January 18, 2016

West Virginia Dept. of Environmental Protection Division of Air Quality – Permitting Section 601 57th Street, SE Charleston, WV 25304 T E C H N O L O G I E S

98 VANADIUM ROAD BUILDING D, 2nd FLOOR BRIDGEVILLE, PA 15017 (412) 221-1100 (412) 257-6103 (FAX) http://www.se-env.com

RE: Application for NSR Construction Permit Big Moses Liquid Management Facility Icon Midstream Pipeline, LLC Tyler County, West Virginia

To Whom It May Concern:

On behalf of our client, Icon Midstream Pipeline, we are pleased to submit on hard copy and two electronic copies of the Application for an NSR Construction Permit for its Big Moses Liquid Management Facility in Tyler County.

A fee in the amount of \$2,000 (\$1,000 Construction Permit Fee + \$1,000 NSPS) was determined to be applicable. A check, payable to WVDEP – Division of Air Quality in the amount of \$2,000 is included herein.

Icon is eager to begin operation of this equipment at the earliest practical date. Consequently, if there are any questions or concerns regarding this application, please contact me at 412/221-1100, x 1628 or rdhonau@se-env.com and we will provide any needed clarification or additional information immediately.

Sincerely,

SE TECHNOLOGIES, LLC

Roger A. Dhonau, PE, QEP

Dog a. L

Principal

Enclosures

Cc: Icon Midstream Pipeline, LLC – Shane Dowell

ICON Midstream Pipeline, LLC

APPLICATION FOR NSR CONSTRUCTION PERMIT

Big Moses Liquids Management Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR NSR PERMIT

Icon Midstream Pipeline, LLC

Big Moses Liquids Management Facility

Tyler County, West Virginia

Table of Contents

I.	App	lication	Form

II. Attachments

- Attachment A Business Registration
- Attachment B Site Location Map
- Attachment C Construction Schedule
- Attachment D Regulatory Analysis
- Attachment E Site Layout Diagram
- Attachment F Process Flow Diagram
- Attachment G Process Description
- Attachment I Emissions Units Table
- Attachment J Emissions Points Data Summary Sheet
- Attachment K Fugitive Emissions Summary Sheet
- Attachment L Emissions Units Data Sheets
- Attachment M Air Pollution Control Device Sheets/Manufacturer Data
- Attachment N Supporting Calculations
- Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan
- Attachment P Public Affidavit

Application Form

NEST DIE

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304 (304) 926-0475

APPLICATION FOR NSR PERMIT AND

TITLE V PERMIT REVISION (OPTIONAL)

www.wvdep.org/daq		(OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): PLEASE CHECK	TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):
☑ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION		ATIVE AMENDMENT
☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY	_	MODIFICATION
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FACT		OVE IS CHECKED, INCLUDE TITLE V REVISION AS ATTACHMENT S TO THIS APPLICATION
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revis (Appendix A, "Title V Permit Revision Flowchart") and ability		
Section	I. General	
Name of applicant (as registered with the WV Secretary of Solicon Midstream Pipeline, LLC	State's Office):	2. Federal Employer ID No. (FEIN): 47-1115453
3. Name of facility (if different from above):		4. The applicant is the:
Big Moses Liquids Management Facility		☐ OWNER ☐ OPERATOR ☐ BOTH
5A. Applicant's mailing address: 75 Cross Winds Drive Bridgeport, WV 26330	• •	sent physical address: Moses Road near Alma, WV
 6. West Virginia Business Registration. Is the applicant a res If YES, provide a copy of the Certificate of Incorporation, change amendments or other Business Registration Certifi If NO, provide a copy of the Certificate of Authority/Authamendments or other Business Certificate as Attachment 	/Organization/Limicate as Attachmenority of L.L.C./Reg	nited Partnership (one page) including any name nt A.
7. If applicant is a subsidiary corporation, please provide the na	ame of parent corpo	oration: N/A
8. Does the applicant own, lease, have an option to buy or other	erwise have control	I of the <i>proposed site?</i> ⊠ YES □ NO
 If YES, please explain: Applicant has a lease agree If NO, you are not eligible for a permit for this source. 	ement with the lan	nd owner for installation of the facility
 Type of plant or facility (stationary source) to be construct administratively updated or temporarily permitted (e.g., crusher, etc.): Natural Gas Well Pad and Production Face 	, coal preparation p	
		SR13 and 45CSR30 (Title V) permit numbers is process (for existing facilities only):
All of the required forms and additional information can be found	under the Permitting	g Section of DAQ's website, or requested by phone.

12A.		
 For Modifications, Administrative Updates or Ten present location of the facility from the nearest state 		please provide directions to the
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	rovide directions to the proposed new s	ite location from the nearest state
From Clarksburg, take US Route 50 west approximate Route 18 (north) and travel approximately 20 mi Route 18 approximately 1 mile to the intersection Creek Road and travel 2.9 miles. Turn right onto access road.	les to the community of Alma. Pass to with County Route 1/3 (Indian Cree	through Alma. Continue on ek Road). Turn right onto Indian
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	Alma	Tyler
12.E. UTM Northing (KM): 4364.529	12F. UTM Easting (KM): 518.180	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the facility		ids management facility.
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provious change did happen: / / 	• • • •	14B. Date of anticipated Start-Up if a permit is granted: Upon Approval
14C. Provide a Schedule of the planned Installation of/of application as Attachment C (if more than one unit		units proposed in this permit
 Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7 	activity/activities outlined in this application weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing fac-	cility involved?	
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will become	e subject due to proposed
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and State a	ir pollution control regulations that you l	believe are applicable to the
proposed process (if known). A list of possible applica	ble requirements is also included in Atta	achment S of this application
(Title V Permit Revision Information). Discuss applical	bility and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional atta	achments and supporting de	ocuments.
 Include a check payable to WVDEP – Division of Air (45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and
20. Include a Table of Contents as the first page of you	r application package.	
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re		rty on which the stationary
 Indicate the location of the nearest occupied structure 	(e.g. church, school, business, residen	ce).
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	ring each proposed or modified emission	ns unit, emission point and control
23. Provide a Process Description as Attachment G.		
 Also describe and quantify to the extent possible a 	all changes made to the facility since the	e last permit review (if applicable).
All of the required forms and additional information can be	found under the Permitting Section of DA	AQ's website, or requested by phone.
24. Provide Material Safety Data Sheets (MSDS) for al	I materials processed, used or produced	d as Attachment H.
 For chemical processes, provide a MSDS for each con 	mpound emitted to the air.	
25. Fill out the Emission Units Table and provide it as A	Attachment I.	

26.	Fill out the Emission Points Data Sun	nmary Sheet (Table 1 and Tabl	e 2) and provide it as Attachment J.
27.	Fill out the Fugitive Emissions Data S	Summary Sheet and provide it a	s Attachment K.
28.	Check all applicable Emissions Unit I	Data Sheets listed below:	
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry
	Chemical Processes*	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage Facilities
	Concrete Batch Plant	Incinerator	⊠ Storage Tanks
	Grey Iron and Steel Foundry	Natural Gas Compressors	_ crossego variate
	Dehydration		
	*Leak Source Data Sheet Only		
	out and provide the Emissions Unit Da		
29.	Check all applicable Air Pollution Cor	trol Device Sheets listed below	
	Absorption Systems	☐ Baghouse	⊠ Flare
	Adsorption Systems	Condenser	☐ Mechanical Collector
	Afterburner	☐ Electrostatic Precipitato	or Wet Collecting System
\boxtimes	Other Collectors, specify: Catalyst and	d Vapor Recovery Unit	
	out and provide the Air Pollution Conti		
30.	Provide all Supporting Emissions Ca Items 28 through 31.	Iculations as Attachment N, or	attach the calculations directly to the forms listed in
31.		ompliance with the proposed em	proposed monitoring, recordkeeping, reporting and issions limits and operating parameters in this permit
>		not be able to accept all measur	er or not the applicant chooses to propose such es proposed by the applicant. If none of these plans e them in the permit.
32.	Public Notice. At the time that the ap	plication is submitted, place a C	lass I Legal Advertisement in a newspaper of general
	circulation in the area where the source	e is or will be located (See 45CS	R§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>
	Advertisement for details). Please su	bmit the Affidavit of Publication	n as Attachment P immediately upon receipt.
33.	Business Confidentiality Claims. Do	es this application include confid	dential information (per 45CSR31)?
	☐ YES	⊠ NO	
>		the criteria under 45CSR§31-4	uitted as confidential and provide justification for each 1, and in accordance with the DAQ's "Precautionary instructions as Attachment Q.
	Sec	tion III. Certification o	f Information
34.	Authority/Delegation of Authority. C Check applicable Authority Form belo		er than the responsible official signs the application.
	Authority of Corporation or Other Busine	ess Entity	outhority of Partnership
	Authority of Governmental Agency		Authority of Limited Partnership
Sub	omit completed and signed Authority Fo	orm as Attachment R.	
			ermitting Section of DAQ's website, or requested by phone.

35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec		cial (per 45CSR§13-2.22 and 45CSR§30-
Certification of Truth, Accuracy, and Comp	leteness	
I, the undersigned Responsible Official / application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordant Environmental Protection, Division of Air Quality and regulations of the West Virginia Division of business or agency changes its Responsible Conotified in writing within 30 days of the official of	pended hereto, is true, accurate, and complesponsibility for the construction, modification on this application and any amendmentity permit issued in accordance with this appled fair Quality and W.Va. Code § 22-5-1 et septificial or Authorized Representative, the Di	ete based on information and belief after on and/or relocation and operation of the nts thereto, as well as the Department of olication, along with all applicable rules eq. (State Air Pollution Control Act). If the
Compliance Certification Except for requirements identified in the Title \	/ Application for which compliance is not ac	hieved, I, the undersigned hereby certify
that, based on information and belief formed a compliance with all applicable requirements.	fter reasonable inquiry, all air contaminant s	sources identified in this application are in
SIGNATURE		DATE: 14-2016
35B. Printed name of signee: Shane Dowell	use blue ink)	(Please use blue ink) 35C. Title: Operations Manager
35D. E-mail:	36E. Phone:	36F. FAX:
iconmidstream@gmail.com	304/904-1700	304/628-3111
36A. Printed name of contact person (if differe		36B. Title:
ook. I filled flame of contact person (if differe	nt nom above).	oob. Title.
36C. E-mail:	36D. Phone:	36E. FAX:
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED WITH THIS PERMIT APPLICATI	ON:
 △ Attachment A: Business Certificate △ Attachment B: Map(s) △ Attachment C: Installation and Start Up Sche △ Attachment D: Regulatory Discussion △ Attachment E: Plot Plan △ Attachment F: Detailed Process Flow Diagrar △ Attachment G: Process Description △ Attachment H: Material Safety Data Sheets (Note Attachment I: Emission Points Table △ Attachment J: Emission Points Data Summan Please mail an original and three (3) copies of the address listed on the first 	Attachment L: Emissions dule	ion Control Device Sheet(s) g Emissions Calculations g/Recordkeeping/Reporting/Testing Plans tice Confidential Claims Forms rmit Revision Information ure(s) to the DAQ, Permitting Section, at the
FOR AGENCY USE ONLY – IF THIS IS A TITLE V	SOURCE:	
☐ Forward 1 copy of the application to the Title ☐ For Title V Administrative Amendments: ☐ NSR permit writer should notify Title ☐ For Title V Minor Modifications:	V Permitting Group and: V permit writer of draft permit, ropriate notification to EPA and affected state V permit writer of draft permit. ed in parallel with NSR Permit revision: e V permit writer of draft permit, 5CSR13 and Title V permits,	s within 5 days of receipt,
All of the required forms and additional informat	tion can be found under the Bermitting Section	n of DAO's website, or requested by abone

SECTION II

Attachments

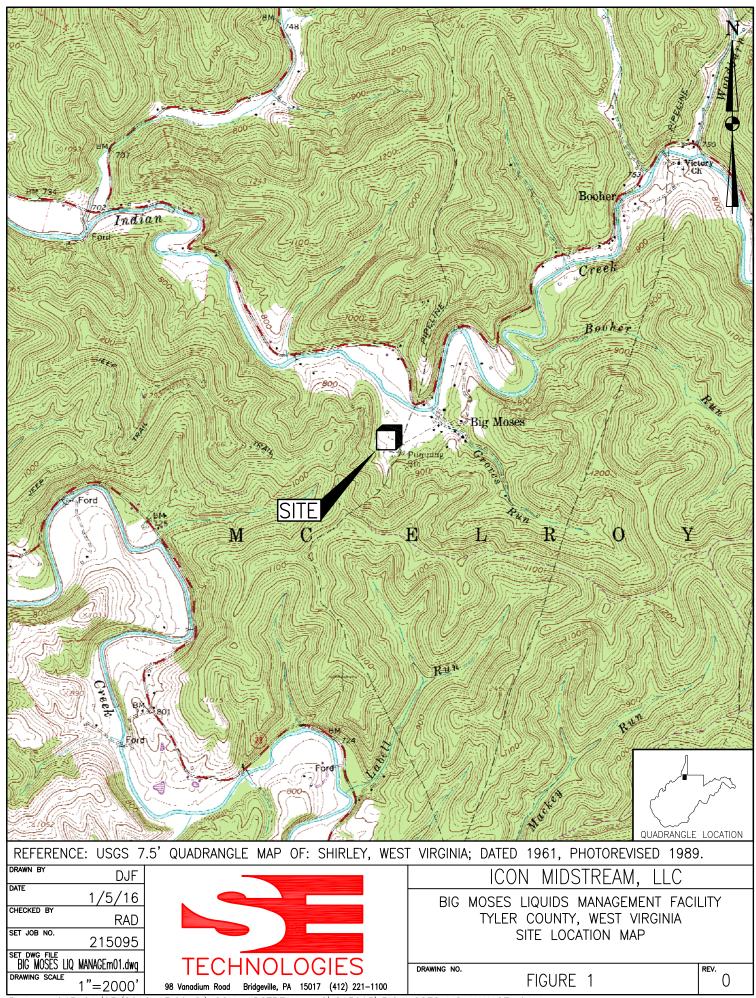
ATTACHMENT A

Business Registration

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Icon Midstream Pipeline, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.



