

July 20, 2015

Assistant Director for Permitting WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

RE: Antero Resources Corporation – Sandstrom Water Treatment Facility West Virginia Department of Environmental Protection, Division of Air Quality, 45CSR13 Air Permit Application

To Whom It May Concern,

On behalf of Antero Resources Corporation, please find attached the 45CSR13 Air Permit Application for the proposed Sandstrom Water Treatment Facility located in Doddridge County, West Virginia. Sandstrom Water Treatment Facility is a new source. Enclosed is the original hard copy application plus two copies on CDs, including the permit application form and the required attachments. Per 45CSR22, a \$2,000 application fee is also enclosed, which covers the base 45CSR13 \$1,000 application fee, and an additional \$1,000 for NSPS requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at msteyskal@kleinfelder.com.

Sincerely, **KLEINFELDER**

Michele Steyskal Air Quality Specialist

Michele Stergkal

Enclosures: Sandstrom Water Treatment Facility Air Permit Application

Antero Resources Corporation

Sandstrom Water Treatment Facility

NSR Permit Application
West Virginia Department of Environmental Protection
Division of Air Quality
45CSR13

Doddridge County, West Virginia

July 2015

Prepared by:

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 www.kleinfelder.com

> © 2015 Kleinfelder DEN15O22724

Table of Contents

45CSR13 Application Form Discussion of Nearby Facilities

Attachment A. Business Certificate

Attachment B. Area and Topographic Maps
Attachment C. Installation and Startup Schedule

Attachment D. Regulatory Discussion

Attachment E. Plot Plan

Attachment F. Process Flow Diagram Attachment G. Process Description

Attachment H. Material Safety Data Sheets

Attachment I. Emission Units Table

Attachment J. Emission Point Data Summary Sheet Attachment K. Fugitive Emissions Data Summary Sheet

Attachment L. Emissions Unit Data Sheets

a. Emergency Generator Engine

b. Boilers

c. Cooling Tower

d. Waste Gas Header Storage Tanks

e. Post Treatment System Storage Tanks

f. Other Storage Tanks

g. Bulk Loading and Fugitives

Air Pollution Control Device Sheets

a. Thermal Oxidizer

Attachment N. Supporting Emissions Calculations

a. Emission Calculations

b. WATER9 Model Output

c. TANKS 4.0.9d Output

d. Material Balance Streams

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

Attachment P. Public Notice

Attachment M.

Attachment R. Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

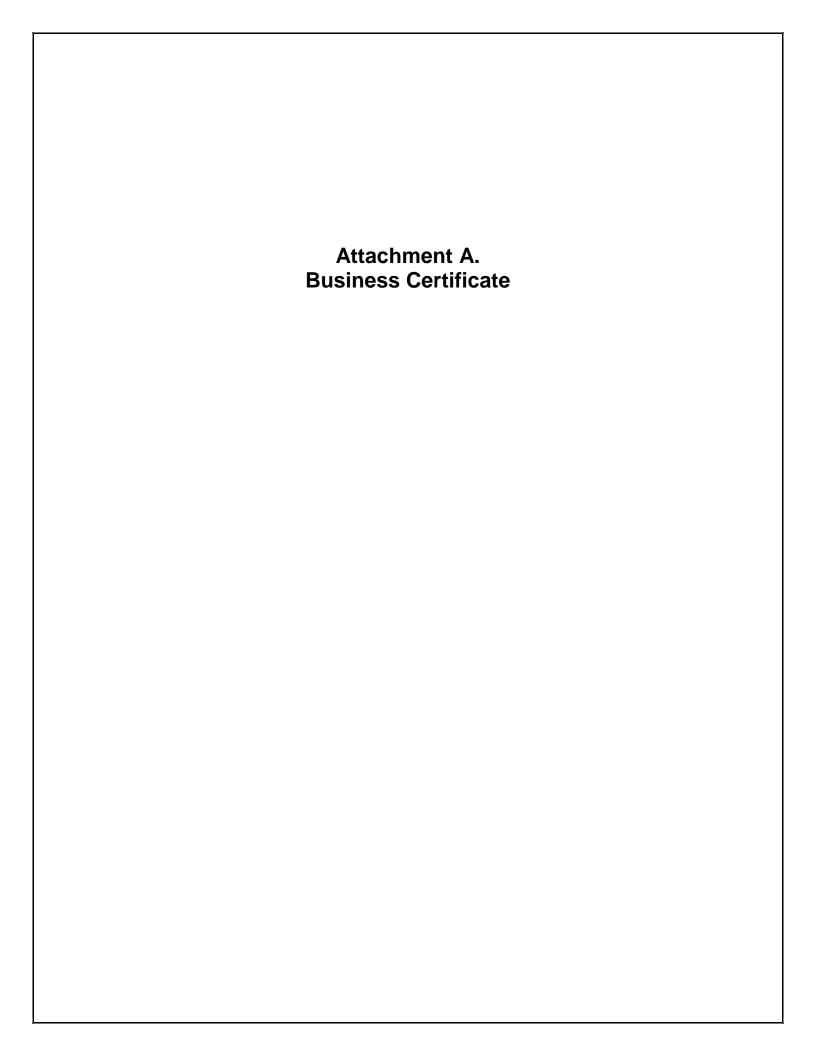
DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT **AND**

Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		TI		RMIT REVISION TIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF K CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-	N Y	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION		
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") and				
Se	ction I.	. General		
Name of applicant (as registered with the WV Secretary Antero Resources Corporation	ary of Sta	ate's Office):	2. Federal I	Employer ID No. <i>(FEIN):</i> 80-0162034
 Name of facility (if different from above): Sandstrom Water Treatment Facility 			4. The applicant is the: ☑ OWNER □ OPERATOR □ BOTH	
5A. Applicant's mailing address: 1615 Wynkoop Street Denver, CO 80202	36	B. Facility's prese 64 Gum Run Road ennsboro, WV 2641		ddress:
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide	e the nam	e of parent corpo	ration:	
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site?</i>				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Water treatment facility for oil and gas operation support 10. North American Industry Classification System (NAICS) code for the facility: 				
11A. DAQ Plant ID No. (for existing facilities only): -		sociated with this		CSR30 (Title V) permit numbers existing facilities only):
All of the required forms and additional information can be	found un	der the Permitting	Section of D/	O's website or requested by phone

12A.				
 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 				
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	rovide directions to the proposed new s	ite location from the nearest state		
From Greenwood, WV (north of US-50), head southeast under US-50, turn right onto Gum Run Road (50/36				
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
364 Gum Run Road	Greenwood	Doddridge		
Pennsboro, WV 26415				
12.E. UTM Northing (KM): 4346.659	12F. UTM Easting (KM): 509.222	12G. UTM Zone: 17		
13. Briefly describe the proposed change(s) at the facility New construction	y:			
Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provious change did happen: / /	•	14B. Date of anticipated Start-Up if a permit is granted: April 2017		
14C. Provide a Schedule of the planned Installation of/one application as Attachment C (if more than one unit		units proposed in this permit		
 Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7 	factivity/activities outlined in this application Weeks Per Year 52	ation:		
16. Is demolition or physical renovation at an existing facility involved? YES NO				
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed				
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the				
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this				
information as Attachment D.				
Section II. Additional atta	achments and supporting de	ocuments.		
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and		
20. Include a Table of Contents as the first page of you	r application package.			
 Provide a Plot Plan, e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re 		rty on which the stationary		
 Indicate the location of the nearest occupied structure 	(e.g. church, school, business, residen	ce).		
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	ring each proposed or modified emission	ns unit, emission point and control		
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

24.	24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.				
_	For chemical processes, provide a MSD	S for each compound emitted	to the air.		
25.	Fill out the Emission Units Table and	provide it as Attachment I.			
26.	Fill out the Emission Points Data Sur	nmary Sheet (Table 1 and Ta	ble 2) and provide it as At	tachment J.	
27.	Fill out the Fugitive Emissions Data S	Summary Sheet and provide i	as Attachment K.		
28.	Check all applicable Emissions Unit I	Data Sheets listed below:			
\boxtimes	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry		
	Chemical Processes	☐ Hot Mix Asphalt Plant		ng, Handling and Storage	
	Concrete Batch Plant	☐ Incinerator	Facilities		
	Grey Iron and Steel Foundry				
	General Emission Unit, specify: General	ator engine, cooling tower, mat	erial transfer points, proces	ss tanks	
Fill	out and provide the Emissions Unit Da	nta Sheet(s) as Attachment L			
	Check all applicable Air Pollution Cor				
	Absorption Systems	☐ Baghouse	∑ Fla	re	
	Adsorption Systems	☐ Condenser	<u> </u>	chanical Collector	
	Afterburner	☐ Electrostatic Precipit	<u> </u>	et Collecting System	
	Other Collectors, specify:			e concerning cyclem	
Fill	out and provide the Air Pollution Cont	rol Device Sheet(s) as Attacl	ment M.		
30.	30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.				
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
>	Please be aware that all permits must measures. Additionally, the DAQ may are proposed by the applicant, DAQ w	not be able to accept all meas	ures proposed by the appli		
32.	Public Notice. At the time that the ap	oplication is submitted, place a	Class I Legal Advertisem	nent in a newspaper of general	
	circulation in the area where the source	e is or will be located (See 450	SR§13-8.3 through 45CSF	R§13-8.5 and <i>Example Legal</i>	
	Advertisement for details). Please su	bmit the Affidavit of Publicat	on as Attachment P imm	ediately upon receipt.	
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?					
	☐ YES	⊠ NO			
A	If YES, identify each segment of inform segment claimed confidential, including Notice – Claims of Confidentiality"	g the criteria under 45CSR§31	-4.1, and in accordance wi	th the DAQ's "Precautionary	
	Sec	ction III. Certification	of Information		
34.	Authority/Delegation of Authority. Check applicable Authority Form belo		ther than the responsible of	official signs the application.	
	Authority of Corporation or Other Busine	ess Entity	Authority of Partnership		
	Authority of Governmental Agency		Authority of Limited Partn	ership	
Submit completed and signed Authority Form as Attachment R .					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					


35A. Certification of Information . To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.				
Certification of Truth, Accuracy, and Comp	leteness			
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.				
that, based on information and belief formed a compliance with all applicable requirements.	fter reasonable inquiry, all air cor	ee is not achieved, I, the undersigned hereby certify ntaminant sources identified in this application are in		
SIGNATURE Bary School Mease	use blue ink)	DATE: 7/16/2015 (Please use blue ink)		
35B. Printed name of signee: Barry Schatz		35C. Title: Senior Environmental and Regulatory Manager		
35D. E-mail: <u>bschatz@anteroresources.com</u>	36E. Phone: (303) 357-7276	36F. FAX: (303) 357-7315		
36A. Printed name of contact person (if different from above):		36B. Title:		
36C. E-mail:	36D. Phone:	36E. FAX:		
PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION: Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment I: Emission Points Data Summary Sheet Please mail an original and three (3) copies of the complete permit application. Please DO NOT fax permit applications.				
FOR AGENCY USE ONLY - IF THIS IS A TITLE V	/ SOURCE:			
 □ Forward 1 copy of the application to the Title V Permitting Group and: □ For Title V Administrative Amendments: □ NSR permit writer should notify Title V permit writer of draft permit, □ For Title V Minor Modifications: □ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt, □ NSR permit writer should notify Title V permit writer of draft permit. □ For Title V Significant Modifications processed in parallel with NSR Permit revision: □ NSR permit writer should notify a Title V permit writer of draft permit, □ Public notice should reference both 45CSR13 and Title V permits, □ EPA has 45 day review period of a draft permit. All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				
All of the required forms and additional informa	tion can be tound under the Permi	πing Section of DAQ's website, or requested by phone.		

Discussion of Nearby Facil	itiae
Discussion of Nearby Facili	

Sandstrom Water Treatment Facility – Closest Antero Resources Corporation Facilities

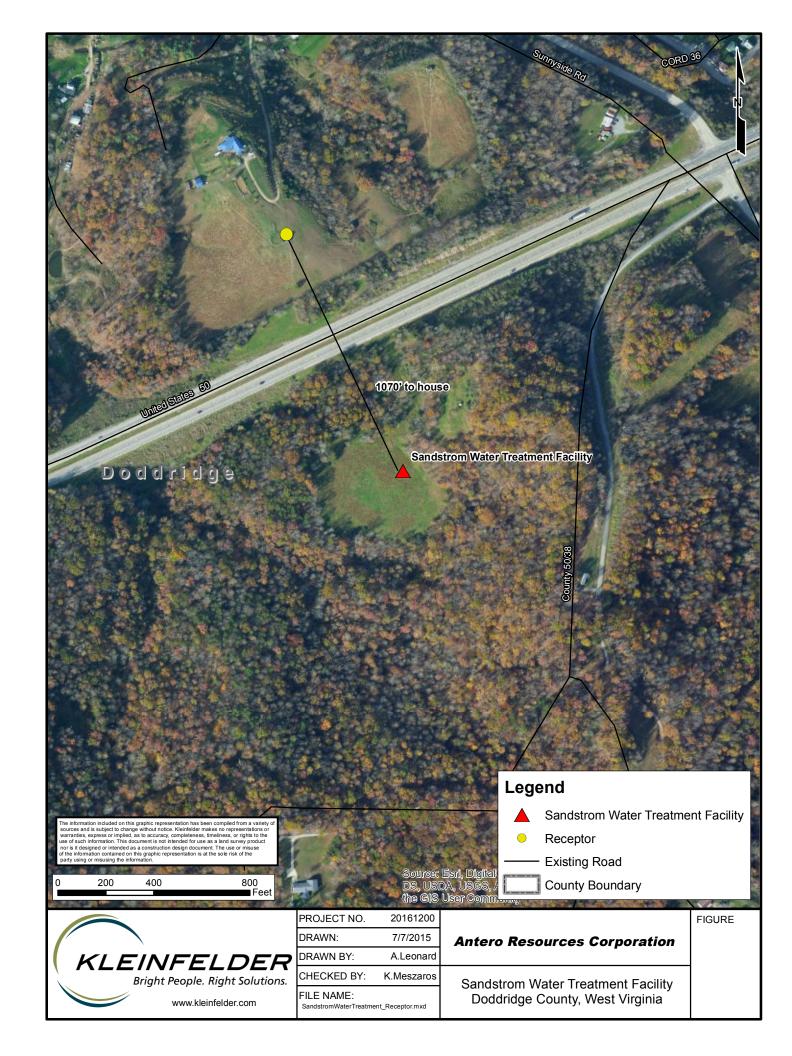
- 1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes all facilities owned and operated by Antero Resources Corporation and Antero Midstream LLC.
- 2. SIC Code: The Sandstrom Water Treatment Facility will operate under SIC code 1389 (oil and gas field services). The closest facility owned by Antero Resources Corporation is a production facility located 0.66 miles northeast of the proposed water treatment facility. However, this production facility operates under the SIC code of 1311. There are no nearby facilities owned by Antero Resources Corporation operating with the SIC code of 1389.
- 3. Continuous or Adjacent: The land between the Sandstrom Water Treatment Facility and its nearest facility is not owned or managed by Antero Resources Corporation. Therefore, the facilities are not considered to be adjacent or continuous.

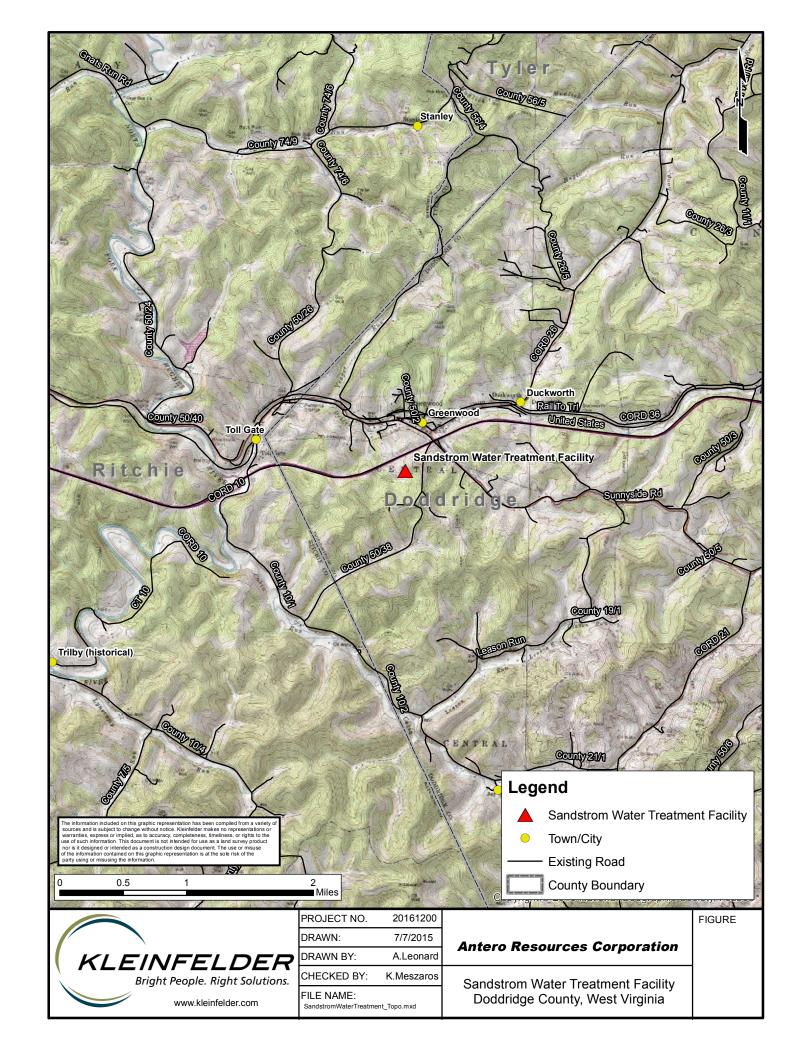
Based on this three-pronged evaluation, there are no other existing facilities that should aggregate emissions with Sandstrom Water Treatment Facility.

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO RESOURCES CORPORATION

a corporation formed under the laws of Delaware, which is authorized to transact business in West Virginia by a Certificate of Authority has filed in my office as required by the provisions of the West Virginia Code, a copy of an amendment to its Articles of Incorporation authenticated by the proper office of the state or country of its incorporation and was found to conform to law.


Therefore, I issue this


CERTIFICATE OF AMENDMENT TO CERTIFICATE OF AUTHORITY

Given under my hand and the Great Seal of the State of West Virginia on this day of June 10, 2013

Secretary of State

Attachn Installation and S	

Sandstrom Water Treatment Facility – Installation and Startup Schedule

The Sandstrom Water Treatment Facility will be a new facility located in Doddridge County, WV, approximately 0.5 miles south of Greenwood, WV. Ground clearing and other site preparation activities are anticipated to occur starting in August 2015. Installation of equipment is anticipated to begin in January 2016. Facility operations are scheduled to begin on or around April 2017.

Attachment D. Regulatory Discussion	

Sandstrom Water Treatment Facility – Regulatory Discussion Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Db – Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units

<u>Applicability</u>: Subpart Db applies to steam generating units that commence construction, modification, or reconstruction after June 19, 1984 with a heat input capacity of more than 29 MW or 100 MMBtu/hr. Subpart Db applies to the two (2) onsite boilers at the Sandstrom Water Treatment Facility. The Subpart outlines SO₂, PM, and NOx emission standards, however since these boilers will only fire low sulfur natural gas, they will be exempt from all emissions standards except for NOx and for opacity.

II. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

Applicability: Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). Storage vessels with a capacity greater than or equal to 151 m³ storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (0.5 psia) or with a capacity greater than or equal to 75 m³ but less than 151 m³ storing a liquid a liquid with a maximum true vapor pressures less than 15 kPa (2.18 psia) are exempt from this Subpart (§60.110b(b)). The following storage vessels have a maximum capacity less than 75 m³ and/or do not contain a volatile liquid and are therefore exempt from this Subpart:

Oil collection tank (TK-1065)	Clarifier effluent tank (TK-2015)	Sludge filtrate tank (TK-2030)
CIP tank (TK-2320)	Process distillate level tank (TK-2120)	Steam condensate level tank (TK-2085)
Disposal centrate tank (TK-2160)	Boiler deaerator tank (TK-2315)	Brine maker tank (TK-2150)
Post Treatment effluent tank (TK-2515)	Post Treatment sludge tank (TK-2520)	Clarifer polymer aging tank (TK-4175)
Sodium sulfate day tank (TK-4039)	Lime slurry premix tank A and B (TK-4049A and TK-4049B)	Lime slurry tank A and B (TK-4049A and TK-4049B)
Dewatering polymer system aging tank (TK-4165)	Sodium bicarbonate day tank (TK-4014)	Post Treatment polymer system aging tank (TK-4170)
Ferric chloride storage tank (TK-4000)	Caustic bulk storage tank (TK-4020)	Methanol bulk storage tank (TK-4115)
Sulfuric acid bulk storage tank (TK-4180)	Solids Clarifier Polymer System Aging Tank (TK-4160)	All totes (TK-4025, 4080, 4054, 4057, 4120, 4155, 4015, 4125, 4150, 4065, 4185, 4190)

The Clarifier Pump Tanks A & B (TK-1060A and TK-1060B) each have a capacity between 75 m³ and 151 m³ with a vapor pressure less than 15 kPa (2.18 psia) and are

therefore exempt from this Subpart. The following tanks have a maximum storage capacity greater than $151~\text{m}^3$ and are exempt from this Subpart since their vapor pressure will be less than 3.5~kPa.

Clarifier Tanks A & B (TK- 1055A & TK-1055B)	Equalization Tank (TK-1070)	Thermal Feed Tank (TK-2040)
Sludge Holding Tank (TK-2020)	Boiler Feedwater Tank (TK-2180)	Recovered Water Tank (TK-2140)
Post Treatment Tank 1 (TK-2500)	Post Treatment Tank 2 (TK-2550)	Post Treatment Tank 3 (TK-2555)
Product Water Storage Tank (TK-2545)	Barometric Condenser Hotwell Tank (TK-2130)	Solids Clarifier Tank (TK-2010)
Post Treatment System Tanks (CF-2510)		

All onsite storage tanks were addressed for applicability to Subpart Kb. With the determinations above, Subpart Kb is not applicable to the Sandstrom Water Treatment Facility.

III. Subpart QQQ – Standards of Performance for VOC Emissions from Petroleum Refinery Wastewater Systems

Applicability: Subpart QQQ applies to facilities constructed, modified, or reconstructed after May 4, 1987 that operate an oil-water separator at a petroleum refinery (§60.690(a)(3)). Though the Sandstrom Water Treatment Facility will be constructed after May 4, 1987, it is not considered a petroleum refinery. Therefore, Subpart QQQ does not apply to the Sandstrom Water Treatment Facility.

IV. Subpart IIII - Standards of Performance for Compression Ignition Internal Combustion Engines

<u>Applicability:</u> Subpart IIII applies to compression ignition engines that commence construction after July 11, 2005 and are manufactured after April 1, 2006 and are not fire pump engines (§60.4200(a)(2)(i)). Thus, Subpart IIII applies to the Sandstrom Water Treatment Facility since the emergency generator engine will be installed after July 2005 and manufactured after April 2006.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

<u>Applicability:</u> Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the Sandstrom

Water Treatment Facility because none of the components will have fluid (i.e., water) that is over 10 percent by weight of any VHAP.

II. Subpart FF – National Emission Standard for Benzene Waste Operations

<u>Applicability:</u> Subpart FF applies to owners and operators of chemical manufacturing plants, coke by-product recovery plants, and petroleum refineries. The Sandstrom Water Treatment Facility is not categorized as any of those facilities, therefore is not applicable to Subpart FF.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart DD – National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations

<u>Applicability</u>: Subpart DD applies to certain provisions of wastewater treatment facilities that are a major source of hazardous air pollutants (§63.6804(a)). Since the Sandstrom Water Treatment Facility is not a major source of hazardous air pollutants, it is not applicable to Subpart DD.

II. Subpart VV – National Emission Standards for Oil-Water Separators and Organic-Water Separators

<u>Applicability:</u> Subpart VV applies to those facilities that reference this Subpart in 40 CFR Parts 60, 61, and 63 to use the emission controls of Subpart VV to demonstrate compliance with the applicable subparts. The Sandstrom Facility is not subject to any Subpart of 40 CFR Parts 60, 61, or 63 therefore is not applicable to the provisions of Subpart VV.

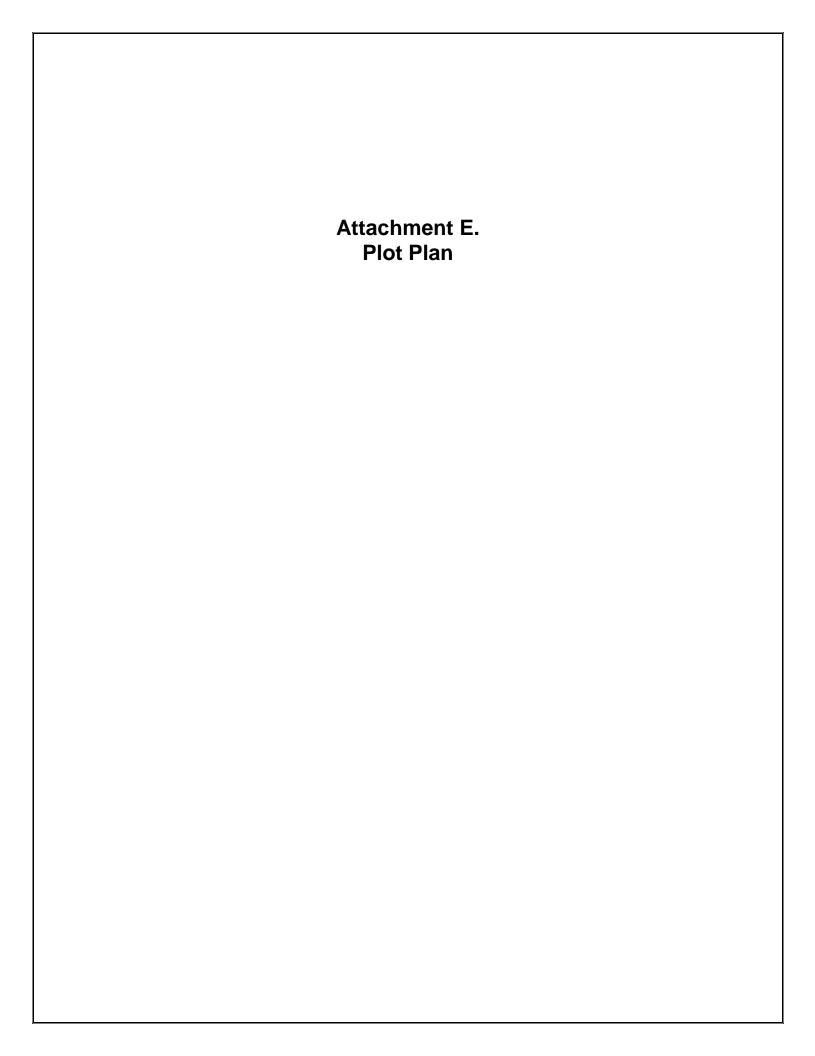
III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

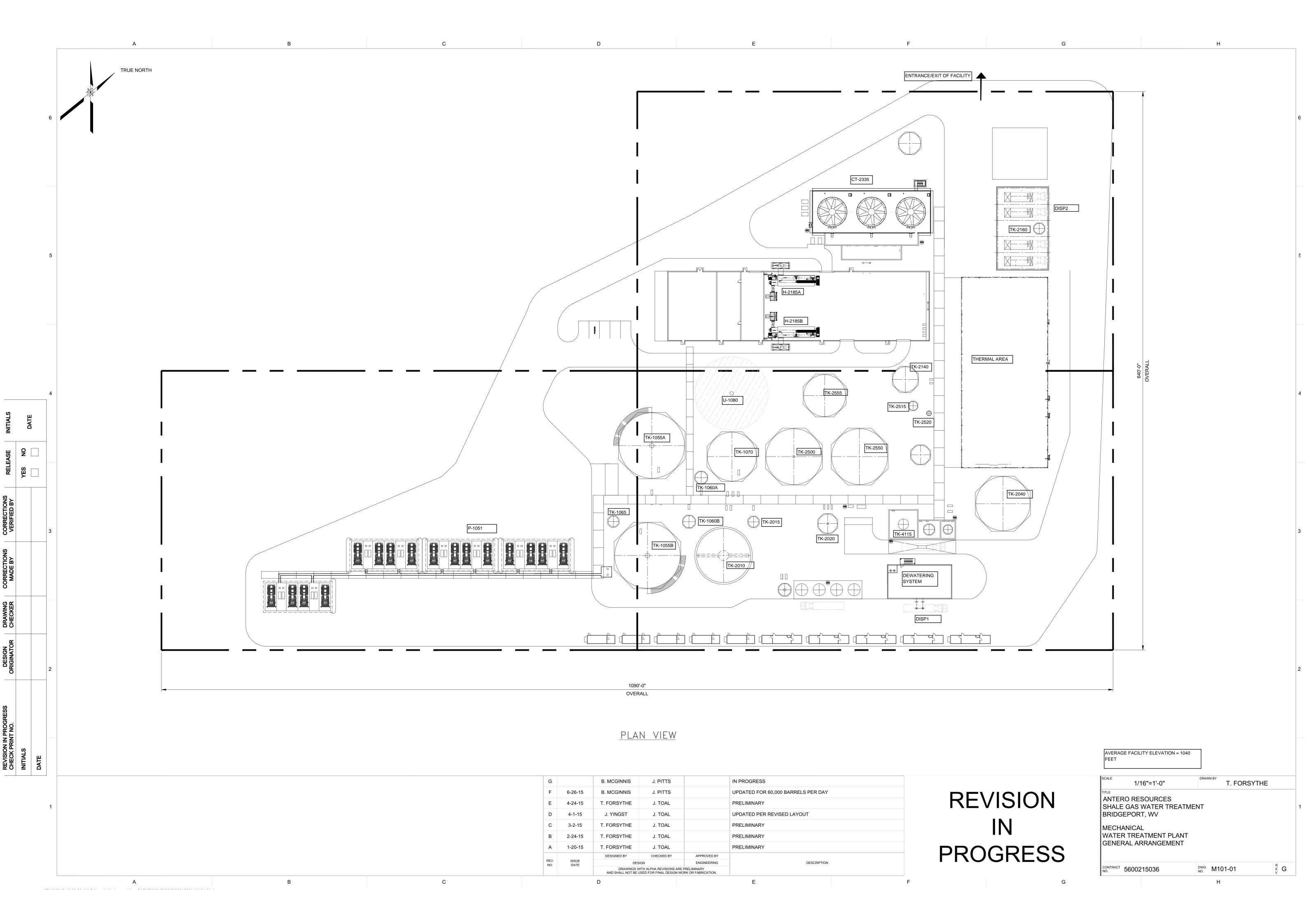
<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the Sandstrom Water Treatment Facility as it is not a major source of HAP emissions.

IV. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

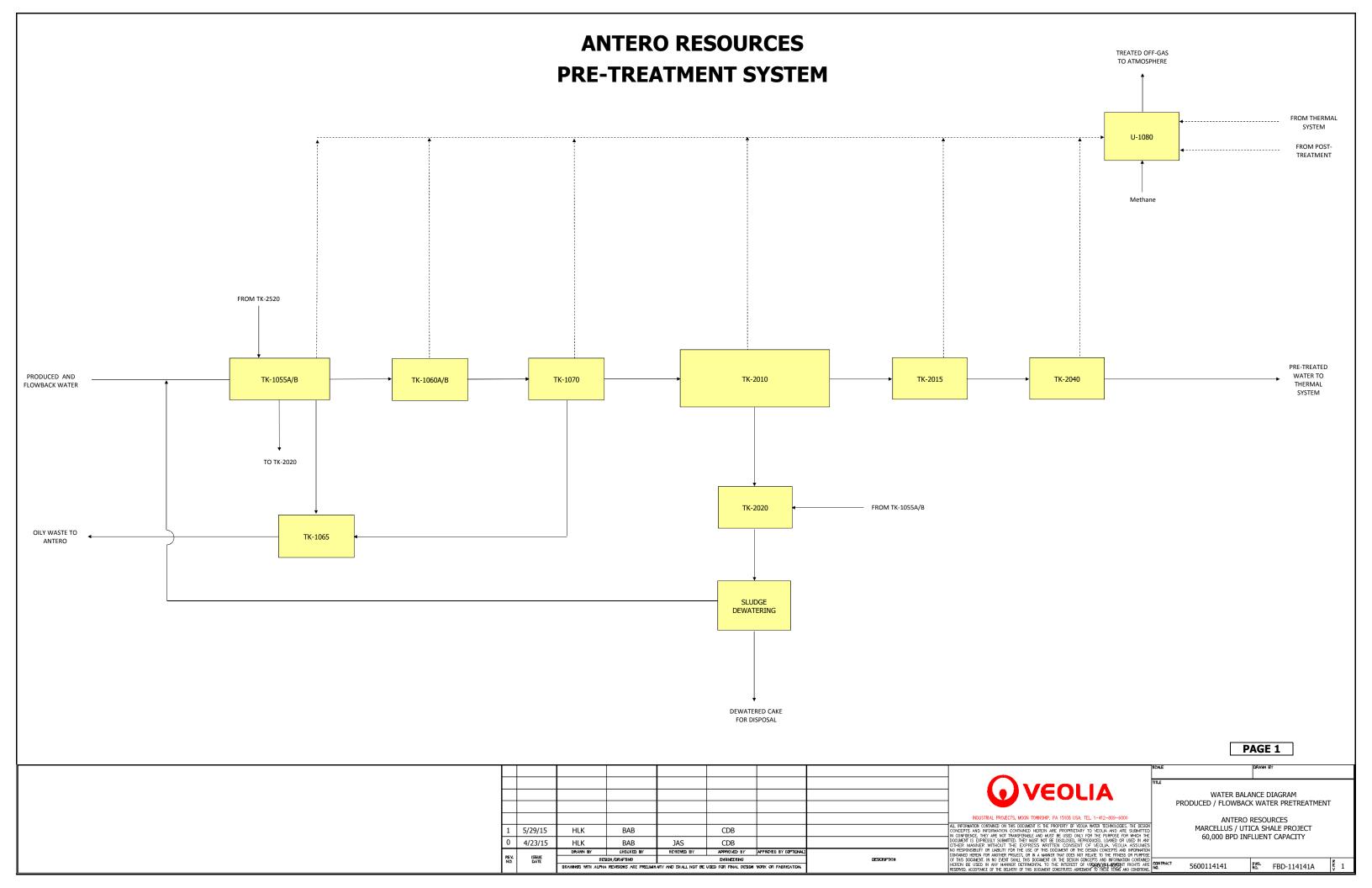
<u>Applicability:</u> Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the Sandstrom Water Treatment Facility as the generator engine is a new RICE. The engine will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart IIII as the Sandstrom Water Treatment Facility is an area source of HAP emissions (§63.6590(c)(1)).

- V. Subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters
 - <u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the Sandstrom Water Treatment Facility as it is not a major source of HAP emissions.
- VI. Subpart JJJJJJ National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources


<u>Applicability</u>: Subpart JJJJJJ applies to industrial boilers at major and area sources of HAP emissions (§63.11193). The boilers are located at an area source of HAP emissions and will be firing natural gas only, and therefore meet the exemption criteria outlined in §63.11193. Subpart JJJJJJ does not apply to the Sandstrom Water Treatment Facility.


West Virginia State Regulations

Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality


The following Title 45 Legislative Rules will be applicable to the Sandstrom Water Treatment Facility:

- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- II. 45CSR2A Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2
- III. 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- IV. 45CSR6 Control of Air Pollution from Combustion of Refuse
- V. 45CSR8 Ambient Air Quality Standards
- VI. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VII. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation
- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program
- XI. 45CSR27 To Prevent and Control the Emissions of Toxic Air Pollutants
- XII. 45CSR33 Acid Rain Provisions and Permits
- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules
- XV. 45CSR42 Greenhouse Gas Emissions Inventory

Attachment F. Process Flow Diagram	

ANTERO RESOURCES THERMAL SYSTEM TO U-1080 TK-4180 COOLING TOWER TREATMENT TO CHILLER PACKAGES COOLING WATER SUPPLY E-2076 COOLING WATER RETURN FROM TK-2120 BAROMETRIC CONDENSER TK-2130 CT-2335 STEAM STEAM STEAM FROM TK-2040 SALT TO DISPOSAL THERMAL SYSTEM DEAERATOR DISPOSAL CENTRIFUGE TK-2160 THERMAL SYSTEM TK-2120 STEAM CONDENSATE TANK BOILER FEED PRETREATMENT TO TK-2140 PAGE 2 **VEOLIA** WATER BALANCE DIAGRAM PRODUCED / FLOWBACK WATER POSTTREATMENT ANTERO RESOURCES MARCELLUS / UTICA SHALE PROJECT 60,000 BPD INFLUENT CAPACITY DESIGN/DRAFTING CHARLESNS DRAWNOS WITH ALPHA REVISIONS ARE PREJIMHARY AND SHALL NOT BE USED FOR FINAL DESIGN WORK OR FABRICATION PWS. FBD-114141B 5600114141

ANTERO RESOURCES POST-TREATMENT SYSTEM TO U-1080 ◆ TK-4115 FROM THERMAL SYSTEM TREATED EFFLUENT TO REUSE OR DISCHARGE POST-TREATMENT POST-TREATMENT PROCESS TK-2140 TK-2500 TK-2550 and TK-2555 TK-2515 TK-2545 TO TK-1055A/B TK-2520 PAGE 3 **○** VEOLIA WATER BALANCE DIAGRAM PRODUCED / FLOWBACK WATER POSTTREATMENT ANTERO RESOURCES MARCELLUS / UTICA SHALE PROJECT 60,000 BPD INFLUENT CAPACITY 1 5/29/15 HLK BAB CDB BAB CHECKED BY CDB 0 4/23/15 JAS DATE DESIGN/CRAFTING DYSINEERING ORAWHYSS WITH ALPHA REVISIONS ARE PRELIMINARY AND SHALL NOT BE USED FOR FINAL DESIGN WORK OR FABRICATION. PWS. FBD-114141B 5600114141

Attachment G. Process Description	

Attachment G – Summarized Process Description Sandstrom Water Treatment Facility

The water treatment facility was designed to treat wastewater associated with shale development to an effluent water purity suitable for surface discharge or reuse with future oil and gas operations. The treatment system includes the following processes:

- Brine pre-treatment system including truck offloading, clarification, equalization, solids contact clarifier for selective ion removal and equalization
- Thermal brine treatment system
- Post-treatment system

All processes are planned to operate 24 hours a day 7 days a week. A basic process flow diagram (PFD) of the entire treatment process is provided in Attachment F.

Upstream Equipment – Truck Off-loading Station

The influent to the water treatment facility will be delivered by trucks. An offloading station will be provided with 16 truck bays (P-1051). The water will flow from offload bays to the clarifiers (TK-1055A and TK-1055B). All pumping units at the facility are electric-powered and have no associated emissions.

Pre-Treatment Technology Description

Clarifiers

The raw influent is transferred to two Clarifiers (TK-1055A and TK-1055B) operating in parallel. Each clarifier is designed to be able to accept simultaneous flow from all of the sixteen truck offloading stations if required (i.e., if one clarifier is out of service), but normally, flow will be split equally between the two clarifiers. Each clarifier will have the capability for solids and oil removal. Solids from the Clarifiers (TK-1055A and TK-1055B) will be pumped to the Sludge Holding Tank (TK-2020). Oil that is removed from the Clarifiers (TK-1055A and TK-1055B) will be pumped to the Oil Collection Tank (TK-1065). Water will flow from the Clarifiers (TK-1055A and TK-1055B) into the small Clarifier Pump Tanks (TK-1060A and TK-1060B) before being pumped to a larger Equalization Tank (TK-1070). The Clarifiers (TK-1055A and TK-1055B) and the Clarifier Pump Tanks (TK-1060A and TK-1060B) will all be covered and vented, with all off-gas being routed to a Thermal Oxidizer (U-1080).

Equalization Tank

Water will be pumped from the Clarifier Pump Tanks (TK-1060A and TK-1060B) to an Equalization Tank (TK-1070). The Equalization Tank (TK-1070) will include an oil removal device. Oil that is removed from the tank will also be pumped to the Oil Collection Tank (TK-1065). The Clarifier Pump Tanks (TK-1060A and TK-1060B) and Equalization Tank (TK-1070) will be covered and vented, with all off-gas being routed to the Thermal Oxidizer (U-1080).

Oil Collection Tank

Oil from the Clarifiers (TK-1055A and TK-1055B) and the Equalization Tank (TK-1070) is pumped to an Oil Collection Tank (TK-1065) and then trucked offsite. The Oil Collection Tank (TK-1065) will be covered and vented, with all off-gas being routed to the Thermal Oxidizer (U-1080).

Solids Contact Clarifier

The water is pumped from the Equalization Tank (TK-1070) and enters the Solids Clarifier Tank (TK-2010) where select constituents are chemically removed. Select constituent removal aids in both incremental water treatment, as well as protection and optimal water chemistry for the thermal system's equipment and process.

The solids generated during pretreatment are removed from the Solids Clarifier Tank (TK-2010) and pumped to the Sludge Holding Tank (TK-2020). The clarified effluent from the Solids Clarifier Tank (TK-2010) will flow into an Effluent Tank (TK-2015). All of the tanks in this process are covered and vented with all off-gas routed for emissions control by the Thermal Oxidizer (U-1080).

Pre-Treatment Dewatering System

The volumetric feed to the Sludge Holding Tank (TK-2020) will consist of sludge from the Solids Clarifier Tank (TK-2010) and sludge from the Clarifiers (TK-1055A and TK-1055B).

The sludge is continuously pumped from the Sludge Holding Tank (TK-2020) to Dewatering Equipment. Recovered filtrate from dewatering equipment is then sent to the Sludge Filtrate Tank (TK-2030) for temporary storage before it is recycled to the Clarifiers (TK-1055A and TK-1055B) to be retreated. The dewatered cake will be transferred for transport to a landfill (DISP1). The dewatering equipment will also be operated 24 hours per day, 7 days per week.

Thermal Feed Tank

Effluent from the Solids Clarifier Tank (TK-2010) will flow into a small Clarifier Effluent Tank (TK-2015) and will then be pumped to the Thermal Feed Tank (TK-2040). The Thermal Feed Tank (TK-2040) will be covered and vented, with all off-gas being routed to a Thermal Oxidizer (U-1080). An off-spec line will also be added so that the water can be recycled back to the front of the pre-treatment system in the event that it is not acceptable as feed to the thermal system.

Thermal Process System

Thermal Feed brine is pumped from the Thermal Feed Tank (TK-2040) into the thermal system. Steam from two (2) natural gas-fired boilers (H-2185A and H-2185B) provides the energy to drive the thermal process. Chemicals are added to the boilers via the Boiler Chemical Treatment A and B (U-4105 and U-4110) to optimize boiler performance.

A small amount of steam is passed through the Deaerator (E-2076) counter-current to the feed brine. The vent from the Deaerator (E-2076) will include components such as ammonia and volatile organics which are sent to the thermal oxidizer (U-1080). Deaerator brine from the Deaerator is temporarily stored in the Process Distillate Level Tank (TK-2120).

Slurry from the thermal process is pumped to the dewatering building where solids are removed for disposal. Centrate from the dewatering process is returned to the thermal process after temporary storage in the Disposal Centrate Tank (TK-2160). The Disposal Centrate Tank (TK-2160) is controlled by the thermal oxidizer (U-1080).

The vast majority of the water that enters the system leaves as clean, recovered distillate. Most often, this distillate is planned to be reused in future oil and gas operations. If distillate production exceeds the need for recycled fracing water, the balance of the distillate stream may be discharged to a surface water source, but only if the chemical makeup of that distillate complies with strict water quality standards designated by appropriate government permits. This water treatment facility has been designed to meet those anticipated discharge water quality requirements.

Cooling water is required for various uses. Plant service water is used as make-up water to the cooling tower (CT-2335); this water is treated distillate, so it is of high quality. Blowdown from the tower will be released based on cooling water conductivity.

A cooling tower treatment package is included to satisfy regulatory requirements associated with the operation of the tower. One or more biocides will be added to control biological activity and to control health risks.

Post-Treatment

From the Thermal System, distillate will flow to the Recovered Water Tank (TK-2140), which will be covered and vented with all off-gas being routed to the Thermal Oxidizer (U-1080). Distillate will then flow to Post Treatment Tank 1 (TK-2500) followed by Post Treatment Tanks 2 and 3 (TK-2550 and TK2555). This is where the distillate will be post-treated for reduction of ammonia and benzene in order to achieve a water quality that is suitable for discharge to the environment. The treated water will then flow into the Post Treatment Effluent Tank (TK-2515), through one final post treatment process, and finally to the Product Water Storage Tank (TK-2545) before leaving site as qualifying effluent. Any sludge generated in the post treatment process will be sent to the Post Treatment Sludge Tank (TK2520) and ultimately the same dewatering system as the pretreatment sludge by being returned to the TK-1055 A/B in the pretreatment process.

Chemical Storage

Throughout the process flow, a number of chemicals will be stored and pumped throughout the site to assist in water treatment. These chemical material safety data sheets have been included in Attachment H of this application. Below is a tabled reference to all of the small storage bins and tanks that hold these chemicals. Some of these storage vessels hold

inorganic materials or solids therefore have no resulting emissions. Please see the Emissions Summary in Attachment N for a full explanation for each vessel.

Sodium Bisulfite Tote (TK-4080)	Dewatering Polymer System Aging Tank (TK-4165)	Hydrogen Peroxide Tote (TK-4025)
Sodium Sulfate Day Tank (TK-4039)	Sodium Bicarbonate Day Tank (TK-4014)	Polymer Totes (TK-4054, TK-4120, TK-4015, TK-4155 and TK-4057)
Urea Tote (TK-4065)	Post Treatment Polymer System Aging Tank (TK-4170)	CO2 Feeder System (U-4075)
Lime Slurry Premix Tanks A&B (TK-4049A/B)	Ferric Chloride Storage Tank (TK-4000)	Phosphoric Acid Tote (TK-4125)
Clarifier Polymer Aging Tank (TK-4175)	Caustic Bulk Storage Tank (TK-4020)	Micronutrient Tote (TK-4150)
Lime Slurry Tanks A&B (TK-4049A/B)	Methanol Bulk Storage Tank (TK-4115)	Hydrex 2126 Tote (TK-4190)
Solids Clarifier Polymer System Aging Tank (TK-4160)	Sulfuric Acid Bulk Storage Tank (TK-4180)	Sodium Hypochlorite Tote (TK-4185)
Sodium Bicarbonate Bin Feeder (U-4013)		

Attachment H. Material Safety Data Sheet	ts .

MATERIAL SAFETY DATA SHEET

PRODUCT NAME: CARBON DIOXIDE, GAS

1. Chemical Product and Company Identification

BOC Gases,
Division of
BOC Gases
Division of

The BOC Group, Inc.

BOC Canada Limited

575 Mountain Avenue 5975 Falbourne Street, Unit 2 Murray Hill, NJ 07974 Mississauga, Ontario L5R 3W6

TELEPHONE NUMBER: (908) 464-8100 **TELEPHONE NUMBER:** (905) 501-1700

24-HOUR EMERGENCY TELEPHONE NUMBER: 24-HOUR EMERGENCY TELEPHONE NUMBER:

CHEMTREC (800) 424-9300 (905) 501-0802

EMERGENCY RESPONSE PLAN NO: 20101

PRODUCT NAME: CARBON DIOXIDE, GAS

CHEMICAL NAME: Carbon Dioxide

COMMON NAMES/SYNONYMS: Carbonic Anhydride

TDG (Canada) CLASSIFICATION: 2.2

WHMIS CLASSIFICATION: A

PREPARED BY: Loss Control (908)464-8100/(905)501-1700

PREPARATION DATE: 6/1/95 REVIEW DATES: 6/7/96

2. Composition, Information on Ingredients

INGREDIENT	% VOLUME	PEL-OSHA ¹	TLV-ACGIH ²	LD ₅₀ or LC ₅₀ Route/Species
Carbon Dioxide FORMULA: CO ₂ CAS: 124-38-9 RTECS #: FF6400000	99.8 TO 99.999	5000 ppm TWA	5000 ppm TWA 30,000 ppm STEL	Not Available

As stated in 29 CFR 1910, Subpart Z (revised July 1, 1993)

3. Hazards Identification

EMERGENCY OVERVIEW

Oxygen levels below 19.5% may cause asphyxia. Carbon dioxide exposure can cause nausea and respiratory problems. High concentrations may cause vasodilation leading to circulatory collapse.

MSDS: G-8 **Revised:** 6/7/96 Page 1 of 7

² As stated in the ACGIH 1994-95 Threshold Limit Values for Chemical Substances and Physical Agents

PRODUCT NAME: CARBON DIOXIDE, GAS

ROUTE OF ENTRY:

Skin Contact	Skin Absorption	Eye Contact	Inhalation	Ingestion
Yes	No	Yes	Yes	Yes

HEALTH EFFECTS:

Exposure Limits	Irritant	Sensitization
Yes	No	No
Teratogen	Reproductive Hazard	Mutagen
No	No	No
Synergistic Effects		
None reported		

Carcinogenicity: -- NTP: No IARC: No OSHA: No

EYE EFFECTS:

No adverse effects anticipated.

SKIN EFFECTS:

No adverse effects anticipated.

INGESTION EFFECTS:

No adverse effects anticipated.

INHALATION EFFECTS:

NFPA HAZARD CODES

Carbon dioxide is the most powerful cerebral vasodilator known. Inhaling large concentrations causes rapid circulatory insufficiency leading to coma and death. Asphyxiation is likely to occur before the effects of carbon dioxide overexposure. Chronic, harmful effects are not known from repeated inhalation of low concentrations. Low concentrations of carbon dioxide cause increased respiration and headache.

Effects of oxygen deficiency resulting from simple asphyxiants may include: rapid breathing, diminished mental alertness, impaired muscular coordination, faulty judgement, depression of all sensations, emotional instability, and fatigue. As asphyxiation progresses, nausea, vomiting, prostration, and loss of consciousness may result, eventually leading to convulsions, coma, and death.

Oxygen deficiency during pregnancy has produced developmental abnormalities in humans and experimental animals.

HMIS HAZARD CODES

RATINGS SYSTEM

Page 2 of 7

Health: 1 Health: 1 0 = No Hazard Flammability: 0 1 = Slight Hazard Reactivity: 0 Reactivity: 0 2 = Moderate Hazard 3 = Serious Hazard 4 = Severe Hazard

MSDS: G-8
Revised: 6/7/96

4. First Aid Measures

EYES:

Never introduce oil or ointment into the eyes without medical advice! If pain is present, refer the victim to an ophthalmologist for further treatment and follow up.

SKIN:

No adverse effects anticipated.

INGESTION:

Not anticipated.

INHALATION:

PROMPT MEDICAL ATTENTION IS MANDATORY IN ALL CASES OF OVEREXPOSURE TO CARBON DIOXIDE. RESCUE PERSONNEL SHOULD BE EQUIPPED WITH SELF-CONTAINED BREATHING APPARATUS. Conscious persons should be assisted to an uncontaminated area and inhale fresh air. Quick removal from the contaminated area is most important. Unconscious persons should be moved to an uncontaminated area, given mouth-to-mouth resuscitation and supplemental oxygen. Further treatment should be symptomatic and supportive.

5. Fire Fighting Measures

Conditions of Flammability: Nonflammable				
Flash point:	Method:		Autoignition	
None	Not Applicable		Temperature: None	
LEL(%): None		UEL(%): None		
Hazardous combustion products: None				
Sensitivity to mechanical shock: None				
Sensitivity to static discharge: None				

FIRE AND EXPLOSION HAZARDS:

None. Nonflammable

6. Accidental Release Measures

Evacuate all personnel from affected area. Use appropriate protective equipment. If leak is in user's equipment, be certain to purge piping with inert gas prior to attempting repairs. If leak is in container or container valve, contact the appropriate emergency telephone number listed in Section 1 or call your closest BOC location.

7. Handling and Storage

Electrical Classification:

Non-Hazardous

MSDS: G-8
Revised: 6/7/96

PRODUCT NAME: CARBON DIOXIDE, GAS

Dry carbon dioxide can be handled in most common structural materials. Moist carbon dioxide is generally corrosive by its formation of carbonic acid. For applications with moist Carbon Dioxide, 316, 309 and 310 stainless steels may be used as well as Hastelloy ® A, B, & C, and Monel ®. Ferrous Nickel alloys are slightly susceptible to corrosion. At normal temperatures carbon dioxide is compatible with most plastics and elastomers.

Use only in well-ventilated areas. Carbon dioxide vapor is heavier than air and will accumulate in low areas. Valve protection caps must remain in place unless container is secured with valve outlet piped to use point. Do not drag, slide or roll cylinders. Use a suitable hand truck for cylinder movement. Use a pressure reducing regulator when connecting cylinder to lower pressure (<3000 psig) piping or systems. Do not heat cylinder by any means to increase the discharge rate of product from the cylinder. Use a check valve or trap in the discharge line to prevent hazardous back flow into the system.

Protect cylinders from physical damage. Store in cool, dry, well-ventilated area away from heavily trafficked areas and emergency exits. Do not allow the temperature where cylinders are stored to exceed 125°F (52°C). Cylinders should be stored upright and firmly secured to prevent falling or being knocked over. Full and empty cylinders should be segregated. Use a "first in-first out" inventory system to prevent full cylinders being stored for excessive periods of time.

For additional storage recommendations, consult Compressed Gas Association's Pamphlet P-1.

Never carry a compressed gas cylinder or a container of a gas in cryogenic liquid form in an enclosed space such as a car trunk, van or station wagon. A leak can result in a fire, explosion, asphyxiation or a toxic exposure.

Maximum use for potable water 100 mg/l.

8. Exposure Controls, Personal Protection

EXPOSURE LIMITS¹:

INGREDIENT	% VOLUME	PEL-OSHA ²	TLV-ACGIH ³	LD ₅₀ or LC ₅₀ Route/Species
Carbon Dioxide FORMULA: CO ₂ CAS: 124-38-9 RTECS #: FF6400000	99.8 TO 99.999	5000 ppm TWA	5000 ppm TWA 30,000 ppm STEL	Not Available

Refer to individual state of provincial regulations, as applicable, for limits which may be more stringent than those listed here.

IDLH (Carbon Dioxide): 50,000 ppm

ENGINEERING CONTROLS:

Use local exhaust to prevent accumulation of high concentrations so as to reduce the oxygen level in the air to less than 19.5% and the carbon dioxide concentration below the exposure limit.

EYE/FACE PROTECTION:

Safety goggles or glasses as appropriate for the job.

SKIN PROTECTION:

Protective gloves of any material appropriate for the job.

RESPIRATORY PROTECTION:

MSDS: G-8

Revised: 6/7/96 Page 4 of 7

² As stated in 29 CFR 1910, Subpart Z (revised July 1, 1993)

³ As stated in the ACGIH 1994-1995 Threshold Limit Values for Chemical Substances and Physical Agents.

PRODUCT NAME: CARBON DIOXIDE, GAS

Positive pressure air line with full-face mask and escape bottle or self-contained breathing apparatus should be available for emergency use.

OTHER/GENERAL PROTECTION:

Safety shoes.

9. Physical and Chemical Properties

PARAMETER	VALUE	UNITS
Physical state (gas, liquid, solid)	: Gas	
Vapor pressure at 70 °F	: 856	psia
Vapor density at 70 °F, 1 atm (Air = 1)	: 1.53	
Evaporation point	: Not Available	
Boiling point (CO2 Sublimes)	: -109.3	°F
	: -78.5	°C
Freezing point	: -69.8	°F
	: -56.6	°C
рН	: Not Available	
Specific gravity	: Not Available	
Oil/water partition coefficient	: Not Available	
Solubility (H20)	: Very soluble	
Odor threshold	: Not Applicable	
Odor and appearance	: A colorless, odorless	gas.

10. Stability and Reactivity

STABILITY:

Stable

INCOMPATIBLE MATERIALS:

Certain reactive metals, hydrides, moist cesium monoxide, or lithium acetylene carbide diammino may ignite. Passing carbon dioxide over a mixture of sodium peroxide and aluminum or magnesium may explode.

HAZARDOUS DECOMPOSITION PRODUCTS:

Carbon monoxide and oxygen when heated above 3092 °F (1700°C). Carbonic acid is formed in the presence of moisture.

HAZARDOUS POLYMERIZATION:

Will not occur.

11. Toxicological Information

REPRODUCTIVE:

Oxygen deficiency during pregnancy has produced developmental abnormalities in humans and experimental animals.

Exposure of female rats to 60,000 ppm carbon dioxide for 24 hours has produced toxic effects to the embryo and fetus in pregnant rats. Toxic effects to the reproductive system have been observed in other mammalian species at similar concentrations.

OTHER:

MSDS: G-8

Revised: 6/7/96 Page 5 of 7

PRODUCT NAME: CARBON DIOXIDE, GAS

Carbon dioxide is the most powerful cerebral vasodilator known. Inhaling large concentrations causes rapid circulatory insufficiency leading to coma and death. Chronic, harmful effects are not known from repeated inhalation of low (3 to 5 molar %) concentrations.

12. Ecological Information

No data given.

13. Disposal Considerations

Do not attempt to dispose of residual waste or unused quantities. Return in the shipping container PROPERLY LABELED, WITH ANY VALVE OUTLET PLUGS OR CAPS SECURED AND VALVE PROTECTION CAP IN PLACE to BOC Gases or authorized distributor for proper disposal.

14. Transport Information

PARAMETER	United States DOT	Canada TDG
PROPER SHIPPING NAME:	Carbon Dioxide	Carbon Dioxide
HAZARD CLASS:	2.2	2.2
IDENTIFICATION NUMBER:	UN 1013	UN 1013
SHIPPING LABEL:	NONFLAMMABLE GAS	NONFLAMMABLE GAS

15. Regulatory Information

SARA TITLE III NOTIFICATIONS AND INFORMATION

SARA TITLE III HAZARD CLASSES:

Acute Health Hazard Sudden Release of Pressure Hazard

MSDS: G-8 **Revised:** 6/7/96 Page 6 of 7

16. Other Information

Compressed gas cylinders shall not be refilled without the express written permission of the owner. Shipment of a compressed gas cylinder which has not been filled by the owner or with his/her (written) consent is a violation of transportation regulations.

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES:

Although reasonable care has been taken in the preparation of this document, we extend no warranties and make no representations as to the accuracy or completeness of the information contained herein, and assume no responsibility regarding the suitability of this information for the user's intended purposes or for the consequences of its use. Each individual should make a determination as to the suitability of the information for their particular purpose(s).

MSDS: G-8 **Revised:** 6/7/96 Page 7 of 7

MATERIAL SAFETY DATA SHEET

Bayer MaterialScience LLC Product Safety & Regulatory Affairs 100 Bayer Road Pittsburgh, PA 15205-9741 USA

TRANSPORTATION EMERGENCY

CALL CHEMTREC: (800) 424-9300 INTERNATIONAL: (703) 527-3887

NON-TRANSPORTATION

Emergency Phone: Call Chemtrec Information Phone: (800) 662-2927

1. Product and Company Identification

Product Name: CAUSTIC SODA SOLUTION (50%)

Material Number: 5452627 **CAS-No.:** 1310-73-2

2. Hazards Identification

Emergency Overview

Danger Color: Clear, Opaque Form: liquid Odor: Odorless.

Water runoff from fire fighting may be corrosive. Irritating gases/fumes may be given off during burning or thermal decomposition. Contact with metals liberates flammable gas. Reacts violently with water. Causes respiratory tract burns. Causes skin burns. May be harmful if absorbed through skin. Causes eye burns. Causes digestive tract burns. Harmful if swallowed.

Potential Health Effects

Primary Routes of Entry: Skin Contact, Eye Contact, Ingestion, Inhalation

Medical Conditions Aggravated by Skin disorders, Respiratory disorders, Eye disorders

Exposure:

HUMAN EFFECTS AND SYMPTOMS OF OVEREXPOSURE

Inhalation

Acute Inhalation

For Component: Sodium hydroxide

Corrosive with symptoms of coughing, burning, ulceration, and pain.

<u>Skin</u>

Acute Skin

For Component: Sodium hydroxide

Corrosive with symptoms of reddening, itching, swelling, burning and possible permanent damage.

<u>Eye</u>

Acute Eye

For Component: Sodium hydroxide

Material Name: CAUSTIC SODA SOLUTION (50%)

Article Number: 5452627

Page: 1 of 8 Report version: 2.10

Corrosive with symptoms of reddening, tearing, swelling, burning and possible permanent damage.

Ingestion

Acute Ingestion

For Component: Sodium hydroxide

Harmful if swallowed. Corrosive to the digestive tract with symptoms of burning and ulceration.

General Effects of Exposure

Chronic Effects of Exposure

For Product: CAUSTIC SODA SOLUTION (50%)

Repeated or prolonged overexposure may cause effects as noted under acute health effects.

Carcinogenicity:

No carcinogenic substances as defined by IARC, NTP and/or OSHA

3. Composition/Information on Ingredients

Hazardous components

Weight percent
45 - 55%Components
Sodium hydroxideCAS-No.
1310-73-2

4. First aid measures

Eye contact

In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Use fingers to ensure that eyelids are separated and that the eye is being irrigated. Call a physician immediately.

Skin contact

Wash off immediately with plenty of water for at least 15 minutes. Immediately remove contaminated clothing and shoes. Call a physician immediately. Wash clothing and shoes before reuse.

Inhalation

If inhaled, remove to fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration using a pocket mask type resuscitator. Call a physician immediately.

Ingestion

Do not induce vomiting. If conscious, give 2 glasses of water. Get immediate medical attention. Never give anything by mouth to an unconscious person.

5. Firefighting measures

Suitable extinguishing media: Carbon dioxide (CO2), Foam, Dry chemical

Special Fire Fighting Procedures

Firefighters should be equipped with self-contained breathing apparatus to protect against potentially toxic and irritating fumes.

Material Name: CAUSTIC SODA SOLUTION (50%)

Article Number: 5452627

Page: 2 of 8 Report version: 2.10

Unusual Fire/Explosion Hazards

Water runoff from fire fighting may be corrosive. Toxic and irritating gases/fumes may be given off during burning or thermal decomposition. Contact with metals liberates flammable gas.

6. Accidental release measures

Spill and Leak Procedures

Cleanup personnel must use appropriate personal protective equipment. Cover spill with inert material (e. g., dry sand or earth) and collect for proper disposal. Do not allow spilled material or wash water to enter sewers, surface waters, or groundwater systems. Decontaminant/Neutralizer: Dilute hydrochloric acid solution. Wash spill area with water. Collect wash water for approved disposal.

7. Handling and storage

Storage period

Not Applicable

Handling/Storage Precautions

Do not breathe vapours or spray mist. Do not get on skin or clothing. Do not get in eyes. Do not taste or swallow. Use only with adequate ventilation/personal protection. Wash thoroughly after handling. Keep container closed when not in use.

Further Info on Storage Conditions

Material can be stored safely at ambient temperatures. Do not expose to direct sunlight. Protect from freezing. This product is corrosive to metal(s). Product can react with water.

8. Exposure controls/personal protection

Sodium hydroxide (1310-73-2)

US. ACGIH Threshold Limit Values Ceiling Limit Value: 2 mg/m3

US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000)

PEL: 2 mg/m3

Industrial Hygiene/Ventilation Measures

General dilution and local exhaust as necessary to control airborne vapors, mists, dusts and thermal decomposition products below appropriate airborne concentration standards/guidelines.

Respiratory protection

In case of insufficient ventilation, wear suitable respiratory equipment.

Hand protection

Permeation resistant gloves.

Eve protection

Chemical resistant goggles must be worn., Chemical safety goggles in combination with a full face shield if a splash hazard exists.

Skin and body protection

Permeation resistant clothing and foot protection.

Additional Protective Measures

Employees should wash their hands and face before eating, drinking, or using tobacco products. Educate and train employees in the safe use and handling of this product. Emergency showers and eye wash stations should be available.

9. Physical and chemical properties

Form: liquid

Color: Clear, Opaque Odor: Odorless pH: 14

Melting Point: $12 \, ^{\circ}\text{C} \, (53.6 \, ^{\circ}\text{F})$

Boiling point/boiling range: 140 °C (284 °F) @ 1,013 hPa

Flash point: Not Applicable

Vapour pressure: 13 mmHg @ 15.56 °C (60.01 °F)

Density: 1.54 g/cm³ @ 15 °C (59 °F) (DIN 51757) 1.52 g/cm³ @ 20 °C (68 °F) (DIN 51757)

1.505 g/cm³ @ 50 °C (122 °F) (DIN 51757)

Specific Gravity: 1.53 @ 15.56 °C (60.01 °F)

Solubility in Water: Soluble

Viscosity, dynamic: 79 mPa.s @ 20 °C (68 °F)

10. Stability and reactivity

Hazardous Reactions

Hazardous polymerisation does not occur.

Hazardous polymerisation does not occur.

Stability

Stable

Stable

Materials to avoid

Combustible material, Acids, Halogenated compounds, Halogens, Metals, Oxidizing agents, Peroxides, Organic nitro compounds

Oxidizing agents

Conditions to avoid

Avoid contact with moisture / water. Do not expose to direct sunlight. Protect from freezing.

Heat, flames and sparks.

Hazardous decomposition products

By Fire and Thermal Decomposition: Sodium oxides, other potentially toxic fumes

Other decomposition products Hydrogen;

By Fire and Thermal Decomposition: Phenol; Carbon monoxide, Carbon oxides, other potentially toxic fumes

11. Toxicological information

<u>Toxicity Data for CAUSTIC SODA SOLUTION (50%)</u>

Toxicity Data for Sodium hydroxide

Acute oral toxicity

LD50: 140 - 340 mg/kg (Rat)

Acute dermal toxicity

LD50: 1,350 mg/kg (rabbit)

Skin irritation

Human, Corrosive

Eye irritation

Human, severe irritant

Sensitisation

Skin sensitisation:: negative (Human experience, Patch Test)

Mutagenicity

Genetic Toxicity in Vitro:

Ames: negative (Salmonella typhimurium)

Positive and negative results were seen in various in vitro studies.

Genetic Toxicity in Vivo:

Micronucleus Assay: (mouse, Male/Female, intraperitoneal)

negative

12. Ecological information

Ecological Data for CAUSTIC SODA SOLUTION (50%)

Ecological Data for Sodium hydroxide

Acute and Prolonged Toxicity to Fish

LC50: 45.4 mg/L (50 %, pH 8) (Rainbow (Donaldson)Trout (Oncorhynchus mykiss), 96 h)

Acute Toxicity to Aquatic Invertebrates

LC100: 156 mg/L (pH 9.1 - 9.5) (Water flea (Daphnia magna))

Toxicity to Aquatic Plants

The freshwater algae are destroyed at a pH of >8.5.

13. Disposal considerations

Waste Disposal Method

Waste disposal should be in accordance with existing federal, state and local environmental control laws.

Empty Container Precautions

Recondition or dispose of empty container in accordance with governmental regulations. Do not reuse empty container without proper cleaning. Label precautions also apply to this container when empty.

14. Transport information

Land transport (DOT)

Proper shipping name: Sodium hydroxide solution

Hazard Class or Division: 8

UN/NA Number: UN1824 Packaging group: II

Hazard Label(s): Corrosive

RSPA/DOT Regulated Components:

Sodium hydroxide

Reportable Quantity: 907 kg (2000 lb)

Sea transport (IMDG)

Proper shipping name: SODIUM HYDROXIDE SOLUTION

Hazard Class or Division: 8

UN number: UN1824

Packaging group:

Hazard Label(s): CORROSIVE

Air transport (ICAO/IATA)

Proper shipping name: Sodium hydroxide solution

Hazard Class or Division: 8

UN number: UN1824

Packaging group: II

Hazard Label(s): CORROSIVE

Additional Transportation Information

Pollution category: Y - Ship type: 3

15. Regulatory information

United States Federal Regulations

OSHA Hazcom Standard Rating: Hazardous

US. Toxic Substances Control Act: Listed on the TSCA Inventory.

US. EPA CERCLA Hazardous Substances (40 CFR 302):

Components

Sodium hydroxide Reportable quantity: 1000 lbs

SARA Section 311/312 Hazard Categories:

Acute Health Hazard, Reactivity Hazard, Chronic Health Hazard

US. EPA Emergency Planning and Community Right-To-Know Act (EPCRA) SARA Title III Section 302 Extremely Hazardous Substance (40 CFR 355, Appendix A):

Components

None

US. EPA Emergency Planning and Community Right-To-Know Act (EPCRA) SARA Title III Section 313 Toxic Chemicals (40 CFR 372.65) - Supplier Notification Required: Components

None

Material Name: CAUSTIC SODA SOLUTION (50%)

Article Number: 5452627

Page: 6 of 8 Report version: 2.10

<u>US. EPA Resource Conservation and Recovery Act (RCRA) Composite List of Hazardous Wastes and Appendix VIII Hazardous Constituents (40 CFR 261)</u>

Under RCRA, it is the responsibility of the person who generates a solid waste, as defined in 40 CFR 261.2, to determine if that waste is a hazardous waste., In its purchased form, this product meets the criteria of corrosivity under 40 CFR 261.22(a), and, when discarded in that form, should be managed as a hazardous waste.

State Right-To-Know Information

The following chemicals are specifically listed by individual states; other product specific health and safety data in other sections of the MSDS may also be applicable for state requirements. For details on your regulatory requirements you should contact the appropriate agency in your state.

Massachusetts, New Jersey or Pennsylvania Right to Know Substance Lists:

Weight percent	Components	CAS-No.
>=1%	Water	7732-18-5
45 - 55%	Sodium hydroxide	1310-73-2

New Jersey Environmental Hazardous Substances List and/or New Jersey RTK Special Hazardous Substances Lists:

Weight percent	Components	CAS-No.
45 - 55%	Sodium hydroxide	1310-73-2

California Prop. 65:

To the best of our knowledge, this product does not contain any of the listed chemicals, which the state of California has found to cause cancer, birth defects or other reproductive harm.

16. Other information

NFPA 704M Rating

Health	3
Flammability	0
Reactivity	2
Other	

0=Insignificant 1=Slight 2=Moderate 3=High 4=Extreme

HMIS Rating

Health	3*
Flammability	0
Physical Hazard	2

0=Minimal 1=Slight 2=Moderate 3=Serious 4=Severe

The method of hazard communication for Bayer MaterialScience LLC is comprised of Product Labels and Material Safety Data Sheets. HMIS and NFPA ratings are provided by Bayer MaterialScience LLC as a customer service.

Contact person: Product Safety Department

Material Name: CAUSTIC SODA SOLUTION (50%)	Article Number: 5452627

Page: 7 of 8 Report version: 2.10

^{* =} Chronic Health Hazard

Telephone: (412) 777-2835 MSDS Number: 112000014025 Version Date: 07/20/2014

Report version: 2.10

This information is furnished without warranty, express or implied. This information is believed to be accurate to the best knowledge of Bayer MaterialScience LLC. The information in this MSDS relates only to the specific material designated herein. Bayer MaterialScience LLC assumes no legal responsibility for use of or reliance upon the information in this MSDS.

Changes since the last version are highlighted in the margin. This version replaces all previous versions.

Material Safety Data Sheet Citric acid MSDS

Section 1: Chemical Product and Company Identification

Product Name: Citric acid

Catalog Codes: SLC5449, SLC2665, SLC4453, SLC1660,

SLC3451

CAS#: 77-92-9

RTECS: GE7350000

TSCA: TSCA 8(b) inventory: Citric acid

CI#: Not available.

Synonym: 2-Hydroxy-1,2,3-propanetricarboxylic acid

Chemical Name: Citric Acid
Chemical Formula: C6H8O7

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400
Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS#	% by Weight
Citric acid	77-92-9	100

Toxicological Data on Ingredients: Citric acid: ORAL (LD50): Acute: 5040 mg/kg [Mouse]. 3000 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Hazardous in case of eye contact (irritant), of inhalation (lung irritant). Slightly hazardous in case of skin contact (irritant, sensitizer), of ingestion. The amount of tissue damage depends on length of contact. Eye contact can result in corneal damage or blindness. Skin contact can produce inflammation and blistering. Severe over-exposure can produce lung damage, choking, unconsciousness or death.

Potential Chronic Health Effects:

Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to teeth. Repeated or prolonged exposure to the substance can produce target organs damage. Repeated exposure of the eyes to a low level of dust can produce eye irritation. Repeated skin exposure can produce local skin destruction, or dermatitis. Repeated inhalation of dust can produce varying degree of respiratory irritation or lung damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention.

Skin Contact:

In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated clothing and shoes. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek medical attention.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 1010°C (1850°F)

Flash Points: Not available.

Flammable Limits: LOWER: 0.28 Kg/M3 (Dust) UPPER: 2.29 Kg/M3 (Dust) **Products of Combustion:** These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances:

Slightly flammable to flammable in presence of heat. Non-flammable in presence of shocks.

Explosion Hazards in Presence of Various Substances:

Slightly explosive in presence of open flames and sparks. Non-explosive in presence of shocks.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: As with most organic solids, fire is possible at elevated temperatures

Special Remarks on Explosion Hazards:

Fine dust dispersed in air in sufficient concentrations, and in the presences of an ignition source is a potential dust explosion hazard.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Stop leak if without risk. Do not get water inside container. Do not touch spilled material. Use water spray to reduce vapors. Prevent entry into sewers, basements or confined areas; dike if needed. Eliminate all ignition sources. Call for assistance on disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Ground all equipment containing material. Do not ingest. Do not breathe dust. Avoid contact with eyes. Wear suitable protective clothing. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as oxidizing agents, reducing agents, metals, alkalis.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection:

Safety glasses. Lab coat. Gloves (impervious). Dust respirator. Be sure to use an approved/certified respirator or equivalent. The dust respirator should be used for conditions where exposure has exceeded recommended exposure limits, dust is apparent, and engineering controls(adequate ventilation) are not feasible.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

No exposure guidelines have been established. ACGIH, NIOSH and OSHA have not developed exposure limits for this product. The exposure limits given below are for particulates not otherwise classified: ACGIH: 10 mg/m3 TWA (Total Inhalable fraction); 3 mg/m3 TWA (Respirable fraction) OSHA: 15 mg/m3 TWA (Total dust); 5 mg/m3 TWA (Respirable Fraction)

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid. (Crystalline powde)

Odor: Odorless.

Taste: Acid. (Strong.)

Molecular Weight: 192.13 g/mole

Color: Not available.

pH (1% soln/water): Not available.

Boiling Point: Decomposes.

Melting Point: 153°C (307.4°F)

Critical Temperature: Not available.

Specific Gravity: 1.665 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: The product is more soluble in water; log(oil/water) = -1.7

Ionicity (in Water): Not available.

Dispersion Properties: See solubility in water, diethyl ether.

Solubility:

Soluble in cold water, hot water, diethyl ether. Insoluble in benzene.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Excess heat, incompatible materials

Incompatibility with various substances: Reactive with oxidizing agents, reducing agents, metals, alkalis.

Corrosivity:

Corrosive in presence of aluminum, of zinc, of copper. Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Incompatible with oxidizing agents, potassium tartrate, alkali, alkaline earth carbonates and bicarbonates, acetates, and sulfides, metal nitrates

Special Remarks on Corrosivity: Will corrode copper, zinc, aluminum and their alloys.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Inhalation. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 3000 mg/kg [Rat].

Chronic Effects on Humans: May cause damage to the following organs: teeth.

Other Toxic Effects on Humans:

Hazardous in case of inhalation (lung irritant). Slightly hazardous in case of skin contact (irritant, sensitizer), of ingestion.

Special Remarks on Toxicity to Animals: LDL[Rabbit] - Route: oral; Dose: 7000mg/kg

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans:

Acute Potential Health Effects: Skin: Causes mild to moderate skin irritation. May cause skin sensitization, an allergic reaction, which becomes evident upon re-exposure to this material. Eyes: Causes moderate to severe eye irritation and possible injury. Ingestion: May cause gastrointestinal (digestive) tract irritation with nausea, vomiting, diarrhea. Excessive intake may cause erosion of teeth and hypocalcemia (calcium deficiency in blood). May affect behavior/central nervous system (tremor, convulsions, muscle contraction or spasticity). Inhalation: Causes moderate respiratory tract and mucous membrane irritation. Chronic Potential Health Effects: Frequent intake of citrated beverages may cause erosion of dental enamel and irritation of mucous membranes.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations: TSCA 8(b) inventory: Citric acid

Other Regulations: EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada): CLASS E: Corrosive solid.

