July 15, 2016

West Virginia Dept. of Environmental Protection Division of Air Quality – Permitting Section 601 57th Street, SE Charleston, WV 25304

RE: Class II Administrative Update Antonelli Compressor Station Diversified Oil & Gas, LLC Barbour County, West Virginia Plant ID No. 001-00119 Permit No. G35-A019A

To Whom it May Concern:

On behalf of our client, Diversified Oil & Gas, LLC, we are pleased to submit one hard copy and two electronic copies of the Class II Administrative Update application for its Antonelli Compressor Station in Barbour County.

This update includes replacement of the permitted compressor driver engine with an Ajax 2802LE engine. There are no other proposed changes to this facility. This will not result in any increases in total facility emissions.

An application fee in the amount of \$300 was determined to be applicable for a Class II administrative update application. A check, payable to WVDEP – Division of Air Quality has been included.

If there are any questions or concerns regarding this application, please contact me at 412-221-1100, Extension 210 or <u>lmcconnell@se-env.com</u> and we will provide any needed clarification or additional information immediately.

Sincerely,

Jeanne McCond

SE Technologies, LLC Leanne McConnell – Environmental Scientist

cc w/ enc.: Drew Adamo – Diversified Oil & Gas, LLC

98 VANADIUM ROAD BUILDING D, 2nd FLOOR BRIDGEVILLE, PA 15017 (412) 221-1100 (412) 257-6103 (FAX) http://www.se-env.com

DIVERSIFIED OIL & GAS, LLC

G35-C GENERAL PERMIT REGISTRATION APPLICATION

July 2016

Antonelli Compressor Station Kasson, Barbour County West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

G35-C GENERAL PERMIT REGISTRATION APPLICATION

DIVERSIFIED OIL & GAS, LLC

Antonelli Compressor Station

Kasson, Barbour County, West Virginia

Table of Contents

- I. General Information Form
- **II.** Application Form
- **III.** Attachments
 - Attachment A Single Source Determination
 - Attachment C Business Certificate
 - Attachment D Process Flow Diagram
 - Attachment E Process Description
 - Attachment F Plot Plan
 - Attachment G Area Map
 - Attachment H Section Applicability Form
 - Attachment I Emission Units Table
 - Attachment J Fugitive Emissions Data Summary Sheet
 - Attachment K Storage Vessel Data Sheet(s)
 - Attachment M Internal Combustion Engine Data Sheet(s)
 - Attachment R Supporting Emissions Calculations
 - Attachment S Facility-wide Emission Summary Sheet(s)
 - Attachment T Public Notice

SECTION I

Application Form

dep	west virginia	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov	
G35-C GI	ENERAL PE	RMIT REGISTRATION A	PPLICATION
PREVENTION AND	RELOCATION, A	POLLUTION IN REGARD TO THE CONSTR DMINISTRATIVE UPDATE AND OPERATIO OMPRESSOR AND/OR DEHYDRATION FACIL	N OF
□CONSTR □MODIFIC □RELOCA	CATION	□CLASS I ADMINISTRATI ⊠CLASS II ADMINISTRATI	
	SE	CTION 1. GENERAL INFORMATION	
Name of Applicant (a	s registered with the V	VV Secretary of State's Office): Diversified Oil	& Gas, LLC
Federal Employer ID	No. (FEIN): 45-45514	58	
Applicant's Mailing A	Address: PO Box 381	087	1
City: Birmingham		State: AL	ZIP Code: 35238
and a second	elli Compressor Stat		
	al Address: County Ro road, city or town and	oad 93 (Campbell Dairy) I zip of facility.	
City: Moatsville		Zip Code: 26405	County: Barbour
Latitude & Longitude Latitude: 39.21933° Longitude: -79.88191		Decimal Degrees to 5 digits):	
SIC Code: NAICS Code: 211111		DAQ Facility ID No. (For exi 001-00119	sting facilities)
	C	ERTIFICATION OF INFORMATION	
Official is a Presider Directors, or Owner, authority to bin Proprietorship. R	nt, Vice President, Sec depending on business and the Corporation, Pa equired records of dail fications and all required	Application shall be signed below by a Responsi retary, Treasurer, General Partner, General Manag structure. A business may certify an Authorized rtnership, Limited Liability Company, Associatio ly throughput, hours of operation and maintenance	ger, a member of the Board of Representative who shall have n, Joint Venture or Sole
Representative. If a b off and the appro unsigned G35-C Reg	priate names and sign istration Application	red notifications must be signed by a Responsible ify an Authorized Representative, the official agre- atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of	Official or an Authorized ement below shall be checked or improperly signed or e, if the G35-C forms are not
Representative. If a b off and the appro unsigned G35-C Reg utilized, I hereby certify that (e.g., Corporation, Pa obligate and legally b	priate names and sign istration Application the application will b is an Authorized rtnership, Limited Lia	ify an Authorized Representative, the official agro atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of Representative and in that capacity shall represe bility Company, Association Joint Venture or Sol e business changes its Authorized Representative,	Official or an Authorized ement below shall be checked or improperly signed or e, if the G35-C forms are not forms is allowed. nt the interest of the business e Proprietorship) and may
Representative. If a b off and the appro unsigned G35-C Reg utilized, I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended	priate names and sign istration Application the application will b is an Authorized rtnership, Limited Lia ind the business. If the the Division of Air Q Il information contain hereto is, to the best o	ify an Authorized Representative, the official agro atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of Representative and in that capacity shall represe bility Company, Association Joint Venture or Sol e business changes its Authorized Representative,	Official or an Authorized eement below shall be checked or improperly signed or e, if the G35-C forms are not forms is allowed. Int the interest of the business e Proprietorship) and may a Responsible Official shall
Representative. If a b off and the appro unsigned G35-C Reg utilized, I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended have been made to pr Responsible Official Name and Title: Robe	priate names and sign istration Application the application will b is an Authorized rtnership, Limited Lia ind the business. If the the Division of Air Q Il information contain hereto is, to the best o bovide the most compre Signature:	ify an Authorized Representative, the official agro atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of Representative and in that capacity shall represe bility Company, Association Joint Venture or Sol e business changes its Authorized Representative, uality immediately. ed in this G35-C General Permit Registration App f my knowledge, true, accurate and complete, and thensive information possible.	Official or an Authorized eement below shall be checked or improperly signed or e, if the G35-C forms are not forms is allowed. Int the interest of the business e Proprietorship) and may a Responsible Official shall
Representative. If a b off and the appro unsigned G35-C Reg utilized, I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended have been made to pro- Responsible Official Name and Title: Robe Email: RHutsonSr@d If applicable:	priate names and sign istration Application the application will b is an Authorized rtnership, Limited Lia ind the business. If the the Division of Air Q Il information contain hereto is, to the best o ovide the most compre Signature:	ify an Authorized Representative, the official agro atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of Representative and in that capacity shall represe bility Company, Association Joint Venture or Sol e business changes its Authorized Representative, uality immediately. ed in this G35-C General Permit Registration App f my knowledge, true, accurate and complete, and thensive information possible. Market Company, Company	Official or an Authorized eement below shall be checked or improperly signed or e, if the G35-C forms are not forms is allowed. In the interest of the business e Proprietorship) and may a Responsible Official shall plication and any supporting that all reasonable efforts
Representative. If a b off and the appro unsigned G35-C Reg utilized, I hereby certify that (e.g., Corporation, Pa obligate and legally b notify the Director of I hereby certify that a documents appended	priate names and sign istration Application the application will b is an Authorized rtnership, Limited Lia ind the business. If the the Division of Air Q Il information contain hereto is, to the best o ovide the most compre Signature:	ify an Authorized Representative, the official agro atures entered. Any administratively incomplete will be returned to the applicant. Furthermor e returned to the applicant. No substitution of Representative and in that capacity shall represe bility Company, Association Joint Venture or Sol e business changes its Authorized Representative, uality immediately. ed in this G35-C General Permit Registration App f my knowledge, true, accurate and complete, and thensive information possible. Market Company, Company	Official or an Authorized eement below shall be checked or improperly signed or e, if the G35-C forms are not forms is allowed. In the interest of the business e Proprietorship) and may a Responsible Official shall plication and any supporting that all reasonable efforts

