain/scf


Low

grain/scf

22. Type of Pollutant(s) to be collecte Lime dust	d (if particul	ate give specific	type):						
22. In there any SQ in the emission of	otroom? [⊠ No □ Y	es SC) conto	nt:	nnmu			
23. Is there any SO₃ in the emission s24. Emission rate of pollutant (specify				onte		ppmv ppmv			
24. Linission fate of politicant (specify) iiito ariu o	I	N	uesigii (OUT			
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf			
See attachment N									
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Frac	Fraction Efficiency of Collector				
Particulate Size Range (microns)	Weigl	ht % for Size Ra	inge	V	Weight % for Size Range				
0 – 2		N/D							
2 – 4									
4 – 6									
6 – 8									
8 – 10									
10 – 12									
12 – 16									
16 – 20									
20 – 30									
30 – 40									
40 – 50									
50 – 60									
60 – 70									
70 – 80									
80 – 90									
90 – 100									
>100									

	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity Pressure Drop Alarms-Audible to Process Operator Visual opacity readings, Frequency: See current operating permit. Other, specify:
	Describe any recording device and frequency of log entries: None
28.	Describe any filter seeding being performed: None
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): None
	Describe the collection material disposal system: Returned to process Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
J	The state of the s

Please propose m proposed operating proposed emissions MONITORING: KMC the operations in accord existing Title V operating	g parameters. Please propose imits. will monitor visible emissions from ance with the requirements of the permit.	RECORDKEEPING: KMC will calculate and recommissions from the operations in accordance with requirements of the existing Title V operating permit.	he ord
	will report emissions from the with the requirements of the existing	TESTING: Not applicable	
MONITORING: RECORDKEEPING: REPORTING: TESTING:	monitored in order to demons equipment or air control device. Please describe the proposed re- Please describe any proposed pollution control device.	cocess parameters and ranges that are proposed to strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on emissions testing for this process equipment on	ess air
33. Manufacturer's Gua N/A	aranteed Capture Efficiency for eac	ch air pollutant.	
34. Manufacturer's Gua	aranteed Control Efficiency for eac	ch air pollutant.	
35. Describe all operati N/A	ng ranges and maintenance proce	edures required by Manufacturer to maintain warranty.	

ATTACHMENT N SUPPORTING EMISSION CALCULATIONS

TABLE N-1 POTENTIAL FACILITY EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WV

				Potential A	nnual Emissio	ons (tons/yr)			
Source	NO_x	CO	VOC	SO_2	PM	PM_{10}	$PM_{2.5}$	Methanol	Lead
Wood & Char Piles (E-01)					15.00	7.05	1.05		5.25E-05
Raw Material Handling (E-02)					0.71	0.34	0.05		2.97E-06
Charring & Briquet Dryers (E-03)	237.50	13.31	6.65	64.60	175.78	129.07	66.97	3.70	1.36E-02
Briquet Coolers (E-04)					38.50	19.25	11.55		6.43E-04
Solvent Treated Briquet Production (E-05)			83.00						
Minor Ingredient Batching/Dry Storage (E-06)					3.33	3.33	3.33		1.34E-05
Natural Gas Burning (E-07)	10.00	8.40	0.55	0.06	0.76	0.76	0.76		5.00E-05
Briquet Handling (E-08)					29.47	29.47	29.47		4.92E-04
Plant Roads (E-09)					5.81	1.16	0.29		
Liquid Storage (E-10)			1.10						
Emergency Equipment (E-11)	3.29	0.89	0.32	0.28	0.27	0.27	0.27		
Total	250.79	22.60	91.62	64.94	269.63	190.70	113.74	3.70	1.48E-02

			Maximum	Maximum
	Operating		Annual	Hourly
	Schedule		Production	Production
Source	(hr/yr)	Units	(dry ton/yr)	(dry ton/hr)
ACC	8,760	Wood (dry)	209,000	38.5
		Wood (wet)	418,000	
Briquet Dryers	8,760	Dry Briquets	154,000	24

Potential to emit assumptions

Natural gas throughput - 200 MMcf/yr Solvent treaded briquet (STB) production - 20 tph, 64,000 tpy Baghouses - outlet grain loading 0.01 gr/scf, 8.760 hours/yr

Wood pile throughput - 500,000 tpy

TABLE N-2 WOOD AND CHAR PILE EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

				PM Emissions		Hourly PM		Hourly PM _{2.5}	Annual PM	10	
Emissions Unit Number	Emissions Point Number	Name of Emissions Unit	Throughput ^a	Factor ^b	Control Factor	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate
			(Dry Tons)	(lb/Dry Ton)		(lbs)	(lbs)	(lbs)	(Tons)	(Tons)	(Tons)
01	01	Wood Pile	250,000	0.1		2.85	1.34	0.20	12.50	5.88	0.88
	02	Char and coal Pile	50,000	0.1		0.57	0.27	0.04	2.50	1.18	0.18
TOTALS						3.42	1.61	0.24	15.00	7.05	1.05

^a Emission factor based on conservative adjustment of AP-42 factors. PM10 and PM2.5 fractions were calculated pursuant to AP-42 Section 13.2.4. See Table C-3 for details.