DSCL (EEC):

R36/37/38- Irritating to eyes, respiratory system and skin. S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S37/39- Wear suitable gloves and eye/face protection.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 1

Reactivity: 0

Personal Protection: e

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves (impervious). Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/09/2005 04:56 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Material Name: Natural Gas Condensate US GHS

SYNONYMS: Drips; Condensate; Field Condensate; Gas Well Condensate; High

Pressure Inlet Liquids; Lease Condensate; Natural Gas Liquids; Pipeline

Liquids

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Natural Gas Condensate EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: 64741-47-5 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Liquids – Category 2.

Acute Toxicity Inhalation – Category 3

Germ Cell Mutagenicity - Category 1B

Carcinogenicity - Category 1A

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 3

Specific Target Organ Systemic Toxicity (STOT) - Repeat Exposure Category 1

Aspiration Toxicity - Category 1

Toxic to the Aquatic Environment Acute – Category 3

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Material Name: Natural Gas Condensate US GHS

Hazard Statements

Highly flammable liquid and vapor.

Toxic if inhaled.

May cause genetic defects.

May cause cancer.

May cause respiratory irritation.

May cause drowsiness or dizziness.

May cause damage to organs (liver, kidneys, blood, nervous system, and skin) through prolonged or repeated exposure.

May be fatal if swallowed and enters airways.

Harmful to aquatic life.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe gas/mist/vapors/spray.

Do not handle until all safety precautions have been read and understood.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Response

If on SKIN (or hair): Wash with plenty of soap and water. Remove / Take off all contaminated clothing immediately. Rinse skin with water/shower.

If INHALED: Remove victim to fresh air and keep comfortable for breathing. Call a poison center/doctor if the victim feels unwell.

If SWALLOWED: Immediately call a poison center or doctor / physician. Do not Induce vomiting.

If exposed or concerned: Get medical advice/attention.

In case of fire: Use water spray, fog or fire-fighting foam.

Storage

Store in a well-ventilated place. Keep cool.

Store in a secure area.

Material Name: Natural Gas Condensate US GHS

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
111-65-9	Octanes	25 - 95
142-82-5	Heptanes	25 - 95
110-54-3	Hexanes as n-Hexane	25 - 95
109-66-0	Pentanes as n-Pentane	5 - 70
106-97-8	N-butane	0 - 45
74-98-6	Propane	0 - 15
78-84-0	Ethane	0 - 5
71-43-2	Benzene	< 1
108-88-3	Toluene	< 1
1330-20-7	m-,o-,p-Xylene	< 1

Because natural gas condensate is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

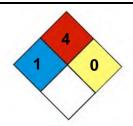
First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops. Wash contaminated clothing before reuse.

First Aid: Ingestion (swallowing)


DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

Material Name: Natural Gas Condensate US GHS

First Aid: Inhalation (breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 **Flammability:** 4 **Instability:** 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Extremely flammable. Vapors may be ignited rapidly when exposed to heat, spark, open flame, or other source of ignition (e.g., static electricity, pilot lights, mechanical / electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Flammable vapors can burn in the open or explode in confined spaces. Vapors are heavier than air, and may travel distances to an ignition source and flash back. Runoff to sewer systems may cause fire or explosion.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, water spray, carbon dioxide (CO_2), or other gaseous extinguishing agents. Use caution when applying CO_2 in confined spaces.

LARGE FIRES: Water spray, fog or fire-fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Unsuitable Extinguishing Media

None

Material Name: Natural Gas Condensate US GHS

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied firefighting foam.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full face piece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8). Extremely flammable. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of

Material Name: Natural Gas Condensate

US GHS

ignition and hot metal surfaces away from spill/release if safe to do so.

The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons downwind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions

Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of firefighting foam may be useful in certain situations to reduce vapors. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Prevention of Secondary Hazards

None

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use non-sparking tools. Use only outdoors or in well ventilated areas. Wear protective gloves / clothing and eye / face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Storage Procedures

Store only in approved containers. Bond and ground containers. Keep away from flame, sparks, excessive temperatures and open flames. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

Material Name: Natural Gas Condensate US GHS

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Octanes (111-65-9)

ACGIH: 300 ppm TWA (listed under Octane, all isomers)

Heptanes (142-82-5)

ACGIH: 400 ppm TWA (listed under n-Heptane)

n-Hexane (110-54-3)

ACGIH: 20 ppm TWA (listed under n-Hexane)

n-Pentane (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

n-Butane (106-97-8)

ACGIH: 600 ppm TWA (listed under n-Butane)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Benzene (71-43-2)

ACGIH: 0.5 ppm (TWA); NIOSH: 0.1 ppm (TWA); OSHA 1 ppm (TWA)

Toluene (108-88-3)

ACGIH: 20 ppm TWA (listed under Toluene)

m-, o-, p-Xylene (1330-20-7)

ACGIH: 100 ppm TWA (listed under Xylene o, m & p isomers)

Material Name: Natural Gas Condensate US GHS

Engineering Measures

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH-approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere (oxygen content less than 19.5 percent). A respiratory program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant the use of a respirator.

If benzene concentrations equal or exceed applicable exposure limits, OSHA requirements for personal protective equipment, exposure monitoring, and training may apply (29 CFR 1910.1028 – Benzene).

CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Gloves constructed of nitrile or neoprene are recommended.

Personal Protective Equipment: Eyes

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying. Eye protection that meets or exceeds ANSI Z.87.1 is recommended. Depending on conditions of use, a face shield may be necessary.

Personal Protective Equipment: Skin and Body

Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use gasoline or solvents (naphtha, kerosene, etc.) for washing this product from

Material Name: Natural Gas Condensate

US GHS

exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance: Colorless to straw yellow **Odor:** Aromatic, Gasoline;

Physical State: Liquid pH: ND Vapor Pressure: 110 - 200 psia (Reid VP) Vapor Density (air = 1): > 1

110 – 200 psia (Reid VP) **Vapor Density (air = 1):** > 1 @ 100°F/37.8°C

Boiling Point: Approx. 85 - 437°F **Melting Point:** ND

(39 – 200°C)

Solubility (H2O): Insoluble to slightly Specific Gravity: AP 0.62-0.76 (varies)

soluble

Evaporation Rate:HighVOC:NDOctanol / H2O Coeff.:NDFlash Point:-40°F

-40°C

Flash Point Method: Tag Closed Cup (TCC)

Lower Flammability Limit: ND (NFPA Gasoline 1.4) Upper Flammability Limit: ND (NFPA Gasoline 7.6)

(LFL): (UFL):

Auto Ignition: AP 480°F (250°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from ignition sources and high temperatures.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Material Name: Natural Gas Condensate US GHS

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Harmful if swallowed.

B. Component Analysis – LD50/LC50

Octanes (111-65-9)

Inhalation LC50 rat = 118,000 mg/m3 / 4H

Heptanes (142-82-5)

Inhalation LC50 rat = 103,000 mg/m3 / 4H

Hexanes as n-Hexane (110-53-3)

Inhalation LC50 rat = 48,000 ppm / 4H

Pentanes as n-Pentane (109-66-0)

Inhalation LC50 rat = 364,000 mg/m3 / 4H

Butanes as n-Butane (106-97-8)

Inhalation LC50 rat 658,000 mg/l / 4H

Propane (74-98-6)

Inhalation LC50 Rat > 800,000 ppm / 0.25H

Ethane (74-84-0)

Inhalation LC50 Rat 658,000 mg/l / 4H

Benzene (71-43-2)

Inhalation LC50 Rat 44,700 mg/m3 /

Toluene (108-88-3)

Inhalation LD50 Rat 12/5 mg/l / 4H

m-, o-, p-Xylene (1330-20-7)

Inhalation LC50 Rat 5000 ppm / 4H

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Material Name: Natural Gas Condensate US GHS

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Potential Health Effects: Ingestion (swallowing)

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation (breathing)

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Respiratory Organs Sensitization / Skin Sensitization

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

Carcinogenicity

A: General Product Information

May cause cancer.

This product contains benzene, although at very low concentrations. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Exposure to light hydrocarbons in the same boiling range as this product have been associated in animal studies with effects to the central nervous system, peripheral nervous system, liver, and kidneys. The significance of these animal models to predict similar human response is uncertain. Observing good work practices and personal hygiene procedures (Sections 7 and 8) can minimize potential risks to humans.

B: Component Carcinogenicity

Benzene (71-43-2)

ACGIH: A1 - Confirmed Human Carcinogen

OSHA: 5 ppm STEL (Cancer hazard, Flammable, See 29 CFR 1910.1028,

15 min); 0.5 ppm Action Level; 1 ppm TWA

NIOSH: potential occupational carcinogen

NTP: Known Human Carcinogen (Select Carcinogen)

Page 11 of 17

Material Name: Natural Gas Condensate US GHS

IARC: Monograph 100F [in preparation]; Supplement 7 [1987]; Monograph

29 [1982] (Group 1 (carcinogenic to humans))

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

May cause damage to organs (liver, kidneys, blood, nervous system and skin) through prolonged or repeated exposure.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity Benzene (71-43-2)

Test and Species	Conditions
96 Hr LC50 Pimephales promelas	10.7-14.7 mg/L [flow-through]
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-through]
96 Hr LC50 Lepomis macrochirus	22.49 mg/L [static]
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]
96 Hr LC50 Pimephales promelas	22330-41160 µg/L [static]
96 Hr LC50 Lepomis macrochirus	70000-142000 μg/L [static]
72 Hr EC50 Pseudokirchneriella subcapitata	29 mg/L
48 Hr EC50 Daphnia magna	8.76 - 15.6 mg/L [static]
48 Hr EC50 Daphnia magna	10 mg/L

Material Name: Natural Gas Condensate US GHS

Natural Gas condensates (68919-39-1)

Test and Species

96 Hr LC50 Alburnus alburnus

96 Hr LC50 Cyprinodon variegatus

72 Hr EC50 Pseudokirchneriella
subcapitata

Conditions

119 mg/L [static]

82 mg/L [static]

56 mg/L

subcapitata 24 Hr EC50 Daphnia magna 170 mg/L

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations. This material, if discarded should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material. Do not dispose of by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

Material Name: Natural Gas Condensate US GHS

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Petroleum Products, n.o.s. (condensate)

UN #: 1268 Hazard Class: 3

Additional Info.: Dependent on the product's properties, the shipper may also elect to classify as Gasoline UN1203 or Petroleum Crude Oil UN1267 - reference 49 CFR

172.101 for further description (e.g., packing group determination).

Placard:

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1% de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on

potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential

carcinogenicity in an August 14, 1989 final rule)

SARA Section 311/312 – Hazard Classes

Acute Health Chronic Health X Sudden Release of Pressure Reactive

SARA SECTION 313 – SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

Material Name: Natural Gas Condensate **US GHS**

CONCENTRATION PERCENT BY WEIGHT INGREDIENT NAME (CAS NUMBER)

Benzene (71-43-2) <0.1 to 2

Canadian Regulatory Information

This product has been classified in accordance with the hazard criteria of the DSL/NDSL

Controlled Products Regulations (CPR) and the SDS contains all the Inventory

information required by the Regulations.

Workplace B2 - Flammable Liquid

Hazardous D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic

Materials Material

Information D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material System

European Union Regulatory Information

Product is dangerous as defined by the European Union Dangerous

Substances / Preparations Directives. Labeling

Contains: Low Boiling Point Naphtha

F+ Extremely Flammable

T Toxic Symbol

N Dangerous for the Environment

R12-45-38-65-67-51/53

Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness

Risk Phrases and dizziness. Toxic to aquatic organisms, may cause long-term

adverse effects in the aquatic environment.

S16-53-45-2-23-24-29-43-62

Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel

unwell, seek medical advice immediately (show the label where

possible). Keep out of reach of children. Do not breathe vapor. Avoid

contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO2. If swallowed, do not induce vomiting: seek

medical advice immediately and show this container or label.

Safety

Phrases

Material Name: Natural Gas Condensate US GHS

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists

Component	CAS	CA	MA	MN	NJ	РА	RI
Octanes	111-65-9	Yes	No	Yes	Yes	Yes	Yes
Heptanes	142-82-5	Yes	No	Yes	Yes	Yes	Yes
n-Hexane	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
n-Pentane	109-66-0	Yes	No	Yes	Yes	Yes	Yes
n-Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
m-, o-, p-Xylene	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes

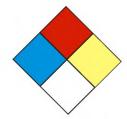
The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.

WARNING! This product contains a chemical known to the state of California to cause Reproductive / developmental effects.

Component Analysis – WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:


Component	CAS#	Minimum Concentration
Benzene	71-43-2	0.1%

* * * Section 16 -	OTHER INFORMATION * * *	

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® **Hazard Rating** Health 1 Slight

Fire 4 Severe
Physical 0 Minimal
* Chronic

Page 16 of 17

Material Name: Natural Gas Condensate US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 29, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Safety Data Sheet

The Dow Chemical Company

Print Date: 15 Mar 2010

The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name

VERSENE* Tetraammonium EDTA Chelating Agent

COMPANY IDENTIFICATION

The Dow Chemical Company 2030 Willard H. Dow Center Midland, MI 48674 USA

Customer Information Number: 800-258-2436

EMERGENCY TELEPHONE NUMBER

24-Hour Emergency Contact: 989-636-4400 **Local Emergency Contact**: 989-636-4400

2. Hazards Identification

Emergency Overview

Color: White to yellow Physical State: Liquid. Odor: Ammoniacal Hazards of product:

CAUTION! May cause eye irritation. Isolate area.

OSHA Hazard Communication Standard

This product is not a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Potential Health Effects

Eye Contact: May cause pain disproportionate to the level of irritation to eye tissues. May cause slight eye irritation. May cause slight corneal injury. Vapor may cause eye irritation experienced as mild discomfort and redness.

Skin Contact: Brief contact is essentially nonirritating to skin. May cause more severe response if skin is abraded (scratched or cut). Repeated contact may cause slight skin irritation with local redness.

®(TM)*Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts. **Inhalation:** In aqueous solutions small amounts of ammonia may evolve which may be irritating to the eyes, upper respiratory tract (nose and throat), and lungs.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury.

Aspiration hazard: Based on physical properties, not likely to be an aspiration hazard. **Birth Defects/Developmental Effects:** EDTA and its sodium salts have been reported to cause birth defects in laboratory animals only at exaggerated doses that were toxic to the mother. These effects are likely associated with zinc deficiency due to chelation.

3. Composition Information

Component	CAS#	Amount
Water	7732-18-5	53.0 %
Tetrammonium salt of ethylenediaminetetraacetic acid	22473-78-5	47.0 %

(Active ingredients as EDTA acid - 38%)

4. First-aid measures

Eye Contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist.

Skin Contact: Wash skin with plenty of water.

Inhalation: Move person to fresh air; if effects occur, consult a physician.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Notes to Physician: No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

Emergency Personnel Protection: If potential for exposure exists refer to Section 8 for specific personal protective equipment.

5. Fire Fighting Measures

Extinguishing Media: To extinguish combustible residues of this product use water fog, carbon dioxide. dry chemical or foam.

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. To extinguish combustible residues of this product use water fog, carbon dioxide, dry chemical or foam. **Special Protective Equipment for Firefighters:** Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). If protective equipment is not available or not used, fight fire from a protected location or safe distance.

Unusual Fire and Explosion Hazards: This material will not burn until the water has evaporated. Residue can burn.

Hazardous Combustion Products: Under fire conditions some components of this product may decompose. The smoke may contain unidentified toxic and/or irritating compounds. Combustion products may include and are not limited to: Nitrogen oxides. Carbon monoxide. Carbon dioxide. Ammonia.

Accidental Release Measures

Steps to be Taken if Material is Released or Spilled: Small spills: Absorb with materials such as: Dirt. Sand. Non-combustible material. Collect in suitable and properly labeled containers. Large spills: Dike area to contain spill. Contain spilled material if possible. See Section 13, Disposal Considerations, for additional information.

Personal Precautions: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Refer to Section 7, Handling, for additional precautionary measures. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection. **Environmental Precautions:** Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

7. Handling and Storage

Handling

General Handling: Avoid contact with eyes. Wash thoroughly after handling. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Storage

Do not store in: Opened or unlabeled containers. Zinc. Aluminum and its alloys. Carbon steel. Copper. Copper alloys. Galvanized containers. Nickel. Store in original unopened container. See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

Shelf life: Use within 24 Months Storage temperature: -18 - 49 °C

8. Exposure Controls / Personal Protection

Exposure Limits

None established

Personal Protection

Eye/Face Protection: Use chemical goggles. If exposure causes eye discomfort, use a full-face respirator.

Skin Protection: Wear clean, body-covering clothing.

Hand protection: Use gloves chemically resistant to this material when prolonged or frequently repeated contact could occur. If hands are cut or scratched, use gloves chemically resistant to this material even for brief exposures. Examples of preferred glove barrier materials include: Butyl rubber. Polyethylene. Chlorinated polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Examples of acceptable glove barrier materials include: Viton. Neoprene. Natural rubber ("latex"). Polyvinyl chloride ("PVC" or "vinyl"). Nitrile/butadiene rubber ("nitrile" or "NBR"). Avoid gloves made of: Polyvinyl alcohol ("PVA"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. For most conditions no respiratory protection should be needed; however, if discomfort is experienced, use an approved air-purifying respirator. The following should be effective types of air-purifying respirators: Ammonia cartridge with particulate pre-filter.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls

Ventilation: Use local exhaust ventilation, or other engineering controls to maintain airborne levels below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, general ventilation should be sufficient for most operations. Local exhaust ventilation may be necessary for some operations.

9. Physical and Chemical Properties

Physical State Liquid.

Color White to yellow Odor Ammoniacal

Odor Threshold No test data available

Pensky-Martens Closed Cup ASTM D 93 no measurable flash point Flash Point - Closed Cup

Flammability (solid, gas) Not applicable to liquids Flammable Limits In Air Lower: Not applicable Upper: Not applicable

Autoignition Temperature Not applicable Vapor Pressure Same as water

Boiling Point (760 mmHg) 88 °C (190 °F) Literature.

Vapor Density (air = 1) Same as water

Specific Gravity (H2O = 1) 1.18 25 °C/25 °C Literature Freezing Point -28 °C (-18 °F) Literature **Melting Point** Not applicable to liquids Solubility in water (by completely miscible with water

weight)

рΗ 9.0 - 9.5 (@ 1 %) Literature Decomposition No test data available

Temperature

Partition coefficient, noctanol/water (log Pow)

Evaporation Rate (Butyl

Acetate = 1)

< 0.8 Estimated.

Kinematic Viscosity 7.3 cSt @ 20 °C Literature

10. Stability and Reactivity

Stability/Instability

Thermally stable at typical use temperatures.

Conditions to Avoid: Some components of this product can decompose at elevated temperatures.

No data available for this product.

Incompatible Materials: Avoid contact with oxidizing materials. Flammable hydrogen may be generated from contact with metals such as: Aluminum.

Hazardous Polymerization

Will not occur.

Thermal Decomposition

Decomposition products depend upon temperature, air supply and the presence of other materials. Decomposition products can include and are not limited to: Ammonia.

11. Toxicological Information

Acute Toxicity

Ingestion

LD50, Rat > 3,980 mg/kg

Dermal

The dermal LD50 has not been determined.

Inhalation

The LC50 has not been determined.

Serious eye damage/eye irritation

May cause pain disproportionate to the level of irritation to eye tissues. May cause slight eye irritation. May cause slight corneal injury. Vapor may cause eye irritation experienced as mild discomfort and redness.

Skin corrosion/irritation

Brief contact is essentially nonirritating to skin. May cause more severe response if skin is abraded (scratched or cut). Repeated contact may cause slight skin irritation with local redness.

Sensitization

Skin

No relevant information found.

Respiratory

No relevant information found.

Repeated Dose Toxicity

Based on available data, repeated exposures are not anticipated to cause additional significant adverse effects.

Chronic Toxicity and Carcinogenicity

The trisodium salt of EDTA did not cause cancer in laboratory animals.

Developmental Toxicity

EDTA and its sodium salts have been reported to cause birth defects in laboratory animals only at exaggerated doses that were toxic to the mother. These effects are likely associated with zinc deficiency due to chelation.

Reproductive Toxicity

Limited data in laboratory animals suggest that the material does not affect reproduction.

Genetic Toxicology

Most data indicate that EDTA and its salts are not mutagenic. Minimal effects reported are likely due to trace metal deficiencies resulting from chelating by EDTA.

12. Ecological Information

ENVIRONMENTAL FATE

Movement & Partitioning

For similar material(s): Bioconcentration potential is low (BCF less than 100 or log Pow less than 3).

Persistence and Degradability

For this family of materials: Biodegradation under aerobic laboratory conditions is below detectable limits (BOD20 or BOD28/ThOD < 2.5%).

ECOTOXICITY

Material is practically non-toxic to fish on an acute basis (LC50 > 100 mg/L).

Fish Acute & Prolonged Toxicity

LC50, bluegill (Lepomis macrochirus), 96 h: 705 mg/l

13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer.

14. Transport Information

DOT Non-Bulk

NOT REGULATED

DOT Bulk

NOT REGULATED

IMDG

NOT REGULATED

ICAO/IATA

NOT REGULATED

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard

This product is not a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Immediate (Acute) Health HazardNoDelayed (Chronic) Health HazardNoFire HazardNoReactive HazardNoSudden Release of Pressure HazardNo

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US. Toxic Substances Control Act

All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

CEPA - Domestic Substances List (DSL)

All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

16. Other Information

Hazard Rating System

NFPA Health Fire Reactivity
2 1 0

Recommended Uses and Restrictions

Chelating agent. For industrial use only. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your sales or technical service representative.

Revision

Identification Number: 50118 / 1001 / Issue Date 03/12/2010 / Version: 3.0 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

N/A	Not available
W/W	Weight/Weight
OEL	Occupational Exposure Limit
STEL	Short Term Exposure Limit
TWA	Time Weighted Average
ACGIH	American Conference of Governmental Industrial Hygienists, Inc.
DOW IHG	Dow Industrial Hygiene Guideline
WEEL	Workplace Environmental Exposure Level
HAZ_DES	Hazard Designation
Action Level	A value set by OSHA that is lower than the PEL which will trigger the need for
	activities such as exposure monitoring and medical surveillance if exceeded.

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is

the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.

THATCHER COMPANY MATERIAL SAFETY DATA SHEET PRODUCT: FERRIC CHLORIDE

Page 1 of 3

MSDS Date: August 12, 1998

Emergency Contact: 1-800-424-9300

SECTION I

PRODUCT NAME: Ferric Chloride Solution

SYNONYMS: Iron chloride solution

CHEMICAL NAME: Ferric chloride solution CHEMICAL FAMILY: Inorganic salt

FORMULA: FeCl3 solution

DOT SHIPPING INFORMATION:

Ferric chloride solution, 8,

UN 2582, PG III RQ=1000 lbs.

SECTION II - HAZARDOUS INGREDIENTS

This material contains no ingredients which are known by Thatcher Company to be hazardous unless listed below.

HAZARDOUS MATERIAL	CAS NUMBER	w/w %	EXPOSURE LIMITS IN AIR
Ferric chloride	7705-08-0		$TLV = 1 \text{ mg/m}^3 \text{ (as Fe)}$

The specific identity of some ingredients may be withheld for confidential business purposes. However, all known potential health effects from exposure to these ingredients are being addressed.

SECTION III - PHYSICAL DATA

BOILING POINT (F): Unknown

SPECIFIC GRAVITY: 1.47 for 43%

VAPOR PRESSURE (mm Hg): Essentially water

% VOLATILE, BY VOLUME: Abt 60%

VAPOR DENSITY (air = 1): Essentially water

EVAPORATION RATE: Unknown

SOLUBILITY IN WATER: Complete

APPEARANCE AND ODOR: Dark brown liquid with a slightly muddy smell.

SECTION IV - FIRE AND EXPLOSION DATA

FLASH POINT:

Nonflammable

FLAMMABLE LIMITS:

Lel: N/A Uel: N/A

EXTINGUISHING MEDIA:

Use any.

SPECIAL FIRE-FIGHTING PROCEDURES:

None.

UNUSUAL FIRE AND EXPLOSION HAZARDS:

None.

THATCHER COMPANY MATERIAL SAFETY DATA SHEET PRODUCT: FERRIC CHLORIDE

Page 2 of 3

SECTION V - REACTIVITY DATA

STABILITY:

Stable

HAZARDOUS POLYMERIZATION:

Will not occur.

CONDITIONS OR MATERIALS TO AVOID:

Very corrosive to all common metals.

HAZARDOUS DECOMPOSITION PRODUCTS:

None.

SECTION VI - HEALTH HAZARD DATA

NFPA HAZARDOUS RATING: Health = 2 Flammability = 0 Reactivity = 0

CARCINOGENIC LISTING:

NTP: No ingredients listed in this section.

IARC MONOGRAPHS: No ingredients listed in this section.

OSHA 29 CFR 1910: No ingredients listed in this section.

ENTRY ROUTES & EFFECTS OF OVEREXPOSURE:

Contact:

Can cause irritation and burns to skin, eyes and mucous membranes.

Ingestion:

Can be harmful if swallowed, causing burns and severe irritation to the gastrointestinal tract.

STATEMENT OF PRACTICAL TREATMENT:

Contact:

Flush exposed area thoroughly with water. For eyes, flush with cool water for at least 15

minutes and get medical attention.

Ingestion:

If conscious, give several glasses of water or milk. Do not induce vomiting. Call a physician

at once!

SECTION VII - SPECIAL PRECAUTIONS

HANDLING AND STORAGE PRECAUTIONS:

Avoid contact with skin and eyes. Do not take internally.

STEPS TO BE TAKEN IF MATERIAL SPILLS OR LEAKS:

Wear proper safety equipment. For small spills, absorb with floor dry or other absorbent material, and sweep up into drums. Flush residue to sewer with large amounts of water. For larger spills, dike the liquid and scoop into drums. Clean up residue as explained above.

WASTE DISPOSAL METHOD:

Waste solution is an EPA characteristic hazardous waste due to corrosivity (D002). Dispose of at an EPA-approved hazardous waste disposal facility. Contact the local EPA for further information. Comply with all local, state and federal regulations.

THATCHER COMPANY MATERIAL SAFETY DATA SHEET PRODUCT: FERRIC CHLORIDE

Page 3 of 3

SECTION VIII - SPECIAL PROTECTION INFORMATION

RESPIRATORY PROTECTION:

None required.

VENTILATION:

Normal room ventilation sufficient.

EYE PROTECTION:

Chemical goggles.

SKIN PROTECTION:

Rubber gloves.

OTHER PROTECTIVE EQUIPMENT:

Rubber boots and other protective clothing as required to prevent contact with skin and eyes.

ACGIH = American Conference of Governmental Industrial Hygienists

CL = Ceiling Level

IARC = International Agency for Research on Cancer: Monographs

OSHA = Occupational Safety and Health Administration

N/A = Not Applicable

NTP = National Toxicology Program: Annual Report on Carcinogens

PEL = Permissible Exposure Level (OSHA)

TLV = Threshold Limit Value (ACGIH)

TWA = Time Weighted Average over 8 Hours

STEL = Short Term Exposure Limit (ACGIH)

ND = Not Determined

This information is, to the best of our knowledge, accurate but may not be complete. THATCHER COMPANY furnishes this information in good faith, but without warranty, representation or guarantee of its accuracy, completeness, or reliability.

MISSISSIPPI LIME COMPANY – MATERIAL SAFETY DATA SHEET OSHA HAZARD COMMUNICATION

PRODUCT IDENTIFICATION	CHEMICAL ABSTRACT	DATE REVISED
Calcium Hydroxide "Hydrated Lime"	CAS 1305-62-0	01/01/2010 Previous Versions Obsolete
Draduat Lina, MiaraCal	LIE LIETZO LIM LIC. Det	troCol LIE LIM LIC.

Product Line: MicroCal – HF, HFT20, HM, HS; PetroCal – HF, HM, HS; Standard Hydrated Lime; Standard Hydrated - Lime, CG, SBP (Flow Treated), SP,; Liquid Calcium Hydroxide (LCH); MP Liquid Calcium Hydroxide (MPLCH); VitaCal – H, LCH; Architectural Lime Putty

Section I

MANUFACTURER Mississippi Lima Company	24 Hour Emergency Contact Number: (800) 437-5463	HMIS RATING
Mississippi Lime Company 16147 US Highway 61 Ste Genevieve, MO 63670 Website Mississippilime.com	Telephone Number for Information: (800) 437-5463	Health - 2 Flammability - 0 Physical Hazards - 0 Protective Equip - E
Website Mississippilific.com	Signature of Preparer 1.5. Ca	istleberry

Section II - Hazardous Ingredients / Identity Information

Specific Chemical Identity; Common Names	OSHA PEL	ACGIH TLV	Other Limits Recommended	% (Optional)
Calcium Hydroxide; Slaked Lime; Hydrated Lime	5 mg/m³	5 mg/m³		
Crystalline Silica (Quartz)	0.1 mg/m ³	0.05 mg/m ³	Respirable	Variable <0.10-0.2%

Calcium Hydroxide is not listed on the NTP, IARC, or OSHA lists of carcinogens. Calcium hydroxide produced with quicklime manufactured by coal fired kilns may contain crystalline silica >0.1%. Crystalline silica is listed by IARC and NTP but not by OSHA. In 1997, IARC determined that "crystalline silica inhaled in the form or quartz or crystobalite from occupational sources is carcinogenic to humans (Group 1). OSHA requires that products containing >0.1% of a known carcinogen must be labeled. NTP states that "silica, crystalline (respirable)" may reasonably be anticipated to be a carcinogen (1991). Mississippi Lime Company recommends using personal protection equipment when handling this product.

Section III – Physical / Chemical Characteristics

Boiling Point (Calcium Oxide)	5162 °F	Specific Gravity (H ₂ O) = 1)	2.2
Vapor Pressure (mm Hg)	NA	Melting Point – Loses CO ²	1076 °F
Vapor Density (Air = 1)	NA	Evaporation Rate	NA
Solubility in Water	0.185 % @ 0 °C; 0.077 % @ 100 ° C		
Appearance and Color	Odorless; White as a dry powder, wet slurry, or paste		

Section IV - Fire and Explosion Hazard Data

Flash Point	NA	Flammable Limits – NA
Extinguishing Method	NA	
Special Fire Fighting Procedures	NA	
Unusual Fire and Explosion Hazards	NA	

PRODUCT IDENTIFICATION CHEMICAL ABSTRACT **DATE REVISED** Calcium Hydroxide CAS No. 1305-62-0 1/01/2010 "Hydrated Lime" Section V - Reactivity Data Stable Conditions to Avoid - NA Stability Incompatibility (Materials to Avoid) Acids, Inter-halogens, Phosphorus (V) Oxide Hazardous Decomposition or Byproducts None Hazardous Will Not Occur Conditions to Avoid - NA Polymerization Section VI - Health Hazard Data Route(s) of Entry Inhalation? Absorption Through Skin? Ingestion (swallowing)? -YE<u>S</u> YES YES Prolonged contact may irritate or burn skin - especially in the Health Hazards Acute presence of moisture. Inhalation of dust may irritate mucous membranes or respiratory passages. Direct eye contact may cause permanent damage. Chronic Long term exposure can cause irritation Carcinogenicity NTP? IARC Monographs? OSHA Regulated? Calcium Hydroxide NO NO NŌ YES Crystalline Silica YES YES Signs and Symptoms of Exposure Irritation of eyes, respiratory tract, or red "sun burn" like skin.

Section VII - Precautions for Safe Handling

Steps to Be Taken in Case Material is Released or Spilled	Normal clean-up procedures. Care should be taken to avoid causing dust to become airborne. Vacuum cleaning systems are recommended.
Waste Disposal Method	Dispose of product in accordance with Federal, State and Local regulations. See Section IX Guidance
Precautions to Be Taken in Handling	Store away from water and acids.
Other Precautions	

Respiratory disease, skin condition.

immediately and contact physician.

Provide fresh air. Wash off dust with soap and water. Drink

plenty of water if swallowed. Flush eyes with water

Section VIII - Control Measures

Medical Conditions Generally

Emergency and First Aid Procedures

Aggravated by Exposure

	Respiratory Protection - Dust filter masks are recommended for personal comfort and/or protection			
VentilationLocal Exhaust – To maintain TLV's and PEL's Mechanical – To maintain TLV's and PEL'sSpecial – None Other – None				
	Protective Gloves – Cloth/leather gloves when handling dry product –rubber gloves if wet or damp			

Eye Protection – ALWAYS wear shielded glasses and/or fitted goggles around product to reduce eye injury. Wearing of contact lenses may impede first aid.

Other Protective Clothing – Wear long sleeve shirts and pants to minimize skin contact with product.

Work / Hygienic Practices – Maintain dust exposure limits below TLV's and PEL's. Whenever necessary wear respiratory protection. Air blowers are effective for dedusting skin and clothing.

PRODUCT IDENTIFICATION

CHEMICAL ABSTRACT

DATE REVISED

Calcium Hydroxide "Hydrated Lime" CAS No. 1305-62-0

1/01/2010

Section IX – Regulatory Compliance Guidance

CONEG	Materials used to manufacture bags containing products are CONEG compliant.
CWA	Product contains alkaline material potentially toxic to aquatic life if concentration is elevated for extended periods of time. Minimize contact with storm water runoff.
DOT	Product is not regulated by U.S. Dept of Transportation
EPA	Waste derived from unused products is not subject to RCRA. Waste is acceptable at most landfills as a "special waste" but can often be beneficially reused for other purposes.
SPILL	Whenever possible, contain and sweep up spillage in dry form rather than flushing with water. Fire may occur in containers if damp product is placed in direct contact with combustible materials.
TSCA	Product is listed on Toxic Substance Control Act, Canada DSL and all other International Inventories
Prop65	Subject to California Proposition 65 warning labeling requirements due to presence of trace metals and crystalline silica above instrument detection levels.
NAFTA	Product qualifies under HS Tariff No 2522.20 or 2825.90 as 100% US Origin, Preference Criteria A. Annual certification is provided upon direct request.

REACH Product has been pre-registered under **05-2116 374 587-30-0000** EINECS # **215-137-3**

SAFETY DATA SHEET

1. Identification

Product identifier Hydrex 2126

Other means of identification None.

Recommended useCooling Water TreatmentRecommended restrictionsPROFESSIONAL USE ONLYManufacturer/Importer/Supplier/Distributor information

Manufacturer

Supplier Veolia Water Technologies, Inc **Address** 913 Industrial Park Drive

Vandalia, Ohio

45377

Contact PersonHydrex Product ManagerTelephone+1-937-890-4075Fax+1-937-890-5495e-mailhydrex.msds@veolia.com

Global Emergency +1-760-476-3962 (Code: 333239)

Contact

2. Hazard(s) identification

Physical hazardsCorrosive to metalsCategory 1Health hazardsSkin corrosion/irritationCategory 1

Serious eye damage/eye irritation Category 1

Specific target organ toxicity, single exposure Category 3 respiratory tract irritation

Environmental hazards Hazardous to the aquatic environment, acute Category 1

hazard

Hazardous to the aquatic environment,

long-term hazard

iong-term naza

OSHA defined hazards Not classified

Label elements

Signal word Danger

Hazard statement May be corrosive to metals. Causes severe skin burns and eye damage. Causes serious eye

damage. May cause respiratory irritation. Very toxic to aquatic life. Very toxic to aquatic life with

Category 1

long lasting effects.

Precautionary statement

Prevention Avoid forming spray/aerosol mists. Keep only in original container. Do not breathe mist or vapor.

Use only outdoors or in a well-ventilated area. Avoid release to the environment. Wear protective

gloves/protective clothing/eye protection/face protection.

Response If swallowed: Rinse mouth. Do NOT induce vomiting. If on skin (or hair): Take off immediately all

contaminated clothing. Rinse skin with water/shower. If inhaled: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or doctor/physician. Specific treatment (see this label). Wash contaminated clothing

before reuse. Absorb spillage to prevent material damage.

Storage Store in cool place. Store in a well-ventilated place. Keep container tightly closed. Store locked up.

Protect from sunlight.

Disposal Dispose of contents/container to an appropriate treatment and disposal facility in accordance with

applicable laws and regulations, and product characteristics at time of disposal.

Hazard(s) not otherwise

classified (HNOC)

None known.

Supplemental information None.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

3. Composition/information on ingredients

Mixtures

Chemical name	Common name and synonyms	CAS number	%
Citric acid		77-92-9	2.5 - 10
Hydrochloric Acid		7647-01-0	2.5 - 10
Zinc Chloride		7646-85-7	2.5 - 10
2-phosphonobutane-1,2,4-tricarbox ylic acid		37971-36-1	1 - 2.5
Other components below reportable lev	/els		80 - 90

^{*}Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

Firs			

Inhalation Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON

CENTER or doctor/physician if you feel unwell.

Skin contactTake off immediately all contaminated clothing. Rinse skin with water/shower. Call a physician or

poison control center immediately. Chemical burns must be treated by a physician. Wash

contaminated clothing before reuse.

Eye contact Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if

present and easy to do. Continue rinsing. Call a physician or poison control center immediately.

Call a physician or poison control center immediately. Rinse mouth. Do not induce vomiting. If

vomiting occurs, keep head low so that stomach content doesn't get into the lungs.

Most important

symptoms/effects, acute and

delayed

Ingestion

Burning pain and severe corrosive skin damage. Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. May cause respiratory irritation.

Indication of immediate medical attention and special treatment needed

Provide general supportive measures and treat symptomatically. Chemical burns: Flush with water immediately. While flushing, remove clothes which do not adhere to affected area. Call an ambulance. Continue flushing during transport to hospital. Keep victim under observation. Symptoms may be delayed.

General informationIf you feel unwell, seek medical advice (show the label where possible). Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

5. Fire-fighting measures

Suitable extinguishing media

Unsuitable extinguishing

media

Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).

Not available.

Specific hazards arising from

the chemical

Special protective equipment

and precautions for

firefighters Fire fighting

equipment/instructions

Specific methods

During fire, gases hazardous to health may be formed.

Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

Move containers from fire area if you can do so without risk.

Use standard firefighting procedures and consider the hazards of other involved materials.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not breathe mist or vapor. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

Should not be released into the environment.

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Absorb spillage to prevent material damage. Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal. Prevent entry into waterways, sewer, basements or confined areas. Following product recovery, flush area with water.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

Environmental precautions

Avoid release to the environment. Prevent further leakage or spillage if safe to do so. Do not contaminate water. Avoid discharge into drains, water courses or onto the ground. Inform appropriate managerial or supervisory personnel of all environmental releases.

7. Handling and storage

Precautions for safe handling

Avoid forming spray/aerosol mists. Do not breathe mist or vapor. Do not get in eyes, on skin, or on clothing. Avoid prolonged exposure. Provide adequate ventilation. Wear appropriate personal protective equipment. Avoid release to the environment. Observe good industrial hygiene practices.

Conditions for safe storage, including any incompatibilities

Store in a cool, dry place out of direct sunlight. Store in corrosive resistant container with a resistant inner liner. Keep only in the original container. Store away from incompatible materials (see Section 10 of the SDS).

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-1 Limits for Ai Components	r Contaminants (29 CFR 1910.1000 Type)) Value	Form	
Hydrochloric Acid (CAS 7647-01-0)	Ceiling	7 mg/m3		
		5 ppm		
Zinc chloride (CAS 7646-85-7)	PEL	1 mg/m3	Fume.	
US. ACGIH Threshold Limit Value	es			
Components	Туре	Value	Form	
Hydrochloric Acid (CAS 7647-01-0)	Ceiling	2 ppm		
Zinc chloride (CAS 7646-85-7)	STEL	2 mg/m3	Fume.	
	TWA	1 mg/m3	Fume.	
US. NIOSH: Pocket Guide to Che	mical Hazards			
Components	Туре	Value	Form	
Hydrochloric Acid (CAS 7647-01-0)	Ceiling	7 mg/m3		
,		5 ppm		
Zinc chloride (CAS 7646-85-7)	STEL	2 mg/m3	Fume.	
,	TWA	1 mg/m3	Fume.	
US. Workplace Environmental Ex	xposure Level (WEEL) Guides			
Components	Туре	Value	Form	
2-phosphonobutane-1,2,4-tr icarboxylic acid (CAS 37971-36-1)	TWA	10 mg/m3	Aerosol.	

Biological limit values

Appropriate engineering controls

No biological exposure limits noted for the ingredient(s).

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Eye wash facilities and emergency shower must be available when handling this product.

Individual protection measures, such as personal protective equipment

Eye/face protection Wear safety glasses with side shields (or goggles) and a face shield. Chemical goggles and face

shield are recommended.

Skin protection

Hand protection Chemical resistant gloves.

Other Wear appropriate chemical resistant clothing. Chemical resistant gloves.

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment. Avoid forming spray/aerosol

nists.

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and chemical properties

Appearance Clear to Hazy
Physical state Liquid.
Form Liquid

Form Liquid Color Light yellow

Odor Mild
pH 1 - 1.2
Melting point/freezing point 32 °F (0 °C)
Initial boiling point and 212 °F (100 °C)
boiling range

Flash point

Evaporation rate

Not available.

Flammability (solid, gas)

Not available.

Upper/lower flammability or explosive limits

Flammability limit - lower

Not available.

(%)

Flammability limit -

upper (%)

Not available.

Explosive limit - lower

(%)

Not available.

Explosive limit - upper

(%)

Not available.

Vapor pressureNot available.Vapor densityNot available.

Solubility(ies)

Solubility (water) 100 %
Partition coefficient Not avail

(n-octanol/water)

Not available.

Auto-ignition temperature Not available.

Decomposition temperature Not available.

Viscosity Not available.

Other information

 Density
 1.13 g/cm³

 Specific gravity
 1.1 - 1.15

10. Stability and reactivity

Reactivity Reacts violently with strong alkaline substances. This product may react with reducing agents. May

be corrosive to metals.

Chemical stabilityMaterial is stable under normal conditions. **Possibility of hazardous**Hazardous polymerization does not occur.

Possibility of hazardous Hazardous polymerization does not occur. **reactions**

Conditions to avoidReacts violently with strong alkaline substances. Do not mix with other chemicals. This product may

react with reducing agents. Contact with incompatible materials.

Incompatible materials Bases. Strong oxidizing agents. This product may react with reducing agents. Reducing agents.

Metals. Incompatible with bases. Do not mix with other chemicals.

Hazardous decomposition

products

Hydrogen chloride. Hydrogen cyanide (hydrocyanic acid). Toxic gas.

11. Toxicological information

Information on likely routes of exposure

Inhalation May cause irritation to the respiratory system. Prolonged inhalation may be harmful.

Skin contactCauses severe skin burns.Eye contactCauses serious eye damage.IngestionCauses digestive tract burns.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

Symptoms related to the physical, chemical and toxicological characteristics

Burning pain and severe corrosive skin damage. Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. May cause respiratory irritation.

Information on toxicological effects

Acute toxicity May cause respiratory irritation.

Product	Species	Test Results
Hydrex 2126		
Acute		
Dermal		
LD50	Mouse	>= 30000 mg/kg Calculated
Inhalation		
LC50	Rat	>= 45 mg/l, 10 Minutes Calculated
Oral		
LD50	Rat	>= 6000 mg/kg Calculated

^{*} Estimates for product may be based on additional component data not shown.

Skin corrosion/irritation Causes severe skin burns and eye damage.

Serious eye damage/eye irritation

Causes serious eye damage.

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicity No data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA. Carcinogenicity

IARC Monographs. Overall Evaluation of Carcinogenicity

Hydrochloric Acid (CAS 7647-01-0) 3 Not classifiable as to carcinogenicity to humans.

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not listed.

Reproductive toxicity This product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity

- single exposure

May cause respiratory irritation.

Specific target organ toxicity

- repeated exposure

Not classified.

Aspiration hazard Not an aspiration hazard.

Chronic effects Prolonged inhalation may be harmful.

12. Ecological information

Very toxic to aquatic life with long lasting effects. Because of the low pH of this product, it would **Ecotoxicity**

be expected to produce significant ecotoxicity upon exposure to aquatic organisms and aquatic

systems.

Product Species Test Results Hydrex 2126

Aquatic

Acute

Fish

LC50 Rainbow Trout > 2.5 mg/l, 96 hours

Persistence and degradability No data is available on the degradability of this product.

Bioaccumulative potential

Mobility in soil No data available.

Other adverse effects No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation

potential, endocrine disruption, global warming potential) are expected from this component.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

^{*} Estimates for product may be based on additional component data not shown.

13. Disposal considerations

Collect and reclaim or dispose in sealed containers at licensed waste disposal site. Do not allow this **Disposal instructions**

material to drain into sewers/water supplies. Do not contaminate ponds, waterways or ditches with

chemical or used container. Dispose of contents/container in accordance with

local/regional/national/international regulations.

Local disposal regulations

Dispose in accordance with all applicable regulations.

Hazardous waste code

D002: Waste Corrosive material [pH <=2 or =>12.5, or corrosive to steel]

The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product

residues. This material and its container must be disposed of in a safe manner (see: Disposal

instructions).

Contaminated packaging Empty containers should be taken to an approved waste handling site for recycling or disposal.

Since emptied containers may retain product residue, follow label warnings even after container is

emptied.

14. Transport information

DOT

UN number UN3264

UN proper shipping name Corrosive liquid, acidic, inorganic, n.o.s. (ZINC CHLORIDE, Hydrochloric Acid)

Transport hazard class(es)

Class 8 **Subsidiary risk** 8 Label(s) **Packing group** II

Special precautions for

user

Read safety instructions, SDS and emergency procedures before handling.

Special provisions B2, IB2, T11, TP2, TP27

Packaging exceptions 154 202 Packaging non bulk 242 Packaging bulk Reportable Quantity (Lbs) 25000

IATA

UN number UN3264

UN proper shipping name Corrosive liquid, acidic, inorganic, n.o.s. (ZINC CHLORIDE, Hydrochloric Acid)

Transport hazard class(es)

Class 8 **Subsidiary risk** ΙΙ **Packing group Environmental hazards** No. **ERG Code** 81

Special precautions for

user

Read safety instructions, SDS and emergency procedures before handling.

Passenger and cargo

aircraft

Other information

Allowed.

Cargo aircraft only Allowed.

IMDG

UN number

UN proper shipping name CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (ZINC CHLORIDE, Hydrochloric Acid)

Transport hazard class(es)

Class 8 **Subsidiary risk** Π **Packing group Environmental hazards**

Marine pollutant No. **EmS** F-A. S-B

Special precautions for

Read safety instructions, SDS and emergency procedures before handling.

Transport in bulk according to Not established.

Annex II of MARPOL 73/78

and the IBC Code

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

IATA; IMDG

15. Regulatory information

US federal regulationsThis product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard,

29 CFR 1910.1200.

All components are on the U.S. EPA TSCA Inventory List.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

Hydrochloric Acid (CAS 7647-01-0) Listed. Zinc Chloride (CAS 7646-85-7) Listed.

US EPCRA Section 304 Extremely Haz. Subs. & CERCLA Haz. Subs.: Section 304 EHS reportable quantity

Hydrochloric Acid (CAS 7647-01-0) 5000 LBS

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not listed.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - Yes

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Chemical name CAS number Reportable Threshold Threshold Threshold quantity planning quantity planning quantity, lower quantity, upper value value

Hydrochloric Acid 7647-01-0 5000 500 lbs

SARA 311/312 Yes

Hazardous chemical

SARA 313 (TRI reporting)

Chemical name	CAS number	% by wt.	
Hydrochloric Acid	7647-01-0	2.5 - 10	_
Zinc Chloride	76 4 6-85-7	2.5 - 10	

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Hydrochloric Acid (CAS 7647-01-0)

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Hydrochloric Acid (CAS 7647-01-0)

Clean Water Act (CWA) Hazardous substance

Section 112(r) (40 CFR

68.130)

Safe Drinking Water Act Not regulated.

(SDWA)

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

Drug Enforcement Administration (DEA). List 2, Essential Chemicals (21 CFR 1310.02(b) and 1310.04(f)(2) and Chemical Code Number

Hydrochloric Acid (CAS 7647-01-0) 6545

Drug Enforcement Administration (DEA). List 1 & 2 Exempt Chemical Mixtures (21 CFR 1310.12(c))

Hydrochloric Acid (CAS 7647-01-0) 20 %WV

DEA Exempt Chemical Mixtures Code Number

Hydrochloric Acid (CAS 7647-01-0) 6545

US state regulations

US. California Controlled Substances. CA Department of Justice (California Health and Safety Code Section 11100)

Not listed.

US. Massachusetts RTK - Substance List

Hydrochloric Acid (CAS 7647-01-0) Zinc Chloride (CAS 7646-85-7)

US. New Jersey Worker and Community Right-to-Know Act

Hydrochloric Acid (CAS 7647-01-0) Zinc Chloride (CAS 7646-85-7)

US. Pennsylvania Worker and Community Right-to-Know Law

Hydrochloric Acid (CAS 7647-01-0) Zinc Chloride (CAS 7646-85-7)

US. Rhode Island RTK

Hydrochloric Acid (CAS 7647-01-0) Zinc Chloride (CAS 7646-85-7)

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

^{*}A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date 05-07-2015

Version # 01

NFPA ratings Health: 3

Flammability: 0 Instability: 0

NFPA ratings

3 0

DisclaimerVeolia Water Technologies is not able to anticipate all conditions under which this information and

its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use and or non

respect of Veolia Water Technologies' requirement.

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

Revision Information

Product and Company Identification: Product Review Composition / Information on Ingredients: Ingredients Physical & Chemical Properties: Multiple Properties Toxicological Information: Toxicological Data

Ecological Information: Ecotoxicity

Transport Information: Proper Shipping Name/Packing Group

Regulatory Information: United States

Material name: Hydrex 2126

1660 Version #: 01 Issue date: 05-07-2015

HYDREX 2126

Product information

Cooling Water Treatment

Description and Use

Hydrex 2126 is a multi-component cooling water treatment product that is excellent in the prevention of scale formation in cooling systems under a wide variety of operating conditions.

Hydrex 2126 also has excellent corrosion control capabilities for all metals including copper. It will also aid in the dispersion of other mineral contaminants in cooling water such as iron or manganese.

Hydrex 2126 is stable under stressed conditions provides superior results for systems operating at higher cycles of concentration.

Advantages

- · Effective scale inhibitor
- · Effective corrosion inhibition
- · Liquid product easy to handle
- · Good general dispersant properties
- · Designed for soft water programs

Application Information

Hydrex 2126 can be either fed neat directly from the shipping container or diluted to any convenient concentration via an inline static mixer

Dosage must be calculated based upon water characteristics and operating conditions.

Please contact your Hydrex Representative for the proper dosage and specific control limits for Hydrex 2126.

Specifications

Physical Form: Liquid

Density at 20°C (kg/l): 1.10 kg/l (average)

Specific Gravity (g/cm3) @ 25°C: 1.10 - 1.15 (Water = 1.00)

Product pH (as supplied): 1.0 - 1.2

Odor : Mild Odor Color : Light Yellow

Freezing Point (°C/°F): 0°C / 32°F Boiling Point (°C/°F): 100°C Solubility: Complete in water

Viscosity: As water

Materials Compatibility

Crosslinked polyethylene (HDPE), PP, PVDF, stainless steel and lined mild steel are the preferred material of construction for bulk tanks. Unlined steel, galvanized steel and copper are NOT recommended in any part of the chemical feed system. Stainless steel, HDPE, PVDF or PVC are generally the best choices for the pump heads and feed lines.

Handling - Storage - Packaging

For best results, store product at 0-32°C. Protect from freezing. If product freezes, allow to warm in heated area and thaw thoroughly before using; mix container prior to use. If product spills clean it up as soon as possible; please refer to the MSDS for information.

Shipping:

Hydrex 2126 is available in bulk, semi bulk and small containers. Details are available on request.

Safety Information

Detailed information on the product described in this leaflet can be found in our relevant health and safety information (Safety Data Sheet). Please contact us for further information.

Veolia Water Solutions & Technologies Headquarters "L'aquarène" 1, Place Montgolfier - 94417 Saint-Maurice Cedex - France Tél. +33 1 45 11 55 55

Website: www.veoliawaterst.com

MATERIAL SAFETY DATA SHEET

1. Product and Company Identification

Hydrex 2982 **Material name**

Version # 02

Issue date 02-23-2012 **Revision date** 09-27-2012 Supersedes date 02-23-2012 CAS# Mixture

Product use Cooling water treatment

Manufacturer

Supplier I. Kruger

Address 401 Harrison Oaks Blvd. Suite 100

> Cary, NC 27513

Contact Person Hydrex Product Manager

Telephone 888-578-4378 919-677-0082 Fax

e-mail krugerinchydrex@veoliawater.com **Global Emergency** 1-760-476-3962 (Code:333239)

Contact

2. Hazards identification

Emergency overview Health injuries are not known or expected under normal use.

OSHA regulatory status This product is considered not hazardous under 29 CFR 1910.1200 (Hazard Communication).

Potential health effects

Routes of exposure Not applicable.

Eyes Health injuries are not known or expected under normal use. Skin Health injuries are not known or expected under normal use. **Inhalation** Health injuries are not known or expected under normal use. Ingestion Health injuries are not known or expected under normal use. **Potential environmental** May cause long-term adverse effects in the environment.

effects

3. Composition / Information on Ingredients

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

4. First Aid Measures

First aid procedures

Eye contact Rinse with water. Get medical attention if irritation develops and persists.

Skin contact Rinse skin with water/shower. Get medical attention if irritation develops and persists.

Inhalation If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing.

Call a physician if symptoms develop or persist.

Ingestion Rinse mouth. If ingestion of a large amount does occur, call a poison control center immediately.

General advice If you feel unwell, seek medical advice (show the label where possible).

5. Fire Fighting Measures

Flammable properties The product is not flammable. No unusual fire or explosion hazards noted.

Material name: Hydrex 2982 Version #: 02 Revision date: 09-27-2012 Issue date: 02-23-2012 Solutions & Technologies

Extinguishing media

Suitable extinguishing

media

Water fog. Dry chemical, CO2, sand, earth, water spray or regular foam.

Fire fighting

equipment/instructions

Not available.

6. Accidental Release Measures

Personal precautions Keep unnecessary personnel away. Local authorities should be advised if significant spillages

cannot be contained.

Environmental precautions Prevent further leakage or spillage if safe to do so. Do not contaminate water.

Methods for containment Methods for cleaning up

Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible.

Should not be released into the environment.

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Absorb in vermiculite, dry sand or earth and place into containers. Following product

recovery, flush area with water.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to

remove residual contamination.

Never return spills in original containers for re-use. For waste disposal, see section 13 of the

MSDS.

7. Handling and Storage

Handling Avoid release to the environment. Handle and open container with care. Handle an open container

with care.

Storage Use care in handling/storage.

8. Exposure Controls / Personal Protection

Personal protective equipment

Skin protection Normal work clothing (long sleeved shirts and long pants) is recommended.

No personal respiratory protective equipment normally required. Respiratory protection

General hygiene considerations

Handle in accordance with good industrial hygiene and safety practice.

9. Physical & Chemical Properties

Physical state Liquid. **Form** Liquid.

Color Opaque. White.

Odor Slight 6.7 - 7.3Ha

Boiling point 212 °F (100 °C) Melting point/Freezing point 32 °F (0 °C) Solubility (water) Complete

Other data

Density 0.95 - 1.05 g/cm3

10. Chemical Stability & Reactivity Information

Chemical stability Material is stable under normal conditions.

Conditions to avoid None under normal conditions.

Incompatible materials Not available.

Hazardous decomposition

products

No hazardous decomposition products are known.

Material name: Hydrex 2982 2989 Version #: 02 Revision date: 09-27-2012 Issue date: 02-23-2012 2/4 Solutions & Technologies

11. Toxicological Information

Carcinogenicity This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.

Further information This product has no known adverse effect on human health.

12. Ecological Information

Ecotoxicological data

ProductSpeciesTest ResultsHydrex 2982 (Mixture)FishLC50Fish>= 900 mg/l, 96 hours, calculated

* Estimates for product may be based on additional component data not shown.

Ecotoxicity Contains a substance which causes risk of hazardous effects to the environment.

Environmental effectsAn environmental hazard cannot be excluded in the event of unprofessional handling or disposal.

Persistence and degradability Not available.

13. Disposal Considerations

Disposal instructionsCollect and reclaim or dispose in sealed containers at licensed waste disposal site. Do not allow this

material to drain into sewers/water supplies. This product, in its present state, when discarded or disposed of, is not a hazardous waste according to Federal regulations (40 CFR 261.4 (b)(4)). Under RCRA, it is the responsibility of the user of the product to determine, at the time of disposal, whether the product meets RCRA criteria for hazardous waste. Dispose in accordance with all

applicable regulations.

Waste from residues / unused products

Not applicable.

Contaminated packaging Empty containers should be taken to an approved waste handling site for recycling or disposal.

14. Transport Information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

15. Regulatory Information

US federal regulationsThis product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

CERCLA/SARA Hazardous Substances - Not applicable.

Drug Enforcement Administration (DEA). List 2, Essential Chemicals (21 CFR 1310.02(b) and 1310.04(f)(2)

Not regulated.

DEA Essential Chemical Code Number

Not regulated.

Drug Enforcement Administration (DEA). List 1 & 2 Exempt Chemical Mixtures (21 CFR 1310.12(c))

Not regulated.

DEA Exempt Chemical Mixtures Code Number

Not regulated.

CERCLA (Superfund) reportable quantity

None

Material name: Hydrex 2982
2989 Version #: 02 Revision date: 09-27-2012 Issue date: 02-23-2012

VEOLIA WATER
Solutions & Technologies

MSDS US 3 / 4

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - No

> Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

Inventory name

Section 302 extremely hazardous substance

Section 311 hazardous

Country(s) or region

chemical

No

Inventory status

Australia

Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	No
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	No

Australian Inventory of Chemical Substances (AICS)

State regulations

This product does not contain a chemical known to the State of California to cause cancer, birth

defects or other reproductive harm.

16. Other Information

Further information HMIS® is a registered trade and service mark of the NPCA.

HMIS® ratings Health: 1

Flammability: 0 Physical hazard: 0

NFPA ratings Health: 1

> Flammability: 0 Instability: 0

Disclaimer The information in the sheet was written based on the best knowledge and experience currently

> available. Veolia Water Solutions & Technologies is not able to anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use and or non respect of Veolia Water Solutions & Technologies' requirement.

This data sheet contains changes from the previous version in section(s):

Product and Company Identification: Product Review

Handling and Storage: Handling

Physical & Chemical Properties: Multiple Properties

Physical & Chemical Properties: Color Physical & Chemical Properties: Form Physical & Chemical Properties: Odor

Material name: Hydrex 2982 2989 Version #: 02 Revision date: 09-27-2012 Issue date: 02-23-2012 4/4 Solutions & Technologies

On inventory (yes/no)*

No

^{*}A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

HYDREX 2982

Product information

Cooling Water Treatment

Description and Use

Hydrex 2982 is a silicone based organic antifoam that is highly effective for controlling and eliminating foaming in cooling water, process water, and waste water systems.

Its unique chemistry generates a quick kill of foaming in most applications when applied as a slug dosage and can provide consistent control of foaming if applied on a slow continuous feed for systems that exhibit a constant tendency to foam.

Due to its organic nature, a very low dosage of product is typically required in most applications.

Advantages

- Effective silicone based antifoam
- · Easy to feed
- Fast acting
- Liquid product

Application Information

Hydrex 2982 can be fed as the neat product or as a solution.

Please contact your Hydrex Representative for the proper dosage and specific control limits for Hydrex 2982 based upon water quality.

Specifications

Physical Form : Liquid

Density at 20°C (kg/l) : 0.95 - 1.05 kg/l

Specific Gravity (g/cm3) @ 25°C : 0.95-1.05 (Water = 1.00)

Product pH (as supplied): 6.7 - 7.3 (neat)

Odor: Low, non-irritating odor

Color: Opaque white

Freezing Point (°C/°F): 0°C / 32°F

Solubility: Complete

Materials Compatibility

Crosslinked polyethylene (HDPE), PP, PVDF, stainless steel and lined mild steel are the preferred material of construction for bulk tanks.

Unlined steel, galvanized steel, and copper are NOT recommended in any part of the chemical feed system. Stainless steel, HDPE, PVDF or PVC are generally the best choices for the pump heads and feed lines.

Handling – Storage - Packaging

For best results, store product at temperature between 0-32°C. Protect from freezing. If product freezes, allow to warm in heated area and thaw thoroughly before using. Also, please adhere to your local and state code requirements.

Packaging:

Hydrex 2982 is available in bulk, semi bulk and small containers. Details are available on request.

Safety Information

Detailed information on the product described in this leaflet can be found in our relevant health and safety information (Safety Data Sheet). Please contact us for further information.

Veolia Water Solutions & Technologies Headquarters "L'aquarène" 1, Place Montgolfier - 94417 Saint-Maurice Cedex - France Tél. +33 1 45 11 55 55

Website: www.veoliawaterst.com

MATERIAL SAFETY DATA SHEET

1. Product and Company Identification

Material name Hydrex 6161

Version # 02

 Issue date
 03-18-2014

 Revision date
 04-29-2014

 Supersedes date
 03-18-2014

 CAS #
 Proprietary

Product use Wastewater Flocculant Wastewater Treatment

Manufacturer

Supplier Veolia Water Solutions & Technologies - Industrial Solutions and Services

Address 945 S. Brown School Road

Vandalia, Ohio

45377

Contact Person Hydrex Product Manager

 Telephone
 1-800-875-4075

 Fax
 +1-937-890-5495

 e-mail
 hydrex.msds@veolia.com

Global Emergency +1-760-476-3962 (Code: 333239)

Contact

2. Hazards identification

Emergency overview Exposure to powder or dusts may be irritating to eyes, nose and throat.

OSHA regulatory status This material is not considered hazardous by the OSHA Hazard Communication Standard, OSHA 29

CFR 1910.1200.

Potential health effects

Routes of exposure Inhalation. Ingestion. Skin contact. Eye contact.

Eyes Dust in the eyes will cause irritation. Do not get this material in contact with eyes.

Skin Non-irritating to the skin.

InhalationDust may irritate respiratory system.IngestionMay cause irritation. Do not ingest.

Potential environmentalComponents of this product are hazardous to aquatic life. May cause long-term adverse effects in

effects the environment.

3. Composition / Information on Ingredients

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

4. First Aid Measures

First aid procedures

Eye contact Remove contact lenses, if present and easy to do. Continue rinsing.

Skin contact Before washing use a dry brush to remove dust from skin. Wash off with soap and water. Get

medical attention if irritation develops and persists.

Inhalation Do not use mouth-to-mouth method if victim inhaled the substance. Move to fresh air. Call a

physician if symptoms develop or persist.

Ingestion Rinse mouth thoroughly. Product is not considered toxic in small amounts. Get medical attention if

symptoms occur.

Notes to physician In case of shortness of breath, give oxygen. Keep victim warm.

General advice In case of shortness of breath, give oxygen. Do not use mouth-to-mouth method if victim ingested

the substance.

Material name: Hydrex 6161

2593 Version #: 02 Revision date: 04-29-2014 Issue date: 03-18-2014

5. Fire Fighting Measures

Extinguishing media

Suitable extinguishing

media

Water. Extinguish with foam, carbon dioxide, dry powder or water fog.

Unsuitable extinguishing

media

Do not use a solid water stream as it may scatter and spread fire.

Protection of firefighters

Specific hazards arising from the chemical

Fire may produce irritating, corrosive and/or toxic gases. Material can be slippery when wet.

Fire fighting

equipment/instructions

In case of fire and/or explosion do not breathe fumes. Move containers from fire area if you can do so without risk.

Specific methods

In the event of fire and/or explosion do not breathe fumes. Cool containers exposed to flames with

water until well after the fire is out.

6. Accidental Release Measures

Personal precautions In case of spills, beware of slippery floors and surfaces. Do not touch damaged containers or spilled

material unless wearing appropriate protective clothing. Avoid inhalation of dust from the spilled

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not contaminate water.

Methods for containment

If sweeping of a contaminated area is necessary use a dust suppressant agent which does not react

with the product. Prevent entry into waterways, sewer, basements or confined areas.

Methods for cleaning up

DO NOT GET WATER on spilled material or inside containers. Should not be released into the environment. Collect dust using a vacuum cleaner equipped with HEPA filter. Avoid dust formation. Following product recovery, flush area with water. For waste disposal, see section 13 of the MSDS.

7. Handling and Storage

Handling

Do not smoke. Do not get this material on clothing. Use only in area provided with appropriate exhaust ventilation. Wash thoroughly after handling. Avoid release to the environment. Avoid contact with skin and eyes. Avoid dust formation. Do not breathe dust from this material. Use mechanical ventilation in case of handling which causes formation of dust. Material can be slippery

when wet.

Storage

Keep out of the reach of children. Store in cool, dry place. Keep at temperature not exceeding 32

°C.

8. Exposure Controls / Personal Protection

Occupational exposure limits

No exposure limits noted for ingredient(s).

Biological limit values

No biological exposure limits noted for the ingredient(s).

Engineering controls

If engineering measures are not sufficient to maintain concentrations of dust particulates below the OEL, suitable respiratory protection must be worn. Additional area ventilation or local exhaust may

be required to maintain air concentrations below recommended exposure limits.

Personal protective equipment

Eye / face protection

Do not get in eyes. Contact lenses should not be worn when working with this chemical! Wear

safety glasses with side shields (or goggles).

Skin protection

Chemical resistant gloves.

Respiratory protection

Do not breathe dust/fume/gas/mist/vapors/spray. No specific recommendation made, but protection against nuisance dust must be used when the general level exceeds 10 mg/m3.

General hygiene considerations

When using, do not eat, drink or smoke. Do not breathe dust. Do not get in eyes. Do not get this material in contact with skin. Do not get this material on clothing. Handle in accordance with good industrial hygiene and safety practice.

9. Physical & Chemical Properties

Powder. **Appearance** Solid. Physical state **Form** Granular. Color White

Odor Not available.

Material name: Hydrex 6161

Version #: 02 2593

Not available. pН Vapor pressure Not applicable. Vapor density Not available. **Boiling point** Not applicable. Melting point/Freezing point Not applicable. Solubility (water) Not available. 0.6 - 0.9 Specific gravity Flash point Not applicable. Not applicable. **Auto-ignition temperature**

Partition coefficient

(n-octanol/water)

Other data

Density 0.75 g/cm3 pH in aqueous solution 5 - 7

10. Chemical Stability & Reactivity Information

Chemical stability Material is stable under normal conditions.

Conditions to avoid Avoid spread of dust. Heat, flames and sparks. Avoid contact with oxidizing agents.

Incompatible materials Not available.

Hazardous decomposition

products

Carbon oxides. Nitrogen oxides (NOx).

Possibility of hazardous

reactions

Hazardous polymerization does not occur.

11. Toxicological Information

Toxicological data

Product	Species	Test Results
Hydrex 6161 (CAS Proprietary)		
Acute		
Oral		
LD50	Rat	> 5000 mg/kg
Chronic		
Oral		
Presumed Non-Toxic	Dog	12 months Non-Toxic
	Rat	2 years Non-Toxic

^{*} Estimates for product may be based on additional component data not shown.

Sensitization Not a skin sensitizer.

Acute effects No known chronic or acute health risks.

Chronic effects At the concentrations used in this material, the components are not expected to cause dermal

sensitization based on testing of similar formulations and/or the components.

Carcinogenicity This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not listed.

Skin corrosion/irritation Not expected to be hazardous by OSHA criteria.

12. Ecological Information

Ecotoxicological data

Product		Species	Test Results
Hydrex 6161 (CAS Proprietary))		
Algae	LC50	Algae	> 100 mg/l, 72 hours
Crustacea	LC50	Daphnia	> 100 mg/l, 48 hours

Material name: Hydrex 6161

Version #: 02 Revision date: 04-29-2014 Issue date: 03-18-2014 2593

Product Species Test Results

Other LC50 Rainbow Trout > 100 mg/l, 96 hours

Ecotoxicity Components of this product are hazardous to aquatic life.

Aquatic toxicityNot expected to be harmful to aquatic organisms. The environmental hazard of the product is

considered to be limited.

Persistence and degradability The product is not readily biodegradable. Transformation due to hydrolysis not expected to be

significant.

Bioaccumulation / Accumulation

The product is not bioaccumulating.

Bioaccumulative potential

Octanol/water partition coefficient log Kow

1

13. Disposal Considerations

Disposal instructionsConsult authorities before disposal. Incinerate the material under controlled conditions in an

approved incinerator. Do not incinerate sealed containers. Do not allow this material to drain into

sewers/water supplies. Dispose in accordance with all applicable regulations.

Contaminated packaging Recycle empty drums at an appropriate facility in accordance with current applicable laws and

regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed.

14. Transport Information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

15. Regulatory Information

US federal regulationsThis product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard,

29 CFR 1910.1200.

Drug Enforcement Administration (DEA). List 2, Essential Chemicals (21 CFR 1310.02(b) and 1310.04(f)(2) and Chemical Code Number

Not listed.

Drug Enforcement Administration (DEA). List 1 & 2 Exempt Chemical Mixtures (21 CFR 1310.12(c))

Not regulated.

DEA Exempt Chemical Mixtures Code Number

Not regulated.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA (Superfund) reportable quantity

None

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - No

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

Section 302 extremely hazardous substance

Not listed.

SARA 311/312 No

Hazardous chemical

Material name: Hydrex 6161

2593 Version #: 02 Revision date: 04-29-2014 Issue date: 03-18-2014

^{*} Estimates for product may be based on additional component data not shown.

Inventory status

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

^{*}A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

US state regulations WARNING: This product contains a chemical known to the State of California to cause cancer:

Residual acrylamide.

US. Massachusetts RTK - Substance List

Not regulated.

US. Pennsylvania RTK - Hazardous Substances

Not regulated.

US. Rhode Island RTK

Not regulated.

16. Other Information

Further information HMIS® is a registered trade and service mark of the NPCA.

HMIS® ratings Health: 1

Flammability: 1 Physical hazard: 0

NFPA ratings Health: 1

Flammability: 1 Instability: 0

Disclaimer Veolia Water Solutions & Technologies is not able to anticipate all conditions under which this

information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper

use and or non respect of Veolia Water Solutions & Technologies' requirement.

This data sheet contains changes from the previous version in section(s):

Physical & Chemical Properties: Multiple Properties

Physical & Chemical Properties: Form Disposal Considerations: Waste codes Regulatory Information: United States

Material name: Hydrex 6161

2593 Version #: 02 Revision date: 04-29-2014 Issue date: 03-18-2014

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

HYDREX 6161

Product information

Waste Water Treatment

Description and Use

Hydrex 6161 is a high molecular weight, medium charged polyacrylamide that is used as a flocculant or coagulant aid in a wide variety of mining, municipal, and industrial water and wastewater treatment applications.

This product can be used alone or in conjunction with other organic or inorganic coagulants.

It is typically used in liquid/solid separations, dewatering, and filtration.

Application Information

Hydrex 6161 is water soluble and certain precautions should be followed to obtain total dissolution with minimum loss of activity.

Complete wetting of the individual particles is the most important factor in the preparation of powdered flocculants.

Veolia Water can supply the required equipment to achieve the best mixing results.

Normal 'make-down' concentrations are between 0.1 - 0.5% by weight.

Specifications

Physical Form : White powder

Viscosity: 5.0 g/L 1800 cps - 2.5 g/L 700 cps - 1.0 g/L 300 cps

Materials Compatibility

Crosslinked polyethylene, fiberglass, stainless steel and lined mild steel are the preferred material of construction for bulk tanks. Unlined steel, black iron, galvanized steel, and copper are NOT recommended in any part of the polymer feed system. Stainless steel or PVC are the best choices for the pump heads and feed lines.

Packaging

For best results, store product at 0-32°C. Product spilled will be extremely slippery. See MSDS for handling spills. Do not spray water on spilled material because of the resulting slippery condition it can create. Rock salt cures the slipperiness.

Packaging : on request.

Safety Information

Detailed information on the product described in this leaflet can be found in our relevant health and safety information (Safety Data Sheet). Please contact us for further information.

Veolia Water Solutions & Technologies Headquarters "L'aquarène" 1, Place Montgolfier - 94417 Saint-Maurice Cedex - France Tél. +33 1 45 11 55 55

Website: www.veoliawaterst.com

Univar USA Inc Material Safety Data Sheet

MSDS No:	62614
Version No:	005 2006-09-06
Order No:	

Univar USA Inc., 17425 NE Union Hill Rd., Redmond WA 98052 (425) 889 3400

Emergency Assistance

For emergency assistance involving chemicals call Chemtrec - (800) 424-9300

UNIVAR USA INC. ISSUE DATE:2006-08-09 Annotation:

MSDS NO:62614 VERSION:005 2006-09-06

The Version Date and Number for this MSDS is : 09/06/2006 - #005

PRODUCT NAME: HYDROGEN PEROXIDE, 50% (ALL GRADES)

MSDS NUMBER: 62614

DATE ISSUED: 08/09/2006

SUPERSEDES: 10/12/2004

ISSUED BY: 008782

Material Safety Data Sheet

Distributor:

UNIVAR USA, INC.

17425 NE Union Hill Road

Redmond WA 98052 425-889-3400

Product Name HYDROGEN PEROXIDE, 50% (ALL GRADES)

Product Synonym(s)

Chemical Family Peroxide
Chemical Formula H202

Chemical Name Hydrogen Peroxide Solution, 50%

EPA Reg Num Product Use

2 COMPOSITION / INFORMATION ON INGREDIENTS

Ingredient Name CAS RegistryNumber Typical % OSHA Hydrogen peroxide 7722-84-1 50% Y Water 7732-18-5 50% N

The substance(s) marked with a "Y" in the OSHA column, are identified as hazardous chemicals according to the criteria of the OSHA Hazard Communication Standard (29 CFR 1910.1200)

This material is classified as hazardous under Federal OSHA regulation.

The components of this product are all on the TSCA Inventory list.

3 HAZARDS IDENTIFICATION

Emergency Overview

UNIVAR USA INC. ISSUE DATE:2006-08-09

MSDS NO:62614 VERSION:005 2006-09-06

Annotation:
Water white liquid with slightly sharp odor.

DANGER!

CAUSES EYE BURNS. MAY CAUSE BLINDNESS.

CAUSES SKIN BURNS.

CAUSES RESPIRATORY TRACT BURNS.

HARMFUL IF SWALLOWED.

STRONG OXIDIZER.

CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE OR EXPLOSIVE DECOMPOSITION.

Potential Health Effects

Inhalation and skin contact are expected to be the primary routes of occupational exposure to this material. Based on single exposure animal tests, it is considered to be moderately toxic if swallowed, practically nontoxic if absorbed through skin, slightly toxic if inhaled, and corrosive to eyes and skin. Inhalation of high concentrations of vapor or mist may cause severe irritation of the eyes, nose and upper respiratory tract with cough, chest discomfort and, in severe cases, pulmonary edema (accumulation of fluid in the lungs). Skin contact with concentrated liquid for a short period of time may cause a temporary whitening or bleaching of the skin. Prolonged or repeated contact with skin may cause severe irritation or burns characterized by a tingling sensation, redness, swelling and possible destruction of the dermis with ulceration. If swallowed, this material may cause irritation, burns or perforation of the gastrointestinal tract including the stomach and intestines. Symptoms of injury may include nausea, vomiting, diarrhea, abdominal pain, bleeding or tissue ulceration.

4 FIRST AID MEASURES

IF IN EYES, immediately flush with plenty of water for at least 15 minutes. Get medical attention.

IF ON SKIN, immediately flush with plenty of water. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Destroy contaminated shoes.

IF SWALLOWED, do NOT induce vomiting. Give water to drink. Get medical attention immediately. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

IF INHALED, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

5 FIRE FIGHTING MEASURES

Fire and Explosive Properties

Auto-Ignition Temperature NΑ

Flash Point Flash Point Method None

Flammable Limits- Upper NA

> NA Lower

UNIVAR USA INC. ISSUE DATE:2006-08-09 Annotation:

Extinguishing Media

Use water spray, water fog.

Fire Fighting Instructions

Fire fighters and others who may be exposed to products of combustion should wear full fire fighting turn out gear (full Bunker Gear) and self-contained breathing apparatus (pressure demand NIOSH approved or equivalent). Fire fighting equipment should be thoroughly decontaminated after use.

Fire and Explosion Hazards

Solutions above 65% are especially hazardous as they do not contain enough water to remove the heat of decomposition by evaporation. Avoid breathing fumes from fire exposed material.