Given under my hand and the Great Seal of West Virginia on this day of March 13, 2015

Natalil Element

ATTACHMENT B

Site Location Map

Construction Schedule

Icon Midstream Pipeline, LLC Big Moses Liquids Management Facility Attachment C – Construction Schedule

Icon seeks approval to install a natural gas and liquids management facility in Big Moses. Upon receipt of approval of this application, Icon will install the equipment and connect to existing gathering lines. It is anticipated that all work can be completed within 30 days of receipt of approval.

Regulatory Analysis

Icon Midstream Pipeline, LLC

Big Moses Liquids Management Facility Attachment D – Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to the planned Big Moses Station. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

1.1 PSD and NSR

The facility will be a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant with the voluntary restrictions (e.g., catalytic converters on engines).

The facility is within an area designated as attainment. Consequently, the facility is not subject to the New Source Review (NSR) regulations.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The facility will be a minor source. Additionally, the NSPS regulating this facility does not trigger a Title V permit. Hence, a Title V permit will not be required for Icon Midstream's Big Moses Liquids Management Facility.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

The Icon Midstream facility will receive produced liquids and natural gas from area well pads via pipeline. After separation of liquids from the gas, a small fraction of the gas is taken for powering facility equipment with the vast majority being metered and routed to the contiguous Big Moses Station owned and operated by Jay-Bee Oil & Gas. The received liquids are separated into produced water, condensate and NGL prior to off-site shipment via truck transportation.

There are no liquids or gas routed to or received from any other Icon Midstream facility. Hence, no other Icon Midstream facilities in the area should be aggregated with this new facility. Additionally, gas and liquids generated by the well pads this facility will serve can be routed to other locations, such as is currently the situation. Hence, there is no interdependency between the well pads this Icon Midstream facility will serve and the Icon Midstream facility. Thus, the planned Icon Midstream facility should not be aggregated with the well pads it will serve. Additionally, this Icon Midstream facility is approximately 1.3 miles from the nearest well pad it serves.

The contiguous Big Moses Station, while under the same general SIC Code, has completely separate ownership (Jay-Bee Oil & Gas) and there is no sharing of staff. Although the two facilities are contiguous, there is no interdependency between the two facilities. Liquids received by the Icon Midstream facility are managed separately from the gas and liquids received and managed at the contiguous Jay-Bee facility. Additionally, gas routed from the Icon facility to Big Moses Station represents only a portion of the gas managed by Big Moses Station. Hence, it is not dependent upon gas received by Icon for continued operation. Conversely, the Icon facility can route the gas it receives to other compressor stations, albiet at a lower flow rate. Hence, the Icon facility is not dependent upon the Jay-Bee Big Moses Station. Thus, there is no dependency relationship. Therefore, emissions from the Big Moses Liquids Management Facility should not be aggregated with Jay-Bee's Big Moses Station to determine major source status.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). Specific NSPS requirements potentially applicable to the proposed modification to the Big Moses Station are as follows:

- 40 CFR 60, Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- 40 CFR 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- 40 CFR 60, Subpart KKK Equipment Leaks of VOC from Onshore Natural Gas Processing Stations
- 40 CFR 60, Subpart IIII Stationary Compression Ignition Internal Combustion Engines
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines

• 40 CFR 60, Subpart OOOO - Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 Subpart K/Ka/Kb

These three subparts apply to volatile organic liquid storage tanks of specific sizes constructed in certain timeframes. Their consideration is appropriate due to the presence of the condensate tanks. Subpart K applies to tanks constructed or modified between 1973 and 1978 while Subpart Ka applies to tanks constructed between 1978 and 1984. Subpart Kb applies to storage tanks constructed or modified after 1984. The condensate tanks planned for this facility were constructed after 1984. Thus, Subparts K and Ka are not applicable, but Subpart Kb is tentatively applicable. However, the capacity of these tank (16,800 gallons or 400 BBL) is less than the threshold for this regulation (19,800 gallons or 75 cubic meters). Hence, the rule does not apply. [40 CFR 60.111(a)(1), 40 CFR 60.111a(a)(1) and 40 CFR 60.110b(d)(2)]

1.4.2 Subpart Dc

This subpart limits SO2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations it to control SOx and PM emissions from coal and oil-fired boilers and heaters, natural gas fired units are also covered under this rule. The planned heaters are well below the threshold of coverage for this rule (10 MMBTU/Hr). Thus, this rule does not apply.

1.4.3 Subpart KKK

This subpart limits VOC emissions from equipment at a natural gas processing station. In accordance with 40 CFR 60.631, a "*Natural gas processing plant* (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both." Although the planned facility will separate received liquids into NGL and condensate, this operation does not rise to the definition of fractionation into products. Hence, the planned facility does not meet the definition of a processing station under this rule and this rule does not apply.

1.4.4 Subpart IIII

This subpart governs emissions from new compression ignition internal combustion engines CI ICE) manufactured after July 11, 2005. There are currently no compression ignition engines (e.g. diesel-fired emergency generator) at this station. The proposed modification will include only the addition of a single Spark Ignition Internal Combustion Engine. Hence, this rule does not apply.

1.4.5 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. The drivers for the VRU and Flash Gas Compressors presented in this application will be SI ICE units manufactured after this date. Accordingly, this rule applies to those engines. In accordance with 40 CFR 60.4233(d), the 47 Hp Flash Gas

Compressor must meet the requirements of 40 CFR 1048.101(c). In accordance with this rule, the $HC + NO_X$ standard is 3.8 g/kW-hr and the CO standard is 6.5 g/kW-hr. The engine will meet this requirement. Thus, the engine is compliant with Subpart JJJJ.

1.4.6 Subpart OOOO

This subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at processing and fractionation plants. The potentially applicable sections of this rule set restrictions on pneumatic controllers present and set requirements for storage vessels with potential VOC emissions greater than 6 tons per year. This rule applies to the planned Icon Midstream facility.

One of the key components to this rule [40 CFR 60.5390(b)] is the requirement that all pneumatic controllers located between the well head and a processing plant must have a bleed rate of less than 6 scfh. All pneumatic controllers to be installed at the new station will meet these criteria.

This rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The condensate tanks will have estimated uncontrolled VOC emissions in excess of this amount. Hence this element of the rule applies to the planned facility. Icon Midstream will meet this requirement through installation of a vapor recovery unit. This device will collect organic vapors emitted by the condensate, compress it and routed to the inlet side of the adjacent Jay-Bee Big Moses facility. This system is anticipated to be close to 100 percent effective during operation. While there will be anticipated maintenance outages on the VRU system, its overall annual effectiveness is conservatively projected to be greater than 95%. For permitting purposes only a 95% control is claimed.

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned modification to the Big Moses Liquids Management Facility:

- 40 CFR 63, Subpart HH NESHAP from Oil and Natural Gas Production Facilities
- 40 CFR 63, Subpart ZZZZ NESHAP from Stationary Reciprocating Internal Combustion Engines
- 40 CFR 63, Subpart DDDDD NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters

1.5.1 Subpart HH

This Subpart contains MACT standards for major and area source dehydration units located at natural gas production facilities. The proposed equipment for this Icon Midstream facility does not contain a dehydration operation. Hence, this rule does not apply.

1.5.2 Subpart ZZZZ

This Subpart governs emissions from a stationary reciprocating internal combustion engine (RICE) located both at major and area source of HAPs. The facility is not be a major source of HAPs, but is considered an area source of HAPs. Hence, this rule is potentially applicable to the facility. In accordance with 40 CFR 63.6590(a)(2)(iii), the driver for the proposed emergency generator will not be considered an Existing Stationary RICE. It will be considered "new" engines. Thus, the engine will meet the requirements of this rule by meeting the requirements of NSPS, Subpart JJJJ as described above.

1.5.3 Subpart DDDDD

This Subpart applies to industrial process heaters of various sizes and fuel types located at facilities that are classified as a major source of HAPs. As the planned facility is not a major source of HAPs, this rule does not apply.

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The Big Moses Liquids Management Facility does potentially store more than 10,000 lbs of a flammable mixture containing several of the substances listed in Table 3 in 40 CFR 68.130. However, an RMP is not required as this facility qualifies for the exclusion provided for remote oil and gas production facilities (40 CFR 68.115). The addition of an emergency generator does not change the status of the facility with respect to RMP.

1.7 West Virginia State Requirements

1.7.1 45 CSR 2

The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

1.7.2 45 CSR 4

This regulation prohibits the emission of objectionable odors. Icon Midstream is obligated to run the station in a manner that does not produce objectionable odors.

1.7.3 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the facility, no actions are required on the part of Icon Midstream to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule. Additionally, other fuel-burning units at the expanded facility (e.g. engines) are not subject to 45 CSR 10, Section 3 as they do not produce power by indirect heat transfer and are therefore not considered "fuel burning units". The fuel sulfur content is sufficiently low that the proposed engines will easily meet the requirements of this rule.

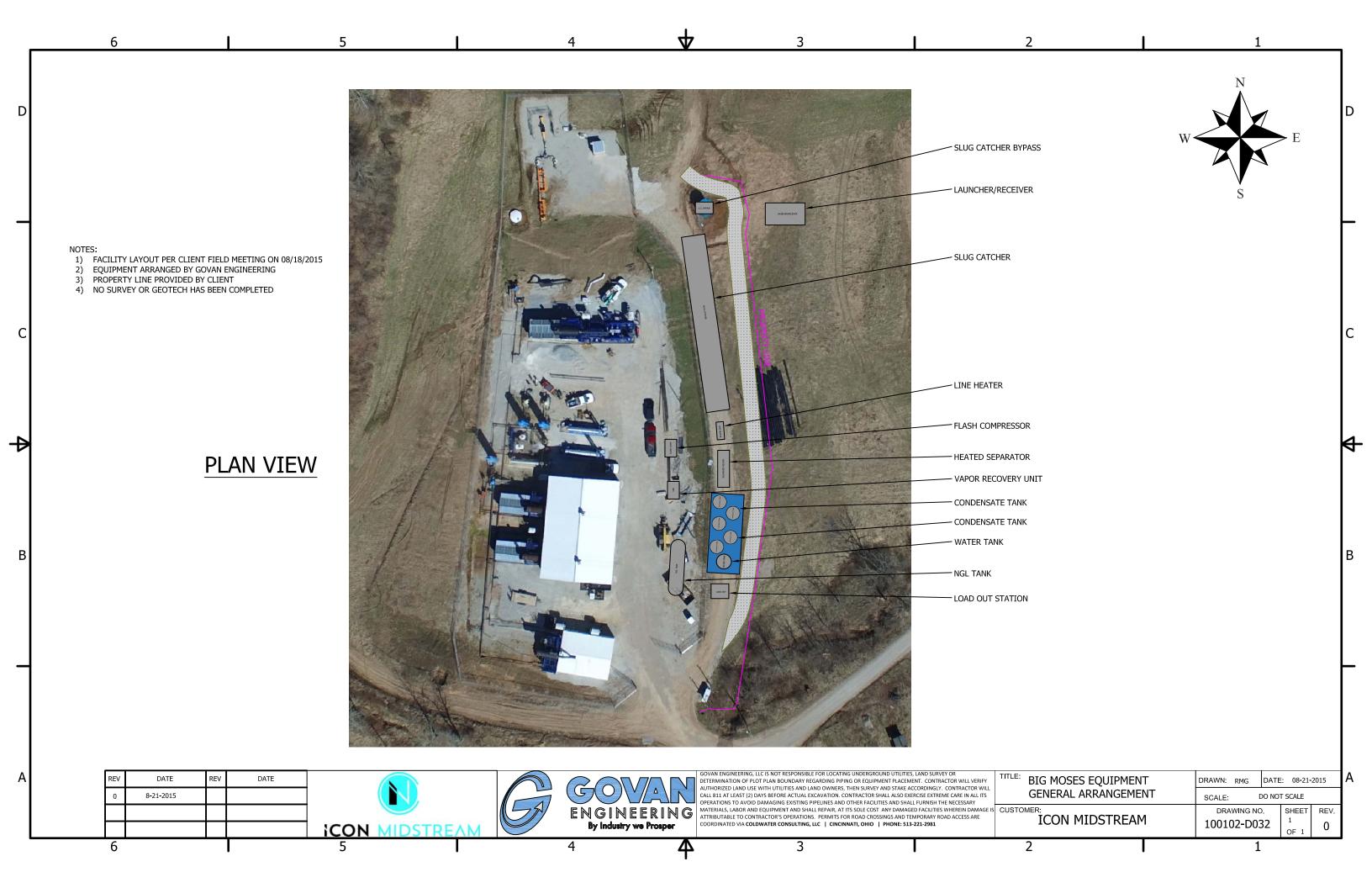
1.7.4 45 CSR 13

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed modification to Big Moses Liquids Management Facility has the potential to emit several regulated pollutants in excess of the thresholds that define a Stationary Source. This modification will not materially change the facility's potential to emit. It will remain less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