Attachment N v 2 - Potential Emissions 7/8/2016

TABLE N-3 MATERIAL HANDLING EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

				PM Emissions	PM ₁₀ Emissions	PM _{2.5} Emissions		Hourly PM	Hourly PM ₁₀	Hourly PM ₁₀	Annual PM	Annual PM ₁₀	Annual PM _{2.5}
Emissions Unit Number	Emissions Point Number	Name of Emissions Unit	Annual TPY	Factor ^a	Factor	Factor	Control Factor	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate	Emissions Rate
			(Wet Tons)	(lb/Wet Ton)	(lb/Wet Ton)	(lb/Wet Ton)		(lbs)	(lbs)	(lbs)	(Tons)	(Tons)	(Tons)
02	01	Transfer Drag Pit to 48" Belt	418,000	9.19E-04	4.35E-04	6.59E-05	0	0.043873909	0.020751173	0.00314232	0.192	0.091	0.014
02	02	Primary Screening	418,000	9.19E-04	4.35E-04	6.59E-05	0	0.043873909	0.020751173	0.00314232	0.192	0.091	0.014
02	03	Secondary Screening	125,400	9.19E-04	4.35E-04	6.59E-05	0	0.013162173	0.006225352	0.000942696	0.058	0.027	0.004
02	04	600 Ft Belt to Dryer Feed Bin	418,000	9.19E-04	4.35E-04	6.59E-05	0	0.043873909	0.020751173	0.00314232	0.192	0.091	0.014
02	05	Wood with Metal Bypass Belt	418	9.19E-04	4.35E-04	6.59E-05	0	4.38739E-05	2.07512E-05	3.14232E-06	1.92E-04	9.09E-05	1.38E-05
02	06	Wood Dryer Bin Bypass Screw	418	9.19E-04	4.35E-04	6.59E-05	0	4.38739E-05	2.07512E-05	3.14232E-06	1.92E-04	9.09E-05	1.38E-05
02	07	Char Truck Transport	0	9.19E-04	4.35E-04	6.59E-05	0	0	0	0	0.000	0.000	0.000
02	09	Beryl Char and Coal Truck Dumping	111,600	9.19E-04	4.35E-04	6.59E-05	0	0.011713704	0.005540265	0.000838954	5.13E-02	2.43E-02	3.67E-03
02	0A	Bulk Coal Tank to Belt Transfer	61,600	9.19E-04	4.35E-04	6.59E-05	0	0.006465629	0.003058068	0.000463079	2.83E-02	1.34E-02	2.03E-03
02	0B	Rerun Char Tank Bypass Screw	154	9.19E-04	4.35E-04	6.59E-05	0	1.61641E-05	7.64517E-06	1.1577E-06	7.08E-05	3.35E-05	5.07E-06
02	0C	Material Handling, Char Hammer mill		0	0	0	0	0	0	0	0.00	0.00	0.00
		Existing Wood Sizing Hammermill											
02	0D	New Wood Sizing Hammermill		0	0	0	0	0	0	0	0.00	0.00	0.00
02	0E	Limestone Handling	15,000	2.E-02	1.E-02	2.E-03	0	0.042460029	0.020082446	0.003041056	0.19	0.09	0.01
TOTALS								0.16	0.08	0.01	0.71	0.34	0.05

*For wood coal and char, PM and PM $_{10}$ emission factors estimated per AP-42, Section 13.2.4 Emissions Factor = Particle Size Multiplier x 0.0032 x (Wind Speed/5) $^{1.3}$ / (Moisture Content/2) $^{1.4}$ per AP-42, Section 13.2.4. Particle size multiplier = 0.74 for PM $_{30}$ 0.35 for PM $_{10}$ 0. Wind speed = 6.2 mph Moisture content conservatively assumed to be similar to coal (4.8%)

For bulk limestone unloading (e-02-0E), emissions were estimated from US EPA AP-42 Chapter 13.2.4 "Aggregate Handling and Storage Piles" (11/05) using the equation E=k*0.0032**([U5]).13(M(2)).14) where E is the emission factor in lb0no, is the particle size multiplier. U is the mean wind speed in mph, and M is the material moisture content in %. Wind speed used in the calculations is 6.2mph (average annual wind speed for Parson, WV), and Moisture content used was 1% (ower range of moisture content of elivered limestone per supplier) Particle size multipliers are 0.74 for PM, 0.35 for PM10, and 0.053 for PM2.5. Three drop points were estimated.

Attachment N v 2 - Potential Emissions 7/8/2016

TABLE N-4
CHARRING/ACC AND BRIQUET DRYER EMISSIONS
KINGSFORD MANUFACTURING CO. - PARSONS, WV

Emissions Unit Number	Emissions Point Number	Pollutant	Maximum Annual Char Production (tons/yr)	Emission Factor ^a (lb/ton char)	Maximum Annual Wood Throughput (tons/yr)	Emission Factor ^a (lb/ton dry wood)	ACC Stack Emission Rate ^b (ton/yr)	Stack Emission Rate ^c (ton/yr)	Total Emission Rate (ton/yr)
03	01/02/03N	NO_x	38,000	12.5	209,000	2.27	201.88	35.63	237.50
		СО	38,000	N/D	209,000	N/D	1.00	12.31	13.31
		VOC	38,000	N/D	209,000	N/D	1.15	5.50	6.65
		SO_2	38,000	3.4	209,000	0.62	54.91	9.69	64.60
		PM	38,000	7.23	209,000	1.31	137.28	38.50	175.78
		PM_{10}	38,000	5.78	209,000	1.05	109.82	19.25	129.07
		$PM_{2.5}$	38,000	2.51	209,000	0.46	47.72	15.40	63.12
		Methanol	38,000	N/D	209,000	N/D	0.64	3.06	3.70

^a Emission factors for wood dryer/retort furnace/ACC system based upon data from similar Kingsford operations, increased for statistical confidence. The ACC PM₁₀ fraction is estimated to be 80% of PM, again based on similar Kingsford operations.