6 ACCIDENTAL RELEASE MEASURES

In Case of Spill or Leak

Stop the leak, if possible. Ventilate the space involved. Flush with plenty of water. Combustible materials exposed to hydrogen peroxide should be rinsed immediately with large amounts of water to ensure that all the hydrogen peroxide is removed. Residual hydrogen peroxide which is allowed to dry on organic materials such as paper, fabrics, cotton, leather, wood, or other combustibles can cause the material to ignite and result in a fire. Consult a regulatory specialist to determine appropriate state or local reporting requirements, for assistance in waste characterization and/or hazardous waste disposal and other requirements listed in pertinent environmental permits.

7 HANDLING AND STORAGE

Handling

Do not get in eyes, on skin or on clothing. Do not breathe mist. Do not taste or swallow. Wash thoroughly after handling. Use only with adequate ventilation. Avoid contamination. Keep container closed.

Storage

Store separate from acids, alkalies, reducing agents, combustibles.

8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering Controls

Investigate engineering techniques to reduce exposures below airborne exposure limits. Provide ventilation if necessary to control exposure levels below airborne exposure limits (see below). If practical, use local mechanical exhaust ventilation at sources of air contamination such as open process equipment. Consult ACGIH ventilation manual or NFPA Standard 91 for design of exhaust systems.

Eye / Face Protection

Where there is potential for eye contact, wear a face shield, chemical goggles, and have eye flushing equipment immediately available.

UNIVAR USA INC. ISSUE DATE:2006-08-09

Annotation:

Skin Protection

MSDS NO:62614 VERSION:005 2006-09-06

Neoprene, Polyvinyl chloride, Butyl rubber Gloves should be worn when handling this material. Wear chemical goggles, a face shield, and chemical resistant clothing such as a rubber apron when splashing may occur. Rinse immediately if skin is contaminated. Remove contaminated clothing promptly and wash before reuse. Clean protective equipment before reuse. Provide a safety shower at any location where skin contact can occur. Wash skin thoroughly after handling.

Respiratory Protection

Avoid breathing vapor or mist. When airborne exposure limits are exceeded (see below), use NIOSH approved respiratory protection equipment appropriate to the material and/or its components. Consult respirator manufacturer to determine appropriate type equipment for given application. Observe respirator use limitations specified by NIOSH or the manufacturer. For emergency and other conditions where exposure limit may be significantly exceeded, use an approved full face positive-pressure, self-contained breathing apparatus or positive-pressure airline with auxiliary self-contained air supply. Respiratory protection programs must comply with 29 CFR ' 1910.134.

Other Protective Equipment

Rubber boots with neoprene or pvc soles. Do NOT wear leather boots. Note: As the water content of hydrogen peroxide evaporates, cotton, rayon, and wool fibers are particularly subject to spontaneous combustion. Where there is significant risk of sudden splash or spray, it is advised that an apron or rubber suit be worn. Any contaminated clothing, including gloves, shoes, aprons, coveralls, etc., should be removed immediately and thoroughly flushed with water to eliminate any traces of hydrogen peroxide before cleaning and reuse.

Airborne Exposure Guidelines for Ingredients
Exposure Limit

Value

Hydrogen peroxide ACGIH TWA-OSHA TWA PEL-

ppm 1.4 mg/m3 ppm 1.4 mg/m3

-Only those components with exposure limits are printed in this section.
-Skin contact limits designated with a "Y" above have skin contact effect.
Air sampling alone is insufficient to accurately quantitate exposure.

Measures to prevent significant cutaneous absorption may be required.
-ACGIH Sensitizer designator with a value of "Y" above means that exposure to this material may cause allergic reactions. -WEEL-AIHA Sensitizer designator with a value of "Y" above means that exposure to this material may cause allergic skin reactions.

9 PHYSICAL AND CHEMICAL PROPERTIES

Appearance/Odor pH

Water white liquid with slightly sharp odor.

UNIVAR USA INC. ISSUE DATE:2006-08-09

MSDS NO:62614 VERSION:005 2006-09-06

Annotation:
Specific Gravity
1.196 @ 20 C
Vapor Pressure
18.3 @ 20 C

Vapor Density 1.0 Melting Point NE

Freezing Point -52 C (-62 F)
Boiling Point 114 C (237 F)
Solubility In Water Complete
Percent Volatile 100%
Molecular Weight 34.01

10 STABILITY AND REACTIVITY

Stability

This material is chemically stable under normal and anticipated storage and handling conditions.

Incompatibility

Material decomposes with the potential to produce a rupture of unvented closed containers. Contact with metals, metal ions, organics, wood, dust, shavings, dry vegetables may cause decomposition.

Hazardous Decomposition Products

This material decomposes if contaminated, causing fire and possible explosions. Oxygen can be liberated at temperatures above ambient.

11 TOXICOLOGICAL INFORMATION

Toxicological Information

Data on this material and/or its components are summarized below. Hydrogen Peroxide

Single exposure (acute) studies indicate that this material is moderately toxic if swallowed (rat LD50 805 mg/kg; 70% solution), practically non-toxic if absorbed through skin (rabbit LD50 >6,500 mg/kg; 70% solution), slightly toxic if inhaled (no mortality in rats at 170 mg/m3 for 4 hours), and corrosive to rabbit eyes and skin. No skin allergy was observed in guinea pigs following repeated exposure. Solutions are commonly used for disinfecting wounds, bleaching hair or as a mouth wash and generally do not show adverse skin reactions. Accidental ingestion by children has resulted in death from lung edema, stomach erosions and gas distention and burns to the throat and esophagus. Eye and throat irritation and bleaching of hair have been reported by workers exposed to this material in the atmosphere.

Several studies have been conducted by administering material in the drinking water of mice and rats. The primary findings were irritation of the gastric mucous. Repeated inhalation exposure of rats and mice caused nasal irritation without notable adverse effects on the lining of the upper respiratory system. Repeated inhalation exposure of dogs resulted in upper respiratory tract irritation and emphysematous changes in the lungs. Generally, long-term oral dosing caused no adverse effects other than erosion of the stomach lining from direct application of the test material. Several studies have

Annotation:

shown an increase in gastrointestinal tract tumors in mice and rats following long-term exposure in the drinking water. Concentrations less than 1% do not promote gastrointestinal tumors. The U.S. Federal Drug Administration has concluded that there is insufficient evidence of carcinogenicity and the International Agency for Research on Cancer (IARC) has concluded that this chemical is not classifiable as to its carcinogenicity to humans (Group 3). Genetic changes were observed in tests using bacteria and animal cells, but not in animals.

12 ECOLOGICAL INFORMATION

Ecotoxicological Information

Data on this material and/or its components are summarized below.

Hydrogen Peroxide

This material is highly toxic to marine algae (LC50 0.85 mg/L), moderately toxic to Daphnia magna (EC50 7.7 mg/L) and Daphnia pulex (LC50 2.4 mg/L). It is slightly toxic to coho salmon (LC50 10 mg/L), channel catfish (LC50 37.4 mg/L), golden orfe (LC50 35 mg/L), fathead minnow (LC50 16.4 mg/L), snail (LC50 17.7 mg/L) and bacteria (EC50 30 mg/L).

Chemical Fate Information No data are available.

13 DISPOSAL CONSIDERATIONS

Waste Disposal

Consult with environmental engineer or professional to determine if neutralization is appropriate and for handling procedures for residual materials. Note: Chemical additions to, processing of, or otherwise altering this material may make this waste management information incomplete, inaccurate, or otherwise inappropriate. Furthermore, state and local waste disposal requirements may be more restrictive or otherwise different from federal laws and regulations.

14 TRANSPORT INFORMATION

DOT Name Hydrogen Peroxide, Aqueous Solution,

DOT Technical Name

DOT Hazard Class 5.1

UN Number UN 2014

DOT Packing Group PG II

RQ

DOT Special Information Subsidiary (8)

Non-Bulk packages must have Class 5.1 and Class 8

labels.

Bulk packages require Class 5.1 Oxidizer placards.

15 REGULATORY INFORMATION

UNIVAR USA INC.

ISSUE DATE:2006-08-09

Annotation:
Delayed (Chronic) Health N Reactive Sudden Release of Pressure M

The components of this product are all on the TSCA Inventory list.

Ingredient Related Regulatory Information:

SARA Reportable Quantities CERCLA RQ SARA TPQ Hydrogen peroxide NE1000 LBS MSDS NO:62614

VERSION:005 2006-09-06

Y

Water NE

SARA Title III, Section 302

This product does contain chemical(s), as indicated below, currently on the Extremely Hazardous Substance List, Section 302, SARA Title Ill. See Section 2 for further details regarding concentrations and registry numbers. Hydrogen peroxide

Massachusetts Right to Know

This product does contain the following chemicals(s), as indicated below, currently on the Massachusetts Right to Know Substance List. Hydrogen peroxide

New Jersey Right to Know

This product does contain the following chemical(s), as indicated below, currently on the New Jersey Right-to-Know Substances List. Hydrogen peroxide

Pennsylvania Environmental Hazard

This product does contain the following chemical(s), as indicated below, currently on the Pennsylvania Environmental Hazard List. Hydrogen peroxide

Pennsylvania Right to Know

This product does contain the following chemical(s), as indicated below, currently on the Pennsylvania Hazardous Substance List. Hydrogen peroxide

16 OTHER INFORMATION

Key

NE= Not Established NA= Not Applicable (R) = Registered Trademark

Univar USA Inc Material Safety Data Sheet

For Additional Information contact MSDS Coordinator during business hours, Pacific time: (425) 889-3400

Notice

Univar USA Inc. ("Univar") expressly disclaims all express or implied warranties of merchantability and fitness for a particular purpose, with respect to the product or information provided herein, and shall under no circumstances be liable for incidental or consequential damages.

Do not use ingredient information and/or ingredient percentages in this MSDS as a product specification. For product specification information refer to a product specification sheet and/or a certificate of analysis. These can be obtained from your local Univar sales office.

All information appearing herein is based upon data obtained from the manufacturer and/or recognized technical sources. While the information is believed to be accurate, Univar makes no representations as to its accuracy or sufficiency. Conditions of use are beyond Univar's control and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their particular purposes and they assume all risks of their use, handling, and disposal of the product, or from the publication or use of, or reliance upon, information contained herein.

This information relates only to the product designated herein, and does not relate to its use in combination with any other material or in any other process

MicroClear® M-100

Micro Stimulant

Product Bulletin

Environmental Leverage has Lab Analysis Service Available

MicroClear® M-100 is a proprietary formulation of micronutrients designed to enhance the performance of biological systems. It enhances biological growth, shortens lag time, increases biological activity and provides the critical building blocks necessary to maintaining a healthy floc-forming population. The formulation consists of micronutrients, trace minerals, amino acids and vitamins. There are sixteen trace minerals, including calcium, iron, magnesium, manganese and zinc. The formulation also includes twenty amino acids, such as glycine, and thirteen vitamins, including folic acid.

Product Uses: Regular application of **MicroClear® M-100** can provide numerous benefits to operators of all types of biological waste treatment processes. Research has shown that inadequate micronutrients can lead to poor settling or high effluent suspended solids due to unhealthy floc. The addition of micronutrients also increases the biological degradation rate in many situations which will allow the biomass to more rapidly respond to sudden increases Finally, laboratory studies indicate that application of in loads or toxic shocks. micronutrients can lower final effluent BOD₅ levels by maintaining a healthy population capable of more complete organic reduction in a shorter time.

Product Advantages

Shortens Lag Time Enhances BOD/COD removal Reduces sludge buildup Cost effective/Easy to use Changes biomass dynamics No special equipment needed Increases system efficiency Increase characteristics in floc structure

Packaging of Product

MicroClear® M-100 comes in 1-lb. water soluble Bio-pouches. Packaged in 25-lb. Plastic Pails. Bulk packaging available upon request.

Applications of Use

RBC'S Primary CLARIFIERS **DIGESTERS** SLUDGE TANKS Secondary CLARIFIERS **AERATED BASINS GREASE TRAPS AERATION TANKS** LAGOONS TRICKLING FILTERS STATIC PONDS

Enzymatic Activity All Natural Inorganic Vitamins & Nutrients To Enhance **Biological Growth**

Environmental Leverage® Inc.

812 Dogwood Dr. Suite A North Aurora, IL 60542 admin@environmentalLeverage.com 630-906-9791 fax 630-906-9792 www.EnvironmentalLeverage.com

MicroClear® M-100

Micro Stimulant

Product Bulletin

Environmental Leverage has Lab Analysis Service Available

Typical Properties of Product

Appearance	Dark Green
Fragrance	mild-earthy
Form	powder
pH	6.5-7.5
Shelf-Life	2 years/u.o.c.
Flash Point	none

Performance Properties

Effective pH range	5.2 - 9.5
Effective Temperature Ran	ge35 - 130°F

Storage & Handling

Storage......Store in a cool, dry place. Do Not Freeze Container....Keep lid closed on Plastic Pail. Do not store water soluble pouches out of plastic container.

Handling......Wash hands thoroughly with warm, soapy water

Enzymatic Activity All Natural Inorganic Vitamins & Nutrients To Enhance Biological Growth

16 Trace Minerals

 Calcium
 1.9%

 Iron
 .08%

 Magnesium
 .123%

 Zinc
 .0035%

 Phosphorus
 0.1 %

Trace Vitamins: A, B, D, E & K

Micronutrients, Trace Minerals & Elements

Folic Acid 0.3mg
Ascorbic Acid 150,000 mg
Niacin 2,500 mg

Environmental Leverage® Inc.

812 Dogwood Dr. Suite A North Aurora, IL 60542 admin@environmentalLeverage.com 630-906-9791 fax 630-906-9792 www.EnvironmentalLeverage.com

Material Name: Dry Field Natural Gas US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Dry Field Natural Gas EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: CAS Reg. No. 68410-63-9 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure - Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas US GHS

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place.

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3 Hexanes		0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas US GHS

First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 – 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas US GHS

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas US GHS

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Odorless to slight

Appearance: Colorless Odor: petroleum odor

Physical State:GaspH:NDVapor Pressure:40 atm @ -187°F (-86°C)Vapor Density:0.6Boiling Point:-259°F (-162°C)Melting Point:ND

Solubility (H2O): 3.5% **Specific Gravity:** 0.4 @ -263°F (-164°C)

Material Name: Dry Field Natural Gas US GHS

Evaporation Rate: ND VOC: ND

Octanol / H2O Coeff.: ND Flash Point: Flammable Gas

Flash Point Method: N/A

Lower Flammability Limit: 3.8 – 6.5 Upper Flammability Limit: 13-17

(LFL): (UFL):

Auto Ignition: 900-1170°F (482-632°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas US GHS

Butanes (106-97-8)

Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0)

Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3)

Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7)

N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas US GHS

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed

UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	<u>Reactive</u>
		Χ	X	

SARA Section 313 – Supplier Notification

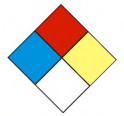
This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No


Material Name: Dry Field Natural Gas US GHS

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® Hazard Rating Health 1 Moderate

Fire 4 Severe
Physical 0 Minimal
* Chronic

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Terra Nitrogen Corporation Terra Centre – 600 Fourth Street Sioux City, Iowa 51101

Methanol

MSDS Number 2016 (Revised April 1, 2001)

8 Pages

1. CHEMICAL PRODUCT and EMERGENCY TELEPHONE CONTACT

Product Name:Methanol

Pyroligneous Spirits, Wood Alcohol, Methylol,

Wood Naphtha, Wood Spirits, Manhattan Spirits, Pyroxylic Spirits, Colonial Spirits, Methyl Hydroxide, Monohydroxymethane

Formula:CH₃OH

EMERGENCY TELEPHONE NUMBER

CHEMTREC:.....800-424-9300

2. **COMPOSITION/INFORMATION ON INGREDIENTS**

Ingredient Name/CAS Number Concentration **Exposure Limits** 99-100% Methanol 200 ppm TWA

250 ppm STEL #67-56-1 6000 ppm IDLH

 $(1 \text{ ppm} = 1.33 \text{ mg/m}^3)$

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

Methanol is a colorless volatile liquid with a faintly sweet pungent odor similar to ethyl alcohol. The substance is fully soluble in water. Vapors of methanol are slightly heavier than air and may travel some distance to a source of ignition and flash back. Accumulations of vapors in confined spaces such as buildings or sewers may explode if ignited. There is potential for containers of liquid to rupture violently if exposed to fire or excessive heat for sufficient time duration. Methanol is listed as a "Poison-Class B". It is harmful if swallowed or absorbed through the skin. Ingestion of as little as one ounce can cause irreversible injury to the nervous system, blindness, or death. It cannot be made nonpoisonous. Causes eye and respiratory system irritation and may cause skin irritation. Avoid liquid, mist, or vapor contact. Vapor inhalation or liquid penetration of the skin can cause central nervous system depression.

POTENTIAL HEALTH EFFECTS

Primary Routes of Entry: Inhalation, skin contact/absorption, eye contact, and ingestion. **General Acute Exposure:** Liquid, mist, or vapors can cause eye, skin, and respiratory tract irritation and Central Nervous System (CNS) depression.

Inhalation:

Acute Exposure: Short-term exposure to high concentrations of methanol may cause CNS depression. Symptoms may include headache, weakness, drowsiness, lightheadedness, nausea, difficult breathing, drunkenness, eye irritation, blurred vision, blindness, loss of consciousness, vertigo, fatigue, convulsions, and possibly death, depending on exposure. Victims may improve and then get worse again up to 30 hours later.

Skin:

Acute Contact: Upon prolonged or repeated contact, absorption through the skin may occur and produce toxic effects similar to those resulting from inhalation exposure. Repeated or prolonged skin contact may cause drying, cracking, and inflammation of the skin due to the defatting action of the product.

Eye:

Acute Contact: Eye irritation may occur upon short-term exposure, including a burning sensation, tearing, redness, or swelling. Upon direct contact with liquid, conjunctivitis and corneal burns may occur. The primary toxic effect of methanol is exerted upon the nervous system, particularly the optic nerves and possibly the retina. The condition can progress to permanent blindness.

Ingestion:

Ingestion may cause serious poisoning with effects similar to those of inhalation and absorption through the skin. Toxic effects are more common after ingestion. Death from as little as one ounce has been reported.

Neurologic:

Acute Exposure: Central Nervous System (CNS) depression may occur upon exposure.

Summary of Chronic Exposure:

Methanol is slowly eliminated from the body; hence repeated exposures may result in toxic levels in the blood and tissues. Due to its slow elimination, methanol should be regarded as a cumulative poison. Though single exposures to fumes may cause no harmful effect, daily exposure may result in the accumulation of sufficient methanol in the body to cause illness.

Note to the Physician: Coma resulting from massive exposures may last as long as 2-4 days. In the body, products formed by its oxidation are formaldehyde and formic acid.

Carcinogenicity:

NTP:	Not Listed
IARC:	Not Listed
OSHA	Not Regulated

Medical Conditions Aggravated by Exposure: Personnel with pre-existing CNS disease, skin disorders, impaired liver or kidney function, GI tract disorders or chronic respiratory diseases should avoid exposure.

4. FIRST AID MEASURES

First Aid for Eyes: Immediately flush eyes with copious amounts of tepid water for at least 15 minutes. The patient should be seen in a health care facility and referral to an ophthalmologist considered.

First Aid for Skin: Immediately flush exposed area with copious amounts of tepid water for at least 15 minutes while removing contaminated clothing and shoes, followed by washing area thoroughly with soap and water. The patient should be seen in a health care facility if irritation or pain persists or if symptoms of toxicity develop. Wash contaminated clothing and shoes before reuse.

First Aid for Inhalation: Move patient to fresh air and keep warm and at rest. Monitor for respiratory distress. If difficulty in breathing develops or if breathing has stopped, administer—artificial respiration and seek medical attention. If trained to do so administer supplemental oxygen with assisted ventilation as required. *Caution*: Administration of mouth-to-mouth resuscitation may expose the first aid provider to chemical within the victim's lungs or vomit.

First Aid for Ingestion: If patient is conscious, immediately give two glasses of water and induce vomiting. Do not make an unconscious person vomit. Get medical attention immediately. **NOTE**: NIOSH suggests that vomiting be induced only if immediate medical attention in not available.

Note to Physician: Provide standard methanol ingestion treatment. To prepare the antidote, make a solution using 100 ml of 100-proof ethyl alcohol (grain alcohol) in 2000 ml of water and give 1.5 ml per kg of body weight, or 100 ml for an average adult. Following this, at 2-hour intervals for 4 days, give the antidote (0.5-1.0 ml per kg of body weight, orally or intravenously to reduce the metabolism of the methanol and to allow time for its excretion). Blood ethanol levels should be 1.0-1.5 mg/L.

5. FIRE FIGHTING MEASURES

Flash Point:	52° F, closed cup
Lower Flammable Limit:	6.0 % Volume in Air
Upper Flammable Limit:	36.5 % Volume in Air
Autoignition Temperature:	725° F. 385° C

General Information: Methanol is extremely flammable! This material releases vapors at or below ambient temperatures. When mixed with air this substance can burn in the open or explode in confined space conditions. Methanol vapors are heavier than air and may travel long distances along the ground before reaching a point of ignition and flashing back. Methanol-water mixtures containing as little as 21% methanol by volume (25% by weight) are also flammable liquids. Methanol fires may not be visible to the naked eye during daylight.

Extinguishing Media:

Water may be ineffective but may be used to dilute spills to nonflammable mixtures.

Small Fire: Dry chemical, CO₂, water spray or alcoholresistant foam

Special Fire Fighting Procedures:

- a. Move container from fire area if you can do it without risk.
- b. Apply cooling water to sides of containers that are exposed to flames until well after fire is out. Stay away from ends of tanks due to exploding potential when tanks are involved in a fire.
- c. Dike fire control water for later disposal, do not scatter the material.
- d. Do not use straight streams due to spreading of methanol.
- e. Positive pressure self-contained breathing apparatus (SCBA) should be used when there is a potential for inhalation of vapors and/or fumes.
- f. Structural fire fighter's protective clothing is recommended for fire situations ONLY; it is not effective in spill situations.

Fire involving Tanks or Rail Car/Trailer Loads

- a. Fight fire from maximum distance or use unmanned hose holders or monitor nozzles.
- b. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- c. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.
- d. Isolate area for 1/2 mile in all directions.

6. <u>ACCIDENTAL RELEASE MEASURES</u>

Spill or Leak Measures: Stop leak if you can do it without risk. Keep unnecessary people away and deny entry. Isolate spill or leak area immediately for at least 330 to 660 feet in all directions. Stay upwind, out of low areas, and ventilate closed spaces before entering. Eliminate all ignition sources. Do not touch or walk through spilled material. Prevent entry of product into waterways, sewers, basements, or confined spaces. A vapor suppressing foam may be used to reduce vapors. All equipment used when handling the product must be grounded and/or spark resistant. Water spray may reduce vapors but may not prevent ignition in closed spaces. Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.

Determining Spill Size: Generally, a small spill is one that involves a single, small package (i.e. up to a 55 gallon drum), small cylinder, or a small (non-continuing) leak from a large container.

Small Spill:

- a. Absorb with earth, sand or other non-combustible material and transfer to containers for later disposal.
- b. Use clean non-sparking tools to collect absorbed material.

Large Spill:

- a. Dike far ahead of liquid spill for later disposal.
- b. Follow local emergency protocol for handling.
- c. Water spray may reduce vapor; but may not prevent ignition in closed spaces.

7. HANDLING AND STORAGE

Handling and storage for methanol should follow the standards listed below. Other standards or regulations may apply which are not listed.

- a. National Electrical Code; Hazard Classification for Methanol is Class I, Div. 1 or 2, Group D.
- b. NFPA No. 30, "Flammable and Combustible Liquids Code".

Handling Precautions: Use proper personal protective equipment when working with or around methanol. See Section 8.

8. EXPOSURE CONTROLS, PERSONAL PROTECTION

Respiratory Protection Requirements:

<200 ppm: No protection required.

200 to 250 ppm: Protection required if the daily TWA is exceeded, a fresh

air supplied system must be used if protection is needed.

>250 ppm: A fresh air supply system must be used (i.e. positive

pressure self contained breathing apparatus)

Skin Protection Requirements: Equipment should prevent repeated or prolonged skin contact with the product. This may include rubber boots, resistant gloves, and other impervious and resistant clothing. Compatible materials may include butyl rubber, natural rubber, neoprene, nitrile rubber, viton and others. Review the equipment manufacture's compatibility data.

Eye Protection Requirements: Use chemical (indirectly vented) goggles when there is a potential for contact with product, including vapor. A full-face shield may be worn over goggles for additional protection, but not as a substitute for goggles.

Other Protective Equipment: Safety shower and eyewash fountain should be provided in the methanol handling area. Proper fire extinguishment equipment must be kept in the handling area.

Engineering Controls: Adequate ventilation to keep methanol concentrations below applicable standards when possible.

NOTE: See Section 2 for regulatory exposure guidelines.

9. PHYSICAL AND CHEMICAL PROPERTIES

 Physical Form:
 Liquid

 Color:
 Colorless

 Odor:
 Faintly sweet pungent odor like ethyl alcohol

 Boiling Point:
 148° F at atmospheric pressure

 Melting point:
 -144° F

 pH:
 7.2

 Solubility:
 100%

 Specific Gravity:
 0.792 (@ 68° F)

 Vapor Density:
 1.11 (@ 60° F)

 Vapor Pressure:
 1.86 psia (@ 68° F)

 % Volatile by Volume:
 100

 Molecular Weight:
 32.04

 Density:
 6.63 lb. per gallon (@ 60° F)

 Critical Temperature:
 464° F

10. REACTIVITY

Stability: This is a stable material. Hazardous Polymerization:Will not occur.

Critical Pressure: 1142 psia

Decomposition:

Excessive heating and/or incomplete combustion will generate carbon monoxide, formaldehyde, and possibly unburned methanol.

Incompatibilities:

- a. Methanol has an explosive reaction with chloroform + sodium methoxide and diethyl zinc (see note following).
- b. Methanol has a violent reaction with alkyl aluminum salts, acetyl bromide, chloroform + sodium hydroxide, cyanuric chloride, nitric acid, etc. (See note following)
- c. Incompatible with beryllium dihydride, metals (potassium, magnesium, etc.), oxidants (barium, perchorate, bromine, chlorine, etc.), etc. (see note following)
- d. Dangerous; can react vigorously with oxidizing materials. (See note following)

NOTE: The incompatibilities above is a partial list taken from two books by Sax & Lewis: "Dangerous Properties of Industrial Materials", 9th. ed., 1995 and "Hawley's Condensed Chemical Dictionary", 11th. ed. 1987, both published by Van Nostrand Reinhold Company, New York. It is recommend that if additional information is needed, refer to these and other published information.

11. TOXICOLOGICAL INFORMATION

LDLo	Human:	143 mg/kg; Eye, Pul, GIT
	Mouse:	
LC_{50}	Rat:	64,000 ppm / 4 hours
LC_{50}	Goldfish:	250 ppm / 11hours

12. ECOLOGICAL INFORMATION

- a. Methanol is harmful to aquatic life in low concentrations and may be hazardous if it enters water intakes.
- b. Local health and wildlife authorities, as well as operators of water intakes in the vicinity, should be notified of water releases.
- c. Biological Oxygen Demand: 0.6 to 1.12 lb./lb. in 5 days

13. DISPOSAL CONSIDERATIONS

Waste must be disposed of in accordance with federal, state, and local environmental control regulations. Waste methanol in concentrations equal to or greater than 24 % by weight meets the definition of an ignitable hazardous waste. Product grade methanol, when disposed, is a listed hazardous waste.

For large spills, maximize product recovery for reuse or recycling. Free liquid may be collected using explosion-proof pumps. For small spills, take up with sand or other non-combustible absorbent. Use registered transporters to move contaminated product/soil/water in D.O.T. approved containers. Dispose of materials at a licensed facility permitted to handle RCRA "Hazardous Wastes". Incineration is the recommended disposal method. Burn concentrated liquid in systems compatible with water-soluble waste. Biodegradation may be used on dilute aqueous waste. Assure emissions and effluents comply with applicable laws.

14. TRANSPORTATION INFORMATION

D.O.T. Shipping Name:	Methanol
D.O.T. Hazard Class:	Flammable Liquid, Class 3
U.N. / N.A. Number:	1230
D.O.T. Placard:	Flammable Liquid, Class 3, color: red
OSHA Label Required:	Yes
1	5000 pounds or approx. 755 gallons
STCC Number:	1 11 0

15. <u>REGULATORY INFORMATION</u>

OSHA: This product is considered a hazardous material under criteria of the Federal OSHA Hazard Communication Standard 29 CFR 1910.1200.

SARA TITLE III:

- a. EHS (Extremely Hazardous Substances) List: Not Listed **Note:** Chemicals on the original list that do not meet the toxicity criteria but because of their high production volume and recognized toxicity are considered chemicals of concern ("other chemicals").
- b. RQ (Reportable Quantity): Not Listed
- c. TPQ (Threshold Planning Quantity): Not Listed
- d. Section 313: "Specific Toxic Chemical Listings" 40 CFR Part 372 Methanol is subject to the reporting requirements of Section 313 and 40 CFR Part 372. Terra Nitrogen is required by 40 CFR 372.45 to notify certain customers as to which of its mixture or trade name products contain those chemicals. The purpose of that notification is to ensure that facilities that may be subject to reporting requirements of Section 313 and that use products of unknown formulation will have knowledge that they are receiving products that contain chemicals subject to those reporting requirements.

CERCLA Hazardous Substances List:

- a. RQ (Reportable Quantity): 5000 pounds or approx. 755 gallons
- b. Regulation: "Designation, Reportable Quantities, Notification" 40 CFR 302

TSCA Inventory:

Listed (RTECS)

16. OTHER INFORMATION

Nov. 5, 1996: The MSDS was rewritten to comply with ANSI Standard Z400.1-1993.

Feb. 16, 1999: Revised to make minor typographical and editorial changes.

April 1, 2001: Revised to change the mailing address of Terra Nitrogen Corporation and to

make minor editorial changes.

The information and recommendations herein are taken from data contained in independent, industry-recognized references including but not limited to NIOSH, OSHA, NFPA, D.O.T. ERG, MEDITEXT, HAZARDTEXT, CHRIS, and SAX's Dangerous Properties of Industrial Materials - ninth edition. Thus, Terra Nitrogen Corporation makes no guarantee, warranty or other representation concerning this substance, since conditions of its use are beyond the control of the company. Terra Nitrogen Corporation disclaims any liability for loss or damage incurred in connection with the use of this substance.

Material Safety Data Sheet

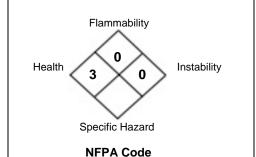
Revision Issued: 1/31/2013 Supersedes: 10/23/2009 First Issued: 4/11/1996

Section I – Product and Company Identification

Product Name: Phosphoric Acid 85-90% Food Grade PotashCorp MSDS No.: 88

ERG No.:

154


1101 Skokie Blvd., Northbrook, IL 60062 Phone (800) 241-6908 / (847) 849-4200

Suite 500, 122 - 1st Avenue South Saskatoon, Saskatchewan Canada S7K7G3 Phone (800) 667-0403 from Canada (800) 667-3930 from USA

Emergencies (800) 424-9300 (CHEMTREC)

Web Site www.potashcorp.com

Health Emergencies, Contact Your Local Poison Center

Common DCMA, DCMA85, FG85, Food Grade, Phosphoric Acid Formula: H_3PO_4 Synonym: **Uses:** FG85LS, LAA, LAALS Industrial Name:

Section II – Composition / Information On Ingredients										
			Exposure Limits							
Chemical Name CAS No.		OSHA PEL		TLV – TWA		STEL		CEIL		% by
		mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	ppm	Weight
Phosphoric Acid	7664-38-2	1		1		3				85-90

Section III – Hazard Identification					
Potential Acute Health Effects:					
Eyes and Skin:	Contact causes eye irritation, ma severe burns and ulceration.	Contact causes eye irritation, may cause burns or blindness. Substance is corrosive. May cause severe burns and ulceration.			
Inhalation:	Inhalation can cause irritation or corrosive burns to the upper respiratory system, including nose, mouth, and throat. Lung irritation, pulmonary edema, and chemical pneumonitis can also occur.				
Ingestion:	Ingestion causes irritation and can cause corrosive burns to mouth, throat and stomach resulting in hemorrhaging and permanent damage. Can be fatal if swallowed.				
Potential Chronic Health Effects:	Long-term exposure may cause upper respiratory disease and irritation of the skin.				
CARCINOGENICITY LISTS	IARC Monograph: No	NTP: No	OSHA: No		

Section I\	Section IV – First Aid Measures			
Eyes:	Immediately flush eyes (holding eyelids apart) with plenty of water for at least 15 minutes. Get medical attention.			
Skin:	Immediately flush skin with plenty of water while removing contaminated clothing. Get medical attention if irritation develops or persists.			
Ingestion:	Do not induce vomiting. Drink large amounts of water (or milk if available) to dilute the acid. Get medical attention immediately.			
Inhalation:	Remove to fresh air. If breathing has stopped, give artificial respiration with the aid of a pocket mask equipped with a one way valve or other proper respiratory medical device. If breathing with difficulty, give oxygen. Observe for possible delayed reaction.			

Product Name: Phosphoric Acid 85-90% Food Grade Page 1 of 5

Section V – Fire Fighting Measures							
Flash Point:	Non-flammable	Autoignition Temperature: Not Applicable					
Lower Explosive Limit:	Not Applicable Upper Explosive Limit: Not Applicable						
Unusual Fire and Explosion Hazards:	Phosphoric Acid is not flammable however the following hazards can occur when exposed to extreme heat: release of phosphorus oxides and/or phosphine from thermal decomposition and hydrogen from reaction with metals.						
Extinguishing Media:	Phosphoric acid is not flammable; use most appropriate agent to extinguish surrounding material.						
Special Firefighting Procedures and Equipment:	Keep personnel removed from and upwind of fire. Wear full fire-fighting turn-out gear (full Bunker gear) and respiratory protection (SCBA). Cool containers containing phosphoric acid with water spray to prevent rupture.						

Section VI – A	Accidental Release Measures
Small Spill:	Neutralize acid spill with alkali such as soda ash, sodium bicarbonate, limestone or lime. Absorb material with an inert material such as sand, vermiculite, diatomaceous earth or other absorbent material and place in chemical waste container to be disposed at an appropriate waste disposal facility according to current applicable laws and regulations and product characteristics at time of disposal. Adequate ventilation is required for soda ash due to the release of carbon dioxide gas. No smoking in spill area.
Large Spill:	Contain spill with dikes and transfer the material to appropriate containers for reclamation or disposal. Absorb remaining spill with an inert material such as sand, vermiculite or other absorbent material and place in chemical waste container to be disposed at an appropriate waste disposal facility according to current applicable laws and regulations and product characteristics at time of disposal. Neutralize residue with alkali such as soda ash, sodium bicarbonate, limestone or lime. Adequate ventilation is required for soda ash due to the release of carbon dioxide gas. No smoking in spill area.
Release Notes:	If spill could potentially enter any waterway, including intermittent dry creeks, contact the local authorities. If in the U.S., contact the US COAST GUARD NATIONAL RESPONSE CENTER toll free number 800-424-8802. In case of accident or road spill notify: CHEMTREC IN USA at 800-424-9300; CANUTEC in Canada at 613-996-6666 CHEMTREC in other countries at (International code)+1-703-527-3887.
Comments:	See Section XIII for disposal information and Section XV for regulatory requirements. Large and small spills may have a broad definition depending on the user's handling system. Therefore, the spill category must be defined at the point of release by technically qualified personnel.

Section VI	Section VII – Handling and Storage					
Ventilation:	Use with adequate ventilation.					
Handling:	Use appropriate personal protective equipment as specified in Section VIII. Avoid contact with skin and eyes. Avoid inhalation and ingestion.					
Storage:	Store in unopened container in cool, well ventilated area, away from potential sources of heat and fire. Keep away from combustible materials, strong bases and metals. Large storage tanks should be bermed and electrically grounded. Avoid using unprotected steel containers.					

Section VIII – Exposure Controls/ Personal Protection					
Engineering Controls:	Good ventilation should be sufficient to control airborne levels.				
Personal Protection:					
Eye Protection:	Wear chemical splash goggles and face shield (ANSI Z87.1 or approved equivalent) when eye and face contact is possible due to splashing or spraying of material.				
Protective Clothing:	Where contact is likely, wear chemical-resistant gloves, a chemical suit, rubber boots and chemical safety goggles plus a face shield.				
Respiratory Protection:	Wear NIOSH approved respiratory protective equipment when vapor or mists may exceed applicable concentration limits.				
Other Protective Clothing or Equipment:	Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower.				

Product Name: Phosphoric Acid 85-90% Food Grade Page 2 of 5

Section IX – Physical and Chemical Properties						
Appearance/Color/Odor:	Clear, colorless liquid with no odor	Boiling Point:	158°C (85% H ₃ PO ₄)			
Melting Point/Range:	21.1°C (85% H ₃ PO ₄)	Boiling Point Range:	135-158°C (75-85% H ₃ PO ₄)			
Solubility in Water:	750-850 g/L (high solubility)(75-85% H ₃ PO ₄)	Vapor Pressure (mmHg):	2-1 mm Hg @ 25°C (low volatility))			
Specific Gravity:	1.7 @ 25°C/15.5°C	Molecular Weight:	98			
Vapor Density:	3.4 (air = 1)	% Volatiles:	Not Applicable			
Bulk Density:	14 lbs/gal	Evaporation Rate:	Not Applicable			
pH:	1-1.5 at 1-10 g/L	Freezing Point:	21.1°C (85% H ₃ PO ₄)			
Viscosity:	47-72 cp @ 20°C, 23-33 cp @ 40°C	Density:	1.68-1.74 g/mL @ 25 ^O C			

Section X – Stability and Reactivity					
Stability: This product is hygroscopic, but is stable under normal conditions of storage, handling and use.					
Hazardous Polymerization:	Will not occur				
Conditions to Avoid:	High temperatures				
Materials to Avoid (Incompatibles):	Bases, aluminum, copper, mild steel, brass and bronze				
Hazardous Decomposition Products:	Phosphorus oxides and/or phosphine from thermal decomposition and hydrogen gas from reaction with metals.				

Section XI – Toxicological Information						
Significant Routes of Exposure:	Eyes, Skin, Respiratory System, Digestive Tr	Eyes, Skin, Respiratory System, Digestive Tract				
	Acute Oral Toxicity:	(Rat) $LD_{50} = 1,530 \text{ mg/kg bw}.$				
	Acute Inhalation Toxicity:	(Guinea pig, mouse, rat, rabbit) 1-hr: $LC_{50} = 61 - 1,689$ mg/m ³ P_2O_5 .				
	Acute Toxicity: Other Routes:	No data available				
Toxicity to Animals:	Acute Dermal Toxicity:	(Rabbit) 24–hr: LD_{50} (85-75% H_3PO_4) = >1,260 – >3,160 mg/kg bw.				
	Repeated Dose Toxicity:	No data available				
	Eye & Skin Irritation/Corrosion:	Eye: (Rabbit) OECD Guideline 405: Not irritating at 17% solution but severe irritation at higher concentrations. Skin: (Rabbit) 24-hr: Highly irritating to corrosive.				
	Developmental Toxicity/Teratogenicity:	No data available				
	Bacterial Genetic Toxicity In-Vitro: Gene Mutation:	(S. <i>typhimurium</i>) Bacterial reverse mutation assay: Negative				
Special Remarks on Toxicity to Animals:	Non-Bacterial Genetic Toxicity In-Vitro: Chromosomal Aberration:	(Sea urchin) Embryo and sperm assays: Aberrations caused at pH 6.5.				
	Toxicity to Reproduction:	(Rat) One-generation: 375 mg/kg bw did not affect offspring growth in rats.				
	Carcinogenicity:	No data available				
Other Effects on Humans:	Inhalation: 10,000 mg/m ³ is immediately dangermal contact: May irritate eyes and skin.	gerous to life (IDLH).				
Special Remarks on Chronic Effects on Humans	No data available					
Special Remarks on Other Effects on Humans:	No data available					

Product Name: Phosphoric Acid 85-90% Food Grade Page 3 of 5

Section XII – Ecological Information						
	EPA Ecological Toxicity rating :	High				
	Acute Toxicity to Fish:	(L. <i>macrochirus</i> (bluegill sunfish)) 96-hr static: LC ₅₀ = pH 3.0–3.5.				
	Chronic Toxicity to Fish:	Mosquito fish: LC ₅₀ = 138 mg/L; 96 hours				
	Acute Toxicity to Aquatic Invertebrates:	(<i>Daphnia magna</i>) 12-hr static: $EC_{50} = pH \ 4.6$; (<i>Daphnia pulex</i>) 12-hr static: $EC_{50} = pH \ 4.1$; (<i>Gammarus pulex</i>) 12-hr static: $LC_{50} = pH \ 3.4$.				
Ecotoxicity	Chronic Toxicity to Aquatic Invertebrates:	No data available				
	Toxicity to Aquatic Plants:	Dangerous to aquatic plants at high concentrations.				
	Toxicity to Bacteria:	(Activated sludge): EC ₅₀ = pH 2.55.				
	Toxicity to Soil Dwelling Organisms:	No data available				
	Toxicity to Terrestrial Plants:	(Peas, beans, beets, rapeseed and weeds) Sprayed with 15-20% solution of H ₃ PO ₄ : Foliage was destroyed on all plants.				
	Stability in Water:	Ionic dissociation in water.				
Environmental Fate:	Stability in Soil:	Dissolves some soil material (carbonates).				
Liiviioiiiileiitai i ate.	Transport and Distribution:	Under acidic soil conditions, sparsely soluble phosphates tend to solubilize and may migrate to water.				
Toxicity:	Inorganic phosphates have the potent reduce the available oxygen for aquat	ial to increase the growth of freshwater algae, whose eventual death will ic life.				
Degradation Products:	Biodegradation:	Under anaerobic conditions, microorganisms may degrade the product to phosphine.				
-	Photodegradation:	No data available				

Section XIII - Dispo	Section XIII – Disposal Considerations					
Product Disposal:	Dispose of waste at an appropriate waste disposal facility according to applicable laws and regulations. Neutralize with lime or other base. Collect in appropriate containers. Dispose of at an appropriate waste disposal facility in accordance with current applicable laws and regulations and product characteristics at time of disposal.					
General Comments:	None					

Section XIV – Transportation Information						
	USDOT	TDG - Canada				
Proper Shipping Name:	Phosphoric Acid, Solution	Phosphoric Acid, Solution				
Hazard Class:	8	8				
Identification Number:	UN1805	UN1805				
Packing Group (Technical Name):	III	III				
Labeling / Placarding:	Corrosive	Corrosive				
Authorized Packaging:	Rail: Class DOT 103, 104, 105, 109, 111, 112, 114, 115, or 120 tank car tanks; Class 106 or 110 multi-unit tank car tanks and AAR Class 203W, 206W, and 211W tank car tanks. Truck: DOT specification MC 300, MC 301, MC 302, MC 303, MC 304, MC 305, MC 306, MC 307, MC 310, MC 311, MC 312, MC 330, MC 331, DOT 406, DOT 407, and DOT 412 cargo tank motor vehicles.					
Notes:	TDG Note (Canada): If product exceeds the CERCLA Reportable Quantity, the notation "RQ" shall be added before or after the basic shipping description.					

Product Name: Phosphoric Acid 85-90% Food Grade Page 4 of 5

Secti	Section XV – Regulatory Information											
UNITED STATES: SARA Hazard Category:		and 312 d	f the Super		ent ar	id real	uthorization A	Act of 1			under Section nd is consider	
		Fire:	No	Pressure Generating:	No	R	eactivity:	No	Acute:	Yes	Chronic:	No
		40 CFR P	art 355 - Ex	tremely Haz	ardou	s Sub	stances:		None A	plicable		•
		40 CFR P	art 370 - Ha	azardous Ch	emical	Repo	orting:		Applicat	ole		
		All intent	ional ingre	dients listed	on the	TSC.	A inventory					
SARA	Title III Information:			the following Iments and Ro							Title III (EPCF	RA) of
	Chemical		CAS NO	Perce		CERCLA RQ	RCLA RQ		SARA	(1986) Re _l	oorting	
	Onemical		CAO IV	by We	ight	(lbs)		31	1	312	313	
Phosphoric Acid			7664-38	-2 85-9	85-90		5000	Ye	S	Yes	No	
	CLA/Superfund, 40 Parts 117, 302:	Substance	es, it will be e to the env	designated in	the al	bove t	able with the	RQ va	lue in pou	nds. If the	rtable Quantit re is a release n D.C. (1-800	of RQ
		WHMIS H	azard Sym	bol and Clas	sificat	ion:	This produ	ct is WH	HMIS cont	olled. Cat	egory E	
		Ingredien	t Disclosu	re List:			This product does contain ingredient(s) on this list					
		Environm	vironmental Protection: All intentional ingrease Substance List).			edients are	listed on	the DSL (Dom	estic			
	EINECS#:	(Phospho	oric Acid) 23	1-633-2								
Cal	ifornia: Prop 65:	This is not a chemical known to cause cancer, nor is it listed.										

Section XVI – Other Information						
NFPA Hazard Ratings:	Health: 3	Flammability: 0	Instability: 0	Special Hazards:		
MITA Hazard Radings.	0 = Insignificant	1 = Slight	2 = Moderate	3 = High 4 = Extreme		
COMMENTS:						
Section(s) changed since last revision:						

Although the information contained is offered in good faith, SUCH INFORMATION IS EXPRESSLY GIVEN WITHOUT ANY WARRANTY (EXPRESS OR IMPLIED) OR ANY GUARANTEE OF ITS ACCURACY OR SUFFICIENCY and is taken at the user's sole risk. User is solely responsible for determining the suitability of use in each particular situation. PCS Sales specifically DISCLAIMS ANY LIABILITY WHATSOEVER FOR THE USE OF SUCH INFORMATION, including without limitation any recommendation which user may construe and attempt to apply which may infringe or violate valid patents, licenses, and/or copyright.

Product Name: Phosphoric Acid 85-90% Food Grade Page 5 of 5

Material Name: Produced Water US GHS

SYNONYMS: Produced Brine Water, Brine, Brine Water, Formation Water

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Produced Water EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: Mixture AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word

Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water US GHS

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

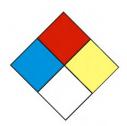
First Aid: Skin

First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)


Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Material Name: Produced Water US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water US GHS

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water US GHS

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5)

ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water US GHS

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance:	Clear to Brown	Odor:	Salty
Physical State:	Liquid	pH:	ND
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C
Evaporation Rate:	Variable	VOC:	ND
Octanol / H2O Coeff.:	ND	Flash Point:	ND
Flash Point Method:	ND		
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND
(LFL):		(UFL):	
Auto Ignition:	ND	Burning Rate:	ND

Material Name: Produced Water US GHS

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis – D50/LC50

Water (7732-18-5)

Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Page 7 of 11

Material Name: Produced Water US GHS

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC. NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Description: Not Regulated

UN #: Not Regulated

Page 9 of 11

Material Name: Produced Water US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372.

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating

Health 1 Fire 0 Reactivity0

HMIS® Hazard Rating Health 1 Slight

Fire 0 Minimal Physical 0 Minimal

Material Name: Produced Water US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 1 - Chemical Product and Company Identification * * *

Part Number: Technical, Industrial, Conditioned, USP

Chemical Name: Sodium Bicarbonate **Product Use:** For Commercial Use

Synonyms: Sodium hydrogen carbonate; sodium acid carbonate; carbonic acid monosodium salt; bicarbonate of soda; baking soda.

Supplier Information

Chem One Ltd. Phone: (713) 896-9966 8017 Pinemont Drive, Suite 100 Fax: (713) 896-7540

Houston, Texas 77040-6519 Emergency # (800) 424-9300 or (703) 527-3887

General Comments: FOR COMMERCIAL USE ONLY: NOT TO BE USED AS A PESTICIDE.

NOTE: Emergency telephone numbers are to be used only in the event of chemical emergencies involving a spill, leak, fire, exposure, or accident involving chemicals. All non-emergency questions should be directed to customer service.

* * * Section 2 - Composition / Information on Ingredients * * *

CAS#	Component	Percent
144-55-8	Sodium Bicarbonate	99-100

Component Information/Information on Non-Hazardous Components

This product is not considered hazardous under 29 CFR 1910.1200 (Hazard Communication).

*** Section 3 - Hazards Identification ***

Emergency Overview

Sodium Bicarbonate is an odorless solid, consisting of white granules or powder. Prolonged or repeated contact may cause irritation to the eyes, skin, and the respiratory system. When heated to decomposition it emits acrid smoke, fumes, and carbon dioxide. Firefighters should wear full protective equipment and clothing.

Hazard Statements

CAUTION! PROLONGED OR REPEATED CONTACT MAY CAUSE IRRITATION TO THE EYES, SKIN, AND RESPIRATORY SYSTEM. Avoid breathing dust. Do not get in eyes, on skin or on clothing. Keep container closed when not in use. Use with adequate ventilation. Wash thoroughly after handling.

Potential Health Effects: Eyes Dusts can irritate the eyes. Potential Health Effects: Skin

Prolonged or repeated skin contact with this product may cause mild irritation.

Potential Health Effects: Ingestion

Sodium Bicarbonate is of low oral toxicity; however, ingestion of large amounts of Sodium Bicarbonate can cause metabolic alkalosis. Symptoms of overexposure may include thirst, abdominal pain, gastroenteritis, and inflammation of the gastrointestinal tract. Distention or rupture of the gastrointestinal tract can occur, due to generation of carbon dioxide gas. Chronic ingestion of Sodium Bicarbonate in large quantity produces "rebound" in acid secretion and may also cause crystallization of phosphates in kidney leading to kidney stones. Chronic ingestion of Sodium Bicarbonate can lead to interference in the blood-clotting process.

Potential Health Effects: Inhalation

Dusts of this product can be irritating to the respiratory system. Symptoms may include coughing and choking. Chronic inhalation exposure may cause increase in mucosal flow in the nose and respiratory system airways. This symptom normally disappears after exposure ends.

HMIS Ratings: Health Hazard: 1 Fire Hazard: 0 Physical Hazard: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard

* * * Section 4 - First Aid Measures * * *

First Aid: Eyes

Immediately flush eyes with plenty of water for 15 minutes. If irritation develops or persists, seek medical attention immediately.

First Aid: Skin

If irritation occurs, wash gently and thoroughly with water and non-abrasive soap. If irritation persists, seek medical attention.

First Aid: Ingestion

DO NOT INDUCE VOMITING, unless directed by medical personnel. Have victim rinse mouth thoroughly with water, if conscious. Never give anything by mouth to a victim who is unconscious or having convulsions. If vomiting occurs naturally, have victim lean forward to reduce risk of aspiration. Contact a physician or poison control center immediately.

Issue Date: 06/29/98 12:45:41 CLW Page 1 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

*** Section 4 - First Aid Measures (Continued) ***

First Aid: Inhalation

Remove source of contamination or move victim to fresh air. Apply artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Get immediate medical attention.

First Aid: Notes to Physician

Provide general supportive measures and treat symptomatically.

* * * Section 5 - Fire Fighting Measures * * *

Flash Point: Not available Method Used: Not available

Upper Flammable Limit (UEL): Not available

Auto Ignition: Not available

Flammability Classification: Not available

Rate of Burning: Not available

General Fire Hazards

If extremely large quantities of Sodium Bicarbonate are involved in a fire, significant levels of carbon dioxide may be generated. Soda ash (sodium carbonate), another decomposition product resulting from heating above 200 deg F, is a respiratory, skin, and eve irritant.

Hazardous Combustion Products

When heated to decomposition Sodium Bicarbonate emits acrid smoke, fumes, and carbon dioxide and sodium oxides.

Extinguishing Media

Use methods for the surrounding fire and other materials involved in the fire. Use water spray, dry chemical, carbon dioxide or foam.

Fire Fighting Equipment/Instructions

Firefighters should wear full protective clothing including self contained breathing apparatus.

NFPA Ratings: Health: 1 Fire: 0 Reactivity: 0 Other:

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

* * * Section 6 - Accidental Release Measures * * *

Containment Procedures

Stop the flow of material, if this can be done without risk. Contain the discharged material. If sweeping of a contaminated area is necessary use a dust suppressant agent, which does not react with product (see Section 10 for incompatibility information).

Clean-Up Procedures

Wear appropriate protective equipment and clothing during clean-up. Shovel the material into waste container. Thoroughly wash the area after a spill or leak clean-up. Prevent spill rinsate from contamination of storm drains, sewers, soil or groundwater.

Evacuation Procedures

Evacuate the area promptly and keep upwind of the spilled material. Isolate the spill area to prevent people from entering. Keep materials which burn away from spilled material. In case of large spills, follow all facility emergency response procedures.

Special Procedures

Remove soiled clothing and launder before reuse. Avoid all skin contact with the spilled material. Have emergency equipment readily available.

*** Section 7 - Handling and Storage ***

Handling Procedures

All employees who handle this material should be trained to handle it safely. Do not breathe dust. Avoid all contact with skin and eyes. Use this product only with adequate ventilation. Wash thoroughly after handling.

Storage Procedures

Keep container tightly closed when not in use. Store containers in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Material should be stored in secondary containers or in a diked area, as appropriate. Store containers away from incompatible chemicals (see Section 10, Stability and Reactivity). Storage areas should be made of fire-resistant materials. Post warning and "NO SMOKING" signs in storage and use areas, as appropriate. Use corrosion-resistant structural materials, lighting, and ventilation systems in the storage area. Floors should be sealed to prevent absorption of this material. Inspect all incoming containers before storage, to ensure containers are properly labeled and not damaged. Have appropriate extinguishing equipment in the storage area (i.e., sprinkler system, portable fire extinguishers).

Issue Date: 06/29/98 12:45:41 CLW Page 2 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 7 - Handling and Storage (Continued) * * *

Storage Procedures (continued)

Sodium Bicarbonate tablets and effervescent tablets should be stored in tightly closed containers at a temperature less than 40 deg C, preferably between 15-30 deg C. Sodium Bicarbonate injection should be stored at a temperature less than 40 deg C, preferably between 15-30 deg C; freezing should be avoided. Empty containers may contain residual particulates; therefore, empty containers should be handled with care. Never store food, feed, or drinking water in containers which held this product. Keep this material away from food, drink and animal feed. Do not store this material in open or unlabeled containers. Limit quantity of material stored.

* * * Section 8 - Exposure Controls / Personal Protection * * *

Exposure Guidelines

A: General Product Information

No exposure guidelines have been established.

B: Component Exposure Limits

ACGIH, OSHA, and NIOSH have not developed exposure limits for any of this product's components.

The exposure limits given are for Particulates Not Otherwise Classified (PNOC).

OSHA: 15 mg/m³ TWA (Total dust)

5 mg/m³ TWA (Respirable fraction)

DFG MAKs 4 mg/m³ TWA (Inhalable fraction)

1.5 mg/m³ TWA (Respirable fraction)

Engineering Controls

Use mechanical ventilation such as dilution and local exhaust. Use a corrosion-resistant ventilation system and exhaust directly to the outside. Supply ample air replacement. Provide dust collectors with explosion vents.

PERSONAL PROTECTIVE EQUIPMENT

The following information on appropriate Personal Protective Equipment is provided to assist employers in complying with OSHA regulations found in 29 CFR Subpart I (beginning at 1910.132). Please reference applicable regulations and standards for relevant details

Personal Protective Equipment: Eves/Face

Wear safety glasses with side shields or chemical goggles. If necessary, refer to U.S. OSHA 29 CFR 1910.133.

Personal Protective Equipment: Skin

Wear appropriate work gloves for type of operation. Rubber gloves are recommended. If necessary, refer to U.S. OSHA 29 CFR 1910.138.

Personal Protective Equipment: Respiratory

None required where adequate ventilation conditions exist. If airborne concentration is high, use an appropriate respirator or dust mask. If respiratory protection is needed, use only protection authorized in the U.S. Federal OSHA Standard (29 CFR 1910.134), applicable U.S. State regulations. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA's Respiratory Protection Standard (1910.134-1998).

Personal Protective Equipment: General

Have an eyewash fountain and safety shower available in the work area. Use good hygiene practices when handling this material including changing and laundering work clothing after use.

* * * Section 9 - Physical & Chemical Properties * * *

Physical Properties: Additional Information

The data provided in this section are to be used for product safety handling purposes. Please refer to Product Data Sheets, Certificates of Conformity or Certificates of Analysis for chemical and physical data for determinations of quality and for formulation purposes.

Appearance: White, crystalline powder **Odor:** Odorless

Physical State: Solid pH: 8.3 (0.1 molar aq. soln @ 25 deg C); 8-9 (saturated soln)

Vapor Pressure: Not applicable Vapor Density: Not applicable

Boiling Point: Decomposes Freezing/Melting Point: 50 deg C (122 deg F) [decomposes]

Solubility (H2O): 9.6 g/100g H₂O at 20 deg C **Other Solubilities:** Insoluble in alcohol **Specific Gravity:** 2.16 @ 20 deg C **Particle Size:** Not available

Bulk Density: 56-62.5 lb/ft3 **Molecular Weight:** 84.01 **Chemical Formula:** NaHCO3

Issue Date: 06/29/98 12:45:41 CLW Page 3 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 10 - Chemical Stability & Reactivity Information * * *

Chemical Stability

Stable in dry air at room temperature. In moist air, Sodium Bicarbonate slowly decomposes generating carbon dioxide.

Chemical Stability: Conditions to Avoid

Heat and moisture and exposure to incompatibly chemicals.

Incompatibility

Avoid contact with oxidizing agents and strong acids. Contact with monoammonium phosphate, especially in the presence of water, may cause pressure to build due to the generation of ammonia and carbon dioxide gas; moisture will accelerate this reaction. Sodium potassium alloy can result in a violent reaction with certain extinguishing agents, such as Sodium Bicarbonate. Mixtures of Sodium Bicarbonate with 2-furaldehyde can spontaneously ignite, upon exposure to air. Sodium Bicarbonate is incompatible with dopamine hydrochloride, pentazocine lactate, many alkalodial salts, aspirin and bismuth salicylate.

Hazardous Decomposition

When heated to decomposition Sodium Bicarbonate emits acrid smoke, fumes, and carbon dioxide and sodium oxides. Decomposition in water also generates carbon dioxide.

Hazardous Polymerization

Will not occur.

* * * Section 11 - Toxicological Information * * *

Acute and Chronic Toxicity

A: General Product Information

Dusts can irritate the eyes. Prolonged or repeated skin contact with this product may cause mild irritation. Sodium Bicarbonate is of low oral toxicity; however, ingestion of large amounts of Sodium Bicarbonate can cause metabolic alkalosis. Sever alkalosis may be characterized by hyperirritability and tetany. In rare cases, cerebral edema can occur. Renal failure could occur in severe cases. Other human systemic effects include urine retention, changes in potassium levels, expansion of extracellular fluid volume, nausea and vomiting. Symptoms of overexposure may include thirst, abdominal pain, gastroenteritis, and inflammation of the gastrointestinal tract. Dusts of this product can be irritating to the respiratory system. Symptoms may include coughing and choking. Presumably, inhalation or ingestion of Sodium Bicarbonate over a long period of time might result in increased serum sodium levels, possibly with increased blood pressure and water retention. Evidence indicates that chronic use of Sodium Bicarbonate can interfere with the blood clotting process and that chronic ingestion of large amounts can lead to kidney stones.

B: Component Analysis - LD50/LC50

Sodium Bicarbonate (144-55-8)

LD₅₀ (Oral-Rat) 4220 mg/kg; LD₅₀ (Oral-Mouse) 3360 mg/kg

B: Component Analysis - TDLo/TCLo/LD/LDLo

Sodium Bicarbonate (144-55-8)

TDLo (Intraperitoneal-Mouse) 40 mg/kg (female 7 days post): Teratogenic effects; TDLo (Oral-Infant) 1260 mg/kg: Pulmonary system effects, KID; TDLo (Oral-Man) 20 mg/kg/5 days-intermittent: Gastrointestinal tract effects; LC (Inhalation-Rat) > 900 mg/m 3 ; TCLo (Inhalation-Rat) 77200 μ g/kg/17 weeks

Carcinogenicity

A: General Product Information

No carcinogenicity data available for this product.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Epidemiology

Information not available.

Neurotoxicity

Information not available.

Mutagenicity

Mutation data are reported during unscheduled DNA synthesis via oral route to rats: Unscheduled DNA Synthesis (Oral-Rat) 50,400 mg/kg/4 week-continuous

Teratogenicity

Sodium Bicarbonate was not teratogenic in rats, mice, or rabbits. Sodium Bicarbonate should not be ingested during pregnancy due to the potential for sodium retention.

Other Toxicological Information

Information not available.

Issue Date: 06/29/98 12:45:41 CLW Page 4 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 12 - Ecological Information * * *

Ecotoxicity

A: General Product Information

No information available.

B: Aquatic Toxicity

 LC_{50} (mosquito fish) 24 hours = 7700 mg/L; LC_{50} (mosquito fish) 48 hours = 7550 mg/L; LC_{50} (bluegill sunfish) 96 hours = 8250-9000 mg/L; Immobilization Threshold (*Daphnia* water flea) = 2350 mg/L; LC_{50} (mosquito fish) 24 hours = 7700 mg/L

Environmental Fate

Sodium Bicarbonate has no biological oxygen demand and will not cause oxygen depletion in aquatic environments. Persistence: If released to water, no significant effect is expected.

* * * Section 13 - Disposal Considerations * * *

US EPA Waste Number & Descriptions

A: General Product Information

As shipped, product is not considered a hazardous waste by the EPA.

B: Component Waste Numbers

No EPA Waste Numbers are applicable for this product's components.

Disposal Instructions

Review federal, provincial, and local government requirements prior to disposal. Disposal by controlled incineration or secure landfill may be acceptable.

* * * Section 14 - Transportation Information * * *

NOTE: The shipping classification information in this section (Section 14) is meant as a guide to the overall classification of the product. However, transportation classifications may be subject to change with changes in package size. Consult shipper requirements under I.M.O., I.C.A.O. (I.A.T.A.) and 49 CFR to assure regulatory compliance.

US DOT Information

Shipping Name: Non-regulated. Hazard Class: Not Applicable UN/NA #: Not Applicable Packing Group: Not Applicable Required Label(s): None Additional Info.: None.

International Air Transport Association (IATA)

For Shipments by Air transport: We classify this product as hazardous (Class 9) when shipped by air because 49 CFR 173.140 (a). "For the purposes of this subchapter, miscellaneous hazardous material (Class 9) means a material which presents a hazard during transportation, but which does not meet the definition of any other hazard class. This class includes: (a) Any material which has an anesthetic, noxious, or other similar property which could cause extreme annoyance or discomfort to a flight crew member so as to prevent the correct performance of assigned duties."

UN: UN 3077

Proper Shipping Name: Environmentally hazardous substance, solid, n.o.s. (sodium bicarbonate)

Hazard Class: 9
Packing Group: III

Passenger & Cargo Aircraft Packing Instruction: 911

Passenger & Cargo Aircraft Maximum Net Quantity: 400 kg

Limited Quantity Packing Instruction (Passenger & Cargo Aircraft): Y911 Limited Quantity Maximum Net Quantity (Passenger & Cargo Aircraft): 30 kg

Special Provisions: A97 A149

ERG Code: 9L

International Maritime Organization (I.M.O.) Classification

I.M.O. Classification: Sodium Bicarbonate is not regulated by the I.M.O.

Issue Date: 06/29/98 12:45:41 CLW Page 5 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 15 - Regulatory Information * * *

US Federal Regulations

A: General Product Information

Other federal regulations may apply.

B: Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), or CERCLA (40 CFR 302.4).

SARA 302 (EHS TPQ) There are no specific Threshold Planning Quantities for Sodium Bicarbonate. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lbs. (4,540 kg) therefore applies, per 40 CFR 370.20.

C: Sara 311/312 Tier II Hazard Ratings:

Component	CAS#	Fire Hazard	Reactivity Hazard	Pressure Hazard	Immediate Health Hazard	Chronic Health Hazard
Sodium Bicarbonate	144-55-8	No	No	No	Yes	No

State Regulations

A: General Product Information

Other state regulations may apply.

B: Component Analysis - State

None of this product's components are listed on the state lists from CA, FL, MA, MN, NJ, or PA.

Component	CAS#	CA	FL	MA	MN	NJ	PA
Sodium Bicarbonate	144-55-8	No	No	No	No	No	No

Other Regulations

A: General Product Information

Not determined.

B: Component Analysis - Inventory

Component	CAS#	TSCA	DSL	EINECS
Sodium Bicarbonate	144-55-8	Yes	Yes	Yes

C: Component Analysis - WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

Component	CAS#	Minimum Concentration
Sod Sodium Bicarbonate	144-55	No disclosure limit.

ANSI Labeling (Z129.1):

CAUTION! PROLONGED OR REPEATED CONTACT MAY CAUSE IRRITATION TO THE EYES, SKIN, AND RESPIRATORY SYSTEM. Do not taste or swallow. Do not get on skin or in eyes. Avoid breathing dusts or particulates. Keep from contact with clothing. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Wear gloves, goggles, faceshields, suitable body protection, and NIOSH/MSHA-approved respiratory protection, as appropriate. **FIRST-AID:** In case of contact, immediately flush skin or eyes with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. If inhaled, remove to fresh air. If ingested, do not induce vomiting. Get medical attention. **IN CASE OF FIRE:** Use water fog, dry chemical, CO₂, or "alcohol" foam. **IN CASE OF SPILL:** Absorb spill with inert material. Place residue in suitable container. Consult Material Safety Data Sheet for additional information.

Issue Date: 06/29/98 12:45:41 CLW Page 6 of 7 Revision Date: 10/22/07 3:06 pm SEP

Material Name: Sodium Bicarbonate

ID: C1-184

* * * Section 16 - Other Information * * *

Other Information Other Information

Chem One Ltd. ("Chem One") shall not be responsible for the use of any information, product, method, or apparatus herein presented ("Information"), and you must make your own determination as to its suitability and completeness for your own use, for the protection of the environment, and for health and safety purposes. You assume the entire risk of relying on this Information. In no event shall Chem One be responsible for damages of any nature whatsoever resulting from the use of this product or products, or reliance upon this Information. By providing this Information, Chem One neither can nor intends to control the method or manner by which you use, handle, store, or transport Chem One products. If any materials are mentioned that are not Chem One products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed. Chem One makes no representations or warranties, either express or implied of merchantability, fitness for a particular purpose or of any other nature regarding this information, and nothing herein waives any of Chem One's conditions of sale. This information could include technical inaccuracies or typographical errors. Chem One may make improvements and/or changes in the product (s) and/or the program (s) described in this information at any time. If you have any questions, please contact us at Tel. 713-896-9966 or E-mail us at Safety@chemone.com.

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act; ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration

Contact: Sue Palmer-Koleman, PhD

Revision Log

08/22/00 3:14 PM SEP Changed company name, Sect 1 and 16, from Corporation to Ltd.

05/31/01 9:31 AM HDF Checked exposure limits; made changes to Sect 9; overall review, add SARA 311/312 Haz Ratings.

08/20/01 3:10 PM CLJ Add Shipments by Air information to Section 14, Changed contact to Sue, non-800 Chemtrec Num.

09/26/03 3:25 PM HDF General review of entire MSDS. Up-graded Section 3 Health Hazard information, HMIS categories.

Up-dated storage information in Section 7. Up-dated PNOC exposure limits to Section 8. Addition of currently available toxicity data to Section 11. Up-Dated Section 14 Transportation Information.

06/22/05 10:27AM SEP Update IATA Section 14

10/22/07 3:06 PM SEP Update IATA Section 14

This is the end of MSDS # C1-184

Issue Date: 06/29/98 12:45:41 CLW Page 7 of 7 Revision Date: 10/22/07 3:06 pm SEP

Univar USA Inc Material Safety Data Sheet

MSDS No:	65099
Version No:	009 2007-11-05
Order No:	

Univar USA Inc., 17425 NE Union Hill Rd., Redmond WA 98052 (425) 889 3400

Emergency Assistance

For emergency assistance involving chemicals call Chemtrec - (800) 424-9300

UNIVAR USA INC. ISSUE DATE:2006-01-15 Annotation:

MSDS NO:65099 VERSION:009 2007-11-05

The Version Date and Number for this MSDS is : 11/05/2007 - #009

PRODUCT NAME: SODIUM BISULFITE SOLUTION

MSDS NUMBER: 65099

DATE ISSUED: 01/15/2006

SUPERSEDES: 07/19/2002

ISSUED BY: 008752

MATERIAL SAFETY DATA SHEET

PRODUCT: SODIUM BISULFITE SOLUTION

SECTION 1 - MANUFACTURER INFORMATION

Distributor:

UNIVAR USA, INC.

17425 NE Union Hill Road

Redmond WA 98052

425-889-3400

FOR TRANSPORTATION EMERGENCY ONLY - DAY OR NIGHT

CALL CHEMTREC, 1-800-424-9300

SECTION 2 -- PRODUCT IDENTITY/HAZARDOUS INGREDIENTS INFORMATION

Product name: SODIUM BISULFITE SOLUTION

Chemical name/synonyms: Sodium Bisulfite, Aqueous Solution; Sodium Acid

Sulfite; Sodium Hydrogen Sulfite

Chemical formula: NaHSO3
CAS number: 7631-90-5

Product Code: N/A

HAZARDOUS INGREDIENTS: Yes

Component CAS No. % by wt. Sodium Bisulfite 7631-90-5 27-42%

Exposure limits:

ACGIH TLV: 5 mg/m3, 8-hr TWA

OSHA PEL: None

UNIVAR USA INC. ISSUE DATE:2006-01-15 Annotation:

MSDS NO:65099 VERSION:009 2007-11-05

IDLH None

NON-HAZARDOUS INGREDIENTS: Yes

Component CAS No. % by wt. Water 7732-18-5 Balance

OSHA 29 CFR 1910.1200 EVALUATION: Hazardous

SECTION 3 -- PHYSICAL/CHEMICAL CHARACTERISTICS

APPEARANCE AND ODOR: Clear, yellow liquid with an odor of sulfur

dioxide.

BOILING POINT: >100 deg C
MELTING POINT: no information

VAPOR PRESSURE (REID): 78 mm Hg @ 37.7 deg C

VAPOR DENSITY (AIR = 1): no information

SPECIFIC GRAVITY (WATER = 1): 1.26 to 1.37 @ 25 deg C

PERCENT VOLATILE BY VOL@ 55

deg C: no information

EVAPORATION RATE

(BUTYL ACETATE = 1): <1
pH: 3 to 5
SOLUBILITY IN WATER: Complete

SECTION 4 -- FIRE AND EXPLOSION HAZARD DATA

FLASH POINT (CLOSED CUP METHOD): N/A

FLAMMABLE LIMITS IN AIR, % BY VOLUME: N/A LOWER: N/A UPPER: N/A

EXTINGUISHING MEDIA: Use water, foam, dry chemical, or CO2 fire extinguishers as appropriate to fight surrounding fires. Do not allow water run-off to enter sewers or watercourses.

SPECIAL FIRE FIGHTING PROCEDURES: Wear protective clothing and protective equipment as appropriate for surrounding fire. Keep storage tanks or containers cool. Flood with water. Wear self contained breathing apparatus for major exposure when release of SO2 gas is possible.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Releases sulfur dioxide gas when heated.

SECTION 5 -- REACTIVITY DATA

STABILITY: Stable

HAZARDOUS POLYMERIZATION: will not occur

INCOMPATIBILITY (CONDITIONS AND MATERIALS TO AVOID): Material is stable when properly handled. Reacts with acids, oxidizing agents, and with heat to form toxic sulfur dioxide (SO2) gas. Avoid sources of heat.

HAZARDOUS DECOMPOSITION PRODUCTS: Decomposes with heat or oxidizing agents to

UNIVAR USA INC. ISSUE DATE:2006-01-15 Annotation: release toxic SO2 gas.

SECTION 6 -- HEALTH HAZARD DATA

PRIMARY ROUTES OF ENTRY: Inhalation, ingestion, direct contact

HEALTH EFFECTS (ACUTE AND CHRONIC):

GENERAL: A skin, eye and mucous membrane irritant. Only moderately toxic by ingestion but may cause a severe allergic reaction in some asthmatics and others who are hypersensitive to sulfites. Hazards are largely those from acute exposure or direct contact rather than chronic or repeated low level exposure. The potential for exposure to sulfur dioxide must always be considered as well, particularly when the solution may become overheated.

INHALATION: Inhalation will irritate and may damage upper respiratory tract and lungs. INGESTION: May irritate gastrointestinal tract. Concentrated solutions may cause burns to the digestive tract.

DIRECT CONTACT: Direct skin contact with the solution will cause slight to Moderate skin irritation with discomfort, rash and, rarely, an allergic reaction.

EYE CONTACT: Exposure to mists or aerosols of this solution will cause eye Irritation with possible discomfort, tearing, or blurring of vision. If left untreated the solution may cause burns and some eye tissue damage.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: May cause a severe allergic reaction in some asthmatics and others who are hypersensitive to sulfites.

CARCINOGENS (NTP, IARC, OR OSHA): No

SECTION 7 -- FIRST AID

INHALATION: Remove victim to fresh air. If not breathing, perform artificial respiration and get medical attention.

INGESTION: Drink copious quantities of water or milk. Do not induce vomiting. Get immediate medical attention.

DIRECT CONTACT: Wipe off excess. Flush immediately with water for at least 15 minutes while removing contaminated clothing. Get immediate medical attention. Wash clothing before re-use. Destroy contaminated shoes.

DIRECT EYE CONTACT: Flush immediately with water for at least 15 minutes. Forcibly hold eyelids apart to ensure complete irrigation of eye/lid tissue. Get immediate medical attention.

SECTION 8 -- PRECAUTIONS FOR SAFE STORAGE, HANDLING AND USE

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE: Keep storage tanks and containers out of the sun and away form sources of heat and ignition to

MSDS NO:65099 VERSION:009 2007-11-05

Annotation:
prevent decomposition and release of SO2 gas. Containers should be kept tightly closed to prevent oxidation of the product. In cold weather, store product at temperatures above 50 deg F to avoid crystallization. Do not strike containers or fittings with tools or hard objects. Emptied container retains vapor and product residue.

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED: Contain spill in order to prevent contamination of sewage system or waterway. If possible, neutralize on a dry basis with sodium carbonate or sodium bicarbonate; then flush with water in accordance with applicable regulations.

WASTE DISPOSAL METHODS: Dispose of spilled, neutralized, or waste product, contaminated soil and other contaminated materials in licensed landfill or treatment facility in accordance with all local, state and federal regulations.

SECTION 9 -- EXPOSURE CONTROL INFORMATION

VENTILATION: Provide ventilation to control exposure levels below airborne exposure limits. Use local exhaust ventilation. Reference NFPA Standard 91 for design of exhaust systems.

RESPIRATORY PROTECTION: Use NIOSH/MSHA approved, full-face respirator with canister approved for sulfuric acid/sulfur trioxide vapor and mist. Consult respirator manufacturer to determine appropriate equipment. If concentrations are high or unknown, use self-contained breathing apparatus.

PROTECTIVE GLOVES: Wear impervious rubber gloves.

EYE PROTECTION: Wear splash proof chemical safety goggles. Eyewash fountains recommended in all storage and handling areas. Do not wear contact lenses.

OTHER PROTECTIVE EQUIPMENT: Wear protective clothing to prevent skin contact. Full face shield and rubber footwear should be used. Acid resistant hood and full body suit recommended. Safety shower recommended in all storage and handling areas.

WORK/HYGIENIC PRACTICES: Avoid breathing mist. Use gloves when handling.

OTHER PRECAUTIONS: None

SECTION 10 -- REGULATORY INFORMATION

USDOT & TRANSPORT CANADA:

Proper shipping name: Bisulfites, aqueous solutions, n.o.s. (sodium bisulfite

solution)

Hazard Class:

Identification Number: UN2693 Packing Group: PGTTT Marine Pollutant: No IMO Classification Class 8

UNIVAR USA INC. ISSUE DATE:2006-01-15 Annotation:

MSDS NO:65099 VERSION:009 2007-11-05

SARA TITLE III 311/312 HAZARD CLASSIFICATIONS:

ACUTE: Yes
CHRONIC: No
FIRE: No
REACTIVITY: No
PRESSURE: No

SARA TITLE III 313 HAZARD CLASSIFICATIONS:

This product does not contain any toxic chemicals subject to the Toxic Release reporting requirements.

