625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

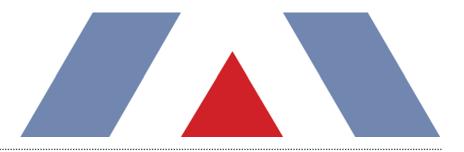
September 1, 2015

CERTIFIED MAIL # 7015 0640 0000 9694 4175

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: Class II Administrative Update EQT Production Company BIG57-176 Meter Site

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed class II administrative update to the R-13-2999 Permit for the BIG57-176 Meter Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT EQT Production BIG 57-176 Meter Site

Class II Administrative Update

R13-2999

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

August 2015

Environmental solutions delivered uncommonly well

1. INTRODUCTION 3
1.1. Facility and Project Description3
1.2. Source Status3
1.3. R-13 application Organization3
2. SAMPLE EMISSION SOURCE CALCULATIONS 5
3. R-13 APPLICATION FORMS 6
ATTACHMENT A: BUSINESS CERTIFICATE
ATTACHMENT B: MAP
ATTACHMENT C: INSTALLATION AND START UP SCHEDULE
ATTACHMENT D: REGULATORY DISCUSSION
ATTACHMENT E: PLOT PLAN
ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAM
ATTACHMENT G: PROCESS DESCRIPTION
ATTACHMENT I: EMISSION UNITS TABLE
ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET
ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET
ATTACHMENT L: EMISSIONS UNIT DATA SHEETS
ATTACHMENT N: SUPPORTING EMISSION CALCULATIONS
ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS
ATTACHMENT P: LEGAL AD

EQT Production Company (EQT) is submitting this Class II Administrative Update to the West Virginia Department of Environmental Protection (WVDEP) for a natural gas meter site located in Wetzel County, West Virginia (BIG 57-176 Meter Site). Specifically, this application seeks to remove the combustor (C001) associated with the dehydration unit located at the site (permitted under Permit No. R13-2999).

1.1. FACILITY AND PROJECT DESCRIPTION

The BIG 57-176 Meter Site is a natural gas interconnect metering facility. The station dehydrates natural gas from nearby wells for transportation across the pipeline:

The BIG 57-176 Meter site currently consists of the following equipment:

> One (1) 38 million standard cubic feet per day (MMscfd) triethylene glycol dehydrator with associated reboiler (0.31 MMbtu/hr duty [input] rating) and vapor destruction unit.

As part of this application, EQT is seeking to remove the combustor associated with the dehydration unit. The facility will continue to remain a minor source of hazardous air pollutants and criteria pollutants, and will continue to comply with all applicable Federal and State Regulations.

A process flow diagram is included as Attachment F.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the proposed BIG 57-176 Meter Site for air permitting purposes if and only if all three elements of the "stationary source" definition above are fulfilled. BIG 57-176 is a separate stationary source when the current R-13 permit was issued. The existing dehydrator at the station will process gas from both the BIG-57 wellpad and BIG-176 wellpad. However, these wellpads are separated from the meter station by approximately 0.9 and 0.8 miles respectively, and should not be considered contiguous or adjacent. Therefore, the BIG 57-176 Meter Site should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting. Refer to Attachment D for detailed discussion regarding applicable requirements and compliance demonstration methodology.

1.3. R-13 APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) R-13 permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: R-13 and Permission to Commence Construction Application Forms;
- > Attachment A: Business Certificate;
- > Attachment B: Map;

EQT Production, LLC | BIG 57-176 Meter Site Trinity Consultants

- > Attachment C: Installation and Start Up Schedule;
- > Attachment D: Regulatory Discussion;
- > Attachment E: Plot Plan;
- > Attachment F: Detailed Process Flow Diagram;
- > Attachment G: Process Description;
- > Attachment I: Emission Units Table;
- > Attachment J: Emission Points Data Summary Sheet;
- > Attachment K: Fugitive Emissions Data Summary Sheet;
- > Attachment L: Emissions Unit Data Sheets;
- > Attachment N: Supporting Emission Calculations;
- > Attachment 0: Monitoring/Recordkeeping/Reporting/Testing Plans
- > Attachment P: Legal Ad

The characteristics of air emissions from the natural gas processing operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Appendix N of this application.

Emissions from the proposed project will result from natural gas combustion in the reboiler and also process emission from the TEG dehydration unit, as well as fugitive emissions from component leaks. The methods by which emissions from the tanks are calculated are summarized below.

TEG Dehydration Unit: Potential emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOC), and methane from the dehydration unit are calculated using GRI-GLYCalc and a site-specific gas analysis.

Reboiler: Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas external combustion equipment.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas (GHG) emissions are calculated according to 40 CFR 98 Subpart C.²

¹ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

The WVDEP permit application forms contained in this application include all applicable R-13 application forms including the required attachments.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		LICATION FOR NSR PERMIT AND TILE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO	WN): PLEASE CHECK	TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):
	—	
CLASS II ADMINISTRATIVE UPDATE	CT IF ANY BOX ABC INFORMATION A	OVE IS CHECKED, INCLUDE TITLE V REVISION AS ATTACHMENT S TO THIS APPLICATION
FOR TITLE V FACILITIES ONLY: Please refer to "Title V R (Appendix A, "Title V Permit Revision Flowchart") and at		
Secti	ion I. General	
1. Name of applicant (as registered with the WV Secretary EQT Production	of State's Office):	2. Federal Employer ID No. (FEIN): 25-0724685
3. Name of facility (if different from above):		4. The applicant is the:
BIG 57-176 Meter Site		OWNER OPERATOR BOTH
5A. Applicant's mailing address: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222	5B. Facility's pres Shuman Hill Road, V	ent physical address: WV
 6. West Virginia Business Registration. Is the applicant a If YES, provide a copy of the Certificate of Incorporat change amendments or other Business Registration Ce If NO, provide a copy of the Certificate of Authority/A amendments or other Business Certificate as Attachment 	tion/Organization/Lim ertificate as Attachmer Authority of L.L.C./Reg	ited Partnership (one page) including any name nt A.
7. If applicant is a subsidiary corporation, please provide th	e name of parent corpo	pration: EQT Corporation
 8. Does the applicant own, lease, have an option to buy or If YES, please explain: Applicant owns the site If NO, you are not eligible for a permit for this source. 	otherwise have control	of the <i>proposed site</i> ? XES DO
in NO, you are not engible for a permit for this source.		
 Type of plant or facility (stationary source) to be constr administratively updated or temporarily permitted (e crusher, etc.): Natural Gas Production Wellsite 		
11A. DAQ Plant ID No. (for existing facilities only): 11 103-00052		SR13 and 45CSR30 (Title V) permit numbers s process (for existing facilities only):
All of the required forms and additional information can be for	und under the Permitting	g Section of DAQ's website, or requested by phone.

12A.

 For Modifications, Administrative Updates or T present location of the facility from the nearest state 		please provide directions to the
 For Construction or Relocation permits, please road. Include a MAP as Attachment B. 		site location from the nearest state
 From the junction of WV State Route (SR) 20 (Ga east on CR 15 for approximately 11.8 miles (3.6 n Road) junction. Turn right onto CR 80 and the factorial 	niles after the CR 15/CR 19 junction) to the	
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	Smithfield	Wetzel
12.E. UTM Northing (KM): 4,378.267	12F. UTM Easting (KM): 539.081	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the faci	lity:	
EQT is proposing to remove the combustor associated	with the dehydration unit.	
 14A. Provide the date of anticipated installation or chain If this is an After-The-Fact permit application, prochange did happen: 	• • •	14B. Date of anticipated Start-Up if a permit is granted: / /
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one un		units proposed in this permit
15. Provide maximum projected Operating ScheduleHours Per Day 24Days Per Week 7		ation:
16. Is demolition or physical renovation at an existing f	acility involved? YES NO	
17. Risk Management Plans. If this facility is subject	to 112(r) of the 1990 CAAA, or will becom	ne subject due to proposed
changes (for applicability help see www.epa.gov/cep	opo), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.
18. Regulatory Discussion. List all Federal and State	air pollution control regulations that you	believe are applicable to the
proposed process (if known). A list of possible applie	cable requirements is also included in Att	achment S of this application
(Title V Permit Revision Information). Discuss applic	cability and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional at	tachments and supporting d	ocuments.
 Include a check payable to WVDEP – Division of Ai 45CSR13). 	ir Quality with the appropriate applicatio	n fee (per 45CSR22 and
20. Include a Table of Contents as the first page of yo	our application package.	
 Provide a Plot Plan, e.g. scaled map(s) and/or ske source(s) is or is to be located as Attachment E (F 		erty on which the stationary
 Indicate the location of the nearest occupied structu 	re (e.g. church, school, business, resider	nce).
22. Provide a Detailed Process Flow Diagram(s) sho device as Attachment F.	owing each proposed or modified emissio	ns unit, emission point and control
23. Provide a Process Description as Attachment G	i.	
 Also describe and quantify to the extent possible 	all changes made to the facility since the	e last permit review (if applicable).