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Removal of the permitted Caterpillar G3516LE compressor engine and installation of an Ajax 2802LE compressor engine.

Directions to the facility: From Charleston, follow I-79N to Exit 115, WV-20 S. Continue on WV-20 to WV-57 E. In approximately 12 miles, turn left onto US-119 N. Follow for 2 miles then turn right onto Blue and Gray Expy. Then, turn right onto Main St and continue onto US-250 S for 2 miles. Turn left onto WV-38 E / WV-92 N. After approximately 4.5 miles, sharp right onto Campbell Dairy. Site will be approximately 0.8 miles on the right.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

 \Box I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

 \Box I wish to pay by credit card. Contact for payment (incl. name and email address):

 \Box \$500 (Construction, Modification, and Relocation) \Box \$300 (Class II Administrative Update) \Box \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ \Box \$2,500 NESUAD for for 40 CFR62, Subpart 7777, and/or UU ²

 \square \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH 2

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

□ Responsible Official or Authorized Representative Signature (if applicable)

in responsible official of Automized Representative organization (in approaction)					
Single Source Determination Form (must be completed in its entirety) – Attachment A					
□ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C					
🛛 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E				
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G				
G35-C Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I				
🖾 Fugitive Emissions Summary Sheet – Attachment J					
Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K					
Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment L					
⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment M					
Tanker Truck Loading Data Sheet (if applicable) – Attacht	ment N				
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment O					

 $\hfill\square$ Pneumatic Controllers Data Sheet – Attachment P

 \Box Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment Q

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment R

⊠ Facility-wide Emission Summary Sheet(s) – Attachment S

🖾 Class I Legal Advertisement – Attachment T

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \Box No \Box

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

The Class II Administrative Update does not impact previous determination.

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: DIVERSIFIED OIL & GAS, LLC 599 MEADOW VIEW LN THORNTON, WV 26440-7195

BUSINESS REGISTRATION ACCOUNT NUMBER:

2332-4268

This certificate is issued on:

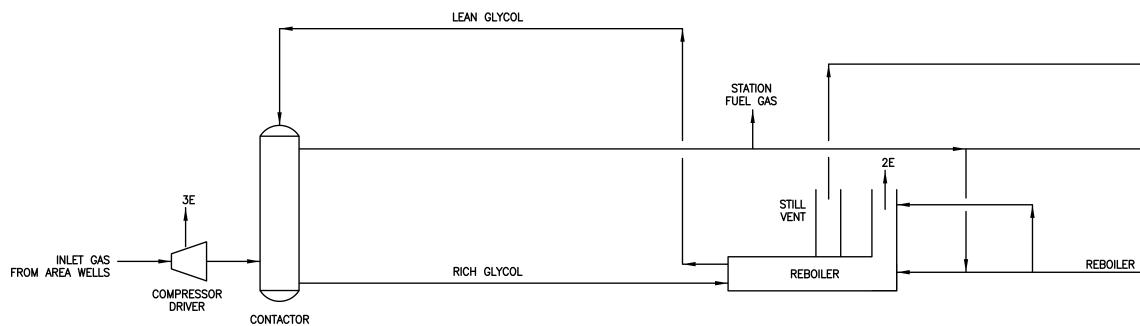
06/15/2016

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

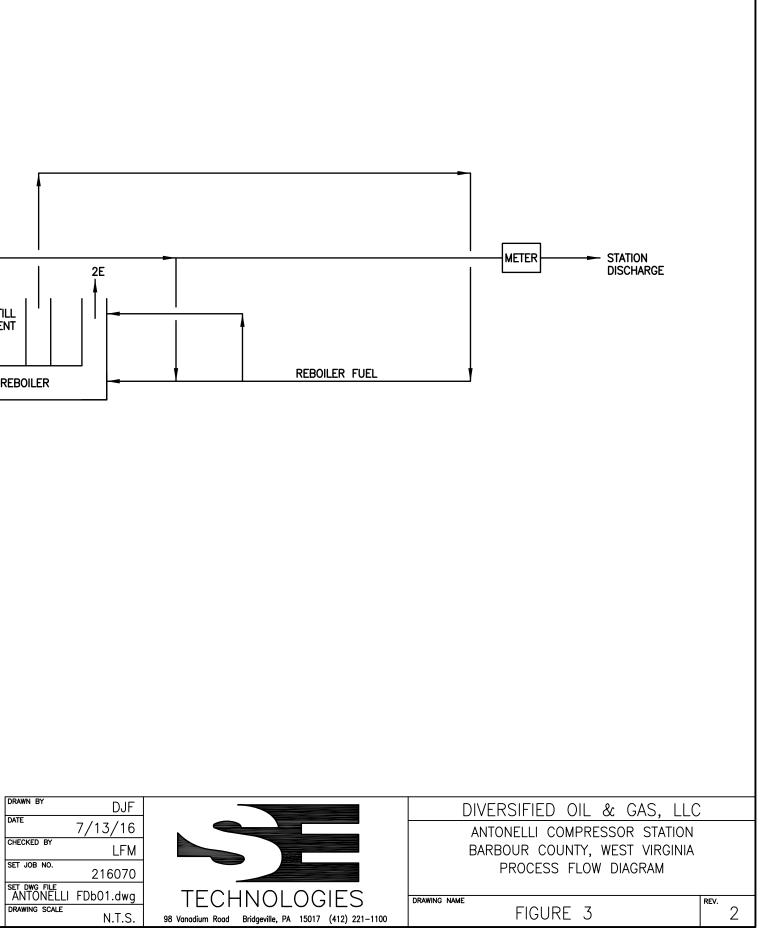
This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L1720594240


ATTACHMENT D

Process Flow Diagram

LEGEND:

EMISSION POINT

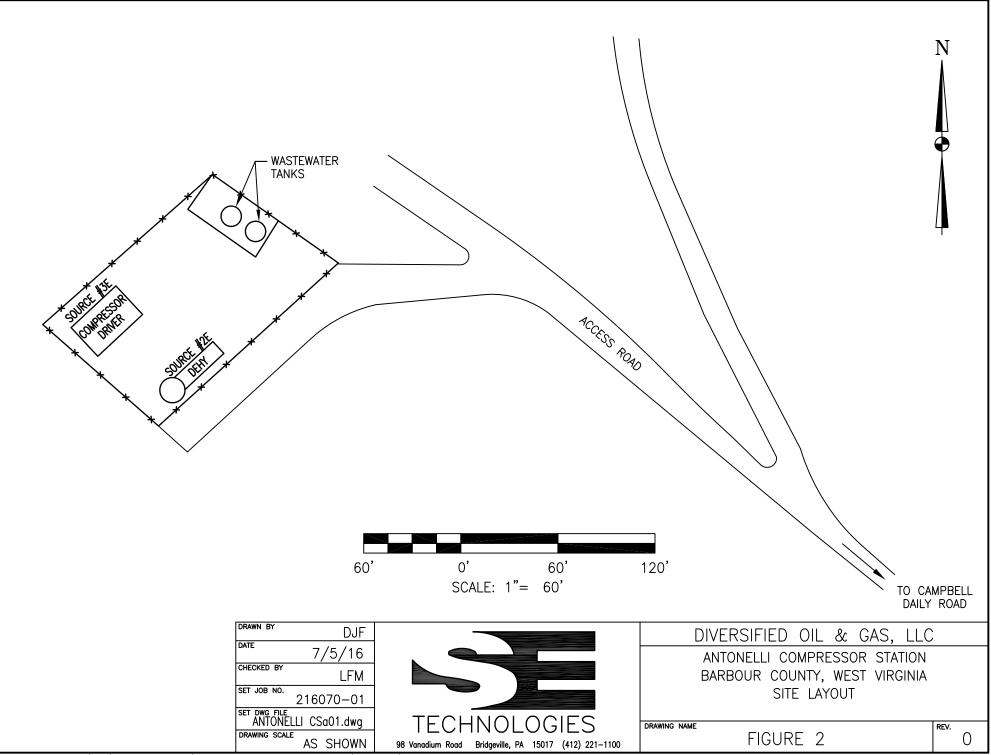
ATTACHMENT E

Process Description

Diversified Oil & Gas, LLC Antonelli Compressor Station Process Description

Diversified Oil & Gas, LLC is submitting a Class II Administrative Update for the Antonelli Compressor Station G35-A019A General Permit. Diversified is proposing to remove the permitted Caterpillar G3516LE compressor driver engine and replace it with a smaller Ajax 2802LE compressor driver engine.

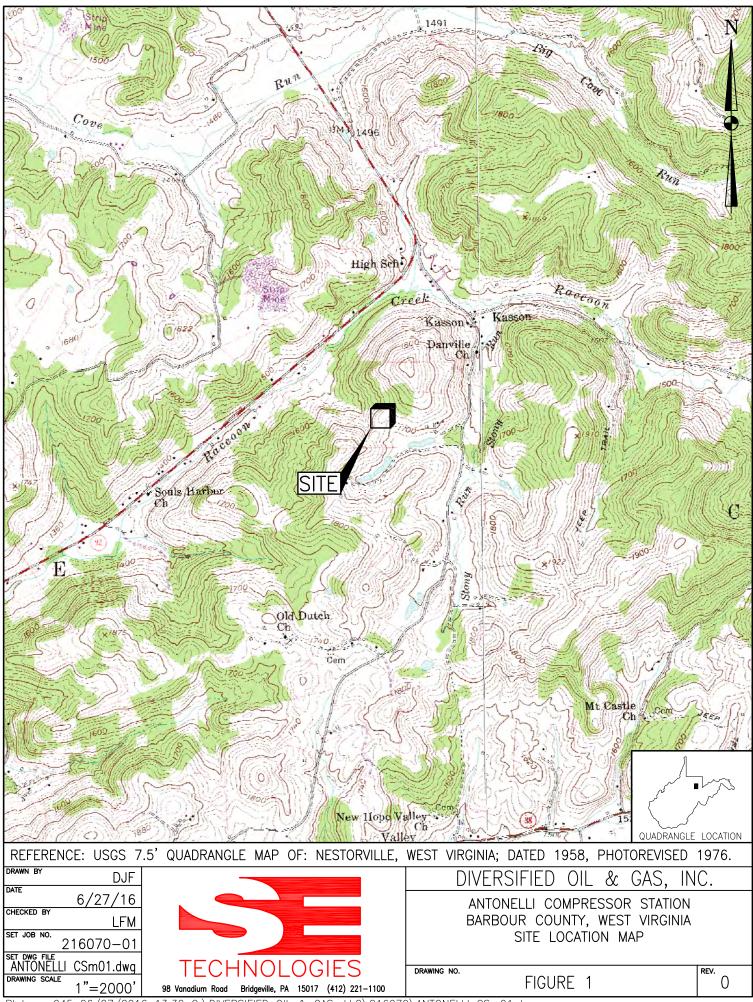
The replacement engine (Ajax 2802LE) is considered a "new" engine and located at an area source of HAP emissions which makes it subject to subpart ZZZZ (40 CFR part 63). For this type of engine, there are no specific requirements the engine must meet unless the engine is already subject to subpart JJJJ (40 CFR part 60). Since the replacement engine was manufactured prior to the applicable date in 60.4230(a)(4), it is not subject to the requirements in subpart JJJJ. In summary, there are no requirements that apply to this engine.


There are no other proposed changes to the facility. This will not result in any increases in emissions from this facility.

Natural gas flows from contiguous well pads to the Facility. The gas is compressed by the compressor driver engine. Then, the raw natural gas flows to the existing NATCO glycol dehydrator to dehydrate the gas and inject into a gathering line owned and operated by others.

The NATCO glycol dehydrator generates emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent are comprised of water and various low molecular weight hydrocarbons. This vapor stream is used as fuel for the reboiler. Excess still vent vapors are routed to the reboiler vent where they are ignited by a glow plug and combusted. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line.

ATTACHMENT F


Plot Plan

ATTACHMENT G

Area Map

Plot: env045 06/27/2016 13:32 G:\DIVERSIFIED OIL & GAS, LLC\216070\ANTONELLI CSm01.dwg

ATTACHMENT H

Section Applicability Form

ATTACHMENT H – G35-C SECTION APPLICABILITY FORM

General Permit G35-C Registration Section Applicability Form

General Permit G35-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	SENERAL PERMIT G35-C APPLICABLE SECTIONS
\Box Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
□Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
□Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators
□Section 13.0	Tanker Truck Loading ³
Section 14.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1	1E	Caterpillar G3516LE Compressor Engine	2010		1,340 bhp / 1,400 rpm	Removal		
CE-2	3E	Ajax 2802LE Compressor Engine	Upon Permit	11/15/2006	400 bhp / 440 rpm	New	None	
RBV-1	2E	Dehydration Unit Re-Boiler Vent	2009		0.2 MMBtu/hr	Existing	None	
RSV-1	2E	Dehydration Unit Still Vent	2009		4.9 MMscf/day	Existing	RBV-1	