AP-42 Ratio of Methanol to VOC = [(150 lb methanol/ton) / (270 lb VOC/ton)] = 0.556 methanol/VOC

 $^{^{6}}$ Stack emission rates for gaseous pollutants are split 85% to the ACC and 15% to the briquet dryers based on the 15% flow going to the briquet dryers. ACC stack emission factors & rates for TSP and PM $_{10}$ do not account for the 15% exhausted to the briquet dryers since these emissions are accounted for in the dryer TSP/PM $_{10}$ calculations.

^c Briquet dryer PM emissions come from Table C-5.

^dMethanol emissions using U.S. EPA AP-42 Section 10.7 (September 1995) ratio of methanol to VOC emission factors times estimated VOC emissions from ACC and briquet dryers:

TABLE N-5 BRIQUET DRYER/COOLER EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WV

Emissions Unit Number	Emissions Point Number	Source	Maximum Annual Production	PM Emission Factor ^a	PM Emission Rate	PM ₁₀ Emission Factor ^a	PM ₁₀ Emission Rate	PM _{2.5} Emission Factor ^a	PM _{2.5} Emission Rate
rvamber	rumber	Bource	(tons/yr)	(lb/ton briquets)	(ton/yr)	(lb/ton briquets)	(ton/yr)	(lb/ton briquets)	(ton/yr)
03	02/03N	Briquet Dryers	154,000	0.5	38.50	0.25	19.25	0.2	15.40
04	01/02N	Briquet Coolers	154,000	0.5	38.50	0.25	19.25	0.15	11.55

^a PM emission factors based upon emissions data from similar Kingsford operations, increased for statistical confidence. PM10 fraction is assumed to be 50% of PM also based upon similar Kingsford operations., and PM2.5 factors based on emissions measured at aimilar Kingsford operations.

TABLE N-6 SOLVENT TREATED BRIQUET PRODUCTION EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WV

Emissions Unit Number	Emissions Point Number	Pollutant	Maximum Annual STB Production (tons/yr)	Total Emission Rate ^a (ton/yr)
05	01	VOC	64,000	83.00

^a Emissions unchanged from current operating permit.

Hourly VOC Emissions

Scenario A - 2.82 lbs/hr @ 20 tph STB - ACC operating Scenario B - 36.6 lbs/hr @ 13 tph STB - ACC down

TABLE N-7 MINOR INGREDIENT BATCHING/DRY STORAGE EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

Emissions Unit Number	Emissions Point Number	Name of Emissions Unit	Annual TPY/Normal CFM	PM Emission Factor ^a (lb/Wet Ton) (Gr/CF)	PM ₁₀ Emission Factor (lb/Wet Ton) (Gr/CF)	PM _{2.5} Emission Factor (lb/Wet Ton) (Gr/CF)	Control Factor	Hourly PM Emission Rate	Hourly PM ₁₀ Emission Rate	Hourly PM _{2.5} Emission Rate		Annual PM ₁₀ Emission Rate (TONS)	Annual PM _{2.5} Emission Rate
06	01	COAL TANK	100	1.00E-02	1.00E-02	1.00E-02	0.00%	0.01	0.01	0.01	0.038	0.038	0.038
	02	BERYL CHAR TANKS	525	1.00E-02	1.00E-02	1.00E-02	0.00%	0.05	0.05	0.05	0.197	0.197	0.197
	03	RERUN CHAR TANK	5	1.00E-01	1.00E-01	1.00E-01	0.00%	0.00	0.00	0.00	0.019	0.019	0.019
	04	YARD CHAR TANK	90	1.00E-01	1.00E-01	1.00E-01	0.00%	0.08	0.08	0.08	0.338	0.338	0.338
	05	RETORT CHAR TANKS & TRANSFER	1,406	1.00E-02	1.00E-02	1.00E-02	0.00%	0.12	0.12	0.12	0.528	0.528	0.528
	06	BULK LIME TANK	525	1.00E-02	1.00E-02	1.00E-02	0.00%	0.05	0.05	0.05	0.197	0.197	0.197
	07	BULK NITRATE TANK	560	1.00E-02	1.00E-02	1.00E-02	0.00%	0.05	0.05	0.05	0.210	0.210	0.210
	08	BULK STARCH TANK	560	1.00E-02	1.00E-02	1.00E-02	0.00%	0.05	0.05	0.05	0.210	0.210	0.210
	09	LIME USE TANK - new, larger bin vent	600	1.00E-02	1.00E-02	1.00E-02	0.00%	0.05	0.05	0.05	0.225	0.225	0.225
	0A	WET STARCH USE TANK	425	1.00E-02	1.00E-02	1.00E-02	0.00%	0.04	0.04	0.04	0.160	0.160	0.160
	0B	DRY STARCH USE TANK	425	1.00E-02	1.00E-02	1.00E-02	0.00%	0.04	0.04	0.04	0.160	0.160	0.160
	0C	BORAX USE TANK	250	1.00E-02	1.00E-02	1.00E-02	0.00%	0.02	0.02	0.02	0.094	0.094	0.094
	0D	NITRATE USE TANK	0	1.00E-02	1.00E-02	1.00E-02	0.00%	0.00	0.00	0.00	0.000	0.000	0.000
	0E	MULLER VENT	50	1.00E-01	1.00E-01	1.00E-01	90.00%	0.00	0.00	0.00	0.019	0.019	0.019
	0F	MINORS BATCH MIXING	2500	1.00E-02	1.00E-02	1.00E-02	0.00%	0.21	0.21	0.21	0.939	0.939	0.939
	0G	RETORT CHAR SURGE SILO - To be removed	1406										
TOTALS								0.76	0.76	0.76	3.33	3.33	3.33

^aPM and PM₁₀ emission factors based on Kingsford operating experience for similar sources.