24. Provide Material Safety Data Sheets	(MSDS) for all materials process	sed, used or produced as Attachment H.
- For chemical processes, provide a MSI	DS for each compound emitted to	the air.
25. Fill out the Emission Units Table and	d provide it as Attachment I.	
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	as Attachment K.
28. Check all applicable Emissions Unit	Data Sheets listed below:	
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks
General Emission Unit, specify: Dehyd	ration Unit and Reboiler	
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment L.	
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed below	V:
Absorption Systems	Baghouse	Flare
Adsorption Systems	Condenser	Mechanical Collector
Afterburner	Electrostatic Precipitate	or 🗌 Wet Collecting System
Other Collectors, specify		
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attachn	nent M.
 Provide all Supporting Emissions C Items 28 through 31. 	alculations as Attachment N, or	r attach the calculations directly to the forms listed in
	compliance with the proposed em	proposed monitoring, recordkeeping, reporting and hissions limits and operating parameters in this permit
	y not be able to accept all measu	er or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.
32. Public Notice. At the time that the a	pplication is submitted, place a C	lass I Legal Advertisement in a newspaper of general
circulation in the area where the source	ce is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>
Advertisement for details). Please s	ubmit the Affidavit of Publicatio	n as Attachment P immediately upon receipt.
33. Business Confidentiality Claims.	oes this application include confi	dential information (per 45CSR31)?
	🖾 NO	
	ng the criteria under 45CSR§31-4	nitted as confidential and provide justification for each .1, and in accordance with the DAQ's <i>"Precautionary</i> Instructions as Attachment Q.

Section III. Certification of Information

required when someone other than the res	sponsible official signs the application.
Entity 🛛 Authority of Pa	rtnership
Authority of Lin	nited Partnership
as Attachment R.	
ion can be found under the Permitting Section	n of DAQ's website, or requested by phone.
this permit application, a Responsible Offic the appropriate box and sign below.	ial (per 45CSR§13-2.22 and 45CSR§30-
leteness	
Authorized Representative, hereby cer ended hereto, is true, accurate, and comple sponsibility for the construction, modification ice with this application and any amendment by permit issued in accordance with this app Air Quality and W.Va. Code § 22-5-1 et se official or Authorized Representative, the Di- thange.	ete based on information and belief after on and/or relocation and operation of the hts thereto, as well as the Department of plication, along with all applicable rules eq. (State Air Pollution Control Act). If the
Application for which compliance is not ac ter reasonable inquiry, all air contaminant s use blue ink)	hieved, I, the undersigned hereby certify sources identified in this application are in OATE: <u>O9/01/15</u> (Please use blue ink) 35C. Title: Executive Vice President
36E. Phone:	36F. FAX:
nt from above): Alex Bosiljevac	36B. Title: Environmental Coordinator
36D. Phone: 412-395-3699	36E. FAX:
TS INCLUDED WITH THIS PERMIT APPLICAT	ION:
dule	ion Control Device Sheet(s) g Emissions Calculations g/Recordkeeping/Reporting/Testing Plans tice Confidential Claims Forms rmit Revision Information ture(s) to the DAQ, Permitting Section, at the
	EntityAuthority of Pa Authority of Lin as Attachment R. ion can be found under the Permitting Section this permit application, a Responsible Office the appropriate box and sign below. eteness Authorized Representative, hereby cer- ended hereto, is true, accurate, and compli- sponsibility for the construction, modification ce with this application and any amendment y permit issued in accordance with this app Air Quality and W.Va. Code § 22-5-1 et set fficial or Authorized Representative, the Di- hange. Application for which compliance is not ac ter reasonable inquiry, all air contaminant set inse blue ink) 36E. Phone: aff. Phone: fse blue ink) 75 INCLUDED WITH THIS PERMIT APPLICAT Attachment K: Fugitive E Attachment M: Air Pollut Attachment M: Air Pollit No Attachment Q: Business SDS) Attachment Q: Business SDS) Attachment S: Title V Per y Sheet Application with the signate

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

1	Forward 1 copy of the application to the Title V Permitting Group and:
	For Title V Administrative Amendments:
	NSR permit writer should notify Title V permit writer of draft permit,
	For Title V Minor Modifications:
	Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
	NSR permit writer should notify Title V permit writer of draft permit.
	For Title V Significant Modifications processed in parallel with NSR Permit revision:
	NSR permit writer should notify a Title V permit writer of draft permit,
	Public notice should reference both 45CSR13 and Title V permits,
	EPA has 45 day review period of a draft permit.
	All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.
j	

ATTACHMENT A

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Мар

ATTACHMENT B: AREA MAP

Figure 1 - Map of BIG 57-176 Location

UTM Northing (KM): UTM Easting (KM): Elevation:

4,378.272 539.070 ~895 ft

ATTACHMENT C

Installation and Start Up Schedule

ATTACHMENT C

Schedule of Planned Installation and Start-Up

There are no installation associated with this project. Removal will occur upon permit issuance.

ATTACHMENT D

Regulatory Discussion

ATTACHMENT D - REGULATORY APPLICABILITY

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP R13 permit application forms, which fulfill the requirement to include citations and descriptions of applicable statutory and administrative code requirements.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the meter site. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the meter site. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

Prevention of Significant Deterioration (PSD) Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The meter site will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.¹. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the meter site is not a major source for Title V purposes.

¹ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

New Source Performance Standards

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the meter site.

NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The list of potentially affected facilities includes:

- > Gas wells
- > Centrifugal compressors
- > Reciprocating compressors
- Pneumatic controllers
- Storage vessels
- > Equipment (as defined in §60.5430) located at onshore natural gas processing plants
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells

The BIG57-156 Meter site does not include any gas wells, compressor engines, pneumatic controllers, or storage vessels. Therefore, the facility is not subject to this regulation.

EQT is not proposing any continuous bleed natural gas driven pneumatic controllers as part of this application.

Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the meter site can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The meter site is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the meter site:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

NESHAP Subpart HH – Oil and Natural Gas Production Facilities

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The meter site is

an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. The dehydration unit will continue to emit less than 0.90 megagrams of benzene per year; therefore the exemption found in §63.764(e)(1)(ii) applies. EQT will maintain the applicable records as required in §63.774(d)(1).

NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The reboiler at the meter site is natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the meter site are subject to any requirements under this subpart.

West Virginia SIP Regulations

The meter site is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

With the removal of the combustor, this regulation is no longer applicable to the meter site.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the meter site, EQT will be complying with 45 CSR 16.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

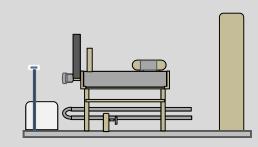
No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the meter site, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAP are applicable.

Non-Applicability of Other SIP Rules

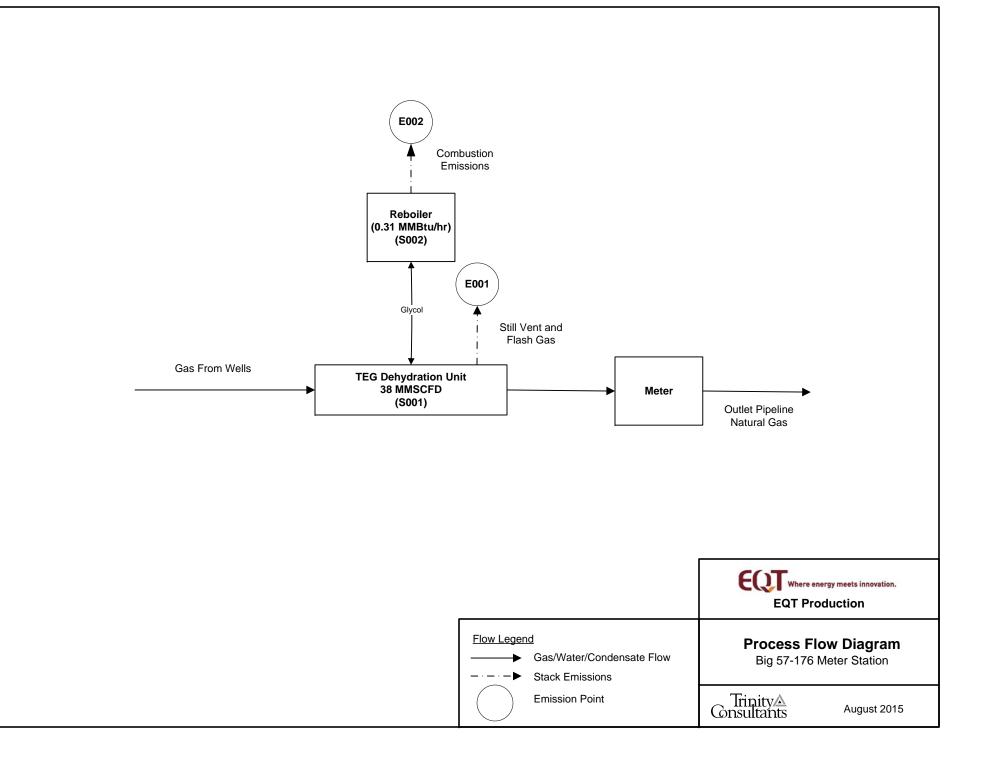

A thorough examination of the West Virginia SIP rules with respect to applicability at the meter site reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the meter site.