OTHER RATINGS: (hazard index key: 4=severe, 3=serious, 2=moderate, 1=slight,

0=minimal)

HMIS: Health=1, Flammability=0, Reactivity=1, CORROSIVE (COR)

NFPA: Health=1, Flammability=0, Reactivity=1

OTHER INFORMATION:

CERCLA HAZARDOUS SUBSTANCE: YES, RQ=5000 lbs.

RCRA 261.33: No

TSCA 8(d): Reported/Included

AQUATIC TOXICITY: Corrosive 96 hr LC50 (mosquito/fish) = 240 ppm. This solution is mildly acidic and has a high chemical oxygen demand (COD). Either the solution itself or water run-off from the material could pose a threat to nearby watercourses.

WHMIS: Class E Corrosive Material

CANADA DSL: Yes

Univar USA Inc Material Safety Data Sheet

For Additional Information contact MSDS Coordinator during business hours, Pacific time: (425) 889-3400

Notice

Univar USA Inc. ("Univar") expressly disclaims all express or implied warranties of merchantability and fitness for a particular purpose, with respect to the product or information provided herein, and shall under no circumstances be liable for incidental or consequential damages.

Do not use ingredient information and/or ingredient percentages in this MSDS as a product specification. For product specification information refer to a product specification sheet and/or a certificate of analysis. These can be obtained from your local Univar sales office.

All information appearing herein is based upon data obtained from the manufacturer and/or recognized technical sources. While the information is believed to be accurate, Univar makes no representations as to its accuracy or sufficiency. Conditions of use are beyond Univar's control and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their particular purposes and they assume all risks of their use, handling, and disposal of the product, or from the publication or use of, or reliance upon, information contained herein.

This information relates only to the product designated herein, and does not relate to its use in combination with any other material or in any other process

ALLIED UNIVERSAL CORPORATION

Headquarters: 3901 NW 115th Avenue, Miami, Florida 33178 Phone: (305) 888 - 2623

MATERIAL SAFETY DATA SHEET

May be used to comply with OSHA's Hazard Communication Standard, 29 CFR § 1910.1200.

TODAY'S DATE: 09/06/07 MSDS NUMBER: 0001

24 HOUR EMERGENCY CHEMICAL SPILL OR RELEASE PHONE NUMBERS:

Allied Universal Corp. at 1-305-483-7732 (Digital Beeper) and/or CHEMTREC at 1-800-424-9300

SECTION 1 CHEMICAL PRODUCT/COMPANY IDENTIFICATION

Sodium Hypochlorite

Product Names: Aqua Guard Chlorinating Sanitizer, Aqua Guard Bleach, Liquid Chlorine Solution, Liquid

Bleach, Hypochlorite, Hypo and Chlorine Bleach.

Listed Strengths: 10.5%, 12.5% and 15% **CAS Number:** 7681-52-9

Date MSDS Revised: August 2007 (previous revision 11/04)

Product Use: Disinfectant and sanitizer, see product label for all approved uses & instructions.

NSF Approval: Yes. Certified to NSF/ANSI Standard 60. Maximum use in Potable Water is 84 mg/L for 12.5%

bleach and 100 mg/L for 10.5% bleach.

NSF Non-Food Compounds Approval: Yes

SECTION 2 HAZARD INGREDIENTS/IDENTITY INFORMATION

Hazardous Ingredient(s): % (w/w) as Sodium Hypochlorite: 10.5-16%

Exposure Standards: None established for Sodium Hypochlorite, as Chlorine exposure standards are:

PEL (OSHA):1 ppm as Cl_2 STEL (OSHA):3 ppm as Cl_2 TLV (ACGIH):0.5 ppm as Cl_2 TWA (ACGIH):0.5 ppm as Cl_2 WEEL (AIHA):2 mg/m3, 15 minute TWA as Cl_2 STEL (ACGIH):1 ppm as Cl_2

Emergency Overview: May cause burns to the eyes, skin and mucous membranes.

SECTION 3 PHYSICAL/CHEMICAL CHARACTERISTICS

Alternate Name(s):	Bleach
Chemical Name:	Sodium Hypochlorite
Chemical Family:	Oxidizing Agent
Molecular Formula:	Na-O-Cl
Form:	Liquid
Appearance:	Water clear to a slight greenish-yellow, or light yellow aqueous solution
Odor:	Chlorine odor
pH:	11-14, dependent upon % weight as Sodium Hypochlorite
Vapor Pressure:	Not available
Vapor Density (Air=1):	Not available
Boiling Point:	Approximately 230° F (110° C)
Freezing Point:	14 F(8% w/w Cl ₂ solution), 7 F(10% w/w Cl ₂ solution), -3 F (12% w/w Cl ₂ solution)
Solubility (Water):	Completely Soluble
Solubility (Other):	Reacts with Many Organic Solvents
Density:	Appx. 10 lbs. per gallon
Evaporation Rate:	Not Available
Specific Gravity:	1.126 (8% w/w Cl ₂ solution), 1.163 (10% w/w Cl ₂ solution), 1.202 (12% w/w Cl ₂ solution), 1.25 (15% w/w Cl ₂ solution)
Molecular Weight:	74.5

SECTION 4 STABILITY & REACTIVITY DATA

Chemical Stability	Stable X	Unstable

Incompatibility (Conditions to Avoid): Stability decreases with heat and light exposure.

Incompatibility (Materials to Avoid): May react violently with strong acids. Other incompatibles include strong caustics, ammonia, urea, reducing agents, organics, ether and oxidizable materials. Reaction with metals (nickel, iron, cobalt and copper) may produce oxygen gas, which supports combustion. May react with organohalogen compounds to

form spontaneously combustible compounds. May react explosively with nitro- and chloro-organic compounds as well as acids and reducing agents. Acidification liberates chlorine gas.

Hazardous Decomposition or Byproducts: Chlorine gas. Decomposes with heat and reacts with acids. Hazardous gases/vapors produced are hypochlorous acid, chlorine and hydrochloric acid. Composition depends upon temperature and decrease in pH. Additional decomposition products, which depend on pH, temperature and time, are sodium chloride and chlorate, and oxygen.

No Mechanical Shock or Impact

No Static Discharge

Oxidizer: No if <12% by weight,
Yes if > than 12% by weight

Hazardous Polymerization

May Occur _____

Will Not Occur __X__

Note: Sodium Hypochlorite reacts violently with amines and ammonium salts. Solutions are reactive with common cleaning products such as toilet bowl cleaners, rust removers, vinegar, acids, organics and ammonia products to produce hazardous gases such as chlorine and other chlorinated species.

SECTION 5 POTENTIAL HEALTH EFFECTS AND FIRST AID INFORMATION

GENERAL: May cause immediate pain. Exposure to the skin may cause sensitization or other allergic responses. If the eye is not irrigated immediately after it has been exposed permanent eye damage may occur. Strict adherence to first aid measures following any exposure is essential. SPEED IS ESSENTIAL!

EMERGENCY & FIRST AIDE PROCEDURES ROUTE(S) OF ENTRY AND POTENTIAL HEALTH EFFECTS INHALATION: If inhaled, move expose person to fresh air. If person is not Strong irritating to mucous breathing, call 911 or an ambulance, then give artificial respiration, membranes in the nose, throat and respiratory tract. preferably mouth-to-mouth if possible. If breathing is difficult, have Prolonged contact can cause chronic irritation, trained person administer oxygen. Call a poison control center or pulmonary edema and central nervous system medical physician for further treatment advice. Have the product label Repeated inhalation exposure may or MSDS with you when calling or going for medical treatment. cause impairment of lung function and permanent lung damage. If on skin or clothing, take off all contaminated clothing and rinse **SKIN CONTACT:** Prolonged and repeated skin immediately with plenty of water for 15-20 minutes. If irritation exposure to dilute solutions often causes irritation, persists, repeat flushing. Do not transport victim unless the redness, pain and drying and cracking of the skin. recommended irrigation period is completed unless flushing can be Human evidence has indicated that an ingredient in continued during transport. Call a poison control center or medical this product can cause skin sensitization. Depending physician for treatment advice. Have the product label or MSDS with upon the concentration and how soon after exposure you when calling or going for medical treatment. the skin is washed with water, skin contact may cause burns and tissue destruction. If in eves, hold eve open and rinse slowly and gently with plenty of EYE CONTACT: Strongly irritating to eyes. water for 15-20 minutes. Remove contact lenses, if present, after the Exposure to vapor can cause tearing, conjunctivitis and burning of the eyes. Eye contact may cause a first 5 minutes, then continue rinsing eye for 10-15 minutes. Do not corneal injury. The severity of the effects depend on transport victim until the recommended flushing period is completed unless irrigation can be continued during transport. Call a poison the concentration and how soon after exposure the control center or medical physician for further treatment advice. Have eyes are washed with water. In severe exposure the product label and/or MSDS with you when calling or going to cases, glaucoma, cataracts and permanent blindness may occur. medical treatment. If swallowed, call poison control center or medical physician INGESTION: Corrosive. Can cause severe immediately for treatment advice. Have the product label or MSDS corrosion of and damage to the gastrointestinal tract with you when calling or going for medical treatment. Have exposed (including mouth, throat, and esophagus). Exposure person sip a glass of water if able to swallow, and dilute immediately is characterized by nausea, vomiting, abdominal pain. by giving milk, melted ice cream, starch paste or antacids such as milk diarrhea, bleeding, and/or tissue ulceration. of magnesia. Avoid sodium bicarbonate because of carbon dioxide release. DO NOT INDUCE VOMITING, LAVAGE OR ACIDIC ANTIDOTES unless told to do so by poison control center or medical physician. DO NOT give anything by mouth to an unconscious person. If spontaneous vomiting occurs, have victim lean forward with head down to avoid breathing in of vomitus, rinse mouth and administer more water.

NOTE TO PHYSICIAN(S): Pre-existing medical conditions may be aggravated by exposures affecting target organs. There are no known chronic effects. Probable mucosal damage may contraindicate the use of gastric lavage. In addition to the alkalinity of this product, the continued generation of chlorine gas after ingestion can damage further the stomach mucous, depending on the amount ingested. Consideration may be given to removal of the product from the stomach, taking care to avoid perforation of esophagus or stomach. An ounce of 1% sodium thiosulfate or milk of magnesia is helpful.

SECTION 6 TOXICOLOGICAL DATA

ANIMAL DATA: Inhalation 0.25-hour LC50 - 10.5 mg/L in rats; Acute Dermal LD50 - 10,000 mg/kg in rabbits; Acute Oral LD50 - 8910 mg/kg in rats

SUMMARY: The concentrated solution is corrosive to skin, and a 5% solution is a severe eye irritant. Solutions containing more than 5% available chlorine are classified by DOT corrosive (please see section 10 of this MSDS). Toxicity described in animals from single exposures by ingestion include muscular weakness, and hypoactivity. Repeated ingestion exposure in animals caused an increase in the relative weight of adrenal glands in one study, but no pathological changes were observed in two other studies. Long-term administration of compound in drinking water of rats caused depression of the immune system. No adverse changes were observed in an eight week dermal study of a 1% solution in guinea pigs. Tests in animals demonstrate no carcinogenic activity by either the oral or dermal routes. Tests in bacterial and mammalian cell cultures demonstrate mutagenic activity.

CARCINOGENICITY: None of the components present in this material at concentrations equal to or greater than 0.1% are listed by IARC, NTP, OSHA or ACGIH as carcinogen.

MUTAGENICITY: Sodium Hypochlorite has been shown to produce damage to genetic material when tested in vitro. Studies in vivo have shown no evidence of mutagenic potential for this material. It is judged that the risk of genetic damage is insignificant for sodium hypochlorite because of its biological activity, lack of mutagenicity in vivo, and failure to produce carcinogenic response.

SECTION 7 FIRE AND EXPLOSION HAZARD DATA					
Flash Point: This product does not f	lash	Flammable Limits (Lower): Not Applicable			
Flammable Limits (Upper): Not App	olicable	Auto Ignition Tem	perature: Not Applicable		
Decomposition Temperature: Not A	Applicable	Rate of	Burning: Not Available		
Explosive Power: Not Available	Sensitivity to M	Mechanical Impact:	Sensitivity to Static Discharge:		
	Not expected	to be sensitive to	Not expected to be sensitive to		
	mechanical impa	nct	static discharge		
Fire and Explosion Hazards: This material is non-flammable but is decomposed by heat and light, causing a pressure build-up which could result in an explosion. When heated, it may release chlorine gas or hydrochloric acid. Vigorous reaction with oxidizable or organic materials may result in fire.		Extinguishing Media: Use agents appropriate for surrounding fire. Foam, dry chemical, carbon dioxide, water fog or spray. If leak or spill has not ignited, use water spray to disperse the vapors and to protect persons attempting to stop the leak.			
Fire Fighting Procedures: Water spray should be used to cool containers and may be used to knock down escaping vapor. Remove storage vessels from the fire zone.		clothing, including a breathing apparatus, r	ctive Equipment: Full protective NIOSH approved self-contained nust be worn in a fire involving this as vapors are produced upon		

SECTION 8 ECOLOGICAL INFORMATION

The toxicity and corrosivity of this product is a function of concentration and the concentration's pH.

ECOTOXICOLOGICAL INFORMATION: Toxic to aquatic life. 96-hour LC50: fathead minnows: 0.090-5.9 mg/L, bluegill sunfish: 0.10-2.48 mg/L, shore crab: 1.418 mg/L, grass shrimp: 52.0 mg/L, scud: 0.145-4.0 mg/L, water flea: 2.1 mg/L.

ENVIRONMENTAL EFFECTS: Do not contaminate domestic or irrigation water supplies, lakes, streams, ponds, or rivers. May be an aesthetic nuisance due to color. Mammals and birds, exposed wildlife would be subject to skin irritation and burns due to the corrosive nature of this material.

SECTION 9 DISPOSAL CONSIDERATIONS

Treatment, storage, transportation, and disposal must be in accordance with applicable Federal, State, and Local regulations. Do not burn. Do not flush to surface water or sanitary sewer system. If pH of material is equal to or greater than a 12.5, the material is a RCRA Hazardous Waste D002, corrosive.

SECTION 10 TRANSPORT INFORMATION

U.S. DOT Basic Shipping Description: Hypochlorite Solutions, 8, UN1791, III

U.S. DOT Hazardous Substance: Yes, RQ 100 pounds (Sodium Hypochlorite)

U.S. DOT Marine Pollutant: No

U.S. DOT Required Label: Corrosive (see column 6, 49 CFR §172,101)

U.S. DOT Packaging Exception: Yes, if package meets the criteria of a limited quantity or consumer commodity as defined by 49 CFR §171.8, §173.144 and .154, and §172.312 and .316

N. AMERICAN EMERGENCY GUIDE PAGE NUMBER: 154

Transportation Emergency Phone Numbers: CHEMTREC 1-800-424-9300

SECTION 11 PRECAUTIONS FOR SAFE HANDLING AND STORAGE

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING: Take all precautions to avoid personal contact. Keep container closed except when transferring material. Locate safety shower and eyewash station close to chemical handling area. Use normal good industrial hygiene and housekeeping practices, wash thoroughly after handling. Store in a cool, dry, well-ventilated area, away from incompatibles (minimum distance of 20-25 feet per NFPA Code 1) and direct sunlight. Keep container properly labeled at all times. Vented containers must be used and must be kept closed when not

being used. Long-term storage is impossible without decomposition. Only use containers made from tinted glass, polyethylene & FRP. Keep out of reach of children.

PROCESS HAZARDS: Not Available

STORAGE TEMPERATURE: Store containers below 29°C and above freezing point. Do not expose sealed containers above 40°C. Try to store in the dark at the lowest possible temperature, but keep from freezing, to slow-down decomposition.

SECTION 12 EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS: Full handling precautions should be taken at all times. Provide good room ventilation plus local exhaust at points of emission and low level floor exhaust in immediate handling area. Where engineering controls are not feasible, use adequate local exhaust ventilation wherever mist, spray or vapor may be generated.

PERSONAL PROTECTIVE EQUIPMENT:

Eye: Use chemical safety goggles when there is potential for contact (splashing), faceshield recommended – ANSI Z87.1

Skin: Gloves and protective clothing (apron, boots, and bodysuits) made from rubber, vinyl, neoprene or PVC. Standard work clothing closed at the neck and wrist while wearing impervious equipment.

Respiratory (Specify Type): A NIOSH/MSHA approved air purifying respirator with an acid gas cartridge or canister may be permissible under circumstances where airborne concentrations are expected to exceed exposure limits. Protection provided by air purifying respirators is limited. Use a positive pressure air supplied respirator if there is potential for uncontrolled releases, exposure levels are not known, or other circumstances where air purifying respirators may not provide adequate protection.

Other: Eyewash, shower station (ANSI Z358.1) must be provided within the immediate work area.

SECTION 13 ACCIDENTAL RELEASE MEASURES

Ventilate enclosed area. Collect product for recovery or disposal. For release to land, contain discharge by constructing dikes or applying inert absorbent; for release to water, utilize damming and/or water diversion to reduce the spread of contamination; and, for release to air, vapors may be suppressed by the use of a water fog. All run-off water must be captured for treatment and disposal. Collect contaminated soil and water, and absorbent for disposal. Notify applicable government authority if release is reportable or could adversely affect the environment. Please follow all Local, State and Federal Laws for clean-up and disposal of all contaminated material. **Deactivating Chemicals:** Sodium Sulfite, Sodium Thiosulfate and Sodium Bisulfite.

SECTION 14 REGULATORY INFORMATION

OSHA CLASSIFICATION, 29 CFR §1900-1910:

Physical Hazards: Reactivity Health Hazards: Acute - Skin Sensitizer, Corrosive

CERCLA AND SARA REGULATIONS, 40 CFR §300-373:

Reportable Quantity = 100 lb. CERCLA Hazardous Material: Yes

Title III Hazard Classifications: Acute - yes, Chronic - no, Fire - yes, Reactivity - yes & Sudden Release of

Pressure - No. This product may be reportable under the requirements of 40 CFR §370.

SARA Extremely Hazardous Substance: No SARA Toxic Chemical: No CA Prop 65: No

FDA 21 CFR 178.1010: Yes, Approved as Sanitizer

NSF Whitebook (former USDA Approval) Listing: Aqua Guard Chlorinating Sanitizer 10.5% - 3D, B1, B2, D1, D2, G4, G7, GX, Q4, Aqua Guard Bleach 12.5% - 3D, B1, B2, D1, D2, G4, GX, Q4

EPA "CLEAN AIR ACT": This product does not contain nor is it manufactured with ozone depleting substances. It is not defined as a Hazardous Air Pollutant per 40 CFR 112.

EPA Pesticide: The 10.5% and 12.5% sodium hypochlorite products are registered with the U.S. EPA as a pesticide, as required under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). It is a violation of Federal law to use this product for pesticidal applications in a manner inconsistent with the FIFRA labeling.

NPCA-HMIS RATING: HEALTH: 3 FLAMMABILITY: 0 REACTIVITY: 2

NFPA RATING: NONE AT THIS TIME

SECTION 15 REFERENCES

Suppliers' Material Safety Data Sheets and EPA Labeling Requirements

Olin and OxyChem Sodium Hypochlorite Handbook

Chlorine Institute Sodium Hypochlorite Pamphlet #96

Chlorine Institute Product Stewardship Bulletins for Sodium Hypochlorite

This information contained herein, while not guaranteed, is offered only as a guide to the handling of this specific material and has been prepared in good faith by product knowledgeable personnel. This information is not intended to be all-inclusive as to the manner and conditions of use, handling and storage. Other factors may involve other or additional safety or performance considerations. Though Allied Universal Corporation is happy to respond to questions regarding safe handling of Allied's products, safe handling and use remains the responsibility of the product's consumers and/or customers. No warranty of merchantability or fitness for purpose, or any other kind, express or implied, is made regarding performance, stability or otherwise. Allied Universal Corp. will not be liable for any damages, losses, injuries or consequential damages that may result from the use of or reliance on any information contained herein. No suggestions for use are intended as, and nothing herein shall be construed as a recommendation to infringe any existing patents or violate any federal, state or local laws, rules, regulations or ordinances.

Saltex, LLC ++)) '6 Y`UJfY'Gci h : H'K cfh žHL'+* % & USA Tel: 877-872-5839

MATERIAL SAFETY DATA SHEET SODIUM SULFATE ANHYDROUS January 1, 2015

SECTION I: CHEMICAL PRODUCT AND COMPANY INFORMATION

Product Name: Sodium Sulfate

General Use:

Common Synonyms: Sodium sulfate, Anhydrous; Sulfuric Acid, Disodium Salt;

Disodium Sulfate

Chemical Family: Neutral Salts

Formula: Na₂SO₄
Formula Weight: 142.04
CAS No.: 7757-82-6
Manufacturer: Saltex, LLC

SECTION II: COMPOSITION/INFORMATION ON INGREDIENTS

<u>Component</u> <u>WEIGHT %</u> <u>CAS #</u> Sodium Sulfate, Anhydrous 99 – 100 7757-82-6

 Component
 Hazard
 OSHA STEL
 OSHA PEL
 ACGIH TLV

 Sodium Sulfate, Anhydrous
 Irritant
 N/E
 N/E
 N/E

EXTENDED INFORMATION

SECTION III: HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

CAUTION! MAY CAUSE IRRITATION. MAY BE HARMFUL IF SWALLOWED OR INHALED. HYGROSCOPIC. During use avoid contact with eyes, skin or clothing. Wash thoroughly after handling. When not in use, keep in tightly closed container.

POTENTIAL HEALTH EFFECTS

EYE CONTACT: Irritation

SKIN CONTACT: Irritation

INGESTION: Gastrointestinal irritation

INHALATION: Irritation of the upper respiratory tract.

CHRONIC: None identified

TARGET ORGANS: Respiratory system, lungs.

Sodium Sulfate

Primary routes of entry:

Inhalation ☑ Ingestion ☑ Skin Contact ☑ Eve Contact ☑

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: None identified

SECTION IIII: FIRST AID MEASURES

EYE CONTACT:

In case of eye contact, immediately flush with plenty of water for at least 15 minutes.

SKIN CONTACT:

In case of contact, immediately wash skin with plenty of soap and water for at least 15 minutes.

INGESTION:

If swallowed and the person is conscious, immediately give large amounts of water. Get medical attention.

INHALATION:

If a person breathers in large amounts, move the exposed person to fresh air.

NOTES TO PHYSICAN: None

SECTION V: FIRE FIGHTING INFORMATION

Flashpoint (Degrees C) and Method: N/A
Auto ignition Temperature (Degrees C): N/A

FLAMMABLE LIMITS:

<u>Components</u> <u>Upper Explosive Limit</u> <u>Lower Explosive Limit</u>

Sodium Sulfate, Anhydrous N/A N/A

GENERAL HAZARD:

Unusual Fire and Explosion Hazards: None Identified.

FIRE FIGHTING INSTRUCTIONS:

Use extinguishing media appropriate for surrounding fire.

FIRE FIGHTING EQUIPMENT:

Firefighters should wear proper protective equipment and self-contained breathing Apparatus with full facepiece operated in positive pressure mode.

EXTINGUISHING MEDIA:

Foam ✓ Alcohol Foam ✓ CO2 ✓ Dry Chemical ✓ Water ✓ Other ✓

HAZARDOUS COMBUSTION PRODUCTS:

Combustion may release sulfur dioxide.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA):

NFPA Hazard Rating: 0 – Insignificant 1 – Slight 2 – Moderate

3 - High 4 - Extreme 5 - Unknown

*- No Information

Health :0 Flammability :0 Reactivity :0

SPECIAL INFORMATION:

Contact Hazard: Slight (1)

Explosion Data – Sensitivity to Mechanical Impact: None Identified Explosion Data - Sensitivity to Static Discharge: None Identified

SECTION VI: ACCIDENTAL RELEASE MEASURES

LAND SPILL:

Wear suitable protective clothing. Sweep up and remove.

SECTION VII: HANDLING AND STORAGE

GENERAL STORAGE CONDITIONS:

Keep container tightly closed. Keep from contact with oxidizing materials. Isolate from incompatible materials.

Special Precautions: material is hygroscopic.

SECTION VIII: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS:

Use adequate general or local exhaust ventilation to keep fume or dust levels as low as possible.

PERSONAL PROTECTION:

RESPIRATOR:

None required where adequate ventilation conditions exist. If airborne concentration is high, use an appropriate respirator or dust mask.

PROTECTIVE CLOTHING:

Safety goggles, rubber gloves recommended.

SECTION VIIII: PHYSICAL AND CHEMICAL PROPERTIES

Vapor Pressure (mmHg): N/A Solubility in Water: Appreciable

Specific Gravity (water=1): 2.68 pH: 6-10

Boiling Point (Degrees C): N/A Physical State: Sol.id

Freezing Point (Degrees C): 884 Vapor Density (air=1): N/A Evaporation Rate (BuAc=1): N/A Percent Volatile by Volume:0

Viscosity: Odor: Odorless

Appearance: White crystals or powder

SECTION X: STABILITY AND REACTIVITY

GENERAL:

STABILITY: HAZARDOUS POLYNERIZATION:

Stable: ☑ Will Not Occur: ☑ Unstable: □ Will Occur: □

INCOMPATIBLE MATERIALS:

Strong oxidizing agents.

CONDITIONS TO AVOID:

Moisture

HAZARDOUS DECOMPOSITION PRODUCTS:

Oxides of sulfur.

SECTION XI: TOXICOLOGIAL INFORMATION

GENERAL:

Sodium Sulfate, Anhydrous: 5989 mg/kg oral mouse LD50 Carcinogenicity: None identified Reproductive Effects: None identified

CARCINOGENIC INFORMATION:

ComponentCAS#Weight%IARCNTPOSHAACGIHOtherSodium Sulfate 7757-82-699-100NoNoNoNoNo

Anhydrous

SECTION XII: ECOLOGICAL INFORMATION

Environmental Fate:

When released into the soil, this material is expected to leach into groundwater. This material is not expected to significantly bioaccumulate.

Environmental Toxicity:

This material is not expected to be toxic to aquatic life. The LC50/96-hour values for fish are over 100 mg/l. The EC50/48-hour values for daphnia are over 100 mg/l.

SECTION XIII: DISPOSAL CONSIDERATION

RCRA Hazard Class: None

METHOD OF DISPOSAL:

Dispose of in accordance with all applicable federal, state and local environmental regulations.

SECTION XIIII: TRANSPORTATION INFORMATION					
DOT (Department of Transportation)					
Proper Shipping Name: Chemicals, n.o.s. (non-regulated) Hazard Class: None dentification Number: None / No UN Number assigned					
SECTION XV: REGULATORY INFORMATION TSCA (Toxic Substances Control Act): In TSCA Inventory? Yes No C CERCLA (Comprehensive Environmental Response Compensation, and Liability Act): Classified as a Hazardous Substance? Yes No S SARA TITLE III (Superfund Amendments and Reauthorization Act): 311/312 Hazard Categories: Acute Reactivity None No					
313 Reportable Ingredients:	None				
CALIFORNIA PROPOSITION 65:	Not Listed				

SECTION XVI: OTHER INFORMATION

Saltex, LLC provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose.

SALTEX, LLC MAKES NO REPRESENTATIONS, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, SALTEX, LLC WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

N/A: Not Available, Not Applicable

N/D: Not Determined N/E: Not Established

SULFURIC ACID 93% Page 1 of 9

Material Safety Data Sheet

SULFURIC ACID 93%

Date Prepared: 1/14/09 Supersedes Date: 0/00/00

1. PRODUCT AND COMPANY DESCRIPTION

RHODIA INC. ECO SERVICES CN 7500 Cranbury NJ 08512

Emergency Phone Numbers:

FOR EMERGENCIES INVOLVING A SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT CONTACT: CHEMTREC (800-424-9300 within the United States or 703-527-3887 for international collect calls) or Rhodia CAERS (Communication and Emergency Response System) at 800-916-3232.

For Product Information:

(800) 642-4200

Chemical Name or Synonym:

SULFURIC ACID

Molecular Formula:

H₂SO₄

2. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS Reg Number	CAS Reg Number OSHA Hazard		
SULFURIC ACID	7664-93-9	Υ	93	
WATER	7732-18-5	N	7	

3. HAZARDS IDENTIFICATION

A. EMERGENCY OVERVIEW:

Physical Appearance and Odor:

colorless oily liquid, odorless.

Warning Statements:

DANGER! CAUSES SEVERE BURNS. REACTS VIOLENTLY WITH WATER. CONTENTS MAY BE UNDER PRESSURE OF EXPLOSIVE, FLAMMABLE HYDROGEN GAS. HIGHLY REACTIVE AND CAPABLE OF IGNITING COMBUSTIBLE MATERIAL ON CONTACT.

B. POTENTIAL HEALTH EFFECTS:

Acute Eye:

http://rio/msds/files/0000124160000100010076E00017.HTM

SULFURIC ACID 93% Page 2 of 9

Corrosive. Causes burns, tissue destruction, Can cause blindness.

Acute Skin:

Corrosive. Causes redness, inflammation, burns.

Acute Inhalation:

Harmful if inhaled. Causes upper respiratory tract irritation, lung irritation, chest pain, wheezing, shortness of breath, a burning sensation, tickling of the nose and throat, sneezing, Repeated exposure to high levels of sulfuric acid mist may cause etching of tooth enamel in persons who breathe through their mouths.

Acute Ingestion:

Harmful if ingested. Can cause irritation, abdominal pain, corrosion, burns to mouth and esophagus, death.

Chronic Effects:

When mists are released from this product they are considered to be probable or suspected human carcinogens (see Section 11 - Chronic).

4. FIRST AID MEASURES

FIRST AID MEASURES FOR ACCIDENTAL:

Eye Exposure:

Hold eyelids open and flush with a steady, gentle stream of water for at least 15 minutes. Seek immediate medical attention.

Skin Exposure:

In case of contact, immediately wash with plenty of water for at least 15 minutes. Seek medical attention if irritation developes or persists. Remove contaminated clothing and shoes. Clean contaminated clothing and shoes before re-use.

Inhalation:

Remove victim from immediate source of exposure and assure that the victim is breathing. If breathing is difficult, administer oxygen, if available. If victim is not breathing, administer CPR (cardio-pulmonary resuscitation). Seek medical attention.

Ingestion:

DO NOT INDUCE VOMITING. If the person is conscious and has no trouble breathing a small (no more than one glass) amount of water may be given. Do not leave victim unattended. To prevent aspiration of the swallowed product, lay victim on side with head lower than waist. If vomiting occurs do not re-administer water. Do not give anything by mouth to an unconscious person. IMMEDIATELY obtain medical attention.

MEDICAL CONDITIONS POSSIBLY AGGRAVATED BY EXPOSURE:

Inhalation of product may aggravate existing chronic respiratory problems such as asthma, emphysema or bronchitis. Skin contact may aggravate existing skin disease.

NOTES TO PHYSICIAN:

All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

This material is an acid. The primary toxicity of this product is due to its irritant effects on mucous membranes.

INHALATION: If cough or shortness of breath occurs, evaluate the possibility of bronchitis or pneumonitis. Chest x-ray and arterial blood gases can be used to determine the presence of pulmonary edema. In severe cases, use of humidified oxygen and assisted ventilation including positive end expiratory pressure (PEEP) may be needed. Parenteral steroids may be useful in limiting the extent of pulmonary damage.

SKIN: Wash exposed area thoroughly with soap and water. Chemical burns from strong acids are generally treated the same as thermal burns.

EYES: Irrigate eyes for 15 minutes with sterile saline. If irritation, pain, swelling, photophobia or lacrimation persist, examination by an ophthalmologist is recommended.

INGESTION: If not already performed by first aid personnel, irrigate mouth with large amounts of water and dilute the acid by

SULFURIC ACID 93% Page 3 of 9

having victim drink 4 to 8 ounces of water or milk. DO NOT induce vomiting. Use of gastric lavage is controversial. The advantage of removal of acid must be weighted against the risk of perforation or bleeding. If a large amount of acid (> 1 ml/kg body weight) has been recently ingested, cautious gastric lavage is generally advised if the patient is alert and there is little risk of convulsions. Consultation with a gastroenterologist and/or surgeon is advised. Serious complications such as perforation or stricture of the esophagus may occur requiring care by specialists. Laryngeal edema may develop requiring intubation or tracheostomy.

5. FIRE FIGHTING MEASURES

FIRE HAZARD DATA:

Flash Point:

Not Applicable

Extinguishing Media:

Not combustible. Use extinguishing method suitable for surrounding fire. Recommended (small fires): dry chemical.

Special Fire Fighting Procedures:

Firefighters should wear NIOSH/MSHA approved positive pressure breathing apparatus with full face-piece and full acid-resistant protective clothing. Fight fire from maximum distance.

Unusual Fire and Explosion Hazards:

Not combustible. Strong oxidizers can react with reducing agents or combustibles producing heat and causing ignition. Reacts violently with water releasing heat and corrosive material.

Hazardous Decomposition Materials (Under Fire Conditions):

oxides of sulfur

6. ACCIDENTAL RELEASE MEASURES

Evacuation Procedures and Safety:

Personnel handling this material should be thoroughly trained to handle spills and releases. Do not direct hose streams into an unignited transportation spill (tank truck or tank car).

Containment of Spill:

Stop leak if it can be done without risk. Dike spill using absorbent or impervious materials such as earth, sand or clay. Dike or retain dilution water or water from firefighting for later disposal.

Cleanup and Disposal of Spill:

Pump any free liquid into an appropriate closed container (see Section 7: Handling and Storage). Exercise caution during neutralization as considerable heat may be generated. Carefully neutralize spill with soda ash. Absorb neutralized spill with an inert absorbent. Scrape up and place in appropriate closed container (see Section 7: Handling and Storage).

Environmental and Regulatory Reporting:

Do not flush to drain. Runoff from fire control or dilution water may cause pollution. Dispose of as a hazardous waste. Spills may be reportable to the National Response Center (800-424-8802) and to state and/or local agencies. Large spills should be handled according to a predetermined plan. For assistance in developing a plan contact the Technical Service Department using the Product Information phone number in Section 1.

7. HANDLING AND STORAGE

Minimum/Maximum Storage Temperatures:

Not Available

SULFURIC ACID 93% Page 4 of 9

Handling:

Do not breathe vapors and mists. Do not get on skin or in eyes. This product reacts violently with bases liberating heat and causing spattering.

When diluting an acid, ALWAYS add the acid slowly to water and stir well to avoid spattering. NEVER ADD WATER TO ACID.

Storage:

Store in tightly closed containers. Store in an area that is dry, well-ventilated, diked with impermeable material, Freezing point varies with concentration. Maximum recommended storage temperature = 104F (40C). Corrosion rates increase at elevated temperatures.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Introductory Remarks:

These recommendations provide general guidance for handling this product. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. While developing safe handling procedures, do not overlook the need to clean equipment and piping systems for maintenance and repairs. Waste resulting from these procedures should be handled in accordance with Section 13: Disposal Considerations.

Assistance with selection, use and maintenance of worker protection equipment is generally available from equipment manufacturers.

Exposure Guidelines:

Exposure limits represent regulated or recommended worker breathing zone concentrations measured by validated sampling and analytical methods, meeting the regulatory requirements. The following limits apply to this material, where, if indicated, S=skin and C=ceiling limit:

SULFURIC ACID

	Notes	TWA	STEL
ACGIH		0.2 mg/cu m	
OSHA		1 mg/cu m	
RHODIA		0.3 mg/cu m	

Engineering Controls:

Where engineering controls are indicated by use conditions or a potential for excessive exposure exists, the following traditional exposure control techniques may be used to effectively minimize employee exposures: local exhaust ventilation at the point of generation.

Respiratory Protection:

When respirators are required, select NIOSH/MSHA approved equipment based on actual or potential airborne concentrations and in accordance with the appropriate regulatory standards and/or industrial recommendations.

If the exposure limit is exceeded and engineering controls are not feasible, a full facepiece respirator with an acid gas cartridge and particulate filter (NIOSH type N100 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. If oil particles (e.g. lubricants, cutting fluids, glycerine, etc.) are present, use a NIOSH type R or P particulate filter. WARNING: Air purifying respirators do not protect workers in oxygen-deficient atmospheres. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator.

Eye/Face Protection:

Eye and face protection requirements will vary dependent upon work environment conditions and material handling practices. Appropriate ANSI Z87 approved equipment should be selected for the particular use intended for this material. Contact to face and eyes should be prevented through use of a face shield and splash proof goggles. An emergency eye wash must be readily accessible to the work area.

Skin Protection:

Skin contact must be prevented through the use of permeation resistant clothing, gloves and footwear, selected with regard for use conditions and exposure potential. An emergency shower must be readily accessible to the work area. Consideration must be given both to durability as well as permeation resistance.

SULFURIC ACID 93% Page 5 of 9

Work Practice Controls:

Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this material:

- Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this material is stored.
- (2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet.
- (3) Wash exposed skin promptly to remove accidental splashes or contact with this material.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical properties here represent typical properties of this product. Contact the business area using the Product Information phone number in Section 1 for its exact specifications.

Physical Appearance:

colorless oily liquid.

Odor:

odorless.

pH:

1 at 1 wt/wt%.

Specific Gravity:

1.836 at 16 C (61 F).

Water Solubility:

miscible

Melting Point Range:

-32 C (-26 F)

Boiling Point Range:

276 C (529 F) at 760 mmHg

Vapor Pressure:

< 1 mmHg at 40 C (104 F)

Vapor Density:

3.4

Molecular Weight:

98.08

10. STABILITY AND REACTIVITY

Chemical Stability:

This material is stable under normal handling and storage conditions described in Section 7.

Conditions To Be Avoided:

none known

Materials/Chemicals To Be Avoided:

wateı

strong reducing agents

SULFURIC ACID 93% Page 6 of 9

halogens bases metals nitrogen compounds

The Following Hazardous Decomposition Products Might Be Expected:

Decomposition Type: thermal

oxides of sulfur

Hazardous Polymerization Will Not Occur.

Avoid The Following To Inhibit Hazardous Polymerization:

not applicable

11. TOXICOLOGICAL INFORMATION

Acute Eye Irritation:

Toxicological Information and Interpretation:

eye - eye irritation, 250 ug/24 hr, rabbit. Severely irritating.

Acute Skin Irritation:

No test data found for product. This product was not tested because strong acids are known to be corrosive and to cause severe tissue destruction.

Acute Dermal Toxicity:

No test data found for product. This product was not tested because strong acids are known to be corrosive and to cause severe tissue destruction.

Acute Respiratory Irritation:

Toxicological Information and Interpretation:

lung - lung irritation, < 5 mg/cu m, human. Mildly irritating.

Acute Inhalation Toxicity:

Toxicological Information and Interpretation:

LC50 - lethal concentration 50% of test species, 347 ppm/1 hr, rat.

LC50 - lethal concentration 50% of test species, 510 mg/cu m/2 hr, rat.

Acute Oral Toxicity:

Toxicological Information and Interpretation:

LD50 - lethal dose 50% of test species, 2140 mg/kg, rat.

Chronic Toxicity:

This product contains the substances that are considered to be "probable" or "suspected" human carcinogens as follows:

The International Agency for Research on Cancer (IARC) and the National Toxicology Program (NTP) have classified "occupational exposure to strong inorganic acid mists containing sulfuric acid" as a known human carcinogen (IARC Category 1). This classification applies only to sulfuric acid when generated as a mist. There is still debate in the scientific community whether the studies reviewed by IARC and NTP adequately controlled for confounding occupational exposures and personal habits such as cigarette smoking and alcohol consumption. A few epidemiology studies have suggested a possible association between sulfuric acid exposure and laryngeal or lung cancer; however, in all these studies, workers were exposed to many other chemicals, some of which are recognized carcinogens, such as diethylsulfate and nickel. Considering the multiple chemical exposures and other limitations of the studies, we disagree with IARC's conclusion that a cause and effect relationship between cancer and "occupational exposure to strong inorganic acid mist containing sulfuric acid" has been demonstrated. Also more recent epidemiological studies have failed to find any association between "occupational exposure to strong inorganic acid mist containing sulfuric acid" and laryngeal or lung cancer. ACGIH has classified "sulfuric acid as contained in strong inorganic acid mists" as a suspect human carcinogen. This classification does not apply to sulfuric acid per se. Lifetime animal studies in hamsters, rats and guinea pigs were conducted in the 1970's under sponsorship of the Environmental Protection Agency (EPA) or the National Institutes of Environmental Health Sciences (NIEHS). All three lifetime studies were negative for carcinogenic

SULFURIC ACID 93% Page 7 of 9

effects. These studies were not formally published by the government agencies because they were satisfied that sulfuric acid mist was not a carcinogenic problem. Because these studies were not published, IARC or NTP did not consider them in their deliberations.

	Regulatory Agency Listing Carcinogen							
Ingredient Name	OSHA	IARC	NTP	ACGIH				
OCCUPATIONAL EXPOSURES TO STRONG-INORGANIC-AC ID MISTS CONTAINING	No	1	Yes	A2				

12. ECOLOGICAL INFORMATION

Ecotoxicological Information:

Ecotoxological Information and Interpretation:

The toxicity of sulfuric acid to fish is dependent on the resulting pH of the water. lethality at a pH of 5.0 or below. required to cause lethality varies depending on the hardness of the water (hard water has some buffering capacity) and the species of fish (some fish are more resistant to the effects of acidity). McKee, JE, and Wolf, HA (Editors), Water Quality Criteria, 2nd ed., Publication No. 3-A, p. 279, California State Water Resources Control Board, Sacramento, CA (rev. 1963).

Chemical Fate Information:

No data found for product.

13. DISPOSAL CONSIDERATIONS

Waste Disposal Method:

Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal laws and regulations. Consult state and local regulations regarding the proper disposal of this material.

EPA Hazardous Waste - YES

EPA RCRA HAZARDOUS WASTE CODES:

"C" Corrosive; "R" Reactive.

14. TRANSPORTATION INFORMATION

Transportation Status: IMPORTANT! Statements below provide additional data on listed DOT classification.The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

US Department of Transportation

Hazard Class..... 8
Shipping Name:
SULFURIC ACID
ID Number...... UN1830
Packing Group.... II
Labels........ CORROSIVE
Emergency Guide #.... 137

SULFURIC ACID 93% Page 8 of 9

15. REGULATORY INFORMATION

Inventory Status

Inventory	Status
UNITED STATES (TSCA)	Υ
CANADA (DSL)	Υ
EUROPE (EINECS/ELINCS)	Υ
AUSTRALIA (AICS)	Υ
JAPAN (MITI)	Υ
SOUTH KOREA (KECL)	Υ

Y = All ingredients are on the inventory.

E = All ingredients are on the inventory or exempt from listing.

P = One or more ingredients fall under the polymer exemption or are on the no longer polymer list. All other ingredients are on the inventory or exempt from listing.

N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing.

FEDERAL REGULATIONS

Inventory Issues:

All functional components of this product are listed on the TSCA Inventory.

SARA Title III Hazard Classes:

Fire Hazard - NO
Reactive Hazard - YES
Release of Pressure - NO
Acute Health Hazard - YES
Chronic Health Hazard - NO

SARA 313 Chemicals

SULFURIC ACID (93%)

SARA Extremely Hazardous Substances (EHS)/CERCLA Hazardous Substances

Ingredient	CERCLA/SARA RQ	SARA EHS TPQ
SULFURIC ACID	1000 lbs	1000 lbs
UNLISTED HAZARDOUS WASTES - CHARACTERISTIC OF CORROSIVITY	100 lbs	
UNLISTED HAZARDOUS WASTES - CHARACTERISTIC OF REACTIVITY	100 lbs	

STATE REGULATIONS:

This product contains the following components that are regulated under California Proposition 65:

Ingredient Name	Cancer	Reprod.	No Sign. Risk	LvI (ug/day)
	List	List	California	RPI
OCCUPATIONAL EXPOSURES TO STRONG-INORGANIC- AC ID MISTS CONTAINING SULFU	Υ	N	ND	ND

16. OTHER INFORMATION

National Fire Protection Association Hazard Ratings--NFPA(R):

- 3 Health Hazard Rating--Serious
- Flammability Rating--Minimal
- 2 Instability Rating--Moderate
- 0 * NO WATER

SULFURIC ACID 93% Page 9 of 9

National Paint & Coating Hazardous Materials Identification System--HMIS(R):

- 3 Health Hazard Rating--Serious
- **0** Flammability Rating--Minimal
- 2 Reactivity Rating--Moderate

Reason for Revisions:

New product MSDS.

Key Legend Information:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissable Exposure Limit

TWA - Time Weighted Average

STEL - Short Term Exposure Limit

NTP - National Toxicology Program

IARC - International Agency for Research on Cancer

ND - Not determined

RHODIA - Rhodia Established Exposure Limits

Disclaimer:

The information herein is given in good faith but no warranty, expressed or implied, is made.

** End of MSDS Document **

MATERIAL SAFETY DATA SHEET

Cervantes~Delgado, Inc.

Product Name: CDI-High Purity Urea Solution, 50% (CDI HP-50)

Page 1 of 6

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: CDI-High Purity Urea Solution, 50% (CDI HP-50)

Generic Name: Urea, Aqueous Solution Chemical Family: Organic Salt Solution

Responsible Party: Cervantes~Delgado, Inc.

P.O. Box 9083

Brea, California 92822

For further information contact MSDS Coordinator 8am -4pm Pacific Time, Mon- Fri: 714-990-3940

EMERGENCY OVERVIEW

24 Hour Emergency Telephone Numbers:

For Chemical Emergencies:

Spill, Leak, Fire or Accident

For Health Emergencies:

California Poison

Call CHEMTREC Control System

North America: (800)424-9300 Cont. US: (800)356-3129 Others: (703)527-3887 (collect) Outside US: (415)821-5338

Health Hazards: Avoid contact with eyes, skin and clothing. Wash thoroughly after handling.

Physical Hazards: None Anticipated

Physical Form: Liquid

Appearance: Colorless, clear Odor: None to slight ammonia Hazard Rating NFPA 704M / HMIS:

Health: 1 / 1
Flammability: 0 / 0
Reactivity: 0 / 0
Other: 0/

0 = Insignificant, 1= Slight, 2 = Moderate, 3 = High, 4 = Extreme

Product Name: CDI-50 Urea Solution Page 2 of 7

2. COMPOSITION/INFORMATION ON INGREDIENTS

No hazardous components identified per 29 CFR 1910.1200.

OTHER COMPONENTS	% Weight	EXPOSURE GUIDELINE
		<u>Limits Agency Type</u>
Urea CAS# 57-13-6	49-51	Not Established
Water CAS# 7732-18-5	49-51	Not Established
Methylenediurea* CAS# 13547-17-6	0.5-1.25	Not Established

^{*}Methylenediurea is in the class of materials known as Urea, reaction products (CAS# 68611-64-3).

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Contact may cause mild eye irritation including stinging, watering, and redness.

Skin: Contact may cause mild skin irritation including redness and burning. No harmful effects from skin absorption have been reported.

Inhalation (Breathing): No information available. Studies by other exposure routes suggest a low degree of toxicity by inhalation.

Ingestion (Swallowing): No harmful effects reported from ingestion.

Signs and Symptoms: Effects of overexposure may include irritation of the nose, throat and digestive tract, headaches, coughing, nausea, vomiting, and transient disorientation.

Cancer: Inadequate evidence available to evaluate the cancer hazard of this material.

Target Organs: No data available.

Developmental: Inadequate evidence available for this material.

Pre-Existing Medical Conditions: None known.

Product Name: CDI-50 Urea Solution Page 3 of 7

4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: Remove contaminated shoes and clothing and cleanse affected area(s) thoroughly by washing with mild soap and water. If irritation or redness develops and persists, seek medical attention.

Inhalation (Breathing): If respiratory develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, clear airway and immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Ingestion (Swallowing): First aid is not normally required; however, if swallowed and symptoms develop, seek medical attention.

5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: None to boiling

OSHA Flammability Class: Not applicable

LEL/UEL: No data

Autoignition Temperature: No data

Unusual Fire & Explosion Hazards: Closed containers exposed to extreme heat can rupture due to pressure buildup.

Extinguishing Media: Use extinguishing agent suitable for type of surrounding fire.

Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear bunker gear. When the potential chemical hazard is unknown, in enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

Product Name: CDI-50 Urea Solution Page 4 of 7

6. ACCIDENTAL RELEASE MEASURES

Stop the source of the release if it can be done without risk. Immediately isolate the hazard area and restrict access to authorized personnel only. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). To prevent spilled material from entering sewers, storm drains or natural watercourses, contain material with a dike or with appropriate absorbent materials such as sand, clay, soil or commercially available absorbent. Place reclaimed liquid and absorbent into recovery or salvage drums for disposal. Refer to Section 12 for appropriate disposal.

7. HANDLING AND STORAGE

Handling: Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Wash thoroughly after handling. Do not wear contaminated clothing or shoes. Use good personal hygiene practice.

Storage: Keep container(s) tightly closed. Do not heat or contact with strong oxidizers. Use and store this material in cool, dry, well- ventilated areas. Do not store at temperatures below 40°F. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering Controls: If current ventilation practices are not adequate to minimize exposure, additional ventilation or exhaust systems may be required.

Personal Protective Equipment (PPE):

Respiratory: Respiratory protection is not usually required. If significant spray or mist occurs, wear a NIOSH approved or equivalent dust respirator.

Skin: The use of gloves impermeable to the specific material handled is advised to prevent skin contact, possible irritation, and absorption (see glove manufacturer for information on permeability)

Eye/Face: Approved eye protection to safeguard against potential eye contact, irritation, or injury is recommended. Depending on conditions of use, a face shield may be necessary.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed.

Product Name: CDI-50 Urea Solution Page 5 of 7

9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point:

Flammable/Explosive Limits (%):

Autoignition Temperature:

None to boiling

Not Applicable

Not Applicable

Appearance: Colorless, Clear Physical State: Liquid

Odor: None to slight ammonia

pH: 7.5 - 9.5Vapor Pressure (mm Hg): Not Applicable Vapor Density (air=1): 0.6 H2O, >1Aerosol Boiling Point: >212°F Freezing/Melting Point: No data Solubility in Water: 100% Specific Gravity: 1.14 **Evaporation Rate (nBuAc=1):** <1 **Bulk Density:** 9.5 lb/gal

10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and handling.

Conditions To Avoid: None known

Incompatible Materials: Avoid contact with strong oxidizing agents such as chlorine (bleach), peroxides, chromates, nitric acid, perchlorates, concentrated oxygen or permanganates. Contact can generate heat, fires, explosions and release toxic fumes.

Hazardous Decomposition Products: If involved in a fire, oxides of carbon and nitrogen may be generated; exposure to heat may generate ammonia fumes.

Hazardous Polymerization: will not occur.

11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

Product Name: CDI-50 Urea Solution Page 6 of 7

12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, is not a RCRA "listed" or "characteristic" hazardous waste. Use resulting in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials consult state and local regulations regarding the proper disposal of this material.

<u>Disposal</u>: If this product becomes a waste, it does not meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D. As a non-hazardous liquid waste, it should be solidified with stabilizing agents such as sand, fly ash, or clay absorbent, so that no free liquid remains before disposal to an industrial waste landfill.

13. TRANSPORT INFORMATION

Hazard Class or Division: Not classified as hazardous

14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and **40 CFR 372**.

--None--

Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or other reproductive harm, and are subject to the requirements of **California Proposition 65** (CA Health & Safety Code Section 25249.5)

--None Known—

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

15. DOCUMENTARY INFORMATION

Issue Date: 12/15/05

Previous Issue Date: 02/01/04

Product Name: CDI-50 Urea Solution Page 7 of 7

16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Attachment I
Attachment I. Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
GEN-1	1E	Emergency Generator	2015	1,194 hp	New	NA
H-2185A	2E	Boiler #1	2015	276.5 MMBtu/hr	New	NA
H-2185B	3E	Boiler #2	2015	276.5 MMBtu/hr	New	NA
U-1080	4E	Thermal Oxidizer	2015	3 MMBtu/hr	New	1C
TK-1055A	5E	Clarifier Tank A	2015	562,000 gal	New	1C
TK-1055B	6E	Clarifier Tank B	2015	562,000 gal	New	1C
TK-1060A	7E	Clarifier Pump Tank A	2015	23,000 gal	New	1C
TK-1060B	8E	Clarifier Pump Tank B	2015	23,000 gal	New	1C
TK-1065	9E	Oil Collection Tank	2015	13,500 gal	New	1C
TK-1070	10E	Equalization Tank	2015	1,030,000 gal	New	1C
TK-2010	11E	Solids Clarifier Tank	2015	435,000 gal	New	1C
TK-2015	12E	Clarifier Effluent Tank	2015	12,000 gal	New	1C
TK-2020	13E	Sludge Holding Tank	2015	103,000 gal	New	1C
TK-2030	14E	Sludge Filtrate Tank	2015	8,200 gal	New	1C
TK-2040	15E	Thermal Feed Tank	2015	1,400,000 gal	New	1C
TK-2130	16E	Barometric Condenser Hot Well	2015	107,000 gal	New	1C
TK-2140	17E	Recovered Water Tank	2015	230,000 gal	New	1C
TK-2160	18E	Disposal Centrate Tank	2015	7,560 gal	New	1C
E-2076	19E	Deaerator Vent Condenser	2015	1,500 sq ft	New	1C
TK-2120	20E	Process Distillate Level Tank	2015	5,575 gal	New	NA
TK-2500	21E	Post Treatment Tank 1	2015	770,000 gal	New	NA
TK-2550	22E	Post Treatment Tank 2	2015	770,000 gal	New	NA
TK-2555	23E	Post Treatment Tank 3	2015	406,100 gal	New	NA
TK-2515	24E	Post Treatment Effluent Tank	2015	12,000 gal	New	NA
TK-2520	25E	Post Treatment Sludge Tank	2015	1,270 gal	New	NA

Emission	Units Table
	03/2007

TK-4115	26E	Methanol Bulk Storage Tank	2015	8,000 gal	New	NA
TK-4180	27E	Sulfuric Acid Storage Tank	2015	6,000 gal	New	NA
CT-2335	28E	Cooling Tower Basin	2015	34,500 gpm	New	NA
		_				

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
³ New, modification, removal
⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachmen Emission Point Data S	

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data																
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emissio n Point Type ¹	Point Vented		Vented Control (Must patch Emission Table & Plot Table		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Control Device (Must match (cher process Table & Plot		Unit Pollutants - Chemical		Maximum Potential Uncontrolled Emissions ⁴		timum ential trolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)				
1E 2E	Upwar d vertical stack Upwar d vertical stack	GEN-1 H-2185A	Emergency Generator Boiler 1			Emerg ency use	500 8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e NOx CO VOC PM10 SO2 Total HAPs	12.64 6.84 0.005 0.39 0.096 0.011 1304 9.95 10.23 1.88 2.59 0.20 0.41 32547	3.16 1.71 0.0013 0.099 0.024 0.0027 325.9 43.60 44.81 8.22 11.36 0.90 1.78 142160	12.64 6.84 0.005 0.39 0.096 0.011 1304 9.95 10.23 1.88 2.59 0.20 0.41 32547	3.16 1.71 0.0013 0.099 0.024 0.0027 325.9 43.60 44.81 8.22 11.36 0.90 1.78 142160	Gas/Vapor Gas/Vapor	EE			
3E	Upwar d vertical stack	H-2185B	Boiler 2			С	8,760	NOX CO VOC PM10 SO2 Total HAPs CO2e	9.95 10.23 1.88 2.59 0.20 0.41 32547	43.60 44.81 8.22 11.36 0.90 1.78 142160	9.95 10.23 1.88 2.59 0.20 0.41 32547	43.60 44.81 8.22 11.36 0.90 1.78 142160	Gas/Vapor	EE			

4E	Upwar d vertical stack	U-1080	Thermal oxidizer			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e VOC	 20.61	 33.57	1.08 0.93 1.0E-4 1.4E-4 1.1E-5 3.6E-5 352	4.50 4.08 4.6E-4 6.3E-4 5.0E-5 1.6E-4 1542	Gas/Vapor	EE	
5E	vertical stack	1055A	Tank A	1C	Thermal Oxidizer	С	8,760	Total HAPs Ammonia CO2e	0.12 5.86 11.35	0.24 21.03 18.77	0.0023 0.12 11.35	0.0048 0.42 18.77	Gas/Vapor	EE	
6E	Upward vertical stack	TK- 1055B	Clarifier Tank B	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	20.61 0.12 5.86 11.35	33.57 0.24 21.03 18.77	0.41 0.0023 0.12 11.35	0.67 0.0048 0.42 18.77	Gas/Vapor	EE	
7E	Upwar d vertical stack	TK- 1060A	Clarifier Pump Tank A	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	4.16 0.20 0.12 36.78	4.20 0.18 0.12 35.91	36.78	0.09 0.0037 0.0023 35.91	Gas/Vapor	EE	
8E	Upwar d vertical stack	TK- 1060B	Clarifier Pump Tank B	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	4.16 0.20 0.12 36.78	4.20 0.18 0.12 35.91	0.000	0.09 0.0037 0.0023 35.91	Gas/Vapor	EE	
9E	Upwar d vertical stack	TK-1065	Oil Collecti on Tank	1C	Thermal Oxidizer	С	8,760	VOC	1.09	2.16	0.022	0.043	Gas/Vapor	EE	
10E	Upwar d vertical stack	TK-1070	Equaliza tion Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	8.67 0.39 0.25 63.60	9.98 0.43 0.28 68.80	0.17 0.0078 0.0050 63.60		Gas/Vapor	EE	
11E	Upwar d vertical stack	TK-2010	Solids Clarifier Tank	1C	Thermal Oxidizer	C	8,760	VOC Total HAPs Ammonia CO2e	26.09 0.11 4.65 9.52	41.47 0.24 16.84 16.11	0.0022	0.83 0.0049 0.34 16.11	Gas/Vapor	EE	

12E	Upwar d vertical stack	TK-2015	Clarifier Effluent Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	8.46 0.030 0.23 43.42	8.81 0.030 0.22 40.53	0.17 0.0006 0.0047 43.42	0.18 0.0006 0.0044 40.53	Gas/Vapor	EE	
13E	Upwar d vertical stack	TK-2020	Sludge Holding Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	6.21 0.045 1.06 2.02	25.45 0.17 4.43 5.97	0.12 0.0009 0.021 2.02	0.51 0.0033 0.089 5.97	Gas/Vapor	EE	
14E	Upwar d vertical stack	TK-2030	Sludge Filtrate Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	0.28 0.0042 0.093 2.0E-5	1.23 0.018 0.40 8.4E-5	0.0057 8.0E-5 0.0019 2.0E-5	0.025 0.00037 0.0081 8.4E-5	Gas/Vapor	EE	
15E	Upwar d vertical stack	TK-2040	Thermal Feed Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia CO2e	8.95 0.033 0.25 38.95	10.97 0.041 0.27 41.44	0.18 0.0007 0.005 38.95	0.22 0.0008 0.0055 41.44	Gas/Vapor	EE	
16E	Upwar d vertical stack	TK-2130	Baromet ric Condens er Hot Well	1C	Thermal Oxidizer	С	8,760	VOC	0.0020	0.0078	3.9E-5	1.6E-4	Gas/Vapor	EE	
17E	Upwar d vertical stack	TK-2140	Recover ed Water Tank	1C	Thermal Oxidizer	С	8,760	VOC Total HAPs Ammonia	3.4E-6 3.4E-6 3.7E-4	1.5E-5 1.5E-5 2.7-4	6.8E-8 6.8E-8 7.4E-6	3.0E-7 3.0E-7 5.4E-6	Gas/Vapor	EE	
18E	Upwar d vertical stack	TK-2160	Disposal Centrate Tank	1C	Thermal Oxidizer	С	8,760	VOC	1.10	4.38	0.022	0.088	Gas/Vapor	EE	
19E	Upwar d vertical stack	E-2076	Deaerato r Vent Condens er	1C	Thermal Oxidizer	С	8,760	Ammonia	44.70	195.79	0.89	3.92	Gas/Vapor	EE	

20E	Upwar d vertical stack	TK-2120	Process Distillat e Level Tank	С	8,760	Ammonia	0.29	1.18	0.29	1.18	Gas/Vapor	EE
21E	Open Top tank	TK-2500	Post Treatme nt Tank 1	С	8,760	VOC Total HAPs Ammonia	1.18 0.012 1.96	4.74 0.049 7.87	1.18 0.012 1.96	4.74 0.049 7.87	Gas/Vapor	EE
22E	Open Top tank	TK-2550	Post Treatme nt Tank 2	С	8,760	CO2e	60.18	239.62	60.18	239.62	Gas/Vapor	EE
23E	Open Top tank	TK-2555	Post Treatme nt Tank 3	С	8,760	CO2e	60.18	239.62	60.18	239.62	Gas/Vapor	EE
24E	Upwar d vertical stack	TK-2515	Post Treatme nt Effluent Tank	С	8,760	VOC Total HAPs Ammonia CO2e	0.77 0.0005 0.0014 0.95	3.10 0.0021 0.0057 3.81	0.77 0.0005 0.0014 0.95	3.10 0.0021 0.0057 3.81	Gas/Vapor	EE
25E	Open Top tank	TK-2520	Post Treatme nt Sludge Tank	С	8,760	VOC Total HAPs Ammonia CO2e	0.015 5.0E-5 0.0009 0.027	0.064 0.00023 0.0039 0.12	0.015 5.0E-5 0.0009 0.027	0.064 0.00023 0.0039 0.12	Gas/Vapor	EE
26E	Upwar d vertical stack	TK-4115	Methano l Bulk Storage Tank	С	8,760	VOC Total HAPs	0.038 0.038	0.14 0.14	0.038 0.038	0.14 0.14	Gas/Vapor	EE
27E	Upwar d vertical stack	TK-4180	Sulfuric Acid Storage Tank	С	8,760	Sulfuric Acid	0.0	0.0	0.0	0.0	Gas/Vapor	EE

,	28E	Upwar	CT-2335	Cooling Tower		C	8,760	PM10 PM2.5	0.94	4.12	0.94	4.12	Gas/Vapor	EE	
		vertical stack		Basin				1 1412.3	0.94	4.12	0.94	4.12			

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₃, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Re	lease Parameter	Data			
Emission	Inner		Exit Gas		Emission Point Ele	evation (ft)	UTM Coordinate	s (km)
Point ID No.	Diameter (ft.)	Temp.	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ²	Northing	Easting
1E	0.42	1049	5721	343 dual exhaust	314	17	4346.7115	509.1779
2E	5.5	unknown	unknown	unknown	314	50	4346.7115	509.2044
3E	5.5	300	unknown	unknown	314	50	4346.6861	509.2044
4E	TBD	~1800	TBD	TBD	314	TBD	4346.6781	509.1755
5E-19E Vents to 4E				314				
20E	0.17	144	unknown	unknown	314	0.17	4346.6540	509.2749
21E	Open tanks	80-90	unknown	unknown	314	N/A	4346.6471	509.2085
22E	Open tanks	80-90	unknown	unknown	314	N/A	4346.6471	509.2346
23E	Open tanks	80-90	unknown	unknown	314	N/A	4346.6699	509.2216
24E	0.17	80-90	unknown	unknown	314	0.17	4346.6657	509.2539
25E	Open tank	80-90	unknown	unknown	314	N/A	4346.6629	509.2591
26E	0.17	atmospheric	unknown	unknown	314	0.17	4346.6230	509.2494
27E	0.17	atmospheric	unknown	unknown	314	0.17	4346.6216	509.2408
28E	unknown	unknown	unknown	unknown	314	38.84	4346.732	509.2371

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment K. Fugitive Emissions Data Summary Sheet	

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes ☐ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Uncontrolled		Maximum P Controlled Em	Est. Method Used ⁴	
	Onomical Name, 6710	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Paved Haul Roads (PROAD)	PM-10 PM-2.5	1.32 0.32	5.17 1.27	1.32 0.32	5.17 1.27	EE
Storage Pile Emissions						
Loading/Unloading Operations (P-1051)	VOCs Total HAPs CO2e	31.32 0.23 22.95	28.58 0.21 20.94	31.32 0.23 22.95	28.58 0.21 20.94	EE
Wastewater Treatment Evaporation & Operations (DISP1 and DISP2)	VOCs Total HAPs CO2e NH3	4.93 0.0038 0.000003 0.22	21.60 0.017 0.00001 0.97	4.93 0.0038 0.000003 0.22	21.60 0.017 0.00001 0.97	МВ
Equipment Leaks						
General Clean-up VOC Emissions						
Other all Transfer Points	PM-10 PM-2.5	1.67 0.47	3.06 0.87	1.67 0.47	3.06 0.87	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L.	
ion Unit Data Sheets	

Emergency Generator Engine	e

GENERATOR ENGINE DATA SHEET

Source Iden	ntification Number ¹	GEN-	-1 / 1E							
Engine Man	ufacturer and Model		roit Diesel 00 G85							
Manufactur	er's Rated bhp/rpm	1,1	194							
Sou	irce Status ²	N	IS							
Date Installed	/Modified/Removed ³	Januar	y 2016							
Engine Manufactu	ared/Reconstruction Date ⁴	TI	3D							
Is this a Certified Engine according t (Yes or No) ⁵	Stationary Spark Ignition o 40CFR60 Subpart JJJJ?	No								
	Engine Type ⁶	Diese	el (CI)							
	APCD Type ⁷	/A								
Engine,	Fuel Type ⁸	2DO ((diesel)							
Fuel and	H ₂ S (gr/100 scf)	15 1	ppm							
Combustion Data	Operating kWe	82	25							
	BSFC (gal/hr)	58								
	Fuel throughput (gal/hr)		58							
	Fuel throughput (gal/yr)	5800								
	Operation (hrs/yr)	500								
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr			
OT	NO_X	12.64	3.16							
OT	СО	6.84	1.71							
AP	VOC	0.0051	0.0013							
AP	SO ₂	0.096	0.024							
ОТ	PM ₁₀	0.39	0.099							
AP	Formaldehyde	6.27E-04	1.57E-4							
OT	PM _{2.5}	0.039	0.099							
	<u> </u>		l .				<u> </u>			

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:

NSConstruction of New Source (installation)ESExisting SourceMSModification of Existing SourceRSRemoval of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke LB4S Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other: <u>EPA Tier 2 Nonroad Diesel Engine</u>

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

HMW-810 T6

Powered by: MTU 12V 2000 G85

809 kW at 60 Hz

Generating Set Performance		60 Hz				
SERVICE		P.R.P	Standby (2)			
Rated output	kVA	920	1,011			
Active power output *	kW	736	809			
Rated speed	r.p.m.	1,800				
Standard Voltage	V	480				
Voltage available	V	480/277	7 - 440/254			

Performance data refers to Standard Reference Conditions of ISO 8528: + 25 °C , 100 m ALT, relative humidity 30 % During running-in period the output increases by approx. 5 % which is taken into consideration at delivery.

Power reduction acc. to DIN ISO 3046. Standard values: Above 100 m ALT approx. 1 % per 100 m. Above 25 °C (77 °F) approx. 4 % per 10 °C (50 °F).

* Considering cos phi= 0,8

Prime Mover Performance		1,800 r.p.m.				
SERVICE		P.R.P (1)	Standby (2)			
Rated output	kW	810	890			
Manufacturer		N	ITU			
Engine model		12V 20	000 G85			
4 stroke Diesel Engine - Injection type		DIF	RECT			
Aspiration type		TURBOCHARGED AND AFTERCOOLED				
Cylinders, number and arrangement		12 - V				
Bore x stroke	mm	130 x 150				
Total displacement	L	23	3.88			
Cooling system		WA	ATER			
Lube oil specifications		SAE 1	15 W 40			
Compression ratio		16	5:1			
Specific fuel consumption (P.R.P)	g/kWh	2	209			
Specific oil consumption (at full load)	%	1	.00			
Lube oil maximum capacity	L	·	74			
Total coolant capacity	L	· · · · · · · · · · · · · · · · · · ·	90			
Speed governor	Туре	Electronic, s	system MDEC			
Air filter	Туре	DRY				

(1) Prime Power (P.R.P.) - ISO 8528: prime power is the maximum power available during a variable power sequence, which may be run for an unlimited number of hours per year, between stated maintenance intervals. The permissible average power output during a 24 hours period shall not exceed 80% of the prime power. 10% overload available for governing purposes only.

(2) Max Stand-by power (ISO 3046 Fuel Stop power): power available for use at variable loads for limited annual time (500h), within the following limits of maximum operating time: 100% loads 25 h per year - 90% loads 200 h per year No overload available. Applicable in case of failure of the main in areas of reliable electrical network.

Synchronous Generator *		
Poles	Nº	4
Winding connections (standard)		Star - serie
Frame mounting		SAE 0 - 18"
Insulation	class	Н
Enclosure (according to IEC-34-5)		IP 23
Exciter system		Self-regulating Brushless
Voltage regulator		A.V.R (Electronic)
Steady voltage precision		within ± 1.5% from no load to full loading with cosφ=0.8÷1

Alternator used by Hardy Diesel Gensets meet the requirements of following Standard: BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Generating Set Installation Data		1,800 r.p.m.
EXHAUST SYSTEM		
May subsust to represent up at full load	° C	565
Max. exhaust temperature at full load	٥F	1049
Exhaust gas flow	m³/s	2.7
Maximum allowed back pressure	mbar	85
Recommended exhaust pipe size for L= 5 m	mm	-
AIR REQUIREMENT		
Air requirement for combustion	m³/min	63
at 100% load / rated speed	ft³/min	2,224.85
ELECTRIC STARTING SYSTEM		
	kW	9.0
Starting motor output	CV	12.24
Minimum recommended battery capacity	Ah	-
Auxiliary voltage	Vcc.	24V
LIQUID CAPACITY		
Lube oil system including sump, filters, etc.	L	77
FUEL TANK CAPACITY		
Open Skid Genset	L	999
Soundproofed	L	999

Generating Set transport data		
WEIGHT AND DIMENSIONS OPEN SKID GENSET		
Length	m - ft	4.2 - 13.77
Width	m - ft	1.6 - 5.24
Height	m - ft	2.23 - 7.31
Shipping volume seaworthy (Standard supplier)	m³ - ft³	14.98 - 527.45
Dry weight (with standard accessories)	kg - Ib	5,600 - 12,320
WEIGHT AND DIMENSIONS SOUNDPROOFED GENSET		
Length	m - ft	6 - 19.6
Width	m - ft	1.9 - 6.23
Height	m - ft	2.3 - 7.54
Shipping volume seaworthy (Standard supplier)	m³ - ft³	26.22 - 920.69
Dry weight (with standard accessories)	kg - lb	7,400 - 16,280
Sound level at 7m	dB(A)	N/A
WEIGHT AND DIMENSIONS SOUNDPROOFED CONTAINER 20'		
Length	m - ft	6.06 - 19.8
Width	m - ft	2.44 - 8
Height	m - ft	2.59 - 8.49
Shipping volume seaworthy (Standard supplier)	m³ - ft³	38.29 - 1,344.81
Dry weight (with standard accessories)	kg - lb	9,400 - 20,680
Sound level at 7m	dB(A)	70

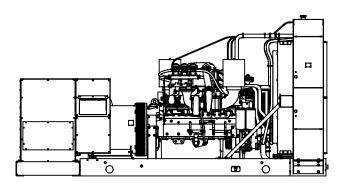
^{*} Weights and dimmensions approximate. To consult in factory.

Hardy Diesels & Equipment Inc 15749 Lyons Valley Rd Jamul, Ca 91935 www.hardydiesl.com 800 341 7027

Model: 800REOZDE

KOHLER. Power Systems

380-600 V


Diesel

Tier 2 EPA-Certified for Stationary Emergency Applications

Ratings Range

		00 112	30 112
Standby:	kW	725-800	584-696
_	kVA	906-1000	730-870
Prime:	kW	680-725	528-632
	kVA	850-906	660-790

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The 60 Hz generator set offers a UL 2200 listing.
- The generator set accepts rated load in one step.
- The 60 Hz generator set meets NFPA 110, Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- A standard one-year limited warranty covers all systems and components. Two-, five-, and ten-year extended warranties are also available.
- Alternator features:
 - The pilot-excited, permanent magnet (PM) alternator provides superior short-circuit capability.
 - The brushless, rotating-field alternator has broadrange reconnectability.
- · Other features:
 - Kohler designed controllers for guaranteed system integration and remote communication. See Controllers on page 3.
 - The low coolant level shutdown prevents overheating (standard on radiator models only).
 - Integral vibration isolation eliminates the need for under-unit vibration spring isolators.
 - An electronic, isochronous governor delivers precise frequency regulation.
 - Multiple circuit breaker configurations.

Generator Set Ratings

				150°C Standby		130°C Standby		125°C Prime l		105°C Prime l	
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps	kW/kVA	Amps
	240/416	3	60	725/906	1258	725/906	1258	680/850	1180	680/850	1180
	277/480	3	60	790/988	1188	750/938	1128	720/900	1083	710/888	1067
5M4034	220/380	3	50	652/815	1238	640/800	1215	600/750	1140	588/735	1117
	230/400	3	50	632/790	1140	612/765	1104	600/750	1083	560/700	1010
	240/416	3	50	604/755	1048	584/730	1013	552/690	958	528/660	916
	240/416	3	60	795/994	1379	785/981	1362	720/900	1249	720/900	1249
	277/480	3	60	795/944	1195	795/994	1195	720/900	1083	720/900	1083
5M4036	220/380	3	50	688/860	1307	652/815	1238	624/780	1185	612/765	1162
	230/400	3	50	688/860	1241	688/860	1241	624/780	1126	624/780	1126
	240/416	3	50	668/835	1159	640/800	1110	624/780	1083	584/730	1013
	240/416	3	60	800/1000	1388	800/1000	1388	725/906	1258	725/906	1258
	277/480	3	60	800/1000	1203	800/1000	1203	725/906	1090	725/906	1090
5M4038	220/380	3	50	696/870	1322	696/870	1322	632/790	1200	632/790	1200
	230/400	3	50	696/870	1256	696/870	1256	632/790	1140	632/790	1140
	240/416	3	50	696/870	1207	696/870	1207	632/790	1096	632/790	1096
5M4166	220/380	3	60	800/1000	1519	800/1000	1519	725/906	1377	725/906	1377
5M4278	347/600	3	60	800/1000	962	800/1000	962	725/906	872	725/906	872

RATINGS: All three-phase units are rated at 0.8 power factor. Standby Ratings: The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Prime Power Ratings: At varying load, the number of generator set operating hours is unlimited. A 10% overload capacity is available for one hour in twelve. Ratings are in accordance with ISO-8528-1 and ISO-3046-1. For limited running time and continuous ratings, consult the factory. Obtain technical information bulletin (TIB-101) for ratings guidelines, complete ratings definitions, and site condition derates. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever.

Alternator Specifications

Specifications	3	Alternator	
Туре		4-Pole, Rotating-Field	
Exciter type		Brushless, Permanent- Magnet Pilot Exciter	
Leads: quantity	, type	10, Reconnectable	
Voltage regulat	or	Solid-State, Volts/Hz	
Insulation:		NEMA MG1	
Material		Class H, Synthetic, Nonhygroscopic	
Temperati	ure rise	130°C, 150°C Standby	
Bearing: quant	ity, type	1, Sealed	
Coupling		Flexible Disc	
Amortisseur wi	ndings	Full	
Rotor balancing	g	125%	
Rotor balancing	g	125%	
Voltage regulat	tion, no-load to full-load	Controller Dependent	
One-step load	acceptance at 60 Hz	100% of Rating	
Unbalanced load capability		100% of Rated Standby Current	
Peak motor sta	arting kVA:	(35% dip for voltages below)	
480 V	5M4034 (10 lead)	2600 (60 Hz), 2000 (50 Hz)	
480 V	5M4036 (10 lead)	3200 (60 Hz), 2400 (50 Hz)	
480 V 380 V	5M4038 (4 lead) 5M4166 (4 lead)	3050 (60 Hz), 2350 (50 Hz)	
600 V	5M4278 (4 lead)	2700 (60 Hz) 3450 (60 Hz)	
000 V	5111 1270 (4 10dd)	0.00 (00 1.12)	

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Superior voltage waveform from two-thirds pitch windings and skewed stator.
- Digital solid-state, volts-per-hertz voltage regulator with ±0.25% no-load to full-load regulation.
- Brushless alternator with brushless pilot exciter for excellent load response.