Attachment N v 2 - Potential Emissions 7/8/2016

TABLE N-8 NATURAL GAS COMBUSTION EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WV

Emissions Unit Number	Emissions Point Number	Pollutant	Maximum Annual Natural Gas Throughput ^a (10 ⁶ ft ³ /yr)	Emission Factors ^b (lb/10 ⁶ ft ³)	Annual Hours of Operation ^c (hours/yr)	Emissio	on Rate ^d (ton/yr)
07	01	NOx	200	100	8,760	2.28	10.00
		CO	200	84.0	8,760	1.92	8.40
		VOC	200	5.5	8,760	0.13	0.55
		SO_2	200	0.6	8,760	0.01	0.06
		PM/PM ₁₀ /PM _{2.5}	200	7.6	8,760	0.17	0.76
		Lead	200	0.0005	8,760	0.00001	0.00005

^a Based on approximately 6 times the actual annual usage of ~30 MMCF/yr.
^aEmission factors based upon EPA AP-42 emission factors for natural gas-fired boilers (Section 1.4, 7/98). All PM assumed to be less than 1.0 micrometer.

TABLE N-9
BRIQUET HANDLING DUST COLLECTOR EMISSIONS
KINGSFORD MANUFACTURING CO. - PARSONS, WV

Emissions Unit Number	Emissions Point Number	Source	Pollutant	Flowrate (dscfm)	Exit Grain Loading ^a (gr/dscf)	Hours of Operation ^b (hr/yr)	Emission (lb/hr)	Rate (ton/yr)
08	01	Manufacturing	PM/PM _{10/} PM _{2.5}	15,000	0.01	8,760	1.29	5.63
	02	Packaging Process Equipment	PM/PM _{10/} PM _{2.5}	30,000	0.01	8,760	2.57	11.26
	03	Packaging Outside Handling	PM/PM _{10/} PM _{2.5}	25,000	0.01	8,760	2.14	9.39
	35	Packaging Weigh Scales	PM/PM _{10/} PM _{2.5}	8,500	0.01	8,760	0.73	3.19
						Total	6.73	29.47

^aTypical baghouse exit grain loading. All PM is assumed to be PM2.5

^bHours of operation assumed similar to briquet dryer operating schedule.

TABLE N-10 PLANT ROAD POTENTIAL EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

Emissions Unit Number	Emissions Point Number	Path	Throughput	Truck Payload	-	Road Segments Used	Round Trip Distance		Annual Operating Schedule	Pollutant	Emission Factor		on Rate
			(tons)	(tons)	(#)		(miles)	(miles)	(hours/yr)		, ,	(lb/hr)	(tons/yr)
09	01	Hogfuel Deliveryb	500,000	20	25,000	A	0.228	5,700	8,760	PM	0.664	0.432	1.892
			tons hogfuel						8,760	PM10	0.133	0.086	0.378
									8,760	PM2.5	0.033	0.021	0.093
		Coal Delivery ^c	12,160	23	529	A,B,F	0.532	281	8,760	PM	0.664	0.021	0.093
			tons coal						8,760	PM10	0.133	0.004	0.019
									8,760	PM2.5	0.033	0.001	0.005
		Lime Delivery ^d	1,900	23	83	A,B,C,D,E	1.100	91	8,760	PM	0.664	0.007	0.030
			tons lime						8,760	PM10	0.133	0.001	0.006
									8,760	PM2.5	0.033	0.000	0.001
		Starch Delivery ^e	3,230	23	140	A,B,C,D,E	1.100	154	8,760	PM	0.664	0.012	0.051
			tons starch						8,760	PM10	0.133	0.002	0.010
									8,760	PM2.5	0.033	0.001	0.003
		Nitrate Delivery ^f	190	23	8	A,B,C,D,E	1.100	9	8,760	PM	0.664	0.001	0.003
			tons nitrate						8,760	PM10	0.133	0.000	0.001
									8,760	PM2.5	0.033	0.000	0.000
		Borax Delivery ^g	95	21.5	4	A,B,C,D,E	1.100	5	8,760	PM	0.664	0.000	0.002
			tons borax						8,760	PM10	0.133	0.000	0.000
									8,760	PM2.5	0.033	0.000	0.000
		Beryl Char Deliveryh	28,000	15	1,867	A,B,C,F	0.684	1,277	8,760	PM	0.664	0.097	0.424
			tons char						8,760	PM10	0.133	0.019	0.085
									8,760	PM2.5	0.033	0.005	0.021
		Solvent Deliveryi	7,642	22	347	A,B,C,D,E	1.100	382	8,760	PM	0.664	0.029	0.127
			tons solvent			,,.,.			8,760	PM10	0.133	0.006	0.025
									8,760	PM2.5	0.033	0.001	0.006
		Bag Delivery ^j	27,720,000	107,712	257	A,B,C,D,E	1.100	283	8,760	PM	0.664	0.021	0.094
			bags	Bags/Truck	237	11,0,0,0,0	1.100	203	8,760	PM10	0.133	0.004	0.019
									8,760	PM2.5	0.033	0.001	0.005
		Pallet Wrap Deliveryk	206,360	44,000	5	A,B,C,D,E	1.100	5	8,760	PM	0.664	0.000	0.002
			lbs. wrap	lbs/Truck		11,0,0,0,0	1.100		8,760	PM10	0.133	0.000	0.000
									8,760	PM2.5	0.033	0.000	0.000
		Shrink Film Delivery	1,155,000	44,000	26	A,B,C,D,E	1.100	29	8,760	PM	0.664	0.002	0.010
		,	lbs. film	lbs/Truck	20	11,0,0,0,0	1.100	27	8,760	PM10	0.133	0.000	0.002
									8,760	PM2.5	0.033	0.000	0.000
		Pallet Delivery ^m	308,000	540	570	A,B	0.418	238	8,760	PM	0.664	0.018	0.079
		runer Benvery	pallets	Pallets/Truck	370	71,15	0.410	250	8,760	PM10	0.133	0.004	0.016
			paners	Tances Truck					8,760	PM2.5	0.033	0.001	0.004
		Pallet Cap Delivery ⁿ	18	N/A	18	A,B,C,D,E	1.100	20	8,760	PM	0.664	0.002	0.007
		r anet Cap Denvery	Trucks/Year	14/74	10	A,B,C,D,E	1.100	20	8,760	PM10	0.133	0.002	0.007
			17 ucks/ 1 cal		l				8,760	PM2.5	0.033	0.000	0.001
		Pallet Liner Delivery ⁿ	12	N/A	12	A,B,C,D,E	1.100	13	8,760	PM	0.664	0.001	0.004
		and Line Denvery	Trucks/Year	19/73	12	A,b,C,D,E	1.100	1.5	8,760	PM10	0.133	0.000	0.004
			17 ucks/ 1 cal		l				8,760	PM2.5	0.033	0.000	0.001
		Misc. Delivery ⁿ	2	N/A	2	A,B,C,D,E	1.100	2	8,760	PM	0.664	0.000	0.000
		iviisc. Delivery	Trucks/Year	IN/A		A,D,C,D,E	1.100	2	8,760	PM PM10	0.664	0.000	0.001
			11ucks/ 1ear	1]]			8,760	PM10 PM2.5	0.133	0.000	0.000
		Outbound Traffic	154,000	22	7,000	80% A,B,C,D	0.684	5,849	8,760	PM	0.664	0.443	1.941
		I I I I I I I I I I I I I I I I I I I	tons product	l	7,000	20% A,G	1.442	5,0.7	8,760	PM10	0.133	0.089	0.388
			lin product		l				8,760	PM2.5	0.033	0.022	0.095
		Routine Traffic	12	İ	i	A,B,C,D,E,F,G	0.721	3157.98	8,760	PM	0.664	0.239	1.048
			Miles/Day		l	1			8,760	PM10	0.133	0.048	0.210
				<u> </u>	l	<u> </u>			8,760	PM2.5	0.033	0.012	0.051
		Retort Char Surge Traffic	12	15 tons	12	A,B,C,D,E	0.189	2	8,760	PM	0.664	0.00017	0.00075
			Trucks/Year		l				8,760	PM10	0.133	0.00003	0.00015
									8,760	PM2.5	0.033	0.00001	0.00004
		Total									PM	1.326	5.808
]	1]]					PM10	0.265	1.162
			l	l	l	l	ĺ				PM2.5	0.065	0.285