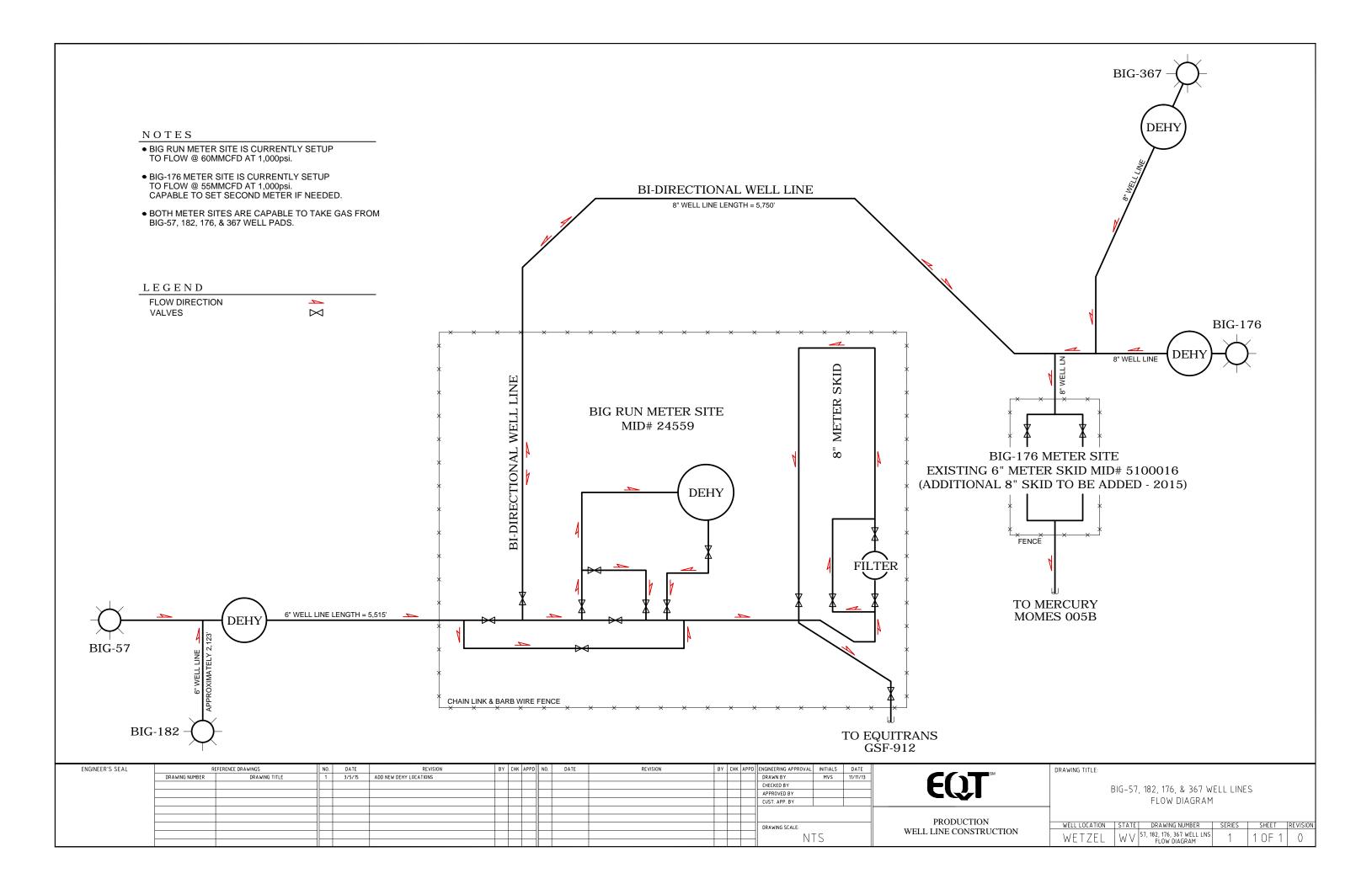
ATTACHMENT E

Plot Plan

NOTE: This diagram is not to scale. Locations and distances between equipment are unknown at this time.

Entrance to BIG 57 -176




Tri-ethylene Glycol Dehy	
(1)	

ATTACHMENT E BIG Run Meter Site

ATTACHMENT F

Detailed Process Flow Diagram

ATTACHMENT G

Process Description

ATTACHMENT G: PROCESS DESCRIPTION

EQT is proposing remove the vapor destruction unit (VDU) currently attached to the existing dehydration unit (38 MMSCFD) at the site.

The BIG 57-176 Interconnect meter station dehydrates natural gas from nearby production wells prior to transmission along the pipeline system. The incoming gas stream from underground wells passes through the triethylene glycol (TEG) dehydration unit which will introduce TEG to the gas stream in a contact tower to absorb water vapor from the gas to a level not exceeding 7 pounds per million standard cubic feet (lb/MMscf). The TEG is then sent to the natural gas-fired reboiler. The water is evaporated from the TEG in the reboiler and discharged, and the glycol is then sent back to the contact tower for reuse. The natural gas stream from the contact tower flows into the pipeline to be transported further along the pipeline system.

A process flow diagram is included as Attachment F.

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Glycol Dehydration Unit	2012	38 MMscfd	Existing, No Change	None
S002	E002	Glycol Dehydration Unit Reboiler	2012	0.31 MMBtu/hr input	Existing, No Change	None
C001	C001	Combustor	2012	4 MMBtu/hr	Existing – To be Removed	None

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page _____ of _____

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Ve Through (Must ma Units T	sion Unit ented I This Point tch Emission able & Plot Plan)	Contr (Mu Emis Tab	Pollution tol Device st match sion Units le & Plot Plan)	Emissi (che	Emission Unit (chemical Chemical Uncontrol		Maximum Maximum Potential Potential Uncontrolled Controlled Emissions ⁴ Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)		
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	` & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
S001	Upward Vertical stack	E001	Dehydrator	NA	NA	NA	NA	VOC HAP Benzene Ethylbenzene Toluene Xylenes n-Hexane	$2.74 \\ 0.10 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.03$	12.01 0.44 0.03 0.08 0.05 0.12 0.15	$2.74 \\ 0.10 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.03 \\ 0.03$	12.01 0.44 0.03 0.08 0.05 0.12 0.15	Gas/Vapor	O, ^B	
S002	Upward Vertical stack	E002	Reboiler	NA	NA	NA	NA	NOx CO PM/PM10/PM2.5 SO2 VOC CO2e	0.03 0.02 <0.01 <0.01 <0.01 36	$\begin{array}{c} 0.12 \\ 0.10 \\ 0.01 \\ < 0.01 \\ 0.01 \\ 159 \end{array}$	$\begin{array}{c} 0.03 \\ 0.02 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 36 \end{array}$	0.12 0.10 0.01 <0.01 0.01 159	Gas/Vapor	O ^{A,C}	

A – Emissions calculated using AP-42 Section 1.4

B – GLYCalc

C - Emissions calculated according to 40 CFR 98 Subpart C

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

			Table 2: Rele	ase Parame	ter Data				
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes Xo (no change to existing)
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹ Maximum Potential Maximum Potential Controlled Emissions ²			Est. Method			
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴	
Haul Road/Road Dust Emissions Paved Haul Roads	NA						
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}						
Storage Pile Emissions	NA						
Loading/Unloading Operations	NA						
Wastewater Treatment Evaporation & Operations	NA						
Equipment Leaks	VOC CO2e		1.20 133		1.20 133	A	
General Clean-up VOC Emissions	NA						
Other	NA						

A – Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, Table 2-1, November 1995. 40 CFR 98 Subpart W.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emissions Unit Data Sheet

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): Dehydration Unit and Reboiler-S001 and S002

 Name or type and model of proposed affected source: 38 MMSCFD dehydration unit with 0.31 MMBtu/hr duty (Heat Input rated) reboiler On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. Name(s) and maximum amount of proposed process material(s) charged per hour: 38 million standard cubic feet per day of natural gas Name(s) and maximum amount of proposed material(s) produced per hour: Name(s) and maximum amount of proposed material(s) produced per hour: Source a material – removes water from wet natural gas Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: External combustion of natural gas in reboiler 	
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. Name(s) and maximum amount of proposed process material(s) charged per hour: 38 million standard cubic feet per day of natural gas Name(s) and maximum amount of proposed material(s) produced per hour: Does not produce a material – removes water from wet natural gas Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: 	1. Name or type and model of proposed affected source:
 made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: 38 million standard cubic feet per day of natural gas 4. Name(s) and maximum amount of proposed material(s) produced per hour: Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: 	38 MMSCFD dehydration unit with 0.31 MMBtu/hr duty (Heat Input rated) reboiler
 made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: 38 million standard cubic feet per day of natural gas 4. Name(s) and maximum amount of proposed material(s) produced per hour: Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: 	
 38 million standard cubic feet per day of natural gas 4. Name(s) and maximum amount of proposed material(s) produced per hour: Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: 	made to this source, clearly indicated the change(s). Provide a narrative description of all
 38 million standard cubic feet per day of natural gas 4. Name(s) and maximum amount of proposed material(s) produced per hour: Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: 	3 Name(s) and maximum amount of proposed process material(s) charged per hour:
Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:	
Does not produce a material – removes water from wet natural gas 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:	
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:	4. Name(s) and maximum amount of proposed material(s) produced per nour:
	Does not produce a material – removes water from wet natural gas
External combustion of natural gas in reboiler	5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
	External combustion of natural gas in reboiler

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applicable):	
(a) Type and amount in appropriate units of fuel(s) to	be burned:
Reboiler - Natural gas – 278 scf/hr, 2.44 MMscf/yr	
(b) Chemical analysis of proposed fuel(s), excluding of and ash:	coal, including maximum percent sulfur
Natural gas with negligible H ₂ S and ash content.	
(c) Theoretical combustion air requirement (ACF/unit	of fuel):
Unknown @ °F	and psia.
(d) Percent excess air: Unknown	
(e) Type and BTU/hr of burners and all other firing ed	quipment planned to be used:
Natural gas fired external combustion heater (reboiler) -	- 0.31 MMbtu/hr input rating
(f) If coal is proposed as a source of fuel, identify sup coal as it will be fired:	pplier and seams and give sizing of the
NA	
(g) Proposed maximum design heat input: (F	Reboiler) 0.31 × 10 ⁶ BTU/hr.
7. Projected operating schedule:	
Hours/Day 24 Days/Week 7	Weeks/Year 52