1.7.5 <u>45 CSR 16</u>

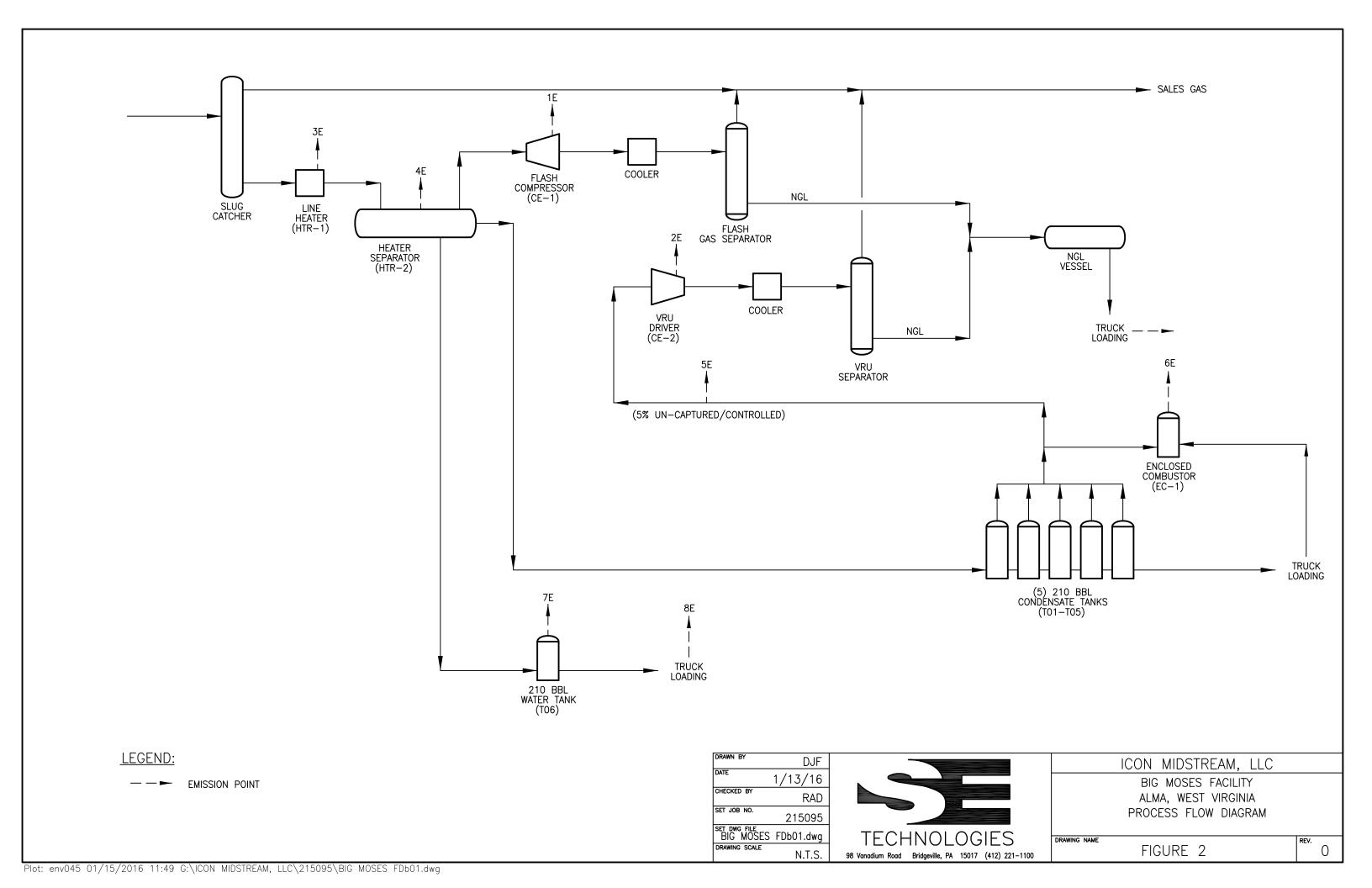
This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the Big Moses Liquids Management Facility is subject to the emission limitations, monitoring, testing and recordkeeping of Subpart JJJJ.

1.7.6 45 CSR 30


The state regulations applicable to Title V operating permits are in Title 45 Series 30. The planned Big Moses Liquids Management Facility, as noted above, does not have the potential to emit any regulated pollutant about the threshold that would define it as a major facility. The installation of an emergency generator does not trigger the need for a Title V permit.

1.7.7 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. Both of these topics have been addressed above.



Site Layout Diagram

ATTACHMENT F

Process Flow Diagram

ATTACHMENT G

Process Description

Icon Midstream Pipeline, LLC Big Moses Liquids Management Facility Attachment G – Process Description

Icon Midstream plans to install its Big Moses Liquids Management Facility contiguous with the Jay-Bee Oil & Gas Big Moses Station in Tyler County. (See Site Location Map). The Station will receive and manage natural gas and produced fluids (primarily raw condensate) from area production well pads owned and operated by others. At the station inlet, gas and produced fluids will be passed through a slug catcher where liquids will be separated from the gas. The gas will be routed to the inlet of the adjacent Jay-Bee Oil & Gas Big Moses station to be compressed, dehydrated and injected into pipelines for transportation to facilities owned by others for further processing. A portion of the gas will be used as fuel for Icon's equipment.

Liquids exiting the Slug Catcher will pass through a line heater and then enter a heated separator. In the heated separator, the liquids are first separated into Condensate and Produced Water (Brine). As the pressure is reduced, lighter components of the condensate is flashed off. The stabilized condensate is routed to a series of five 210 BBL aboveground storage tanks prior to transportation (via truck) to a processing facility owned and operated by others. The separated water is routed to a single 210 BBL aboveground storage tank prior to off-site transportation by others for re-use or disposal. The flash gas coming off of the heated separator will be routed to a flash gas compressor and passed through an air cooler. A fraction of the flash gas condenses during the pressurization and cooling process. This liquid (Natural Gas Liquids or NGL) will then be accumulated in a pressure vessel (approximately 120 psia) and transported via a pressurized tanker truck to a fractionation facility owned by others for further processing.

Vapors emitted by the stabilized condensate storage tanks will be captured by a hard piping system that will route the vapors to a Vapor Recovery Unit (VRU). This unit will compress the vapors and inject the gas into the sales line. Any liquids condensing during this pressurization and cooling process are routed to the NGL tank.

Any vapors not handled by the VRU or Flash Gas compressor will be controlled by enclosed combustors if/when one or both of the VRU or Flash Gas compressor are down for maintenance or other mechanical reasons. Vapors associated with produced water and condensate truck loading will also be routed to the enclosed combustor. As NGL truck loading will be via vapor balance between the pressurized storage vessels and the pressurized tanker truck, there will only be emissions associated with the connection/disconnection of the transfer lines.

In summary, emission sources at this facility will include the following:

- One Flash Gas Compressor Engine Arrow VR 260 47 Hp
- One VRU Gas Compressor Engine Cummins G8.3 118 Hp
- One 250 MBTU/Hr Line Heater
- One 1.0 MMBTU/Hr Separator Heater
- Five 210 BBL Stabilized Condensate Tanks
- One 210 BBL Produced Water Tank
- Stabilized Condensate/Produced water truck loading
- NGL truck loading
- Fugitive Emissions Facility Roadways
- Fugitive Emissions Component Leaks

Emission Unit Table

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1	1E	Flash Gas Compressor Engine (Arrow VR 260)	Upon Receipt of Permit	47 Hp	NEW	1C (NSCR)
CE-2	2E	VRU Compressor Engine (Cummins G8.3)	Upon Receipt of Permit	118 Hp	NEW	2C (NSCR)
HTR-1	3E	Line Heater	Upon Receipt of Permit	0.25 MMBTU/Hr	NEW	None
HTR-2	4E	Separator Heater	Upon Receipt of Permit	1.0 MMBTU/Hr	NEW	None
T01	5E/6E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T02	5E/6E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T03	5E/6E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T04	5E/6E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
T05	5E/6E	Condensate Tank	Upon Receipt of Permit	210 BBL	NEW	VRU-1/EC-1
EC-1	6E	Enclosed Combustor	Upon Receipt of Permit	62 MMBTU/Hr	NEW	N/A
T06	7E	Produced Water Tank	Upon Receipt of Permit	210 BBL	NEW	None
TL-1	6E	Condensate Truck Loading	Upon Receipt of Permit	1,050,000 Gallons/Yr.	NEW	EC-1
TL-2	8E	Produced Water Truck Loading	Upon Receipt of Permit	58,800 Gallons/Yr.	NEW	None
		Fugitive VOC Emissions – Fittings and Connections	Upon Receipt of Permit	N/A	NEW	None
		Haul Roads	Upon Receipt of Permit	1 Truck per day max.	NEW	None

¹ For Emission Units (or \underline{S} ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For \underline{E} mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

	Emission Units Table
Page1 of1	

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J Emission Points Data Summary Sheet New Equipment Only

						Ta	able 1:	Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission Units		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maxii Potei Uncon Emiss	ntial trolled	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/in)	
								NO_x	1.33	5.81	0.21	0.91	GAS	EE	
								СО	0.53	2.31	0.41	1.81	GAS	EE	
	Lipword Flash					VOC	0.01	0.06	0.01	0.06	GAS	EE			
1E Upward Vertical Stack	CE-1	Driver	1C	NSCR	С	8760	SO ₂	<0.01	< 0.01	< 0.01	< 0.01	GAS	EE		
	Stack	Engine Engine	Engine					PM/PM10	< 0.01	< 0.01	< 0.01	0.01	Solid	EE	
								Formaldehyde	0.01	0.04	0.01	0.04	Gas	EE	
								CO2e	54	238	54	238	Gas	EE	
								NO _x	3.88	14.81	0.26	1.14	GAS	EE	
								СО	2.24	9.80	0.52	2.28	GAS	EE	
	TT 1							VOC	0.03	0.13	0.03	0.13	GAS	EE	
2E		CE-2	VRU Driver Engine	2C	NSCR	C	8760	SO ₂	< 0.01	< 0.01	< 0.01	< 0.01	GAS	EE	
Stack		Engine					PM/PM10	0.05	0.22	0.05	0.22	Solid	EE		
							Formaldehyde	0.02	0.09	0.02	0.09	Gas	EE		
								CO2e	124	542	124	542	Gas	EE	

Emission Point ID No. (Must match Emission Units Table Emission Type¹		Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Vented Chrough This Point (Must match Emission Units Arr P Control (Mus Emissi		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No. Source		ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/iii)
								NO_x	0.02	0.09	0.02	0.09	GAS	EE	
								СО	0.02	0.07	0.02	0.07	GAS	EE	
	II							VOC	< 0.01	< 0.01	< 0.01	< 0.01	GAS	EE	
3E Upward Vertical Vent	1 HTR-1	-1 Line Heater		None	С	8760	PM/PM10	< 0.01	0.01	< 0.01	0.01	Solid	EE		
							Benzene	<0.01	<0.01	< 0.01	< 0.01	Gas	EE		
							_	Formaldehyde	<0.01	<0.01	< 0.01	< 0.01	Gas	EE	
								CO2e	25	107	25	107	Gas	EE	
								NO _x	0.08	0.36	0.08	0.36	GAS	EE	
								СО	0.07	0.30	0.07	0.30	GAS	EE	
	II							VOC	< 0.01	0.02	< 0.01	0.02	GAS	EE	
4E	Upward Vertical	HTR-2	Separator Heater		None	С	8760	PM/PM10	0.01	0.03	0.01	0.03	Solid	EE	
Vent							Benzene	< 0.01	< 0.01	< 0.01	< 0.01	Gas	EE		
							Formaldehyde	<0.01	< 0.01	< 0.01	< 0.01	Gas	EE		
								CO2e	98	430	98	430	Gas	EE	

Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Point Emission Units		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ing/iii)
								NO_x					GAS	EE	
								СО					GAS	EE	
	Limited		Cond. Tanks +		Vomen			VOC	111.26	487.3	5.50	24.37	GAS	EE	
5E Upward Vertical Vent	ertical T01-T05	05 Water Tank Un-	VRU-1	Vapor Recovery Unit	С	8760	PM/PM10					Solid	EE		
	Vent		captured		Omt		-	Benzene					Gas	EE	
		emissions	emissions					n-Hexane	3.33	14.6	0.17	0.73	Gas	EE	
								CO2e					Gas	EE	
								NO _x			0.30	0.06	GAS	EE	
								СО			1.65	0.32	GAS	EE	
	I I		Cond.					VOC			3.40	0.63	GAS	EE	
6E	Upward Vertical Vent	EC-1	Tanks + Truck	EC-1	Enclosed Combustor	S	500	PM/PM10			< 0.01	< 0.01	Solid	EE	
	vent		Loading					Benzene			< 0.01	< 0.01	Gas	EE	
								n-Hexane			0.07	0.02	Gas	EE	
								CO2e					Gas	EE	

Emission Point ID No. (Must match Emission	Point ID No. (Must match Emission (Must match Emission Emission Emission (Must match Emission University Emission University Emission University Uni		nted This Point match on Units	Point h Control Device (Must match Emission Units		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)	& Plot Plan)	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		ilig/ili)	
								NO _x					GAS	EE	
								СО					GAS	EE	
	Limited		Produced					VOC		0.16		0.16	GAS	EE	
7 E	Upward Vertical Vent	T06	Water Tank		None			PM/PM10					Solid	EE	
	Vent		Talik					Benzene		<0.01		< 0.01	Gas	EE	
								n-Hexane		< 0.01		< 0.01	Gas	EE	
								CO2e					Gas	EE	
								NO _x					GAS	EE	
								СО					GAS	EE	
	TT 1		Produced					VOC	0.13	< 0.01	0.13	0.13	GAS	EE	
8E	8E Vertical TL-21 Water		None			PM/PM10					GAS	EE			
	vent	Vent Loading					Benzene					Solid	EE		
							Formaldehyde					Gas	EE		
								CO2e					Gas	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that un-captured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g., un-captured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1. Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3. List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS2, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, etc. **DO NOT LIST** CO₂, H₂O, N₂, O₂, and Noble Gases.
- 4. Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).
- 5. Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g., 5 lb VOC/20 minute batch).
- 6. Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test);

EE = engineering estimate;

O = other (specify).