Road Segment	Length (Miles
A	0.114
В	0.095
C	0.076
D	0.057
E	0.208
F	0.057
G	0.114

*Emission factor calculated according to AP-42 Chapter 13.2.1 (1/11), Paved Roads using the equation Ib VMT = k(sL)^{0.01} x (W)^{1.02}] where k = particle size multiplier, sL = road surface silt loading in g/m2, and W = average vehicle weight in tons. For the Parsons Plant, the following data was used:

sL = 2 g/m2, based on worst case silt loading result of road dust sampling conducted a the KMC Parsons plant.

W = 30 tons (severage tractor-trailed weight)

k = 0.011 for PM, 0.0022 for PM₁₀, and 0.00045 for PM₂₅

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on maximum dy tons hogiful and assuming 50% moisture

*Based on 50% of total maximum brigater production of 154,000 tons/y;

*Maximum store deliveries based on 0.5% of total maximum brigate production of 154,000 tons/y;

*Maximum potential by a deliveries based on 0.2% of total maximum brigater production of 154,000 tons/y.

*Maximum potential by a deliveries based on 1.9% of total maximum brigater production of 154,000 tons.

*Maximum potential by a deliveries based on 1.9% of total maximum brigater production rate of 154,000 tons.

*Maximum potential by a deliveries based on 1.9% of total maximum brigater production rate of 154,000 tons and 0.25 bs. film per bale.

*Auximum potential film deliveries based on 2 alloae per ton of maximum brigater production rate of 154,000 tons and 0.25 bs. film per bale.

*Pack place per con of maximum brigater production rate of 154,000 tons and 0.25 bs. film per bale.

*Pack place per con of maximum brigater production rate of 154,000 tons and 0.25 bs. film per bale.

*Pack place per confirm a production production rate of 154,000 tons and 0.25 bs. film per bale.

*Pack place per confirm a pack production rate of 154,000 tons and 0.25 bs. film per bale.

*

Attachment N v 2 - Potential Emissions 7/8/2016

TABLE N-11 DIESEL WATER PUMP EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

Lake Pumps

		Annual Operating			Each	Pump	All P	umps
Rated	Number of	Schedule		Emission	Hourly	Annual	Hourly	Annual
Capacity	Sources	for Each Pump	Pollutant	Factor ^a	Emissions	Emissions	Emissions	Emissions
(hp)		(hr/yr)		(lbs/hp-hr)	(lbs/hr)	(tons/yr)	(lbs/hr)	(tons/yr)
115	4	500	PM	2.20E-03	0.25	6.33E-02	1.01	2.53E-01
115	4	500	SO2	2.05E-03	0.24	5.89E-02	0.94	2.36E-01
115	4	500	NOx	1.52E-02	1.75	4.37E-01	7.00	1.75E+00
115	4	500	CO	6.68E-03	0.77	1.92E-01	3.07	7.68E-01
115	4	500	VOC	2.51E-03	0.29	7.23E-02	1.16	2.89E-01

**Operating schedule for each pump based upon 0.5 hour of operation per month.

*All emission factors for uncontrolled diesel industrial engines. NOx per EPA 1997 standards for non-road combustion ignition engines. All others per EPA AP-42 (EPA AP-42, Section 3.3).