8.	Projected amount of polluta devices were used:	ants that would be er	nitted fro	om this affected source if no control
@	Unknown	°F and		psia
a.	NOx	0.03	lb/hr	reboiler grains/ACF
b.	SO ₂	<0.01	lb/hr	reboiler grains/ACF
c.	со	0.02	lb/hr	reboiler grains/ACF
d.	PM ₁₀	<0.01	lb/hr	reboiler grains/ACF
e.	Hydrocarbons	28.91	lb/hr	dehy grains/ACF
f.	VOCs	2.74	lb/hr	dehy grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	НАР	0.10	lb/hr	dehy grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
Throughput of wet natural gas. Operating parameters of dehydration unit for GLYCalc (temperature, pressure, glycol flow rate)	 Annual average benzene emissions calculated with GLYCalc. Maintain records of all potential to emit (PTE) HAP calculations for the entire affected facility Maintain records of the times and duration of all periods which the pilot flame was absent Maintain records of the visible emission opacity tests
REPORTING	TESTING
None.	Conduct a Method 22 opacity test for at least two hours on a quarterly basis
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

ATTACHMENT N

Supporting Emission Calculations

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	0	per pad			
Storage Tank(s)	0	per pad			None
Sand Separator Tank	0	per pad			None
Line Heater(s)	0	per pad			None
Thermoelectric Generator(s) (TEGs)	0	per pad			None
Dehydrator(s)	1	per pad	S001	E001	None
Reboiler(s)	1	per pad	S002	E002	
Dehy Drip Tank	0	per pad			
Tank Combustor(s)	0	per pad			
Dehy Combustor(s)	0	per pad			
Length of lease road	100	feet			

	TEG	Reboiler	Fugitive	Haul	Total
Constituent	Dehydrator Unit (tpy)	(0.31 MMBtu/hr) (tpy)	Components (tpy)	Roads (tpy)	Emissions (tpy)
Criteria Pollutants					
NO _x	0	1.2E-01			0.12
co	0	1.0E-01			0.10
PM Total	0	9.3E-03		1.0E-02	0.02
PM ₁₀ Total	0	9.3E-03		2.5E-03	0.01
PM _{2.5} Total	0	9.3E-03		2.5E-04	0.01
SO ₂	0	7.3E-04			7.3E-04
VOC	12.01	6.7E-03	1.20		13.21
Greenhouse Gases					
CO ₂	0.97	158.86	2.1E-02		160
CH ₄	93.32	3.0E-03	5.34		98.67
N ₂ O	0	3.0E-03			3.0E-04
CO ₂ e	2,334.09	159.02	133.46		2,627
Hazardous Air Pollutants					
Methylnaphthalene (2-)		2.9E-08			2.9E-08
Methylchloranthrene (3-)		2.9E-08 2.2E-09			2.9E-08 2.2E-09
Dimethybenz(a)anthracene (7,12-)		1.9E-08			1.9E-08
Acenaphthene		2.2E-09			2.2E-09
Acenaphthylene		2.2E-09 2.2E-09			2.2E-09
Anthracene		2.9E-09			2.9E-09
Benz(a)anthracene		2.2E-09			2.2E-09
Benzene	3.1E-02	2.6E-06	< 0.001		3.1E-02
Benzo(a)pyrene		1.5E-09			1.5E-09
Benzo(b)fluoranthene		2.2E-09			2.2E-09
Benzo(g,h,i)perylene		1.5E-09			1.5E-09
Benzo(k)fluoranthene		2.2E-09			2.2E-09
Chrysene		2.2E-09			2.2E-09
Dibenzo(a,h)anthracene		1.5E-09			1.5E-09
Dichlorobenzene		1.5E-06			1.5E-06
Fluoranthene		3.7E-09			3.7E-09
Fluorene		3.4E-09			3.4E-09
Formaldehyde		9.1E-05			9.1E-05
Hexane, n- Indeno(1,2,3-cd)pyrene	1.5E-01	2.2E-03 2.2E-09	3.8E-03		1.6E-01 2.2E-09
Naphthalene		2.2E-09 7.4E-07			2.2E-09 7.4E-07
Phenanthrene		2.1E-08			2.1E-08
Pyrene		6.1E-08			6.1E-08
Toluene	5.4E-02	4.1E-06	< 0.001		5.4E-02
Arsenic	5.41-02	2.4E-07	<0.001		2.4E-02
Beryllium		1.5E-08			1.5E-08
Cadmium		1.3E-06			1.3E-06
Chromium		1.7E-06			1.7E-06
Cobalt		1.0E-07			1.0E-07
Manganese		4.6E-07			4.6E-07
Mercury		3.2E-07			3.2E-07
Nickel		2.6E-06			2.6E-06
Selenium		2.9E-08			2.9E-08
Ethylbenzene	8.2E-02		< 0.001		8.2E-02
Trimethylpentane (2,2,4-)	1.0E-03		< 0.001		1.0E-03
Xylene	1.2E-01		< 0.001		1.2E-01
Total HAP	0.44	2.3E-03	3.8E-03		0.44

Ethane 0.1940 4.656 0 Propane 0.1437 3.450 0 Isobutane 0.0460 1.103 0 Isobutane 0.0815 1.956 0 Isopentane 0.0306 0.734 0 n-Pentane 0.0244 0.586 0 Cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 Cyclopentane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Other Hexanes 0.0001 0.003 0 2,2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0122 0.294 0 Toluene* 0.0120 0.294 0 Kylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	tons/yr)	(lbs/day)	(lbs/hr)	Pollutant
Ethane 0.1940 4.656 0 Propane 0.1437 3.450 0 Isobutane 0.0460 1.103 0 Isobutane 0.0815 1.956 0 Isopentane 0.0306 0.734 0 n-Pentane 0.0244 0.586 0 Cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 Cyclopentane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Cyclopentane 0.0001 0.003 0 Renzene* 0.0001 0.003 0 2,2,4-Trimethylpentane* 0.0122 0.294 0 Ethylbenzene* 0.0136 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.16	0.85	0.04	Carbon Dioxide
Propane 0.1437 3.450 0 Isobutane 0.0460 1.103 0 n-Butane 0.0815 1.956 0 Isopentane 0.0306 0.734 0 n-Pentane 0.0244 0.586 0 n-Pentane 0.0244 0.586 0 n-Pentane 0.0244 0.586 0 Opentane 0.0089 0.214 0 Other 0.0306 0.014 0 Other Hexanes 0.0325 0.780 0 Q2,d-Trimethylpentane* 0.0001 0.0033 0 Benzene* 0.0088 0.164 0 Toluene* 0.0122 0.294 0 Kylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.9555	5.236	0.2181	Methane
Instruct 0.1460 1.103 0 n-Butane 0.0460 1.103 0 n-Butane 0.0815 1.956 0 lsopentane 0.0306 0.734 0 n-Pentane 0.0244 0.586 0 Cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 Cyclopentane 0.0006 0.0144 0 Other Hexanes 0.0325 0.780 0 Other Hexanes 0.0813 1.951 0 2.2.4-Trimethylpentane* 0.0001 0.0033 0 Benzene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.8497	4.656	0.1940	Ethane
n-Butane 0.0815 1.956 0 Isopentane 0.0306 0.734 0 n-Pentane 0.0244 0.586 0 cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 cyclopentane 0.0006 0.014 0 n-Hexane* 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Querters 0.0813 1.951 0 2,2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.333 0 Total Emissions 1.0295 24.709 4	0.6296	3.450	0.1437	Propane
Jospentane 0.0306 0.734 0 n-Pentane 0.0306 0.734 0 Cyclopentane 0.0244 0.586 0 n-Pentane 0.0089 0.214 0 Cyclopentane 0.0006 0.0161 0.385 0 Cyclohexane 0.0006 0.014 0 0 Other Hexanes 0.0325 0.780 0 2,2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0022 0.294 0 Toluene* 0.0122 0.294 0 Kylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.2013	1.103	0.0460	Isobutane
n-Pentane 0.0244 0.586 0 Cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 Cyclohexane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Heptanes 0.0325 0.780 0 Heptanes 0.0813 1.951 0 2,2,4-Trimethylpentane* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.3569	1.956	0.0815	n-Butane
Cyclopentane 0.0089 0.214 0 n-Hexane* 0.0161 0.385 0 Cyclopentane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Other Hexanes 0.0325 0.780 0 L2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0012 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.1339	0.734	0.0306	Isopentane
n-Hexane* 0.0161 0.385 0 Cyclohexane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Leptanes 0.0813 1.951 0 2,2,4-Trimethylpentane* 0.0081 1.951 0 2,2,4-Trimethylpentane* 0.0088 0.164 0 Benzene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.1070	0.586	0.0244	n-Pentane
Cyclohexane 0.0006 0.014 0 Other Hexanes 0.0325 0.780 0 Heptanes 0.0813 1.951 0 2_4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzne* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.0390	0.214	0.0089	Cyclopentane
Other Hexanes 0.0325 0.780 0 Heptanes 0.0313 1.951 0 2,2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.0703	0.385	0.0161	n-Hexane*
Heptanes 0.0813 1.951 0 2,2,4-Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.0025	0.014	0.0006	Cyclohexane
Z.4Trimethylpentane* 0.0001 0.003 0 Benzene* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 1.0295 24.709 4 Total Emissions 1.0295 24.709 4	0.1424	0.780	0.0325	Other Hexanes
Interference 0.0068 0.164 0 Foluene* 0.0068 0.164 0 Toluene* 0.0122 0.294 0 Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.3561	1.951	0.0813	Heptanes
Diame* Diologne Diologne <thdiologne< th=""> <thdiologne< th=""> <th< td=""><td>0.0005</td><td>0.003</td><td>0.0001</td><td>2,2,4-Trimethylpentane*</td></th<></thdiologne<></thdiologne<>	0.0005	0.003	0.0001	2,2,4-Trimethylpentane*
Ethylbenzene* 0.0186 0.446 0 Xylene 0.0270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4 Total Hydrocarbon Emissions 1.0295 24.709 4	0.0300	0.164	0.0068	Benzene*
Market 0.01270 0.649 0 Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4	0.0536	0.294	0.0122	Toluene*
Methylcyclohexane 0.0310 0.744 0 C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4 Total Hydrocarbon Emissions 1.0295 24.709 4	0.0814	0.446	0.0186	Ethylbenzene*
CR + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4 Total Hydrocarbon Emissions 1.0295 24.709 4	0.1185	0.649	0.0270	Xylene
C8 + Heavier Hydrocarbons 0.0560 1.343 0 Total Emissions 1.0295 24.709 4 Total Hydrocarbon Emissions 1.0295 24.709 4	0.1385	0.744	0.0310	Methylcyclohexane
Total Hydrocarbon Emissions 1.0295 24.709	0.2451	1.343	0.0560	
Total Hydrocarbon Emissions 1.0295 24.709	4.5093	24 700	1.0205	Tetel Emission
	4.5093 2.7041	24.709	1.0295	Total Hydrocarbon Emissions Total VOC Emissions
	2.7041			