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Data Summary Sheet

				AENT J – FUGITIVE EM					
		Sources	0	may include loading operations for each associated so				sions, etc.	
Sou	rce/Equipm	ent: One	(1) compressor and one (1)	dehydration unit			-		
	k Detection hod Used		□ Audible, visual, and olfactory (AVO) inspection	s Infrared (FLIR) cameras	□ Other (plea	se describe)		□ None required	
Component	Closed		So	urce of Leak Factors	Stream type		Estimated Em	issions (tpy)	
Туре	Vent System	Cour	st i	PA, other (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)	
Pumps	□ Yes □ No				□ Gas □ Liquid □ Both				
Valves	□ Yes ⊠ No	36	EPA		⊠ Gas □ Liquid □ Both	0.003	<0.01	4.43	
Safety Relief Valves	□ Yes ⊠ No	2	EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.36	
Open Ended Lines	□ Yes ⊠ No	2	EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.54	
Sampling Connections	□ Yes □ No				□ Gas □ Liquid □ Both				
Connections (Not sampling)	□ Yes ⊠ No	147	EPA		⊠ Gas □ Liquid □ Both	0.001	<0.01	1.97	
Compressors	□ Yes □ No				□ Gas □ Liquid □ Both				
Flanges	□ Yes □ No				□ Gas □ Liquid □ Both				
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both				

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Equipment leaks, blowdowns

Please indicate if there are any closed vent bypasses (include component): No

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) n/a

ATTACHMENT K

Storage Vessel Data Sheet(s)

ATTACHMENT K - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

NONE Present

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- \Box Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
3. Emission Unit ID number	4. Emission Point ID number				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
	\Box New construction \Box New stored material \Box Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
□ Yes □ No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \Box No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \Box No					
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the international sector of the	l cross-sectional area multiplied by internal height.				
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)				
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)				
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".				
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)				
16. Tank fill method \Box Submerged \Box Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	□ No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\Box Fixed Roof \Box vertical \Box horizontal \Box flat root	f \Box cone roof \Box dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double	□ External Floating Roof □ pontoon roof □ double deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support □ self-supporting					
\Box Variable Vapor Space \Box lifter roof \Box diaphragm					
□ Pressurized □ spherical □ cylindrical					
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:								
□ Does Not Apply				🗆 Ruptu	re Disc (ps	sig)			
\Box Inert Gas Blanket of \Box Carbon Adsorption ¹									
□ Vent to Vapor Combus	tion Devi	ice1 (vapor	r combust	ors, flares	, thermal c	xidizers,	enclosed c	ombustors	s)
□ Conservation Vent (psi	g)			□ Conde	nser ¹				
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	□ Yes □	∃ No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Ra								ion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissions Loss		
		1		1		1			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr	ns Loss tpy	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			
	lb/hr	tpy	lb/hr		lb/hr				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND O	PERATIO	N INFORMATION					
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined	□ Epox	y-coated rivets \Box O	ther (descr	ibe)			
21A. Shell Color:	1.	21B. Roof Color:		,	21C. Year	Last Painted:	
22. Shell Condition (if metal and unl	lined):						
□ No Rust □ Light Rust	Dense	Rust	able				
22A. Is the tank heated? 🗆 Yes 🗆 No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?						, how is heat provided to tank?	
23. Operating Pressure Range (psig)	:						
Must be listed for tanks using	VRUs wit	th closed vent system	l .				
24. Is the tank a Vertical Fixed Roo	of Tank?	24A. If yes, for dome	roof provide	e radius (ft):	24B. If yes	, for cone roof, provide slop (ft/ft):	
🗆 Yes 🗆 No							
25. Complete item 25 for Floating R	Roof Tanks	\square Does not apply					
25A. Year Internal Floaters Installed	l:						
25B. Primary Seal Type (check one).	: 🗆 Met	allic (mechanical) sho	e seal 🛛] Liquid mou	inted resilie	nt seal	
	🗆 Vap	or mounted resilient s	eal 🛛	Other (des	cribe):		
25C. Is the Floating Roof equipped v	with a seco	ndary seal? 🗌 Yes	□ No				
25D. If yes, how is the secondary sea		•	e 🗆 R	im 🗆 Oth	er (describe	e):	
25E. Is the floating roof equipped wi							
25F. Describe deck fittings:	illi a wealli						
251. Describe deck fittings.							
26. Complete the following section f	for Interna	l Floating Roof Tanks	🗆 Do	bes not apply			
26A. Deck Type: 🗌 Bolted	□ W	/elded	26B. For	bolted decks,	provide deck	construction:	
26C. Deck seam. Continuous sheet	constructio	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box	7 ft. wid	e \Box 5 x 7.5 ft. wide	□ 5 x 12	2 ft. wide 🗆	other (des	cribe)	
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. For	column suppo	rted	26G. For column supported	
				f columns:		tanks, diameter of column:	
27. Closed Vent System with VRU?	□ Yes	🗆 No					
28. Closed Vent System with Enclos	ed Combus	stor? 🗆 Yes 🗆 No					
SITE INFORMATION							
29. Provide the city and state on whi	ch the data	in this section are based:					
30. Daily Avg. Ambient Temperatur	re (°F):		31. Annu	al Avg. Maxir	num Temper	ature (°F):	
32. Annual Avg. Minimum Tempera			33. Avg.	Wind Speed (mph):		
34. Annual Avg. Solar Insulation Fac	ctor (BTU/	ft ² -day):	35. Atmo	ospheric Pressu	ıre (psia):		
LIQUID INFORMATION							
36. Avg. daily temperature range of	bulk	36A. Minimum (°F):			36B. Maxin	mum (°F):	
liquid (°F):	tonly	274 Minimum (nois)			27D Maria		
37. Avg. operating pressure range of (psig):	tank	37A. Minimum (psig):			37B. Maxii	num (psig):	
(10.5).							
38A. Minimum liquid surface tempe	rature (°F)	:	38B. Corresponding vapor pressure (psia):				
39A. Avg. liquid surface temperature	e (°F):		39B. Corresponding vapor pressure (psia):				
40A. Maximum liquid surface tempe			40B. Corresponding vapor pressure (psia):				
41. Provide the following for each lie		to be stored in the tank.	Add addition	onal pages if n	ecessary.		
41A. Material name and composition	n:						
41B. CAS number:							
41C. Liquid density (lb/gal):	1 \						
41D. Liquid molecular weight (lb/lb- 41E. Vapor molecular weight (lb/lb-							
41E. Vapor molecular weight (16/16- 41F. Maximum true vapor pressure (
41G. Maximum Reid vapor pressure							
41H. Months Storage per year.	- (Po.u).						
From: To:							
42. Final maximum gauge pressure a							
temperature prior to transfer into tank							
inputs into flashing emission calculat	tions.						

STORAGE TANK DATA TABLE List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
T1	EXIST	Wastewater (waste oil, drips from dehy)	2100
T2	EXIST	Wastewater (waste oil, drips from dehy)	2100

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. 1. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following: EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. Enter the maximum design storage tank volume in gallons. 3.

4.