ATTACHMENT J

Emission Points Data Summary Sheet New Equipment

			Table 2: F	Release Para	meter Data			
Emission			Exit Gas		Emission Poir	nt Elevation (ft)	UTM Coor	dinates (km)
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
1E	0.5	1050	310	45	750	8		
2E	0.5	1127	528	45	750	8		
3E	0.25	1100	Est 200	1	750	8		
4E	0.33	1100	Est. 300	<1	750	8		
5E	N/A (Fugitive)	N/A (Fugitive)	N/A (Fugitive)		750			
6E	2.0	1100	Est. 300		750	12		
7E	0.5	Ambient	<10	<1	750	15		
8E	0.5	Ambient	3-4	<1	750	10		

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K Fugitive Emissions Summary Sheet

Icon Midstream Pipeline, LLC Big Moses Liquids Management Facility Attachment K – Fugitive Emissions Data

Equipment Fugitive Emissions

As noted in the process description, Icon Midstream Pipeline plans to install various equipment at its Big Moses Liquids Management Facility. This equipment will contain a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. The number of valves, flanges, etc. has been estimated to reflect the equipment that will be installed with this permit. A potential emission rate of 1.67 tpy of VOCs and 8.25 tpy CO₂e has been estimated.

Estimates of these emissions are included in the calculations (Attachment N) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Pigging Emission Estimates

There will be launching and receiving operations at this facility. The interior volume of both the receiver and launcher is approximately 64 cubic feet. Thus, as shown in the calculations in Attachment N, each launching and receiving event will release 4930 cubic feet of gas. With a density of 0.058 lb/cubic foot, each event will release approximately 286 pounds of gas. VOCs comprise 18.3% (by weight) of this gas. Thus, each event releases 52.3 pounds of VOCs. Additionally, with methane comprising 60.7% (by weight) of this gas, each event releases 173.6 lbs of methane or 2.17 tons CO_{2e} . It is anticipated that there will be a maximum of 150 launching and receiving events each per year. Thus, annual pigging and receiving emissions will be 7.85 tons of VOCs and 651 tons of CO_{2e} .

Facility Blowdown Emission Estimates

There will be two small gas compressors associated with emissions control equipment that will require blowdowns to allow for routine maintenance. As shown in the attached spreadsheets, the blowdown volume associated with the VGR260 driver is 89 scf and for the G8.3 is 433 scf. There will be a maximum of 36 blow downs per compressor per year. Thus, there is a potential for 18,792 cubic feet of gas emitted from blow downs [(89+433)x36].

The density of this gas at STP is 0.058 lb/scf (see the Inlet Gas spreadsheet in the calculations). Thus, the mass of gas released is 1090 pounds (18,792 x 0.058). As the percentage of VOCs in the gas (by weight) is 18.3 percent (see Inlet Gas spreadsheet in the calculations), the VOC emissions from pigging operations are estimated at approximately 199.5 lbs or 0.10 tons per year.

As the methane concentration in this gas is 60.7 % (by weight), methane emissions will be 662 pounds (1090 x 0.607) per year. Using a GHG factor of 25, methane emissions from blowdowns in CO_{2e} will be 8.3 tons CO_{2e} (166.1 x 25[GHG factor] /2000).

Storage Tank and Haul Road Fugitive Emissions

Water and condensate this facility will be accumulated in atmospheric tanks prior to off-site shipment In addition to flash, working and breathing losses from these tanks (presented in Attachment N), there will be emissions associated with the loading of the condensate tanks and fugitive dust emissions from the tank trucks entering and exiting the site. There will be a projected maximum of one condensate, NGL and/or water truck trips per day. Emissions from these sources are summarized in the attached form and the calculations are presented in Attachment N.

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☑ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	$\ \square$ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Uncontrolled	Potential Emissions ²	Maximum P Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	РМ	10.6	0.41	10.6	0.41	EE
Storage Pile Emissions						
Loading/Unloading Operations (Uncaptured Emissions Only)	VOCs	17.9	1.12	17.9	1.12	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	Inlet Natural Gas(VOCs)	0.38	1.67	0.38	1.67	EE
General Clean-up VOC Emissions						
Other: Blow Downs	Inlet Natural Gas(VOCs)	N/A	0.1	N/A	0.01	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Emission Unit Data Sheets

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ide	ntification Number ¹	Cl	CE-1 CE-2				
Engine Mar	Arrow VRG260		Cummi	ins G8.3			
Manufactu	47/	1800	118/	1800			
So	urce Status ²	N	NS	N	IS		
Date Installe	d/Modified/Removed ³	Upon Rece	ipt of Permit	Upon Rece	ipt of Permit		
Engine Manufact	ured/Reconstruction Date ⁴	5/12	/2010	10/01	/2013		
Is this a Certified Engine according (Yes or No) ⁵	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Ν	Vo	N	1 0		
	Engine Type ⁶	RI	34S	RI	34S		
	APCD Type ⁷	NS	SCR	NS	SCR		
Engine	Fuel Type ⁸	R	RG	R	l.G		
Engine, Fuel and	H ₂ S (gr/100 scf)	<	<1	<	<1		
Combustion Data	Operating bhp/rpm	47/	1800	118/	1800		
Butu	BSFC (Btu/bhp-hr)	9889		8032			
	Fuel throughput (ft ³ /hr)	361		750			
	Fuel throughput (MMft ³ /yr)	3.16		6.57			
	Operation (hrs/yr)	87	760	8760			
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
AP	NO_X	0.21	0.91	0.26	1.14		
AP	CO	0.41	1.81	0.52	2.28		
AP	VOC	0.01	0.06	0.03	0.13		
AP	SO_2	< 0.01	< 0.01	0.00	0.00		
AP	PM ₁₀	0.01	0.04	0.05	0.22		
AP	Formaldehyde	0.01	0.04	0.02	0.09		
AP	Total HAPs	0.02	0.07	0.03	0.14		
AP	CO2e	54	238	124	542		
				<u> </u>			

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES **Existing Source**

MS Modification of Existing Source Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke LB4S Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PO Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other _____ (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

Source ID # ¹	Status ²	Design Heat Input (mmBtu/hr) ³	Hours of Operation (hrs/yr) ⁴	Fuel Heating Value (Btu/scf) ⁵	
HTR-1	NEW	0.25 MMBTU/Hr	8760	1287 BTU/scf (HHV)	
HTR-2	NEW	1.0 MMBTU/Hr	8760	1287 BTU/scf (HHV)	

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.
- 2. Enter the Status for each boiler or line heater using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

- REM Equipment Removed
- 3. Enter boiler or line heater design heat input in mmBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

STORAGE TANK DATA SHEET

Source ID #1	Status ²	Content ³	Volume ⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸
T01	NEW	Condensate	210 BBL	10.0	210,000 gallons/yr	VERT	8 feet
T02	NEW	Condensate	210 BBL	10.0	210,000 gallons/yr	VERT	8 feet
T03	NEW	Condensate	210 BBL	10.0	210,000 gallons/yr	VERT	8 feet
T04	NEW	Condensate	210 BBL	10.0	210,000 gallons/yr	VERT	8 feet
T05	NEW	Condensate	210 BBL	10.0	210,000 gallons/yr	VERT	8 feet
T06	NEW	Produced Water	210 BBL	10.0	58,800 gallons/yr	VERT	8 feet

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:

VERT Vertical Tank

HORZ Horizontal Tank

8. Enter storage tank average liquid height in feet.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I.	GENERA	AL INFOI	RMATION	(required)
----	--------	----------	---------	------------

Bulk Storage Area Name	2. Tank Name
Big Moses Tank Farm	T01-T05
3. Emission Unit ID number	4. Emission Point ID number
Vapors to VRU or combustor emission points 5E/6E	5E/6E
Date Installed or Modified (for existing tanks)	6. Type of change:
Upon Receipt of Permit	New construction ☐ New stored material ☐ Other
7A. Description of Tank Modification (<i>if applicable</i>)	Thew construction Thew stored indicated Total
7B. Will more than one material be stored in this tank? <i>If so, a s</i>	congrate form must be completed for each material
☐ Yes	
7C. Provide any limitations on source operation affecting emissi	-
A maximum of 1,050,000 gallons of condensate per year for T	Canks T01 through T05 combined.
II. TANK INFORMATION (required)	
8. Design Capacity (specify barrels or gallons). Use the internal	cross-sectional area multiplied by internal height.
210 BBL	
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7
12. Nominal Capacity (specify barrels or gallons). This is also l	known as "working volume. 190 BBL
13A. Maximum annual throughput (gal/yr) 210,000/tank	13B. Maximum daily throughput (gal/day) 3000
14. Number of tank turnovers per year 27(max)	15. Maximum tank fill rate (gal/min) 50
16. Tank fill method Submerged Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per y	rear?
18. Type of tank (check all that apply):	
☐ Fixed RoofX_ vertical horizontal fla	t roof cone roof dome roof other (describe)
External Floating Roof pontoon roof doub	le deck roof
Domed External (or Covered) Floating Roof	
Internal Floating Roof vertical column support	**
☐ Variable Vapor Space lifter roof diaphrag	
Pressurized spherical cylindric	al
Underground	
Other (describe)	
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)
Refer to enclosed TANKS Summary Sheets	
Refer to the responses to items 19 – 26 in section VII	
IV. SITE INFORMATION (check which one applies)	
Refer to enclosed TANKS Summary Sheets	
Refer to the responses to items 27 – 33 in section VII	

V. LIQUID INFORMATION (check which one applies)												
Refer to enclosed TANKS Summary Sheets												
Refer to the responses to items 34 – 39 in section VII												
VI. EMISSIONS AND	VI. EMISSIONS AND CONTROL DEVICE DATA (required)											
	40. Emission Control Devices (check as many as apply):											
☐ Does Not Apply												
Carbon Adsorption ¹				_		ket of						
✓ Vent to Vapor Combus	tion Dev	ice ¹ (vapo	r combus	stors, flares	s, thermal	l oxidizers)						
Condenser ¹				☐ Cons	ervation	Vent (psig						
Other ¹ (describe)				Vacuu	m Setting	g Pre	ssure Setti	ing				
				☐ Emer	rgency Re	elief Valve	(psig)					
¹ Complete appropriate Air	Pollutio	n Control	Device Sl	heet								
41. Expected Emission Ra	te (submi	it Test Da	ta or Calc	ulations he	ere or els	ewhere in th	ne applicat	tion).				
Material Name and	Flashi	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹			
CAS No.							Emissio	ns Loss				
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
VOCs	110.4	483.56	0.26	1.13	0.60	2.61	111.26	487.30	Based off of actual			
(Un-controlled)									Flash gas Measurement			
Tanks T01-T05 Combined												
Emissions												
Controlled Emissions:												
VOC							5.56	24.37	Tanks Emissions			
n-Hexane							0.16	0.72	Controlled 95%			
Total HAPs							0.18	0.80				
¹ EPA = EPA Emission Factor												
Remember to attach emissions	calculatio	ons, includi	ng TANKS	Summary S	Sheets and	other modeli	ing summar	y sheets if a	applicable.			
a a a						~						
SECTION VII (require		_			nmary S	Sheets)						
TANK CONSTRUCTION A	ND OPE	RATION I	NFORMA	ATION								
19. Tank Shell Construction:	1:	1 p		🗆 С)4l (d							
Riveted Gunite 20A. Shell Color: Blue	iined _		coated riv	Color: Blue	Other (des	scribe)	20C V	ear Last Pai	inted			
	and unline		JB. K001 C	Color. Blue			20C. 1	eai Last Fai	inted.			
21. Shell Condition (if metal and unlined): No Rust Light Rust Dense Rust Not applicable												
22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?												
22A. Is the tank heated: 168 110 22b. If yes, operating temperature. 22c. If yes, now is neat provided to tank:												
23. Operating Pressure Range	(psig):	I.					N.					
24. Is the tank a Vertical Fixe	ed Roof T		-	, for dome r	oof provid	e radius (ft):	24B. If	yes, for cor	ne roof, provide slop (ft/ft)			
Yes No			7/A		_							
25. Complete item 25 for Floa		f Tanks _] Does	not apply	Ш							
25A. Year Internal Floaters In	_	☐ M-4-11	a (m1-	mical\ -1-	1 F	☐ [i e; J		ailiant	1			
25B. Primary Seal Type (chec	:к one):			nical) shoo resilient so			iounted re escribe):	silient sea	I			
25C. Is the Floating Roof equi	inned with			_	oai ∏No		escribe).					