Flash Gas Emissions							
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)				
Carbon Dioxide	0.19	4.46	0.81				
Methane	21.0889	506.134	92.3694				
Ethane	4.6671	112.011	20.4420				
Propane	1.2969	31.127	5.6806				
Isobutane	0.2433	5.839	1.0656				
n-Butane	0.3088	7.410	1.3524				
Isopentane	0.0936	2.245	0.4098				
n-Pentane	0.0564	1.353	0.2469				
Cyclopentane	0.0057	0.136	0.0248				
n-Hexane*	0.0181	0.434	0.0792				
Cyclohexane	0.0002	0.004	0.0007				
Other Hexanes	0.0512	1.228	0.2241				
Heptanes	0.0396	0.950	0.1733				
2,2,4-Trimethylpentane*	0.0001	0.003	0.0005				
Benzene*	0.0002	0.005	0.0008				
Toluene*	0.0002	0.005	0.0008				
Ethylbenzene*	0.0002	0.004	0.0007				
Xylene	0.0001	0.003	0.0006				
Methylcyclohexane	0.0065	0.155	0.0283				
C8 + Heavier Hydrocarbons	0.0043	0.103	0.0188				
Total Emissions	27.8812	669.148	122.1196				
Total Hydrocarbon Emissions	27.8812	669.148	122.1196				
Total VOC Emissions	2.1252	51.004	9.3082				
Total HAP Emissions	0.0189	0.453	0.0827				

GRI-GLYCalc Version 4.0 - EMISSIONS SUMMARY

Combined Total Emission Rates ()			
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Carbon Dioxide	0.22	5.31	0.97
Methane	21.3071	511.369	93.3249
Ethane	4.8611	116.667	21.2917
Propane	1.4407	34.577	6.3102
Isobutane	0.2893	6.942	1.2670
n-Butane	0.3903	9.366	1.7093
Isopentane	0.1241	2.979	0.5437
n-Pentane	0.0808	1.939	0.3539
Cyclopentane	0.0146	0.350	0.0639
n-Hexane*	0.0341	0.819	0.1495
Cyclohexane	0.0007	0.018	0.0032
Other Hexanes	0.0837	2.008	0.3665
Heptanes	0.1209	2.901	0.5295
2,2,4-Trimethylpentane*	0.0002	0.005	0.0010
Benzene*	0.0070	0.169	0.0308
Toluene*	0.0124	0.298	0.0544
Ethylbenzene*	0.0187	0.450	0.0821
Xylene	0.0272	0.653	0.1191
Methylcyclohexan	0.0375	0.899	0.1641
C8 + Heavier Hydrocarbons	0.0603	1.446	0.2640
Total Emissions	28.9107	693.857	126.6289
Total Hydrocarbon Emissions	28.9107	693.857	126.6289
Total VOC Emissions	2.7425	65.821	12.0123
Total HAP Emissions	0.0998	2.394	0.4369

Enclosed Combustor Emissions

Control Efficiency of Combustor Pilot Rating

Combustor Rating

0% 0 MMBtu/hr 0 MMBtu/hr

Emission	EmissionCombustorFactorsPotential Emissions		Pilot Potential Emissions	
Factors				
(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
0.090				
0.075				
0.007				
0.001				
116.997				
0.002				
0.000				
	Factors (lb/MMBtu) 0.090 0.075 0.007 0.001 116.997 0.002	Factors Potential (lb/MBtu) (lb/MBtu) (lb/hr) 0.090 0.075 0.007 0.001 116.997 0.002	Factors (lb/MMBtu) Potential Emissions (lb/hr) 0.090 0.075 0.007 0.007 0.007 0.007 0.001 116.997 0.002	Factors Potential Emissions Potential (lb/hr) (lb/MMBtu) (lb/hr) (tpy) (lb/hr) 0.090 0.075 0.007 0.001 116.997 0.002

*HAPs

¹ Based on GRI GlyCalc 4.0 run at dry gas flowrate of 38 MMSCFD and T and P of 70 °F and 875 psig, respectively. The flash tank operating parameters are 75 °F and 70 psig.

² All constituents that were below the detection limit were conservatively represented in the GLYCalc run as half of the detection limit.

Reboiler

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,115	BTU/scf
Heat Input	0.31	MMBtu/hr
Fuel Consumption	2.78E-04	MMscf/hr
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	2.8E-02	1.2E-01
СО	84	2.3E-02	1.0E-01
SO_2	0.6	1.7E-04	7.3E-04
PM Total	7.6	2.1E-03	9.3E-03
PM Condensable	5.7	1.6E-03	6.9E-03
PM ₁₀ (Filterable)	1.9	5.3E-04	2.3E-03
PM _{2.5} (Filterable)	1.9	5.3E-04	2.3E-03
VOC	5.5	1.5E-03	6.7E-03
Lead	5.00E-04	1.4E-07	6.1E-07
CO_2 (Natural Gas Firing) ⁴	130,393	36	159
CH_4 (Natural Gas Firing) ⁴	2.5	6.8E-04	3.0E-03
N_2O (Natural Gas Firing) ⁴	0.25	6.8E-05	3.0E-04

Reboiler

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³		
HAPs:					
Methylnaphthalene (2-)	2.4E-05	6.7E-09	2.9E-08		
3-Methylchloranthrene	1.8E-06	5.0E-10	2.2E-09		
7,12-Dimethylbenz(a)anthracene	1.6E-05	4.5E-09	1.9E-08		
Acenaphthene	1.8E-06	5.0E-10	2.2E-09		
Acenaphthylene	1.8E-06	5.0E-10	2.2E-09		
Anthracene	2.4E-06	6.7E-10	2.9E-09		
Benz(a)anthracene	1.8E-06	5.0E-10	2.2E-09		
Benzene	2.1E-03	5.8E-07	2.6E-06		
Benzo(a)pyrene	1.2E-06	3.3E-10	1.5E-09		
Benzo(b)fluoranthene	1.8E-06	5.0E-10	2.2E-09		
Benzo(g,h,i)perylene	1.2E-06	3.3E-10	1.5E-09		
Benzo(k)fluoranthene	1.8E-06	5.0E-10	2.2E-09		
Chrysene	1.8E-06	5.0E-10	2.2E-09		
Dibenzo(a,h) anthracene	1.2E-06	3.3E-10	1.5E-09		
Dichlorobenzene	1.2E-03	3.3E-07	1.5E-06		
Fluoranthene	3.0E-06	8.3E-10	3.7E-09		
Fluorene	2.8E-06	7.8E-10	3.4E-09		
Formaldehyde	7.5E-02	2.1E-05	9.1E-05		
Hexane	1.8E+00	5.0E-04	2.2E-03		
Indo(1,2,3-cd)pyrene	1.8E-06	5.0E-10	2.2E-09		
Naphthalene	6.1E-04	1.7E-07	7.4E-07		
Phenanthrene	1.7E-05	4.7E-09	2.1E-08		
Pyrene	5.0E-06	1.4E-09	6.1E-09		
Toluene	3.4E-03	9.5E-07	4.1E-06		
Arsenic	2.0E-04	5.6E-08	2.4E-07		
Beryllium	1.2E-05	3.3E-09	1.5E-08		
Cadmium	1.1E-03	3.1E-07	1.3E-06		
Chromium	1.4E-03	3.9E-07	1.7E-06		
Cobalt	8.4E-05	2.3E-08	1.0E-07		
Manganese	3.8E-04	1.1E-07	4.6E-07		
Mercury	2.6E-04	7.2E-08	3.2E-07		
Nickel	2.1E-03	5.8E-07	2.6E-06		
Selenium	2.4E-05	6.7E-09	2.9E-08		
Total HAP		5.3E-04	2.3E-03		

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fugitive Components

Component Counts

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Productior

Fugitive Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Total Fugitive Emissions (lb/hr)	TOC Annual Fugitive Emissions (tpy)
Valves	Gas	5.97E-03	56	0.74	3.23
Pump Seals	Light Liquid	1.99E-02	1	0.04	0.19
Pressure Relief Valves	Gas	1.04E-01	3	0.69	3.01
Connectors	All	1.83E-03	212	0.86	3.75
Open-Ended Lines	All	1.70E-03	3	0.01	0.05
			Emission Totals:	2.34	10.23

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction.