Application Data

Engine

Engine			
Engine Specifications	60 Hz	50 Hz	
Manufacturer	Detroit Diesel/MTU		
Engine: model	12V2000 G85 R123-8A37	12V2000 G65 R123-8A38	
Engine: type		ycle, d, Intercooled	
Cylinder arrangement	12	!-V	
Displacement, L (cu. in.)	23.9 (1458)	
Bore and stroke, mm (in.)	130 x 150 (5.12 x 5.91)	
Compression ratio	16.	0:1	
Piston speed, m/min. (ft./min.)	540 (1772)	
Main bearings: quantity, type	7, Precision	Half Shells	
Rated rpm	1800	1500	
Max. power at rated rpm, kWm (BHP)	890 (1194)	765 (1026)	
Cylinder head material	Cast	Iron	
Crankshaft material	Forged Steel		
Valve (exhaust) material	Austenitic Steel		
Governor: type, make/model	ADEC Electronic Control		
Frequency regulation, no-load to-full load	Isochronous		
Frequency regulation, steady state	±0.25%		
Frequency	Fixed		
Air cleaner type, all models	Dry		
Cylegist			

Exhaust

Exhaust System	60 Hz	50 Hz
Exhaust flow at rated kW, m ³ /min. (cfm)	174 (6145)	123 (4344)
Exhaust temperature at rated kW, dry exhaust, °C (°F)	580 (1076)	565 (1049)
Maximum allowable back pressure, kPa (in. Hg)	8.5	(2.5)
Exh. outlet size at eng. hookup, mm (in.)	See ADV	/ drawing

Engine Electrical

	Engine Electrical System	60 Hz	50 Hz		
	Battery charging alternator:				
	Ground (negative/positive) Negative		ative		
	Volts (DC)	Volts (DC) 24			
	Ampere rating	70	70		
	Starter motor rated voltage (DC) 24		4		
	Battery, recommended cold cranking amps (CCA):				
	Qty., CCA rating each	Two,	1150		
Battery voltage (DC)		12	2		
	E				

Fuel

Fuel System	60 Hz	50 Hz	
Fuel supply line, min. ID, mm (in.)	12 (0	0.5)	
Fuel return line, min. ID, mm (in.)	6 (0.25)		
Max. fuel flow, Lph (gph)	480 (127)	
Min./max. fuel pressure at engine supply connection, kPa (in. Hg)	-30/50 (-	8.8/14.8)	
Max. return line restriction, kPa (in. Hg)	50 (1	4.7)	
Fuel filter: quantity, type	1, Seco	ondary	
Recommended fuel	#2 Di	esel	

Lubrication

Lubricating System	60 Hz	50 Hz
Туре	Full Pres	sure
Oil pan capacity dipstick mark max., L (qt.)	67 (71	1)
Oil pan capacity, initial filling, L (qt.)	77 (81	I)
Oil filter: quantity, type	2, Cartri	dge
Oil cooler	Water-Co	ooled

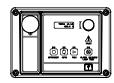
Application Data

Cooling

Radiator System	60 Hz	50 Hz
Ambient temperature, °C (°F)*	50 (122)
Engine water capacity, L (gal.)	130	(34)
Radiator system capacity, including engine, L (gal.)	310	(82)
Engine jacket water flow, Lpm (gpm)	833 (220)	667 (176)
Charge cooler water flow, Lpm (gpm)	258 (68)	233 (62)
Heat rejected to cooling water at rated kW, dry exhaust, kW (Btu/min.)	315 (17930)	305 (17360)
Heat rejected to charge cooling water at rated kW, dry exhaust, kW (Btu/min.)	270 (15368)	185 (10530)
Water pump type	Centrifugal	
Fan diameter, including blades, mm (in.)	1524 (60)	
Fan, kWm (HP)	43 (58)	25 (34)
Max. restriction of cooling air, intake and discharge side of radiator, kPa (in. H_2O)	0.125	5 (0.5)

 Enclosure with enclosed silencer reduces ambient temperature capability by 5°C (9°F).

Remote Radiator System†	60 Hz	50 Hz
Exhaust manifold type	Dı	y
Connection sizes:		
Water inlet/outlet, mm (in.)	77	(3)
Intercooler inlet/outlet, mm (in.)	51	(2)
Static head allowable above engine, kPa (ft. H ₂ O)	149	(50)

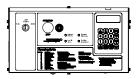

† Contact your local distributor for cooling system options and specifications based on your specific requirements.

Operation Requirements

Air Requirements	60 Hz	50 Hz
Radiator-cooled cooling air, m ³ /min. (scfm):	1285 (45380)	1071 (37817)
Cooling air required for generator set when equipped with city water cooling or remote radiator, based on 14°C (25°F) rise, m³/min. (scfm)‡	311 (11000)
Combustion air, m ³ /min. (cfm)	66 (2330)	54 (1907)
Heat rejected to ambient air:		
Engine, kW (Btu/min.)	40 (2	2275)
Alternator, kW (Btu/min.)	47 (2	2673)
\ddagger Air density = 1.20 kg/m ³ (0.075 lbm/ft ³)		

Fuel Consumption	60 Hz	50 Hz
Diesel, Lph (gph) at % load	Standb	y Rating
100%	219.6 (58.0)	183.4 (48.4)
75%	165.5 (43.7)	136.8 (36.2)
50%	111.9 (29.6)	93.9 (24.8)
25%	60.9 (16.1)	51.2 (13.5)
Diesel, Lph (gph) at % load	Prime	Rating
100%	199.9 (52.8)	165.8 (43.8)
75%	150.6 (39.8)	124.9 (33.0)
50%	101.9 (26.9)	86.2 (22.8)
25%	56.7 (15.0)	47.2 (12.5)

Controllers



Decision-Maker® 3000 Controller

Provides advanced control, system monitoring, and system diagnostics for optimum performance and compatibility.

- Digital display and menu control provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or modem configuration
- Integrated hybrid voltage regulator with ±0.5% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-100 for additional controller features and accessories.

Decision-Maker® 550 Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities.

- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-46 for additional controller features and accessories.

Decision-Maker® 6000 Paralleling Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities for paralleling multiple generator sets

- Paralleling capability with first-on logic, synchronizer, kW and kVAR load sharing, and protective relays
- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication thru a PC via network or modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection
- NFPA 110 Level 1 capability

Refer to G6-107 for additional controller features and accessories.

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Kohler Power Systems Asia Pacific Headquarters 7 Jurong Pier Road Singapore 619159 Phone (65) 6264-6422, Fax (65) 6264-6455

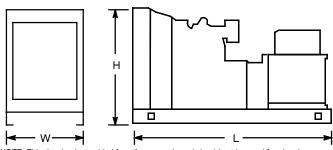
Standard Features

- Alternator Protection
- **Customer Connection** (standard with Decision-Maker® 6000 controller only)
- Engine Closed Crankcase Breather
- Local Emergency Stop Switch
- Oil Drain Extension
- Operation and Installation Literature

Battery

Battery Heater

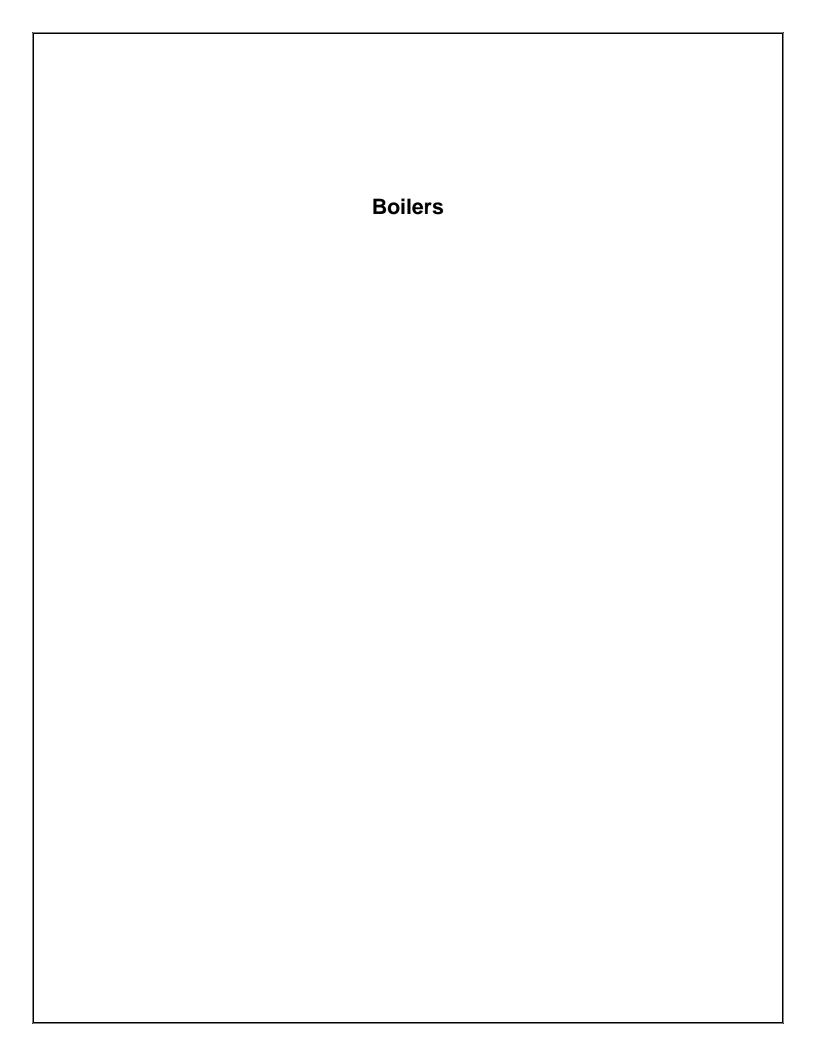
■ Battery Charger, Equalize/Float Type


Available C	Options
-------------	---------

• F	Radiator Core Guard			
Available Options				
ū	Approvals and Listings CSA Approval IBC Seismic Certification UL 2200 Listing			
_	Enclosed Unit Sound Enclosure/Fuel Tank Package Weather Enclosure/Fuel Tank Package			
_	Open Unit Exhaust Silencer, Critical (kits: PA-354880, qty. 2, PA-354898 qty. 1, or PA-354894 qty. 1) Exhaust Silencer, Hospital (kits: PA-354905 qty. 2, PA-354912 qty. 1, or PA-354907 qty. 1) Flexible Exhaust Connector, Stainless Steel			
<u> </u>	Fuel System Flexible Fuel Lines Fuel Pressure Gauge Fuel/Water Separator			
	Controller Common Failure Relay (Decision-Maker® 550 and 6000 controllers only)			
	Communication Products and PC Software Customer Connection (Decision-Maker® 550 controller only) Decision-Maker® Paralleling System (DPS) (Decision-Maker® 6000 controller only)			
	Dry Contact (isolated alarm) (Decision-Maker® 550 and 6000 controllers only) Input/Output Module (Decision-Maker® 3000 controller only) Prime Power Switch (Decision-Maker® 550 and 6000 controllers Remote Audiovisual Alarm Panel (Decision-Maker® 550 only)			
	Remote Emergency Stop Remote Mounting Cable Remote Serial Annunciator Panel Run Relay			
	Cooling System Block Heater; 9000 W, 208 V, 1 Ph Block Heater; 9000 W, 240 V, (Select 1 Ph or 3 Ph) Block Heater; 9000 W, 380 V, 3 Ph Block Heater; 9000 W, 480 V, (Select 1 Ph or 3 Ph) Recommended for Ambient Temperatures Below 10°C (50°F) Remote Radiator Setup			
	Electrical System Alternator Strip Heater			

	Battery Rack and Cables Bus Bar
_	Line Circuit Breaker (NEMA type 1 enclosure) Line Circuit Breaker with Shunt Trip (NEMA type 1 enclosure)
	Paralleling System
	Manual Speed Adjustment (Decision-Maker® 3000 and 550 controllers only)
	Remote Voltage Adjustment Control
	Voltage Sensing (Decision-Maker® 6000 controller only)
	Miscellaneous
	Air Cleaner, Heavy Duty
_	Air Cleaner Restriction Indicator
_	Engine Fluids (oil and coolant) Added
Ш	Rated Power Factor Testing
_	Literature
	General Maintenance NFPA 110
_	Overhaul
	Production
_	Warranty
\Box	2-Year Basic
	2-Year Prime
<u></u>	5-Year Basic
	5-Year Comprehensive
	10-Year Major Components
	Other Options

Dimensions and Weights


Overall Size, max., L x W x H, mm (in.): 4749 x 1929 x 2364 (187.0 x 75.9 x 93.1) Weight, radiator model, max. wet, kg (lb.): 6123 (13500)

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

© 2011, 2012, 2013 by Kohler Co. All rights reserved.

Attachment L Emission Unit Data Sheet

(INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): NA (Emision Points: 2E & 3E)

Equipment Information

1. Manufacturer: Babcock & Wilcox Power Generation Group, Inc.	2. Model No. FM120-136 Serial No.
3. Number of units: 2	4. Use: Steam Generation
5. Rated Boiler Horsepower: 276.5 MMBtu/hr each hp	6. Boiler Serial No.:
7. Date constructed: January 2016	8. Date of last modification and explain: NA
9. Maximum design heat input per unit:	10. Peak heat input per unit:
276.5 ×10 ⁶ BTU/hr	276.5 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
230,000 LB/hr	Hours/Day 24
,	Days/Week 7
350 psig	Weeks/Year 52
13. Type of firing equipment to be used: ☐ Pulverized coal ☐ Spreader stoker ☐ Oil burners ☐ Natural Gas Burner ☐ Others, specify	14. Proposed type of burners and orientation: ☐ Vertical ☐ Front Wall ☐ Opposed ☐ Tangential ☐ Others, specify
15. Type of draft: ⊠ Forced ☐ Induced	16. Percent of ash retained in furnace: 0 %
17. Will flyash be reinjected? ☐ Yes ☐ No	18. Percent of carbon in flyash: 0 %
Stack or	Vent Data
19. Inside diameter or dimensions: 5.5 ft.	20. Gas exit temperature: 650 cooled to 300 °F
21. Height: 50 ft.	22. Stack serves: This equipment only
23. Gas flow rate: ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this
24. Estimated percent of moisture: 20 %	stack or vent)

Fuel Requirements

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	215,343 ft ³ /hr	ft ³ /hr	TPH	
	Annually	×10³ gal	0.215 ×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	0 gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)		0		Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1284 BTU/ft ³	BTU/ft³	BTU/lb	
	Source	LDS/Gai.@001	Field Gas			
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o ☐ Manual		omatic hi-low	27. Gas burner mar	nufacture: Zeeco, Inc).
	Automatic full m	_		28. Oil burner manu	facture:	
29.	If fuel oil is used, h	ow is it atomized?	☐ Oil Pressu ☐ Compress ☐ Other, spe	ed Air 🔲 Rotary Cu		
30.	Fuel oil preheated:	Yes [☐ No	31. If yes, indicate to	emperature:	°F
	above actual cubic	feet (ACF) per uni	t of fuel:	or combustion of the		of fuels described
33	@ Emission rate at ra	°F,	PSIA, lb/hr	% mo	oisture	
		actually required f		the fuel described:	%	
٥ ،.	. 5.55.11 5.0505 dii	astadily roquilou i	Coal Chara		70	
35.	Seams:					
36.	86. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile Matter: % of Ash:					

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	10.23			
Hydrocarbons				
NO _x	9.95			
Pb	0.00017			
PM ₁₀	2.59			
SO ₂	0.20			
VOCs	1.88			
Other (specify) PM2.5	2.59			
What quantities of polluta	nts will be emitted from t	he boiler after contro	ls?	
Pollutant	Pounds per Hour lb/hr	grain/ACF	@ °F	PSIA
Pollutant		grain/ACF	@ °F	PSIA
	lb/hr	grain/ACF	@ °F	PSIA
CO	lb/hr	grain/ACF	@ °F	PSIA
CO Hydrocarbons	10.23	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x	10.23 9.95	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x Pb	9.95 0.00017	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x Pb PM ₁₀	9.95 0.00017 2.59	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂	9.95 0.00017 2.59 0.20	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	9.95 0.00017 2.59 0.20 1.88	grain/ACF	@ °F	PSIA
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	9.95 0.00017 2.59 0.20 1.88	grain/ACF	@ °F	PSIA

12.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. see Attachment O
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. see Attachment O
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. see Attachment O
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. see Attachment O
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. The boilers will be operated at steady state conditions, using the Economizer to lower the outlet temperature to maintain warranty.

2.2 DETAILS

2.2.1 BOILER

Item	Description	Units	Values
A. GI	ENERAL		
1	B&W Boiler Model		FM120-136
2	Boiler Type		D-Type Watertube
3	Construction Type		Sshop Assembled
4	Design		
	A. Maximum Continuous Rating	lb/hr	230,000
	B. Maximum Allowable Working Pressure	psig	350
	C. Construction	ASME	Section 1, B31.1
	D. Maximum Heat Input	(10 ⁶) Btu/hr	156.52
	E. Primary Fuel Fired		Natural Gas
5	Operating Conditions at Main Steam Stop Valve		
	A. Steam Flow	lb/hr	230,000
	B. Pressure	psig	300
	C. Temperature	°F	422 (SAT)
6	Furnace		
	A. Dimensions		
	i. Width	ft	6.80
	ii. Height	ft	10.31
	iii. Overall Length	ft	39.96
	iv. Length of Division Wall	ft	33.25
	B. Flat Projected Surface Area	ft²	1,532
	C. Volume	ft ³	2,851
7	Generating Bank Surface Area	ft²	8,555
8	Boiler Size & Weight		
	A. Dimensions		
	i. Width	ft	11.97
	ii. Height	ft	15.13
	iii. Length (not including windbox or heads)	ft	41.74
	B. Weight (estimated)		
	i. Dry	lb	208,650

6627_TECH_R02.docx PAGE 11 OF 42

Item	Description	Units	Values
1	Туре		VFD
2	Manufacturer		ABB
3	Power	НР	600
4	Enclosure		NEMA 12
5	Amps	Amps	848
6	Voltage	V	460
7	Phase	Ph	3
8	Hertz	Hz	60

2.2.4 BURNER

Item	Description	Units	Values		
A. GI	A. GENERAL				
1	Burner Manufacturer		Zeeco, Inc.		
2	Model		FreeJet		
3	Number of Burners per Boiler		1		
4	Natural Gas Firing per Burner				
	A. Heat Input	mmBtu/hr	276.5		
	B. Turndown		10:1		
	C. Pressure Required @ Train Inlet	psig	35 (Regulated)		
	D. Excess Air @ MCR	%	~15		
	E. Recycle Flue Gas Rate @ MCR	%	5		
7	Fuel Train Construction				
	A. Insurance Guidelines		NFPA 85 for single burner		
	B. Construction		ASME B31.3		
8	Ignitor Specifications				
	A. Number per Boiler		1		
	В. Туре		Gas Electric		
	C. Air Requirements	SCFH	1609		
	D. Pressure @ Burner	psig	10		
	E. Classification		Class 3 Special		

6627_TECH_R02.docx PAGE 18 OF 42

2.2.5 BOILER / BURNER CONTROL SYSTEM

Item	Description	Units	Values	
A. GI	A. GENERAL			
1	Manufacturer		EDE	
2	Remote BMS/CCS Panel Dimensions			
	A. Height	in.	72	
	B. Width	in.	60	
	C. Depth	in.	18	
3	Local Operator Interface Panel Dimensions			
	D. Height	in.	36	
	E. Width	in.	30	
	F. Depth	in.	12	
4	Panel Electrical Rating	NEMA	4X	
5	Compliance			
	A. General Panel Specification	UL	508	
	B. Applicable Codes	NFPA	70 / 85 2011ed.	
6	Power to Enclosures	Vac	120	
7	Communication		EtherNet	
8	PLC Manufacturer		Allen-Bradley	
9	PLC Model Number		CompactLogix L33ER	
10	HMI Manufacturer		Allen-Bradley	
11	HMI Model		PanelView	
12	HMI Size	in.	12	
13	HMI Software		FactoryTalk View ME	

2.2.6 INSTRUMENTATION & FIELD DEVICES

Item	Description	Units	Values
A. GENERAL			
1	Steam Drum Press. Gauge Diameter	in.	8 ½
2	Process Pressure Gauge Diameter	in.	4 ½
3	Temperature Gauge Diameter	in.	5
4	Instrument Power	Vac	120

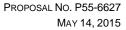
6627_TECH_R02.docx PAGE 19 OF 42

Item	Description	Units	Values
5	Instrument Air Pressure	psig	80-100
6	Transmitter Signal	mA	4-20
7	Limit Switches Included for Damper Actuators		Yes
8	Flow Element Types		Orifice Plate

2.2.7 ECONOMIZER

Item	Description	Units	Values
A. G	ENERAL		
1	Manufacturer		Applied Heat Recovery
2	Gas Flow Direction		Vertical Up
3	Water Flow Direction		Cross-Flow
4	Construction	ASME	Section I
5	Registration		NB
6	Economizer Box		
	A. Length	ft	22.00
	B. Height	ft	7.20
	C. Width	ft	6.25
	D. Duct Opening (L x W)	ft	19.00 x 5.25
	E. Dry Weight	lbs	41,975
	F. Flooded Weight	lbs	47,038
7	Economizer Tubes		
	A. Number of Tubes		196
	B. Diameter (OD)	in	2.00
	C. Thickness (MW)	in	0.105
	D. Material	ASME	SA-178A
	E. Finned or Bare Tubes		Finned
	F. Fin Density	fins/in	6
	G. Fin Thickness	in	0.05
	H. Fin Height	in	0.75
	I. Fin Material		Carbon Steel
	J. Fin Type		Serrated

6627_TECH_R02.docx PAGE 20 OF 42



Item	Description	Units	Values
	K. Tube Pitch (L x T)	in	4.5 x 4.5
8	Economizer Headers		
	A. Size	in	6
	B. Pipe Material	ASME	SA106B
	C. Connection Type		RFWN
	D. Connection Rating	ANSI	CL300
9	Economizer Construction		
	A. Inner Casing Thickness	ga	10
	B. Inner Casing Material		Carbon Steel
	C. Insulation Thickness	in	3
	D. Insulation Material		Mineral Fiber
	E. Outer Lagging Thickness	ga	30
	F. Outer Lagging Material		Corr. Steel
	G. Number of Wall Boxes for Sootblowers		0
10	Effective Heating Surface	ft ²	24,600
11	Fouling Factor (Tube / Shell)		0.001 / 0.001
12	Design Pressure	psig	450

2.2.8 STACK

Item	Description	Units	Values
A. GI	ENERAL		
1	Manufacturer		Warren Environment
2	Free-Standing (FS) or Economizer Stub Stack (ES)		FS
3	Stack Height Above Grade	ft	50
4	Shell Diameter (Top / Bottom)	in	66
5	Shell Thickness	in	3/16
6	Shell Material		A36
7	False Bottom		Yes
8	Windload		
	A. Speed	mph	90
	B. Design Standard	ASCE	7-05

6627_TECH_R02.docx PAGE 21 OF 42

2.4 APPROVED MANUFACTURERS LIST

Description	Manufacturer	Comment			
A. MAJOR EQUIPMENT					
Burners (Low NOx)	Zeeco, Inc.	Broken Arrow, OK			
Economizers	Applied Heat Recovery	Fair Oaks Ranch, TX			
Fans	Robinson Fans	Lakeland, FL			
Steam Coil Air Preheaters	Aerofin, Super Radiator Coil	Vendor To Be Determined			
Deaerator	Newterra	Trooper, PA			
Control Systems	Electro Design Engineering	Bradenton, FL			
BFW Pumps	Goulds	Supplied by D/A Vendor			
B. BOILER VALVES					
2 ½" and smaller	Vogt	S/W or THD			
2 ½" and Larger	Powell, Newco, Crane	Flanged or B/W			
Non-Return	Edward	Flanged or B/W			
Ball	Apollo	THD, S/W, or Flgd			
Steam Trap	Armstrong	THD, S/W, or Flgd			
Gage Glass Isolation	Clark-Reliance	THD			
Safety Valve	Consolidated	1811			
Pneumatic Control Valves	Fisher	667			
C. WATER LEVEL					
Probe Type Water Column	Clark-Reliance	W0350-EA4			
Gage Glass	Clark-Reliance	Prismatic Glass, C8			
Aux. Low Water Cut-out	Clark-Reliance	Probe Type, EA101SW			
D. INSTRUMENTATION					
Steam Gauge	Ashcroft	1010, 8 ½" Dia.			
Pressure Transmitter	ABB, Foxboro, Siemens, Rosemount, Yokogawa				
Temperature Transmitter	ABB, Foxboro, Siemens, Rosemount, Yokogawa				
Oxygen Transmitter	Amitek (Thermox)				
Flame Scanner	Zeeco	ProFlame			
Fan Actuators	Kinetrol				
E. FUEL TRAINS					
Pressure Gauges	Ashcroft or equal				

6627_TECH_R02.docx PAGE 29 OF 42

SECTION 4.0: SCHEDULE

	Barret Maria	Weeks ARO	
Item	Description	Unit #1	Unit #2
1	Complete Material Calculations	2	
2	Order Long Lead Time Materials (Drums & Tubes)	2	
3	Receive Tubes	12	
4	Panels Ready for Installation	24	27
5	Receive Drums at Assembly Plant	24	27
6	Pressure Part Assembly Complete and Ready for Hydro Test	30	33
7	Inner Casing Installed and Ready for Air Test	32	35
8	Install Burner	32	35
9	Boiler Finish Paint & Ready to be Shipped	34	37

Notes:

- 1) Drums and tubes are ordered immediately following B&W's acceptance of a written purchase order and completion of calculations. Drums and tubes are long lead time items that are per B&W standard designs (as allowed by ASME Code) and are not subject to approval. If approval is required before purchase of long lead time items, the fabrication completion schedule will be based on the date approval is received.
- 2) Schedule above is based on a typical schedule during normal working hours on a best-effort basis. The actual fabrication schedule may differ depending on shop loads available at time of award, holidays, and material availability. In the event a fabrication schedule must be guaranteed, additional time will be added for "float" to account for unforeseen issues that may exist during fabrication and assembly. The boilers will be built in the fastest time available under normal working conditions and may be available earlier.

SECTION 5.0: PERFORMANCE

5.1 GENERAL PERFORMANCE

All performance data listed here are based on the conditions stated below, together with all conditions appearing in the Predicted Performance section of this proposal.

All performance data and conditions listed here, including the sheets listed above, are made a part of this Proposal.

It is recognized that the performance of the equipment covered in this Proposal cannot be exactly predicted for every possible operating condition. In consequence, any predicted performance data submitted are intended to show probable operating results.

6627 TECH R02.docx PAGE 32 OF 42

CONDITIONS

Any performance curves submitted are for the PURCHASER'S convenience and the performance indicated thereon is not offered by the COMPANY, nor to be construed by the PURCHASER, as a Proposal or Contract obligation.

The general arrangement of equipment furnished by the COMPANY, and the general design and arrangement of related equipment furnished by others shall not be less favorable than indicated on the enclosed drawing(s).

The equipment shall have been erected in accordance with the COMPANY'S plans and specifications, properly maintained and operated by the PURCHASER, and shall be in operating condition satisfactory to the COMPANY. The heat absorbing surfaces shall be clean inside and out.

5.2 GUARANTEED PERFORMANCE CONDITIONS

- 1. **EXCESS AIR.** The excess air in gas leaving the furnace shall be determined by sampling uniformly across the width of the furnace. There shall be no delayed combustion beyond the furnace outlet.
- 2. <u>WATER.</u> The condition of the concentrated boiler water shall be such that the total alkalinity and total suspended solids do not exceed the respective amounts corresponding to the drum pressure as tabulated below:

Drum Pressure, PSIG	Total Solids Boiler Water, PM (MAX)	Total Alkalinity Boiler Water PPM	Suspended Solids Boiler Water PPM (MAX)	Max pH
0-300	3500-700	700-140	10	11.4
301-450	3000-600	600-120	8	11.4
451-600	2500-500	500-100	6	11.4
601-750	2000-400	400-80	4	11.2
751-900	1500-300	300-60	2	11.2
901-1000	1250-250	250-50	1	11.2

Maximum allowable boiler water solids concentration in the steam drum is given in the Guaranteed Performance portion of this Proposal. Chemicals used for internal treatment should be supplied to the boiler preferably through a separate boiler connection, used exclusively for that purpose, and in such a manner as to prevent deposits on drum internals which would interfere with proper operation.

Samples of water for testing shall be taken from the continuous blowdown, if installed, otherwise through a suitable located sampling pipe. Samples are taken through a cooling coil to prevent flashing. Sampling and determination of boiler water conditions shall be under the methods contained in Publication D-3370 of the American Society for Testing and Materials.

3. **<u>RESPONSIBILITY.</u>** The treatment of feedwater and the conditioning of boiler water are beyond the control of the COMPANY. Therefore, the COMPANY shall not be held responsible for the deterioration of performance caused by the presence of oil, grease, scale or deposits on the internal surfaces of the equipment; or, by the chemical conditions of the boiler water that results in foaming, corrosion or

6627 TECH R02.docx PAGE 33 OF 42

caustic embrittlement. The COMPANY shall not be responsible for moisture carry-over with the steam resulting from the presence of oil, grease or other foam-inducing materials. B&W water treatment recommendations are available on request and are a part of the operating instructions furnished with the equipment.

4. <u>TEST PROCEDURES FOR SOLIDS IN STEAM.</u> Samples of condensed steam for determination of solids shall be obtained in accordance with the method specified in the latest edition of the "Method of Sampling Steam" (ASTM D-1066), published by the American Society for Testing and Materials.

There are two commonly accepted methods for the determination of solids in steam. These are:

- 4.1 Sodium tracer method for total solids
- 4.2 Gravimetric method for total solids.

The sodium tracer method is preferred. This method is outlined in ASTM Standard, Designation (ASTM D-2186) entitled "Standard Test Methods for Deposit-Forming Impurities in Steam". This method is the most applicable, sensitive, and repeatable measure of total solids in a condensed steam sample taken from an operating steam generator.

5. PERFORMANCE TESTS. Performance tests, if required, shall be run within 30 days after the PURCHASER shall have received notice from the COMPANY that the equipment furnished is ready for testing, it being understood that the COMPANY may require preliminary tests. Tests shall be conducted only on one representative unit mutually agreed upon by the PURCHASER and the COMPANY. The PURCHASER, at his own expense, shall make all preparations, furnish all operating and testing personnel and incur all expenses connected with such tests, and shall give to the COMPANY at least 15 days notice of the date or dates on which tests will be made.

The COMPANY'S representative shall have access to the records at all times, and the test shall be conducted in such a manner as to satisfy the COMPANY that the specified performance conditions are being maintained. A complete copy of the test data and results shall be furnished to the COMPANY.

The equipment shall be considered as accepted if tests show that the guarantees, if made, have been fulfilled, or if the PURCHASER shall fail to have said equipment tested within period mentioned. In case of failure to meet performance guarantees, the COMPANY reserves the right to change or replace the equipment furnished so that guaranteed performance will be obtained.

Performance tests, if required, and performance calculations shall be made in accordance with the applicable ASME Test Form for Abbreviated Efficiency Tests in the latest edition of the PTC 4.1 "Steam Generating Units-Power Test Code" of The American Society of Mechanical Engineers and the measure of performance shall be the results of such tests. Performance calculations shall be based on the ASME Steam Tables published in 1967. Performance tests for boiler efficiency shall be made on the basis of the Heat Loss Method.

6. <u>HYDROSTATIC PRESSURE TESTING.</u> The COMPANY'S standard test procedure requirements for the shop-assembled, pressure-fired package boiler prior to shop application of insulation and outer casing, is as follows:

6627 TECH R02.docx PAGE 34 OF 42

The hydrostatic test shall be done after expanding the tubes in to the drums. The boiler hydro tests all steam/water pressure parts at 1-1/2 times the maximum allowable working pressure (MAWP). The hydro test pressure is held for fifteen minutes. The test pressure is then reduced to and held at the MAWP while visually inspecting all welding and the complete vessel.

7. <u>AIR PRESSURE TESTING.</u> The COMPANY'S standard test procedure requirements for the shop-assembled, pressure-fired package boiler prior to shop application of insulation and outer casing, is as follows:

The inner casing of the shop-assembled water tube unit, which is normally operated under pressure, shall be shop tested pneumatically at 1-1/2 times the lowest design pressure of any part within the enclosure with a minimum of 10" WG and a maximum of 20" WG. Any leakage in the enclosure shall be located by soap-bubble test and rewelded where leakage occurs, regardless of the amount of leakage. When bottled up, the unit will be considered tight when the pressure drop from the test pressure does not exceed one inch of water in twenty minutes. Heat reclaiming apparatus shall be excluded from the test.

8. NOISE LEVELS. Since the site and other environmental conditions are both unknown and beyond the control of the COMPANY and relative locations of equipment not furnished by the COMPANY enter into noise level measurements, any noise level data submitted by the COMPANY or its vendors to the PURCHASER shall be considered informative only and shall not be construed as a warranty or guarantee that the equipment or any component thereof will, in service, comply with any noise level rules and regulations including those of OSHA and the Walsh-Healy Act.

Cooperation between the PURCHASER, the PURCHASER'S engineers and the COMPANY in the arrangement of equipment will be utilized in the design stage in efforts to achieve compliance with noise level rules and regulations, provided that the contract price and schedule shall be subject to appropriate adjustment should equipment rearrangement be required.

6627 TECH R02.docx PAGE 35 OF 42

5.3 GUARANTEED PERFORMANCE

Subject to the conditions in the preceding standard Performance Forms, together with those special conditions (if any) accompanying specific guarantees, the COMPANY makes the following guarantees:

5.3.1 BOILER PERFORMANCE

Based on the unit being fired with the specified Natural Gas, and on the other performance conditions shown in the Predicted Performance Section, at the capacity of 230,000 lbs/hr at 300 psig at the main steam stop valve outlet nozzle with a feedwater temperature of 227°F at the Economizer inlet:

- 1. The boiler will have a maximum normal capacity of 230,000 lbs/hr at 300 psig at the main steam stop valve outlet nozzle with a feedwater temperature of 227°F at the Economizer inlet.
- 2. The average solids content in the steam leaving the boiler will not exceed 3 ppm with a boiler water solids concentration of 3000 ppm.
- 3. Noise level see statement in Performance Section of Proposal.

5.3.2 EFFICIENCY

Based on the unit being fired with the specified Natural Gas, and on the other performance conditions shown in the Predicted Performance Section, at the capacity of 230,000 lbs/hr at 300 psig at the main steam stop valve outlet nozzle with a feedwater temperature of 227°F at the Economizer inlet:

1. The efficiency of the unit will not be less than 84.33 percent. The following stipulations apply:

5.3.3 EMISSIONS

Based on the unit being fired with the specified Natural Gas, and on the other performance conditions shown in the Predicted Performance Section, at the capacity of 230,000 lbs/hr at 300 psig at the main steam stop valve outlet nozzle with a feedwater temperature of 227°F at the Economizer inlet, the COMPANY guarantees that the unit is capable of being operated to attain at the unit outlet, (provided the boiler and auxiliary equipment are operated according to the Company's recommendations:)

The following performance guarantees will be extended from twenty-five (25) to one hundred (100) percent of boiler load, provided that the system is operated at steady state conditions, in accordance with the Burner Design Basis and Predicted Performance:

 Maximum emission levels on natural gas, with all concentrations corrected to 3% oxygen, on a dry basis:

EMISSION	PPM	LB/MMBTU	LB/HR	Ton/yr
NOx	30	0.036	9.96	43.48
СО	50	0.037	10.23	44.69

Note: Ton/yr is based on a max heat input of 276.50 mmBtu/hr at 100% MCR, 24hr/day, 8,736 hr/yr $\,$

6627 TECH R02.docx PAGE 36 OF 42

5.3.3 PERFORMANCE DISCLAIMER

All performance specifications stated throughout this proposal are intended to show probable operating results only which cannot be guaranteed except as expressly stated in the guarantees.

The test procedure for flue gas emissions shall be in general accordance with EPA reference test methods as published in the current (as of proposal date) Codes of Federal Regulations, Title 40, Part 60, Appendix A. Specifically the COMPANY shall use the following test method:

Parameter EPA Reference Method

O2 M-3A
Particulate (PM10) M-5
SO2 M-6

NOX M-7 through M-7E

CO M-10
Emissions Rate M-19
UBHC M-25A
VOC M-25A

Additionally, heat input and volumetric flue gas flow rates, determined by EPA Method 2, shall be confirmed by heat and material balance in general accordance with the ASME Power Test Code 4.1.

INASMUCH AS OPERATION OF THE EQUIPMENT SUPPLIED HEREUNDER IS TO BE WITHIN THE CONTROL OF THE PURCHASER, AND COMPANY HAS EXCLUSIVELY SET OUT HEREIN ITS GUARANTEES, NO OTHER GUARANTEE, WARRANTY OR REPRESENTATION IS MADE OR TO BE IMPLIED THAT THE OPERATION OF EQUIPMENT TO BE SUPPLIED HEREUNDER WILL COMPLY WITH FEDERAL, STATE OR LOCAL LAWS OR REGULATIONS GOVERNING ENVIRONMENTAL IMPACT.

FURTHER, THE COMPANY AND THE PURCHASER AGREE THAT IN CONSIDERATION OF THE ABOVE EXPRESS PERFORMANCE GUARANTEES THAT ALL OTHER PERFORMANCE GUARANTEES EITHER EXPRESSED OR IMPLIED, WHETHER ARISING UNDER LAW OR EQUITY, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXCLUDED FROM THIS CONTRACT.

The Material and Workmanship Warranty is set forth in Babcock & Wilcox Power Generation Group, Inc. Terms of Sale.

6627 TECH R02.docx PAGE 37 OF 42

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 28E

1. 1	Name or type and model of proposed affected source:
CT-	-2335 - Cooling Tower Basin. Tower model number: F448A40D.003A
r	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. 1	Name(s) and maximum amount of proposed process material(s) charged per hour:
Wa	tter: 34,500 gallons per minute = 2,070,000 gallons per hour.
4	Name (a) and maximum amount of proposed material (a) produced per bour
4. ľ	Name(s) and maximum amount of proposed material(s) produced per hour:
5. (Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	mbustion Dat	a (if applica	able):			
	(a)	Type and amount in appropriate units of fuel(s) to be burned:					
N.	A						
	(b)	Chemical an and ash:	alysis of pr	oposed fuel(s), ex	cluding coal, in	icluding maximi	um percent sulfur
N.	A						
	(c)	Theoretical of	combustion	air requirement (ACF/unit of fue	l):	
		NA	@	NA	°F and	NA	psia.
				1,11			polai
	(d)	Percent exce	ess air: N	NA			
	(e)	Type and BT	U/hr of bu	rners and all othe	r firing equipme	ent planned to b	e used:
N.	А						
11.							
	(f)	If coal is proposal as it will		source of fuel, id	entify supplier a	and seams and	give sizing of the
N.	A						
	(g)	Proposed ma	aximum de	sign heat input:	N	'A	× 10 ⁶ BTU/hr.
7.	Pro	jected operat	ting schedu	ıle:			
Ho		Day	24	Days/Week	7	Weeks/Year	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	°F and				psia	
a.	NO _X	0	lb/hr	0	grains/ACF	
b.	SO ₂	0	lb/hr	0	grains/ACF	
c.	СО	0	lb/hr	0	grains/ACF	
d.	PM ₁₀	0.94	lb/hr		grains/ACF	
e.	Hydrocarbons	0	lb/hr	0	grains/ACF	
f.	VOCs	0	lb/hr	0	grains/ACF	
g.	Pb	0	lb/hr	0	grains/ACF	
h.	Specify other(s)					
			lb/hr		grains/ACF	
			lb/hr		grains/ACF	
			lb/hr		grains/ACF	
			lb/hr		grains/ACF	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate its.
	RECORDKEEPING
See Attachment O	See Attachment O
REPORTING	TESTING
See Attachment O	See Attachment O
MONITORING. PLEASE LIST AND DESCRIBE THE PROPOSED TO BE MONITORED IN ORDER TO DEMON	STRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	'OSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORD RECORD R	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	

Table 1
Cooling Tower Make-up Water Quality

	Units	Average Concentration
Cations:		
Calcium	mg/L as Ca	25
Magnesium	mg/L as Mg	< 0.2
Sodium	mg/L	127
Potassium	mg/L	< 0.5
Barium	mg/L	< 0.5
Strontium	mg/L	< 0.5
Total Iron	mg/L	< 0.1
Ammonium	mg/L	3.7
Manganese	mg/L	< 0.1
Lithium	mg/L	< 0.5
Anions:		
Bicarbonate	mg/L	146
Carbonate	mg/L	0.3
Hydroxide	mg/L	0.0
Sulfate	mg/L	< 10
Bromide	mg/L	< 0.2
Chloride	mg/L	95
Nitrate	mg/L	133
Other Constituents:		
рН	S.U.	7.5 – 8.5
Water Temperature	deg F	80 - 90
Silica	mg/L	< 0.5
Total Dissolved Solids (calculated)	mg/L	545
Total Alkalinity	mg/L as CaCO ₃	121
Total Suspended Solids	mg/L	< 25
Free Oil & Grease (> 20 µm)	mg/L	< 0.5

Table 2
Circulation Water Quality (based on 10 COC)

	Units	Average Concentration
Cations:		
Calcium	mg/L as Ca	< 250
Magnesium	mg/L as Mg	< 0.2
Sodium	mg/L	< 1,269
Potassium	mg/L	< 0.5
Barium	mg/L	< 0.5
Strontium	mg/L	< 0.5
Total Iron	mg/L	< 0.1
Ammonium	mg/L	< 37.5
Manganese	mg/L	< 0.1
Lithium	mg/L	< 0.5
Anions:		
Bicarbonate	mg/L	< 1,460
Carbonate	mg/L	< 3.1
Hydroxide	mg/L	< 0.1
Sulfate	mg/L	< 10
Bromide	mg/L	< 0.2
Chloride	mg/L	< 950
Nitrate	mg/L	< 1,328
Other Constituents:		
рН	S.U.	7.5 – 8.5
Water Temperature	deg F	80 - 90
Silica	mg/L	< 0.5
Total Dissolved Solids (calculated)	mg/L	< 5,450
Total Alkalinity	mg/L as CaCO ₃	< 1,205
Total Suspended Solids	mg/L	< 25
Free Oil & Grease (> 20 µm)	mg/L	< 0.5

DESIGN CONDITIONS: Flow 34,500 gpm Hot Water 99.2 °F

Cold Water 85 °F Wet Bulb 78 °F

Plume Abatement

TOWER DESCRIPTION: Model F448A40D3.003A

Number of Cells 3

Pump Head 21.59 ft Fan Diameter 14 ft

Motor Size 3 @ 200 Hp Brake Horsepower 3 @ 199.5 BHp

Evaporation 472 gpm Drift Rate 0.001 %

TOWER DIMENSION: Tower Width 54 ft

Tower Length 126 ft Tower Height 38.84 ft Fan Deck Height 25.09 ft

BASIN DIMENSION: Basin Width 54 ft

Basin Length 126 ft

Waste Gas Header	Storage Tanks	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

Bulk Storage Area Name	2. Tank Name			
Pre-Treatment	Clarifier Tanks A & B			
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-1055A and TK-1055B 	4. Emission Point Identification No. (as assigned on Equipment List Form) 5E and 6E			
Date of Commencement of Construction (for existing tanks)				
6. Type of change ☐ New Construction ☐ I	New Stored Material			
7. Description of Tank Modification (if applicable) NA				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)			
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be			
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production			
II. TANK INFORM	ATION (required)			
height.	the internal cross-sectional area multiplied by internal gallons each			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
~75	~17			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
~16	~16			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
1	1			
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 5 gallons each			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
1,052,776,800 total for both	12,546,720 total for both			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)995 each				
15. Maximum tank fill rate (gal/min) 8,713				
16. Tank fill method				
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof	double deck roof pport self-supporting			
☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivets			
20A. Shell Color 20B. Roof Color	T .			
21. Shell Condition (if metal and unlined): ☑ No Rust ☐ Light Rust ☐ Dense Ru	ust ☐ Not applicable			
22A. Is the tank heated? YES NO	ast Inot applicable			
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to ta	ank.			
23. Operating Pressure Range (psig): atmospheric				
24. Complete the following section for Vertical Fixed Ro	of Tanks			
24A. For dome roof, provide roof radius (ft) 37.5				
24B. For cone roof, provide slope (ft/ft) NA				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	<u> </u>			
25C. Is the Floating Roof equipped with a Secondary S	Seal?			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shie	eld?			

25F. Describe deck fittings; indicat	e the number of ea	ch type of fitting:			
25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH					
BOLT COVER, GASKETED:					
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
COLUMN WELL BUILT-UP COLUMN – SLIDING BUILT-UP COLUMN – SLIDING PIPE COLUMN – FLEXII COVER, GASKETED: FABRIC SLEEVE SEAL:					
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGASKETE					
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:		
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
OPEN:	DECK DRAIN (3-	INCH DIAMETER) 90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal F	Floating Roof Tanks	□ Does Not Apply			
26A. Deck Type:	lded				
26B. For Bolted decks, provide deck construc	ction:				
26C. Deck seam:					
Continuous sheet construction 5 feet wid					
Continuous sheet construction 6 feet wid					
Continuous sheet construction 5 x 7.5 fe	et wide				
☐ Continuous sheet construction 5 x 12 fee ☐ Other (describe)	et wide				
Guier (describe)					
26D. Deck seam length (ft)	26E. Are	ea of deck (ft ²)			
For column supported tanks:	26G. Dia	ameter of each column:			
26F. Number of columns:					
IV. SITE INFORMANTION (
27. Provide the city and state on which the data Elkins, West Virginia	in this section are ba	isea.			
28. Daily Average Ambient Temperature (°F)	49.0	06			
29. Annual Average Maximum Temperature (°F	i) 61.1	5			
30. Annual Average Minimum Temperature (°F)	36.9	7			
31. Average Wind Speed (miles/hr)	6.17				
32. Annual Average Solar Insulation Factor (BT	U/(ft²·day)) 1,19	73.89			
33. Atmospheric Pressure (psia)	13.7	73			
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)					
34. Average daily temperature range of bulk liqu	uid:				
34A. Minimum (°F) 20	34B. Ma	aximum (°F) 80			
35. Average operating pressure range of tank:					
35A. Minimum (psig) atmospheric	35B. Ma	aximum (psig) atmospheric			
36A. Minimum Liquid Surface Temperature (*	rresponding Vapor Pressure (psia)			
20	0.0				
37A. Average Liquid Surface Temperature (° 50	F) 37B. Co	rresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (rresponding Vapor Pressure (psia)			
80	0.5	1			
39. Provide the following for each liquid or gas t	o be stored in tank. A	Add additional pages if necessary.			
39A. Material Name or Composition	Influent Water				
39B. CAS Number					
39C. Liquid Density (lb/gal)	8.34				
39D. Liquid Molecular Weight (lb/lb-mole)	18				
39E. Vapor Molecular Weight (lb/lb-mole)	18				

				1		
Maximum Vapor Press 39F. True (psia)	sure					
39G. Reid (psia)						
Months Storage per Y	ear					
39H. From		Jan	nuary			
39I. To		I .	ember			
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	Devices (check as man	y as apply):	☐ Does No	t Apply		
Carbon Adsorp	otion'					
☐ Condenser ¹						
☐ Conservation \	•,		D	. 445		
Vacuum S	•		Pressure Se	etting		
☐ Emergency Re	lief Valve (psig)					
Insulation of Ta						
Liquid Absorpti						
Refrigeration o	,					
Rupture Disc (
	ator ¹ (Thermal Oxidizer)				
☐ Other¹ (describ	•	,				
¹ Complete appropriate Air Pollution Control Device Sheet.						
¹ Complete approp	oriate Air Pollution Cont	rol Device S	Sheet.			
	oriate Air Pollution Cont n Rate (submit Test Da			or elsewhere in the a	pplication).	
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul				
		ta or Calcul	ations here	or elsewhere in the a Annual Loss (lb/yr)	pplication). Estimation Method ¹	
41. Expected Emissio Material Name &	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss		
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr)		
41. Expected Emissio Material Name & CAS No. VOCs as oil	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1		
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5	Estimation Method ¹ O, WATER9	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5 6.8	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5 6.8 0.012	Estimation Method ¹ O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5 6.8 0.012 0.14	Estimation Method ¹ O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5 6.8 0.012 0.14 0.36	Estimation Method ¹ O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da Breathing Loss	ta or Calcul	ations here	Annual Loss (lb/yr) 2,685.1 1,682.5 6.8 0.012 0.14 0.36 0.00061	Estimation Method ¹ O, WATER9 (Combined Total of	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

Bulk Storage Area Name	2. Tank Name		
Pre-Treatment	Clarifier Pump Tanks A & B		
Tank Equipment Identification No. (as assigned on Equipment List Form) TK-1060A and TK-1060B			
5. Date of Commencement of Construction (for existing tanks)			
6. Type of change ☐ New Construction ☐ I	New Stored Material		
7. Description of Tank Modification (if applicable)			
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)		
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be		
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production		
II. TANK INFORM	ATION (required)		
height.	the internal cross-sectional area multiplied by internal gallons each		
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)		
14	20		
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)		
18	18		
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)		
2	2		
liquid levels and overflow valve heights.	is also known as "working volume" and considers design		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
1,029,650,400 for both	12,373,920 for both			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 24,515 each				
15. Maximum tank fill rate (gal/min) 8,593				
16. Tank fill method	⊠ Splash ☐ Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems 🔀 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): □ Fixed Roof X vertical horizontal flat roof cone roof X dome roof □ other (describe) □ External Floating Roof pontoon roof double deck roof □ Domed External (or Covered) Floating Roof □ Internal Floating Roof vertical column support self-supporting □ Variable Vapor Space lifter roof diaphragm □ Pressurized spherical cylindrical				
☐ Underground ☐ Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivets			
20A. Shell Color 20B. Roof Color	T			
21. Shell Condition (if metal and unlined):				
No Rust	ust Not applicable			
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to ta	ank.			
23. Operating Pressure Range (psig): atmospheric				
24. Complete the following section for Vertical Fixed Ro	of Tanks			
24A. For dome roof, provide roof radius (ft) 7				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks 🖂 Does Not Apply				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	<u> </u>			
25C. Is the Floating Roof equipped with a Secondary S	Seal?			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather shie	eld?			

25F. Describe deck fittings; indicat	e the number of ea	ch type of fitting:			
25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH					
BOLT COVER, GASKETED:					
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
COLUMN WELL BUILT-UP COLUMN – SLIDING BUILT-UP COLUMN – SLIDING PIPE COLUMN – FLEXII COVER, GASKETED: FABRIC SLEEVE SEAL:					
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGASKETE					
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:		
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
OPEN:	DECK DRAIN (3-	INCH DIAMETER) 90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply					
26A. Deck Type: Bolted We	elded				
26B. For Bolted decks, provide deck constru	uction:				
26C. Deck seam:					
Continuous sheet construction 5 feet wi Continuous sheet construction 6 feet wi					
Continuous sheet construction 7 feet wi					
Continuous sheet construction 5 × 7.5 f					
☐ Continuous sheet construction 5 × 12 fe ☐ Other (describe)	eet wide				
26D. Deck seam length (ft)	26		ea of deck (ft ²)		
For column supported tanks:	26	G. Dia	ameter of each column	:	
26F. Number of columns:	/ · · · · · · · ·	·			
IV. SITE INFORMANTION 27. Provide the city and state on which the dat	• •		•	ts)	
Elkins, West Virginia	a III IIIIS SECIIC	ii aie ba	iseu.		
28. Daily Average Ambient Temperature (°F)		49.0)6		
29. Annual Average Maximum Temperature (°	F)	61.1	5		
30. Annual Average Minimum Temperature (°F	-)	36.9	7		
31. Average Wind Speed (miles/hr)		6.17	,		
32. Annual Average Solar Insulation Factor (B	TU/(ft²-day))	1,19	3.89		
33. Atmospheric Pressure (psia) 13.73					
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)					
34. Average daily temperature range of bulk lic	quid:				
34A. Minimum (°F) 20	34	В. Ма	ximum (°F) 80		
35. Average operating pressure range of tank:					
35A. Minimum (psig) atmospheric	35	В. Ма	aximum (psig) atmos	spheric	
36A. Minimum Liquid Surface Temperature	(°F) 36		rresponding Vapor Pre	ssure (psia)	
20	.=\	0.0			
37A. Average Liquid Surface Temperature (50	°F) 37	B. Co 0.1	rresponding Vapor Pre	ssure (psia)	
38A. Maximum Liquid Surface Temperature	(°F) 38		rresponding Vapor Pre	ssure (psia)	
80		0.5		(F 0.0.)	
39. Provide the following for each liquid or gas	to be stored i	ı tank. /	Add additional pages if	necessary.	
39A. Material Name or Composition	Clarifier Ef	ulent			
39B. CAS Number					
39C. Liquid Density (lb/gal)	8.34				
39D. Liquid Molecular Weight (lb/lb-mole)	1	8			
39E. Vapor Molecular Weight (lb/lb-mole)	1	8			

				1		
Maximum Vapor Press 39F. True (psia)	sure					
39F. True (psia) 39G. Reid (psia)						
Months Storage per Y	ear					
39H. From		Jan	nuary			
39I. To			ember			
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	Devices (check as man	y as apply):	☐ Does No	t Apply		
Carbon Adsorp	otion'					
☐ Condenser ¹						
☐ Conservation \	•,		D			
Vacuum S	J		Pressure Se	etting		
☐ Emergency Re	elief Valve (psig)					
Insulation of Ta						
Liquid Absorpti						
Refrigeration o	` ,					
Rupture Disc (
	ator ¹ (Thermal Oxidizer)				
☐ Other¹ (describ	•	,				
¹ Complete appropriate Air Pollution Control Device Sheet.						
¹ Complete approp	oriate Air Pollution Cont	trol Device S	Sheet.			
	oriate Air Pollution Cont n Rate (submit Test Da			or elsewhere in the a	application).	
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul				
		ta or Calcul	ations here	or elsewhere in the a Annual Loss (lb/yr)	epplication). Estimation Method ¹	
41. Expected Emissio Material Name &	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss		
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr)		
41. Expected Emissio Material Name & CAS No. VOCs as oil	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7		
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2	Estimation Method ¹ O, WATER9	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2 3.5	Estimation Method ¹	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2 3.5 0.00020	O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2 3.5 0.00020	O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2 3.5 0.00020 0.22 0.36	O, WATER9 (Combined Total of	
41. Expected Emissio Material Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 335.7 9.2 3.5 0.00020 0.22 0.36 0.000017	O, WATER9 (Combined Total of	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name
	Pre-Treatment		Oil Collection Tank
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-1065	4.	Emission Point Identification No. (as assigned on Equipment List Form) 9E
5.	Date of Commencement of Construction (for existing	tank	(s)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.		
9A.	Tank Internal Diameter (ft)	_	Tank Internal Height (or Length) (ft)
	12		16
10A	A. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)
	15		8
11A	A. Maximum Vapor Space Height (ft)	11E	3. Average Vapor Space Height (ft)
	1		8
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights. 12,69		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
8,935,200	64,800
14. Number of Turnovers per year (annual net throughpu	t/maximum tank liquid volume) 704
15. Maximum tank fill rate (gal/min) 45	
16. Tank fill method	⊠ Splash ☐ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tail	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply):	double deck roof pport self-supporting
☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe)	
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d rivets
20A. Shell Color 20B. Roof Color	
21. Shell Condition (if metal and unlined):	
⊠ No Rust	ust Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to to	ank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	of Tanks
24A. For dome roof, provide roof radius (ft) 6	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tai	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	·
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one)
25E. Is the Floating Roof equipped with a weather ship	eld?

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
	GASKETED:				
l i					
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:				
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:				
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:					
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating I	Roof Tanks 🔲 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
	2
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this s	, ,
Elkins, West Virginia	ootion are paded.
28. Daily Average Ambient Temperature (°F)	49.06
29. Annual Average Maximum Temperature (°F)	61.15
30. Annual Average Minimum Temperature (°F)	36.97
31. Average Wind Speed (miles/hr)	6.17
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y)) 1,193.89
33. Atmospheric Pressure (psia)	13.73
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure				
39F. True (psia)					
39G. Reid (psia) Months Storage per Ye	nor .				
39H. From	zai	Jan	nuary		
39I. To			•		
39I. To December VI. EMISSIONS AND CONTROL DEVIC			F DATA (required)		
40. Emission Control [· · · · ·	
☐ Carbon Adsorp		y do apply).		, , , , , , , , , , , , , , , , , , ,	
Condenser ¹	don				
☐ Conservation V	(ont (noig)				
Vacuum S	·· = ·		Drocouro S	ottin a	
	•		Pressure S	etting	
_ ,	lief Valve (psig)				
☐ Inert Gas Blank					
☐ Insulation of Ta					
Liquid Absorption	,				
Refrigeration of					
Rupture Disc (p	= '				
	ator ¹ (Thermal Oxidizer)			
Other ¹ (describ		_			
' Complete approp	oriate Air Pollution Cont	rol Device S	Sheet.		
	- Data /alaask Taat Da	(^ - 1 - 1			11 41 \
41. Expected Emission	n Rate (submit Test Da	ta or Calcula	ations here	or elsewhere in the ap	plication).
41. Expected Emission Material Name &	Breathing Loss	Workin		or elsewhere in the ap Annual Loss	
l i		I .		Ī	Estimation Method ¹
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name
	Pre-Treatment		Equalization Tank
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-1070	4.	Emission Point Identification No. (as assigned on Equipment List Form) 10E
5.	Date of Commencement of Construction (for existing	tank	(s)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.		
9A.	Tank Internal Diameter (ft)		Tank Internal Height (or Length) (ft)
	~56		~56
10 <i>P</i>	A. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)
	48		48
11/	A. Maximum Vapor Space Height (ft)	11E	Average Vapor Space Height (ft)
	8		8
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,029,650,400	12,096,000
14. Number of Turnovers per year (annual net throughpu1	t/maximum tank liquid volume) I,144
15. Maximum tank fill rate (gal/min) 8,400	
16. Tank fill method	⊠ Splash ☐ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tar	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su	double deck roof
 □ Variable Vapor Space lifter roof □ Pressurized spherical cylindrical □ Underground □ Other (describe) 	
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d rivets
20A. Shell Color 20B. Roof Color	
21. Shell Condition (if metal and unlined): ☑ No Rust ☐ Light Rust ☐ Dense R	ust ☐ Not applicable
22A. Is the tank heated? ☐ YES ☐ NO	
22B. If YES, provide the operating temperature (°F)	greater than or equal to 20 deg F
22C. If YES, please describe how heat is provided to to	ank. Via steam-powered pick heater (H-1073)
23. Operating Pressure Range (psig): atmospheric	2
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 28	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tai	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	·
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one)
25E. Is the Floating Roof equipped with a weather ship	eld?

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
	GASKETED:				
l i					
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:				
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:				
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:					
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal F	loating Roof Tanks	□ Does Not Apply
26A. Deck Type: Bolted Wel	ded	
26B. For Bolted decks, provide deck construc	ction:	
26C. Deck seam:		
☐ Continuous sheet construction 5 feet wid ☐ Continuous sheet construction 6 feet wid		
Continuous sheet construction 6 feet wid		
Continuous sheet construction 5 x 7.5 fe	et wide	
☐ Continuous sheet construction 5 x 12 fee☐ Other (describe)	et wide	
- Guilor (dosoniso)		
26D. Deck seam length (ft)	26E. Are	ea of deck (ft ²)
For column supported tanks:	26G. Dia	ameter of each column:
26F. Number of columns:		
IV. SITE INFORMANTION (27. Provide the city and state on which the data	· · ·	
Elkins, West Virginia	in this section are ba	sea.
28. Daily Average Ambient Temperature (°F)	49.0	06
29. Annual Average Maximum Temperature (°F) 61.1	5
30. Annual Average Minimum Temperature (°F)	36.9	7
31. Average Wind Speed (miles/hr)	6.17	
32. Annual Average Solar Insulation Factor (BT	U/(ft²·day)) 1,19	3.89
33. Atmospheric Pressure (psia)	13.7	3
V. LIQUID INFORMATION (optional if providing T	TANKS Summary Sheets)
34. Average daily temperature range of bulk liqu	uid:	
34A. Minimum (°F) 20	34B. Ma	ximum (°F) 80
35. Average operating pressure range of tank:		
35A. Minimum (psig) atmospheric	35B. Ma	aximum (psig) atmospheric
36A. Minimum Liquid Surface Temperature (,	rresponding Vapor Pressure (psia)
20	0.0	
37A. Average Liquid Surface Temperature (°I 50	F) 37B. Co	rresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (rresponding Vapor Pressure (psia)
80	0.5	
39. Provide the following for each liquid or gas to		Add additional pages if necessary.
39A. Material Name or Composition	Pre-treated Influent	
39B. CAS Number		
39C. Liquid Density (lb/gal)	8.35	
39D. Liquid Molecular Weight (lb/lb-mole)	18	
39E. Vapor Molecular Weight (lb/lb-mole)	18	

		•				
Maximum Vapor Press	sure					
39F. True (psia) 39G. Reid (psia)						
Months Storage per Y	ear					
39H. From	 -	Jan	nuary			
39I. To		Dec	ember			
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	Devices (check as man	y as apply):	☐ Does No	t Apply		
Carbon Adsorp	otion ¹					
Condenser ¹						
☐ Conservation \	•,			_		
Vacuum S	· ·		Pressure Se	etting		
	lief Valve (psig)					
☐ Inert Gas Blanl						
☐ Insulation of Ta						
☐ Liquid Absorpti	,					
☐ Refrigeration o ☐ Rupture Disc (
	ator ¹ (Thermal Oxidizer	١				
☐ Other¹ (describ	•	,				
	,	rol Device S	Sheet.			
¹ Complete approp	oriate Air Pollution Cont			or elsewhere in the	application).	
¹ Complete approp 41. Expected Emissio	oriate Air Pollution Cont n Rate (submit Test Da	ta or Calcul	ations here		application).	
¹ Complete approp	oriate Air Pollution Cont		ations here	or elsewhere in the a Annual Loss (lb/yr)	application). Estimation Method ¹	
¹ Complete approp 41. Expected Emissio Material Name &	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss		
1 Complete approp 41. Expected Emissio Material Name & CAS No.	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr)		
1 Complete appropriate A1. Expected Emission Material Name & CAS No. VOCs as oil	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2		
1 Complete appropriate Appropr	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2		
1 Complete appropriate Appropriate Appropriate Appropriate Appropriate Ammonia Benzene	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2 11.1 4.2		
1 Complete appropriate Appropriate Appropriate Appropriate Ammonia Benzene 3&4 Methylbenzene	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2 11.1 4.2 0.00058	Estimation Method ¹	
1 Complete appropriate Appropriate Appropriate Appropriate Ammonia Benzene 3&4 Methylbenzene Cumene	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2 11.1 4.2 0.00058	Estimation Method ¹	
1 Complete appropriate Appropriate Appropriate Appropriate Americal Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2 11.1 4.2 0.00058 0.27 0.45	Estimation Method ¹	
1 Complete appropriate Appropriate Appropriate Appropriate Americal Name & CAS No. VOCs as oil Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	oriate Air Pollution Cont n Rate (submit Test Da Breathing Loss	ta or Calcula	ations here	Annual Loss (lb/yr) 399.2 11.1 4.2 0.00058 0.27 0.45 0.000079	Estimation Method ¹	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name
	Pre-Treatment		Solids Clarifier Tank
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-2010	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 11E
5.	Date of Commencement of Construction (for existing	tank	(S)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATIO	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.		
9A.	Tank Internal Diameter (ft)	_	Tank Internal Height (or Length) (ft)
	66		17
10 <i>P</i>	A. Maximum Liquid Height (ft)	10E	Average Liquid Height (ft)
	16		16
11/	A. Maximum Vapor Space Height (ft)	11E	Average Vapor Space Height (ft)
	1		1
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights. 409,4		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,081,159,200	3,412,800
14. Number of Turnovers per year (annual net throughpu	t/maximum tank liquid volume) 2,640
15. Maximum tank fill rate (gal/min) 2,370	
16. Tank fill method	⊠ Splash ☐ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe)	double deck roof pport self-supporting diaphragm
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d sirrata
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated 20A. Shell Color 20B. Roof Color	
21. Shell Condition (if metal and unlined):	
	ust
22A. Is the tank heated? ☐ YES ☐ NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to ta	ank.
23. Operating Pressure Range (psig): atmospheric	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 33	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tar	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	<u> </u>
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shie	eld?

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
	GASKETED:				
l i					
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:				
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:				
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:					
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal	Floating Roof Tanks	□ Does Not Apply	,
26A. Deck Type: Bolted We	elded		
26B. For Bolted decks, provide deck constru	iction:		
26C. Deck seam:			
Continuous sheet construction 5 feet wi Continuous sheet construction 6 feet wi			
Continuous sheet construction 7 feet wi	de		
☐ Continuous sheet construction 5 × 7.5 f ☐ Continuous sheet construction 5 × 12 fe			
Other (describe)	ot wide		
	005 4	(,2)	
26D. Deck seam length (ft)		ea of deck (ft²)	
For column supported tanks: 26F. Number of columns:	26G. Di	ameter of each column:	
IV. SITE INFORMANTION	(optional if providing	TANKS Summary Sheet	s)
27. Provide the city and state on which the data			
Elkins, West Virginia			
28. Daily Average Ambient Temperature (°F)	49.	06	
29. Annual Average Maximum Temperature (°	F) 61.1	15	
30. Annual Average Minimum Temperature (°F	36.9	97	
31. Average Wind Speed (miles/hr)	6.17	7	
32. Annual Average Solar Insulation Factor (B	ΓU/(ft²·day)) 1,19	93.89	
33. Atmospheric Pressure (psia)	13.7	73	
V. LIQUID INFORMATION	(optional if providing	TANKS Summary Shee	ts)
34. Average daily temperature range of bulk lic	juid:		
34A. Minimum (°F) 40	34B. Ma	aximum (°F) 80	
35. Average operating pressure range of tank:			
35A. Minimum (psig) atmospheric	35B. Ma	aximum (psig)	atmospheric
36A. Minimum Liquid Surface Temperature	` '	orresponding Vapor Pres	ssure (psia)
40	0.1		()
37A. Average Liquid Surface Temperature (60	°F) 37B. Co	orresponding Vapor Pres 0.26	ssure (psia)
38A. Maximum Liquid Surface Temperature	(°F) 38B. Co	orresponding Vapor Pres	ssure (psia)
80	0.5		,
39. Provide the following for each liquid or gas		Add additional pages if	necessary.
39A. Material Name or Composition	Clarifier Feed		
39B. CAS Number			
39C. Liquid Density (lb/gal)	8.35		
39D. Liquid Molecular Weight (lb/lb-mole)	18		
39E. Vapor Molecular Weight (lb/lb-mole)	18		

Maximum Vapor Press	sure							
39F. True (psia) 39G. Reid (psia)								
Months Storage per Y	ear							
39H. From	 -	Jan	nuary					
39I. To		Dec	ember					
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☐ Does Not Apply								
	. `	y as apply):	☐ Does No	t Apply				
Carbon Adsorp	otion ¹							
Condenser ¹								
☐ Conservation \	•,							
Vacuum S	•		Pressure Se	etting				
	lief Valve (psig)							
☐ Inert Gas Blan								
☐ Insulation of Ta								
☐ Liquid Absorpti	,							
☐ Refrigeration o ☐ Rupture Disc ()								
	ator ¹ (Thermal Oxidizer	١						
☐ Other¹ (describ	•	,						
,	•	rol Device S	Sheet.					
¹ Complete approp	oriate Air Pollution Cont			or elsewhere in the ar	polication).			
¹ Complete approp 41. Expected Emissio	oriate Air Pollution Cont n Rate (submit Test Da	ta or Calcul	ations here	-				
¹ Complete approp	oriate Air Pollution Cont		ations here	or elsewhere in the ap Annual Loss (lb/yr)	oplication). Estimation Method ¹			
 Complete approp Expected Emissio Material Name & 	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss				
Complete approp Cas No. Complete approp Material Name & Cas No.	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr)				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4 3.61	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4 3.61 0.0047	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4 3.61 0.0047	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4 3.61 0.0047 0.062 0.173	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 1,658.9 673.4 3.61 0.0047 0.062 0.173 0.00024	Estimation Method ¹			

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name
Pre-Treatment	Clarifier Effluent Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2015 	Emission Point Identification No. (as assigned on Equipment List Form) 12E
5. Date of Commencement of Construction (for existing	tanks)
6. Type of change ☐ New Construction ☐	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	
7B. If YES, explain and identify which mode is cover completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	g emissions, any work practice standards (e.g. production
None	
II. TANK INFORM	MATION (required)
 Design Capacity (specify barrels or gallons). Use height. 	e the internal cross-sectional area multiplied by internal
	00 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	14
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
12 11A. Maximum Vapor Space Height (ft)	12 11B. Average Vapor Space Height (ft)
2	2
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design 00 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,032,278,400	3,189,600
14. Number of Turnovers per year (annual net throughpu	t/maximum tank liquid volume) 9137
15. Maximum tank fill rate (gal/min) 2,215	
16. Tank fill method Submerged	⊠ Splash ☐ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tar	-
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): Fixed Roof X vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe)	double deck roof pport self-supporting diaphragm
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
⊠ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets Other (describe)
20A. Shell Color 20B. Roof Color	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined):	ust
22A. Is the tank heated? YES NO	140t applicable
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to ta	ank.
23. Operating Pressure Range (psig): atmosph	neric
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 6	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tar	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	·
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shie	eld?

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
	GASKETED:
l i	
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:	
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:	
STUB DRAIN 1-INCH DIAMETER:	
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)	

26. Complete the following section for Internal	Floating Po	of Tank	s 🛛 Does Not Apply
		OI Tann	Paralling White
26A. Deck Type: Bolted We 26B. For Bolted decks, provide deck constru	elded		
20B. To Boiled decks, provide deck constitu	iction.		
26C. Deck seam: Continuous sheet construction 5 feet wi	de		
Continuous sheet construction 6 feet wi			
Continuous sheet construction 7 feet wi			
☐ Continuous sheet construction 5 × 7.5 f ☐ Continuous sheet construction 5 × 12 fe			
Other (describe)			
26D. Deck seam length (ft)		 26E.	Area of deck (ft ²)
For column supported tanks:		26G.	Diameter of each column:
26F. Number of columns:	-		Diameter of each column.
	(optional if p	providir	ng TANKS Summary Sheets)
27. Provide the city and state on which the data	a in this sec	tion are	e based.
Elkins, West Virginia			
28. Daily Average Ambient Temperature (°F)		4	49.06
29. Annual Average Maximum Temperature (°	F)	(51.15
30. Annual Average Minimum Temperature (°F	-)	3	36.97
31. Average Wind Speed (miles/hr)		(5.17
32. Annual Average Solar Insulation Factor (B	TU/(ft²-day))) .	1,193.89
33. Atmospheric Pressure (psia)		-	13.73
V. LIQUID INFORMATION	(optional if	providir	ng TANKS Summary Sheets)
34. Average daily temperature range of bulk lic	quid:		
34A. Minimum (°F) 40	3	34B.	Maximum (°F) 80
35. Average operating pressure range of tank:			
35A. Minimum (psig) atmospheric	3	35B.	Maximum (psig) atmospheric
36A. Minimum Liquid Surface Temperature	(°F) 3	36B.	Corresponding Vapor Pressure (psia)
40			0.13
37A. Average Liquid Surface Temperature (°F) 3	37B.	Corresponding Vapor Pressure (psia)
60	(0=)		0.26
38A. Maximum Liquid Surface Temperature 80	(°F)	38B.	Corresponding Vapor Pressure (psia) 0.51
39. Provide the following for each liquid or gas	to be stored	d in tanl	
39A. Material Name or Composition	Clari	ifier	Add additional pages if necessary.
39B. CAS Number	Effluent	<u>t</u>	
39C. Liquid Density (lb/gal)	8.3	35	
39D. Liquid Molecular Weight (lb/lb-mole)	18		
39E. Vapor Molecular Weight (lb/lb-mole)	18		

Maximum Vapor Press	sure							
39F. True (psia) 39G. Reid (psia)								
Months Storage per Y	ear							
39H. From		Jan	nuary					
39I. To		I.	ember					
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☐ Does Not Apply								
	. '	y as apply):	☐ Does No	t Apply				
Carbon Adsorp	otion'							
☐ Condenser ¹								
☐ Conservation \	•,		D	-10"				
Vacuum S	•		Pressure Se	etting				
	lief Valve (psig)							
☐ Inert Gas Blanl								
Liquid Absorpti								
Refrigeration o	,							
Rupture Disc (
	ator ¹ (Thermal Oxidizer)						
☐ Other¹ (describ	•	,						
,	•	rol Device S	Sheet.					
¹ Complete approp	oriate Air Pollution Cont			or elsewhere in the a	oplication).			
¹ Complete approp 41. Expected Emissio	oriate Air Pollution Cont n Rate (submit Test Da	ta or Calcula	ations here					
¹ Complete approp	oriate Air Pollution Cont		ations here	or elsewhere in the a Annual Loss (lb/yr)	epplication). Estimation Method ¹			
 Complete approp Expected Emissio Material Name & 	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss				
Complete approp Cas No. Complete approp Material Name & Cas No.	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr)				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7 0.68				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7 0.68 0.00016	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7 0.68 0.00016	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7 0.68 0.00016 0.0026 0.0088	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 352.5 8.7 0.68 0.00016 0.0026 0.0088 0.000010	Estimation Method ¹			

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name
Pre-Treatment	Sludge Holding Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2020 	Emission Point Identification No. (as assigned on Equipment List Form) 13E
5. Date of Commencement of Construction (for existing	tanks)
	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	nk?)
7B. If YES, explain and identify which mode is covered completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production
II. TANK INFORM	IATION (required)
height.	the internal cross-sectional area multiplied by internal 00 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
26	26
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
23	23
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
3	3
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 00 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
96,710,400	561,600
14. Number of Turnovers per year (annual net throughpu	t/maximum tank liquid volume) 1075
15. Maximum tank fill rate (gal/min) 390	
16. Tank fill method	⊠ Splash ☐ Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Tar	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su	double deck roof pport self-supporting
 □ Variable Vapor Space lifter roof □ Pressurized spherical cylindrical □ Underground □ Other (describe) 	
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d rivets
20A. Shell Color 20B. Roof Color	T T
21. Shell Condition (if metal and unlined): ☑ No Rust ☐ Light Rust ☐ Dense Ru	ust ☐ Not applicable
22A. Is the tank heated? YES NO	пот аррисавие
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to ta	ank.
23. Operating Pressure Range (psig): atmosph	neric
24. Complete the following section for Vertical Fixed Ro	of Tanks
24A. For dome roof, provide roof radius (ft) 13	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tar	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	·
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather ship	eld?