ATTACHMENT M

Internal Combustion Engine Data Sheet(s)

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

snati also i	ise this form			1		1	
Emission Unit I	D#1	CI	E-1	C	E-1		
Engine Manufac	turer/Model	Caterpilla	r G3516LE	Ajax 2	2802LE		
Manufacturers H	Manufacturers Rated bhp/rpm 1.		1,340bhp / 1,400rpm		/ 440rpm		
Source Status ²		RI	EM	1	NS		
Date Installed/ Modified/Remo	ved/Relocated ³	20	010	20	016		
Engine Manufac /Reconstruction				11/15	5/2006		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ ⊠ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶				2SLB			
APCD Type ⁷				None			
Fuel Type ⁸	Fuel Type ⁸		RG		RG		
H ₂ S (gr/100 scf)	S (gr/100 scf)		<1		<1		
Operating bhp/r	pm	1,340bhp	/ 1,400rpm	400bhp / 440rpm			
BSFC (BTU/bhj	o-hr)			8:	580		
Hourly Fuel Th	rly Fuel Throughput		ft ³ /hr gal/hr		3,136 ft ³ /hr gal/hr		/hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	MMft ³ /yr gal/yr		27.47 MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	4.43	19.41	1.76	7.73		
MD	СО	5.58	24.41	1.06	4.64		
MD	VOC	0.92	4.01	0.71	3.09		
MD	SO ₂	< 0.01	< 0.01	< 0.01	< 0.01		
MD	PM ₁₀			0.03	0.15		
MD	Formaldehyde	0.74	3.23	0.265	1.16		
AP	Total HAPs			0.30	1.32		
AP	GHG (CO ₂ e)			490	2,147		

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four Str	roke Rich Burn					
7	Enter th	e Air Pollution Control Device (APCD) type designat	tion(s) u	sing the fo	llowing codes:					
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precon Low Emission C Oxidation Catal	ombustion	mbers	5		
8 E	Enter th	Enter the Fuel Type using the following codes:								
	PQ	Pipeline Quality Natural Gas RC	G R	aw Natural	Gas /Production	Gas	D	Diesel		
9	Enter t	he Potential Emissions Data Reference designa	ation us	ing the f	ollowing codes.	Attach all	refer	ence data u	sed.	
	MD GR	Manufacturer's Data GRI-HAPCalc™	A O			(please list)				

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device								
(Emission Unit ID#, use extra pages as necessary)								
Air Pollution Control Device Manufacturer's Data Sheet included? Yes □ No ⊠ N/A - No Device								
\Box NSCR \Box S	CR 🗌 Oxidation Catalyst							
Provide details of process control used for proper mixing	/control of reducing agent with gas stream:							
Manufacturer:	Model #:							
Design Operating Temperature: °F	Design gas volume: scfm							
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No							
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F							
Reducing agent used, if any:	Ammonia slip (ppm):							
Pressure drop against catalyst bed (delta P): inches of H ₂ O								
Provide description of warning/alarm system that protects Is temperature and pressure drop of catalyst required to b								
 □ Yes □ No How often is catalyst recommended or required to be replaced (hours of operation)? How often is performance test required? □ Initial □ Annual □ Every 8,760 hours of operation □ Field Testing Required □ No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 								

ATTACHMENT R

Supporting Emissions Calculations

EMISSIONS SUMMARY

Emission Unit	Emission Point		NOx	CO	VOC	benzene	Toluene	n-Hexane	formaldehyde
ID	ID	Description	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
CE-1	1E	CAT G3516LE - REMOVED							
CE-2	3E	Ajax 2808LE - NEW	1.76	1.06	0.71	0.007	0.003	0.002	0.265
RBV-1	2E	NATCO Glycol Dehydration Unit Reboiler	0.05	0.02					
RSV-1	2E	NATCO Glycol Dehydration Unit Still Vent			1.29	0.11	0.28	0.04	
		Fugitive Emissions			0.01				
Total			1.81	1.08	2.00	0.117	0.283	0.042	0.26

Emission Unit	Emission Point		NOx	CO	VOC	benzene	Toluene	n-Hexane	formaldehyde
ID	ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy
CE-1	1E	CAT G3516LE - REMOVED							
CE-2	3E	Ajax 2808LE - NEW	7.73	4.64	3.09	0.029	0.014	0.007	1.16
RBV-1	2E	NATCO Glycol Dehydration Unit Reboiler	0.20	0.09					
RSV-1	2E	NATCO Glycol Dehydration Unit Still Vent			5.66	0.47	1.21	0.18	
		Fugitive Emissions			0.03				
Total			7.93	4.73	8.78	0.50	1.22	0.19	1.16

Permitted Emissions (tpy)	19.61	24.50	9.67	0.47	1.21	0.18	3.23
Difference Emissions (tpy)	-11.68	-19.77	-0.89	0.03	0.01	0.01	-2.07

*Benzene, toluene and n-Hexane emissions were not in previous permit for CAT G3516LE engine. So, increase in emissions shown above does not mean an actual increase.

Diversified Oil & Gas, LLC

Antonelli Compressor Station Barbour County, PA

Un-Controlled Emission Rates

		S	Source CE-2	2			
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Ajax DPC-2802 Lean Burr Turbo						
Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke	400 440 In-line 2 15.000 16.000	hp rpm inches inches					
Engine Displacement Engine BMEP Fuel Consumption (HHV) Fuel Throughput	5,652 61.1 8,580 27.47	cu. in. psi Btu/bhp-hr MMcf/yr	r			AP-42	
Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO VOC (NMHC) CO2e CO2	g/bhp-hr 2.000 1.200 0.800	lb/hr 1.76 1.06 0.71 490 378	tons/year 7.73 4.64 3.09 2,147 1,654	g/hr 800 480 320 0	lb/day 42.33 25.40 16.93 11,764 9,060	2 Stroke Lear Ib/MMBt Com	
Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) CH4 N2O acrolein acetaldehyde	8,760 5.1	0.002 0.1658 0.034 4.4974 0.0008 0.0267 0.0266	0.0088 0.7261 0.1490 19.6988 0.0033 0.1170 0.1166			0.000588 0.0483 0.00991 0.0022 0.00022 0.00778 0.00776	0 ppmv H2S Manf. Spec Manf. Spec - PM Filtera Manf. Spec 40 CFR Part 98, Table
formaldehyde benzene toluene ethylbenzene xylenes n-hexane methanol Total HAPs	0.300	0.2646 0.0067 0.0033 0.0004 0.0009 0.0015 0.0085 0.3019	1.1588 0.0292 0.0145 0.0016 0.0040 0.0067 0.0373 1.3222			0.00194 0.000963 0.000108 0.000268 0.000445 0.00248	Manf. Spec

Source CE-2

Fugitive Emissions	
Volatile Organic Compounds, non-methane and non-ethane from gas analysis:	6.70
Methane from gas analysis:	82.31
Carbon Dioxide from gas analysis:	0.21
Gas Density	0.0495

weight percent weight percent weight percent lb/scf

Emission Source:	Number*	Oil & Gas Production**	VOC %	VOC, lb/hr	VOC, tpy	VOC, lb/yr	CO2, lb/hr	CO2, tpy	CO2, lb/yr	CH4, lb/hı	CH4, tpy	CH4, lb/yr	CO2e, tpy
Valves:													
Gas/Vapor:	36	0.02700 scf/hr	6.7	0.003	0.014	28.27	0.000	0.000	0.89	0.040	0.174	347.19	4.34
Relief Valves:	2	0.04000 scf/hr	6.7	0.000	0.001	2.33	0.000	0.000	0.07	0.003	0.014	28.58	0.36
Open-ended Lines, gas:	2	0.06100 sfc/hr	6.7	0.000	0.002	3.55	0.000	0.000	0.11	0.005	0.022	43.58	0.54
Connectors:													
Gas:	147	0.00300 scf/hr	6.7	0.001	0.006	12.83	0.000	0.000	0.40	0.018	0.079	157.52	1.97