² Assumes one pump for liquid loading, one dehydrator, one separator, and one meter. 50% satefy factor added to the component counts.

VOC and HAP Weight Fractions¹

Service	Weight Fraction VOC	Weight Fraction Hexane Weight Fraction Benzene		Weight Fraction Toluene	Weight Fraction Ethylbenzene	Weight Fraction 2,2,4- trimethylpentane	Weight Fraction Xylene
Gas	0.100	3.8E-04	<0.001	<0.001	<0.001	<0.001	<0.001
Light Liquid	1.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
All	0.100	3.8E-04	<0.001	<0.001	<0.001	<0.001	<0.001

¹ All weight fractions from the same representative gas analyses used for other emission calculation

EQT Production, LLC BIG 57-176 Meter Station **G-70A Permit Application**

Fugitive Components

VOC and HAP Fugitive Emissions

Pollutant	Hourly Fugitive Emissions (lb/hr)	Annual Fugitive Emissions (tpy)
VOC	0.273	1.20
Hexane	8.8E-04	3.8E-03
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
2,2,4-trimethylpentane	< 0.001	< 0.001
Xylene	< 0.001	< 0.001
Total HAP	8.8E-04	3.8E-03

GHG Fugitive Emissions from Component Leaks

Component	Component Count ¹	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Connectors	212	3.0E-03	1.0E-01	4.1E-04	2.6E+00
Open-Ended Lines	3	6.1E-02	3.0E-02	1.2E-04	7.5E-01
Pressure Relief Devices	3	4.0E-02	2.0E-02	7.8E-05	4.9E-01
Pneumatic Devices	5	6.0E+00	4.9E+00	2.0E-02	1.2E+02
Valves	56	2.7E-02	2.5E-01	9.8E-04	6.2E+00
	Total	•	5.3	0.021	133

¹ The component count for pneumatics assumes 5 pneumatics ² Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W, except for pneumatics, which are set at NSPS OOOO limits. ³ Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.

⁴ Mole fractions of CH, and CO, based on gas analysis:

	Mole fractions of CH_4 and CO_2 based on gas analysis:						
		$CH_{4:}$	88.72%	CO ₂ :	0.13%		
⁵ Carbon equivalent emissions (CO ₂ e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:							
	Carbon Dioxi	de (CO ₂):	1	Methane (CH ₄):	25		

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

aveu Roau Emissions				
Unpaved Roads	: E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$	*[(365-p)/36	5]
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀) PM _{2.5}
Liquids Hauling	20	40	30	0.04	52	2	0	4.2E-03	1.1E-03	1.1E-04
Employee Vehicles	3	3	3	0.04	200	8	0	5.8E-03	1.5E-03	1.5E-04
Total Potential Emissions	•							1.0E-02	2.5E-03	2.5E-04

Gas Analysis

Sample Location:	Big Run Dehy Inlet
Sample Date:	11/20/2014
HHV (Btu/scf):	1,115

	Natural Gas Stream			Average Weight	Natural Gas Stream
	Speciation	Molecular Weight	Molar Weight	Fraction	Speciation
Constituent	(Mole %)				(Wt. %)
Carbon Dioxide	0.128	44.01	5.6E-02	3.1E-03	3.1E-01
Nitrogen	0.316	28.01	8.9E-02	4.9E-03	4.9E-01
Methane	88.719	16.04	1.4E+01	7.9E-01	7.9E+01
Ethane	8.783	30.07	2.6E+00	1.5E-01	1.5E+01
Propane	1.489	44.10	6.6E-01	3.6E-02	3.6E+00
Isobutane	0.195	58.12	1.1E-01	6.3E-03	6.3E-01
n-Butane	0.226	58.12	1.3E-01	7.3E-03	7.3E-01
Isopentane	0.058	72.15	4.2E-02	2.3E-03	2.3E-01
n-Pentane	0.032	72.15	2.3E-02	1.3E-03	1.3E-01
Cyclopentane	0.002	70.1	1.4E-03	7.8E-05	7.8E-03
n-Hexane	0.008	86.18	6.9E-03	3.8E-04	3.8E-02
Cyclohexane	< 0.001	84.16	0.0E+00	0.0E+00	0.0E+00
Other Hexanes	0.024	86.18	2.1E-02	1.1E-03	1.1E-01
Heptanes	0.015	100.21	1.5E-02	8.3E-04	8.3E-02
Methylcyclohexane	0.002	98.19	2.0E-03	1.1E-04	1.1E-02
2,2,4-Trimethylpentane	< 0.001	114.23	0.0E+00	0.0E+00	0.0E+00
Benzene*	< 0.001	78.11	0.0E+00	0.0E+00	0.0E+00
Toluene*	< 0.001	92.14	0.0E+00	0.0E+00	0.0E+00
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001
Xylenes*	< 0.001	106.16	0.0E+00	0.0E+00	0.0E+00
C8 + Heavies	0.003	114.23	3.4E-03	1.9E-04	1.9E-02
Totals	100.0		18.03	1.00	100

TOC (Total)	99.56	99.20
VOC (Total)	2.05	5.63
HAP (Total)	0.01	0.04

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: EQT BIG Run Dehy Station 38 MMSCFD File Name: Z:\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\BIG 57-176\2015-0806 R-13 Mod Application\Attachment N - Emission Calculations\20150811 BIG-Run_Dehy_V1.1.ddf Date: August 11, 2015

DESCRIPTION:

Description: PTE Big Run Gas Analysis Sample Date: 11/20/2014

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2181	5.236	0.9555
Ethane	0.1940	4.656	0.8497
Propane	0.1437	3.450	0.6296
Isobutane	0.0460	1.103	0.2013
n-Butane	0.0815	1.956	0.3569
Isopentane	0.0306	0.734	0.1339
n-Pentane	0.0244	0.586	0.1070
Cyclopentane	0.0089	0.214	0.0390
n-Hexane	0.0161	0.385	0.0703
Cyclohexane	0.0006	0.014	0.0025
Other Hexanes	0.0325	0.780	0.1424
Heptanes	0.0813	1.951	0.3561
Methylcyclohexane	0.0310	0.744	0.1358
2,2,4-Trimethylpentane	0.0001	0.003	0.0005
Benzene	0.0068	0.164	0.0300
Toluene	0.0122	0.294	0.0536
Ethylbenzene	0.0186	0.446	0.0814
Xylenes	0.0270	0.649	0.1185
C8+ Heavies	0.0560	1.343	0.2451
Total Emissions	1.0295	24.709	4.5093
Total Hydrocarbon Emissions	1.0295	24.709	4.5093
Total VOC Emissions	0.6174	14.817	2.7041
Total HAP Emissions	0.0809	1.941	0.3543
Total BTEX Emissions	0.0647	1.553	0.2835

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	21.0889	506.134	92.3694
Ethane	4.6671	112.011	20.4420
Propane	1.2969	31.127	5.6806
Isobutane	0.2433	5.839	1.0656
n-Butane	0.3088	7.410	1.3524
Isopentane	0.0936	2.245	0.4098
n-Pentane	0.0564	1.353	0.2469

Page: 1

Cyclopentane n-Hexane Cyclohexane	0.0057 0.0181 0.0002	0.136 0.434 0.004	Page: 2 0.0248 0.0792 0.0007
Other Hexanes	0.0512	1.228	0.2241
Heptanes	0.0396	0.950	0.1733
Methylcyclohexane	0.0065	0.155	0.0283
2,2,4-Trimethylpentane	0.0001	0.003	0.0005
Benzene	0.0002	0.005	0.0008
Toluene	0.0002	0.005	0.0008
Ethylbenzene	0.0002	0.004	0.0007
Xylenes	0.0001	0.003	0.0006
C8+ Heavies	0.0043	0.103	0.0188
Total Emissions	27.8812	669.148	122.1196
Total Hydrocarbon Emissions	27.8812	669.148	122.1196
Total VOC Emissions	2.1252	51.004	9.3082
Total HAP Emissions	0.0189	0.453	0.0827
Total BTEX Emissions	0.0007	0.016	0.0030

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

· · · · · · · · · · · · · · · · · · ·			
Component	lbs/hr	lbs/day	tons/yr
Metha Etha Propa Isobuta n-Buta	ane 4.8611 ane 1.4407 ane 0.2893	511.369 116.667 34.577 6.942 9.366	93.3249 21.2917 6.3102 1.2670 1.7093
Isopenta n-Penta Cyclopenta n-Hexa Cyclohexa	ane 0.0808 ane 0.0146 ane 0.0341	2.979 1.939 0.350 0.819 0.018	0.5437 0.3539 0.0639 0.1495 0.0032
Other Hexar Heptar Methylcyclohexa 2,2,4-Trimethylpenta Benze	nes 0.1209 ane 0.0375 ane 0.0002	2.008 2.901 0.899 0.005 0.169	0.3665 0.5295 0.1641 0.0010 0.0308
Tolue Ethylbenze Xyler C8+ Heav	ene 0.0187 nes 0.0272	0.298 0.450 0.653 1.446	0.0544 0.0821 0.1191 0.2640
Total Emissio	ons 28.9107	693.857	126.6289
Total Hydrocarbon Emissic Total VOC Emissic Total HAP Emissic Total BTEX Emissic	ons 2.7425 ons 0.0998		126.6289 12.0123 0.4369 0.2864