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
	GASKETED:
l i	
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:	
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:	
STUB DRAIN 1-INCH DIAMETER:	
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)	

26. Complete the following section for Internal Float	ng Roof Tanks 🔲 Does	s Not Apply
26A. Deck Type: Bolted Welded		
26B. For Bolted decks, provide deck construction		
26C. Deck seam:		
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide		
Continuous sheet construction 7 feet wide		
☐ Continuous sheet construction 5 × 7.5 feet w ☐ Continuous sheet construction 5 × 12 feet w		
Other (describe)	ic	
	1	2
26D. Deck seam length (ft)	26E. Area of deck (ff	<i>'</i>
For column supported tanks:	26G. Diameter of each	ch column:
26F. Number of columns: IV. SITE INFORMANTION (opti	not if providing TANKS Sum	mony Choota)
27. Provide the city and state on which the data in t	· · ·	nary Sneets)
Elkins, West Virginia		
28. Daily Average Ambient Temperature (°F)	49.06	
29. Annual Average Maximum Temperature (°F)	61.15	
30. Annual Average Minimum Temperature (°F)	36.97	
31. Average Wind Speed (miles/hr)	6.17	
32. Annual Average Solar Insulation Factor (BTU/(f	·day)) 1,193.89	
33. Atmospheric Pressure (psia)	13.73	
V. LIQUID INFORMATION (opti	nal if providing TANKS Sum	mary Sheets)
34. Average daily temperature range of bulk liquid:		
34A. Minimum (°F) 20	34B. Maximum (°F)	80
35. Average operating pressure range of tank:		
35A. Minimum (psig) atmospheric	35B. Maximum (psig	g) atmospheric
36A. Minimum Liquid Surface Temperature (°F)		Vapor Pressure (psia)
20	0.05	
37A. Average Liquid Surface Temperature (°F) 50	37B. Corresponding 0.18	Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)		Vapor Pressure (psia)
80	0.51	(po.a)
39. Provide the following for each liquid or gas to be	stored in tank. Add addition	al pages if necessary.
39A. Material Name or Composition Set	ed sludge	
39B. CAS Number		
39C. Liquid Density (lb/gal)		
39D. Liquid Molecular Weight (lb/lb-mole)		
39E. Vapor Molecular Weight (lb/lb-mole)		

Maximum Vapor Press	sure							
39F. True (psia) 39G. Reid (psia)								
Months Storage per Y	ear							
39H. From		Jan	nuary					
39I. To			ember					
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☐ Does Not Apply								
	. `	y as apply):	☐ Does No	t Apply				
Carbon Adsorp	otion'							
☐ Condenser ¹								
☐ Conservation \	•,		D	-10"				
Vacuum S	· ·		Pressure Se	etting				
☐ Emergency Re	lief Valve (psig)							
☐ Inert Gas Blank								
Liquid Absorpti								
Refrigeration o	,							
Rupture Disc (
	ator ¹ (Thermal Oxidizer)						
Other ¹ (describ	•	,						
,	oriate Air Pollution Cont	trol Device S	Sheet.					
¹ Complete approp	oriate Air Pollution Cont n Rate (submit Test Da			or elsewhere in the ap	oplication).			
¹ Complete approp 41. Expected Emissio	n Rate (submit Test Da	ta or Calcul	ations here					
¹ Complete approp		ta or Calcul		or elsewhere in the ap Annual Loss (lb/yr)	eplication). Estimation Method ¹			
 Complete approp Expected Emissio Material Name & 	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss				
Complete approp Cas No. Complete approp Material Name & Cas No.	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr)				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2 3.09				
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2 3.09 0.0015	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2 3.09 0.0015	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2 3.09 0.0015 0.032 0.091	Estimation Method ¹			
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da	ta or Calcul	ations here	Annual Loss (lb/yr) 1,018.1 177.2 3.09 0.0015 0.032 0.091 0.000070	Estimation Method ¹			

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name
Pre-Treatment Storage	Sludge Filtrate Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2030 	Emission Point Identification No. (as assigned on Equipment List Form) 14E
5. Date of Commencement of Construction (for existing	tanks)
	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tank	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production
II. TANK INFORM	ATION (required)
height.	the internal cross-sectional area multiplied by internal 0 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
10	14
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
13	13
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	1
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 0 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
82,519,200	302,400		
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 11,003			
15. Maximum tank fill rate (gal/min) 210	1,000		
16. Tank fill method			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof dome roof double deck roof		
☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm		
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:	d rivets		
20A. Shell Color 20B. Roof Colo	, , , , , , , , , , , , , , , , , , ,		
21. Shell Condition (if metal and unlined): ☑ No Rust ☐ Light Rust ☐ Dense R	tust		
22A. Is the tank heated? ☐ YES ☐ NO	тот аррисавіс		
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to	tank.		
23. Operating Pressure Range (psig): atmosp	heric		
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply		
24A. For dome roof, provide roof radius (ft) 5			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Ta	nks 🛛 Does Not Apply		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type:	<u> </u>		
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one)		
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO		

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC			
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC			
	GASKETED:		
l i			
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:		
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:		
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:			
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Floating Roof Tanks				
26A. Deck Type: Bolted We	elded			
26B. For Bolted decks, provide deck constru	uction:			
26C. Deck seam:	_			
Continuous sheet construction 5 feet with Continuous sheet construction 6 feet with				
Continuous sheet construction 7 feet wi	de			
☐ Continuous sheet construction 5 × 7.5 fo ☐ Continuous sheet construction 5 × 12 fe				
Other (describe)	et wide			
	1_			
26D. Deck seam length (ft)			of deck (ft ²)	
For column supported tanks: 26F. Number of columns:	2	26G. Diam	eter of each column:	
IV. SITE INFORMANTION	(ontional if r	roviding TAI	NKS Summary Shee	te)
27. Provide the city and state on which the data	`			
Elkins, West Virginia				
28. Daily Average Ambient Temperature (°F)		49.06		
29. Annual Average Maximum Temperature (°I	F)	61.15		
30. Annual Average Minimum Temperature (°F	-)	36.97		
31. Average Wind Speed (miles/hr)		6.17		
32. Annual Average Solar Insulation Factor (BTU/(ft²-day)) 1,193.89				
33. Atmospheric Pressure (psia) 13.73				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liq	quid:			
34A. Minimum (°F) 40	3	34B. Maxir	mum (°F) 80	
35. Average operating pressure range of tank:				
35A. Minimum (psig) atmospheric	3	35B. Maxii	mum (psig)	atmospheric
36A. Minimum Liquid Surface Temperature	(°F) 3	36B. Corre	esponding Vapor Pre	ssure (psia)
40			0.13	
37A. Average Liquid Surface Temperature (* 60	°F) 3	37B. Corre	esponding Vapor Pre 0.26	ssure (psia)
38A. Maximum Liquid Surface Temperature	(°F) 3	38B. Corre	esponding Vapor Pre	ssure (psia)
80			0.51	(po.a)
39. Provide the following for each liquid or gas	to be stored	l in tank. Ad	d additional pages if	necessary.
39A. Material Name or Composition	Sludge Filt	rate		
39B. CAS Number				
39C. Liquid Density (lb/gal)	8.3	35		
39D. Liquid Molecular Weight (lb/lb-mole)	1	8		
39E. Vapor Molecular Weight (lb/lb-mole)	1	18		

					· ·
Maximum Vapor Press	sure				
39F. True (psia) 39G. Reid (psia)					
Months Storage per Y	ear				
39H. From		Jan	nuary		
39I. To		I.	ember		
	VI. EMISSIONS A	ND CONTR	OL DEVICE	DATA (required)	
	Devices (check as man	y as apply):	☐ Does No	t Apply	
Carbon Adsorp	otion'				
☐ Condenser ¹					
☐ Conservation \	•,		D	-10"	
Vacuum S	•		Pressure Se	etting	
	lief Valve (psig)				
☐ Inert Gas Blanl					
Liquid Absorpti					
Refrigeration o	,				
Rupture Disc (
	ator ¹ (Thermal Oxidizer)			
☐ Other¹ (describ	•	,			
☐ Other (describe). ¹ Complete appropriate Air Pollution Control Device Sheet.					
,	•	rol Device S	Sheet.		
¹ Complete approp	oriate Air Pollution Cont			or elsewhere in the a	oplication).
¹ Complete approp 41. Expected Emissio	oriate Air Pollution Cont n Rate (submit Test Da	ta or Calcula	ations here		
¹ Complete approp	oriate Air Pollution Cont		ations here	or elsewhere in the a Annual Loss (lb/yr)	pplication). Estimation Method ¹
 Complete approp Expected Emissio Material Name & 	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss	
Complete approp Cas No. Complete approp Material Name & Cas No.	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr)	
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32	
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17	Estimation Method ¹
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17 0.37	
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17 0.37	Estimation Method ¹
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17 0.37 0.00014 0.0031	Estimation Method ¹
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17 0.37 0.00014 0.0031 0.0084	Estimation Method ¹
1 Complete approp 41. Expected Emissio Material Name & CAS No. VOCs Ammonia Benzene 3&4 Methylbenzene Cumene Ethylbenzene Phenol	n Rate (submit Test Da	ta or Calcula	ations here	Annual Loss (lb/yr) 49.32 16.17 0.37 0.00014 0.0031 0.0084 0.0000071	Estimation Method ¹

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name
Pre-Treatment	Thermal Feed Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2040 	 Emission Point Identification No. (as assigned on Equipment List Form) 15E
5. Date of Commencement of Construction (for existing	tanks)
· ,, · · · · · · · · · · · · · · · · ·	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tar	k?)
7B. If YES, explain and identify which mode is covered completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production
II. TANK INFORM	ATION (required)
 Design Capacity (specify barrels or gallons). Use height. 	the internal cross-sectional area multiplied by internal 000 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
62	62
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
54	54
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
8	8
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 000 gallons

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
1,032,278,400	3,189,600		
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 832 			
15. Maximum tank fill rate (gal/min) 2,215			
16. Tank fill method Submerged			
17. Complete 17A and 17B for Variable Vapor Space Tar	-		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrical ☐ Underground	double deck roof upport self-supporting diaphragm		
Other (describe)			
	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:	d rivets		
20A. Shell Color 20B. Roof Color			
21. Shell Condition (if metal and unlined):			
No Rust	ust Not applicable		
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to to	ank.		
23. Operating Pressure Range (psig): atmosph	neric		
24. Complete the following section for Vertical Fixed Ro	of Tanks		
24A. For dome roof, provide roof radius (ft) 31			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tai	nks Does Not Apply		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type:	·		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one)		
25E. Is the Floating Roof equipped with a weather ship	eld?		

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC			
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC			
	GASKETED:		
l i			
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:		
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:		
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:			
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal F	loating Roof Tar	nks 🗵 Does Not Apply		
26A. Deck Type:	ded			
26B. For Bolted decks, provide deck construc	ction:			
26C. Deck seam: ☐ Continuous sheet construction 5 feet wid ☐ Continuous sheet construction 6 feet wid ☐ Continuous sheet construction 7 feet wid ☐ Continuous sheet construction 5 x 7.5 fee ☐ Continuous sheet construction 5 x 12 fee	e e et wide			
26D. Deck seam length (ft)	26E.	Area of deck (ft ²)		
For column supported tanks:	26G.	Diameter of each column:		
26F. Number of columns:				
27. Provide the city and state on which the data		ling TANKS Summary Sheets)		
Elkins, West Virginia	iii tiiis section a	Te baseu.		
28. Daily Average Ambient Temperature (°F)		49.06		
29. Annual Average Maximum Temperature (°F))	61.15		
30. Annual Average Minimum Temperature (°F)		36.97		
31. Average Wind Speed (miles/hr)	31. Average Wind Speed (miles/hr) 6.17			
32. Annual Average Solar Insulation Factor (BTU/(ft²-day)) 1,193.89				
33. Atmospheric Pressure (psia)		13.73		
V. LIQUID INFORMATION (optional if provid	ling TANKS Summary Sheets)		
34. Average daily temperature range of bulk liqu	uid:			
34A. Minimum (°F) 40	34B.	Maximum (°F) 80		
35. Average operating pressure range of tank:				
35A. Minimum (psig) atmospheric	35B.	Maximum (psig) atmospheric		
36A. Minimum Liquid Surface Temperature (° 40	°F) 36B.	Corresponding Vapor Pressure (psia) 0.13		
37A. Average Liquid Surface Temperature (°F	F) 37B.	Corresponding Vapor Pressure (psia) 0.26		
38A. Maximum Liquid Surface Temperature (°F) 38B.	Corresponding Vapor Pressure (psia) 0.51		
39. Provide the following for each liquid or gas to	o be stored in tai			
	Effluent Water			
39B. CAS Number				
39C. Liquid Density (lb/gal)	8.34			
39D. Liquid Molecular Weight (lb/lb-mole)	18			
39E. Vapor Molecular Weight (lb/lb-mole)	18			

Maximum Vapor Press 39F. True (psia)	sure				
39F. True (psia) 39G. Reid (psia)					
Months Storage per Y	ear				
39H. From		Jar	nuary		
39I. To			ember		
	VI. EMISSIONS A	ND CONTR	OL DEVICE	E DATA (required)	
	Devices (check as man	y as apply):	☐ Does No	ot Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
☐ Conservation \	•,				
Vacuum S	· ·		Pressure Se	etting	
	lief Valve (psig)				
☐ Inert Gas Blanl					
☐ Insulation of Ta					
Liquid Absorpti	,				
Refrigeration o					
Rupture Disc (
	ator ¹ (Thermal Oxidizer))			
	,	ral Davida (Choot		
	oriate Air Pollution Cont				P. (1.)
	n Rate (submit Test Da	1			olication).
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
VOCs				438.7	
Ammonia				10.98	
Benzene				0.91	O WATER
3&4 Methylbenzene				0.00054	O, WATER9
Cumene				0.0055	
Ethylbenzene				0.016	
Phenol				0.000058	
Toluene			1	0.50	
				0.56	
Xylenes				0.56	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name
	Thermal Process		Barometric Condenser Hotwell Tank
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-2130	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 16E
5.	Date of Commencement of Construction (for existing	tank	as)
6.	Type of change ⊠ New Construction □ N	lew	Stored Material
7.	Description of Tank Modification (if applicable)		
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		☐ Yes ⊠ No
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed by	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.):	emi	ssions, any work practice standards (e.g. production
	None		
	II. TANK INFORM	ATIO	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.	the	internal cross-sectional area multiplied by internal
	107,0		
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	25		29
10A	1 5 ()	10E	5 1 5 ()
44 ^	27	445	19
114	1 1 5 ()	11E	
12	Nominal Capacity (specify barrels or gallons). This is	c alc	10
14.	liquid levels and overflow valve heights.		
	100,0	y	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
11,126,952,000	33,533,280		
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 111,270 			
15. Maximum tank fill rate (gal/min) 23,287	,,		
16. Tank fill method			
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems 🖂 Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal ☐ other (describe) ☐ External Floating Roof pontoon roof ☐ Demod External (or Covered) Floating Roof			
 □ Domed External (or Covered) Floating Roof □ Internal Floating Roof □ Variable Vapor Space □ Pressurized □ Underground □ Other (describe) 	diaphragm		
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:☒ Riveted ☐ Gunite lined ☐ Epoxy-coate	ed rivets		
20A. Shell Color 20B. Roof Colo	, ,		
21. Shell Condition (if metal and unlined):	Not Not a selection		
No Rust ☐ Light Rust ☐ Dense R22A. Is the tank heated? ☐ YES ☐ NO	Rust Not applicable		
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to	tank.		
23. Operating Pressure Range (psig): atmospheric			
24. Complete the following section for Vertical Fixed Ro	oof Tanks		
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Ta	nks 🖂 Does Not Apply		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type:	<u></u>		
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (ch	eck one)		
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO		

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
	GASKETED:			
l i				
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:			
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:			
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:				
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL			
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:				
STUB DRAIN 1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating I	Roof Tanks 🔀 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
	2
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this s	
Elkins, West Virginia	conon are based.
28. Daily Average Ambient Temperature (°F)	49.06
29. Annual Average Maximum Temperature (°F)	61.15
30. Annual Average Minimum Temperature (°F)	36.97
31. Average Wind Speed (miles/hr)	6.17
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y)) 1,193.89
33. Atmospheric Pressure (psia)	13.73
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure						
39F. True (psia)							
39G. Reid (psia)	201						
Months Storage per Ye 39H. From	zai	January					
39I. To		December					
331. 10	VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
40 Emission Control [0. Emission Control Devices (check as many as apply): Does Not Apply						
☐ Carbon Adsorp		iy as apply). 🖂 Does Not Apply					
Condenser ¹	don						
_	(ant (naig)						
Conservation V	:		Dragoura C.	adding as			
Vacuum S	•		Pressure Se	etting			
• •	lief Valve (psig)						
☐ Inert Gas Blank							
☐ Insulation of Ta							
Liquid Absorpti	, ,						
Refrigeration of							
Rupture Disc (p							
	ator ¹ (Thermal Oxidizer)						
☐ Other¹ (describ							
Complete approp	oriate Air Pollution Cont	rol Device S	Sheet.				
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).							
41. Expected Emission	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the ap	plication).		
Material Name &	Breathing Loss	Workin	i	or elsewhere in the ap Annual Loss			
l i		I	i	-	Estimation Method ¹		
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹		

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name
	Thermal Process		Recovered Water Tank
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2140	4.	Emission Point Identification No. (as assigned on Equipment List Form) 17E
_			
5.	Date of Commencement of Construction (for existing	tank	.S)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		☐ Yes
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed b	y this application (Note: A separate form must be
70	Dravida any limitations an accuracy appropriate affecting		
70.	Provide any limitations on source operation affecting variation, etc.):	emi	ssions, any work practice standards (e.g. production
	None		
	II. TANK INFORM	ATIO	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.	the	internal cross-sectional area multiplied by internal
	230,00	00 g	allons
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	30		43
104	A. Maximum Liquid Height (ft)	10E	B. Average Liquid Height (ft)
	42		25
114	A. Maximum Vapor Space Height (ft)	11E	B. Average Vapor Space Height (ft)
	1		18
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.		
	222,00	oo y	aliulio

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
8,777,520	1,810,080			
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 39.52 				
15. Maximum tank fill rate (gal/min) 1,257				
16. Tank fill method	⊠ Splash ☐ Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su	double deck roof pport self-supporting			
 ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe) 				
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction: ☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets			
20A. Shell Color 20B. Roof Color	T			
21. Shell Condition (if metal and unlined):	_			
No Rust	ust			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to to23. Operating Pressure Range (psig): to	arik.			
24. Complete the following section for Vertical Fixed Ro	of Tanks			
24A. For dome roof, provide roof radius (ft)	Does Not Apply			
24B. For cone roof, provide slope (ft/ft) 0.06				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	<u> </u>			
25C. Is the Floating Roof equipped with a Secondary S	Seal?			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shie	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S HATCH			
BOLT COVER, GASKETED:	UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAL	JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COV				
	i 1 1				
	COLUM	IN WELL	1		
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE		
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:		
	; !				
	LADDE	R WELL			
PIP COLUMN - SLIDING COVER, O			SLIDING COVER, UNGASKETED:		
		!			
	GAUGE-HATCH	/ I/SAMPLE PORT			
SLIDING COVER, GASKETED:	3, 13 32 11, 11 01	SLIDING COVER	UNGASKETED.		
GLIDING GOVER, GAGRETED.		:	, ONOAGRETED.		
		: ! !			
	ROOF LEG OR	HANGER WELL			
WEIGHTED MECHANICAL			SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)		
ACTUATION, GAGNETED.	HACTUATION, ON	OAGRETED.	(10% OF EN AREA)		
	!				
	VACUUM	BREAKER	•		
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION UNGASKETED		
WEIGHTED WEGHNANDAE AGTOX	TION, ONORETED.	!	ranore no rorang enonenes.		
		i ! !			
	RIM '	VENT			
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION LINGASKETED:		
WEIGHTED MECHANICAL ACTOR	HON GASKETED.	; WEIGHTED MECH. ;	ANICAL ACTUATION, UNGASKETED.		
		!			
	DECK DDVIVI (3	: INCH DIAMETER)			
OPEN:	DEOV DVAIN (9-	90% CLOSED:			
OPEN.		90% CLUSED.			
		! !			
	STUB DRAIN				
4 INCLUDIAMETED:	210B	DKAIN			
1-INCH DIAMETER:					
OTHER (BESS		DITIONAL BAGES	IE NECECCADYA		
OTHER (DESC	RIBE, ATTACH ADI	JITIONAL PAGES	IF NECESSARY)		

26. Complete the following section for Internal Floating I	Roof Tanks 🔀 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
	2
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this s	
Elkins, West Virginia	conon are based.
28. Daily Average Ambient Temperature (°F)	49.06
29. Annual Average Maximum Temperature (°F)	61.15
30. Annual Average Minimum Temperature (°F)	36.97
31. Average Wind Speed (miles/hr)	6.17
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y)) 1,193.89
33. Atmospheric Pressure (psia)	13.73
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia)						
Months Storage per Ye	ear	,				
39H. From		January December				
39I. To	VI EMISSIONS A			DATA (required)		
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 10. Emission Control Devices (check as many as apply): ☐ Does Not Apply						
	. '	y as apply): Does Not Apply				
☐ Carbon Adsorp ☐ Condenser ¹	uon					
<u> </u>	(ant (naig)					
Conservation V	•,		Dragoura C	ottina		
Vacuum S	· ·		Pressure Se	etting		
• •	lief Valve (psig)					
☐ Inert Gas Blank						
☐ Insulation of Ta						
☐ Liquid Absorpti	,					
Refrigeration of						
Rupture Disc (p						
✓ Vent to incinera ☐ Other¹ (describ	ator ¹ (Thermal Oxidizer))				
_ `	,	mal Davida a C	Db = =4			
	oriate Air Pollution Cont					
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).						
		I	1	 -	I	
Material Name &	Breathing Loss		g Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	1		Estimation Method ¹	
			g Loss	Annual Loss		
CAS No.		Amount	g Loss Units	Annual Loss (lb/yr)		
CAS No. VOCs	(lb/hr)	Amount 6.8E-8	Units Lb/hr	Annual Loss (lb/yr) 0.00060		
VOCs Ammonia	(lb/hr)	6.8E-8 6.6E-6	Units Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108		
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040		
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040	Estimation Method ¹	
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040	Estimation Method ¹	
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040	Estimation Method ¹	
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040	Estimation Method ¹	
VOCs Ammonia Benzene	(lb/hr)	Amount 6.8E-8 6.6E-6 4.5E-8	Units Lb/hr Lb/hr Lb/hr	Annual Loss (lb/yr) 0.00060 0.0108 0.00040	Estimation Method ¹	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name
	Thermal Process		Disposal Centrate Tank
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-2160	4.	Emission Point Identification No. (as assigned on Equipment List Form) 18E
5.	Date of Commencement of Construction (for existing	tank	(s)
6.	Type of change ⊠ New Construction □ N	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height. 7,56		
9A.	Tank Internal Diameter (ft)		Tank Internal Height (or Length) (ft)
	12		8.8
10 <i>A</i>	A. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)
	7.8		7.8
11/	A. Maximum Vapor Space Height (ft)	11E	3. Average Vapor Space Height (ft)
	1		1
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights. 6,600		
i	0,000	- yu	10110

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
372,124,800	1,120,320			
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 56,383 				
15. Maximum tank fill rate (gal/min) 778				
16. Tank fill method Submerged				
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof	double deck roof upport self-supporting			
Pressurized spherical cylindrical Underground Other (describe)	·			
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivets			
20A. Shell Color 20B. Roof Color				
21. Shell Condition (if metal and unlined):	<u> </u>			
	ust			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to ta	ank.			
23. Operating Pressure Range (psig): atmospheric				
24. Complete the following section for Vertical Fixed Ro	of Tanks			
24A. For dome roof, provide roof radius (ft) 6				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	•			
25C. Is the Floating Roof equipped with a Secondary S	Seal?			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S HATCH			
BOLT COVER, GASKETED:	UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAL	JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COV				
	i 1 1				
	COLUM	IN WELL	1		
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE		
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:		
	; !				
	LADDE	R WELL			
PIP COLUMN - SLIDING COVER, O			SLIDING COVER, UNGASKETED:		
		!			
	GAUGE-HATCH	/ I/SAMPLE PORT			
SLIDING COVER, GASKETED:	3, 13 32 11, 11 01	SLIDING COVER	UNGASKETED.		
GLIDING GOVER, GAGRETED.		:	, ONOAGRETED.		
		: ! !			
	ROOF LEG OR	HANGER WELL			
WEIGHTED MECHANICAL			SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)		
ACTUATION, GAGNETED.	HACTUATION, ON	OAGRETED.	(10% OF EN AREA)		
	!				
	VACUUM	BREAKER	•		
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION UNGASKETED		
WEIGHTED WEGHNANDAE AGTOX	TION, ONORETED.	!	ranore no rorang enonenes.		
		i ! !			
	RIM '	VENT			
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION LINGASKETED:		
WEIGHTED MECHANICAL ACTOR	HON GASKETED.	; WEIGHTED MECH. ;	ANICAL ACTUATION, UNGASKETED.		
		!			
	DECK DDVIVI (3	: INCH DIAMETER)			
OPEN:	DEOV DVAIN (9-	90% CLOSED:			
OPEN.		90% CLUSED.			
		! !			
	STUB DRAIN				
4 INCLUDIAMETED:	210B	DKAIN			
1-INCH DIAMETER:					
OTHER (BESS		DITIONAL BAGES	IE NECECCADYA		
OTHER (DESC	RIBE, ATTACH ADI	JITIONAL PAGES	IF NECESSARY)		

26. Complete the following section for Internal Floating Roof Tanks						
26A. Deck Type: Bolted Welded						
26B. For Bolted decks, provide deck construc	tion:					
26C. Deck seam:						
Continuous sheet construction 5 feet wid						
Continuous sheet construction 6 feet wid Continuous sheet construction 7 feet wid						
Continuous sheet construction 5 x 7.5 fee	et wide					
☐ Continuous sheet construction 5 x 12 fee☐ Other (describe)	et wide					
- Cities (describe)						
26D. Deck seam length (ft)	26E. A	rea of deck (ft ²)				
For column supported tanks:	26G. D	ameter of each column:				
26F. Number of columns:						
IV. SITE INFORMANTION (· · · ·					
27. Provide the city and state on which the data Elkins, West Virginia	in this section are b	ased.				
28. Daily Average Ambient Temperature (°F)	49	06				
29. Annual Average Maximum Temperature (°F,) 61.	15				
30. Annual Average Minimum Temperature (°F)	36.	97				
31. Average Wind Speed (miles/hr)	6.1	7				
32. Annual Average Solar Insulation Factor (BT	J/(ft²·day)) 1,1	93.89				
33. Atmospheric Pressure (psia)	13.	73				
V. LIQUID INFORMATION (optional if providing	TANKS Summary Sheets)				
34. Average daily temperature range of bulk liqu	iid:					
34A. Minimum (°F) 159	34B. M	aximum (°F) 159				
35. Average operating pressure range of tank:	·					
35A. Minimum (psig) atmospheric	35B. M	aximum (psig) atmospheric				
36A. Minimum Liquid Surface Temperature (°	F) 36B. C	orresponding Vapor Pressure (psia)				
159		4.62				
37A. Average Liquid Surface Temperature (°F	F) 37B. C	orresponding Vapor Pressure (psia)				
159	0E) 00D 0	4.62				
38A. Maximum Liquid Surface Temperature (°F) 38B. C	orresponding Vapor Pressure (psia) 4.62				
39. Provide the following for each liquid or gas to	o be stored in tank.					
39A. Material Name or Composition	Centrate Fluids					
39B. CAS Number						
39C. Liquid Density (lb/gal)	8.35					
39D. Liquid Molecular Weight (lb/lb-mole)	18					
39E. Vapor Molecular Weight (lb/lb-mole)	18					

Maximum Vapor Press	sure				
39F. True (psia)					
39G. Reid (psia) Months Storage per Ye	oor				
39H. From	c ai	Jan	nuary		
39I. To			ember		
0011	VI. EMISSIONS A			E DATA (required)	
40 Emission Control [Devices (check as man				
☐ Carbon Adsorp		, as app.,,,			
☐ Condenser ¹	Alon I				
☐ Conservation V	/ent (nsia)				
Vacuum S	·· = ·		Pressure Se	ettina	
	lief Valve (psig)		i iessuie o	etting	
☐ Inert Gas Blank					
☐ Insulation of Ta					
Liquid Absorpti					
i i	,				
Refrigeration of					
Rupture Disc (p					
	ator ¹ (Thermal Oxidizer))			
Other¹ (describ		Da. da C	Nh a at		
	oriate Air Pollution Cont				
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).					
41. Expected Emission	n Rate (submit Test Da	1	i	or elsewhere in the ap	oplication).
Material Name &	Breathing Loss	ta or Calcula Workin	i	Annual Loss	
l i		1	i		Estimation Method ¹
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): E-2076 (19E)

1. N	lame or type and model of proposed affected source:
Dea	erator Vent Condenser. Vents to waste gas header and thermal oxidizer
n	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be nade to this source, clearly indicated the change(s). Provide a narrative description of all eatures of the affected source which may affect the production of air pollutants.
3. N	lame(s) and maximum amount of proposed process material(s) charged per hour:
4. N	lame(s) and maximum amount of proposed material(s) produced per hour:
Ven	ts at 178 lb/hr total mass flow to thermal oxidizer.
5. G	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	ombustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
	(b)	Chemical analysis of prand ash:	oposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requiremen	nt (ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all oth	ner firing equipme	nt planned to b	e used:
	(1)	W 1' 1		Calana (16 a a como Para de		
	(1)	If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier a	ına seams ana	give sizing of the
	(g)	Proposed maximum de	sign heat input	:		× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	@ 199 °F and		psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
	Ammonia	0.89 lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
MONTO CHINO	NEGONONEEL ING
REPORTING	TESTING
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	

Post Treatment System Storage Tanks

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-2500 (21E)

111 2500 (212)
Name or type and model of proposed affected source:
Post Treatment Tank 1. Open top process tank. 64 foot diameter by 32 foot height with 726,500 gallon working volume.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Post Treatment system influent water - maximum 8959.1 gallons per minute =537,546 gallons per hour. Average flow is 8190.4 gallons per minute = 491,424 gallons per hour.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Effluent flow to the Post Treatment Tanks 2 and 3
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Ammonia and volatiles such as benzene are consumed and/or adsorbed onto biosolids. See Attachment G and N for more details on the reactions.

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Co	ombustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
	(b)	Chemical analysis of prand ash:	oposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requiremen	t (ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all oth	ner firing equipme	nt planned to b	e used:
	. ,	•			·	
	(6)					
	(†)	If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier a	ind seams and	give sizing of the
		oodi do it wiii bo iii od.				
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ıle:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	80-90	°F and	atmospheric psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	1.18 lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)		1		
	Total HAPs	0.012 lb/hr	grains/ACF		
	Ammonia	1.96 lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
REPORTING	TESTING
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-2550 and TK-2555 (22E and 23E)

11 2000 and 11 2000 (222 and 222)
Name or type and model of proposed affected source:
Post Treatment Tanks 2 and 3. Open top aerated process tanks. Tank 2 is 64 foot diameter by 32 foot height with 726,500 gallon working volume. Tank 3 is 48 foot diameter by 30 foot height with 363,300 gallon working volume.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Post Treatment Tank 1 Effluent - maximum 9002 gallons per minute =540,120 gallons per hour. Average flow is 8184 gallons per minute = 491,040 gallons per hour.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Effluent flow to the Post Treatment System downstream tanks
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Co	ombustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
	(b)	Chemical analysis of prand ash:	oposed fuel(s), e	excluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requirement	(ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all othe	er firing equipme	ent planned to b	pe used:
	. ,	•			•	
	(6)					
	(†)	If coal is proposed as a coal as it will be fired:	source of fuel, i	dentity supplier a	and seams and	give sizing of the
		oodi do it wiii bo iii od.				
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ıle:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	3. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	80-90	°F and	atmospheric psia			
a.	NO _X	lb/hr	grains/ACF			
b.	SO ₂	lb/hr	grains/ACF			
C.	СО	lb/hr	grains/ACF			
d.	PM ₁₀	lb/hr	grains/ACF			
e.	Hydrocarbons	lb/hr	grains/ACF			
f.	VOCs	lb/hr	grains/ACF			
g.	Pb	lb/hr	grains/ACF			
h.	Specify other(s)					
	Carbon dioxide	120.35 lb/hr	grains/ACF			
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
REPORTING	TESTING
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTOR PROPERTY OF THE PRO	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
 Describe all operating ranges and mainter maintain warranty 	nance procedures required by Manufacturer to
,	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name				
	Post Treatment System		Post Treatment Effluent Tank				
3.	Tank Equipment Identification No. (as assigned on Equipment List Form)	4.	Emission Point Identification No. (as assigned on Equipment List Form)				
	TK-2515		24E				
5.	Date of Commencement of Construction (for existing	tank	(S)				
6.	Type of change ☐ New Construction ☐ N	lew	Stored Material				
7.	7. Description of Tank Modification (if applicable)						
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes ☐ No				
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed b	y this application (Note: A separate form must be				
	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):						
	None						
	II. TANK INFORMATION (required)						
	· · · · · ·						
	12,000 gallons						
9A. Tank Internal Diameter (ft)		9B. Tank Internal Height (or Length) (ft)					
	12		14				
10A	. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)				
	13		13				
11A	. Maximum Vapor Space Height (ft)	11E	3. Average Vapor Space Height (ft)				
	1		1				
12.	12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.						
	10,00)0 ga	allons				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
1,049,623,200	3,163,680		
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 104,962			
15. Maximum tank fill rate (gal/min) 2,197			
16. Tank fill method	⊠ Splash ☐ Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Tar	-		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su	double deck roof		
 □ Variable Vapor Space lifter roof □ Pressurized spherical cylindrical □ Underground □ Other (describe) 			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:	d rivets		
20A. Shell Color 20B. Roof Color			
21. Shell Condition (if metal and unlined):			
No Rust ☐ Light Rust ☐ Dense R	ust Not applicable		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to to	ank.		
23. Operating Pressure Range (psig): to	of Tanks		
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply		
24A. For dome roof, provide roof radius (ft) 624B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tar	nks 🛛 Does Not Apply		
25A. Year Internal Floaters Installed:	Д Босо Постирну		
25B. Primary Seal Type:	·		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather ship	eld?		

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC					
	GASKETED:				
l i					
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:				
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:				
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:					
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:				
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:				
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks ☐ Does Not Apply					
26A. Deck Type: Bolted Welded	d				
26B. For Bolted decks, provide deck construction	n:				
26C. Deck seam: ☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide ☐ Continuous sheet construction 7 feet wide ☐ Continuous sheet construction 5 x 7.5 feet wide ☐ Continuous sheet construction 5 x 12 feet wide ☐ Coher (describe)					
26D. Deck seam length (ft)	26E.	Area of deck (ft ²)			
For column supported tanks:	26G.	Diameter of each column:			
26F. Number of columns:		TANKO 2			
IV. SITE INFORMANTION (opt 27. Provide the city and state on which the data in		· ,			
Elkins, West Virginia	illis section are	baseu.			
28. Daily Average Ambient Temperature (°F)	4	9.06			
29. Annual Average Maximum Temperature (°F)	6	1.15			
30. Annual Average Minimum Temperature (°F)	3	36.97			
31. Average Wind Speed (miles/hr)	.17				
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day)) 1	,193.89			
33. Atmospheric Pressure (psia) 13.73					
V. LIQUID INFORMATION (opt	tional if providin	g TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:	T				
34A. Minimum (°F) 80	34B.	Maximum (°F) 90			
35. Average operating pressure range of tank:					
35A. Minimum (psig) atmospheric	35B.	Maximum (psig) atmospheric			
36A. Minimum Liquid Surface Temperature (°F) 80	36B.	Corresponding Vapor Pressure (psia) 0.51			
37A. Average Liquid Surface Temperature (°F) 85	37B.	Corresponding Vapor Pressure (psia) 0.60			
38A. Maximum Liquid Surface Temperature (°F) 90	38B.	Corresponding Vapor Pressure (psia) 0.70			
39. Provide the following for each liquid or gas to be	e stored in tank	. Add additional pages if necessary.			
39A. Material Name or Composition Post	t Treatment Efflu	ent			
39B. CAS Number					
39C. Liquid Density (lb/gal)	8.35				
39D. Liquid Molecular Weight (lb/lb-mole)	18				
39E. Vapor Molecular Weight (lb/lb-mole)	18				

Maximum Vapor Press 39F. True (psia)	sure							
39G. Reid (psia)								
Months Storage per Y	ear							
39H. From		Jar	nuary					
39I. To		Dec	ember					
VI. EMISSIONS AND CONTROL DEVICE DATA (required)								
40. Emission Control I	Devices (check as man	y as apply):	□ Does No □	ot Apply				
☐ Carbon Adsorp	otion ¹							
☐ Condenser ¹								
☐ Conservation \	/ent (psig)							
Vacuum S	Setting		Pressure Se	etting				
☐ Emergency Re	lief Valve (psig)							
☐ Inert Gas Blanl	ket of							
☐ Insulation of Ta	ank with							
Liquid Absorpti	on (scrubber) ¹							
☐ Refrigeration o	f Tank							
☐ Rupture Disc (osig)							
☐ Vent to Incinera	ator ¹ (Thermal Oxidizer))						
☐ Other¹ (describ	e):							
¹ Complete approp	oriate Air Pollution Cont	rol Device S	Sheet.					
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the app	olication).			
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss Working Loss Annual Loss								
Material Name &	Breathing Loss	Workin	a Loss	Annual Loss				
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹			
			ı T		Estimation Method ¹			
CAS No.			ı T	(lb/yr)	Estimation Method ¹ O-WATER9			
VOC			ı T	(lb/yr) 6198.2				
VOC Ammonia			ı T	(lb/yr) 6198.2 11.32				
VOC Ammonia Benzene			ı T	(lb/yr) 6198.2 11.32 1.00				
CAS No. VOC Ammonia Benzene 3&4 Methylbenzene			ı T	(lb/yr) 6198.2 11.32 1.00 0.00006				
CAS No. VOC Ammonia Benzene 3&4 Methylbenzene Toluene			ı T	(lb/yr) 6198.2 11.32 1.00 0.00006 1.91				
CAS No. VOC Ammonia Benzene 3&4 Methylbenzene Toluene Xylene			ı T	(lb/yr) 6198.2 11.32 1.00 0.00006 1.91 1.25				
CAS No. VOC Ammonia Benzene 3&4 Methylbenzene Toluene Xylene			ı T	(lb/yr) 6198.2 11.32 1.00 0.00006 1.91 1.25				

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-2520 (25E)

Name or type and model of proposed affected source:
Post Treatment Sludge Tank. Mixed open top process tank. 6 foot diameter by 6 foot height with 750 gallon working volume.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Post Treatment sludge - maximum 70 gallons per minute =4200 gallons per hour. Average flow is 66 gallons per minute = 3930 gallons per hour.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Recycles to Clarifier Tanks A and B.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	ombustion Data (if applicable):					
	(a)	Type and amount in appropriate units of fuel(s) to be burned:					
	(b)	Chemical analysis of prand ash:	oposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur	
	(c)	Theoretical combustion	air requiremen	t (ACF/unit of fue	l):		
		@		°F and		psia.	
	(d)	Percent excess air:					
	(e)	Type and BTU/hr of bu	rners and all oth	ner firing equipme	nt planned to b	pe used:	
	. ,						
	(6)						
	(†)	If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier a	ind seams and	give sizing of the	
		oodi do it wiii bo iii od.					
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.	
7.	Pro	jected operating sched	ule:				
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52	

8.	3. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	80-90	°F and		atmospheric psia		
a.	NO _X		lb/hr	grains/ACF		
b.	SO ₂		lb/hr	grains/ACF		
c.	СО		lb/hr	grains/ACF		
d.	PM ₁₀		lb/hr	grains/ACF		
e.	Hydrocarbons		lb/hr	grains/ACF		
f.	VOCs	0.015	lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)					
	Total HAPs	0.00005	lb/hr	grains/ACF		
	Ammonia	0.00089	lb/hr	grains/ACF		
	Carbon dioxide	0.027	lb/hr	grains/ACF		
			lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

with the proposed operating parameters. I	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
compliance with the proposed emissions lim MONITORING	IITS. RECORDKEEPING
WONTOKING	REGORDREET ING
REPORTING	TESTING
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	OSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to
maintain warranty	

Other Storage Tanks	

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name		
	Thermal Process Area		Process Distillate Level Tank		
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-2120	4.	Emission Point Identification No. (as assigned on Equipment List Form) 20E		
5.	Date of Commencement of Construction (for existing	tank	(S)		
6.	Type of change ⊠ New Construction □ N	lew	Stored Material		
7.	Description of Tank Modification (if applicable)				
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tank	k?)	☐ Yes		
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must I completed for each mode).				
7C.	Provide any limitations on source operation affecting variation, etc.): None	em	ssions, any work practice standards (e.g. production		
	II. TANK INFORMATION (required)				
8.	Design Capacity (specify barrels or gallons). Use height.		internal cross-sectional area multiplied by internal lons		
9A.	Tank Internal Diameter (ft)	_	Tank Internal Height (or Length) (ft)		
	6		26		
10A	a. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)		
114	. Maximum Vapor Space Height (ft)	118	3. Average Vapor Space Height (ft)		
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.		so known as "working volume" and considers design		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
599,184,000	1,789,920			
 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 104,206 				
15. Maximum tank fill rate (gal/min)				
16. Tank fill method	⊠ Splash ☐ Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof vertical X horizontal ☐ other (describe) ☐ External Floating Roof ☐ pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof dome roof double deck roof			
 ☐ Internal Floating Roof ☐ Variable Vapor Space ☐ Pressurized ☐ Underground ☐ Other (describe) 	diaphragm			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivets			
20A. Shell Color 20B. Roof Color				
21. Shell Condition (if metal and unlined):				
No Rust	ust Not applicable			
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to to	ank.			
23. Operating Pressure Range (psig): atmospheric				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tar	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	·			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather ship	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
	GASKETED:			
l i				
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:			
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:			
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:				
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL			
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:				
STUB DRAIN 1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floati	ing Roof Tanks 🔲 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
Continuous sheet construction 5 x 7.5 feet wi	
☐ Continuous sheet construction 5 x 12 feet wide☐ Other (describe)	de
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
· · · · · · · · · · · · · · · · · · ·	onal if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in th Elkins, West Virginia	ils section are based.
28. Daily Average Ambient Temperature (°F)	49.06
29. Annual Average Maximum Temperature (°F)	61.15
30. Annual Average Minimum Temperature (°F)	36.97
31. Average Wind Speed (miles/hr)	6.17
32. Annual Average Solar Insulation Factor (BTU/(ft²	² -day)) 1,193.89
33. Atmospheric Pressure (psia)	13.73
V. LIQUID INFORMATION (option	onal if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F) 88	34B. Maximum (°F) 200
35. Average operating pressure range of tank:	
35A. Minimum (psig) atmospheric	35B. Maximum (psig) atmospheric
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
CO. Decided to fellowing for control in the control of	A LL LEGAL
39. Provide the following for <u>each</u> liquid or gas to be	stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Yo 39H. From			nuary		
39I. To			ember		
	VI. EMISSIONS A	ND CONTR	OL DEVICE	E DATA (required)	
40. Emission Control [Devices (check as man	y as apply):	□ Does No □	t Apply	
☐ Carbon Adsorp ☐ Condenser¹ ☐ Conservation V Vacuum S ☐ Emergency Re ☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorpti ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incinera ☐ Other¹ (describ) rol Device S				
41. Expected Emission	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the app	olication).
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Ammonia	0.0023	0.27	Lb/hr	2,359.58	
					EPA-TANKS 4.0.9d
		 			1

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

<u> </u>	CENTERO NE INTO COMO	tirott (roquirou)		
1. Bulk Storage Area Name	2.	Tank Name		
Chemical Feed Storage		Methanol Bulk Storage Tank		
 Tank Equipment Identification No Equipment List Form) TK-4115 	o. (as assigned on 4.	Emission Point Identification No. (as assigned on Equipment List Form) 26E		
5. Date of Commencement of Const	ruction (for existing tan	nks)		
6. Type of change ⊠ New Cons	struction	Stored Material		
7. Description of Tank Modification (if applicable)			
7A. Does the tank have more than one mode of operation?				
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None				
II. TANK INFORMATION (required)				
Design Capacity (specify barrels height.	or gallons). Use the	e internal cross-sectional area multiplied by internal allons		
9A. Tank Internal Diameter (ft)	9E	3. Tank Internal Height (or Length) (ft)		
9.5		15		
10A. Maximum Liquid Height (ft)	10	B. Average Liquid Height (ft)		
14		7.5		
11A. Maximum Vapor Space Heigh	nt (ft) 11	B. Average Vapor Space Height (ft)		
1		7.5		
 Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights. 7,423 gallons 				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
267,180	1,840.8			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)36				
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	⊠ Splash ☐ Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof	double deck roof			
☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivete			
Riveted Gunite lined Epoxy-coated 20A. Shell Color 20B. Roof Color				
21. Shell Condition (if metal and unlined):				
	ust			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to to	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tar	nks			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	·			
25C. Is the Floating Roof equipped with a Secondary S	Seal?			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather shie	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC				
	GASKETED:			
l i				
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:			
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:			
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:				
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL			
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:			
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:				
STUB DRAIN 1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating	Roof Tanks 🔀 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam: ☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide ☐ Continuous sheet construction 7 feet wide ☐ Continuous sheet construction 5 x 7.5 feet wide ☐ Continuous sheet construction 5 x 12 feet wide ☐ Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	if providing TANKS Company Chapte)
27. Provide the city and state on which the data in this s	if providing TANKS Summary Sheets)
27. I Tovido trie dity and state on which the data in this s	ection are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y))
33. Atmospheric Pressure (psia)	
· ·	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.
39A. Material Name or Composition M	ethanol
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia)	sure				
39G. Reid (psia)					
Months Storage per Yo	ear				
39H. From			nuary		
39I. To		I .	ember		
				E DATA (required)	
	Devices (check as man	y as apply):	Does No	ot Apply	
☐ Carbon Adsorp	otion ¹				
☐ Condenser ¹					
☐ Conservation V	/ent (psig)				
Vacuum S	Setting		Pressure Se	etting	
☐ Emergency Re	lief Valve (psig)				
☐ Inert Gas Blank	ket of				
☐ Insulation of Ta	ank with				
Liquid Absorpti	on (scrubber) ¹				
Refrigeration of	f Tank				
☐ Rupture Disc (p					
	ator ¹ (Thermal Oxidizer)			
Other ¹ (describ	•	,			
	oriate Air Pollution Conf	rol Device S	Sheet		
				or elsewhere in the an	olication)
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).					
Motorial Name 9	Droothing Loop	Workin	a Loss	Annuallaca	
Material Name &	Breathing Loss		g Loss	Annual Loss	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
			ı		
CAS No.	(lb/hr)	Amount	Units	(lb/yr)	EPA – TANKS
CAS No.	(lb/hr) 0.0072	Amount	Units	(lb/yr)	
CAS No. VOC	(lb/hr)	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS
CAS No. VOC	(lb/hr) 0.0072	Amount 0.031	Units 1b/hr	(lb/yr) 281.01	EPA – TANKS

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Chemical Feed Storage	Sulfuric Acid Bulk Storage Tank			
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	Equipment List Form)			
TK-4180	27E			
5. Date of Commencement of Construction (for existing	tanks)			
6. Type of change ☐ New Construction ☐ I	New Stored Material			
7. Description of Tank Modification (if applicable)				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tark				
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None				
II. TANK INFORMATION (required)				
Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal			
	0 gallons			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
8	16			
10A. Maximum Liquid Height (ft) 15	10B. Average Liquid Height (ft) 8			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
12 Naminal Canacity (anacity barrola or callons). This	is also known as "working valume" and considers design			
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.				
5.640 gallons				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
150,672	825.6			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 26.71				
15. Maximum tank fill rate (gal/min)				
16. Tank fill method				
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ⊠ Fixed Roof X vertical horizontal	flat roof cone roof dome roof			
other (describe)				
External Floating Roof pontoon roof	double deck roof			
☐ Domed External (or Covered) Floating Roof☐ Internal Floating Roof vertical column so	innort self-supporting			
☐ Variable Vapor Space lifter roof				
☐ Pressurized spherical cylindrica	· -			
Underground				
Other (describe)				
	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	d rivets			
20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
⊠ No Rust ☐ Light Rust ☐ Dense R	cust			
22A. Is the tank heated? \square YES \boxtimes NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to	tank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	pof Tanks			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	<u> </u>			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (ch	eck one)			
25E. Is the Floating Roof equipped with a weather shi	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting: ACCESS HATCH BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC AUTOMATIC GAUGE FLOAT WELL BOLT COVER, GASKETED: UNBOLTED COVER, UNC UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNC	
	GASKETED:
l i	
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - COVER, GASKETED: FABRIC SLEEVE SEAL	FLEXIBLE L:
LADDER WELL PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGA	ASKETED:
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:	
ROOF LEG OR HANGER WELL WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT F ACTUATION, GASKETED: (10% OPEN AREA)	FABRIC SEAL
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNG	GASKETED:
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:	
STUB DRAIN 1-INCH DIAMETER:	
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)	

26. Complete the following section for Internal Floating Roof Tanks
20. Complete the following section for internal floating food fails.
26A. Deck Type: Bolted Welded
26B. For Bolted decks, provide deck construction:
26C. Deck seam: ☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide ☐ Continuous sheet construction 7 feet wide ☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide ☐ Other (describe)
26D. Deck seam length (ft) 26E. Area of deck (ft ²)
For column supported tanks: 26G. Diameter of each column:
26F. Number of columns:
IV. SITE INFORMANTION (optional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this section are based.
28. Daily Average Ambient Temperature (°F)
29. Annual Average Maximum Temperature (°F)
30. Annual Average Minimum Temperature (°F)
31. Average Wind Speed (miles/hr)
32. Annual Average Solar Insulation Factor (BTU/(ft²-day))
33. Atmospheric Pressure (psia)
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:
34A. Minimum (°F) 34B. Maximum (°F)
35. Average operating pressure range of tank:
35A. Minimum (psig) 35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F) 36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stored in tank. Add additional pages if necessary.
39A. Material Name or Composition
39B. CAS Number
39C. Liquid Density (lb/gal)
39D. Liquid Molecular Weight (lb/lb-mole)
39E. Vapor Molecular Weight (lb/lb-mole)

	Ior	N10#V		
		-		
\# =\#@@!@!@				
			` ' '	
Vent (psig) Setting Setting Setting Setting Setting Setting Setting Setting Set of Set of Senk with Sion (scrubber) Set Tank Spsig) Setor Setiate Air Pollution Cont) rol Device S	Pressure So	etting	
n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the ap	plication).
Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
0.0	0.0	lb/hr	0.0	EPA – TANKS 4.0.9d
	Devices (check as man otion ¹ Vent (psig) Setting Elief Valve (psig) ket of ank with ion (scrubber) ¹ of Tank psig) ator ¹ (Thermal Oxidizer pe): priate Air Pollution Conton Rate (submit Test Data (lb/hr)	VI. EMISSIONS AND CONTR Devices (check as many as apply): otion¹ Vent (psig) Setting elief Valve (psig) ket of ank with ion (scrubber)¹ of Tank psig) ator¹ (Thermal Oxidizer) oe): priate Air Pollution Control Device Son Rate (submit Test Data or Calcul Breathing Loss (lb/hr) Working Amount	January December VI. EMISSIONS AND CONTROL DEVICE Devices (check as many as apply): Does Note of the property of the propert	January December VI. EMISSIONS AND CONTROL DEVICE DATA (required) Devices (check as many as apply): ☑ Does Not Apply brition¹ Vent (psig) Setting Pressure Setting Pressure Setting Pressure Setting And With bion (scrubber)¹ of Tank psig) ator¹ (Thermal Oxidizer) be): priate Air Pollution Control Device Sheet. In Rate (submit Test Data or Calculations here or elsewhere in the ap Breathing Loss (Ib/hr) Working Loss Amount Units (Ib/yr)

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Bulk Loading and Fugitives	

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

PM PM-10

k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
p =	Number of days per year with precipitation >0.01 in.		

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1									
2									
3									
4									
5									
6									
7									
8									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)		
w =	Mean number of wheels per vehicle		
p =	Number of days per year with precipitation >0.01 in.		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M			PM	l-10	
Item No.	Uncon	ntrolled	Cont	rolled	Uncon	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1								
2								
3								
4								
5								
6								
7								
8								
TOTALS								

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	2
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Influent Water Tank Truck	40	0.83	25	219,000	NA	NA
2	Chemical Delivery Truck	40	1.06	1	1,825	NA	NA
3	Sludge and Wetcake Disposal	40	0.38	3	21,900	NA	NA
4	Worker Vehicles	2	1.06	5	3,650	NA	NA
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	2
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	39.44

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

COMMINATE OF THE PROPERTY CONTROLLED TO									
Itama Nia	Uncor	ntrolled	Controlled						
Item No.	lb/hr	TPY	lb/hr	TPY					
1	1.22	4.80	1.22	4.80					
2	0.013	0.051	0.013	0.051					
3	0.056	0.22	0.056	0.22					
4	0.026	0.10	0.026	0.10					
5									
6									
7									
8									
TOTALS	1.32	5.17	1.32	5.17					

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): P-1051				
1. Loading Area Name: Influent Water U	nloading			
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): □ Drums □ Marine Vessels □ Rail Tank Cars X Tank Trucks				
3. Loading Rack or Transfer Point Data:				
Number of pumps:	16 – use electric truck pumps			
Number of liquids loaded:	1 –Influent Water			
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	Sixteen trucks could offload simultaneously.			
Does ballasting of marine vessels occur at this loading area? ☐ Yes ☐ No X Does not apply				
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A				
6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes X No If YES, describe:				

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum	Jan Mar.	Jan Mar. Apr June July - Sept. Oct Dec.					
hours/day	24	24	24	24			
days/week	7	7	7	7			
weeks/quarter	all	all	all	all			

8. Bulk Liquid Data (add pages as necessary):						
Pump ID No.		N/A	N/A			
Liquid Name		Influent Water				
Max. daily thro	oughput (1000 gal/day)	2,520				
Max. annual t	hroughput (1000 gal/yr)	919,800				
Loading Meth	od ¹	SUB				
Max. Fill Rate	(gal/min)	8,400				
Average Fill T	ime (min/loading)	TBD				
Max. Bulk Liq	uid Temperature (°F)	80				
True Vapor P	ressure ²	0.24				
Cargo Vessel	Condition ³	U				
Control Equip	ment or Method ⁴	None				
Minimum cont	trol efficiency (%)	0				
Maximum	Loading (lb/hr)	31.32				
Emission Rate	Annual (lb/yr)	57,160				
Estimation Method ⁵		EPA				
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill						
² At maximum bulk liquid temperature						

³ B = Ballasted Vessel, C = Cleaned, U = Uncl	eaned (dedicated service), O = other (describe)
List as many as apply (complete and submit Sheets):CA = Carbon Adsorption Condensation SC = Refrigeration-Absorption TO = Thermal Oxio CRC = Compression-Refrigeration-Condensation O = other (descibe)	LOA = Lean Oil AdsorptionCO = = Scrubber (Absorption)CRA = Compressor- lation or Incineration
 EPA = EPA Emission Factor as stated in AP MB = Material Balance TM = Test Measurement based upon test da 	

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

O = other (describe)

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING see Attachment O	RECORDKEEPING see Attachment O
REPORTING see Attachment O	TESTING see Attachment O

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): DISP1

,
Name or type and model of proposed affected source:
Dewatered Sludge Disposal into a dumpster before being trucked off site. Some emissions will volatilize before leaving the Facility.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Dewatered Sludge - 33 gallons per minute = 1,980 gallons per hour
Dewatered Stadge 33 gamons per minute = 1,700 gamons per mour
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
None

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Co	combustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
	(b)	Chemical analysis of prand ash:	oposed fuel(s), e	excluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requirement	(ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all othe	er firing equipme	ent planned to b	pe used:
	. ,	•			•	
	(6)					
	(†)	If coal is proposed as a coal as it will be fired:	source of fuel, id	dentify supplier a	and seams and	give sizing of the
		oodi do it wiii bo iii od.				
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	B. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	40-80	°F and	atmospheric psia	
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	СО	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	4.82 lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
	Total HAPs	0.0038 lb/hr	grains/ACF	
	Ammonia	0.22 lb/hr	grains/ACF	
		lb/hr	grains/ACF	
		lb/hr	grains/ACF	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
See Attachment O	See Attachment O		
DED COTING			
REPORTING	TESTING		
See Attachment O	See Attachment O		
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.		
RECORDINE THE PROF	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
MONITORING.	COLD RECORDINE FINANT WILE MOOGINI 7 INTO THE		
	OPOSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.	NOSED TREGOLINOT OF REFORMING OF THE		
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
maintain warranty	nance procedures required by Manufacturer to		
none			

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): DISP2

Name or type and model of proposed affected source:				
Wetcake Disposal into a dumpster before being trucked off site. Some emissions will volatilize before leaving the Facility.				
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.				
3. Name(s) and maximum amount of proposed process material(s) charged per hour:				
4. Name(s) and maximum amount of proposed material(s) produced per hour:				
Wetcake - 1,365 cubic feet/hour				
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:				
None				

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	ombustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
	(b)	Chemical analysis of prand ash:	oposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requiremen	t (ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all oth	ner firing equipme	nt planned to b	e used:
	. ,	•			·	
	(6)					
	(†)	If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier a	ind seams and	give sizing of the
		oodi do it wiii bo iii od.				
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ıle:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	3. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	159	°F and	atmospheric psia	
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	СО	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	0.11 lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 						
MONITORING	RECORDKEEPING					
See Attachment O	See Attachment O					
DEDODTING	TEOTINO					
REPORTING	TESTING					
See Attachment O	See Attachment O					
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROFMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR					
10. Describe all operating ranges and mainter maintain warranty none	nance procedures required by Manufacturer to					
none						

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-4046A, U-4047A, and U-4048A

Les and the second of the seco
Name or type and model of proposed affected source:
Dry lime system prior to the slurry tank. Contains a silo, bin discharger and bin feeder to feed dry lime into the slurry tank to be mixed with water into solution before injection into the water treatment system. Emissions assume one transfer point between each of the three pieces of equipment.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Dry lime maximum hourly process rate is 600 lb/hr.
Dry lime average process rate is 250 lb/hr.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Com	Combustion Data (if applicable):						
	(a) T) Type and amount in appropriate units of fuel(s) to be burned:						
		 Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfuent and ash: 						
	(c) T	Theoretic	al combustion	air requireme	ent (ACF/	unit of fue):	
			@			°F and		psia.
	(d) Percent excess air:							
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:						e used:	
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						give sizing of the	
	(g) Proposed maximum design heat input: $\times 10^6$ BTU/hr.						× 10 ⁶ BTU/hr.	
7.	Proje	ected ope	erating schedu	ıle:				
Но	urs/D	ay	as needed	Days/Week		7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 						
@	60	°F and	atmospheric psia				
a.	NOx	lb/hr	grains/ACF				
b.	SO ₂	lb/hr	grains/ACF				
c.	СО	lb/hr	grains/ACF				
d.	PM ₁₀	0.65 lb/hr	grains/ACF				
e.	Hydrocarbons	lb/hr	grains/ACF				
f.	VOCs	lb/hr	grains/ACF				
g.	Pb	lb/hr	grains/ACF				
h.	h. Specify other(s)						
	PM2.5	0.18 lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

 $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

with the proposed operating parameters. For compliance with the proposed emissions limited in the proposed emissions are compliance with the proposed emissions.	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate nits.
MONITORING	RECORDKEEPING
See Attachment O	See Attachment O
REPORTING	TESTING
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO	DPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
maintain warranty	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-4046B, U-4047B, and U-4048B

, , , , , ,
Name or type and model of proposed affected source:
Dry lime system prior to the slurry tank. Contains a silo, bin discharger and bin feeder to feed dry lime into the slurry tank to be mixed with water into solution before injection into the water treatment system. Emissions assume one transfer point between each of the three pieces of equipment.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Dry lime maximum hourly process rate is 600 lb/hr.
Dry lime average process rate is 250 lb/hr.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Com	Combustion Data (if applicable):						
	(a) T) Type and amount in appropriate units of fuel(s) to be burned:						
		 Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfuent and ash: 						
	(c) T	Theoretic	al combustion	air requireme	ent (ACF/	unit of fue):	
			@			°F and		psia.
	(d) Percent excess air:							
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:						e used:	
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						give sizing of the	
	(g) Proposed maximum design heat input: $\times 10^6$ BTU/hr.						× 10 ⁶ BTU/hr.	
7.	Proje	ected ope	erating schedu	ıle:				
Но	urs/D	ay	as needed	Days/Week		7	Weeks/Year	52

8.	5. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	60	°F and	atmospheric psia		
a.	NOx	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	0.65 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)		I		
	PM2.5	0.18 lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
See Attachment O	See Attachment O		
REPORTING	TESTING		
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PROFMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO	POSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to		

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Fauinment List Form): TK-4011 II-4012 and II-4013

identification number (as assigned on Equipment List Form). 1K-4011, U-4012, and U-4013
Name or type and model of proposed affected source:
Dry sodium bicarbonate system prior to the slurry tank. Contains a silo, bin discharger and bin feeder to feed dry sodium bicarbonate into the slurry tank to be mixed with water into solution before injection into the water treatment system. Emissions assume one transfer point between each of the three pieces of equipment.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Sodium bicarbonate maximum hourly dry process rate is 25 lb/hr.
Sodium bicarbonate average dry process rate is 11.7 lb/hr.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combust	ombustion Data (if applicable):				
	(a) Type	Type and amount in appropriate units of fuel(s) to be burned:				
	(b) Chen and a		roposed fuel(s), e	xcluding coal, in	cluding maxim	um percent sulfur
	(c) Theo	retical combustior	air requirement	(ACF/unit of fue	l):	
		@		°F and		psia.
	(d) Perce	ent excess air:				
	(e) Type	e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
	(f) If coal a	Il is proposed as a as it will be fired:	a source of fuel, id	dentify supplier a	ind seams and	give sizing of the
	(g) Propo	osed maximum de	esign heat input:			× 10 ⁶ BTU/hr.
7.	Projected	d operating sched	ule:			
Но	urs/Day	as needed	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	60	°F and	atmospheric	psia
a.	NOx	lb/	/hr	grains/ACF
b.	SO ₂	lb/	/hr	grains/ACF
c.	СО	lb/	/hr	grains/ACF
d.	PM ₁₀	0.064 lb/	/hr	grains/ACF
e.	Hydrocarbons	lb/	/hr	grains/ACF
f.	VOCs	lb/	/hr	grains/ACF
g.	Pb	lb/	/hr	grains/ACF
h.	Specify other(s)		1	
	PM2.5	0.018 lb/	/hr	grains/ACF
		lb/	/hr	grains/ACF
		lb/	/hr	grains/ACF
		lb/	/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
See Attachment O	See Attachment O		
REPORTING	TESTING		
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PROFMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO	POSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to		

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): TK-4036, U-4037, and U-4038

Name or type and model of proposed affected source:
Dry sodium sulfate system prior to the slurry tank. Contains a silo, bin discharger and bin feeder to feed dry sodium sulfate into the slurry tank to be mixed with water into solution before injection into the water treatment system. Emissions assume one transfer point between each of the three pieces of equipment.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Sodium sulfate maximum hourly dry process rate is 120 lb/hr.
Sodium sulfate average dry process rate is 49.5 lb/hr.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combust	ombustion Data (if applicable):				
	(a) Type	Type and amount in appropriate units of fuel(s) to be burned:				
	(b) Chen and a		roposed fuel(s), e	xcluding coal, in	cluding maxim	um percent sulfur
	(c) Theo	retical combustior	air requirement	(ACF/unit of fue	l):	
		@		°F and		psia.
	(d) Perce	ent excess air:				
	(e) Type	e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
	(f) If coal a	Il is proposed as a as it will be fired:	a source of fuel, id	dentify supplier a	ind seams and	give sizing of the
	(g) Propo	osed maximum de	esign heat input:			× 10 ⁶ BTU/hr.
7.	Projected	d operating sched	ule:			
Но	urs/Day	as needed	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	60	°F and	atmospheric psia		
a.	NOx	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
C.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	0.31 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)		1		
	PM2.5	0.087 lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
See Attachment O	See Attachment O		
REPORTING	TESTING		
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PROFMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRO	POSED FREQUENCY OF REPORTING OF THE		
RECORDKEEPING.			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to		

Attachn Air Pollution Cont	

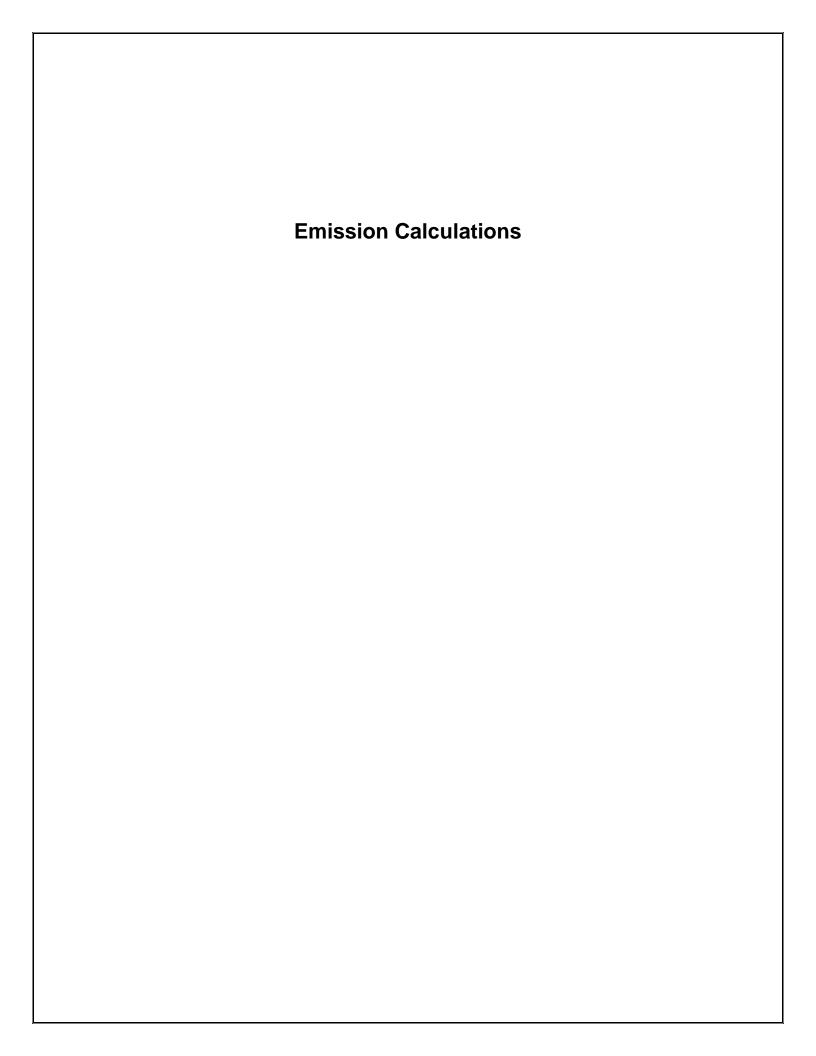
Attachment M Air Pollution Control Device Sheet

(FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): $1C \ and \ 4E$ **Equipment Information**

1.	Manufacturer: Process Combustion (PCC)	Corporation	☐ 2. Method: ☐ Elevated flare☐ Ground flare☐ Other
	Model No. Custom designed (waste a gas)	and natural	Describe
3.			em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used:		
	☐ Steam-assisted ☐ Air-assis	sted	☐ Pressure-assisted ☐ Non-assisted
5.	Maximum capacity of flare:		6. Dimensions of stack:
	38.94	scf/min	Diameter TBD ft.
	2,336	scf/hr	Height TBD ft.
7.	Estimated combustion efficiency:		8. Fuel used in burners:
	(Waste gas destruction efficiency) Estimated: 98	0/	⊠ Natural Gas
		%	☐ Fuel Oil, Number
_	Minimum guaranteed: 98	%	Other, Specify: 11. Describe method of controlling flame:
9.	Number of burners:		Unit is enclosed
	Rating: 3,000,000	BTU/hr	_
10.	Will preheat be used? Yes	⊠ No	
12.	Flare height: TBD	ft	14. Natural gas flow rate to flare pilot flame per pilot light: 0.25 scf/min
13.	Flare tip inside diameter: TBD	ft	15 scf/hr
15.	Number of pilot lights:		16. Will automatic re-ignition be used?
	Total 19,260	BTU/hr	☐ Yes ☐ No
17.	If automatic re-ignition will be used, desc	cribe the met	thod:
18.	Is pilot flame equipped with a monitor?		□ No
	If yes, what type? Thermocouple		a-Red
	Ultra Violet		nera with monitoring control room
	Other, Describe:		
19.	Hours of unit operation per year: 8,760		

Steam Injection


_		Steam	inje	ction					
20.	Will steam injection be used	l? ☐ Yes ⊠ No	21	21. Steam pressure PSIG Minimum Expected:					
22.	Total Steam flow rate:	LB/hr	23	. Temperature:	°F				
24.	Velocity	ft/sec	25	. Number of jet streams					
26.	Diameter of steam jets:	in	27	. Design basis for steam	-				
28.	How will steam flow be cont			ed?	LB steam/LB hydrocarbon				
	Cha	racteristics of the Wa	ste G	as Stream to be Burned	<u> </u>				
29.	Name	Quantity Grains of H ₂ S/100 ft	3	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material				
	VOCs	0		110.36 lb/hr	Waste Gas Header				
	HAPs	0		1.22 lb/hr	Waste Gas Header				
	Ammonia	0		63.20 lb/hr	Waste Gas Header				
	Methane	0		94.49 lb/hr	Natural Gas				
30.	Estimate total combustible t	o flare: 2,336	acf/l	nr LB/h	nr or ACF/hr				
04	(Maximum mass flow rate o	f waste gas) 38 94	4 - 1	scfm					
31.	2,336	tare including materials LB/hr or ACF/l		o be burned, carrier gases, auxiliary fuel, etc.:					
32.	Give composition of carrier		<u>. </u>						
	Methane will be added to	the waste gas header	strea	ım					
33.	Temperature of emission st	ream:	34	. Identify and describe all	auxiliary fuels to be burned.				
	Handar all and adversaria	°F			BTU/scf				
	Heating value of emission s	tream: BTU/ft ³			BTU/scf				
	Mean molecular weight of e				BTU/scf				
	MW = lb/lb-mo	ole			BTU/scf				
_	Temperature of flare gas:	°F	+	36. Flare gas flow rate: 38.94 scf/min					
	Flare gas heat content: 1,2			. Flare gas exit velocity:					
	Maximum rate during emerg	, ,		<u> </u>					
	Maximum rate during emerg								
41.	reheating, gas humidificatio		outle	et gas conditioning proce	sses (e.g., gas cooling, gas				
12	Describe the collection mate	orial dienocal evetom:							

43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? Yes

NA

Please propose m	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: see Attachment O
REPORTING:		TESTING:
see Attachment O		see Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING: TESTING:	equipment or air control device. Please describe the proposed re- Please describe any proposed pollution control device.	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air
	aranteed Capture Efficiency for each	ch air pollutant.
100% for all gasse		
	aranteed Control Efficiency for eac E, HAPs >98% DRE	h air pollutant.
47. Describe all operati	ng ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Attachm Supporting Emission	

Antero Resources Corporation Sandstrom Water Treatment Facility General Emission Notes

- 1. In any of the emission models used (WATER9, TANKS 4.0.9d, or mass balance), if the concentration of a constituent is below the detection limit in the Material Balance Sheet, it was not added to the model as emissions are not quantifiable.
- 2. It was assumed that free oils, gasoline range organics and diesel range organics would all contribute to VOC emissions
- 3. Annual emissions in tons per year were calculated using the average flows from the Material Balance Sheets, whereas hourly emissions in pounds per hour were calculated using the peak flows.
- 4. In some cases the actual tank dimensions was known and in other cases the working volume was known.
- 5. Material balance concentration data are from bench scale testing.