Blowdowns:	Pressure (psig)	Internal Volume (scf)	Projected Blowdow n Events (per year)	Gas Released Per Year (scf)	Compositio n of Gas (% by volume)	· · · · · ·	VOCs Released (scf)	VOCs Released (lb/yr)	VOCs Released (lb/hr)	VOCs Released (tpy)
	800	500	12	6000	0.54	0.12	32.4	3.888	0.00044	0.0019

	Fugi	tive Calculat	ions:
	Г	lb/hr	tpy
	VOC	0.006	0.025
Ī	CH4	0.066	0.288
Ī	CO2	0.000	0.001
Ī	CO2e	1.646	7.212

Notes:

*Numbers are from 40 CFR 98, Table W-1B **Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.829	0.232	0.008	1.304			-		0.0083	
Carbon Dioxide, CO2	0.085	0.038	0.001	0.211			-		0.0009	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	91.330	14.652	0.506	82.314	830.6	922.4	8.704		0.9115	
Ethane, C2H6	5.605	1.685	0.058	9.468	90.7	99.2	0.935		0.0556	1.491
Propane	1.121	0.494	0.017	2.777	26.0	28.2	0.267	2.777	0.0110	0.307
Iso-Butane	0.263	0.153	0.005	0.859	7.9	8.6	0.081	0.859	0.0026	0.086
Normal Butane	0.298	0.173	0.006	0.972	9.0	9.7	0.092	0.972	0.0029	0.093
Iso Pentane	0.144	0.104	0.004	0.585	5.3	5.8	0.055	0.585	0.0014	0.053
Normal Pentane	0.081	0.059	0.002	0.330	3.0	3.3	0.031	0.330	0.0008	0.029
Hexane	0.244	0.210	0.007	1.179	10.7	11.6	0.110	1.179	0.0024	0.104
Heptane+	-	-	-	-			-	-	-	-
	100.000	17.800	0.615		983.2	1,088.7	10.276	6.702	0.9973	2.163

Gas Density (STP) = 0.050

Ideal Gross (HHV) Ideal Gross (sat'd)	1,088.7 1,070.5
GPM	-
Real Gross (HHV)	1,091.6
Real Net (LHV)	985.8

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F28.963One mole of gas occupies, @ 14.696 psia & 32 -359.2 cu ft. per lb-moleOne mole of gas occupies, @ 14.696 psia & 60 -379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>1</u> ppmv H2S	=	0.063 grains H2S/100 scf
		0.00010 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Helium	He	4.003	0.1382	0.0105	94.848						1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Helium	He	4.003	0.1382	0.0105	94.848						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

Date of Manufacture November 15,		Package Serial Number	85123	Date Modified/	Reconstructed	Not An
Driver Rated HP	400	Rated Speed in RPM	440	Combustion Typ	e -	Spark Ignited 2 Strok
Number of Cylinders	2	Compression Ratio	6.1:1	Combustion Set	ting	Lean Bur
Displacement, in ³	5652	Fuel Delivery Method	Fuel Injected	Combustion Air	Naturally Aspirate	
Raw Engine Emissions (Pipeline Quality Fuel	Gas with little	to no H2S)				
Fuel Consumption 7800 LH	V BTU/bhp-hr	or 8580 HHV	BTU/bhp-hr			
Altitude1500 ftMaximum Air Inlet Temp65 F						
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		2.0		1.76	7.72	
Carbon Monoxide (CO)		1.2		1.06	4.63	
Volatile Organic Compounds (VOC or NMNEF	IC)	0.8		0.71	3.09	
Formaldehyde (CH2O)		0.3		0.26	1.16	
Particulate Matter (PM) ^{Filterable+Condensable} Sulfur Dioxide (SO2)			4.83E-02 5.88E-04	1.66E-01 2.02E-03	7.26E-01 8.84E-03	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)		NA		NA	NA	
Methane (CH4)		5.1		4.50	17.87	
Note that g/bhn-br values are based on 100%						
It is recommended to apply a safety factor to	CO emissions o , Fifth Edition, V	f 3.26, VOC emissions of 1.5,				
It is recommended to apply a safety factor to and fuel gas composition variability ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1	CO emissions o , Fifth Edition, V	f 3.26, VOC emissions of 1.5,				
It is recommended to apply a safety factor to and fuel gas composition variability ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model:	CO emissions o , Fifth Edition, V). None	f 3.26, VOC emissions of 1.5,				
t is recommended to apply a safety factor to and fuel gas composition variability. Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model:	CO emissions o , Fifth Edition, V).	f 3.26, VOC emissions of 1.5,				
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing:	CO emissions o , Fifth Edition, V). None	f 3.26, VOC emissions of 1.5,				
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx)	CO emissions o , Fifth Edition, V). None	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0		ources (Section 3.2	Natural TPY 7.72	
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx) Carbon Monoxide (CO)	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u>		ources (Section 3.2 	Natural <u> </u>	
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or NMNEF	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0 0 0		ources (Section 3.2 b/hr 1.76 1.06 0.71	Natural <u> </u>	
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or NMNEF Formaldehyde (CH2O)	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0 0 0 0 0		bources (Section 3.2 1 b/hr 1.76 1.06 0.71 0.26	Natural TPY 7.72 4.63 3.09 1.16	
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or NMNEF Formaldehyde (CH2O) Particulate Matter (PM)	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0 0 0		ources (Section 3.2 b/hr 1.76 1.06 0.71	Natural <u> </u>	
t is recommended to apply a safety factor to and fuel gas composition variability Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-1 Catalytic Converter Emissions Catalytic Converter Make amd Model: Number of Elements in Housing: Nitrogen Oxides (NOx) Carbon Monoxide (CO) /olatile Organic Compounds (VOC or NMNEF Formaldehyde (CH2O) Particulate Matter (PM)	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0 0 0 0 0 0 0		bources (Section 3.2 1 bources (Section 3.2 1 b/hr 1.76 1.06 0.71 0.26 1.66E-01	TPY 7.72 4.63 3.09 1.16 7.26E-01	
-	CO emissions o , Fifth Edition, V). None 0	f 3.26, VOC emissions of 1.5, olume I, Chapter 3: Stationar <u>% Reduction</u> 0 0 0 0 0 0 0 0 0 0		bources (Section 3.2 1 1.76 1.06 0.71 0.26 1.66E-01 2.02E-03	TPY 7.72 4.63 3.09 1.16 7.26E-01 8.84E-03	

Estimated Exhaust Emissions Based On PLQNG, 1500 FASL Elevation and an average Ambient Temperature of 65 Degrees F

For Emissions Permits, please contact Ajax for emissions data based on specific site conditions