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methar	ie 21.2917	93.3249	0.00
Ethar		21.2917	0.00
Propar		6.3102	0.00

Isobutane n-Butane	1.2670 1.7093	1.2670 1.7093	Page:	3 0.00 0.00
Isopentane n-Pentane Cyclopentane n-Hexane Cyclohexane	0.5437 0.3539 0.0639 0.1495 0.0032	0.0639 0.1495		0.00 0.00 0.00 0.00 0.00
Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene	0.3665 0.5295 0.1641 0.0010 0.0308	0.1641 0.0010		0.00 0.00 0.00 0.00 0.00
Toluene Ethylbenzene Xylenes C8+ Heavies	0.0544 0.0821 0.1191 0.2640	0.0821 0.1191		0.00 0.00 0.00 0.00
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	126.6289 12.0123	126.6289 12.0123		0.00 0.00 0.00 0.00 0.00

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 2.05	lbs. H2O/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content: Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:	875.0 38.0000 0.1276 Saturated 25.64	MMSCF/day

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.98%	92.02%
Carbon Dioxide	99.94%	0.06%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.99%	0.01%
Propane	99.98%	0.02%
Isobutane	99.97%	0.03%
n-Butane	99.96%	0.04%
Isopentane	99.96%	0.04%
n-Pentane	99.95%	0.05%
Cyclopentane	99.78%	0.22%

n-Hexane Cyclohexane Other Hexanes Heptanes	99.91% 99.61% 99.94% 99.84%	Page: 0.09% 0.39% 0.06% 0.16%	4
Methylcyclohexane	99.58%	0.42%	
2,2,4-Trimethylpentane	99.94%	0.06%	
Benzene	95.71%	4.29%	
Toluene	93.57%	6.43%	
Ethylbenzene	91.57%	8.43%	
Xylenes	87.75%	12.25%	
C8+ Heavies	99.75%	0.25%	

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 75.0 deg. F Flash Pressure: 70.0 psig

		1 0
Component	Left in Glycol	Removed in Flash Gas
Water	99.96%	0.04%
Carbon Dioxide	16.03%	83.97%
Nitrogen	0.95%	99.05%
Methane	1.02%	98.98%
Ethane	3.99%	96.01%
Propane	9.98%	90.02%
Isobutane	15.89%	84.11%
n-Butane	20.88%	79.12%
Isopentane	24.84%	75.16%
n-Pentane	30.44%	69.56%
Cyclopentane	61.29%	38.71%
n-Hexane	47.22%	52.78%
Cyclohexane	77.70%	22.30%
Other Hexanes	39.26%	60.74%
Heptanes	67.40%	32.60%
- Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	83.42% 48.79% 97.43% 98.57% 99.27%	16.58% 51.21% 2.57% 1.43% 0.73%
Xylenes	99.55%	0.45%
C8+ Heavies	93.64%	6.36%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	25.31% 0.00% 0.00% 0.00% 0.00%	74.69% 100.00% 100.00% 100.00% 100.00%
Propane	0.00%	100.00%

Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 1.10% 1.01%	100.00%	5
Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes	0.71% 0.77% 3.81% 1.71% 0.62%	96.19%	
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	4.47% 2.05% 5.10% 7.99% 10.47%		
Xylenes C8+ Heavies	13.00% 11.59%	87.00% 88.41%	

STREAM REPORTS:

WET GAS STREAM

Temperature: 70.00 deg. F Pressure: 889.70 psia Flow Rate: 1.58e+006 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	5.40e-002 1.28e-001 3.16e-001 8.87e+001 8.78e+000	2.35e+002 3.69e+002 5.94e+004
Isobutane n-Butane Isopentane	1.49e+000 1.95e-001 2.26e-001 5.80e-002 3.20e-002	4.73e+002 5.48e+002 1.75e+002
Cyclohexane Other Hexanes	8.00e-003 5.00e-005	2.88e+001 1.76e-001 8.63e+001
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	5.00e-005 5.00e-005 5.00e-005	2.38e-001 1.63e-001 1.92e-001
Xylenes C8+ Heavies	5.00e-005 3.00e-003	2.22e-001 2.13e+001
Total Components	100.00	7.53e+004

DRY GAS STREAM

Temperature:	70.00	deg.	F
Pressure:	889.70	psia	
Flow Rate:	1.58e+006	scfh	

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	4.31e-003 1.28e-001 3.16e-001 8.87e+001 8.78e+000	2.35e+002 3.69e+002 5.94e+004
Isobutane n-Butane Isopentane	1.49e+000 1.95e-001 2.26e-001 5.80e-002 3.20e-002	4.73e+002 5.48e+002 1.75e+002
Cyclohexane Other Hexanes	7.99e-003 4.98e-005	2.87e+001 1.75e-001 8.63e+001
	5.00e-005 4.79e-005 4.68e-005	2.38e-001 1.56e-001 1.80e-001
Xylenes C8+ Heavies	4.39e-005 2.99e-003	
Total Components	100.00	7.53e+004

LEAN GLYCOL STREAM

emperature: 70.00 deg. F low Rate: 1.50e+000 gpm		
Component		Loading (lb/hr)
	9.85e+001	
	1.50e+000	
Carbon Dioxide		
Nitrogen	1.78e-013	1.50e-012
Methane	8.50e-018	7.18e-017
Ethane	7.28e-008	6.15e-007
Propane	2.68e-009	2.26e-008
Isobutane	4.85e-010	4.10e-009
n-Butane	6.26e-010	5.29e-009
Isopentane	4.03e-005	3.41e-004
n-Pentane	2.96e-005	2.50e-004
Cyclopentane	7.55e-006	6.38e-005
	1.48e-005	
Cyclohexane	2.66e-006	2.25e-005
Other Hexanes	6.68e-005	5.64e-004
Heptanes	5.99e-005	5.06e-004
Methylcyclohexane	1.72e-004	1.45e-003
2,2,4-Trimethylpentane		
	4.36e-005	
Toluene	1.26e-004	1.06e-003

Ethylbenzene 2.57e-004 2.17e-003 Xylenes 4.78e-004 4.04e-003 C8+ Heavies 8.69e-004 7.34e-003 Total Components 100.00 8.45e+002

RICH GLYCOL AND PUMP GAS STREAM _____ Temperature: 70.00 deg. F Pressure: 889.70 psia Flow Rate: 1.64e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.13e+001 8.32e+002 Water 5.50e+000 5.01e+001 Carbon Dioxide 2.43e-002 2.21e-001 Nitrogen 1.47e-002 1.34e-001 Methane 2.34e+000 2.13e+001 Ethane 5.34e-001 4.86e+000 Propane 1.58e-001 1.44e+000 Isobutane 3.18e-002 2.89e-001 n-Butane 4.28e-002 3.90e-001 Isopentane 1.37e-002 1.24e-001 n-Pentane 8.90e-003 8.11e-002 Cyclopentane 1.61e-003 1.46e-002 n-Hexane 3.76e-003 3.43e-002 Cyclohexane 8.33e-005 7.59e-004 Other Hexanes 9.25e-003 8.42e-002 Heptanes 1.33e-002 1.21e-001 Methylcyclohexane 4.27e-003 3.89e-002 2,2,4-Trimethylpentane 2.53e-005 2.31e-004 Benzene 8.13e-004 7.41e-003 Toluene 1.48e-003 1.35e-002 Ethylbenzene 2.30e-003 2.09e-002 Xylenes 3.43e-003 3.12e-002 C8+ Heavies 7.42e-003 6.76e-002 Total Components 100.00 9.11e+002 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FLASH TANK OFF GAS STREAM

 Pressure:	75.00 deg. F 84.70 psia 5.78e+002 scfh			
	Component		Loading (lb/hr)	
	Carbon Dioxide Nitrogen Methane	6.59e-002 2.77e-001 3.12e-001 8.64e+001 1.02e+001	1.86e-001 1.33e-001 2.11e+001	
	Isobutane n-Butane Isopentane	1.93e+000 2.75e-001 3.49e-001 8.52e-002 5.13e-002	2.43e-001 3.09e-001 9.36e-002	

Cyclopentane 5.31e-003 5.67e-003 n-Hexane 1.38e-002 1.81e-002 Cyclohexane 1.32e-004 1.69e-004 Other Hexanes 3.90e-002 5.12e-002 Heptanes 2.59e-002 3.96e-002 Methylcyclohexane 4.32e-003 6.45e-003 2,2,4-Trimethylpentane 6.80e-005 1.18e-004 Benzene 1.60e-004 1.90e-004 Toluene 1.38e-004 1.94e-004 Ethylbenzene 9.38e-005 1.52e-004 Xylenes 8.69e-005 1.40e-004 C8+ Heavies 1.66e-003 4.30e-003 _____ ____ Total Components 100.00 2.82e+001 FLASH TANK GLYCOL STREAM -----Temperature: 75.00 deg. F Flow Rate: 1.58e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.42e+001 8.32e+002 Water 5.67e+000 5.00e+001 Carbon Dioxide 4.01e-003 3.54e-002 Nitrogen 1.45e-004 1.28e-003 Methane 2.47e-002 2.18e-001 Ethane 2.20e-002 1.94e-001 Propane 1.63e-002 1.44e-001 Isobutane 5.21e-003 4.60e-002 n-Butane 9.23e-003 8.15e-002 Isopentane 3.50e-003 3.09e-002 n-Pentane 2.80e-003 2.47e-002 Cyclopentane 1.02e-003 8.98e-003 n-Hexane 1.83e-003 1.62e-002 Cyclohexane 6.68e-005 5.90e-004 Other Hexanes 3.75e-003 3.31e-002 Heptanes 9.27e-003 8.18e-002 Methylcyclohexane 3.68e-003 3.25e-002 2,2,4-Trimethylpentane 1.28e-005 1.13e-004 Benzene 8.17e-004 7.22e-003 Toluene 1.51e-003 1.33e-002 Ethylbenzene 2.35e-003 2.08e-002 Xylenes 3.52e-003 3.11e-002 C8+ Heavies 7.17e-003 6.33e-002 ----- -----Total Components 100.00 8.83e+002 REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 7.99e+002 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 9.86e+001 3.74e+001