25D. If yes, how is the secondary seal mounted? (check one)

Rim Other (describe):

25E. Is the floating roof equipped with a weather shield? Yes No									
25F. Describe deck fittings:									
	<u>.</u> .			D					
26. Complete the following section for				Does not appl					
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:									
26C. Deck seam. Continuous sheet c	constructio	n:							
☐ 5 ft. wide ☐ 6 ft. wide ☐	7 ft. wie	de	e 🗌 5	x 12 ft. wide	other (describe)			
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. I	For column supp	orted	26G. For column supported			
			tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION:									
27. Provide the city and state on which	ch the data	in this section are based:							
28. Daily Avg. Ambient Temperature	e (°F):		29. A	nnual Avg. Maxi	mum Tempe	rature (°F):			
30. Annual Avg. Minimum Temperat	ture (°F):		31. A	vg. Wind Speed	(mph):				
32. Annual Avg. Solar Insulation Fac	tor (BTU/	ft²-day):	33. A	mospheric Press	ure (psia):				
LIQUID INFORMATION:									
34. Avg. daily temperature range of b	oulk	34A. Minimum (°F):			34B. Maxi	mum (°F):			
liquid (°F):									
35. Avg. operating pressure range of	tank	35A. Minimum (psig):	35B. Maximum (psig):			mum (psig):			
(psig):									
36A. Minimum liquid surface temper	. ,			Corresponding va		4 ,			
37A. Avg. liquid surface temperature				Corresponding va		•			
38A. Maximum liquid surface temper				Corresponding va		(psia):			
39. Provide the following for each liq		to be stored in the tank.	Add add	litional pages if 1	necessary.				
39A. Material name and composition	1:								
39B. CAS number:									
39C. Liquid density (lb/gal):									
39D. Liquid molecular weight (lb/lb-									
39E. Vapor molecular weight (lb/lb-n	39E. Vapor molecular weight (lb/lb-mole):								
39F. Maximum true vapor pressure (psia):									
39G. Maxim Reid vapor pressure (ps	39G. Maxim Reid vapor pressure (psia):								
39H. Months Storage per year. From	n:								
To:									

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. (GENERAL	INFORMA	TION	(required)
------	---------	---------	------	------------

Bulk Storage Area Name	2. Tank Name				
Big Moses Tank Farm	Tank T06				
3. Emission Unit ID number	4. Emission Point ID number				
T06	7E				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
2015	☐ New construction ☐ New stored material ☒ Other				
7A. Description of Tank Modification (if applicable)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
☐ Yes No					
7C. Provide any limitations on source operation affecting emissi	ons. (production variation, etc.)				
A maximum of 1400 BBL per year throughput for Tank T06.					
II. TANK INFORMATION (required)					
8. Design Capacity (specify barrels or gallons). Use the internal	cross-sectional area multiplied by internal height.				
210 BBL					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15				
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8				
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also l	known as "working volume. 190 BBL				
13A. Maximum annual throughput (gal/yr) 58,800	13B. Maximum daily throughput (gal/day) 210				
14. Number of tank turnovers per year 8 (max)	15. Maximum tank fill rate (gal/min) 20				
16. Tank fill method Submerged Splash	⊠ Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	⊠ No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	rear?				
18. Type of tank (check all that apply):					
Fixed RoofX_ vertical horizontal fla	t roof cone roof dome roof other (describe)				
_					
External Floating Roof pontoon roof doub	le deck roof				
Domed External (or Covered) Floating Roof					
Internal Floating Roof vertical column support					
Variable Vapor Space lifter roof diaphrag					
Pressurized spherical cylindric	al				
Underground					
Other (describe)					
III. TANK CONSTRUCTION AND OPERATION IN	FORMATION (check which one applies)				
Refer to enclosed TANKS Summary Sheets					
Refer to the responses to items 19 – 26 in section VII					
IV. SITE INFORMATION (check which one applies)					
☐ Refer to enclosed TANKS Summary Sheets					
Refer to the responses to items 27 – 33 in section VII					

V. LIQUID INFORMATION (check which one applies)									
Refer to enclosed TANKS Summary Sheets									
Refer to the responses	to items (34 – 39 in	section V	II					
VI. EMISSIONS AND	CONT	ROL DI	EVICE D	OATA (re	quired))			
40. Emission Control Devi	ices (che	ck as man	y as apply						
☐ Does Not Apply					ire Disc (
☐ Carbon Adsorption ¹						ket of		_	
▼ Vent to Vapor Combus	tion Dev	rice ¹ (vapo	or combust						
Condenser ¹				Conse	ervation `	Vent (psig			
Other ¹ (describe)				Vacuui	n Setting	g Pre	ssure Setti	ing	
VRU				☐ Emer	gency Re	elief Valve	(psig)		
¹ Complete appropriate Air	Pollutio	n Control	Device Sh	neet					
41. Expected Emission Ra	te (subm	it Test Da	ta or Calcı	ulations he	re or else	ewhere in the	he applica	tion).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs	0.037	0.16					0.037	0.16	W&B losses from
(Un-controlled)									Water tanks is
									negligible.
LEDA EDA Eminion Enda	MD M	-4:-1 D-1-	CC (C::1 C	CT	C::1 C	T Th	1 D	0 Other (:f)
¹ EPA = EPA Emission Factor Remember to attach emissions									
Remember to diluch emissions	сисиши	ms, inciuai	ng TAINKS	Summary S	песіз ини	omer modei	ing summai	y sneets tj t	присине.
SECTION VII (require	ad if did	l not nro	vide TAl	NKS Sun	nmary (Sheets)			
TANK CONSTRUCTION A		_			illiai y k	onects)			
19. Tank Shell Construction:	IND OF E.	KATION	IN OKIVIA	11011					
Riveted Gunite	lined [] Epoxy-	coated rive	ets 🗆 O	ther (des	cribe)			
20A. Shell Color: Blue				Color: Blue			20C. Y	ear Last Pai	inted: 2015
21. Shell Condition (if metal a	and unline	ed):							
☐ No Rust ☐ Light R		Dense R	ust 🔲	Not applic	able				
22A. Is the tank heated?	Yes 🛛 l	No 2	2B. If yes, o	operating te	mperature	:	22C. If	yes, how is	heat provided to tank?
23. Operating Pressure Range	(psig): Le	ess than 0	3 psig						
24. Is the tank a Vertical Fixe	4 0			for dome ro	oof provid	e radius (ft):	24B. If	yes, for cor	ne roof, provide slop (ft/ft)
⊠ Yes □No									
25. Complete item 25 for Floa	ating Roo	f Tanks] Does i	not apply	\boxtimes		•		
25A. Year Internal Floaters In	stalled:								
25B. Primary Seal Type (chec	k one): [_		nical) shoe resilient se			nounted re lescribe):	silient sea	1
25C Is the Floating Boof	inned with						icsciiue).		
25C. Is the Floating Roof equ	ipped with	i a seconda	ry sear?	J Yes	\square_{140}				

25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):

25E. Is the floating roof equipped with a weath	er shield? Yes	l	No								
25F. Describe deck fittings:											
26. Complete the following section for Intern			Does not appl								
26A. Deck Type: Bolted	Welded	26B. 1	For bolted decks,	provide dec	k construction:						
26C. Deck seam. Continuous sheet constructi	on:										
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wi		ide ☐ 5 x 12 ft. wide ☐ other (describe)									
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported						
		tanks,	# of columns:		tanks, diameter of column:						
SITE INFORMATION:											
27. Provide the city and state on which the data in this section are based: N/A for flash emissions only											
28. Daily Avg. Ambient Temperature (°F):		29. A	nnual Avg. Maxi	mum Tempe	rature (°F):						
30. Annual Avg. Minimum Temperature (°F):		31. A	vg. Wind Speed	(mph):							
32. Annual Avg. Solar Insulation Factor (BTU	/ft ² -day):	33. Atmospheric Pressure (psia):									
LIQUID INFORMATION:											
34. Avg. daily temperature range of bulk	34A. Minimum (°F):			34B. Max	imum (°F):						
liquid (°F): 60	50			70							
35. Avg. operating pressure range of tank	35A. Minimum (psig):	:		35B. Max	imum (psig):						
(psig):	0 psig			0.3 psig							
0-0.3 psig											
36A. Minimum liquid surface temperature (°F)):		Corresponding va		•						
37A. Avg. liquid surface temperature (°F):			Corresponding va		•						
38A. Maximum liquid surface temperature (°F			Corresponding va		e (psia):						
39. Provide the following for each liquid or ga		Add add	litional pages if r	necessary.							
39A. Material name and composition:	Produced Water										
39B. CAS number:	N/A										
39C. Liquid density (lb/gal):	8.347										
39D. Liquid molecular weight (lb/lb-mole):	18.04										
39E. Vapor molecular weight (lb/lb-mole):	30.68										
39F. Maximum true vapor pressure (psia):	N/A										
39G. Maxim Reid vapor pressure (psia):	N/A										
39H. Months Storage per year. From:	Continuous										
То:											

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks

tracito:											
Identification Number (as assigned on E	quipment List Form): TL-1 and TL-2										
1. Loading Area Name: Tank Truck Load	ding Area										
2. Type of cargo vessels accommodated as apply):	I at this rack or transfer point (check as many										
☐ Drums ☐ Marine Vessels	□Rail Tank Cars □ Tank Trucks										
3. Loading Rack or Transfer Point Data:											
Number of pumps	3 (on truck)										
Number of liquids loaded	3										
Maximum number of marine	2										
vessels, tank trucks, tank cars, and/or drums loading at one time											
4. Does ballasting of marine vessels occur at this loading area? ☐ Yes ☐ No ☒ Does not apply											
5. Describe cleaning location, compound transfer point: None	ds and procedure for cargo vessels using this										
6. Are cargo vessels pressure tested for ☐ Yes If YES, describe:	leaks at this or any other location? ⊠ No										

7. Projected Ma	7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):										
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.							
hours/day	3	3	3	3							
days/month	30	30	30	30							
days/year	340	340	340	340							

8. Bulk Liqu	id Data <i>(add pages as</i> .	necessar	y):		
Pump ID No.	Pump ID No.		N/A	N/A	
Liquid Name		Produced Water	Conden- sate	NGL	
Max. daily thro	oughput (1000 gal/day)	3.36	8.4	9.24	
Max. annual t	58.8	1050	672		
Loading Meth	Loading Method ¹			BF	
Max. Fill Rate	Max. Fill Rate (gal/min)			80	
Average Fill T	56	60	60		
Max. Bulk Liq	uid Temperature (°F)	70	70	70	
True Vapor P	ressure ²	0.3 psia	7.45 psia	92 psia	
Cargo Vessel	Condition ³	U	U	U	
Control Equip	ment or Method ⁴	ТО	ТО	VB	
Minimum con	trol efficiency (%)	68.6	68.6	99+	
Maximum	Loading (lb/hr)	0.13	17.9	N/A	
Emission Rate	Annual (lb/yr)	2.27	2237	N/A	
Estimation Method ⁵		AP-42	AP-42		
¹ BF = Bottom	n Fill SP = Splash Fill	SUB	= Subme	rged Fill	
² At maximum	n bulk liquid temperature				

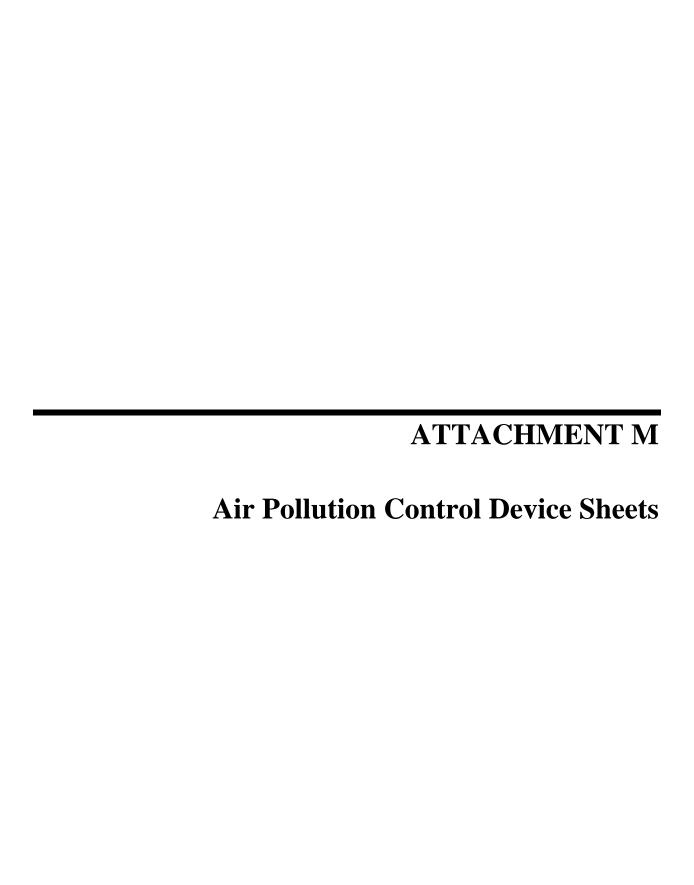
³ B = Ballasted Vessel, C = Cleaned, U = Unclea	aned (dedicated service), O = other (describe)
List as many as apply (complete and submit application) Sheets):CA = Carbon Adsorption Condensation SC = S Refrigeration-Absorption TO = Thermal Oxidation CRC = Compression-Refrigeration-Condensation O = other (descibe)	LOA = Lean Oil AdsorptionCO = Scrubber (Absorption)CRA = Compressortion or Incineration
 EPA = EPA Emission Factor as stated in AP-4 MB = Material Balance TM = Test Measurement based upon test data 	

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

O = other (describe)

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Truck load-outs per month and volume of liquid removed each load-out	RECORDKEEPING Truck load-outs per month and volume of liquid removed each load-out
REPORTING	TESTING
Truck load-outs per month and volume of liquid removed each load-out	None


MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty $N\!/A$

Emissions Report

	USA Compre	ssion Unit	530	2 VR260/N	MHGF10	8		
Engine Serial Number : Max HP : Number of Engine Cylinders : Combustion Type & Setting : Compression Ratio : Engine Modified/Reconstructed? :	4B081005142 47 4 4 Stroke Rich Burn 8:01		Max RPM Total Disp Fuel Deliv	anufactured Date: : lacement (in3): ery Method: on Air Treatment		05/12/2010 1800 253 Carburetor Naturally Asp		
Compressor Frame Serial # : Compressor Frame Max RPM :	5609x78 1800			aged Date : ressor Throws :		12/28/2009 0		
AIR ENVIRONMENTAL REGULATIO	NS							
County and State Selected for Quote	e: Marion	1		WV				
NSPS JJJJ Ozone Non-Attainment / General Pe	NOx rmit NOx	g/hp-hr g/hp-hr	CO CO	g/hp-hr g/hp-hr	VOC	g/hp-hr g/hp-hr	CH2	2O g/hp-hr
RAW ENGINE EMISSIONS (based on assumption of burning 900) Fuel Consumption: 9,889	0-970 LHV BTU/SCF or HHV BTU/bhp-hr	80-85 Fuel Me	thane # Fu	el Gas with little	to no H2S	5)		
		<u>g/t</u>	ohp-hr	Ib/MMB	<u>TU</u>		<u>lb/hr</u>	<u>TPY</u>
Nitrogen Oxides (NOx) : Carbon Monoxide (CO) : Volatile Organic Compounds (NMNE	EHC excluding CH2O):		12.80 5.10 0.04			0	.326 .528 .004	5.808 2.313 0.018
Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+C Sulfur Dioxide (SO2) :	ondensable :		0.09	0.0194 0.0006		0	.009 .009 .000	0.039 0.040 0.001
Carbon Dioxide (CO2) : Methane (CH4) :		<u>g/t</u>	<u>bhp-hr</u>	<u>lb/MMB</u> 110 0.23	<u>TU</u>	5	<u>/hr</u> 51.13 0.11	Metric Tonne/yr 203.11 0.43
CONTROLLED EMISSIONS								
Catalytic Converter Make and Mode Catalyst Element Type: Number of Catalyst Elements curren Air/Fuel Ratio Control : Other Engine Emissions Control Equ	itly in Housing:	VXC-1408 3-Way 1 Yes	-04XCI					
				d to Comply with				
Nitrogen Oxides (NOx) : Carbon Monoxide (CO) :		JJJJ & Non-A	attainment / 0 0 0		<u>Limits</u>	<u>lb/hr</u> 1.326 0.528		<u>TPY</u> 5.808 2.313
Volatile Organic Compounds (NMNE Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+C			0))		0.004 0.009 0.009		0.018 0.039 0.040
Sulfur Dioxide (SO2) :			O			0.000	0.001	
			attainment /	ed to Comply with General Permit I		<u>lb/hr</u>		Metric Tonne/yr
Carbon Dioxide (CO2) : Methane (CH4) :			0			0.11		0.43

¹⁾ g/bhp-hr are based on Engine Manufacturer Specifications assuming a "Pipeline Quality" fuel gas composition, 1200 ft elevation, and 100- 110 F Max Air Inlet. Note that g/bhp-hr values are based on 100% engine load operation and some g/hp-hr values are Nominal and are not representative of Not- To-Exceed values. It is recommended to apply safety factor (i.e. increase the value by a nominal percentage) to the g/hp-hr values for Air Permitting to allow for operational flexibility and variations in fuel gas composition.

2) Ib/MMBTU emission Factors are based on EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating

Equipment Specification Report

Proposal Number: TJ-13-2071 Rev(2)

Engine Data

Number of Engines:

1

Application:

Air Compression

Engine Manufacturer:

Arrow

Model Number:

VRG 260

Power Output:

47 bhp

Power Output:

0.6 wt% sulfated ash or less

Type of Fuel:

Natural Gas

Exhaust Flow Rate:

310 acfm (cfm)

Exhaust Temperature:

1230 F

System Details

Housing Model Number:

VXC-1408-04-HSG

Element Model Number:

VX-RE-08XC

Number of Catalyst Layers:

Number of Spare Catalyst Layers:

1 1

System Pressure Loss:

2.0 inches of WC (Clean)

Sound Attenuation:

28-32 dBA insertion loss

Exhaust Temperature Limits:

750 - 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number:

VXC-1408-04-XC1

Material:

Carbon Steel

Inlet Pipe Size & Connection:

4 inch FF Flange, 150# ANSI standard bolt pattern

Outlet Pipe Size & Connection:

4 inch FF Flange, 150# ANSI standard bolt pattern

Overall Length:

53 inches

Weight Without Catalyst:

152 lbs

Weight Including Catalyst:

162 lbs

Instrumentation Ports:

1 inlet/1 outlet (1/2" NPT)

Emission Requirements

Exhaust Gases	Engine Outputs (g/bhp-hr)	Reduction (%)	Warranted Converter Ouputs (g/bhp-hr)	Requested Emissions Targets
CH ₂ O	0.09			
co	5.1	21.6	4	4 g/bhp-hr
NMHC*	0.04	0	1	1 g/bhp-hr
NO _x **	12.8	84.4	2	2 g/bhp-hr
O2	0.5%			
H2O	18.5%	-		

[†] MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

Estimated Exhaust Emissions Based on Pipeline Quality Natural Gas

ENGINE MODEL:	K-6	C-46	C-66	C-96	C-101	C-106	C-255	L-795	A-42 (VRG 260)	A-54 (VRG 330)	A-54 CF (VRG 330 CF)	A-62 (VRG 380)	A-62 TA (VRG 380 TA)	A32	A90
Rich/Lean Burn	Rich	Rich	Rich	Rich	Rich	Rich	Rich	Lean	Rich	Rich	Rich	Rich	Rich	Rich	Rich
2 or 4 Cycle	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4
Bore	4.00	5.00	5.25	7.00	7.50	7.50	7.50	7.50	4.134	3.875	3.875	4.134	4.134	4.134	4.65
Stroke	4.50	6.25	7.50	8.50	8.50	8.50	7.50	9.00	4.724	4.665	4.665	4.724	4.724	4.724	5.32
Displacement (Cl.)	56.5	122.7	195	327	376	376	660	795	253	330	330	380.8	380.8	190	537
No. Cylinders	1	1	1	1	1	1	2	2	4	6	6	6	6	3	6
RPM Max/Min.	800/400	800/400	700/350	600/300	800/400	800/400	750/400	600/300	1800/1000	1800/1000	1800/1000	1800/1000	1800/1000	1200/1000	1800/1000
Max HP (cont.)	4.8	9	13	19	24.5	32	55	65	47	68	72	80	115	24.7	109
BMEP	84	73	75	77	65	84	88	54	82	91	96	92	133	86	89
BSFC (BTU/HP-HR)	14950	11640	11450	13000	13050	10350	11900	13500	8900	9000	8800	8268	8580	12000	8200
Exhaust Stack	ESTREMENT NO PRO	100			SPERMINER		elegish Aparoxum				CEMICANOS NO CEMBER	. 17 (-2)	DESTRUCTE SETTING		COLUMN COURSE OF
NPT Dia. (in.)	1 1/4"	1 1/2"	2"	2 1/2"	2 1/2"	2 1/2"	4"	4"	2"	2 1/2"	2 1/2"	+3"	+3"	2"	3"
Height (in.) **	©28.5"	°5.5"	"7.5"	"11"	°11"	"11"	©20"	©7"	27"	28"	27 1/4"	28"	29 1/2"		
Temp. (Deg. F)	1260	1300	1300	1300	1275	1302	1300	900	1230	1238	1238	1230	1350	1180	1250
Flow (acfm)	31	70	97	139	210	213	350	625	310	406	406	466	600	210	600
Emissions (g/hp-hr)	Farming States	- Control		Security .	Western Williams		the State of the						STATES AND STREET		POTEST VACABLE
Pre-Cat Nox	N/A	N/A	N/A	N/A	N/A	14	IP	1.89	12.8	14.4	12.3	14.7	15.5	N/A	9.0
Pre-Cat CO	N/A	N/A	N/A	N/A	N/A	11.5	IP	2.58	5.1	16.3	11	5.8	11.15	N/A	12.76
Pre-Cat VOC	N/A	N/A	N/A	N/A	N/A	N/A	IP.	N/A	0.04	0.04	0.04	0.04	0.10	N/A	0.05
Pre-Cat HCHO	N/A	N/A	N/A	N/A	N/A	N/A	IP.	N/A	0.09	0.09	0.09	0.09	0.09	N/A	0.09
Post Cat Nox	*6®	*6®	*6®	*6®	*6@	*2.8	*2.8	*2.8	*2.8	*2.8	*2.8	*2.8	*1.0	*6	*1.0
Post Cat CO	*455®	*455®	*455®	*455®	*455®	*4.8	*4.8	*4.8	*4.8	*4.8	*4.8	*4.8	*2.0	*455	*2.0
Post Cat VOC	N/A	N/A	N/A	N/A	N/A	N/A	IP	N/A	0.02	0.05	0.02	0.02	.06/*0.7	N/A	.06/*.07
Post Cat HCHO	N/A	N/A	N/A	N/A	- N/A	N/A	IP	N/A	0	0	0	.0	0	N/A	0
Max. Exhaust Back Pressure ("W.C.)	20	20	20	20	20	20	20	TE	20	20	20	20	20	20	20
Weight (lb.)Dry	670	1360	1640	2580	2690	2690	3980	4510	1234	1000	1000	1851	1900	1350	3450

* = EPA emission regulation limits as of March 1, 2011.

Check with your local DEQ, as they maybe lower than the EPA requirements. BSFC (BTU/HP-HR) @ max rated RPM

** = Stack height is from the base of the mounting feet to the exhaust manifold outlet.

*= Catalyst equiped engines.

© = Center of exhaust outlet

" = MUF-1 standard muffler outlet height.

TE = Tuned Exhaust. IP = In Process

N/A = Not available at this time.

@ = Does not require a catalyst to meet the current requirements

Emissions vary depending on AFR set point and emission equipment from engine to engine.

This information is for reference only - Not to be used for permitting, field testing is required

Emissions Report

10/08/2015

polyania da la constanta de la	USA C	ompre	ssic	on Unit	6	208	G8.3/JGF	2		W		
Engine Serial Number : Max HP : Number of Engine Cylinders : Combustion Type & Setting : Compression Ratio : Engine Modified/Reconstructed? :	8	Engine Manufactured Date : Max RPM : Total Displacement (in3) : Fuel Delivery Method: Combustion Air Treatment :							701/2013 00 5 Inburetor Surally Asp			
Compressor Frame Serial # : Compressor Frame Max RPM :	F43775 1800					_	ed Date : sor Throws :		01. 2	/13/2014		
AIR ENVIRONMENTAL REGULATIO County and State Selected for Quote	Marion					wv						
NSPS JJJJ Ozone Non-Attainment / General Pe		NOx 1 NOx	.00	g/hp-hr g/hp-hr	CO	2.0	g/hp-hr g/hp-hr	VOC VOC	0.7	g/hp-hr g/hp-hr	CH2C	g/hp-hr
RAW ENGINE EMISSIONS (based on assumption of burning 900) Fuel Consumption: 8,924)-970 LHV BTU HHV BTU/bhp		80-8	5 Fuel Me	thane #	Fuel C	Sas with little to	o no H2	2S)		=	
				· <u>g/</u> l	ohp-hr		Ib/MMBT	<u>U</u>			<u>lb/hr</u>	<u>TPY</u>
Nitrogen Oxides (NOx) : Carbon Monoxide (CO) :					13.00 8.60						3.382 2.237	14.813 9.798
Volatile Organic Compounds (NMNE	HC excluding (CH2O):	0.03									
Formaldehyde (CH2O) :			0.02							N N		
Particulate Matter (PM) Filterable+C	ondensable :			0.0483						C	0.223	
Sulfur Dioxide (SO2) :							0.0006			C	0.001	0.003
				g/l	ohp-hr		Ib/MMBT	<u>U</u>		<u>lb</u>	<u>/hr</u>	Metric Tonne/yr
Carbon Dioxide (CO2):				4	52.00					1	17.58	467.14
Methane (CH4) :							0.23					
CONTROLLED EMISSIONS	122	П										
Catalytic Converter Make and Mode	:		١	VXC-1480	-04-HSC	3						
Catalyst Element Type:												
Number of Catalyst Elements curren	tly in Housing:			1								
Air/Fuel Ratio Control : Other Engine Emissions Control Equ	uipment :		,	res								
g 1				% Reduc	tion Rea	uired t	o Comply with					
			JJJ.				neral Permit L			<u>lb/hr</u>		<u>TPY</u>
Nitrogen Oxides (NOx):						92				0.260		1.139
Carbon Monoxide (CO):						77				0.520		2.279
Volatile Organic Compounds (NMNE	HC excluding (CH2O):										
Formaldehyde (CH2O) :						0				0.054	0.000	
Particulate Matter (PM) Filterable+C	ondensable :					0				0.051 0.001		0.223 0.003
STREET LINGUIDO (ST 1/1) :					0				0.001		0.003	
Sulfur Dioxide (SO2) :						10 10 7001						
Sullui Dioxide (SO2).							o Comply with					
Carbon Dioxide (CO2) :			JJJ				to Comply with eneral Permit L			<u>lb/hr</u> 117.58		Metric Tonne/yr 467.14

¹⁾ g/bhp-hr are based on Engine Manufacturer Specifications assuming a "Pipeline Quality" fuel gas composition, 1200 ft elevation, and 100- 110 F Max Air Inlet. Note that g/bhp-hr values are based on 100% engine load operation and some g/hp-hr values are Nominal and are not representative of Not- To-Exceed values. It is recommended to apply safety factor (i.e. increase the value by a nominal percentage) to the g/hp-hr values for Air Permitting to allow for operational flexibility and variations in fuel gas composition.

2) Ib/MMBTU emission Factors are based on EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating

Engines).