Ajax			ions (G		-			-				Exhau	st Stack			No.		
Engine						BSFC	RPM	внр	BMEP	Dia.	Height	Temp	Flow	1	Velocity	Of	Bore	Stroke
Model	NOx	со	NMHC	VOC	H2CO					(in.)	(in.)	(Deg.F)	(acfm)	(lb/m)		Cyl's		
DPC-230	4.4	2.4	0.9	0.6	0.3	8700	360	221	55.0	12	190	440	1730	71	2203	2	13.25	16
DPC-230 LE	2.0	2.2	0.7	0.5	0.3	8100	360	221	55.0	12	190	400	1670	72	2126	2	13.25	16
DPC-280	11.4	1.3	0.6	0.5	0.3	8200	400	269	60.3	12	190	470	2030	80	2585	2	13.25	16
DPC-280 LE	<mark>2.0</mark>	<mark>1.4</mark>	<mark>0.6</mark>	<mark>0.5</mark>	<mark>0.3</mark>	<mark>7800</mark>	<mark>400</mark>	<mark>269</mark>	<mark>60.3</mark>	<mark>12</mark>	<mark>190</mark>	<mark>450</mark>	<mark>1990</mark>	<mark>81</mark>	<mark>2534</mark>	2	<mark>13.25</mark>	<mark>1</mark> 6
DPC-300	4.1	1.9	1.0	0.6	0.3	8700	360	288	56.0	13.25	260	435	2210	91	2308	2	15	16
DPC-300 LE	2.0	1.6	0.7	0.5	0.3	8200	360	288	56.0	13.25	260	435	2230	92	2329	2	15	16
DPC-360	6.3	1.4	0.9	0.6	0.3	8400	400	346	60.5	13.25	260	480	2630	103	2747	2	15	16
DPC-360 LE	2.0	1.1	0.6	0.5	0.3	7900	400	346	60.5	13.25	260	480	2690	105	2809	2	15	16
DPC-450 LE	2.7	1.2	0.6	0.5	0.3	7800	400	432	64.6	17.25	190	500	3220	124	1984	3	13.25	16
DPC-540	8.6	1.3	0.8	0.6	0.3	8300	400	540	63.0	17.25	303	465	3890	155	2397	3	15	16
DPC-540 LE	2.0	1.0	0.6	0.5	0.3	7800	400	540	63.0	17.25	303	465	3970	158	2446	3	15	16
DPC-600	13.0	1.2	0.7	0.5	0.3	8200	400	576	67.2	17.25	303	515	4110	155	2532	3	15	16
DPC-600 LE	6.5	0.9	0.6	0.5	0.3	7800	400	576	67.2	17.25	303	515	4190	158	2582	3	15	16
DPC-720	9.5	1.3	0.7	0.5	0.3	8300	400	720	63.0	17.25	241	465	5190	207	3198	4	15	16
DPC-720 LE	2.0	1.0	0.6	0.5	0.3	7800	400	720	63.0	17.25	241	465	5300	211	3266	4	15	16
DPC-800	13.0	1.2	0.7	0.5	0.3	8200	400	768	67.2	17.25	241	515	5480	207	3377	4	15	16
DPC-800 LE	6.5	1.0	0.6	0.5	0.3	7800	400	768	67.2	17.25	241	515	5590	211	3444	4	15	16
DPC-2201	10.0	1.3	0.6	0.5	0.3	8000	440	148	60.4	12	190	490	1160	45	1477	1	13.25	16
DPC-2201 LE	2.0	1.4	0.6	0.5	0.3	7800	440	148	60.4	12	190	490	1200	47	1528	1	13.25	16
DPC-2202	10.0	1.3	0.6	0.5	0.3	8000	440	296	60.4	12	190	470	2280	90	2903	2	13.25	16
DPC-2202 LE	2.0	1.4	0.6	0.5	0.3	7800	440	296	60.4	12	190	470	2350	93	2992	2	13.25	16
DPC-2801	5.5	1.4	0.8	0.5	0.3	8200	440	192	61.1	13.25	256	460	1450	58	1514	1	15	16
DPC-2801 LE	2.0	1.2	0.6	0.5	0.3	7800	440	192	61.1	13.25	256	460	1490	60	1556	1	15	16
DPC-2802	5.5	1.3	0.8	0.5	0.3	8200	440	422	67.2	13.25	260	465	2910	116	3039	2	15	16
DPC-2802 LE	<mark>2.0</mark>	<mark>1.2</mark>	<mark>0.6</mark>	<mark>0.5</mark>	<mark>0.3</mark>	<mark>7800</mark>	<mark>440</mark>	<mark>384</mark>	<mark>61.1</mark>	<mark>13.25</mark>	<mark>260</mark>	<mark>465</mark>	<mark>3000</mark>	<mark>119</mark>	<mark>3133</mark>	2	<mark>15</mark>	<mark>16</mark>
DPC-2802 LE*	2.0	1.2	0.6	0.5	0.3	7800	440	384	61.1	14.13	260	465	3000	119	2757	2	15	16
DPC-2803	12.0	1.2	0.8	0.5	0.3	8000	440	634	67.3	17.25	303	465	4380	174	2699	3	15	16
DPC-2803 LE	2.0	1.2	0.6	0.5	0.3	7800	440	600	63.7	17.25	241	515	4740	179	2921	3	15	16
DPC-2804	12.0	1.2	0.8	0.5	0.3	8000	440	845	67.2	17.25	241	465	5840	233	3598	4	15	16
DPC-2804 LE	2.0	1.2	0.6	0.5	0.3	7800	440	800	63.7	17.25	241	515	6320	239	3894	4	15	16
DPC-3401 LE	2.0	1.1	0.6	0.5	0.3	7800	440	232	61.0	13.25	256	460	1800	72	1880	1	16.5	16
DPC-3402 LE	2.0	1.1	0.6	0.5	0.3	7800	440	465	61.2	13.25	260	465	3630	145	3791	2	16.5	16
DPC-3403 LE	2.0	1.1	0.6	0.5	0.3	7800	440	726	63.7	17.25	241	515	5740	217	3537	3	16.5	16
DPC-3404 LE	2.0	1.1	0.6	0.5	0.3	7800	440	970	63.8	17.25	241	515	7650	289	4714	4	16.5	16

Date: March 2011, Site Altitude = 0 - 1500 FASL, Site Fuel Composition = Pipeline Quality Natural Gas (PLQNG)

Ambient Temp For Defining Maximum Load = 100 Deg F, Ambient Temp For Defining Exhaust Emissions = 65 Deg F

The above emissions and performance data is contingent on: 1.) Engine must be maintained in good working order. 2.) Engine modifications or upgrades from the original factory configuration must meet Ajax specifications and installation guidelines. 3.) Engine operating parameters must be consistent with those specified in the Ajax manual. NOx = Nitrogen Oxide, CO = Carbon Monoxide, NMHC = Non-Methane Hydrocarbons reported as Propane VOC = non-methane, non-ethane and non-Formaldehyde reported as propane, H2CO = Formaldehyde

FASL=Feet Above Sea Level, ACFM=Actual Cubic Feet Per Minute, BMEP=Brake Mean Effective Pressure, BSFC=Brake Specific Fuel Consumption (Btu/Bhp-Hr)

Pipe Line Quality Natural Gas (PLQNG): Nitrogen = 0.72%, Carbon Dioxide = 1.14%, Methane = 92.84%, Ethane = 4.1%, Propane = 1.2% * = DPC-2802LE Tilt Muffler Package