Carbon Dioxide 3.82e-002 3.54e-002 Nitrogen 2.17e-003 1.28e-003 Methane 6.46e-001 2.18e-001 Ethane 3.06e-001 1.94e-001 Propane 1.55e-001 1.44e-001 Isobutane 3.76e-002 4.60e-002 n-Butane 6.66e-002 8.15e-002 Isopentane 2.01e-002 3.06e-002 n-Pentane 1.61e-002 2.44e-002 Cyclopentane 6.04e-003 8.91e-003 n-Hexane 8.85e-003 1.61e-002 Cyclohexane 3.20e-004 5.67e-004 Other Hexanes 1.79e-002 3.25e-002 Heptanes 3.85e-002 8.13e-002 Methylcyclohexane 1.50e-002 3.10e-002 2,2,4-Trimethylpentane 4.59e-005 1.10e-004 Benzene 4.16e-003 6.85e-003 Toluene 6.31e-003 1.22e-002 Ethylbenzene 8.32e-003 1.86e-002 Xylenes 1.21e-002 2.70e-002 C8+ Heavies 1.56e-002 5.60e-002 ----- -----Total Components 100.00 3.84e+001

Certificate of Analysis

Number: 2030-14120043-002A

Sampled By:

Sample Date:

Sample Of:

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 08, 2014

Spot

Sample Conditions: 60 psig Method: GPA 2286 Pressure should be 850

11/20/2014 12:30

CD-GAS

Gas

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:EQTStation Name:Big Run Dehy InletSample Point: WellheadCylinder No:0343Analyzed:12/03/2014 06:53:38 by GR2

Analyzeu. 12/	103/2014 00.53.	SO DY GRZ		Method:	- 900 psi
			Analy	tical Data	
Components	s Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.316	0.491		GPM TOTAL C2+	2.956
Carbon Dioxide	0.128	0.312		GPM TOTAL C3+	0.602
Methane	88.719	78.916		GPM TOTAL iC5+	0.056
Ethane	8.783	14.643	2.354		
Propane	1.489	3.640	0.411		
Iso-Butane	0.195	0.628	0.064		
n-Butane	0.226	0.728	0.071		
Iso-Pentane	0.058	0.232	0.021		
n-Pentane	0.032	0.128	0.012		
Hexanes	0.033	0.145	0.012		
Heptanes Plus	0.021	0.137	0.011		
	100.000	100.000	2.956		
Physical Properti			Total	C7+	
Relative Density R	Real Gas		0.6241	3.6515	
Calculated Molecu	lar Weight		18.04	105.76	
Compressibility Fa			0.9974		
GPA 2172-09 Cal					
Calculated Gross	BTU per ft ³ @) 14.73 psia	& 60°F		
Real Gas Dry BTU	J	-	1115	5696	
Water Sat. Gas Ba	ase BTU		1095	5597	
Comments: H2O	Mol% : 1.740	; Wt% : 1.73	39		

Jam S. Pero Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: EQT Station Name:Big Run Dehy Inlet Sample Point: Wellhead Cylinder No: 0343 Analyzed: 12/03/2014 06:53:38 by GR2

Certificate of Analysis

Number: 2030-14120043-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 08, 2014

Sampled By: CD-GAS Sample Of: Gas Spot Sample Date: 11/20/2014 12:30 Sample Conditions: 60 psig Method: GPA 2286

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	0.316 0.128 88.719 8.783 1.489 0.195 0.226 0.058 0.032 0.054 100.000	0.491 0.312 78.916 14.643 3.640 0.628 0.728 0.232 0.128 0.282 100.000	2.354 0.411 0.064 0.071 0.021 0.012 0.023 2.956	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	2.956 0.602 0.056	
Physical Properties Relative Density Rea Calculated Molecular Compressibility Facto GPA 2172-09 Calcul Calculated Gross B	l Gas Weight or ation:			C6+ 3.2605 94.43		
Real Gas Dry BTU Water Sat. Gas Base Comments: H2O M		Wt% : 1.73	1115 1095 8	5148 5058		

Pater L. Perro Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:EQTStation Name:Big Run Dehy InletSample Point: WellheadCylinder No:0343Analyzed:12/03/2014 06:53:38 by GR2

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 08, 2014

Sampled By:CD-GASSample Of:GasSpotSample Date:11/20/201412:30Sample Conditions: 60 psigMethod:GPA 2286

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.316	0.491		GPM TOTAL C2+	2.956	
Methane	88.719	78.916			2.000	
Carbon Dioxide	0.128	0.312				
Ethane	8.783	14.643	2.354			
Propane	1.489	3.640	0.411			
lso-Butane	0.195	0.628	0.064			
n-Butane	0.226	0.728	0.071			
lso-Pentane	0.058	0.232	0.021			
n-Pentane	0.032	0.128	0.012			
i-Hexanes	0.026	0.112	0.009			
n-Hexane	0.007	0.033	0.003			
Benzene	NIL	0.001	NIL			
Cyclohexane	NIL	NIL	NIL			
i-Heptanes	0.013	0.063	0.005			
n-Heptane	0.002	0.010	0.001			
Toluene	NIL	NIL	NIL			
i-Octanes	0.006	0.033	0.003			
n-Octane	NIL	0.003	NIL			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	0.004	NIL			
i-Nonanes	NIL	0.008	0.001			
n-Nonane	NIL	0.002	NIL			
i-Decanes	NIL	0.002	0.001			
n-Decane	NIL	NIL	NIL			
Undecanes	NIL	0.004	NIL			
Dodecanes	NIL	0.001	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
	100.000	100.000	2.956			
Physical Properties		Tot				
Calculated Molecular We	eight	18.03	36			
GPA 2172-09 Calculatio						

Certificate of Analysis

Number: 2030-14120043-002A

GPA 2172-09 Calculation:Calculated Gross BTU per ft³ @ 14.73 psia & 60°FReal Gas Dry BTU1114.5Water Sat. Gas Base BTU1095.1Relative Density Real Gas0.6241Compressibility Factor0.9974

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:EQTStation Name:Big Run Dehy InletSample Point: WellheadCylinder No:0343Analyzed:12/03/2014 06:53:38 by GR2

Certificate of Analysis

Number: 2030-14120043-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 08, 2014

Sampled By: CD-GAS Sample Of: Gas Spot Sample Date: 11/20/2014 12:30 Sample Conditions: 60 psig Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %
Carbon Dioxide	0.128	0.312
Hydrogen Sulfide	N/R	N/R
Nitrogen	0.316	0.491
Methane	88.719	78.916
Ethane	8.783	14.643
Propane	1.489	3.641
lso-Butane	0.195	0.628
n-Butane	0.226	0.728
Iso-Pentane	0.058	0.232
n-Pentane	0.032	0.128
Cyclopentane	0.002	0.007
n-Hexane	0.008	0.033
Cyclohexane	NIL	NIL
Other Hexanes	0.024	0.104
n-Heptane	0.002	0.010
Other Heptanes	0.013	0.057
Methylcyclohexane	0.002	0.010
2,2,4-Trimethylpentane	NIL	NIL
Benzene	NIL	0.001
Toluene	NIL	NIL
Ethylbenzene	NIL	NIL
Xylenes C8 + Heavies	NIL	0.006
Co + neavies	0.003	0.053
	100.000	100.000

Patter L. Detro

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Hydrocarbon Laboratory Manager

e

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

Plan Type	Emission	Pollutant	Requirements	Frequency	Method of	Regulatory
	unit		-		Measurement	Reference
Recordkeeping	Dehydration	HAP	Maintain benzene emissions	Annual	GRI-GLYCalc with	40 CFR 63
	Unit		below 0.9 megagrams/yr		actual operating	Subpart HH
					parameters	

ATTACHMENT O - MONITORING, RECORDING, REPORTING, AND TESTING PLANS

ATTACHMENT P

Legal Ad

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative update for an existing natural gas meter site (BIG 57-176) located at the junction of County Route (CR) 15 (North Fork Road) and Shuman Hill Road (CR 80) 3.85 miles north of Smithfield, Wetzel County, West Virginia. Site Latitude and Longitude Coordinates are: 39.55320, -80.54511.

The applicant estimates the potential increase to discharge the following Regulated Air Pollutants as a result of the change will be:

Particulate Matter (PM) = -0.01 tpy Sulfur Dioxide (SO2) = 0.0 tpy Volatile Organic Compounds (VOC) = 8.24 tpy Carbon Monoxide (CO) = -0.18 tpy Nitrogen Oxides (NOx) = -0.21 tpy Hazardous Air Pollutants (HAPs) = 0.26 tpy Greenhouse Gases (CO2e) = 2,038 tpy

This facility is currently in operation and is seeking to remove the combustor associated with the existing dehydration unit. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this XX day of August, 2015.

By: EQT Production, LLC Kenneth Kirk, Executive Vice President 625 Liberty Avenue Suite 1700 Pittsburgh, PA 15222