Rated Capacity	Annual Operating Schedule	Pollutant	Eı	nissions Factors	a	Emis	ssions			
(hp)	(hr/yr)		(lb/MMBtu)	(g/hp-hr)	(lbs/hp-hr)	(lbs/hr)	(tons/yr)			
420	500	NOx	N/D	6.640	0.0146	6.15	1.54			
420	500	CO	N/D	0.490	0.0011	0.45	0.11			
420	500	VOC	N/D	0.100	0.0002	0.09	0.02			
420	500	TPM/PM ₁₀ /PM _{2.5} ^b	N/D	0.060	0.0001	0.06	0.01			
420	500	SO_2	N/D	N/D	4.05E-04	0.17	0.04			
			HAPS							
420	500	Benzene	2.85E-04	N/D	2.00E-06	8.38E-04	2.09E-04			
420	500	1,3-Butadiene	3.91E-05	N/D	2.74E-07	1.15E-04	2.87E-05			
420	500	Toluene	4.09E-04	N/D	2.86E-06	1.20E-03	3.01E-04			
420	500	Xylenes	2.85E-04	N/D	2.00E-06	8.38E-04	2.09E-04			
420	500	Acetaldehyde	7.67E-04	N/D	5.37E-06	2.25E-03	5.64E-04			
420	500	Acrolein	9.25E-05	N/D	6.48E-07	2.72E-04	6.80E-05			
420	500	Napthalene	8.48E-05	N/D	5.94E-07	2.49E-04	6.23E-05			
420	500	Formaldehyde	1.18E-03	N/D	8.26E-06	3.47E-03	8.67E-04			
	Total HAPS 9.24E-03 2.31E-03									

^{**}NOX, CO, VOC and PM emissions factors per engine manufacture (See attached data sheet). All others per EPA AP-42 (EPA AP-42, Section 3.3, 3.4) assuming a BSFC of 7,000 Btu/hp-hr and a sulfur content of 500 ppm (0.05%).

**Passumes all particulate matter is less than 1 µm as per EPA AP-42 Section 3.3, Table 3.3-1.

		Emissio	ns Using Manufa	cturer Supplied I	Emission Factor	s		
Rated Capacity	Rated Capacity	Annual Operating Schedule	Pollutant	Emissions	Emissions Factors		Emis	sions
(kW/hr)	(bhp-hr)	(hr/yr)		(g/kW-hr) ^a	(g/bhp-hr)	(g/hp-hr)	(lbs/hr)	(tons/yr)
177.50	238	100	NO_x	0.166	0.124	2.0	0.06	0.0032
177.50	238	100	VOC	0.166	0.124	1.0	0.06	0.0032
177.50	238	100	CO	0.417	0.311	4.0	0.16	0.0082
		Emissions Using AP-4						
	Annual							

		Emissions Using AP-4	2 Emission Factor	's			
Rated Capacity	Annual Operating Schedule		lmissions Factors	Emis	1		
(MMBtu/hr)	(hr/yr)		(lbs/MMBtu)	(lbs/hr)	(tons/yr)		
1.969	100	TPM/PM ₁₀ /PM _{2.5} e	0.0194	0.0382	0.0019		
1.969	100	SO_2	5.88E-04	1.16E-03	5.79E-05		
		HAP	s				
1.969 100 1,1,2,2- Tetrachloroethane 2.53E-05 4.98E-05 2.49E-06							
1.969	100	1,1,2-Trichloroethane	1.53E-05	3.01E-05	1.51E-06		
1.969	100	1.3-Butadiene	6.63E-04	1.31E-03	6.53E-05		
1.969	100	1,3-Dichloropropene	1.27E-05	2.50E-05	1.25E-06		
1.969	100	Acetaldehyde	2.79E-03	5.49E-03	2.75E-04		
1.969	100	Acrolein	2.63E-03	5.18E-03	2.59E-04		
1.969	100	Benzene	1.58E-03	3.11E-03	1.56E-04		
1.969	100	Carbon Tetrachloride	1.77E-05	3.48E-05	1.74E-06		
1.969	100	Chlorobenzene	1.29E-05	2.54E-05	1.27E-06		
1.969	100	Chloroform	1.37E-05	2.70E-05	1.35E-06		
1.969	100	Ethylbenzene	2.48E-05	4.88E-05	2.44E-06		
1.969	100	Ethylene Dibromide	2.13E-05	4.19E-05	2.10E-06		
1.969	100	Formaldehyde	2.05E-02	4.04E-02	2.02E-03		
1.969	100	Methanol	3.06E-03	6.02E-03	3.01E-04		
1.969	100	Methylene Chloride	4.12E-05	8.11E-05	4.06E-06		
1.969	100	Napthalene	9.71E-05	1.91E-04	9.56E-06		
1.969	100	PAHs	1.41E-04	2.78E-04	1.39E-05		
1.969	100	Styrene	1.19E-05	2.34E-05	1.17E-06		
1.969	100	Toluene	5.58E-04	1.10E-03	5.49E-05		
1.969	100	Vinyl Chloride	7.18E-06	1.41E-05	7.07E-07		
1.969	100	Xylene	1.95E-04	3.84E-04	1.92E-05		
		Total HAPs		6.38E-02	3.19E-03		

7/8/2016

^{**}Manufacturer combined emission factor for combined THC + NO_x of 0.166 g/kW-hr used individually for both NO_x and VOC to demonstrate compliance with owner-operator emission standards in 40 CFR 60 Subpart JJJJ Table 1.