ACCESS ROADS		Equipment Guilliary and Emile	
PROAD	Paved Facility Roads	AP-42 Section 13.2.1 Paved Roads, Final Section, January 2011.	Paved roads to the facility and inside facility
TRUCK OFF-LOADIN	IG STATION		
P-1051	Influent water unloading	AP-42 Section 5.2 Equation 1	Influent water is trucked in. Effluent oil is piped. Effluent water is piped and is treated.
PRE-TREATMENT			
TK-1055A/TK-1055B	Clarifier Tanks A and B	WATER9 program. Material Balance Stream 102 as influent water.	Covered and controlled by thermal oxidizer. 75' D x 17' H - 560,000 gallons working volume
TK-1060A/TK-1060B	Clarifier Pump Tank A and B	WATER9 program.	Covered and controlled by thermal oxidizer. 14' D x 20' H - 21,000 gallons working volume
TK-1070	Equalization Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 56' D x 56' H - 900,000 gallons workikng volume
TK-1065 Oil Collection Tank		TANKS 4.0.9d. Assume all crude to be conservative.	Covered and controlled by thermal oxidizer. 12' D x 16' H - 12,000 gallons working volume
TK-2010	Solids Clarifier Tank	WATER9. Add Material Balance Streams C, D, E, and F.	Covered and controlled by thermal oxidizer. 66' D x 17' H
TK-2015	Clarifier Effluent Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 12' D x 14' H - 10,000 gallons working volume
TK-2040	Thermal Feed Tank	WATER9 program.	Covered and controlled by thermal oxidizer. 62' D x 62' H - 1,240,000 gallons working volume
TK-2020	Sludge Holding Tank	WATER9 program. Material Balance Streams 105 and 112.	Covered and controlled by thermal oxidizer. 26' D x 26' H - 90,000 gallons working volume. Mixed Tank
	Sludge Dewatering System	Based on mass balance of Material Balance Stream 114 vs 115 and 117, there are no emissions from the enclosed dewatering system. Emissions are calculated upon disposal however.	
TK-2030	Sludge Filtrate Tank	WATER9 program. Material Balance Stream 115.	Covered and controlled by thermal oxidizer. 10' D x 14' H - 7,500 gallons working volume. Mixed Tank
DISP1	Dewatered Sludge Disposal	Mass Balance of Stream 117 and assumed short term storage. 10% volatilize based on EPA-453/R-94-080A Section 9	

2 of 25 July 2015

THERMAL PROCE	SS SYSTEM		
	Thermal System	No emissions. Steam from the boiler is used as a heat source. Also contains heat exchangers.	
TK-2320	CIP Tank	Flat cover tank. No emissions. Contains mild acid solution for descaling (dilute hydrochloric or citric)	1,950 gallons
E-2076	Deaerator Vent Condenser	Mass Balance Stream 225	Vents to thermal oxidizer
TK-2085	Steam Condensate Level Tank	Incoming and outgoing streams show only water with no organics. No emissions.	4,800 gallons - non-pressurized bullet tank
TK-2180	Boiler Feedwater Tank	Only water with no organics. No emissions.	17.5' D x 17.5' H - 54,200 gallons
TK-2150	Brine Maker Tank	Based on surrounding material streams only water without organics. No emissions	
TK-2120	Process Distillate Level Tank	Influent - Material Balance Streams 226, 251, 261, 271. TANKS 4.0.9d	5,575 gallons - non-pressurized bullet tank
TK-2130	Barometric Condenser Hot Well	TANKS 4.0.9d Material Balance Stream 282/283	100,000 gallon tank working volume - Vents to thermal oxidizer
TK-2160	Disposal Centrate Tank	WATER9 program. Material Balance Stream 270.	Covered and vents to thermal oxidizer - 7,560 gallons Mixed tank
DISP2	Wet Cake Disposal	Mass Balance of Stream 274 and assumed short term storage. 10% volatilize based on EPA-453/R-94-080A Section 9	
TK-2140	Recovered Water Tank	TANKS 4.0.9d Material Balance Stream 161	230,000 gallons - Vents to thermal oxidizer
TK-2315	Boiler Deaerator Tank	Incoming stream shows only water and no organics. No emissions - pressurized.	Bullet type tank - 15 psi - 9,942 gallons
CT-2335	Cooling Tower Basin	AP-42 Chapter 13.4 and manufacturer data	Three fans
H-2185A/B	Boiler A/B	AP-42 Chapter 1.4 and manufacturer spec sheet	
U-4105/4110	Boiler Chemical Treatment A/B	DeMinimis Source #9 from 45CSR13 Table 45-13B - Boiler water treatment operations	

3 of 25 July 2015

POST TREATMENT S	SYSTEM	· ·	SIOTIS
		Material Balance Streams 402, 405. Material Balance. See notes on	Open top -726,500 gal - 64' D x 32'
TK-2500	Post Treatment Tank 1	emission tab	
TK-2550 and TK-2555	Post Treatment Tank 2 and 3	Material Balance Stream 403. See notes on emission tab	open top - 726,500 gal - 64' D x 32'. Aerated tank open top - 363,300 gal - 48' D x 30' Aerated tank
CF-2510	Post Treatment Package System	Mass Balance Streams 406. Open top tanks and mixed. See notes on emission tab	
TK-2515	Post Treatment Effulent Tank	Mass Balance Stream 407. WATER9	Closed top - 10,000 gal - 12' D x 14'
TK-2520	Post Treatment Sludge Tank	Mass Balance Stream 408 - Mixed tank. WATER9	Open top - 750 gal - 6' D x 6'
TK-2545	Product Water Storage Tank	DeMinimis Source #15 from 45CSR13 Table 45-13B - demineralized water tank	Covered 22' D x 24' H - 60,000 gallons
CHEMICAL FEED			
TK-4175	Clarifier Polymer Aging Tank	No emissions - Polymer contains no volatiles or other components of concern.	75 gallons - closed top, mixed tank
TK-4036	Sodium Sulfate Silo	AP-42 8.12 for Sodium Carbonate	90 ton - 2,200 ft^3
U-4037/U-4038	Sodium Sulfate Bin Discharger and Feeder	AP-42 8.12 for Sodium Carbonate	200-2000 lbs/hr
TK-4039	Sodium Sulfate Day Tank	Inorganic material and wet process - Insignificant emissions	1,500 gallons
TK-4046A/TK-4046B	Lime Silo A/B	AP-42 11.17	160 ton - 9,000 ft^3
TK-4049A/TK-4049B	Lime Slurry Premix Tank A/B	Inorganic material and wet process - Insignificant emissions	1,800 gallons
U-4047A/U-4047B	Lime Bin Discharger A/B	AP-42 11.17	1,500 - 8,000 lb/hr
TK-4049A/TK-4049B	Lime Slurry Tank A/B	Inorganic material and wet process - no emissions	15,000 gallons
TK-4160	Solids Clarifier Polymer System Aging Tank	Insignificant emissions - Polymer contains no volatiles or other components of concern.	Closed top - 75 gallons
	Dewatering Polymer System Aging Tank	Insignificant emissions - Polymer contains no volatiles or other components of concern.	Closed top - 250 gallons
TK-4011	Sodium Bicarbonate Silo	AP-42 8.12 for Sodium Carbonate	
U-4012/U-4013	Sodium Bicarbonate Bin Discharger and Feeder	AP-42 8.12 for Sodium Carbonate	
TK-4014	Sodium Bicarbonate Day Tank	Mixed Tank - Inorganic material and wet process - no emissions	1,000 gallons
TK-4170	Post Treatment Polymer System Aging Tank	Insignificant emissions - Polymer contains no volatiles or other components of concern.	Closed top - 75 gallons

U-4075 CO2 Feeder System (CO2 Is pressurized and dissolved in water. No emissions from the feeder system due to pressurizing. TK-4000 Farric Chloride Storage Tank TK-4020 Caustic Bulk Storage Tank Methanol Bulk Storage Tank Methanol Bulk Storage Tank Sodium hydroxide in dilute solution - Insignificant emissions TK-4115 Martin Acid Bulk Storage Tank TK-4180 Sulfura Acid Bulk Storage Tank TK-4080 Sodium Bisulfite Tote Insignificant emissions- small tank and inorganic TK-4051 Antifoam Tote Insignificant emissions- Polymer contains no volatiles or other components of concern. TK-4150 Micronutrient Tote Insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure minerals, and sodies and variants TK-4150 Wicronutrient Tote Insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure insignificant emissions - Small tank, inorganic, stable liquid, low vapor spressure insignificant emissions - Small tank, inorganic material, < 15% solution with the solution of micronutrients, to emission and sods and varianis TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution and spressure of the solution of the properties of concern and tank, inorganic material, < 15% solution and the various processes are in liquid phase or have the various processes. U-1080 Thermal Oxidizer Similar Emission factors and AP-42 Emergency Generator EPA Tier 2 emission factors and AP-42			Equipment Summary and Emiss	
Tix-4020 Tank Tix-4020 Caustic Bulk Storage Tank Tix-4020 Caustic Bulk Storage Tank Tix-4115 Methanol Bulk Storage Tank Tix-4116 Methanol Bulk Storage Tank Tix-4116 Sulfuric Acid Bulk Storage Tank Tix-4180 Sulfuric Acid Bulk Storage Tank Tix-4025 Hydrogen Peroxide Tote Tix-4026 Hydrogen Peroxide Tote Tix-4026 Insignificant emissions- small tank and inorganic Tix-4026 Hydrogen Peroxide Tote Tix-4027 Polymer Totes Components of concern. Tix-4026 Antifoam Tote Tix-4026 Insignificant emissions - Polymer contains no volatiles or other Components of concern. Tix-4025 Phosphoric Acid Tote Tix-4026 Insignificant emissions - Antifoam contains no volatiles or other Components of concern. Tix-4026 Phosphoric Acid Tote Tix-4026 Phosphoric Acid Tote Tix-4026 Insignificant emissions - Small tank, inogranic, stable liquid, low vapor Tix-4026 Urea Tote Urea Tote Urea Tote Vale To	U-4075	CO2 Feeder System	·	
TK-4020 Tank TK-4115 Methanol Bulk Storage Tank TK-4116 Methanol Bulk Storage Tank TK-4180 Sulfuric Acid Bulk Storage Tank TK-4180 Sulfuric Acid Bulk Storage Tank TK-4025 Hydrogen Peroxide Tote Insignificant emissions- small tank and inorganic 320 gallons TK-4026 Hydrogen Bisulfite Tote Insignificant emissions- small tank and inorganic 320 gallons TK-4081 Sodium Bisulfite Tote Insignificant emissions- Polymer contains no volatiles or other components of concern. TK-4054/4057/4120 TK-4015 Antifloam Tote Insignificant emissions - Antifloam contains no volatiles or other components of concern. TK-4125 Phosphoric Acid Tote Insignificant emissions - small tank, inogranic, stable liquid, low vapor 320 gallons TK-4150 Micronutrient Tote Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4065 Urea Tote Insignificant Emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons GENERAL U-1080 Themal Oxidizer J PAFET 2 emission Instors and AP-42 U-1080 Themal Oxidizer EPA Tet 2 emission Instors and AP-42 EPA Tet 2 emission Instors and AP-42	TK-4000	9	Inorganic material and wet process - Insignificant emissions	Closed top - 6,000 gallons
TK-4180 Sulfutic Acid Bulk Storage TANKS 4.0.9 TK-4025 Hydrogen Peroxide Tote Insignificant emissions- small tank and inorganic 320 gallons TK-4080 Sodium Bisulfite Tote Insignificant emissions - small tank and inorganic 320 gallons TK-4080/4057/4120 Polymer Totes Insignificant emissions - Polymer contains no volatiles or other components of concern. TK-4015 Antifoam Tote Insignificant emissions - Antifoam contains no volatiles or other components of concern. TK-4125 Phosphoric Acid Tote Insignificant emissions - Antifoam contains no volatiles or other components of concern. TK-4150 Micronutrient Tote Insignificant emissions - Small tank, inogranic, stable liquid, low vapor pressure Insignificant emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4065 Urea Tote Insignificant Emissions - small tank, inorganic material, < 15% solution TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution TK-4190 Hydrox 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons GENERAL U-1080 Thermal Oxidizer Insignificant emissions. Most processes are in liquid phase or have been removed or get adsorbed by the solids or otherwise consumed in the various processes. EPA Tier 2 emission factors and AP-42	TK-4020	_	Sodium hydroxide in dilute solution - Insignificant emissions	Closed top - 7,000 gallons
TK-4180 Hydrogen Peroxide Tote Insignificant emissions- small tank and inorganic 320 gallons TK-4080 Sodium Bisulfite Tote Insignificant emissions- small tank and inorganic 320 gallons TK-4080/44057/4120 Polymer Totes Insignificant emissions - Polymer contains no volatiles or other components of concern. TK-4015 Antifoam Tote Insignificant emissions - Antifoam contains no volatiles or other components of concern. TK-4125 Phosphoric Acid Tote Insignificant emissions - Small tank, inogranic, stable liquid, low vapor pressure Insignificant Emissions - Small tank, inogranic, stable liquid, low vapor pressure Insignificant Emissions - Small tank, inogranic, stable liquid, low vapor pressure Insignificant Emissions - Small tank, inogranic volatility, 50/50 mix water and urea Insignificant Emissions - Small tank, insignificant volatility, 50/50 mix water and urea Insignificant Emissions - Small tank, inogranic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - Small tank, no constituents of concern 320 gallons TK-4190 Hydrex 2126 Tote DeMinimis emissions. Most processes are in liquid phase or have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer 3 MMBu/mr EPA Tier 2 emission factors and AP-42	TK-4115	_	TANKS 4.0.9	Closed top - 8,000 gallons
TK-4080 Sodium Bisulfite Tote Insignificant emissions - small tank and inorganic 320 gallons TK-4054/4057/4120 Polymer Totes Insignificant emissions - Polymer contains no volatiles or other components of concern. TK-4015 Antifoam Tote Insignificant emissions - Antifoam contains no volatiles or other components of concern. TK-4125 Phosphoric Acid Tote Pressure Insignificant emissions - small tank, inogranic, stable liquid, low vapor pressure Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4150 Urea Tote Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea water and urea Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, no constituents of concern 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons GENERAL Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have all water and use or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer 3 MMBtw/hr Controls gas from waste gas header	TK-4180	_	TANKS 4.0.9	Closed top - 6,000 gallons
TK-4080 Sodium Bisulfite Tote TK-4063/4057/4120 Polymer Totes Polymer Totes Polymer Totes Insignificant emissions - Polymer contains no volatiles or other components of concern. TK-4015 Antifoam Tote Insignificant emissions - Antifoam contains no volatiles or other components of concern. TK-4125 Phosphoric Acid Tote Pressure TK-4150 Micronutrient Tote Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4065 Urea Tote Insignificant Emissions - small tank, inorganic material, < 15% solution TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern Insignificant emissions - small tank, no constituents of concern TK-4190	TK-4025	Hydrogen Peroxide Tote	Insignificant emissions- small tank and inorganic	320 gallons
Attifoam Tote components of concern. TK-4015 Antifoam Tote components of concern. TK-4125 Phosphoric Acid Tote Insignificant emissions - small tank, inogranic, stable liquid, low vapor pressure TK-4150 Micronutrient Tote Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4065 Urea Tote Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons TK-4190 Teypitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have -1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer EPA Tier 2 emission factors and AP-42	TK-4080	Sodium Bisulfite Tote	Insignificant emissions- small tank and inorganic	320 gallons
TK-4125 Phosphoric Acid Tote Insignificant emissions - small tank, inogranic, stable liquid, low vapor pressure TK-4150 Micronutrient Tote Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4150 Urea Tote Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons TK-4190 Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have 11% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer EPA Tier 2 emission factors and AP-42		Polymer Totes		320 gallons
TK-4150 Micronutrient Tote Insignificant Emissions - Micro Stimulant blend of micronutrients, trace minerals, amio acids and vitamins TK-4150 Urea Tote Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea TK-4165 Sodium Hypochlorite Tote Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, no constituents of concern 320 gallons TK-4190 Hydrex 2126 Tote DeMinimis emissions - small tank, no constituents of concern 320 gallons Fugitive Component Leaks Sodium Hypochlorite Tote Solution Solu	TK-4015	Antifoam Tote		320 gallons
TK-4150 Micronutrient Tote trace minerals, amio acids and vitamins TK-4065 Urea Tote Insignificant Emissions - small tank, insignificant volatility, 50/50 mix water and urea TK-4185 Sodium Hypochlorite Tote Insignificant emissions - small tank, inorganic material, < 15% solution 320 gallons TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons GENERAL Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have < 1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer EPA Tier 2 emission factors and AP-42	TK-4125	Phosphoric Acid Tote		320 gallons
TK-4185 Urea Lote water and urea	TK-4150	Micronutrient Tote	trace minerals, amio acids and vitamins	
TK-4190 Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons Hydrex 2126 Tote Insignificant emissions - small tank, no constituents of concern 320 gallons Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have <1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer 3 MMBtu/hr Controls gas from waste gas header EPA Tier 2 emission factors and AP-42	TK-4065	Urea Tote		320 gallons
GENERAL Fugitive Component Leaks Fugitive Component Leaks Fugitive Component Leaks Thermal Oxidizer Fugitive Component Leaks Fugitive Component Leaks Fugitive Component Leaks In liquid phase or have valuatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. General Controls gas from waste gas header Fugitive Component Leaks In liquid phase or have valuatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. Fugitive Component Leaks In liquid phase or have valuatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. Fugitive Component Leaks Fugitive Componen	TK-4185	Sodium Hypochlorite Tote	Insignificant emissions - small tank, inorganic material, < 15% solution	320 gallons
Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have <1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer DeMinimis emissions. Most processes are in liquid phase or have consumed in the various processes. Controls gas from waste gas header EPA Tier 2 emission factors and AP-42	TK-4190	Hydrex 2126 Tote	Insignificant emissions - small tank, no constituents of concern	320 gallons
Fugitive Component Leaks DeMinimis emissions. Most processes are in liquid phase or have <1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes. U-1080 Thermal Oxidizer DeMinimis emissions. Most processes are in liquid phase or have consumed in the various processes. Controls gas from waste gas header EPA Tier 2 emission factors and AP-42	GENERAL			
U-1080 Thermal Oxidizer EPA Tier 2 emission factors and AP-42			<1% VOCs. Once process is in vapor phase, volatiles and oils have been removed or get adsorbed by the solids or otherwise consumed in the various processes.	
GEN-1 Emergency Generator EPA Tier 2 emission factors and AP-42	U-1080	Thermal Oxidizer	3 MMBtu/hr	Controls gas from waste gas header
	GEN-1	Emergency Generator	EPA Tier 2 emission factors and AP-42	

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

UNCONTROLLED POTENTIAL EMISSION SUMMARY

Source	N	Ox	CO		V	OC	S	O ₂	PM	-10	PM	-2.5	HAPs		CO₂e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Emergency Generator	12.64	3.16	6.84	1.71	0.0051	0.0013	0.096	0.024	0.39	0.099	0.39	0.099	0.011	0.0027	326
<u>Boilers</u>															
Boiler 1	9.95	43.60	10.23	44.81	1.88	8.22	0.20	0.90	2.59	11.36	2.59	11.36	0.41	1.78	142,160
Boiler 2	9.95	43.60	10.23	44.81	1.88	8.22	0.20	0.90	2.59	11.36	2.59	11.36	0.41	1.78	142,160
Thermal Oxidizer															
Oxidizer, Pilot and Waste Gas-controlled Process Tanks															
Truck Unloading															
Truck Unloading Influent Water					31.32	28.58							0.23	0.21	21
Cooling Tower															
Cooling Tower									0.94	4.12	0.94	4.12			
<u>Tanks</u>															
Process Tanks					112.34	187.88							1.22	1.79	765
Storage Tanks					0.038	0.14							0.038	0.14	
<u>Fugitive Emissions</u>															
Sludge and Wetcake Disposal					4.93	21.60							0.0038	0.017	0.00001
Bulk Transfer Points									1.67	0.30	0.47	0.08			
Fugitive Dust Emissions									1.32	5.17	0.32	1.27			
Facility PTE =	32.54	90.36	27.31	91.33	152.39	254.64	0.51	1.82	9.51	32.41	7.32	28.29	2.31	5.71	285,432

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

CONTROLLED POTENTIAL EMISSION SUMMARY

CONTROLLED I OTENTIAL EMICCION COMMINANT															
Source	N.	Ox	C	0:	V	oc	S	O ₂	PM	l-10	PM	-2.5	HA	\Ps	CO₂e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Emergency Generator	12.64	3.16	6.84	1.71	0.0051	0.0013	0.096	0.024	0.39	0.099	0.39	0.099	0.011	0.0027	326
<u>Boilers</u>															
Boiler 1	9.95	43.60	10.23	44.81	1.88	8.22	0.20	0.90	2.59	11.36	2.59	11.36	0.41	1.78	142,160
Boiler 2	9.95	43.60	10.23	44.81	1.88	8.22	0.20	0.90	2.59	11.36	2.59	11.36	0.41	1.78	142,160
<u>Thermal Oxidizer</u>															
Oxidizer, Pilot and Waste Gas-controlled Process Tanks	1.08	4.50	0.93	4.08	2.21	3.60	1.13E-05	4.96E-05	1.44E-04	6.29E-04	1.44E-04	6.29E-04	0.024	0.035	1825
Truck Unloading															
Truck Unloading Influent Water					31.32	28.58							0.23	0.21	21
Cooling Tower															
Cooling Tower									0.94	4.12	0.94	4.12			
<u>Tanks</u>															
Process Tanks					1.97	7.90							0.013	0.052	483
Storage Tanks					0.038	0.14							0.038	0.14	
<u>Fugitive Emissions</u>															
Sludge and Wetcake Disposal					4.93	21.60							0.0038	0.017	0.00001
Bulk Transfer Points									1.67	0.30	0.47	0.08			
Fugitive Dust Emissions									1.32	5.17	0.32	1.27			
Facility PTE =	33.62	94.86	28.24	95.41	44.23	78.26	0.51	1.82	9.51	32.41	7.32	28.29	1.13	4.01	286,974

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

SPECIATED HAPS UNCONTROLLED POTENTIAL EMISSION SUMMARY

	BENZ	TENE	TOLU	IENE		ENZENE		ENES		DEHYDE		XANE	CHIM	IENE	METL	IANOL	A NA NA	ONIA*
Source	lb/hr	1	Ib/hr	1	lb/hr		lb/hr	1	lb/hr		lb/hr		lb/hr		lb/hr		lb/hr	i e
	ID/nr	tpy	ID/Nr	tpy	ID/Nr	tpy	Ib/nr	tpy	Ib/nr	tpy	Ib/nr	tpy	ID/nr	tpy	Ib/nr	tpy	Ib/nr	tpy
<u>Engines</u>																		
Emergency Generator	0.0062	0.00154	0.0022	0.00056			0.0015	0.000383	0.00063	0.000157								
<u>Boilers</u>																		
Boiler 1	0.00045	0.0020	0.00073	0.0032					0.016	0.071	0.39	1.70						
Boiler 2	0.00045	0.0020	0.00073	0.0032					0.016	0.071	0.39	1.70						
Thermal Oxidizer																		
Oxidizer, Pilot and Waste Gas-controlled Process Tanks	-																	
Truck Unloading																		
Truck Unloading Influent Water	0.063	0.057	0.099	0.090	0.0049	0.0044	0.060	0.055					0.0021	0.0019				
Cooling Tower																		
Cooling Tower																		
<u>Tanks</u>																		
Process Tanks	0.38	0.59	0.54	0.80	0.027	0.038	0.26	0.34					0.015	0.019			65.17	268.39
Storage Tanks															0.038	0.14	0.29	1.18
Fugitive Emissions																		
Sludge and Wetcake Disposal	9.60E-04	4.20E-03	1.52E-03	6.64E-03	7.44E-05	3.26E-04	9.25E-04	4.05E-03					3.14E-05	1.38E-04			0.22	0.97
Bulk Transfer Points																		
Fugitive Dust Emissions																		
Facility PTE =	0.45	0.66	0.64	0.91	0.032	0.042	0.32	0.40	0.033	0.14	0.78	3.40	0.018	0.021	0.038	0.14	65.7	270.5

8 of 25

^{*}Ammonia is not a HAP but is included in the speciated table

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

SPECIATED HAPS CONTROLLED POTENTIAL EMISSION SUMMARY

							_	_									OF EGIATED THE CONTROLLED TO THE TIME COMMINANT										
Source	BENZ	ENE	TOLU	ENE	ETHYLB	ENZENE	XYLE	ENES	FORMAL	DEHYDE	n-HE	XANE	CUN	IENE	METH	IANOL	AMM	ONIA*									
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy																					
<u>Engines</u>																											
Emergency Generator	0.0062	0.00154	0.0022	0.00056			0.0015	0.00038	0.00063	0.00016																	
<u>Boilers</u>																											
Boiler 1	0.00045	0.0020	0.00073	0.0032					0.016	0.071	0.39	1.70															
Boiler 2	0.00045	0.0020	0.00073	0.0032					0.016	0.071	0.39	1.70															
Thermal Oxidizer																											
Oxidizer, Pilot and Waste Gas-controlled Process Tanks	7.53E-03	1.16E-02	1.06E-02	1.56E-02	5.34E-04	7.36E-04	5.14E-03	6.48E-03	1.42E-06	6.20E-06	3.40E-05	1.49E-04	3.06E-04	3.65E-04			1.26	5.21									
Truck Unloading																											
Truck Unloading Influent Water	0.063	0.057	0.099	0.090	0.0049	0.0044	0.060	0.055					0.0021	0.0019													
Cooling Tower																											
Cooling Tower																											
<u>Tanks</u>																											
Process Tanks	0.0033	0.013	0.0052	0.021	0.00022	0.00090	0.0031	0.012					0.00011	0.00044			2.0	7.9									
Storage Tanks															0.038	0.14	0.29	1.18									
Fugitive Emissions																											
Sludge and Wetcake Disposal	9.60E-04	4.20E-03	1.52E-03	6.64E-03	7.44E-05	3.26E-04	9.25E-04	4.05E-03					3.14E-05	1.38E-04			0.22	0.97									
Bulk Transfer Points																											
Fugitive Dust Emissions																											
Facility PTE =	0.082	0.092	0.12	0.14	0.0057	0.0064	0.071	0.078	0.033	0.14	0.78	3.40	0.0025	0.0028	0.038	0.14	3.7	15.2									

9 of 25

^{*}Ammonia is not a HAP but is included in the speciated table

Emergency Generator Emission Calculations

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Emergency Generator
Emission Unit ID:	GEN-1

Source Information - Per Engine

Make/Model	MTU/Detroit Diesel 12V2000 G85		
Generator Rating	825	kWe	
Horsepower at Rated kW	1,194	bhp	
Fuel Consumption	58	gallons/hr	
Heating Value ¹	7.95	MMBtu/hr	
Density of Fuel	7.10	lb/gal	
Fuel Heating Value	19,300	Btu/lb	
Operating Hours ²	500	hrs/yr	

Notes:

- 1) Calculated
- 2) Generator will be used for emergency purposes only with 500 hours/year allotted for testing and maintenance.
- 3) Generator will only be used for safe shut down of the facility during a power outage and not for normal operation.

Potential Emissions per Generator

Pollutant	Emiss	ion Factor	Est	imated Emissi	ons	Source of Emissions Factors	
Pollutant	(lb/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	Source of Emissions Factors	
NOx		4.80	12.64		3.16	EPA Tier 2 Nonroad Diesel Engine Emission Factor	
со		2.60	6.84		1.71	EPA Tier 2 Nonroad Diesel Engine Emission Factor	
voc	6.42E-04		0.0051		0.0013	AP-42, Chapter 3.4, Table 3.4-1; footnote f	
SO ₂	1.21E-02		0.096		0.024	AP-42, Chapter 3.4, Table 3.4-1; 15 ppm sulfur	
PM ₁₀		0.15	0.39		0.099	EPA Tier 2 Nonroad Diesel Engine Emission Factor	
PM _{2.5}		0.15	0.39		0.099	EPA Tier 2 Nonroad Diesel Engine Emission Factor	
Acetaldehyde	2.52E-05		2.00E-04	0.10	5.01E-05	AP-42, Chapter 3.4, Table 3.4-3	
Acrolein	7.88E-06		6.26E-05	0.03	1.57E-05	AP-42, Chapter 3.4, Table 3.4-3	
Benzene	7.76E-04		6.17E-03	3.08	1.54E-03	AP-42, Chapter 3.4, Table 3.4-3	
Formaldehyde	7.89E-05		6.27E-04	0.31	1.57E-04	AP-42, Chapter 3.4, Table 3.4-3	
Toluene	2.81E-04		2.23E-03	1.12	5.58E-04	AP-42, Chapter 3.4, Table 3.4-3	
Xylenes	1.93E-04		1.53E-03	0.77	3.83E-04	AP-42, Chapter 3.4, Table 3.4-3	
Total HAPS			0.011	5.41	0.0027		
Dallastand	Emiss	ion Factor	Est	imated Emissi	ons	Ourse of Frederican Footons	
Pollutant	(kg/	MMBtu)	(lb/hr)		(tpy)	Source of Emissions Factors	
CO ₂	7	3.96	1299		324.8	40 CFR Part 98, Subpart C, Table C-1	
CH₄	0	.003	0.053		0.013	40 CFR Part 98, Subpart C, Table C-2	
N ₂ O	0.	0006	0.011		0.0026	40 CFR Part 98, Subpart C, Table C-2	
CO ₂ e			1,304		325.9	40 CFR Part 98, Subpart A, Table A-1	

Natural Gas Fired Boiler Emissions

Company:	Antero Resources Corporation	
Facility Name:	Sandstrom Water Treatment Facility	
Location:	Doddridge County, WV	
Source Description:	Steam Boilers A and B	
Emission Unit IDs:	H-2185A and H-2185B	

Source Information

Source Description:	Boiler		
Hours of Operation	8,760	hr/yr	
Design Heat Rate	276.5	MMBtu/hr	
Fuel Heat Value ¹	1,284	Btu/scf	
Fuel Use	1886.4	MMscf/yr	

Fuel Heat Value based on natural gas in the area of the Facility

Potential Emissions per Boiler

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutarit	(lb/MMBtu)	(lb/hr)	(tpy)	Source
NO_X	0.036	9.95	43.60	Manufacturer Spec Sheet
CO	0.037	10.23	44.81	Manufacturer Spec Sheet
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
VOC	5.5	1.88	8.22	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	2.59	11.36	AP-42 Ch. 1.4 Table 1.4-2 (Total)
PM _{2.5}	7.6	2.59	11.36	AP-42 Ch. 1.4 Table 1.4-2 (Total)
SO ₂	0.6	0.20	0.90	AP-42 Ch. 1.4 Table 1.4-2
Lead	0.0005	0.00017	0.00075	AP-42 Ch. 1.4 Table 1.4-2
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliatalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
Benzene	2.10E-03	0.00045	0.0020	AP-42 Ch. 1.4 Table 1.4-3
Dichlorobenzene	1.20E-03	0.00026	0.0011	AP-42 Ch. 1.4 Table 1.4-3
Formaldehyde	7.50E-02	0.016	0.071	AP-42 Ch. 1.4 Table 1.4-3
n-Hexane	1.80E+00	0.39	1.70	AP-42 Ch. 1.4 Table 1.4-3
Naphthalene	6.10E-04	0.00013	0.00058	AP-42 Ch. 1.4 Table 1.4-3
Toluene	3.40E-03	0.00073	0.0032	AP-42 Ch. 1.4 Table 1.4-3
Other HAPs	7.38E-05	0.000016	0.000070	AP-42 Ch. 1.4 Table 1.4-3-sum of minor HAPs
Total HAPs	1.88E+00	0.41	1.78	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliatalit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	32,423	142,013	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.61	2.68	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.061	0.27	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		32,457	142,160	40 CFR Part 98, Subpart A, Table A-1

Thermal Oxidizer Combustion Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Thermal Oxidizer for Waste Gas Header
Emission Unit ID:	U-1080

Combustion Emissions

Thermal Oxidizer Rating¹: 3.00 MMBtu/hr
Gas Heating Value²: 1,284 Btu/scf
Hours of Operation: 8,760 hr/yr

Pollutant	Emission Factor ³ (lb/MMBtu)	Emissions (lbs/hr)	Emissions (tons/yr)		
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - Smokeless Design				
Sulfur Dioxide (SO ₂)	N/A - Combusted Gas has no Sulfur				
Nitrogen Oxides (NO _x)	0.068	0.20	0.89		
Carbon Monoxide (CO)	0.31	0.93	4.07		

¹ Maximum flare heat input is used to calculate emissions, so as to be conservative.

NOx Emissions from Combusting Ammonia

 $NOx = NH3 \times (MW_{NOx}/MW_{NH3}) \times 0.005$ where the 0.5% conversion rate is referenced from TCEQ RG-109 guidance on flares NH3 emissions are referenced from the Waste Gas Header emissions page

Pollutant	Emissions (lbs/hr)	Emissions (tons/yr)
Nitrogen Oxides (NO _x)	0.87	3.60

Pilot Emissions

 $\begin{array}{cccc} \mbox{Pilot Heating Value:} & 1,284 & \mbox{Btu/scf} \\ \mbox{Hours of Operation:} & 8,760 & \mbox{hr/yr} \\ \mbox{Total Pilot Natural Gas Usage} \ ^6: & 1.50\mbox{E-05} & \mbox{MMscf/hr} \end{array}$

Pollutant	Emission Factor (lb/MMscf) ⁴	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	7.6	1.44E-04	6.29E-04
Nitrogen Oxides (NO _x)	100	1.89E-03	8.27E-03
Sulfur Dioxide (SO ₂)	0.6	1.13E-05	4.96E-05
Carbon Monoxide (CO)	84	1.59E-03	6.95E-03
Volatile Organic Compounds (VOC)	5.5	1.04E-04	4.55E-04
Benzene	2.10E-03	3.97E-08	1.74E-07
Toluene	3.40E-03	6.42E-08	2.81E-07
Formaldehyde	7.50E-02	1.42E-06	6.20E-06
n-Hexane	1.80E+00	3.40E-05	1.49E-04
Total HAPs ^{4,5}	1.88	3.55E-05	1.55E-04

⁴ Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

Total Combustor Emissions

Pollutant	Total Potential Emission Rate (lbs/hr)	Total Potential Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	1.44E-04	6.29E-04
Nitrogen Oxides (NO _x)	1.08	4.50
Sulfur Dioxide (SO ₂)	1.13E-05	4.96E-05
Carbon Monoxide (CO)	0.93	4.08
Volatile Organic Compounds (VOC)	1.04E-04	4.55E-04
Total HAPs	3.55E-05	1.55E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	351.8	1,541	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.007	0.029	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.0007	0.0029	40 CFR Part 98, Subpart C, Table C-2
CO₂e		352.2	1,542	40 CFR Part 98, Subpart A, Table A-1

²Methane with a heating value of 1284 Btu/hr will be added to the thermal oxidizer to assist in combustion

³ Emission Factors from Table 13.5-1 and 13.5-2 of AP-42 Section 13.5 (April 2015)

⁵ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

⁶Typical pilot gas usage

Truck Unloading Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Unloading Influent Water from Trucks
Emission Unit ID:	P-1051

AP - 42, Chapter 5.2 $L_L = 12.46 \times S \times P \times M / T$

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)

Saturation Factor

True Vapor Pressure of the Loaded Liquid (psia)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

Temperature of Loaded Liquid (°R) T =

VOC Emissions (tpy) = L_L (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

1000 gal * 2000 lbs/ton

						LL	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	Cumene	CO2e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	T (ºR)	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Influent Water	0.6	0.24	18	60	519.67	0.062	60,000	28.58	0.057	0.090	0.0044	0.055	0.0019	20.94

						Lլ	Unloading	VOC	Benzene	Toluene	E-benzene	Xylenes	Cumene	CO2e
Source	S ¹	P (psia) ²	M ³	T (ºF)⁴	T (ºR)	(lb/1000 gal)	bbl/hr	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Influent Water	0.6	0.24	18	60	519.67	0.062	12,000	31.32	0.063	0.099	0.0049	0.060	0.0021	22.95

- Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service).
 - 2. True vapor pressure is that of water at 60F.
 - 3. Molecular weight liquid vapor is estimated assuming water.
 - 4. Temperature based on the annual average temperature data for influent water (Material Balance Stream 101).
 - 5. HAPs and CO2e calculated using influent water concentrations (Material Balance Stream 101).
 - 6. Short term loading assumes the maximum rate of 8400 gallons per minute when all 16 bays are used.

Cooling Tower Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
	Doddridge County, WV
Source Description:	Cooling Tower Drift Loss
Emission Unit ID:	CT-2335

Circulation Rate: 34,500 gpm TDS: 5,450 ppm Drift Loss: 0.001 9
Operating Hours: 8,760 hrs/yr

Emission Source	Circulation rate (gal/hr)	Circulating Water TDS content (ppm)	Liquid Drift Loss (%)	Water Density (lbs/gal)	Operating hours (hrs/yr)	PM10 (lb/hr)	PM10 (ton/yr)
Cooling Tower	2,070,000	5,450	0.001	8.34	8,760	0.94	4.12

Notes:

- 1. Circulation rate and drift loss based on design data.
- 2. Circulating water TDS from data on expected influent water streams.
- 3. Design data shows an evaporation rate of 472 gpm, however there are no volatile compounds in the water for evaproation emissions.
- 4. Emissions calculated using AP-42 Chapter 13.4 guidance. "Conservatively high PM-10 emissions can be obtained by multiplying the total drift factor by TDS and assume that upon evaporation all are PM-10".

Circulation Water Quality (based on 10 COC)

	Units	Average Concentration
Cations:		
Calcium	mg/L as Ca	< 250
Magnesium	mg/L as Mg	< 0.2
Sodium	mg/L	< 1,269
Potassium	mg/L	< 0.5
Barium	mg/L	< 0.5
Strontium	mg/L	< 0.5
Total Iron	mg/L	< 0.1
Ammonium	mg/L	< 37.5
Manganese	mg/L	< 0.1
Lithium	mg/L	< 0.5
Anions:		
Bicarbonate	mg/L	< 1,460
Carbonate	mg/L	< 3.1
Hydroxide	mg/L	< 0.1
Sulfate	mg/L	< 10
Bromide	mg/L	< 0.2
Chloride	mg/L	< 950
Nitrate	mg/L	< 1,328

	Units	Average Concentration
Other Constituents:		
рН	S.U.	7.5 – 8.5
Water Temperature	deg F	80 - 90
Silica	mg/L	< 0.5
Total Dissolved Solids (calculated)	mg/L	< 5,450
Total Alkalinity	mg/L as CaCO₃	< 1,205
Total Suspended Solids	mg/L	< 25
Free Oil & Grease (> 20 µm)	mg/L	< 0.5

Waste Gas Header Emission Sources

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Tanks going to the Waste Gas Header

Uncontrolled Emissions

Uncontrolled Emissions														
Pollutant	TK-10	55A/B	TK-10	60A/B	TK-	1070	TK-	2010	TK-	2015	TK-	2040	TK-1	1065
	(lb/hr)	(tpy)	(lb/hr)	(tpy)										
VOCs as oil	41.21	67.13	8.31	8.39	8.67	9.98	26.09	41.47	8.46	8.81	8.95	10.97	1.09	2.16
Ammonia	11.72	42.06	0.24	0.23	0.25	0.28	4.65	16.84	0.23	0.22	0.25	0.27		
Benzene	0.089	0.17	0.091	0.088	0.092	0.10	0.045	0.090	0.017	0.017	0.019	0.023		
3&4 Methylbenzene	0.00007	0.00031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000		
Cumene	0.0015	0.0034	0.0065	0.0054	0.0064	0.0068	0.0006	0.0015	0.0001	0.0001	0.0001	0.0001		
Ethylbenzene	0.0039	0.0090	0.0099	0.0090	0.0101	0.0113	0.0017	0.0043	0.0002	0.0002	0.0003	0.0004		
Phenol	3.5E-06	1.5E-05	4.0E-07	4.3E-07	7.6E-07	2.0E-06	1.3E-06	5.9E-06	2.2E-07	2.4E-07	5.0E-07	1.5E-06		
Toluene	0.11	0.22	0.17	0.16	0.17	0.19	0.050	0.11	0.010	0.010	0.011	0.014		
Xylene	0.019	0.063	0.11	0.10	0.11	0.12	0.0070	0.026	0.0025	0.0026	0.0028	0.0038		
Manganese														
Selenium														
TOTAL HAPs	0.22	0.47	0.39	0.36	0.39	0.43	0.10	0.23	0.030	0.030	0.033	0.041		
Carbon Dioxide	22.70	37.54	73.55	71.82	63.60	68.80	9.52	16.11	43.42	40.53	38.95	41.44		

Pre-Thermal Oxidizer

The memal oxidizer														
Pollutant	TK-	2020	TK-	2030	TK-	2160	E-2	2076	TK-	2130	TK-	2140	TOT	ALS
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs as oil	6.21	25.45	0.28	1.23	1.10	4.38			0.0020	0.0078	3.4E-06	1.5E-05	110.36	179.98
Ammonia	1.06	4.43	0.093	0.40			44.70	195.79			0.00037	0.00027	63.20	260.52
Benzene	0.022	0.077	0.0021	0.0092							2.3E-06	1.0E-05	0.38	0.58
3&4 Methylbenzene	8.3E-06	3.6E-05	8.2E-07	3.6E-06									1.3E-04	5.0E-04
Cumene	1.9E-04	7.9E-04	1.8E-05	7.7E-05									0.015	0.018
Ethylbenzene	0.00056	0.0023	0.000048	0.0002093									0.027	0.037
Phenol	4.0E-07	1.7E-06	4.1E-08	1.8E-07									7.2E-06	2.7E-05
Toluene	0.019	0.073	0.0017	0.0075							1.1E-06	5.0E-06	0.53	0.78
Xylene	0.00090	0.0039	0.000068	0.00030									0.26	0.32
Manganese														
Selenium														
TOTAL HAPs	0.043	0.16	0.0040	0.017							3.4E-06	1.5E-05	1.21	1.74
			•											
Carbon Dioxide	2.02	5.97	2.0E-05	8.4E-05									253.76	282.21

15 of 25

Waste Gas Header Emission Sources

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Tanks going to the Waste Gas Header

Controlled Emissions

Controlled Emissions			1								1.			
Pollutant	TK-10	55A/B	TK-10	60A/B	TK-	1070	TK-	2010	TK-	2015	TK-:	2040	TK-1	1065
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs as oil	0.82	1.34	0.17	0.17	0.17	0.20	0.52	0.83	0.17	0.18	0.18	0.22	0.022	0.043
Ammonia	0.23	0.84	0.0048	0.0046	0.0050	0.0055	0.093	0.34	0.0047	0.0044	0.0050	0.0055		
Benzene	1.8E-03	3.4E-03	1.8E-03	1.8E-03	1.8E-03	2.1E-03	9.0E-04	1.8E-03	3.5E-04	3.4E-04	3.7E-04	4.5E-04		
3&4 Methylbenzene	1.4E-06	6.1E-06	9.7E-08	1.0E-07	1.4E-07	2.1E-03 2.9E-07	5.4E-07	2.4E-06	7.8E-08	8.1E-08	1.2E-07	2.7E-07		
Cumene	2.9E-05	6.9E-05	1.3E-04	1.1E-04	1.3E-04	1.4E-04	1.2E-05	3.1E-05	1.3E-06	1.3E-06	1.6E-06	2.8E-06		
Ethylbenzene	7.8E-05	1.8E-04	2.0E-04	1.8E-04	2.0E-04	2.3E-04	3.4E-05	8.7E-05	4.4E-06	4.4E-06	5.3E-06	8.0E-06		
Phenol	7.0E-08	3.0E-07	8.0E-09	8.7E-09	1.5E-08	4.0E-08	2.7E-08	1.2E-07	4.4E-09	4.8E-09	1.0E-08	2.9E-08		
Toluene	2.1E-03	4.4E-03	3.3E-03	3.2E-03	3.3E-03	3.7E-03	1.0E-03	2.2E-03	2.1E-04	2.0E-04	2.2E-04	2.8E-04		
Xylene	3.7E-04	1.3E-03	2.2E-03	2.1E-03	2.3E-03	2.4E-03	1.4E-04	5.1E-04	5.1E-05	5.1E-05	5.7E-05	7.7E-05		
Manganese														
Selenium														
TOTAL HAPs	0.0044	0.0093	0.0077	0.0073	0.0078	0.0086	0.0021	0.0047	0.00061	0.00060	0.00066	0.00082		
Carbon Dioxide	22.70	37.54	73.55	71.82	63.60	68.80	9.52	16.11	43.42	40.53	38.95	41.44		

Post-Thermal Oxidizer

Pollutant	TK-	2020	TK-	2030	TK-	2160	E-2	076	TK-	2130	TK-	2140	TOTALS	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs as oil	0.12	0.51	0.0057	0.025	0.022	0.088			3.9E-05	1.6E-04	6.8E-08	3.0E-07	2.21	3.60
Ammonia	0.021	0.089	0.0019	0.0081			0.89	3.92			7.4E-06	5.4E-06	1.26	5.21
Benzene	4.4E-04	1.5E-03	4.2E-05	1.8E-04							4.6E-08	2.0E-07	7.5E-03	1.2E-02
3&4 Methylbenzene	1.7E-07	7.3E-07	1.6E-08	7.2E-08									2.6E-06	1.0E-05
Cumene	3.9E-06	1.6E-05	3.5E-07	1.5E-06									3.1E-04	3.7E-04
Ethylbenzene	1.1E-05	4.5E-05	9.6E-07	4.2E-06									5.3E-04	7.4E-04
Phenol	8.0E-09	3.5E-08	8.2E-10	3.6E-09									1.4E-07	5.4E-07
Toluene	3.8E-04	1.5E-03	3.4E-05	1.5E-04							2.3E-08	1.0E-07	1.1E-02	1.6E-02
Xylene	1.8E-05	7.8E-05	1.4E-06	5.9E-06									5.1E-03	6.5E-03
Manganese														
Selenium														
TOTAL HAPs	0.00086	0.0031	0.00008	0.00035							6.8E-08	3.0E-07	0.024	0.035
Carbon Dioxide	2.02	5.97	2.0E-05	8.4E-05									253.76	282.21

16 of 25

Waste Gas Header Emission Sources

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Tanks going to the Waste Gas Header

Notes:

- 1. Waste Gas Header is controlled by a thermal oxidizer with a control efficiency of at least 98 %
- 2. EPA's WATER9 program was used to calculate the emissions of all the emission points shown except for TK-1065, E-2076, TK-2130, and TK-2140. TK-1065 was assumed all crude to be conservative and emissions were calculated using TANKS 4.09d. E-2076 emissions were from Material Balance Stream 225. TK-2130 and TK-2140 emissions were calculated using Stream 283 and Stream 161 respectively and TANKS 4.09d.
- 3. Emissions from TK-1055A/B and TK-2010 are likely less than shown. WATER9 does not allow for covered clarifiers so more emissions are likely generated in the model due to air flow over the tanks.
- 4. Influent stream into TK-1055A/B is Material Balance Stream 102. Pound per hour emissions are calculated using peak flow and annual emissions use the average flow.
- 5. Influent streams into TK-2020 is 105 and 112.
- 6. Influent stream into TK-2030 is 115.
- 7. Influent stream into TK-2160 is 270.
- 8. Metal HAPs are shown for completeness but stay in solution so there are no air emissions
- 9. Only those compounds above the detection limit are shown as otherwise emissions are not quantifiable.

Post Treatment System Tanks

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Post Treatment System Tanks
Emission Unit ID:	TK-2500, TK-2550, TK-2555, CF-2510, TK-2520, and TK-2515

	TK-2500 1,2,3,4,5					TK-255	0 and TK-2	2555 ^{1,6,7}		CF-2510 ^{1,3,8}					
	2034833	L/hr Peak	1860242	L/hr Average	e	2044577	L/hr Peak	1858789	L/hr Average	9	515346	L/hr Peak	468558	L/hr Average	•
	ln	Out	Delta	Emiss	sions ^{4,5}	In	Out	Delta	Emis	sions	In	Out	Delta	Emis	sions
	mg/L	mg/L	mg/L	(lb/hr)	(tpy)	mg/L	mg/L	mg/L	(lb/hr)	(tpy)	mg/L	mg/L	mg/L	(lb/hr)	(tpy)
VOCs as oil	6.41	1.13	5.28	1.18	4.74	1.13	1.13	0.0	0.00	0.00	1.13	1.13	0.0	0.00	0.00
Ammonia	24.90	3.00	21.90	1.96	7.87	3.00	3.00	0.0	0.00	0.00	3.00	3.00	0.0	0.00	0.00
Benzene	0.017	0.003	0.01	0.0031	0.013	0.003	0.003	0.0	0.00	0.00	0.003	0.003	0.0	0.00	0.00
3&4 Methylbenzene	0.005	0.001	0.004	0.00090	0.0036	0.001	0.001	0.0	0.00	0.00	0.001	0.001	0.0	0.00	0.00
Cumene	0.0005	0.0	0.0005	0.00011	0.00044										
Ethylbenzene	0.0010	0.0	0.0010	0.00022	0.00090										
Phenol	0.0005	0.00	0.0005	0.00011	0.00044										
Toluene	0.03	0.01	0.02	0.0049	0.020	0.01	0.01	0.0	0.00	0.00	0.005	0.005	0.0	0.00	0.00
Xylene	0.016	0.003	0.01	0.0029	0.012	0.003	0.003	0.0	0.00	0.00	0.0030	0.0030	0.0	0.00	0.00
TOTAL HAPs	0.067	0.012	0.05	0.012	0.049	0.012	0.012	0.0	0.00	0.00	0.012	0.012	0.0	0.00	0.00
Carbon Dioxide	8.40	32.00	-23.60			32.00	5.30	26.70	120.35	479.24	5.00	5.30	-0.30		

Post Treatment System Tanks

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Post Treatment System Tanks
Emission Unit ID:	TK-2500, TK-2550, TK-2555, CF-2510, TK-2520, and TK-2515

	TK-2	515 ⁹	TK-2	520 ⁹
	Emis	sions	Emis	sions
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOCs as oil	0.77	3.10	0.015	0.064
Ammonia	0.0014	0.0057	0.00089	0.0039
Benzene	1.2E-04	5.0E-04	2.1E-05	9.1E-05
3&4 Methylbenzene	7.5E-09	3.0E-08	3.8E-09	1.7E-08
Cumene				
Ethylbenzene				
Phenol				
Toluene	2.4E-04	9.6E-04	3.0E-05	1.3E-04
Xylene	1.6E-04	6.2E-04	1.6E-06	7.2E-06
TOTAL HAPs	0.00052	0.0021	0.00005	0.00023
Carbon Dioxide	0.95	3.81	0.027	0.12

Notes

- 1. Due to the nature of the processes for the Post Treatment tanks, emissions will be calculated by mass balance based on Material Balance Stream data. In and out concentrations shown are based on material balance in the liquid phase and it is assumed the difference in concentration is due to volatilization unless denoted otherwise by the process.
- 2. Influent Streams to TK-2500 are 298, 402, and 405 and the sum of the streams is shown above.
- 3. Negative delta concentrations in the liquid phase in this case means added to the system.
- 4. Due to the nature of the process, the volatile components in TK-2500 are expected to adsorb onto the biosolids that are formed or otherwise consumed in the process based on experience with the process from the design firm. Its is expected that 95% of the organics will be adsorbed or consumed.
- 5. It is assumed most all of the ammonia (98%) will be reduced in TK-2500 as explained in Attachment G.
- 6. The rest of the process train (TK-2550 to CF-2510) only has changes regarding air emissions in CO2 as shown by the Material Balance Streams.
- 7. Influent Stream to TK-2550 and TK-2555 is 403 and is shown above.
- 8. Influent Stream to CF-2510 is 406 and is shown above.
- 9. Influent Streams to TK-2520 and TK-2515 are 407 and 408. Emissions are calculated from these tanks by WATER9 as there was not enough data on the effluent streams to perform material balance.

19 of 25 July 2015

Sludge and Wetcake Disposal Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Sludge and Wetcake Disposal Emissions
Emission Unit ID:	DISP 1 and DISP 2

	Dewater	ed Sludge	Disposal	Wetcake Disposal				
	7495	L/hr Average)	38611	L/hr Average			
	In	Emiss	ions ^{2,4}	In	Emiss	ions ^{3,4}		
	mg/L	(lb/hr)	(tpy)	mg/L	(lb/hr)	(tpy)		
VOCs	2917.00	4.82	21.11	13.00	0.11	0.48		
Ammonia	134.00	0.22	0.97					
Benzene	0.581	9.6E-04	4.2E-03					
3&4 Methylbenzene	0.188	3.1E-04	1.4E-03					
Cumene	0.0190	3.1E-05	1.4E-04					
Ethylbenzene	0.045	7.4E-05	3.3E-04					
Phenol	0.0180	3.0E-05	1.3E-04					
Toluene	0.92	1.5E-03	6.6E-03					
Xylene	0.560	9.3E-04	4.1E-03					
TOTAL HAPs	2.329	0.0038	0.017					
Carbon Dioxide ³	0.002	0.000003	0.00001					

Notes

- 1. Based on Material Balance Streams 114 (influent to dewatering system) vs 115 and 117 (effluent from dewatering system), there is no volatilization in the enclosed dewatering system.
- 2. Influent Streams for dewatered sludge is 117.
- 3. Influent Stream for Wetcake disposal is 274.
- 4.Waste is transferred to dumpsters to be taken to a landfill. Based on short term dumpster storage from Section 9 of EPA-453/R-94-080A Air Emissions Models for Waste and Wastewater, the fraction volatilized to the air is estimated to be less than 10%. The dumpsters will be filled on location fast enough that the storage should be short term.

Atmospheric Storage Tank Working and Breathing Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV
Source Description:	Atmospheric Storage Tanks
Emission Unit IDs:	TK-2120, TK-4115, and TK-4180

TANK	Peak Flow	Avg Flow	VOCs		Meth	anol	Sulfuri	ic Acid	Ammonia	
DESCRIPTION	(gph)	(gph)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Process Distillate Level Tank (TK-2120)	74580	68400							0.29	1.18
Methanol Bulk Storage Tank (TK-4115)	76.7	30.5	0.038	0.14	0.038	0.14				
Sulfuric Acid Bulk Storage Tank (TK-4180)	34.4	17.2					0.00	0.00		
TOTAL			0.038	0.14	0.038	0.14	0.00	0.00	0.29	1.18

Notes:

- 1. EPA Tanks 4.0.9d used to calculate standing, working, and breathing emissions.
- 2. Pounds per hour emissions calculated using the peak flow rate from the Material Balance Sheet and tons per year emissions calculated using the average flow rate from the Material Balance Sheet.
- 3. Process Distillate Level Tank uses Material Balance streams 226, 251, 261, and 271. Only stream 226 contained ammonia so the concentration was adjusted for total flow.
- 4. Methanol is both a HAP and VOC.
- 5. Throughput is not enough to show emissions in TANKS 4.0.9d.

21 of 25 July 2015

Process Feeder System Particulate Matter Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

Feed Rates into the Water Treatment System

DrySodium Sulfate - Max Process Rate:	120	lb/hr
Dry Sodium Sulfate - Avg Process Rate:	49.5	lb/hr
Dry Lime Feeder System A - Max Process Rate:	600	lb/hr
Dry Lime Feeder System A - Avg Process Rate:	250	lb/hr
Dry Lime Feeder System B - Max Process Rate:	600	lb/hr
Dry Lime Feeder System B - Avg Process Rate:	250	lb/hr
Dry Sodium Bicarbonate Feeder System - Max Process Rate:	25	lb/hr
Dry Sodium Bicarbonate Feeder System - Avg Process Rate:	11.7	lb/hr

Emissions Multiplier Ratio

lb PM2.5/ton 1.30E-05 Table 11.19.2-2 (controlled) lb PM10/ton 4.60E-05 Table 11.19.2-2 (controlled) lb PM/ton 1.40E-04 Table 11.19.2-2 (controlled)

Sodium Sulfate Feeder System

Source ID	Source ID Emission Source		Emission Factor		PM		PM10 ³		2.5 ⁴	Emission Factor Source
Source ID	Emission source	Lillissic	Emission Factor		(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	
TK-4036	Sodium Sulfate Silo ⁵	5.2	lb/ton product	0.31	0.06	0.10	0.02	0.029	0.01	AP-42 Table 8.12-3 for Sodium Carbonate
U-4037	Sodium Sulfate Bin Discharger5	5.2	lb/ton product	0.31	0.06	0.10	0.02	0.029	0.01	AP-42 Table 8.12-3 for Sodium Carbonate
U-4038	Sodium Sulfate Bin Feeder5	5.2	lb/ton product	0.31	0.06	0.10	0.02	0.029	0.01	AP-42 Table 8.12-3 for Sodium Carbonate
System Total Max Hourly Emissions:			0.94	lb/hr	0.31	lb/hr	0.087	lb/hr		
System Total Average Annual Emissions:			0.17	ton/yr	0.06	ton/yr	0.02	ton/yr		

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

July 2015

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

³⁾ Emission factors for PM10 are not provided in AP-42 Table 8.12-3. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.

⁴⁾ Emission factors for PM2.5 are not provided in AP-42 Table 8.12-3. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.

⁵⁾ Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Process Feeder System Particulate Matter Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

Bulk Lime Feeder System A

Source ID	Emission Source	Fusionian Footon		PM		PM10 ³		PM2.5 ⁴		Emission Factor Source
Source ID	Elilission Source	EIIIISSI	Emission Factor ((ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	
TK-4046A	Lime Silo A ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
U-4047A	Lime Bin Discharger A ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
U-4048A	Lime Bin Feeder A ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
System Total Max Hourly Emissions:			1.98	lb/hr	0.65	lb/hr	0.18	lb/hr		
System Total Average Annual Emissions:			0.36	ton/yr	0.12	ton/yr	0.03	ton/yr		

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

- 3) Emission factors for PM10 are not provided in AP-42 Table 11.17-4. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.
- 4) Emission factors for PM2.5 are not provided in AP-42 Table 11.17-4. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.
- 5) Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Bulk Lime Feeder System B

Source ID	Emission Source	Emission Factor		PM		PM10 ³		PM2.5 ⁴		Emission Factor Source
Source ID	Ellission Source			(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	
TK-4046B	Lime Silo B ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
U-4047B	Lime Bin Discharger B ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
U-4048B	Lime Bin Feeder B ⁵	2.2	lb/ton product	0.66	0.12	0.22	0.04	0.061	0.01	AP-42 Table 11.17-4 for Lime Processing
System Total Max Hourly Emissions:			1.98	lb/hr	0.65	lb/hr	0.18	lb/hr		
System Total Average Annual Emissions:			0.36	ton/yr	0.12	ton/yr	0.03	ton/yr		

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

³⁾ Emission factors for PM10 are not provided in AP-42 Table 11.17-4. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.

⁴⁾ Emission factors for PM2.5 are not provided in AP-42 Table 11.17-4. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.

⁵⁾ Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Process Feeder System Particulate Matter Emissions

Company:	Antero Resources Corporation
Facility Name:	Sandstrom Water Treatment Facility
Facility Location:	Doddridge County, WV

Sodium Bicarbonate Feeder System

Source ID	Emission Source	Emission Factor		PM		PM10 ³		PM2.5 ⁴		Emission Factor Source	
30til Ce ID	Linission double			(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²	(lb/hr) ¹	(ton/yr) ²		
TK-4011	Sodium Bicarbonate Silo ⁵	5.2	lb/ton product	0.065	0.01	0.021	0.002	0.0060	0.001	AP-42 Table 8.12-3 for Sodium Carbonate	
U-4012	Sodium Bicarbonate Bin Discharger ⁵	5.2	lb/ton product	0.065	0.01	0.021	0.002	0.0060	0.001	AP-42 Table 8.12-3 for Sodium Carbonate	
U-4013	Sodium Bicarbonate Volumentric Feeder ⁵	5.2	lb/ton product	0.065	0.01	0.021	0.002	0.0060	0.001	AP-42 Table 8.12-3 for Sodium Carbonate	
System Total Max Hourly Emissions:			0.20	lb/hr	0.064	lb/hr	0.018	lb/hr			
System Total Average Annual Emissions:			0.02	ton/yr	0.01	ton/yr	0.002	ton/yr			

¹⁾ The hourly emissions (lb/hr) are determined using the max hourly production rate for the system.

²⁾ The annual emissions (ton/yr) are determined using the average hourly production rate for the system.

³⁾ Emission factors for PM10 are not provided in AP-42 Table 8.12-3. Therefore, the PM10 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM10/PM of 4.6E-05/1.4E-04, shown in AP-42, Table 11.19.2-2.

⁴⁾ Emission factors for PM2.5 are not provided in AP-42 Table 8.12-3. Therefore, the PM2.5 emissions are based on AP-42 11.19.2 Crushed Stone and Pulverized Mineral Processing and the particule size multiplier ratio PM2.5/PM10 of 1.3E-05/4.6E-05, shown in AP-42, Table 11.19.2-2.

⁵⁾ Emission calculations for each source assume that the process feed rate is equal to the system production rates. Additionally, it is assumed that each emission source accounts for a single drop point.

Fugitive Dust Emissions

Company:	Antero Resources Corporation	
Facility Name:	Sandstrom Water Treatment Facility	
Facility Location:	Doddridge County, WV	
Source Description:	Fugitive Dust from Travel on the Facility Roads	
Emission Unit ID:	PROAD	

Vehicles	Truck Weight ¹	Trips per year	Trips per day ²	Distance per r (truck in an		VMT per year
	tons			feet	miles	miles
Influent Water Trucks	40	219,000	600	4,400	0.83	182,500
Chemical Delivery Trucks	40	1,825	5	5,600	1.06	1,936
Sludge/Wetcake Trucks	40	21,900	60	2,000	0.38	8,295
Worker Vehicles	2	3,650	10	5,600	1.06	3,871

Equation Parameter	Value
Eext , annual size-specific emission factor for PM ₁₀ & PM _{2.5} (paved roads) extrapolated for natural mitigation	see table below
k, Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.1-1)	0.0022
k , Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.00054
sL , surface material silt content, (g/m²) (Source: AP-42 Table 13.2.1-2) ⁴	0.6
W, mean weight (tons) of the vehicles traveling the road	39.44
P, number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.1-2.	150

Annual:

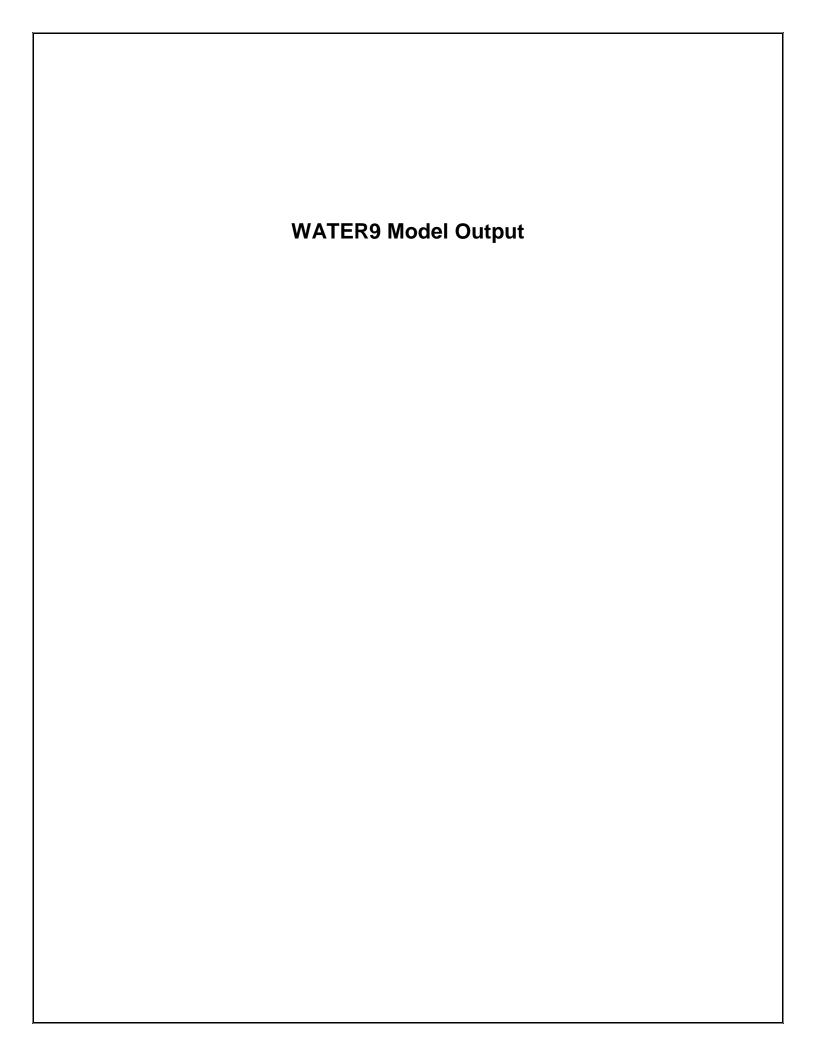
$$E_{ext} = [k (sL)^{0.91} \times (W)^{1.02}] (1 - P/4N)$$

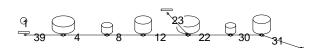
Hourly

$$E = k (sL)^{0.91} \times (W)^{1.02}$$

Source of Equations: AP-42 Section 13.2.1

PM₁₀ Emissions


Emission Factor	Vehicle miles traveled		PM ₁₀ Emissions	
(Ib/VMT)	(VMT/hr)	(VMT/yr)	(lb/hr)	(tons/yr)
0.059	22		1.32	
0.053		196,602		5.17


PM_{2.5} Emissions

2.0				
Emission Factor	Vehicle miles traveled		PM ₁₀ Emissions	
(lb/VMT)	(VMT/hr)	(VMT/yr)	(lb/hr)	(tons/yr)
0.014	22		0.32	
0.013		196,602		1.27

Table Notes:

- 1. Truck weights are assumed to be empty on one leg and loaded on the other. Trucks are either 100 bbl or 5000 gallon.
- 2. Influent trucks are based on 100 bbl trucks at 60,000 bbl/day. Chemical trucks are based on at most 24,000 gallons of chemicals per day needed at the facility in 5,000 gallon trucks. Sludge and wetcake disposal trucks are based on 203 gallons per minute of waste and 5,000 gallon trucks. Worker vehicles are based on 2 shifts per day with a maximum of 5 workers per shift.
- 3. Distance per round trip is based on the proposed site layout and the various truck bays.
- 4. The silt loading value of 0.6 g/m² is for public roads. Although the facility is industrial, the facility will not be a source of particlate matter generation as would a mining facility, so the public road silt loading was deemed appropriate.

No.	Name Type	flow (I/s
4	TK1055AB circular clarifier	126.4
8	TK1060A storage tank	126.4
12	TK1070 storage tank	126.4
22	TK2010 circular clarifier	133.1
23	StreamCDEF hard piped, no headspace	6.7
30	TK2015 storage tank	133.1
31	TK2040 storage tank	133.1
32	TK2030 mix tank	9.905
33	TK2160 mix tank	44.67
38	TK2020 mix tank	11.6
39	Influent to TK1055 hard piped, no headspace	
		126.4

General System Specifications	0 50 5 61 40 25 84 128 66 447 500 .015 .016 .006 12 25 5 2
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	1 def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm)	2 def. 0 0

4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0		0 0 0 0 0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	3	def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is circular clarifier 1 101 Description of unit 2 2 Wastewater temperature (C) 3 35 secondary clarifier diameter (m) 4 36 secondary clarifier depth (m) 5 83 clarifier solids removal efficiency 6 12 waterfall drop height (cm)	4	TK1055AB 25 22.86 5.1816 0.7 20

7 13 clarifier weir/circumference 8 364 Center well present, =1 10 366 number of identical units in parallel waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0		0.5
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	5	def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s)	6	def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

```
0
waste 1 added to system at unit
waste 2 added to system at unit
                                      0
waste 3 added to system at unit
                                      0
Type of unit is
1 103 Total water added at the unit (1/s)
                                                7 def.
2 104 Area of openings at unit (cm2)
                                                  0
3 105 Radius of drop pipe (cm)
4 106 Drop length to conduit (cm)
                                                  0
5 191 Humidity of inlet air (%)
                                                  0
6 124 Temperature of air (C)
                                                  0
7 125 Drain air velocity (ft/min)
                                                  0
8 126 manhole air velocity (ft/min)
                                                  0
9 127 Conduit air velocity (ft/min)
10 1 Wind speed (cm/s at 10 m)
                                                  0
11 111 distance to next unit (cm)
                                                  0
12 112 slope of underflow conduit
                                                  0
13 128 friction factor liquid
                                                  0
14 129 friction factor gas
                                                  0
15 110 radius of underflow conduit (cm)
                                                  0
16 102 Underflow T (C)
17 236 oscillation cycle time (min)
18 237 design collection velocities (ft/s)
                                                  0
waste 1 added to system at unit
                                      0
waste 2 added to system at unit
                                      0
waste 3 added to system at unit
Type of unit is storage tank
1 101 Description of unit
                                                8 TK1060A
2 2 Wastewater temperature (C)
                                                  25
3 84 Open surface area of tank (m2)
                                                  0
4 85 Density of liquid in tank (q/cc)
                                                  1
5 92 tank waste Mwt, water=18
                                                  18
6 93 unit storage time (days)
                                                  0
7 94 tank paint factor
                                                  0.6
8 95 tank diameter (m)
                                                  4.2672
9 96 tank vapor space height (m)
                                                  0.3048
10 97 diurnal temp. change (deg.C)
                                                  11
11 99 tank height (m)
                                                  6.096
12 9 oil in composite wastewater (wt. %)
13 515 Product factor crude oil =0.75 else 1.0
                                                  1
waste 1 added to system at unit
                                      0
waste 2 added to system at unit
waste 3 added to system at unit
Type of unit is
1 103 Total water added at the unit (1/s)
                                                9 def.
2 104 Area of openings at unit (cm2)
                                                  0
3 105 Radius of drop pipe (cm)
                                                  0
```

7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	0 0 0 0 0 0 0
Type of unit is storage tank 1 101 Description of unit 2 2 Wastewater temperature (C) 3 84 Open surface area of tank (m2) 4 85 Density of liquid in tank (g/cc) 5 92 tank waste Mwt, water=18 6 93 unit storage time (days) 7 94 tank paint factor 8 95 tank diameter (m) 9 96 tank vapor space height (m) 10 97 diurnal temp. change (deg.C) 11 99 tank height (m) 12 9 oil in composite wastewater (wt. %) 13 515 Product factor crude oil =0.75 else 1.0 waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	12TK1070 25 0 1 18 0 0.6 17.069 2 11 17.069 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas	13def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	20def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	21def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is circular clarifier 1 101 Description of unit 2 2 Wastewater temperature (C) 3 35 secondary clarifier diameter (m)	22TK2010 25 20.117

4 36 secondary clarifier depth (m) 5 83 clarifier solids removal efficiency 6 12 waterfall drop height (cm) 7 13 clarifier weir/circumference 8 364 Center well present, =1 10 366 number of identical units in parallel waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	20 0.5 0
Type of unit is hard piped, no headspace 1 101 Description of unit 2 102 Underflow T (C) 3 103 Total water added at the unit (1/s) 7 107 Open surface=1 8 108 Subsurface entrance=1 9 109 subsurface exit =1 10 110 radius of underflow conduit (cm) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit waste 1 added to system at unit 0 waste 2 added to system at unit 2 waste 3 added to system at unit 0	23StreamCDEF 25 0 0 1 1 1 12 500 0.015
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	24def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (1/s)	25def.

```
8 126 manhole air velocity (ft/min)
9 127 Conduit air velocity (ft/min)
                                                  0
10 1 Wind speed (cm/s at 10 m)
11 111 distance to next unit (cm)
                                                  0
12 112 slope of underflow conduit
                                                  0
13 128 friction factor liquid
14 129 friction factor gas
15 110 radius of underflow conduit (cm)
16 102 Underflow T (C)
                                                  0
17 236 oscillation cycle time (min)
                                                  0
18 237 design collection velocities (ft/s)
                                                  0
waste 1 added to system at unit
                                      0
waste 2 added to system at unit
                                      0
waste 3 added to system at unit
Type of unit is storage tank
                                                30TK2015
1 101 Description of unit
2 2 Wastewater temperature
                                                  25
3 84 Open surface area of tank
                                                  0
4 85 Density of liquid in tank (g/cc)
                                                  1
5 92 tank waste Mwt, water=18
                                                  18
6 93 unit storage time (days)
7 94 tank paint factor
                                                  0.6
8 95 tank diameter (m)
                                                  3.6576
9 96 tank vapor space height (m)
                                                  0.3048
10 97 diurnal temp. change (deg.C)
                                                  11
11 99 tank height (m)
                                                  4.2672
12 9 oil in composite wastewater (wt. %)
13 515 Product factor crude oil =0.75 else 1.0
waste 1 added to system at unit
waste 2 added to system at unit
waste 3 added to system at unit
Type of unit is storage tank
1 101 Description of unit
                                                31TK2040
2 2 Wastewater temperature
                             (C)
                                                  25
3 84 Open surface area of tank (m2)
                                                  0
4 85 Density of liquid in tank (g/cc)
                                                  1
5 92 tank waste Mwt, water=18
                                                  18
6 93 unit storage time (days)
7 94 tank paint factor
                                                  0.6
8 95 tank diameter (m)
                                                  18.898
9 96 tank vapor space height (m)
                                                  2
10 97 diurnal temp. change (deg.C)
                                                  11
11 99 tank height (m)
                                                  18.898
12 9 oil in composite wastewater (wt. %)
13 515 Product factor crude oil =0.75 else 1.0
                                                  1
waste 1 added to system at unit
waste 2 added to system at unit
```

Project C:\WATER9\SandstromWTF_2 07:19:56

waste 3 added to system at unit 0

Type of unit is mix tank 1 101 Description of unit 2 2 Wastewater temperature (C) 3 37 length of unit (m) 4 59 width of unit (m) 5 38 depth of unit (m) 6 29 Area of agitation (each aerator, m2) 7 30 Total number of agitators in the unit 8 31 Power of agitation (each aerator, HP) 9 32 Impeller diameter (cm) 10 33 Impeller rotation (RPM) 13 72 if there is plug flow, enter 1 15 87 Aeration air flow (m3/s) 16 234 vent air emission control factor 17 65 If covered, then enter 1 waste 1 added to system at unit 0 waste 2 added to system at unit 5 waste 3 added to system at unit 0	32TK2030 25 2.68224 2.68224 4.2672 4.38 1 5 60 1200 0
Type of unit is mix tank 1 101 Description of unit 2 2 Wastewater temperature (C) 3 37 length of unit (m) 4 59 width of unit (m) 5 38 depth of unit (m) 6 29 Area of agitation (each aerator, m2) 7 30 Total number of agitators in the unit 8 31 Power of agitation (each aerator, HP) 9 32 Impeller diameter (cm) 10 33 Impeller rotation (RPM) 13 72 if there is plug flow, enter 1 15 87 Aeration air flow (m3/s) 16 234 vent air emission control factor 17 65 If covered, then enter 1 waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 6	33TK2160 25 3.23088 3.23088 2.71272 6.3 1 25 60 1200 0 0
Type of unit is 1 103 Total water added at the unit (1/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min)	34def. 0 0 0 0 0 0

12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	0 0 0 0 0 0
Type of unit is 1 103 Total water added at the unit (l/s) 2 104 Area of openings at unit (cm2) 3 105 Radius of drop pipe (cm) 4 106 Drop length to conduit (cm) 5 191 Humidity of inlet air (%) 6 124 Temperature of air (C) 7 125 Drain air velocity (ft/min) 8 126 manhole air velocity (ft/min) 9 127 Conduit air velocity (ft/min) 10 1 Wind speed (cm/s at 10 m) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit 13 128 friction factor liquid 14 129 friction factor gas 15 110 radius of underflow conduit (cm) 16 102 Underflow T (C) 17 236 oscillation cycle time (min) 18 237 design collection velocities (ft/s) waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	37def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type of unit is mix tank 1 101 Description of unit 2 2 Wastewater temperature (C) 3 37 length of unit (m) 4 59 width of unit (m) 5 38 depth of unit (m) 6 29 Area of agitation (each aerator,m2) 7 30 Total number of agitators in the unit 8 31 Power of agitation (each aerator,HP) 9 32 Impeller diameter (cm) 10 33 Impeller rotation (RPM) 13 72 if there is plug flow, enter 1 15 87 Aeration air flow (m3/s) 16 234 vent air emission control factor 17 65 If covered, then enter 1	38TK2020 25 7.0104 7.0104 7.9248 29.4 1 30 60 1200 0

waste 1 added to system at unit waste 2 added to system at unit waste 3 added to system at unit	0 4 0		
Type of unit is hard piped, no head: 1 101 Description of unit	space	39Influent	to TK1055
2 102 Underflow T (C) 3 103 Total water added at the unit	(1/g)	25 0	
7 107 Open surface=1	(± / 5 /	Ö	
8 108 Subsurface entrance=1		1	
9 109 subsurface exit =1		1	
10 110 radius of underflow conduit	(cm)	12	
11 111 distance to next unit (cm)		500	
12 112 slope of underflow conduit		0.015	
waste 1 added to system at unit	1		
waste 2 added to system at unit	0		
waste 3 added to system at unit	0		

SUMMARY FOR EMISSIONS AT 4 TK1055AB circular 7/6/2015 7:22

BERYLLIUM **SELENIUM**

COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.31E+02	0.07325		0	1.21E+02	1.21E+00
BENZENE		5.71E-01	0.0676	i	0	5.32E-01	4.88E-03
CHLOROFORM		3.79E+01	0.06827		0	3.53E+01	3.27E-01
CHROMIUM (TOTAL) *		4.00E-02	0.08138	}	0	3.67E-02	4.12E-04
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.84E-01	0.00038	}	0	1.84E-01	8.82E-06
CUMENE (isopropylbenzene)		1.80E-02	0.04333		0	1.72E-02	9.86E-05
ETHYLBENZENE		4.40E-02	0.04668	1	0	4.20E-02	2.60E-04
OIL (decane as surrogate)		2.76E+02	0.05535		0	2.61E+02	1.93E+00
PHENOL		1.80E-02	0.00019		0	1.80E-02	4.39E-07
TOLUENE		9.01E-01	0.05549		0	8.51E-01	6.32E-03
XYLENE		5.49E-01	0.02631		0	5.35E-01	1.83E-03
CARBON DIOXIDE		1.08E+02	0.07939		0	9.94E+01	1.08E+00
MANGANESE		0.00E+00	0)	0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0)	0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0)	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0)	0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0)	0	0.00E+00	0.00E+00
Total rate for all compounds							4.57E+00
SUMMARY FOR EMISSIONS AT	8 TK1060A	storage t	ank				4.571.00
7/6/2015 7:22	O TREGOOM	storage t	um				
,,0,2013 7.22							
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.21E+02	0.00043		0	1.21E+02	
BENZENE		5.32E-01	0.03789		0	5.12E-01	2.55E-03
CHLOROFORM		3.53E+01	0.03302		0	3.42E+01	1.47E-01
CHROMIUM (TOTAL) *		3.67E-02	1.77E-16	;	0	3.67E-02	8.24E-19
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.84E-01	6.26E-06	;	0	1.84E-01	1.46E-07
CUMENE (isopropylbenzene)	•	1.72E-02	0.08477		0	1.58E-02	1.85E-04
ETHYLBENZENE		4.20E-02	0.05306	;	0	3.97E-02	2.81E-04
OIL (decane as surrogate)		2.61E+02			0	2.59E+02	
PHENOL		1.80E-02	5.48E-06	;	0	1.80E-02	1.25E-08
TOLUENE					0	0 1 4 5 0 1	
		8.51E-01	0.04356)	U	8.14E-U1	4.09E-03
XYLENE		8.51E-01 5.35E-01			0	8.14E-01 5.09E-01	
XYLENE CARBON DIOXIDE			0.04741				
		5.35E-01	0.04741 0.16444		0	5.09E-01	3.20E-03 2.07E+00
CARBON DIOXIDE		5.35E-01 9.94E+01	0.04741 0.16444		0 0	5.09E-01 8.31E+01	3.20E-03 2.07E+00 0.00E+00
CARBON DIOXIDE MANGANESE ANTIMONY		5.35E-01 9.94E+01 0.00E+00 0.00E+00	0.04741 0.16444 0 0	!	0 0 0	5.09E-01 8.31E+01 0.00E+00 0.00E+00	3.20E-03 2.07E+00 0.00E+00 0.00E+00
CARBON DIOXIDE MANGANESE		5.35E-01 9.94E+01 0.00E+00	0.04741 0.16444 0 0	· · ·	0 0 0	5.09E-01 8.31E+01 0.00E+00	3.20E-03 2.07E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00

0

0 0.00E+00 0.00E+00

clarifier

Total rate for all compounds SUMMARY FOR EMISSIONS AT 7/6/2015 7:22

1 2 TK1070 storage t ank

			2.47E+00
70	storage t	ank	

COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.21E+02	0.00052	<u>.</u>	0	1.21E+02	7.95E-03
BENZENE		5.12E-01	0.04666	<u>;</u>	0	4.88E-01	3.02E-03
CHLOROFORM		3.42E+01	0.03918	3	0	3.28E+01	1.69E-01
CHROMIUM (TOTAL) *		3.67E-02	7.37E-15	j	0	3.67E-02	3.42E-17
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.84E-01	1.78E-05	,	0	1.84E-01	4.14E-07
CUMENE (isopropylbenzene)		1.58E-02	0.11275	,	0	1.40E-02	2.25E-04
ETHYLBENZENE		3.97E-02	0.06953	}	0	3.70E-02	3.49E-04
OIL (decane as surrogate)		2.59E+02	0.00878	3	0	2.57E+02	2.87E-01
PHENOL		1.80E-02	2.51E-05	,	0	1.80E-02	5.71E-08
TOLUENE		8.14E-01	0.05321	-	0	7.71E-01	5.47E-03
XYLENE		5.09E-01	0.05838	3	0	4.80E-01	3.76E-03
CARBON DIOXIDE		8.31E+01	0.18849)	0	6.74E+01	1.98E+00
MANGANESE		0.00E+00	0)	0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0)	0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0)	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0)	0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0)	0	0.00E+00	0.00E+00