Supporting Calculations

Big Moses Tyler County, WV

POTENTIAL EMISSIONS SUMMARY

		NOx	CO	CO2e	VOC	SO2	PM	n-Hexane	benzene	formaldehyde	Total HAPs
Source	Description	lb/hr	lb/hr	lb/Hr	lb/hr	lb/hr	lb/hr	tpy	lb/hr	lb/hr	lb/hr
HTR-1	Line Heater	0.02	0.02	25	0.00	0.00	0.00				
CE-1	Flash Compressor	0.21	0.41	54	0.01	0.00	0.01		0.0007	0.010	0.0149
CE-2	VRU Compressor Engine	0.26	0.52	124	0.03	0.00	0.05		0.0140	0.021	0.1125
HTR-2	Separator Heater	0.08	0.07	98	0.00	0.00	0.01			0.000	0.000
T01-T06	Condensate and Water Tank (Flash+Breathing+Working) ¹				5.60			0.17	0.00	0.000	0.180
	Fugitive VOC Emissions			2	0.38						
	Flash Gas Compressor Blowdowns			N/A	N/A						
	Haul Road Fugitive Dust						4.43				
	Pigging Emissions			N/A	N/A						
TL-2	Water Truck Loading				0.13						
	NGL Truck Loading				0.90						
TL-1	Condensate Truck Loading (Uncaptured) ²				0.78						0.05
EC-1	Captured/Controlled Tank and Truck Loading Emissions ³	0.30	1.65	593	3.40	0.00	0.00	0.07	0.00	0.0000	0.07
	Total	0.87	2.67	895	11.24	0.00	4.50	0.24	0.01	0.03	0.42

		NOx	CO	CO2e	VOC	SO2	PM	n-Hexane	benzene	formaldehyde	Total HAPs
Source		tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
HTR-1	Line Heater	0.09	0.07	107	0.00	0.00	0.01			0.00	
CE-1	Flash Compressor	0.91	1.81	238	0.06	0.00	0.04		0.00	0.04	0.07
CE-2	VRU Compressor Engine	1.14	2.28	542	0.13	0.00	0.22		0.01	0.09	0.49
HTR-2	Separator Heater	0.36	0.30	430	0.02	0.00	0.03			0.00	0.00
T01-T06	Condensate and Water Tank (Flash+Breathing+Working) ¹				24.53			0.73	0.01	0.00	0.80
	Fugitive VOC Emissions			8	1.67						
	Flash Gas Compressor Blowdowns			8	0.10						
	Haul Road Fugitive Dust						2.33				
	Pigging Emissions			651	7.85						
TL-2	Water Truck Loading				0.01						
	NGL Truck Loading				0.04						
TL-1	Condensate Truck Loading (Uncaptured) ²				0.05						0.01
EC-1	Captured/Controlled Tank and Truck Loading Emissions ³	0.06	0.32	116	0.63	0.00	0.00	0.02	0.01	0.00	0.03
	Total	2.55	4.78	2,101	35.09	0.01	2.63	0.75	0.04	0.13	1.39

¹ Condensate tank emissions are captured are routed to VRU with Combustor as backup.

Per WVDEP Guidance on VRUs, a captured are routed to VRO with Combustor as backup.

Per WVDEP Guidance on VRUs, a capture efficiency of 95% is claimed. This represents uncaptured.

² Truck loading VOC emissions captured at 98.7% per AP-42 Chapter 5.2.2.1.1 for NSPS-certified trucks. This entry represents the 1.3% not captured.

^{398.7}% captured truck loading emissions routed to combustor EC-1

Big Moses Tyler County, WV

Controlled Emission Rates

Source CE-2

Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins G8.3 Rich Burn Natural					
Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders	118 1,800 In-line 6	hp rpm				
Engine Bore Engine Stroke	4.490 5.320	inches inches				
Engine Displacement Engine BMEP Fuel Consumption (HHV)	505 103 8,924	cu. in. psi Btu/bhp-hr				
						AP-42 4strokerich
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	y lb/mmbtu
Oxides of Nitrogen, NOx	1.000	0.26	1.14	118	6.24	
Carbon Monoxide CO	2.000	0.52	2.28	236	12.49	Ŭ i
VOC (NMNEHC) CO2	0.110 452	0.03 118	0.13 515	13 53,336	0.69 2,822	,
CO2e	432	124	542	33,330	2,022	2
3323			0.2			0 ppmv H2S
Total Annual Hours of Operation	8,760					
SO2		0.0006	0.0028			0.0006
PM (Condensable + Filterable)		0.0509	0.2228			0.0483 Per Mfg.
CH ₄		0.1261	0.5524			0.0022 Factor From 40 CFR 98, Table C-2
N ₂ O		0.0115	0.0502			0.0002 Factor From 40 CFR 98, Table C-2
acrolein		0.0028	0.0121			0.00263
acetaldehyde formaldehyde	0.080	0.0029 0.0208	0.0129 0.0912			0.00279 Per Mfg.
benzene	0.000	0.0200	0.0073			0.00158
toluene		0.0006	0.0026			0.000558
ethylbenzene		3E-05	0.0001			2.48E-05
xylene s		0.0002	0.0009			0.000195
methanol		0.0032	0.0141			0.00306
total HAPs		0.0322	0.1411			
Exhaust Parameters:						
Exhaust Gas Temperature	1,127	deg. F				
Exhaust Gas Mass Flow Rate		lb/hr				
Exhaust Gas Mass Flow Rate	528	acfm				
Exhaust Stack Height	137 8.67	inches feet				
Exhaust Stack Inside Diameter	6 0.500	inches feet				
Exhaust Stack Velocity	44.8 2,689.1	ft/sec ft/min	_	3.1416	4 x	x acfm (stack diameter)^2

Big Moses Tyler County, WV

Potential Emission Rates

Line Heater Source HTR-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 250.0 Mbtu/hr 98.0 % 1256.0 Btu/scf 4,874.6 scfd 0.000 Mole % 8760

NOx	0.0203	lbs/hr	0.089	TPY
СО	0.0171	lbs/hr	0.075	TPY
CO2e	25	lbs/hr	107	tpy
VOC	0.0011	lbs/hr	0.005	TPY
SO2	0.0001	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0015	lbs/hr	0.007	TPY
СНОН	0.0000	lbs/hr	0.000	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
CO	84 Lbs/MMCF	
CO_2	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH_4	2.3 Lbs/MMCF	Global Warming Potential = 21
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
HCOH	0.075 Lbs/MMCF	

Big Moses Tyler County, WV

Controlled Emission Rates

Source CE-1

Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Arrow VGR260 Rich Burn Natural						
Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders	47.0 1,800 In Line 4	hp rpm					
Engine Bore Engine Stroke	4.134 4.724	inches inches					
Engine Displacement Fuel Consumption	254 9,889	cu. in. Btu/bhp-hi	r			AP-42 4strokerich	.
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr		lb/mmbtu	
Oxides of Nitrogen, NOx	2.0	0.21	0.91	94	4.97		Comment
Carbon Monoxide CO	4.0	0.41	1.81	188	9.92		453.59 grams = 1 pound
VOC (NMNEHC)	0.1	0.01	0.06	6	0.32		2,000 pounds = 1 ton
CO2e		54	238	0	1,304		
Total Annual Hours of Operation SO2	8,760	0.0003	0.0012		1	0.0006	
PM (Condensable + Filterable) CO2		0.009 51.126	0.0395 223.9324			0.0194 110	MFG. Spec
CH _{4 CO2e}		2.6725	11.7056			0.23	MFG. Spec
$N_2O CO_{2e}$		0.5518	2.4169			0.0001	Factor From 40 CFR 98, Table C-2
acrolein		0.0012	0.0054			0.00263	
acetaldehyde		0.0013	0.0057			0.00279	
formaldehyde	0.095	0.01	0.0431			0.00450	MFG. Spec
benzene		0.0007	0.0032			0.00158	
toluene		0.0002 1E-05	0.0010 0.0001			0.000508 2.48E-05	
ethylbenzene xylene s		9E-05	0.0001			0.000195	
methanol		0.0014	0.0062			0.00306	
total HAPs		0.0149	0.0651			0.0000	
• • •							

Big Moses Tyler County, WV

Controlled Emission Rates

Source CE-1 Un-Controlled

Engine Data:	
Engine Manufacturer	FORD
Engine Model	VR260
Type (Rich-burn or Low Emission)	Rich Burn
Aspiration (Natural or Turbocharged)	Natural
Manufacturer Rating	47.0

Manufacturer Rating 47.0 hp
Speed at Above Rating 1,800 rpm
Configeration (In-line or Vee) In Line
Number of Cylinders 4
Engine Bore 4.134 inches
Engine Stroke 4.724 inches

Engine Displacement 254 cu. in. Fuel Consumption 9,889 Btu/bhp-hr

						AP-42	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr		4strokerich lb/mmbtu	
Oxides of Nitrogen, NOx	12.8	1.33	5.81	602	31.83		Comment
Carbon Monoxide CO	5.1	0.53	2.31	240	12.68		453.59 grams = 1 pound
VOC (NMNEHC)	0.0	0.00	0.01	1	0.07		2,000 pounds = 1 ton
CO2e		54	238	0	1,304		
Total Annual Hours of Operation	8,760						
SO2		0.0003	0.0012			0.0006	
PM2.5		0.0044	0.0193			0.0095	
PM (Condensable)		0.0046	0.0202			0.00991	
CO2		51.126	223.9324			110	
CH _{4 CO2e}		2.6725	11.7056			0.23	MFG. Spec
$N_2O CO_{2e}$		0.5518	2.4169			0.0001	Factor From 40 CFR 98, Table C-2
acrolein		0.0012	0.0054			0.00263	
acetaldehyde		0.0013	0.0057			0.00279	
formaldehyde	0.095	0.01	0.0431				MFG. Spec
benzene		0.0007	0.0032			0.00158	
toluene		0.0002	0.0010			0.000508	
ethylbenzene		1E-05	0.0001			2.48E-05	
xylene s		9E-05	0.0004			0.000195	
methanol		0.0014	0.0062			0.00306	
total HAPs		0.0149	0.0651				

Big Moses Tyler County, WV

tential Emission Ra

Source EC-1

Enclosed Combustor Pilot

Burner Duty Rating 58.5 Mbtu/hr
Burner Efficiency 98.0 %
Gas Heat Content (HHV) 1256.0 Btu/scf
Total Gas Consumption 1140.6 scfd
H2S Concentration 0.000 Mole %
Hours of Operation 8760

NOx	0.0059	lbs/hr	0.026	TPY
CO	0.0049	lbs/hr	0.022	TPY
CO2	7.0	lbs/hr	30.8	TPY
CO2e	7	lbs/hr	31	TPY
VOC	0.0003	lbs/hr	0.001	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0004	lbs/hr	0.002	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0001	lbs/hr	0.000	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0001	lbs/hr	0.000	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100	Lbs/MMCF	
CO	84	Lbs/MMCF	
CO_2	120,000	Lbs/MMCF	Global Warming Potential = 1
VOC	5.5	Lbs/MMCF	
PM	7.6	Lbs/MMCF	
SO_2	0.6	Lbs/MMCF	
CH ₄	2.3	Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2	Lbs/MMCF	Global Warming Potential =298
НСОН	0.075	Lbs/MMCF	
Benzene	0.0021	Lbs/MMCF	
n-Hexane	1.8	Lbs/MMCF	
Toluene	0.0034	Lbs/MMCF	

Big Moses
Tyler County, WV

Potential Emission Rates

Source EC-1

Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 2583.0 Btu/scf 0.00173 MMSCFH 4.47 MMBTU/Hr

0.745 MMCF/Yr 1,728 MMBTU/Yr

NOx	0.30	lbs/hr	0.06	tpy
CO	1.65	lbs/hr	0.32	tpy
CO2	522.33	lbs/hr	100.98	tpy
CO2e	592.65	lb/hr	116.36	tpy
VOC	3.40	lb/hr	0.63	tpy
CH4	0.01	lbs/hr	0.0019	tpy
N2O	0.0010	lbs/hr	0.0002	tpy
PM	0.0005	lb/hr	0.0028	tpy
Benzene	0.0000	lb/hr	0.0100	tpy
СНОН	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0670	lb/hr	0.0168	tpy
Toluene	0.0000	lb/hr	0.0000	tpy

Notes:

Condensate Tank and Water Tank vapors to combustor as backup for VRU Only. From Attached Work Sheet, max loading to the combustor is 33,900 scfd and 3.22 MMBTU/Hr

Assuming the VRU is down a maximum of $500 \, hrs/yr$, max annual loading to the combustor is:

33,900 x (500/24) = 706,250 scf/yr

and 1,612 MMBTU/Yr

See Condensate Truck Loading Cacluation sheets for derivation of loading emission details. Combined tanks and truck loading \max loading to combustor is 1730. scfh and

39,727 scf/yr or 116 mmbtu/yr.

VOC emissions represent 2% of the captured emissions

Factors Used

AP-42 Table 13.5-1	NOx	0.068	Lbs/MMBTU
AP-42 Table 13.5-1	CO	0.37	Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89	Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022	Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022	Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6	lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021	lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034	lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8	lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075	lb/MMSCF

Big Moses Tyler County, WV

Potential Emission Rates

Separator Heater Source HTR-2

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1000.0 Mbtu/hr 98.0 % 1256.0 Btu/scf 19498.2 scfd 0.000 Mole % 8760

NOx	0.0812	lbs/hr	0.356	TPY
СО	0.0682	lbs/hr	0.299	TPY
CO2e	98	lbs/hr	430	tpy
VOC	0.0045	lbs/hr	0.020	TPY
SO2	0.0005	lbs/hr	0.002	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0062	lbs/hr	0.027	TPY
СНОН	0.0001	lbs/hr	0.000	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
CO	84 Lbs/MMCF	
CO_2	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH_4	2.3 Lbs/MMCF	Global Warming Potential = 21
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
НСОН	0.075 Lbs/MMCF	

Big Moses Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis:18.29weight percentMethane from gas analysis:60.70weight percentCarbon Dioxide from gas analysis:0.33weight percentGas Density0.0576lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	СН4 ТРҮ	CO2e
Valves:										
Gas/Vapor:	35	0.02700 scf/hr	18.3	0.010	0.044	0.000	0.001	0.033	0.1448	3.621
Light Liquid:	39	0.05000 scf/hr	100.0	0.112	0.492					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.000
Low Bleed Pneumatic	4	1.39000 scf/hr	18.3	0.059	0.257	0.195	0.852	0.195	0.8521	22.153
Relief Valves:	18	0.04000 scf/hr	18.3	0.008	0.033	0.000	0.001	0.025	0.1103	2.759
Open-ended Lines, gas:	-	0.06100 sfc/hr	18.3	0.000	0.000					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										0.000
Gas:	-	0.00529 lb/hr	18.3	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.000
Compressor Seals, Gas:	4	0.01940 lb/hr	18.3	0.014	0.062	0.000	0.001	0.003	0.0119	0.298
Connectors:										0.000
Gas:	77	0.00300 scf/hr	18.3	0.002	0.011	0.000	0.000	0.008	0.0354	0.885
Light Liquid:	31	0.00700 scf/hr	100.0	0.217	0.950					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Flanges:										0.000
Gas:	12	0.00086 lb/hr	18.3	0.002	0.008	0.000	0.000	0.006	0.0274	0.686
Light Liquid:	88	0.00300 scf/hr	100.0	0.015	0.067					0.000
Heavy Liquid:	0	0.0009 scf/hr	100.0	0.000	0.000					0.000