**b From 40 CFR Subpart JJJJ Table 1, Emergency Engines greater than 130 hp.

Based on maximum fuel consumption of 1930 c.f. an hour at 100% load.

*d-mission factors from U.S, EPA AP-42 Chapter 3.2, (07/2000) Natural Gas-fired Rich-Burn 4-stroke Reciprocating Engines.**

 $[^]e\!Assumes$ all particulate matter is less than 1 μm as per EPA AP-42 Section 3.2 Table 3.2-3(07/2000).

TABLE N-12 FACILITY LEAD EMISSIONS KINGSFORD MANUFACTURING CO. - PARSONS, WEST VIRGINIA

Emissions Unit		Emissions Point			Maximum Hourly PM	Maximum Annual PM			
Number	Emission Unit	Number	Emission Point	Material Processed	Emissions (lb/hr)	Emissions (tons/yr)	Emission Factor ^a (lb Pb/ton PM)	Pb Emiss (lb/hr)	sion Rate (ton/yr)
01	Wood & Char Piles	01	Wood Pile	Wood	2.85	12.50	4.0E-03	5.71E-06	2.50E-05
		02	Char and Coal Pile	Char	0.57	2.50	2.2E-02	6.28E-06	2.75E-05
02	Raw Material Handling	01-06	Wood Handling Operations	Wood	0.14	0.63	4.0E-03	2.90E-07	1.27E-06
		07,09,0B	Char Handling Operations	Char	0.01	0.05	2.2E-02	1.29E-07	5.65E-07
		0A	Coal Handling Operations	Coal	0.01	0.03	8.00E-02	2.59E-07	1.13E-06
03	Charring and Briquet Dryers	01	ACC/Retort	Wood	N/A	175.78	1.5E-01	N/A	1.29E-02
		02,03	Briquet Dryers	Briquets	N/A	38.50	3.34E-02	N/A	6.43E-04
04	Briquet Coolers	01/02	Briquet Coolers	Briquets	N/A	38.50	3.34E-02	N/A	6.43E-04
06	Minor Ingredient Batching	01	Coal Tank	Coal	0.01	0.04	8.00E-02	3.43E-07	1.50E-06
		02-05,0G	Char Tanks	Char	0.25	1.08	2.2E-02	2.72E-06	1.19E-05
07	Natural Gas Use	01	Natural Gas Use	Natural Gas	See Table C-8 "Natural Gas Combustion"		1.14E-05	5.00E-05	
08	Briquet Handling	01-03/35	Briquet Handling	Briquets	6.73	29.47	3.34E-02	1.12E-04	4.92E-04

*Emission factors based on following material lead content assumptions:

Wood - 2 ppm, dry wood per University of Missouri study
Char - based on worst-case char yield assumption of 5.5 (2ppm * 5.5 = 11 ppm = 2.2E-2 lb/ton)
Char ash content assumed to be 15%, ACC PM = 2.2E-02/0.15 = 0.147 lb/hr
Coal based on 40 ppm lead content
Briquets = 16.7 ppm based on char and coal in formulation of product.

ATTACHMENT O MONITORING/RECORDKEEPING PLANS - NOT APPLICABLE

ATTACHMENT P CLASS I LEGAL ADVERTISEMENT (TO BE PROVIDED UPON PUBLICATION)

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Kingsford Manufacturing Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update to replace one (1) existing screening operations on their existing raw material handling system, remove the existing retort char surge bin and its associated fabric filter dust collector, install a pneumatic conveyor to transfer lime from the existing coal shed and replace an existing fabric filter on the lime use tank at the charcoal manufacturing plant located on Route 219, two miles South of Parsons, WV, in Tucker County, West Virginia. The latitude and longitude coordinates are: 39.079883 and -79.691224.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions (tons/yr)
NO _x	250.79
СО	22.60
VOC	91.62
SO_2	64.94
PM	269.63
PM_{10}	190.70
$PM_{2.5}$	113.74
Methanol	3.70
Lead	0.01
Total HAPs	3.72

Startup of the modified sources is anticipated on or after September 3, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of July 2016

By: Kingsford Manufacturing Company Carey Preston

Plant Manager P.O. Box 464 Parsons, WV 26287

ATTACHMENT Q BUSINESS CONFIDENTIALITY CLAIMS - NOT APPLICABLE

ATTACHMENT R AUTHORITY OF CORPORATION

KINGSFORD MANUFACTURING COMPANY DELEGATION OF SIGNATURE AUTHORITY

Pursuant to the authority granted to the undersigned under the bylaws of Kingsford Manufacturing Company (the "Company"), in her capacity as Vice President - Secretary, the undersigned hereby delegates the right to execute the documents listed below, on behalf of the Company, to the Plant Manager designated below, or, in his/her absence, the acting plant manager, of the Company's facility designated below.

Carey D. Preston Parsons Plant; Parsons, West Virginia

Documents and Authority:

Authority to sign all environmental reports, plans, and permits, environmental monitoring reports, applications, certifications and other documents for the facility documents requiring the signature of a "Responsible Official," "Responsible Corporate Officer," or other company representative under any federal, state or local environmental law or regulation.

This delegation of authority requires that the person signing any document pursuant to this delegation satisfy himself or herself that, based on information and belief formed after reasonable inquiry, the statements or information in the document are true, accurate, and complete and that the document is otherwise in accordance with any required certification.