For additional info, please contact Applications Engineering at (405) 670-4121, Cameron Compression Systems, 2101 SE 18th Street, Oklahoma City, OK 73129

Report Date: Jun 10, 2016 1:47p

Gas Analytical

Client:	DIVERSIFIED RESOURCES INC	Date Sampled:	Jun 9, 2016
Client Code:	259	Analysis Date:	Jun 10, 2016 3:34p
Site:	Antonelli	Collected By:	Jeff Gach
Field No:	9998	Date Effective:	Jun 1, 2016 12:00a
Meter:		Sample Pressure (PSI):	140.0
Source Laboratory	Clarksburg (Bridgeport), WV	Sample Temp (°F):	107
Lab File No:	X_CH1-12220.CHR	Field H2O:	No Test
Sample Type:	Spot	Field H2S:	No Test
Reviewed By:			

Analysis Status:

good

Component	Mol %	Gal/MSCF
Methane	91.3300	
Ethane	5.6047	1.4899
Propane	1.1211	0.3082
I-Butane	0.2630	0.0859
N-Butane	0.2976	0.0937
I-Pentane	0.1444	0.0527
N-Pentane	0.0814	0.0295
Nitrogen	0.8289	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.0854	
Hexanes+	0.2435	0.1000
TOTAL	100.0000	2.1598

Analytical Results at E	Base Conditions (Real)
BTU/SCF (Dry):	1,094.4570 BTU/ft ³
BTU/SCF (Saturated):	1,076.2443 BTU/ft ³
PSIA:	14.696 PSI
Temperature (°F):	60.0 °F
Z Factor (Dry):	0.99755
Z Factor (Saturated):	0.99717

Analytical Results at Co	Analytical Results at Contract Conditions (Real)										
BTU/SCF (Dry):	1,094.4632 BTU/ft ³										
BTU/SCF (Saturated):	1,076.2924 BTU/ft ³										
PSIA:	14.730 PSI										
Temperature (°F):	60.0 °F										
Z Factor (Dry):	0.99754										
Z Factor (Saturated):	0.99717										

Calculated Specific Gravities										
Ideal Gravity:	0.6152	Real Gravity:	0.6164							
Molecular Wt:	17.8167	lb/lbmol								

Gross Heating Values are Based on: GPA 2145-09, 2172 Compressibility is Calculated using AGA-8.

Source	Date	Notes
Gas Analytical	Jun 10, 2016	RUSH results to JGach@divresinc.com and DAdamo@divresinc.com

GAS Analytical Powered by ProStream - www.gasana.com - 304.623.0020

 $<\!\mathsf{MDL}$ = Less than Method Detection Limits, NG = Not Given, NT = Not Tested

ATTACHMENT S

Facility-wide Emission Summary Sheet(s)

Α	TTACH	MENT	S – FA	CILITY	-WID	E CON	TROL	LED EN	AISSIC)NS SU	MMAF	RY SHE	ET	
List all sources o	of emissio	ns in th	is table	. Use e	xtra pa	ges if n	ecessar	у.						
Emission Point ID#	NC) _x	C	20	v	OC	S	02	PI	M ₁₀	PN	I _{2.5}	GH	G (CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
3E	1.76	7.73	1.06	4.64	0.71	3.09	< 0.01	< 0.01	0.03	0.15	0.166	0.726	490	2,174
2E	0.05	0.20	0.02	0.09	1.29	5.66								
Note: There were no o	changes to e	missions	for 2E. Th	ney are the	same as	s permitte	d.							
TOTAL	1.81	7.93	1.08	4.73	2.00	8.75	< 0.01	< 0.01	0.03	0.15	0.166	0.726	490	2,174

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	CHME	NT S –	FACIL	ITY-W	IDE H	AP CC	ONTRO	LLED	EMISS	IONS S	SUMM	ARY SI	HEET	
List all sources of e	missions	in this	s table.	Use ext	ra page	es if ne	cessary.							
Emission Point ID#	Formald	lehyde	Benzene		Tol	uene	Ethylb	enzene	Xyl	enes	He	kane	Tot	al HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
3E	0.265	1.16	< 0.01	0.03	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.30	1.32
2E			0.11	0.47	0.28	1.21					0.04	0.18		
Note: There were no cha	nges to em	issions fo	r 2E. The	y are the s	ame as p	ermitted								
TOTAL	0.265	1.16	0.11	0.50	0.28	1.22	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.19	0.30	1.32

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T

Public Notice

The Inter-Mountain Legals Print Ad Proof

ADNo: 72184 Customer Number: Company: DIVERSIFIED OIL GA Customer Name: Address: ROBERT R. HUTSON P.O. BOX 67 ,WV 26386 City/St/Zip: LUMBERPORT Phone: (724) 397-5333 Solicitor: JH Category: 10 Class: 1000 Rate: LE-0 Start: 6-25-2016 Stop: 6-25-2016 Inches: 3.50 Words: 209 Lines: 36 the standard was should be

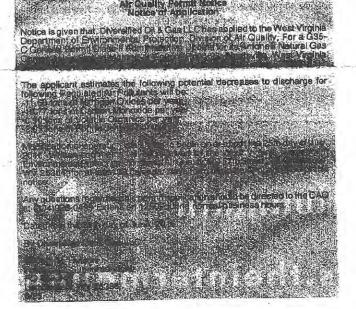
###############9955 Expire: Credit Card: Visa. Order Number: Cost: 52.92 Extra Charges: 2.00 Adjustments: .00 Payments: 54.92 Discount: .00 Balance: .00

June 23th 2016 Air Quality Permit Notice Notice of Application

Notice is given that, Diversified Oil & Gas LLC has applied to the West Vir-ginia Department of Environmental Protection, Division of Air Quality, For a G35-C General Permit Class II Administrative Update for its Antonelli Natur-al Gas Compression Station located at County Road 93, Moatsville, West Virginia 26405 in Barbour County, West Virginia. (Lat. 39.21933, Long. -79.88191)

The applicant estimates the following potential decreases to discharge for following Regulated Air Pollutants will be: -11.68 tons of Nitrogen Oxides per year -19.77 tons of Carbon Monoxide per year -0.90 tons of Volatile Organics per year 0.02 tons of Polatile Dranics per year

-2.07 tons of Formaldehyde per year


Modification of operation is planned to begin on or about the 25th day of July, 2016. Written comments will be received by the West Virginia Department Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304)926-0499 Extension 1250, during normal business hours.

Dated this the 25th day of June, 2016.

By Diversified Oil & Gas LLC

Robert R. Hutson Production Superintendent PO Box 167 Lumberport, WV 26386 6/25

Uses 25th 2019 All Guality, Fermit Motice Notice of Application

PAGE: 1

3.

p.1

State of West Virginia, County of Randolph, ss.

I, Heather Henline, General Manager of THE INTER-MOUNTAIN, a newspaper published at Elkins, in said county, do hereby certify that the annexed advertisement was published on the following dates:

20/ 6 as required by law. king 20. 16 Given under my hand this 30th day of OFFICIAL 98 TARY PUBLIC pathes VOL ST VIRC RI D. SMIT General Manager 2 4 Printer's Fee: \$ Subscribed and sworn to before me this \th K O day of 20 Notary Public Ind 20, 20 hor) M My Commission Expires the day of

p.2

že.