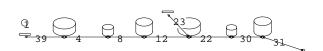
Total rate for all compounds

2.46E+00

SUMMARY FOR EMISSIONS AT 7/6/2015 7:22

2 2 TK2010 circular clarifier

COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.15E+02	0.03159		0	1.12E+02	4.84E-01
BENZENE		4.64E-01	0.04201		0	4.44E-01	2.59E-03
CHLOROFORM		3.12E+01	0.04293		0	2.98E+01	1.78E-01
CHROMIUM (TOTAL) *		3.49E-02	0.05419		0	3.30E-02	2.52E-04
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.75E-01	0.00015		0	1.75E-01	3.38E-06
CUMENE (isopropylbenzene)		1.33E-02	0.02438		0	1.30E-02	4.31E-05
ETHYLBENZENE		3.51E-02	0.02639		0	3.42E-02	1.23E-04
OIL (decane as surrogate)		2.44E+02	0.03679		0	2.35E+02	1.19E+00
PHENOL		1.71E-02	7.45E-05		0	1.71E-02	1.70E-07
TOLUENE		7.32E-01	0.03302		0	7.08E-01	3.22E-03
XYLENE		4.55E-01	0.01205		0	4.50E-01	7.31E-04
CARBON DIOXIDE		6.40E+01	0.05439		0	6.05E+01	4.64E-01
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0	1	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00


SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds SUMMARY FOR EMISSIONS AT 7/6/2015 7:22	3 0 TK2015	storage t	ank				2.33E+00
COMPOUND NAME		conc in (ppmw)	fe air	fe bio		conc out (ppmw)	emissions (g/s)
AMMONIA *		1.12E+02	0.00042		0	1.12E+02	6.26E-03
BENZENE		4.44E-01			0	4.41E-01	4.85E-04
CHLOROFORM		2.98E+01			0	2.95E+01	3.80E-02
CHROMIUM (TOTAL) *		3.30E-02			0	3.30E-02	
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.75E-01	5.00E-06		0	1.75E-01	1.16E-07
CUMENE (isopropylbenzene)	•	1.30E-02	0.00104		0	1.29E-02	1.80E-06
ETHYLBENZENE		3.42E-02	0.00138		0	3.41E-02	6.29E-06
OIL (decane as surrogate)		2.35E+02	0.00811		0	2.33E+02	2.54E-01
PHENOL		1.71E-02	3.02E-06		0	1.71E-02	6.86E-09
TOLUENE		7.08E-01	0.00309		0	7.06E-01	2.91E-04
XYLENE		4.50E-01	0.00123		0	4.49E-01	7.34E-05
CARBON DIOXIDE		6.05E+01	0.14464		0	5.18E+01	1.17E+00
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0		0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds							1.46E+00
SUMMARY FOR EMISSIONS AT 7/6/2015 7:22	3 1 TK2040	storage t	ank				
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.12E+02	0.00053		0	1.11E+02	7.90E-03
BENZENE		4.41E-01	0.01113		0	4.36E-01	6.53E-04
CHLOROFORM		2.95E+01	0.01206		0	2.92E+01	4.74E-02
CHROMIUM (TOTAL) *		3.30E-02	9.29E-15		0	3.30E-02	4.08E-17
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.75E-01	1.67E-05		0	1.75E-01	3.88E-07
CUMENE (isopropylbenzene)		1.29E-02	0.00224		0	1.29E-02	3.86E-06
ETHYLBENZENE		3.41E-02	0.00252		0	3.40E-02	1.14E-05
OIL (decane as surrogate)		2.33E+02	0.01018		0	2.30E+02	3.16E-01
PHENOL		1.71E-02	1.84E-05		0	1.71E-02	4.18E-08
TOLUENE		7.06E-01	0.00429		0	7.03E-01	4.03E-04
XYLENE		4.49E-01	0.00183		0	4.49E-01	1.10E-04
CARBON DIOXIDE		5.18E+01	0.17292		0	4.28E+01	1.19E+00
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00

ARSENIC

0.00E+00 0 0.00E+00 0.00E+00

BERYLLIUM SELENIUM Total rate for all compounds		0.00E+00 0.00E+00			0 0	0.00E+00 0.00E+00	
SUMMARY FOR EMISSIONS AT 7/6/2015 7:22	3 2 TK2030	mix tank					1302.00
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.20E+02			0	1.19E+02	
BENZENE		5.19E-01	0.05132		0	4.92E-01	2.64E-04
CHLOROFORM		4.04E-02			0	3.79E-02	
CHROMIUM (TOTAL) *		4.00E-02	0.07436		0	3.70E-02	2.95E-05
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.68E-01	6.24E-05		0	1.68E-01	1.04E-07
CUMENE (isopropylbenzene)		1.70E-02	0.01323		0	1.68E-02	2.23E-06
ETHYLBENZENE		4.00E-02	0.0152		0	3.94E-02	6.02E-06
OIL (decane as surrogate)		1.39E+02	0.02576		0	1.35E+02	3.55E-02
PHENOL		1.60E-02	3.24E-05		0	1.60E-02	5.14E-09
TOLUENE		8.20E-01	0.02658		0	7.98E-01	2.16E-04
XYLENE		5.00E-01	0.00172		0	4.99E-01	8.53E-06
CARBON DIOXIDE		2.00E-03	0.12268		0	1.76E-03	2.43E-06
MANGANESE		2.20E+00	1.28E-24		0	2.20E+00	2.80E-26
ANTIMONY		2.80E-02	1.28E-24		0	2.80E-02	3.56E-28
ARSENIC		3.50E-02	1.28E-24		0	3.50E-02	4.45E-28
BERYLLIUM		3.40E-02	1.28E-24		0	3.40E-02	4.32E-28
SELENIUM		3.40E-01	1.28E-24		0	3.40E-01	4.32E-27
Total rate for all compounds							4.77E-02
SUMMARY FOR EMISSIONS AT 7/6/2015 7:22	3 3 TK2160	mix tank					
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.00E-20	0.0012		0	9.99E-21	5.34E-25
BENZENE		1.00E-20	0.00333		0	9.97E-21	1.49E-24
CHLOROFORM		1.00E-20	0.00407		0	9.96E-21	1.82E-24
CHROMIUM (TOTAL) *		1.00E-20	0.01281		0	9.87E-21	5.72E-24
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.00E-20	4.05E-06		0	1.00E-20	1.81E-27
CUMENE (isopropylbenzene)		1.00E-20	0.00079		0	9.99E-21	3.53E-25
ETHYLBENZENE		1.00E-20	0.0009		0	9.99E-21	4.02E-25
OIL (decane as surrogate)		4.90E+01	0.05754		0	4.62E+01	1.26E-01
PHENOL		1.00E-20	1.73E-06		0	1.00E-20	7.74E-28
TOLUENE		1.00E-20	0.00161		0	9.98E-21	7.21E-25
XYLENE		1.00E-20	9.70E-05		0	1.00E-20	4.33E-26
CARBON DIOXIDE		1.00E-20	0.01253		0	9.88E-21	5.60E-24
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00

ARSENIC		0.00E+00	0	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0	0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0	0	0.00E+00	0.00E+00
Total rate for all compounds					-	1.26E-01
SUMMARY FOR EMISSIONS AT	3 8 TK2020	mix tank				
7/6/2015 7:22						
COMPOUND NAME		conc in	fe air fe bi)	conc out	emissions
		(ppmw)			(ppmw)	(g/s)
AMMONIA *		1.16E+02	0.09449	0	1.05E+02	1.27E-01
BENZENE		5.06E-01	0.3791	0	3.14E-01	2.23E-03
CHLOROFORM		3.79E+01	0.42307	0	2.19E+01	1.86E-01
CHROMIUM (TOTAL) *		4.00E-02	0.47469	0	2.10E-02	2.20E-04
1 HYDROXY 3 METHYLBENZEN cr	esol)	1.63E-01	0.00056	0	1.63E-01	1.05E-06
CUMENE (isopropylbenzene)		1.60E-02	0.12268	0	1.40E-02	2.28E-05
ETHYLBENZENE		3.90E-02	0.14443	0	3.34E-02	6.53E-05
OIL (decane as surrogate)		5.25E+02	0.12023	0	4.62E+02	7.32E-01
PHENOL		1.50E-02	0.00029	0	1.50E-02	5.02E-08
TOLUENE		7.78E-01	0.23283	0	5.97E-01	2.10E-03
XYLENE		4.86E-01	0.01981	0	4.76E-01	1.12E-04
CARBON DIOXIDE		2.40E+01	0.6167	0	9.20E+00	1.72E-01
MANGANESE		2.62E+00	1.22E-23	0	2.62E+00	3.71E-25
ANTIMONY		2.80E-02	1.22E-23	0	2.80E-02	3.98E-27
ARSENIC		3.50E-02	1.22E-23	0	3.50E-02	4.97E-27
BERYLLIUM		3.40E-02	1.22E-23	0	3.40E-02	4.83E-27
SELENIUM		3.22E-01	1.22E-23	0	3.22E-01	4.57E-26
Total rate for all compounds					-	1.22E+00

\$ 38 €

32

⊕33 ••

No.	Name Type	flow $(1/s)$
4	TK1055AB circular clarifier	549.7
8	TK1060A storage tank	549.7
12	TK1070 storage tank	549.7
22	TK2010 circular clarifier	560.4
23	StreamCDEF hard piped, no headspace	10.7
30	TK2015 storage tank	560.4
31	TK2040 storage tank	560.4
32	TK2030 mix tank	13.2
33	TK2160 mix tank	49.08
38	TK2020 mix tank	24.6
39	Influent to TK1055 hard piped, no headspace	
		549.7

SUMMARY FOR EMISSIONS A	4 TK1055AB circular	clarifier
7/6/2015 7:25		

//6/2015 /:25							
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.31E+02	0.02051		0	1.28E+02	1.48E+00
BENZENE		5.71E-01	0.03567		0	5.51E-01	1.12E-02
CHLOROFORM		3.79E+01	0.03691		0	3.65E+01	7.69E-01
CHROMIUM (TOTAL) *		4.00E-02	0.04692		0	3.81E-02	1.03E-03
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.84E-01	8.75E-05		0	1.84E-01	8.85E-06
CUMENE (isopropylbenzene)		1.80E-02	0.01866		0	1.77E-02	1.85E-04
ETHYLBENZENE		4.40E-02	0.02029		0	4.31E-02	4.91E-04
OIL (decane as surrogate)		2.76E+02	0.03422		0	2.67E+02	5.19E+00
PHENOL		1.80E-02	4.44E-05		0	1.80E-02	4.39E-07
TOLUENE		9.01E-01	0.02676		0	8.77E-01	1.33E-02
XYLENE		5.49E-01	0.00781		0	5.45E-01	2.36E-03
CARBON DIOXIDE		1.08E+02	0.04818		0	1.03E+02	2.86E+00
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0		0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds							1.03E+01
SUMMARY FOR EMISSIONS A	8 TK1060A	storage t	ank				2.002.02
7/6/2015 7:25		, and the second					
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.28E+02	0.00043		0	1.28E+02	
BENZENE		5.51E-01			0	5.30E-01	
CHLOROFORM		3.65E+01			0	3.53E+01	

COIVII OUND NAIVIL		COLIC III	ic an	IC DIO	,	conc out	CITII3310113
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.28E+02	0.00043		0	1.28E+02	3.03E-02
BENZENE		5.51E-01	0.03773		0	5.30E-01	1.14E-02
CHLOROFORM		3.65E+01	0.03291		0	3.53E+01	6.60E-01
CHROMIUM (TOTAL) *		3.81E-02	3.94E-17		0	3.81E-02	8.26E-19
1 HYDROXY 3 METHYLBENZEI cr e	esol)	1.84E-01	6.04E-06		0	1.84E-01	6.11E-07
CUMENE (isopropylbenzene)		1.77E-02	0.08425		0	1.62E-02	8.18E-04
ETHYLBENZENE		4.31E-02	0.05276		0	4.08E-02	1.25E-03
OIL (decane as surrogate)		2.67E+02	0.00714		0	2.65E+02	1.05E+00
PHENOL		1.80E-02	5.11E-06		0	1.80E-02	5.06E-08
TOLUENE		8.77E-01	0.04339		0	8.39E-01	2.09E-02
XYLENE		5.45E-01	0.04722		0	5.19E-01	1.41E-02
CARBON DIOXIDE		1.03E+02	0.164		0	8.59E+01	9.27E+00
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0		0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00

Total rate for all compounds SUMMARY FOR EMISSIONS A 7/6/2015 7:25

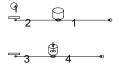
1 2 TK1070 storage t ank

				1.11E+01
age t	ank			

COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.28E+02	0.00045	j	0	1.28E+02	3.17E-02
BENZENE		5.30E-01	0.03975	j	0	5.09E-01	1.16E-02
CHLOROFORM		3.53E+01	0.03433	}	0	3.41E+01	6.66E-01
CHROMIUM (TOTAL) *		3.81E-02	1.63E-15	j	0	3.81E-02	3.42E-17
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.84E-01	8.69E-06	•	0	1.84E-01	8.79E-07
CUMENE (isopropylbenzene)		1.62E-02	0.09078	3	0	1.47E-02	8.07E-04
ETHYLBENZENE		4.08E-02	0.05657	,	0	3.85E-02	1.27E-03
OIL (decane as surrogate)		2.65E+02	0.00751	=	0	2.63E+02	1.09E+00
PHENOL		1.80E-02	9.62E-06	,	0	1.80E-02	9.52E-08
TOLUENE		8.39E-01	0.04561	-	0	8.01E-01	2.10E-02
XYLENE		5.19E-01	0.04975	;	0	4.93E-01	1.42E-02
CARBON DIOXIDE		8.59E+01	0.16965	;	0	7.14E+01	8.01E+00
MANGANESE		0.00E+00	C)	0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	C)	0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	C)	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	C)	0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	C)	0	0.00E+00	0.00E+00
Total rate for all compounds							0.855+00

Total rate for all compounds 9.85E+00

SUMMARY FOR EMISSIONS A 7/6/2015 7:25


2 2 TK2010 circular clarifier

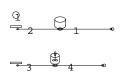
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.26E+02	0.00831		0	1.25E+02	5.86E-01
BENZENE		4.99E-01	0.02035		0	4.89E-01	5.69E-03
CHLOROFORM		3.34E+01	0.02151		0	3.27E+01	4.03E-01
CHROMIUM (TOTAL) *		3.74E-02	0.02882		0	3.63E-02	6.04E-04
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.81E-01	3.38E-05		0	1.81E-01	3.42E-06
CUMENE (isopropylbenzene)		1.44E-02	0.00924		0	1.43E-02	7.47E-05
ETHYLBENZENE		3.78E-02	0.0101		0	3.74E-02	2.14E-04
OIL (decane as surrogate)		2.58E+02	0.02276	i	0	2.52E+02	3.29E+00
PHENOL		1.77E-02	1.72E-05	1	0	1.77E-02	1.70E-07
TOLUENE		7.85E-01	0.01425		0	7.74E-01	6.27E-03
XYLENE		4.84E-01	0.00326	i	0	4.82E-01	8.85E-04
CARBON DIOXIDE		7.00E+01	0.03056	i	0	6.79E+01	1.20E+00
MANGANESE		0.00E+00	0)	0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0)	0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0)	0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0)	0	0.00E+00	0.00E+00

SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds SUMMARY FOR EMISSIONS A	3 0 TK2015	storage t	ank				5.49E+00
7/6/2015 7:25 COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.25E+02			0	1.25E+02	
BENZENE		4.89E-01			0	4.85E-01	
CHLOROFORM		3.27E+01			0	3.24E+01	1.71E-01
CHROMIUM (TOTAL) *		3.63E-02	2.72E-17		0	3.63E-02	5.54E-19
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.81E-01	4.85E-06		0	1.81E-01	4.90E-07
CUMENE (isopropylbenzene)		1.43E-02	0.001		0	1.43E-02	8.01E-06
ETHYLBENZENE		3.74E-02	0.00133		0	3.74E-02	2.79E-05
OIL (decane as surrogate)		2.52E+02	0.00755		0	2.50E+02	1.07E+00
PHENOL		1.77E-02	2.82E-06		0	1.77E-02	2.79E-08
TOLUENE		7.74E-01	0.00298		0	7.72E-01	1.30E-03
XYLENE		4.82E-01	0.00118		0	4.82E-01	3.20E-04
CARBON DIOXIDE		6.79E+01	0.14388		0	5.81E+01	5.47E+00
MANGANESE		0.00E+00	0		0	0.00E+00	0.00E+00
ANTIMONY		0.00E+00	0		0	0.00E+00	0.00E+00
ARSENIC		0.00E+00	0		0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds							6.74E+00
SUMMARY FOR EMISSIONS A 7/6/2015 7:25	3 1 TK2040	storage t	ank				
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.25E+02	0.00045		0	1.25E+02	3.12E-02
BENZENE		4.85E-01	0.00865		0	4.81E-01	2.35E-03
CHLOROFORM		3.24E+01	0.00991		0	3.21E+01	1.80E-01
CHROMIUM (TOTAL) *		3.63E-02	2.00E-15		0	3.63E-02	4.08E-17
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.81E-01	7.59E-06		0	1.81E-01	7.68E-07
CUMENE (isopropylbenzene)		1.43E-02	0.00127		0	1.43E-02	1.02E-05
ETHYLBENZENE		3.74E-02	0.00159		0	3.73E-02	3.32E-05
OIL (decane as surrogate)		2.50E+02	0.00806		0	2.48E+02	1.13E+00
PHENOL		1.77E-02	6.40E-06		0	1.77E-02	6.33E-08
TOLUENE		7.72E-01	0.00326		0	7.69E-01	1.41E-03
XYLENE		4.82E-01			0	4.81E-01	
CARBON DIOXIDE		5.81E+01			0	4.93E+01	
MANGANESE		0.00E+00			0	0.00E+00	
ANTIMONY		0.00E+00			0	0.00E+00	
ARSENIC		0.00E+00			0	0.00E+00	
		_	_			_	

Total rate for all compounds 6.25E+00 SUMMARY FOR EMISSIONS A 7/6/2015 7:25 3 2 TK2030 mix tank 6.25E+00 COMPOUND NAME conc in fe air fe bio (ppmw) (ppmw) (g/s) AMMONIA * 1.20E+02 0.00736 0 1.19E+02 1.17E-02 BENZENE 5.19E-01 0.03901 0 4.99E-01 2.67E-04 CHLOROFORM 4.04E-02 0.04638 0 3.85E-02 2.47E-05 CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04 XYLENE 5.00E-01 0.00129 0 4.99E-01 8.53E-06
(ppmw) (ppmw) (ppmw) (g/s) AMMONIA * 1.20E+02 0.00736 0 1.19E+02 1.17E-02 BENZENE 5.19E-01 0.03901 0 4.99E-01 2.67E-04 CHLOROFORM 4.04E-02 0.04638 0 3.85E-02 2.47E-05 CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
AMMONIA * 1.20E+02 0.00736 0 1.19E+02 1.17E-02 BENZENE 5.19E-01 0.03901 0 4.99E-01 2.67E-04 CHLOROFORM 4.04E-02 0.04638 0 3.85E-02 2.47E-05 CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
BENZENE 5.19E-01 0.03901 0 4.99E-01 2.67E-04 CHLOROFORM 4.04E-02 0.04638 0 3.85E-02 2.47E-05 CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
CHLOROFORM 4.04E-02 0.04638 0 3.85E-02 2.47E-05 CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
CHROMIUM (TOTAL) * 4.00E-02 0.05685 0 3.77E-02 3.00E-05 1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
1 HYDROXY 3 METHYLBENZEI cr esol) 1.68E-01 4.68E-05 0 1.68E-01 1.04E-07 CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
CUMENE (isopropylbenzene) 1.70E-02 0.00996 0 1.68E-02 2.24E-06 ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
ETHYLBENZENE 4.00E-02 0.01145 0 3.95E-02 6.05E-06 OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
OIL (decane as surrogate) 1.39E+02 0.01946 0 1.36E+02 3.57E-02 PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
PHENOL 1.60E-02 2.43E-05 0 1.60E-02 5.14E-09 TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
TOLUENE 8.20E-01 0.02008 0 8.04E-01 2.17E-04
VVIENE
XYLENE 5.00E-01 0.00129 0 4.99E-01 8.53E-06
CARBON DIOXIDE 2.00E-03 0.09496 0 1.81E-03 2.51E-06
MANGANESE 2.20E+00 9.63E-25 0 2.20E+00 2.80E-26
ANTIMONY 2.80E-02 9.63E-25 0 2.80E-02 3.56E-28
ARSENIC 3.50E-02 9.63E-25 0 3.50E-02 4.45E-28
BERYLLIUM 3.40E-02 9.63E-25 0 3.40E-02 4.32E-28
SELENIUM 3.40E-01 9.63E-25 0 3.40E-01 4.32E-27
Total rate for all compounds 4.79E-02
SUMMARY FOR EMISSIONS A 3 3 TK2160 mix tank 7/6/2015 7:25
COMPOUND NAME conc in fe air fe bio conc out emissions
(ppmw) (ppmw) (g/s)
AMMONIA * 1.00E-20 0.00109 0 9.99E-21 5.34E-25
BENZENE 1.00E-20 0.00303 0 9.97E-21 1.49E-24
CHLOROFORM 1.00E-20 0.00371 0 9.96E-21 1.82E-24
CHROMIUM (TOTAL) * 1.00E-20 0.01167 0 9.88E-21 5.73E-24
1 HYDROXY 3 METHYLBENZEI cr esol) 1.00E-20 3.69E-06 0 1.00E-20 1.81E-27
CUMENE (isopropylbenzene) 1.00E-20 0.00072 0 9.99E-21 3.53E-25
ETHYLBENZENE 1.00E-20 0.00082 0 9.99E-21 4.02E-25
OIL (decane as surrogate) 4.90E+01 0.05751 0 4.62E+01 1.38E-01
PHENOL 1.00E-20 1.58E-06 0 1.00E-20 7.74E-28
TOLUENE 1.00E-20 0.00147 0 9.99E-21 7.21E-25
XYLENE 1.00E-20 8.83E-05 0 1.00E-20 4.33E-26
CARBON DIOXIDE 1.00E-20 0.01142 0 9.89E-21 5.61E-24
MANGANESE 0.00E+00 0 0.00E+00 0.00E+00
ANTIMONY 0.00E+00 0 0 0.00E+00 0.00E+00

ARSENIC		0.00E+00	0		0	0.00E+00	0.00E+00
BERYLLIUM		0.00E+00	0		0	0.00E+00	0.00E+00
SELENIUM		0.00E+00	0		0	0.00E+00	0.00E+00
Total rate for all compounds							1.38E-01
SUMMARY FOR EMISSIONS A	3 8 TK2020	mix tank					
7/6/2015 7:25							
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		1.16E+02	0.0469		0	1.11E+02	1.34E-01
BENZENE		5.06E-01	0.22355		0	3.93E-01	2.78E-03
CHLOROFORM		3.79E+01	0.25694		0	2.82E+01	2.40E-01
CHROMIUM (TOTAL) *		4.00E-02	0.29879		0	2.81E-02	2.94E-04
1 HYDROXY 3 METHYLBENZEI cr	esol)	1.63E-01	0.00026		0	1.63E-01	1.05E-06
CUMENE (isopropylbenzene)		1.60E-02	0.06186		0	1.50E-02	2.44E-05
ETHYLBENZENE		3.90E-02	0.07373		0	3.61E-02	7.07E-05
OIL (decane as surrogate)		5.25E+02	0.06054		0	4.93E+02	7.82E-01
PHENOL		1.50E-02	0.00014		0	1.50E-02	5.02E-08
TOLUENE		7.78E-01	0.1252		0	6.81E-01	2.40E-03
XYLENE		4.86E-01	0.00944		0	4.81E-01	1.13E-04
CARBON DIOXIDE		2.40E+01	0.43139		0	1.37E+01	2.55E-01
MANGANESE		2.62E+00	5.77E-24		0	2.62E+00	3.71E-25
ANTIMONY		2.80E-02	5.77E-24		0	2.80E-02	3.98E-27
ARSENIC		3.50E-02	5.77E-24		0	3.50E-02	4.97E-27
BERYLLIUM		3.40E-02	5.77E-24		0	3.40E-02	4.83E-27
SELENIUM		3.22E-01	5.77E-24		0	3.22E-01	4.57E-26
Total rate for all compounds							1.42E+00

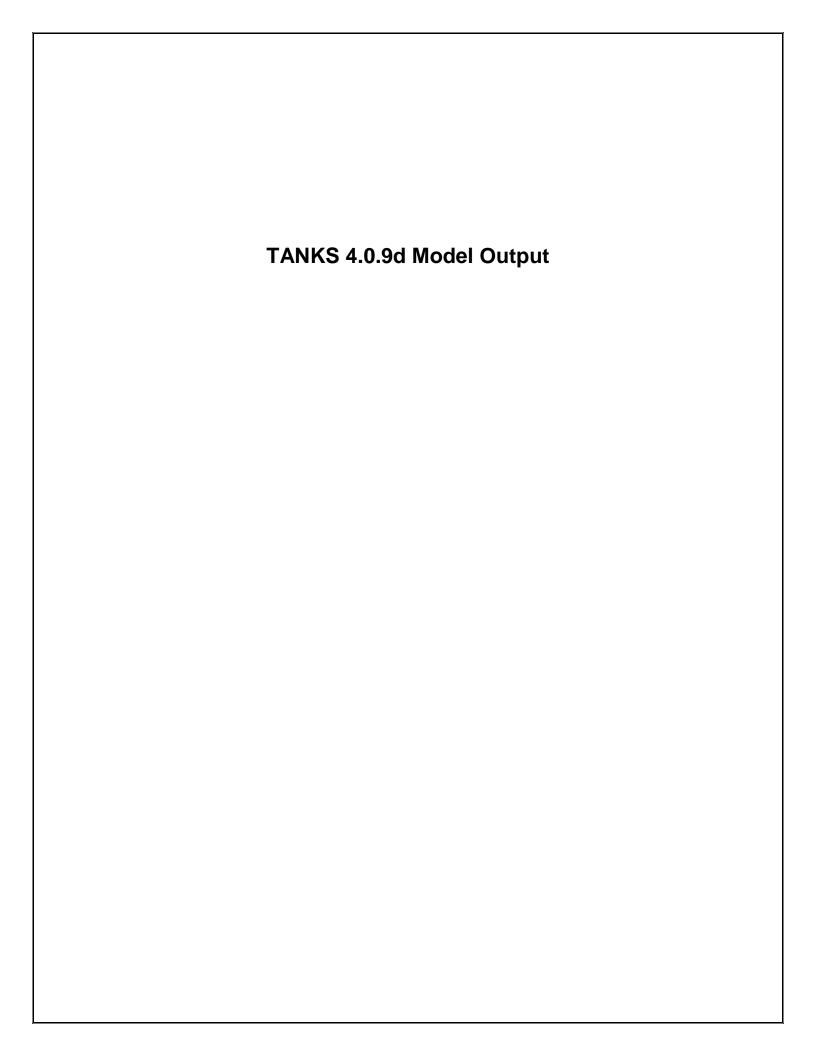
No.	Name Type	flow (I/s)
1	TK2515 storage tank	126.
2	default hard piped hard piped, no headspace	
3	default hard piped hard piped, no headspace	?6.
4	TK2530 mix tank	8.32


Project W:\20161200_Antero WV Water Facility\SandstromWTF_post 11:25:2

```
General System Specifications.....
1 Total water added at the unit (1/s) 0
                                                   0
2 Area of openings at unit (cm2)
                                                   50
3 Radius of drop pipe (cm)
                                                   5
                                                   61
4 Drop length to conduit (cm)
5 Humidity of inlet air (%)
                                                   40
6 Temperature of air (C)
                                                  25
7 Drain air velocity (ft/min)
                                                   84
                                                  128
8 manhole air velocity (ft/min)
9 Conduit air velocity (ft/min)
                                                  66
10 Wind speed (cm/s at 10 m)
                                                  447
11 distance to next unit (cm)
                                                  500
12 slope of underflow conduit
                                                  .015
13 friction factor liquid
                                                  .016
14 friction factor gas
                                                   .006
15 radius of underflow conduit (cm)
                                                  12
16 Underflow T (C)
                                                  25
17 oscillation cycle time (min)
                                                  5
                                                 2
18 design collection velocities (ft/s)
                                                  . 4
19 design branch line fraction full
20 fraction of wind speed on open drains
                                                  . 5
Type of unit is storage tank
1 101 Description of unit
                                               1 TK2515
2 2 Wastewater temperature (C)
                                                 25
3 84 Open surface area of tank (m2)
                                                  0
4 85 Density of liquid in tank (g/cc)
                                                 1
5 92 tank waste Mwt, water=18
                                                 18
6 93 unit storage time (days)
7 94 tank paint factor
                                                 0.6
8 95 tank diameter (m)
                                                 3.6576
9 96 tank vapor space height (m)
                                                 0.3048
10 97 diurnal temp. change (deg.C)
                                                 11
11 99 tank height (m)
                                                 4.2672
12 9 oil in composite wastewater (wt. %)
13 515 Product factor crude oil =0.75 else 1.0
waste 1 added to system at unit
waste 2 added to system at unit
waste 3 added to system at unit
Type of unit is hard piped, no headspace
1 101 Description of unit
                                               2 default hard piped
2 102 Underflow T (C)
                                                  25
3 103 Total water added at the unit (1/s)
                                                  0
7 107 Open surface=1
                                                  0
8 108 Subsurface entrance=1
                                                 1
9 109 subsurface exit =1
                                                 1
10 110 radius of underflow conduit (cm)
                                                 12
11 111 distance to next unit (cm)
                                                 500
```

Project W:\20161200_Antero WV Water Facility\SandstromWTF_post 11:25:2

12 112 slope of underflow conduit waste 1 added to system at unit 1 waste 2 added to system at unit 0 waste 3 added to system at unit 0	0.015
Type of unit is hard piped, no headspace 1 101 Description of unit 2 102 Underflow T (C) 3 103 Total water added at the unit (1/s) 7 107 Open surface=1 8 108 Subsurface entrance=1 9 109 subsurface exit =1 10 110 radius of underflow conduit (cm) 11 111 distance to next unit (cm) 12 112 slope of underflow conduit waste 1 added to system at unit 0 waste 2 added to system at unit 2 waste 3 added to system at unit 2	3 default hard piped 25 0 0 1 1 12 500 0.015
Type of unit is mix tank 1 101 Description of unit 2 2 Wastewater temperature (C) 3 37 length of unit (m) 4 59 width of unit (m) 5 38 depth of unit (m) 6 29 Area of agitation (each aerator, m2) 7 30 Total number of agitators in the unit 8 31 Power of agitation (each aerator, HP) 9 32 Impeller diameter (cm) 10 33 Impeller rotation (RPM) 13 72 if there is plug flow, enter 1 15 87 Aeration air flow (m3/s) 16 234 vent air emission control factor 17 65 If covered, then enter 1 waste 1 added to system at unit 0 waste 2 added to system at unit 0 waste 3 added to system at unit 0	4 TK2530 25 1.61544 1.61544 1.8288 1.55 1 1.5 60 1200 0 0 0


SUMMARY FOR EMIS: 7/13/2015 11:26	1 TK2515	storage tank
COMPOUND NAME		conc in fe air fe bio conc out emissions
		(ppmw) (ppmw) (g/s)
AMMONIA *		3.00E+00 0.00043 0 3.00E+00 1.63E-04
BENZENE		3.00E-03 0.03797 0 2.89E-03 1.44E-05
1 HYDROXY 3 METHY cr	esol)	1.00E-03 6.91E-06 0 1.00E-03 8.71E-10
OIL (decane as surrogate)		1.12E+00 0.63171 0 4.13E-01 8.92E-02
TOLUENE		5.00E-03
XYLENE		3.00E-03 0.04746 0 2.86E-03 1.79E-05
CARBON DIOXIDE		5.30E+00 0.16419 0 4.43E+00 1.10E-01
Total rate for all compounds		
SUMMARY FOR EMIS:	4 TK2530	mix tank
7/13/2015 11:26	4 182330	IIIIX Laiik
7/13/2013 11.20		
COMPOUND NAME		conc in fe air fe bio conc out emissions
		(ppmw) (ppmw) (g/s)
AMMONIA *		3.00E+00 0.00451 0 2.99E+00 1.13E-04
BENZENE		3.00E-03
1 HYDROXY 3 METHY cr	esol)	1.00E-03 5.76E-05 0 1.00E-03 4.79E-10
OIL (decane as surrogate)		1.12E+00 0.19678 0 9.00E-01 1.83E-03
TOLUENE		5.00E-03
XYLENE		3.00E-03 0.00827 0 2.98E-03 2.06E-07
CARBON DIOXIDE		5.30E+00 0.07699 0 4.89E+00 3.40E-03
Total rate for all compounds		5.35E-03

No.	Name	Туре	flow $(1/s)$
1	TK2515	storage tank	138.
2	default	hard piped hard piped, no headspace	
3	default	hard piped hard piped, no headspace	
4	TK2530	mix tank	8.82

7/13/2015 11:29		_					
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		3.00E+00	0.00043	}	0	3.00E+00	1.78E-04
BENZENE		3.00E-03	0.03795	•	0	2.89E-03	1.57E-05
1 HYDROXY 3 METHYL cr	esol)	1.00E-03	6.83E-06	i	0	1.00E-03	9.42E-10
OIL (decane as surrogate)		1.12E+00	0.63165	•	0	4.13E-01	9.76E-02
TOLUENE		5.00E-03	0.04359)	0	4.78E-03	3.01E-05
XYLENE		3.00E-03	0.04743	,	0	2.86E-03	1.96E-05
CARBON DIOXIDE		5.30E+00	0.16416	i	0	4.43E+00	1.20E-01
Total rate for all compounds							2.18E-01
SUMMARY FOR EMISS	4 TK2530	mix tank					
7/13/2015 11:29							
COMPOUND NAME		conc in	fe air	fe bio		conc out	emissions
		(ppmw)				(ppmw)	(g/s)
AMMONIA *		3.00E+00	0.00426	i	0	2.99E+00	1.13E-04
BENZENE		3.00E-03	0.09998	}	0	2.70E-03	2.65E-06
1 HYDROXY 3 METHYL cr	esol)	1.00E-03	5.43E-05	,	0	1.00E-03	4.79E-10
OIL (decane as surrogate)		1.12E+00	0.18771		0	9.10E-01	1.85E-03
TOLUENE		5.00E-03	0.08473	}	0	4.58E-03	3.74E-06
XYLENE		3.00E-03	0.0078	}	0	2.98E-03	2.06E-07
CARBON DIOXIDE		5.30E+00	0.07295		0	4.91E+00	3.41E-03
Total rate for all compounds							5.38E-03

SUMMARY FOR EMISS 1 TK2515 storage tank

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK1065-avgflow State: Doddridge County, WV Company: Type of Tank: Description: Antero Resources Vertical Fixed Roof Tank

TK-1065 Oil Collection Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft):

16.00 Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 12.00 15.00 8.00 12,690.44 704.09 8,935,200.00 Net Throughput(gal/yr): Is Tank Heated (y/n):

Ν

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Dome

Type: Height (ft) Radius (ft) (Dome Roof) 1.00 12.00

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK1065-avgflow - Vertical Fixed Roof Tank

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	50.67	44.90	56.45	49.08	2.3881	2.1203	2.6825	50.0000			207.00	Option 4: RVP=5

TK1065-avgflow - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	330.0273
Vapor Space Volume (cu ft):	961.8509
Vapor Density (lb/cu ft):	0.0218
Vapor Space Expansion Factor:	0.0895
Vented Vapor Saturation Factor:	0.4816
Tank Vapor Space Volume:	004.0500
Vapor Space Volume (cu ft): Tank Diameter (ft):	961.8509 12.0000
Vapor Space Outage (ft):	8.5046
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.5046
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5046
Dome Radius (ft):	12.0000
Shell Radius (ft):	6.0000
Vapor Density	0.0219
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	0.0218 50.0000
Vapor Pressure at Daily Average Liquid	30.0000
Surface Temperature (psia):	2.3881
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0895
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.5622
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	2.3881
Vapor Pressure at Daily Minimum Liquid	2.0001
Surface Temperature (psia):	2.1203
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	2.6825
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	516.1166 24.1833
	24.1000
Vented Vapor Saturation Factor	0 1010
Vented Vapor Saturation Factor:	0.4816
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	2.3881
Vapor Space Outage (ft):	8.5046
Working Losses (lb):	3.987.0564
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	2.3881
Annual Net Throughput (gal/yr.):	8,935,200.0000
Annual Turnovers:	704.0888
Turnover Factor:	0.2093
Maximum Liquid Volume (gal):	12,690.4443 15.0000
Maximum Liquid Height (ft): Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
Total Losses (lb):	4,317.0837

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK1065-avgflow - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss Breathing Loss Total Emissions								
Crude oil (RVP 5)	3,987.06	330.03	4,317.08						

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

TK1065-maxflow User Identification: City: State: Doddridge County, WV Company: Type of Tank: Description: Antero Resources Vertical Fixed Roof Tank

TK-1065 Oil Collection Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft):

16.00 Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 12.00 15.00 8.00 12,690.44 1,863.76 23,652,000.00 Net Throughput(gal/yr): Is Tank Heated (y/n):

Ν

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Dome

Type: Height (ft) Radius (ft) (Dome Roof) 1.00 12.00

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK1065-maxflow - Vertical Fixed Roof Tank

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	50.67	44.90	56.45	49.08	2.3881	2.1203	2.6825	50.0000			207.00	Option 4: RVP=5

TK1065-maxflow - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	330.0273
Vapor Space Volume (cu ft):	961.8509
Vapor Density (lb/cu ft):	0.0218
Vapor Space Expansion Factor:	0.0895
Vented Vapor Saturation Factor:	0.4816
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	961.8509
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	8.5046 16.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.5046
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5046
Dome Radius (ft):	12.0000
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0218
Vapor Molecular Weight (Ib/Ib-mole):	50.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	2.3881
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0895
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.5622
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0004
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	2.3881
Surface Temperature (psia):	2.1203
Vapor Pressure at Daily Maximum Liquid	2.1200
Surface Temperature (psia):	2.6825
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R):	516.1166
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4816
Vapor Pressure at Daily Average Liquid:	2.3881
Surface Temperature (psia): Vapor Space Outage (ft):	2.3881 8.5046
	9,216.9521
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	2.3881
Annual Net Throughput (gal/yr.):	23,652,000.0000
Annual Turnovers:	1,863.7645
Turnover Factor:	0.1828
Maximum Liquid Volume (gal):	12,690.4443
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
Total Lagger (Ib):	0.546.0704
Total Losses (lb):	9,546.9794

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK1065-maxflow - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	9,216.95	330.03	9,546.98						

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2120

State: Company: Type of Tank: Description:

Doddridge County, WV Antero Resources Horizontal Tank Process Distillate Level Tank 5575 gallons Sandstrom Water Treatment

Tank Dimensions Shell Length (ft): 26.00 Diameter (ft): Volume (gallons): Turnovers: 6.00 5,575.00 599,184,000.00

Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n): N

Paint Characteristics Shell Color/Shade:

White/White Shell Condition

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) 0.00

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK2120	All	154.00	88.00	200.00	154.00	4.1618	0.6778	11.6651	18.0063			18.02	
ammonia						461.8699	176.6238	798.7771	17.0300	0.0001	0.0131	17.03	Option 2: A=7.55466, B=1002.711, C=247.885
Water						4.1046	0.6558	11.5669	18.0200	0.9999	0.9869	18.02	Option 2: A=8.10765, B=1750.286, C=235

Annual Emission Calcaulations	
Standing Losses (lb):	1,557.3748
Vapor Space Volume (cu ft):	468.2374
Vapor Density (lb/cu ft):	0.0114
Vapor Space Expansion Factor:	1.3307
Vented Vapor Saturation Factor:	0.6018
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	468.2374
Tank Diameter (ft):	6.0000
Effective Diameter (ft):	14.0970
Vapor Space Outage (ft):	3.0000
Tank Shell Length (ft):	26.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0114
Vapor Molecular Weight (lb/lb-mole):	18.0063
Vapor Pressure at Daily Average Liquid	1 1010
Surface Temperature (psia):	4.1618
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	613.6700 49.0583
	49.0583
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	613.6700
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	1.3307
Daily Vapor Temperature Range (deg. R):	112.0000
Daily Vapor Pressure Range (psia):	10.9874
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.1618
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.6778
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	11.6651
Daily Avg. Liquid Surface Temp. (deg R):	613.6700
Daily Min. Liquid Surface Temp. (deg R):	547.6700
Daily Max. Liquid Surface Temp. (deg R):	659.6700
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6018
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	4.1618
Vapor Space Outage (ft):	3.0000
Working Lossos (lb):	170 400 0007
Working Losses (lb):	178,489.8067 18.0063
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	16.0003
Surface Temperature (psia):	4.1618
Annual Net Throughput (gal/yr.):	599,184,000.0000
Annual Turnovers:	104,205.9130
Turnover Factor:	0.1670
Tank Diameter (ft):	6.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	180,047.1815

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
TK2120	178,489.81	1,557.37	180,047.18
Water	176,150.63	1,536.96	177,687.60
ammonia	2,339.17	20.41	2,359.58

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2120

State: Company: Type of Tank: Description:

Doddridge County, WV Antero Resources Horizontal Tank Process Distillate Level Tank 5575 gallons Sandstrom Water Treatment

Tank Dimensions Shell Length (ft): 26.00 Diameter (ft): Volume (gallons): Turnovers: 6.00 5,575.00 Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n): 653,320,800.00

N

Paint Characteristics Shell Color/Shade:

White/White Shell Condition

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) 0.00

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK2120	All	154.00	88.00	200.00	154.00	4.1618	0.6778	11.6651	18.0063			18.02	
ammonia						461.8699	176.6238	798.7771	17.0300	0.0001	0.0131	17.03	Option 2: A=7.55466, B=1002.711, C=247.885
Water						4.1046	0.6558	11.5669	18.0200	0.9999	0.9869	18.02	Option 2: A=8.10765, B=1750.286, C=235

Annual Emission Calcaulations	
Standing Losses (lb):	1,557.3748
Vapor Space Volume (cu ft):	468.2374
Vapor Density (lb/cu ft):	0.0114
Vapor Space Expansion Factor:	1.3307
Vented Vapor Saturation Factor:	0.6018
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	468.2374
Tank Diameter (ft):	6.0000
Effective Diameter (ft):	14.0970
Vapor Space Outage (ft):	3.0000
Tank Shell Length (ft):	26.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0114
Vapor Molecular Weight (lb/lb-mole):	18.0063
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.1618 613.6700
Daily Avg. Liquid Surface Temp. (deg. R):	49.0583
Daily Average Ambient Temp. (deg. F):	49.0565
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	613.6700
Tank Paint Solar Absorptance (Shell):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor Vapor Space Expansion Factor:	1.3307
Daily Vapor Temperature Range (deg. R):	112.0000
Daily Vapor Pressure Range (psia):	10.9874
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	4.1618
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.6778
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	11.6651
Daily Avg. Liquid Surface Temp. (deg R):	613.6700
Daily Min. Liquid Surface Temp. (deg R):	547.6700
Daily Max. Liquid Surface Temp. (deg R):	659.6700
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6018
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	4.1618
Vapor Space Outage (ft):	3.0000
Madden Learner (III)	404 570 6 ***
Working Losses (lb):	194,579.3416
Vapor Molecular Weight (lb/lb-mole):	18.0063
Vapor Pressure at Daily Average Liquid	4.1618
Surface Temperature (psia):	653,320,800.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	117,187.5874
Turnover Factor:	0.1669
Tank Diameter (ft):	6.0000
Working Loss Product Factor:	1.0000
-	
Total Losses (lb):	196,136.7164
	,

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Components	Working Loss	Breathing Loss	Total Emissions
TK2120	194,579.34	1,557.37	196,136.72
Water	192,029.31	1,536.96	193,566.27
ammonia	2,550.03	20.41	2,570.44

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2130

Doddridge County, WV Antero Resources Vertical Fixed Roof Tank State: Company: Type of Tank: Description:

Barometric Condenser Hotwell Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft): 29.00 Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 29.00 25.00 27.00 20.00 99,144.10 112,230.10 Net Throughput(gal/yr): Is Tank Heated (y/n): 11,126,952,000.00

Ν

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone Type: Height (ft)

1.00 Slope (ft/ft) (Cone Roof) 0.08

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK2130	All	50.67	44.90	56.45	49.08	0.1824	0.1467	0.2254	18.0214			18.02	
Gasoline (RVP 10)						4.3134	3.8355	4.8381	66.0000	0.0000	0.0001	92.00	Option 4: RVP=10, ASTM Slope=3
Water						0.1823	0.1467	0.2254	18.0200	1.0000	0.9999	18.02	Option 2: A=8.10765, B=1750.286, C=235

Annual Emission Calcaulations	
Standing Losses (lb):	42.9227
Vapor Space Volume (cu ft):	4,581.4893
Vapor Density (lb/cu ft):	0.0006
Vapor Space Expansion Factor:	0.0466
Vented Vapor Saturation Factor:	0.9173
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	4,581.4893
Tank Diameter (ft):	25.0000
Vapor Space Outage (ft):	9.3333
Tank Shell Height (ft):	29.0000 20.0000
Average Liquid Height (ft): Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.0800
Shell Radius (ft):	12.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0006
Vapor Molecular Weight (lb/lb-mole):	18.0214
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.1824
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Avg. Equid Surface Temp. (deg. R). Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	10.0000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	4 400 0070
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0466
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.0787 0.0600
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	0.1824
Vapor Pressure at Daily Minimum Liquid	0.1021
Surface Temperature (psia):	0.1467
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.2254
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	504.5692 516.1166
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.9173
Vapor Pressure at Daily Average Liquid:	0.9173
Surface Temperature (psia):	0.1824
Vapor Space Outage (ft):	9.3333
Working Losses (lb):	145,334.2199
Vapor Molecular Weight (lb/lb-mole):	18.0214
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1824
Annual Net Throughput (gal/yr.):	11,126,952,000.0000
Annual Turnovers:	112,230.1014
Turnover Factor:	0.1669
Maximum Liquid Volume (gal): Maximum Liquid Height (ft):	99,144.0964 27.0000
Tank Diameter (ft):	25.0000
Working Loss Product Factor:	1.0000
-	
Total Losses (lb):	145,377.1426
	1.10,011.1420

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
TK2130	145,334.22	42.92	145,377.14					
Water	145,318.68	42.92	145,361.60					
Gasoline (RVP 10)	15.54	0.00	15.54					

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2130 max

State: Doddridge County, WV Company: Type of Tank: Description: Antero Resources Vertical Fixed Roof Tank

Barometric Condenser Hotwell Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft):

29.00 Sileil Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 29.00 25.00 27.00 20.00 99,144.10 123,453.11 Net Throughput(gal/yr): Is Tank Heated (y/n): 12,239,647,200.00

Ν

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone Type: Height (ft)

1.00 Slope (ft/ft) (Cone Roof) 0.08

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
TK2130	All	50.67	44.90	56.45	49.08	0.1824	0.1467	0.2254	18.0214			18.02	
Gasoline (RVP 10)						4.3134	3.8355	4.8381	66.0000	0.0000	0.0001	92.00	Option 4: RVP=10, ASTM Slope=3
Water						0.1823	0.1467	0.2254	18.0200	1.0000	0.9999	18.02	Option 2: A=8.10765, B=1750.286, C=235

Annual Emission Calcaulations	
Standing Losses (lb):	42.9227
Vapor Space Volume (cu ft):	4,581.4893
Vapor Density (lb/cu ft):	0.0006
Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	0.0466 0.9173
vented vapor Saturation Factor.	0.9173
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	4,581.4893
Tank Diameter (ft):	25.0000
Vapor Space Outage (ft):	9.3333
Tank Shell Height (ft): Average Liquid Height (ft):	29.0000 20.0000
Roof Outage (ft):	0.3333
5 40 4 40 5 6	
Roof Outage (Cone Roof)	0.3333
Roof Outage (ft): Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.0800
Shell Radius (ft):	12.5000
Vanes Daneits	
Vapor Density Vapor Density (lb/cu ft):	0.0006
Vapor Molecular Weight (lb/lb-mole):	18.0214
Vapor Pressure at Daily Average Liquid	10.0211
Surface Temperature (psia):	0.1824
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483 0.1700
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.0466
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.0787
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1824
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.1467
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	0.2254
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R):	516.1166
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9173
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.1824
Vapor Space Outage (ft):	9.3333
Working Losses (lb):	159,844.3699
Vapor Molecular Weight (lb/lb-mole):	18.0214
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1824
Annual Net Throughput (gal/yr.):	12,239,647,200.0000
Annual Turnovers: Turnover Factor:	123,453.1116 0.1669
Maximum Liquid Volume (gal):	99,144.0964
Maximum Liquid Height (ft):	27.0000
Tank Diameter (ft):	25.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	159,887.2926

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
TK2130	159,844.37	42.92	159,887.29						
Water	159,827.28	42.92	159,870.20						
Gasoline (RVP 10)	17.09	0.00	17.09						

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2140

Doddridge County, WV Antero Resources Vertical Fixed Roof Tank State: Company: Type of Tank: Description:

Recovered Water Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft):

43.00 Sileil Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 30.00 42.00 25.00 222,082.78 39.52 8,777,520.00 Net Throughput(gal/yr): Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone Type: Height (ft)

1.00 Slope (ft/ft) (Cone Roof) 0.07

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) 0.00

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp Vapor Pressure (psia)			Vapor Mol.	Mass N	Vapor Mass	Mass Mol.	Basis for Vapor Pressure	
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
FK2140	All	120.00	85.00	200.00	120.00	1.6930	0.5961	11.5670	18.0200			18.02	
ammonia						289.9626	168.0546	798.7771	17.0300	0.0000	0.0000	17.03	Option 2: A=7.55466, B=1002.711, C=247.885
Benzene						5.0204	2.2480	21.6824	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresol (-m)						0.0203	0.0047	0.2791	108.1000	0.0000	0.0000	108.10	Option 2: A=7.508, B=1856.36, C=199.07
Ethylbenzene						0.6720	0.2466	4.1229	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.3402	0.1162	2.3536	120.2000	0.0000	0.0000	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
Toluene						1.6958	0.6886	8.7365	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						1.6930	0.5961	11.5669	18.0200	1.0000	1.0000	18.02	Option 2: A=8.10765, B=1750.286, C=235
Xylenes (mixed isomers)						0.5708	0.2071	3.5859	106.1700	0.0000	0.0000	106.17	Option 2: A=7.009, B=1462,266, C=215,11

Annual Emission Calcaulations	
Standing Losses (lb):	9,732.7513
Vapor Space Volume (cu ft):	12,959.0697
Vapor Density (lb/cu ft):	0.0049
Vapor Space Expansion Factor:	1.1097
Vented Vapor Saturation Factor:	0.3781
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	12,959.0697
Tank Diameter (ft):	30.0000
Vapor Space Outage (ft):	18.3333
Tank Shell Height (ft):	43.0000
Average Liquid Height (ft):	25.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.0700 15.0000
Shell Radius (ft):	15.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0049
Vapor Molecular Weight (lb/lb-mole):	18.0200
Vapor Pressure at Daily Average Liquid	1 6020
Surface Temperature (psia):	1.6930 579.6700
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	45.0303
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	579.6700
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	1.1097
Daily Vapor Temperature Range (deg. R):	115.0000
Daily Vapor Pressure Range (psia):	10.9709
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.6930
Vapor Pressure at Daily Minimum Liquid	0.5004
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.5961
Surface Temperature (psia):	11.5670
Daily Avg. Liquid Surface Temp. (deg R):	579.6700
Daily Min. Liquid Surface Temp. (deg R):	544.6700
Daily Max. Liquid Surface Temp. (deg R):	659.6700
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	0.3781
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.3761
Surface Temperature (psia):	1.6930
Vapor Space Outage (ft):	18.3333
Madden Lanca (III)	5,000,4454
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	5,902.1454 18.0200
Vapor Pressure at Daily Average Liquid	18.0200
Surface Temperature (psia):	1.6930
Annual Net Throughput (gal/yr.):	8,777,520.0000
Annual Turnovers:	39.5236
Turnover Factor:	0.9257
Maximum Liquid Volume (gal):	222,082.7760
Maximum Liquid Height (ft):	42.0000
Tank Diameter (ft):	30.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	15,634.8967

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
TK2140	5,902.15	9,732.75	15,634.90						
Water	5,901.94	9,732.41	15,634.36						
ammonia	0.20	0.33	0.54						
Benzene	0.00	0.00	0.00						
Toluene	0.00	0.00	0.00						
Ethylbenzene	0.00	0.00	0.00						
Xylenes (mixed isomers)	0.00	0.00	0.00						
Isopropyl benzene	0.00	0.00	0.00						
Cresol (-m)	0.00	0.00	0.00						

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: TK2140

Doddridge County, WV Antero Resources Vertical Fixed Roof Tank State: Company: Type of Tank: Description:

Recovered Water Tank Sandstrom Water Treatment

Tank Dimensions
Shell Height (ft): 43.00 Sileil Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 30.00 42.00 25.00 222,082.78 2,974.92 660,679,200.00 Net Throughput(gal/yr): Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: Shell Condition White/White Good White/White Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone Type: Height (ft)

1.00 Slope (ft/ft) (Cone Roof) 0.07

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) 0.00

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp Vapor Pressure (psia)			Vapor Mol.	Mass N	Vapor Mass	Mass Mol.	Basis for Vapor Pressure	
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
FK2140	All	120.00	85.00	200.00	120.00	1.6930	0.5961	11.5670	18.0200			18.02	
ammonia						289.9626	168.0546	798.7771	17.0300	0.0000	0.0000	17.03	Option 2: A=7.55466, B=1002.711, C=247.885
Benzene						5.0204	2.2480	21.6824	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cresol (-m)						0.0203	0.0047	0.2791	108.1000	0.0000	0.0000	108.10	Option 2: A=7.508, B=1856.36, C=199.07
Ethylbenzene						0.6720	0.2466	4.1229	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.3402	0.1162	2.3536	120.2000	0.0000	0.0000	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
Toluene						1.6958	0.6886	8.7365	92.1300	0.0000	0.0000	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						1.6930	0.5961	11.5669	18.0200	1.0000	1.0000	18.02	Option 2: A=8.10765, B=1750.286, C=235
Xylenes (mixed isomers)						0.5708	0.2071	3.5859	106.1700	0.0000	0.0000	106.17	Option 2: A=7.009, B=1462,266, C=215,11

Annual Emission Calcaulations	
Standing Losses (lb):	9,732.7513
Vapor Space Volume (cu ft):	12,959.0697
Vapor Density (lb/cu ft):	0.0049
Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	1.1097 0.3781
vented vapor databation ractor.	0.0701
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	12,959.0697 30.0000
Tank Diameter (ft): Vapor Space Outage (ft):	18.3333
Tank Shell Height (ft):	43.0000
Average Liquid Height (ft):	25.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.0700
Shell Radius (ft):	15.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0049
Vapor Molecular Weight (lb/lb-mole):	18.0200
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	1.6930
Daily Avg. Liquid Surface Temp. (deg. R):	579.6700
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	579.6700
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700 0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	1.1097 115.0000
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	10.9709
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.6930
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.5961
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	11.5670
Daily Avg. Liquid Surface Temp. (deg R):	579.6700
Daily Min. Liquid Surface Temp. (deg R):	544.6700
Daily Max. Liquid Surface Temp. (deg R):	659.6700
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3781
Vapor Pressure at Daily Average Liquid:	4 0000
Surface Temperature (psia): Vapor Space Outage (ft):	1.6930 18.3333
Working Losses (lb):	84,823.7345
Vapor Molecular Weight (lb/lb-mole):	18.0200
Vapor Pressure at Daily Average Liquid	1.6930
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	660,679,200.0000
Annual Turnovers:	2,974.9232
Turnover Factor:	0.1768
Maximum Liquid Volume (gal):	222,082.7760
Maximum Liquid Height (ft):	42.0000
Tank Diameter (ft):	30.0000
Working Loss Product Factor:	1.0000
Tabell access (Ib)	04.550.4050
Total Losses (lb):	94,556.4858

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
TK2140	84,823.73	9,732.75	94,556.49						
Water	84,820.80	9,732.41	94,553.21						
ammonia	2.91	0.33	3.24						
Benzene	0.02	0.00	0.02						
Toluene	0.01	0.00	0.01						
Ethylbenzene	0.00	0.00	0.00						
Xylenes (mixed isomers)	0.00	0.00	0.00						
Isopropyl benzene	0.00	0.00	0.00						
Cresol (-m)	0.00	0.00	0.00						

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: TK-4115 - Normal Flow City: Bridgeport West Virginia Antero Resouces State: Company: Type of Tank: Vertical Fixed Roof Tank

Description: Methanol Bulk Storage Tank 8000 gallons

Tank Dimensions Shell Height (ft): 15.00 9.50 Diameter (ft): Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons): 14.00 7.50 7,423.32 35.99 Net Throughput(gal/yr): Is Tank Heated (y/n): 267,180.00

Ν

Paint Characteristics

Shell Color/Shade: White/White Shell Condition Good Roof Color/Shade: White/White Roof Condition: Good

Roof Characteristics Type:

Dome

Height (ft) 0.50 4.75 Radius (ft) (Dome Roof)

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-4115 - Normal Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp Vapor Pressure (psia)			(psia)	Vapor Liquid Mol. Mass	Vapor Mass Mol.	Mol.	Basis for Vapor Pressure		
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	50.67	44.90	56.45	49.08	1.0682	0.8813	1.2883	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-4115 - Normal Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	63.2827
Vapor Space Volume (cu ft):	549.4024 0.0062
Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	0.0062
Vented Vapor Saturation Factor:	0.6950
venicu vapor cataration i actor.	0.0330
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	549.4024
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	7.7509
Tank Shell Height (ft):	15.0000 7.5000
Average Liquid Height (ft): Roof Outage (ft):	7.5000 0.2509
Noor Guage (it).	0.2303
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.2509
Dome Radius (ft):	4.7500
Shell Radius (ft):	4.7500
/apor Density	
Vapor Density (lb/cu ft):	0.0062
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.0682
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731 508.7483
Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Sneil).	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Janes Space Funancian Factor	
/apor Space Expansion Factor Vapor Space Expansion Factor:	0.0727
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.4070
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.0682
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.8813
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	1.2883
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	516.1166 24.1833
bally Ambient Temp. Range (deg. Tr).	24.1000
/ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6950
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.0682
Vapor Space Outage (ft):	7.7509
Vorking Losses (lb):	217.7254
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	02.0400
Surface Temperature (psia):	1.0682
Annual Net Throughput (gal/yr.):	267,180.0000
Annual Turnovers:	35.9920
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	7,423.3224
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	9.5000
Working Loss Product Factor:	1.0000
otal Losses (lb):	281.0081
1.7	

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-4115 - Normal Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	217.73	63.28	281.01					

TANKS 4.0 Report Page 1 of 5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: TK-4115 - Peak Flow City: Bridgeport West Virginia Antero Resouces State: Company: Type of Tank: Vertical Fixed Roof Tank

Description: Methanol Bulk Storage Tank 8000 gallons

Tank Dimensions Shell Height (ft): 15.00 9.50 Diameter (ft): Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons): 14.00 7.50 7,423.32 90.51 Net Throughput(gal/yr): 671,892.00 Ν

Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: White/White Shell Condition Good Roof Color/Shade: White/White Roof Condition: Good

Roof Characteristics Type: Dome

Height (ft) 0.50 4.75 Radius (ft) (Dome Roof)

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-4115 - Peak Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	50.67	44.90	56.45	49.08	1.0682	0.8813	1.2883	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-4115 - Peak Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ih):	63.2827
Standing Losses (lb): Vapor Space Volume (cu ft):	549.4024
Vapor Density (lb/cu ft):	0.0062
Vapor Space Expansion Factor:	0.0727
Vented Vapor Saturation Factor:	0.6950
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	549.4024
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	7.7509
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	0.2509
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.2509
Dome Radius (ft):	4.7500
Shell Radius (ft):	4.7500
/apor Density	
Vapor Density (lb/cu ft):	0.0062
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.0682
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	510.3429 49.0583
Ideal Gas Constant R	45.0000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
/apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0727
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.4070
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	1.0682
Vapor Pressure at Daily Minimum Liquid	1.0002
Surface Temperature (psia):	0.8813
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	1.2883
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R):	516.1166
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6950
Vapor Pressure at Daily Average Liquid:	4
Surface Temperature (psia):	1.0682 7.7509
Vapor Space Outage (ft):	
Vorking Losses (lb):	272.7326
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.0682 671.892.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	671,892.0000 90.5110
Turnover Factor:	0.4981
Maximum Liquid Volume (gal):	7,423.3224
Maximum Liquid Volume (gar). Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	9.5000
Working Loss Product Factor:	1.0000
otal Losses (lb):	336.0153
	555.0150

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-4115 - Peak Flow - Vertical Fixed Roof Tank Bridgeport, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Methyl alcohol	272.73	63.28	336.02				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification
User Identification: TK-4180, Sulfuric Acid - Normal Flow

Elkins
West Virginia
Antero Resources
Vertical Fixed Roof Tank City: State: Company: Type of Tank: Description:

6,000 gallon, fixed roof Sulfuric Acid bulk storage tank

Tank Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 16.00 8.00 15.00 8.00 5,640.20 26.71 150,672.00

Ν

Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: White/White Good White/White Roof Condition: Good

Roof Characteristics Type: Height (ft)

Dome

1.00 4.00 Radius (ft) (Dome Roof)

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0 Report Page 2 of 5

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-4180, Sulfuric Acid - Normal Flow - Vertical Fixed Roof Tank Elkins, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Sulfuric Acid 93%	All	50.67	44.90	56.45	49.08	0.0000	0.0000	0.0000	98.0790			98.08	Option 1: VP50 = .000000309 VP60 = .000000763

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-4180, Sulfuric Acid - Normal Flow - Vertical Fixed Roof Tank Elkins, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	0.0000
Vapor Space Volume (cu ft):	427.7802
Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	0.0000
Vapor Space Expansion Factor:	0.0409
Vented Vapor Saturation Factor:	1.0000
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	427.7802
Tank Diameter (ft):	8.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	8.5104 16.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.5104
D(0-t (D D)	
Roof Outage (Dome Roof) Roof Outage (ft):	0.5104
Dome Radius (ft):	4.0000
Shell Radius (ft):	4.0000
Venez Deneitr	
Vapor Density Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	98.0790
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0000
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429 49.0583
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.0565
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation Factor (Btu/sqft day):	1,193.8870
	1,100.0070
Vapor Space Expansion Factor	0.0400
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R):	0.0409 23.0949
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0000
Vapor Pressure at Daily Minimum Liquid	0.0000
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	0.0000
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R):	516.1166
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	1.0000
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0000 8.5104
Vapor Space Outage (ft):	0.5104
Working Losses (lb):	0.0001
Vapor Molecular Weight (lb/lb-mole):	98.0790
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	150,672.0000
Annual Turnovers:	26.7140
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	5,640.1975
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0002

TANKS 4.0 Report Page 4 of 5

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-4180, Sulfuric Acid - Normal Flow - Vertical Fixed Roof Tank Elkins, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Sulfuric Acid 93%	0.00	0.00	0.00				

TANKS 4.0 Report Page 1 of 5

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: TK-4180, Sulfuric Acid - Peak Flow

City: West Virginia Antero Resources State: Company: Type of Tank: Vertical Fixed Roof Tank

Description: 6,000 gallon, fixed roof Sulfuric Acid bulk storage tank

Tank Dimensions Shell Height (ft): 16.00 8.00 Diameter (ft): Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons): 15.00 8.00 5,640.20 53.43 Net Throughput(gal/yr): 301,344.00

Is Tank Heated (y/n): Ν

Paint Characteristics

Shell Color/Shade: White/White Shell Condition Good Roof Color/Shade: White/White Roof Condition: Good

Roof Characteristics Type:

Dome

Height (ft) 1.00 4.00 Radius (ft) (Dome Roof)

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

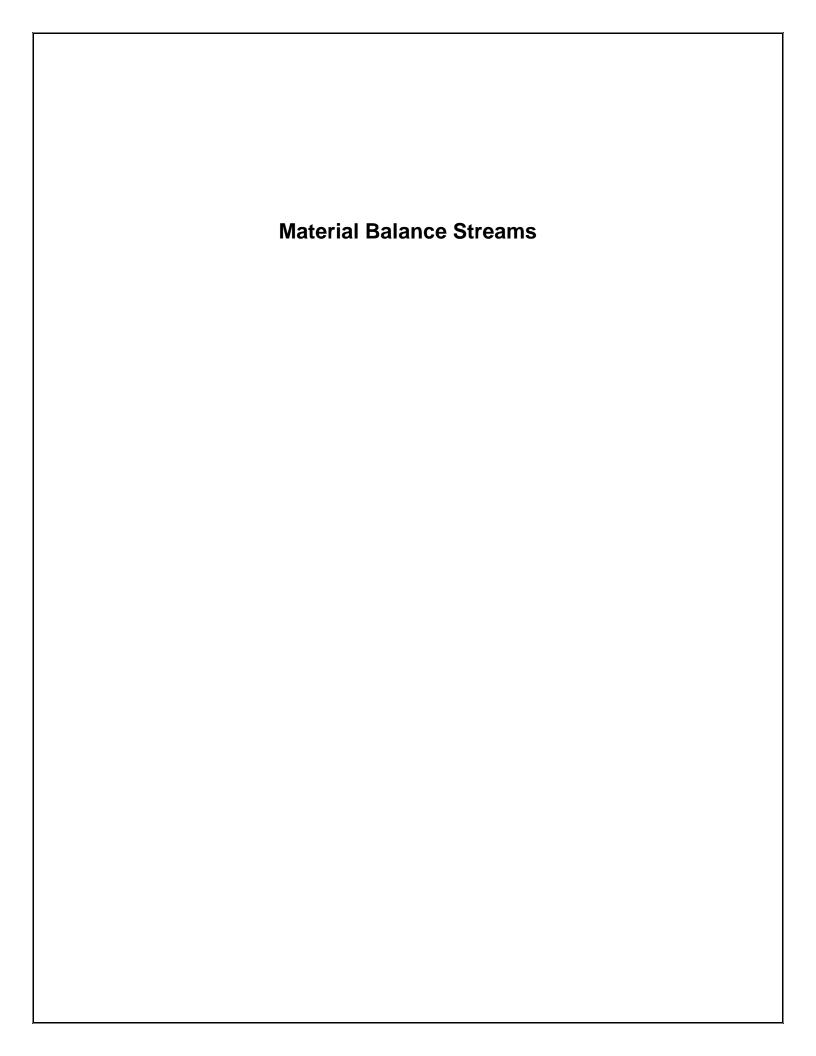
TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-4180, Sulfuric Acid - Peak Flow - Vertical Fixed Roof Tank Elkins, West Virginia

		Dai Temp	ly Liquid Su erature (de	ırf. g F)	Liquid Bulk Temp	Vapo	r Pressure ((psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Sulfuric Acid 93%	All	50.67	44.90	56.45	49.08	0.0000	0.0000	0.0000	98.0790			98.08	Option 1: VP50 = .000000309 VP60 = .000000763

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-4180, Sulfuric Acid - Peak Flow - Vertical Fixed Roof Tank Elkins, West Virginia


Annual Emission Calcaulations	
Standing Losses (lb):	0.0000
Vapor Space Volume (cu ft):	427.7802
Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	0.0000
Vapor Space Expansion Factor:	0.0409
Vented Vapor Saturation Factor:	1.0000
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft): Tank Diameter (ft):	427.7802 8.0000
Vapor Space Outage (ft):	8.5104
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.5104
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5104
Dome Radius (ft):	4.0000
Shell Radius (ft):	4.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	98.0790
Surface Temperature (psia):	0.0000
Daily Avg. Liquid Surface Temp. (deg. R):	510.3429
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	508.7483
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.1700 0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0409
Daily Vapor Temperature Range (deg. R):	23.0949
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.0000
Surface Temperature (psia):	0.0000
Vapor Pressure at Daily Maximum Liquid	0.0000
Surface Temperature (psia):	0.0000
Daily Avg. Liquid Surface Temp. (deg R):	510.3429
Daily Min. Liquid Surface Temp. (deg R):	504.5692
Daily Max. Liquid Surface Temp. (deg R):	516.1166 24.1833
Daily Ambient Temp. Range (deg. R):	24.1033
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	1.0000
Vapor Pressure at Daily Average Liquid:	1.0000
Surface Temperature (psia):	0.0000
Vapor Space Outage (ft):	8.5104
Working Losses (lb):	0.0002
Vapor Molecular Weight (lb/lb-mole):	98.0790
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0000
Annual Net Throughput (gal/yr.):	301,344.0000
Annual Turnovers:	53.4279 0.7282
Turnover Factor: Maximum Liquid Volume (gal):	5.640.1975
Maximum Liquid Volume (gar). Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	8.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0002

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-4180, Sulfuric Acid - Peak Flow - Vertical Fixed Roof Tank Elkins, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Sulfuric Acid 93%	0.00	0.00	0.00				

Antero Resources Corporation Sandstrom Water Treatment Facility Material Balance Streams

Stream Number	101	102	105/112	114	115	117	161
Max Flow (gpm)	8,400	8,713	390	260	210		1,257
Avg Flow (gpm)	1,750	2,003	184	190	157	33	16.7
Manganese (ppmw)	9	8.0	2.6	2	2.2	1.7	
Selenium (ppmw)	0.34	0.340	0.322	0.32	0.340	0.260	
CO2 (ppmw)	222	108	24	0.002	0.002	0.001	3
Ammonia (ppmw)	140	131	116	112	120	93	2
Total Oil (ppmw)	88	77	390	396	<u>5</u>	1,924	
GRO (ppmw)	86	81	72	69	73	57	
DRO (ppmw)	129	118	63	57	61	48	
Benzene (ppmw)	0.607	0.571	0.506	0.484	0.519	0.404	
Toluene (ppmw)	0.958	0.901	0.778	0.765	0.820	0.639	
Ethylbenzene (ppmw)	0.047	0.044	0.039	0.037	0.040	0.031	
Xylene (ppmw)	0.584	0.549	0.486	0.486	0.500	0.389	
Cumene (ppmw)	0.02	0.018	0.016	0.016	0.017	0.013	
Phenol (ppmw)	0.019	0.018	0.015	0.015	0.016	0.013	
3&4 Methylphenol (ppmw)	0.196	0.184	0.163	0.156	0.168	0.131	

Antero Resources Corporation Sandstrom Water Treatment Facility Material Balance Streams

Stream Number	225	226/251/261/271	270	274	282/283	407*	408*
Max Flow (gpm)		1,243	778		23,287	2,197	70
Avg Flow (gpm)	178 lb/hr	1,140	708	170	21,170	1,997	66
Manganese (ppmw)							
Selenium (ppmw)							
CO2 (ppmw)						5.3	5.3
Ammonia (ppmw)	44.7 lb/hr	131				3.0	3.0
Total Oil (ppmw)							
GRO (ppmw)			49	13	6.3	0.417	0.417
DRO (ppmw)						0.713	0.713
Benzene (ppmw)						0.003	0.003
Toluene (ppmw)						0.005	0.005
Ethylbenzene (ppmw)						0.000	0.000
Xylene (ppmw)						0.003	0.003
Cumene (ppmw)						0.000	0.000
Phenol (ppmw)						0.000	0.000
3&4 Methylphenol (ppmw)						0.001	0.001

^{*} Streams 407 and 408 are in mg/L rather than ppmw

	achment O.		
Monitoring, Recordkeepi	ng, Reporting, and	d Testing Plans	

Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the Sandstrom Water Treatment Facility, including federal and state regulatory requirements.

1. Summary of Key Operational Throughput Limits

- a. Maximum liquids loaded: 21,900,000 barrels per year (919,800,000 gallons per year).
- b. Maximum fuel use of natural gas burning equipment is 3793 MMscf/year

2. Operational Requirements

- a. Generator engine will meet Tier II emission standards and will be fueled by diesel only.
- b. Boilers will be fueled by natural gas only at a heater rating no more than 276.5 MMBtu/hr.
- c. No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- d. Boilers will meet applicable requirements of 40 CFR Part 60 Subpart Db.
- e. The thermal oxidizer capacity will not exceed 3.0 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- f. The thermal oxidizer will be operated per manufacturer instructions.
- g. Waste gas header storage tanks potential emissions shall be routed to the thermal oxidizer with destruction efficiency greater than 98 percent at all times.
- h. Liquid loadout trucks will use the submerged-fill method.
- i. Facility roads and driveways will be gravel until they can be paved.

3. Monitoring

- a. Hours of operation for the emergency engine will be monitored; including emergency, maintenance and testing, and non-emergency hours.
- b. An initial Method 22 observation will be conducted of the thermal oxidizer for a minimum of 2 hours.
- c. Monthly Method 22 observations will be conducted of the thermal oxidizer for a minimum of 10 minutes each.
- d. Monthly olfactory, visual, and auditory inspections will be conducted of the tanks closed vent and control system (thermal oxidizer) for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable (no later than 5 days for first attempt).
- e. The presence of thermal oxidizer flame will be continuously monitored.
- f. The daily and rolling twelve-month average amount of liquids unloaded will be monitored.
- The daily and rolling twelve-month average amount of sludge disposed of will be monitored.
- h. The daily and rolling twelve-month average amount of wetcake disposed of will be monitored.

4. Recordkeeping

- a. Records will be kept in company records (on or off-site) for a minimum of 5 years.
- b. Records will be kept of inspections, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment.
- c. Records will be kept of the date, time, and duration of each time that a thermal oxidizer flame is not present at the thermal oxidizer as well as startup, shutdown, and malfunctions of the thermal oxidizer.
- d. Records will be kept of generator engine maintenance and run time.
- e. Records will be kept of the fuel combusted in the boilers including the sulfur content, the actual run time of each boiler, and all opacity inspections.
- f. The daily and rolling twelve-month average amount of liquids unloaded will be recorded.
- g. The daily and rolling twelve-month average amount of sludge disposed of will be recorded.
- h. The daily and rolling twelve-month average amount of wetcake disposed of will be recorded.

5. Notifications and Reports

- a. Notify WVDAQ within 30 calendar days of commencement of construction.
- b. Notify WVDAQ within 30 calendar days of startup.
- c. Upon startup, file a Certificate to Operate (CTO) application and pay fees to WVDAQ for the period from startup to the following June 30 and then annually renew the CTO and pay fees. Maintain CTO on-site.
- d. For stack testing, file protocol at least 30 days prior to test and notify WVDAQ and EPA of the test at least 15 days prior to test. Report results within 60 days of test.
- e. If operations are suspended for 60 days or more, notify WVDAQ within 2 weeks after the 60th day.

Attachment P. Public Notice	

AIR QUALITY PERMIT NOTICE Notice of Application – Sandstrom Water Treatment Facility

Notice is given that Antero Resources Corporation has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 Construction Permit for a Water Treatment Facility located south of US-50 near Greenwood, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.26922N, 80.89310W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emission Rate (tons per year)		
Nitrogen Oxides (NOx)	94.86		
Carbon Monoxide (CO)	95.41		
Volatile Organic Compounds (VOC)	78.26		
Particulate Matter less than 10 µm (PM ₁₀)	35.17		
Particulate Matter less than 2.5 µm (PM _{2.5})	29.07		
Sulfur Dioxide (SO ₂)	1.82		
Benzene	0.092		
Toluene	0.14		
Ethylbenzene	0.0064		
Xylenes	0.078		
Carbon Dioxide equivalent (CO ₂ e)	286,974		

Startup of operation is planned to begin on or about April 2017, with construction and installation starting in 2015 and January 2016 respectively. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 20th day of July 2015.

By: Antero Resources Corporation
Barry Schatz
Senior Environmental and Regulatory Manager
1615 Wynkoop Street
Denver, CO 80202

Attachm Authority/Delegat		

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

	TO:	The West Virginia Department of Environmental Protection, Division of Air Quality			
	DATE:	JANUARY 23, 2015			
	ATTN.:	Director			
	Corporation'	s / other business entity's Federal Employer I.D. Number80-0162034			
	The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the sainame is a trade name which is used in the conduct of an incorporated business or other business entity.				
	Further, the corporation or the business entity certifies as follows:				
	(1) representativ business en	Barry Schatz (is/are) the authorized ve(s) and in that capacity may represent the interest of the corporation or the tity and may obligate and legally bind the corporation or the business entity.			
(2) The corporation or the business entity is authorized to do business in the State of West Virginia.					
(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.					
~					
	(Vice President official in character)	Other Authorized Officer dent, Secretary, Treasurer or other arge of a principal business function of on or the business entity)			
		resident, then the corporation or the business entity must submit certified ylaws stating legal authority of other authorized officer to bind the corporation ess entity).			
	Secretary				

Name of Corporation or business entity