Dated:

Angela Hilt

Vice President \(\) Secretary

KINGSFORD MANUFACTURING COMPANY

KINGSFORD MANUFACTURING COMPANY

APPPOINTMENT OF ACTING PLANT MANAGER

Pursuant to the authority granted to the undersigned as manager of the Parsons Plant; Parsons, West Virginia plant, I hereby appoint Scott Stephenson, Plant Engineering Manager, as acting plant manager in my absence. This appointment shall be effective immediately.

This appointment includes authority to sign all environmental reports, plans, and permits, environmental monitoring reports, applications, certifications and other documents for the facility documents requiring the signature of a "Responsible Official," "Responsible Corporate Officer," or other company representative under any federal, state or local environmental law or regulation.

This authority shall only be exercised when the Plant Manager will be out of the plant for an extended period of time (such as off-site meetings and vacations). Prior to exercising this authority, a reasonable attempt should be made to obtain the Plant Manager's signature.

This appointment requires that the acting plant manager satisfy himself or herself that, based on information and belief formed after reasonable inquiry, the statements or information in the document are true, accurate, and complete and that the document is otherwise in accordance with any required certification.

Dated: 11-4-2011

Carey D. Preston Plant Manager

ATTACHMENT S TITLE V PERMIT REVISION INFORMATION

Attachment S

Title V Permit Revision Information

1. New Applicable Requirements Summary				
Mark all applicable requirements associated with the changes involved with this permit revision: <i>None of these are applicable, see Attachment D.</i>				
☐ SIP	☐ FIP			
☐ Minor source NSR (45CSR13)	☐ PSD (45CSR14)			
☐ NESHAP (45CSR15)	☐ Nonattainment NSR (45CSR19)			
Section 111 NSPS (Subpart(s))	Section 112(d) MACT standards (Subpart(s))			
Section 112(g) Case-by-case MACT	☐ 112(r) RMP			
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)			
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)			
Tank vessel reqt., section 183(f)	☐ Emissions cap 45CSR§30-2.6.1			
NAAQS, increments or visibility (temp. sources)	☐ 45CSR27 State enforceable only rule			
☐ 45CSR4 State enforceable only rule	☐ Acid Rain (Title IV, 45CSR33)			
☐ Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) (1)			
☐ NO _x Budget Trading Program Non-EGUs (45CSR1)	☐ NO _x Budget Trading Program EGUs (45CSR26)			
(1) If this box is checked, please include Compliance Assurance Monitoring (CAM) Form(s) for each Pollutants Specific Emission Unit (PSEU) (See Attachment H to Title V Application). If this box is not checked, please explain why Compliance Assurance Monitoring is not applicable: See Attachment D. Pre-control PM emissions are expected to be less than 100 tpy for new baghouse.				
2. Non Applicability Determinations				
List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination.				
Permit Shield Requested (not applicable to Minor Modifications)				

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					
3. Suggested Title V Draft Permit Language					
Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? Yes No If Yes, describe the changes below.					
Also, please provide Suggested Title V Draft Permit language for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.					
Request that the new screen be identified in Section 1.0 using existing Source ID number (E-02-03) Request that new baghouse be identified using the existing Control Device number (C-15) table with existing Stack ID design capacity of 600 CFM, and description of "Fabric Filter Dust Collector (C-15), Adaptive Engineering & Fabrication., Model FRC 9X27". The Retort Char Surge Bin (E-06-0G) its associated bin vent (C-33) and stack (S-24) should all be removed from the permit.					
4. Active NSR Permits/Permit Dete	rminations/Consent	t Orders	Associated With This Permit Revision		
Permit or Consent Order Number	Date of Issua		Permit/Consent Order Condition Number		
R13-1608G	08/20/2012				
R14-001D	05/18/2009				
G60-C012A	08/21/2012				
5. Inactive NSR Permits/Obsolete P	Permit or Consent C	Orders Co	onditions Associated With This Revision		
Permit or Consent Order Number	Date of Issuance		Permit/Consent Order Condition Number		
	MM/DD/YYYY				
	/ /				
6. Change in Potential Emissions					
Pollutant		Change in Potential Emissions (+ or -), TPY			
See Attachment N					
All of the required forms and additional info	rmation can be found un	der the Per	rmitting Section of DAQ's website, or requested by phone.		

7. Co	ertification For Use Of Minor Modification Procedures (Required Only for Minor Modification				
Requests)					
Note:	This certification must be signed by a responsible official. Applications without a signed certification will be returned as incomplete. The criteria for allowing the use of Minor Modification Procedures are as follows:				
v. vi. Notwith procedu permits, procedu the State	 ii. Proposed changes do not involve significant changes to existing monitoring, reporting, or recordkeeping requirements in the permit; iii. Proposed changes do not require or change a case-by-case determination of an emission limitation or other standard, or a source-specific determination for temporary sources of ambient air quality impacts, or a visibility increment analysis; iv. Proposed changes do not seek to establish or change a permit term or condition for which there is no underlying applicable requirement and which permit or condition has been used to avoid an applicable requirement to which the source would otherwise be subject (synthetic minor). Such terms and conditions include, but are not limited to a federally enforceable emissions cap used to avoid classification as a modification under any provision of Title I or any alternative emissions limit approved pursuant to regulations promulgated under § 112(j)(5) of the Clean Air Act; 				
of Mine	nt to 45CSR§30-6.5.a.2.C., the proposed modification contained herein meets the criteria for use or permit modification procedures as set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor modification procedures are hereby requested for processing of this application.				
(Signed): Soft Stephenson Date: 7 / 11 / 16 (Please use blue ink) (Please use blue ink) Named (typed): Title:					
	Carey Preston Plant Manager				
Note: Pleas	se check if the following included (if applicable):				
☐ Co	ompliance Assurance Monitoring Form(s)				
☐ Su	ggested Title V Draft Permit Language				
All of the req	uired forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				