Fugitive Calculations:

	lb/hr	t/y
VOC	0.381	1.667
CH4	0.075	0.330
CO2	0.001	0.003
CO2e	1.884	8.25

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Icon Midstream Pipeline, CCL GAS ANALYSIS INFORMATION

Big Moses Tyler County, WV

Inlet Gas Composition Information

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.3920	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.1540	0.068	0.002	0.327			ı		0.0015	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Helium, He		1	-	-			-		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	78.3670	12.572	0.434	60.699	712.7	791.5	7.468		0.7821	
Ethane, C2H6	13.8830	4.175	0.144	20.155	224.7	245.7	2.316		0.1377	
Propane	4.4580	1.966	0.068	9.491	103.2	112.2	1.062	9.491	0.0438	
Iso-Butane	0.5830	0.339	0.012	1.636	17.5	19.0	0.181	1.636	0.0057	
Normal Butane	1.1450	0.666	0.023	3.213	34.5	37.4	0.355	3.213	0.0111	
Iso Pentane	0.2970	0.214	0.007	1.035	11.0	11.9	0.113	1.035	0.0030	
Normal Pentane	0.2960	0.214	0.007	1.031	11.0	11.9	0.113	1.031	0.0030	
Hexanes	0.2550	0.220	0.008	1.061	11.2	12.1	0.115	1.061	0.0025	
Heptane +	0.1700	0.170	0.006	0.822	8.7	9.4	0.089	0.822	0.0017	
	100.000	20.713	0.715		1,134.4	1,250.9	11.812	18.289	0.9959	-

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,250.9

 Ideal Gross (sat'd)
 1,229.9

 Real Gross (HHV)
 1,256.0

 Real Net (LHV)
 1,139.1

Icon Midstream, LLC GAS ANALYSIS INFORMATION

Big Moses Tyler County, WV

Condenstate Tank Breathing Vapor

	Fuel Gas mole %	Fuel M.W. lb/lb-mole	Fuel S.G.	Fuel Wt. %	LHV, dry Btu/scf	HHV, dry Btu/scf	AFR vol/vol	VOC NM / NE	Z Factor	
Nitus con NO			0.002		Dtu/SCI	Dtu/SCI	VOI/VOI	INIVI / INE		
Nitrogen, N2	0.185	0.052	0.002	0.078			-		0.0018	
Carbon Dioxide, CO2	0.018	0.008	0.000	0.012			-		0.0002	
Hydrogen Sulfide, H2S	-	-	-	-			ı		-	
Water	-	-	-	-			i		-	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	-	-	-	-			-		-	
Ethane, C2H6	0.202	0.061	0.002	0.091	3.3	3.6	0.034		0.0020	
Propane	10.137	4.470	0.154	6.703	234.7	255.1	2.415	6.703	0.0996	
Iso-Butane	8.852	5.145	0.178	7.716	265.6	287.9	2.741	7.716	0.0860	
Normal Butane	30.537	17.749	0.613	26.617	919.4	996.2	9.457	26.617	0.2952	
Iso Pentane	15.123	10.911	0.377	16.363	559.4	605.1	5.763	16.363	0.1512	
Normal Pentane	17.412	12.563	0.434	18.840	645.4	698.0	6.636	18.840	0.1741	
Hexanes	13.160	11.341	0.392	17.007	579.5	625.9	5.956	17.007	0.1300	
Heptane +	4.374	4.383	0.151	6.573	223.1	240.7	2.292	6.573	0.0435	
	100.000	66.683	2.302		3,430.4	3,712.3	35.295	99.819	0.9837	-

Gas Density (STP) = 0.186

 Ideal Gross (HHV)
 3,712.3

 Ideal Gross (sat'd)
 3,648.3

 Real Gross (HHV)
 3,774.0

 Real Net (LHV)
 3,487.4

Icon Midstream Pipeline, LLC Big Moses Liquids Management Facility Tank Emissions Calculations

Icon Midstream operates five 210 BBL atmospheric pressure tanks that receives condensate that has been received via pipeline and separated from entrained water and NGL. Condensate is accumulated in these tanks, pending truck transportation to a fractionation facility. A maximum of 25,000 BBL will pass through these tanks per year. In addition, Icon also operated a single 210 BBL tank where produced water is accumulated prior to truck transportation to a re-use center or a disposal facility. A maximum of 1400 BBL will pass through this tank per year. The following summarizes potential emissions from these tanks.

Emissions from the condensate tanks will be a combination of flash emissions (as the pressure is reduced on the liquid to atmospheric) plus working and breathing losses while the condensate is in the tanks. Using data from a well pad that will be routing condensate to this facility, flash and working/breathing losses were calculated (following this summary). In a similar manner, flash emissions from the water tank were determined using actual data from a produced water tank from a well pad similar to those routing produced water to the Big Moses facility. Working and breathing losses for the water tank is considered negligible.

Emissions from the condensate tanks are routed to a vapor recovery unit via a hard pipe system. A capture efficiency of 95% is claimed. It is important to note that when the VRU is down for maintenance or repair, the condensate tank vapors are routed to a combustor with a 98% capture and control efficiency.

			Uncontrolled	(uncaptured)
	Flash Emissions	W&B Emissions	Total	Total
	(tpy)	(tpy)	(tpy)	(tpy)
Condensate	483.56 VOCs	3.74 VOCs	487.30 VOCs	24.37 VOCs
	15.8 HAPs	0.12 HAPs	15.9 HAPs	0.80 HAPs
	14.5 n-Hexane	0.11 n-Hexane	14.6 n-hexane	0.73 n-Hexane
Water	0.16 VOC	<0.01 VOCs	0.16 VOCs	0.16 VOCs
	0.01 HAPs	< 0.01 HAPs	0.01 HAPs	0.01 HAPs
	<0.01 n-Hexane	<0.01 n-Hexane	<0.01 n-Hexane	<0.01 n-Hexane
Total	483.72 VOCs 5.00 HAPs	3.74 VOCs 0.12 HAPs	488.76VOCs 15.9 HAPs	24.53 VOCs 0.80 HAPs
	1.45 n-Hexane	0.11 n-Hexane	14.6 n-Hexane	0.73 n-Hexane

It is assumed that emissions will generally be continuous and consistent over the year. However, in order to account for day to day variances, the requested hourly maximum emissions are 25% higher than a straight extrapolation from the annual emission rates.

Loading to Enclosed Combustor

As noted above, Flash, Working and Breathing losses from the condensate tanks are normally controlled by a VRU. When that unit is down for maintenance or repairs, the gas flow is routed to an enclosed combustor (EC-1). As noted in the following worksheets, there are 689.14 tpy of Flash Gas and 3.74 tpy of Working and Breathing potential emissions from the condensate tanks. This is equivalent to 158.2 lb/hr. As it is the largest component of this gas stream, the flash gas characteristics are assumed to be representative of the entire gas stream. Thus, this gas will have a density of 0.112 lb/scf and a heat content of 2282 BTU/scf. Potential loading to the combustor is then 1412.5 scf/hr (33,900 scfd) and 3.22 MMBTU/Hr.

For permitting purposes, it is assumed that the VRU will be unavailable for 500 hours per year. Thus annual loading to the combustor will be 706,250 scf [33,900 scf/day x 500/24] or 1,612 MMBTU/Yr.

The stream going to the combustor when the VRU is down has a composition that is 70.3% VOCs and 2.1% n-Hexane. Thus, with a 98% destruction efficiency and maximum loading of 158.2 lb/hr, potential VOC emissions would be 2.22 lb/hr [158.2 x 0.703 x 0.02]. Potential n-Hexane emissions would be 0.067 lb/hr [158.2 x 0.021 x 0.02].

Icon Midstream Pipeline - Big Moses

Flash Emission Calculations

Using Gas-Oil Ratio Method

Un-Controlled

Site specific data

Gas-Oil-ratio = 5

500 scf/bbl Using Actual GOR from RPT-8

Throughput = 25,000 bbl/yr

Stock tank gas molecular weight = 39.56 g/mole

Conversions

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

Equations

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY
Total	689.1416
VOC	483.5638
Nitrogen	1.72E-01
Carbon Dioxide	1.08E+00
Methane	6.84E+01
Ethane	1.36E+02
Propane	1.79E+02
Isobutane	4.83E+01
n-Butane	1.11E+02
2,2 Dimethylpropane	1.36E+00
Isopentane	3.80E+01
n-Pentane	3.99E+01
2,2 Dimethylbutane	1.44E+00
Cyclopentane	0.00E+00
2,3 Dimethylbutane	2.09E+00
2 Methylpentane	1.11E+01
3 Methylpentane	6.62E+00
n-Hexane	1.45E+01
Methylcyclopentane	1.05E+00
Benzene	2.48E-01
Cyclohexane	1.50E+00
2-Methylhexane	3.21E+00
3-Methylhexane	3.16E+00
2,2,4 Trimethylpentane	0.00E+00
Other C7's	3.00E+00
n-Heptane	4.64E+00
Methylcyclohexane	2.89E+00
Toluene	5.65E-01
Other C8's	4.72E+00
n-Octane	1.57E+00
Ethylbenzene	3.45E-02
M & P Xylenes	4.07E-01
O-Xylene	5.51E-02
Other C9's	1.96E+00
n-Nonane	4.69E-01
Other C10's	7.37E-01
n-Decane	9.65E-02
Undecanes (11)	1.03E-01

E_{TOT} Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

and the state of the state of the state of	Separator HC Liquid	Stock Tank
Pressure, psig	340	0
Temperature, °F	65	70
Gas Oil Ratio (1)		500
Gas Specific Gravity (2)		1.387
Separator Volume Factor (3)	1.2987	1.000

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

	Quality Control Check		
	Test S	amples	
Cylinder No.	Sampling Conditions	W-2408*	W-2423
Pressure, psig	340	299	297
Temperature, °F	65	66	66

^{(1) -} Sof of flashed vapor per barrel of stock tank oil

M. G.

* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd.

Alice, Texas

David Dannhaus 361-661-7015

^{(2) -} Air = 1.000

^{(3) -} Separator volume / Stock tank volume

^{(4) -} Fraction of first stage separator liquid (5) - Absolute pressure at 100 deg F

Analyst

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23.253	6.457
Isobutane	4.773	1.574
n-Butane	10.980	3,489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.378	0.988
Heptanes Plus	1.701	0.761
Totals	100.000	22,579

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	191.00
Gross Heating Value	KARR	BTUCE

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	and the second
Molecular Weight	39.58	
Gross Heating Value		
Dry Basis	2321	BTU/CF

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	LACT OF
Hydrogen Sulfide*	< 0.001	Grin	WT % < 0.001
Nitrogen	0.038		0.025
Carbon Dioxide	0.141		0.028
Methane	24.485		9.930
Ethane	25.943	6.993	19.719
Propane	23,253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1.116	5.521
n-Pentane	3,175	1.160	6.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.981
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.103
Cyclohexane	0.102	0.035	0.030
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane		0.000	0.000
Other C7's	0.174	0.078	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.189	0.088	0.419
Toluene	0.035	0.012	0.082
Other CB's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	0.015
Totals	100.000	22.579	100.000

Specific Gravity ————————————————————————————————————	1.367	(Air=1)
Compressibility (Z)	0.9850	V,
Molecular Weight	39.58	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis		BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Separator Hydrocarbon Liquid Sampled @ 340 psig & 65 °F

Data Sampled: 04/07/14 Job Number: 42794,002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0,014
Methane	7.015	3.036	1,384
Ethane	7.995	5.481	2.958
Propane	9.072	8,384	4,919
lsobutene	2.654	2.218	1,896
n-Butane	7.478	6,018	5,341
2,2 Dimethylpropane	0.192	0.188	0,170
Isopentane	4.335	4,049	3.845
n-Pentane	5.799	5,369	5.144
2,2 Dimethylbutane	0.319	0.341	0.336
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.532	0.657	0.564
2 Methylpentana	3.616	3.833	3.831
3 Methylpentene	2.379	2.481	2,521
n-Hexene	8.324	8.642	6,701
Heplanes Plus	<u>42,259</u>	<u> 53.409</u>	60.372
Totale:	100,000	100,000	100,000

Characteristics of Heptanes Plus:

Specific Gravity	0.7441	(Water=1)
*API Gravity	58.86	@ 60'F
Molecular Weight	116,2	_
Vapor Volume	20.33	CF/Gal
Weight	6.20	Libs/Gai

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)
*API Gravity	83.46	@ 60°F
Molecular Weight	81.3	_
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Base Conditions: 14.850 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2408

David Darmhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.025	0.011	0.014
Nitrogen	0,011	0.003	0.004
Methane	7,015	3.038	1.384
Ethane	7.995	5.461	2.958
Propane	9.072	6.384	4,919
Isobutane	2.654	2.218	1.898
n-Butane	7.666	6.206	5,511
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.389	5.144
Other C-6's	8.846	7.212	7.254
Heptanes	13,268	15.122	18.031
Octanes	12,697	15,144	16,932
Nonanes	4.935	6.808	7,697
Decanes Plus	8.665	13.799	16.337
Benzene	0.113	0.081	0.108
Toluene	0.613	0.525	0.695
E-Benzene	0.534	0.526	0.697
Xylenes	1.436	1.407	1,875
n-Hexane	6.324	6.642	6.701
2,2,4 Trimethylpentane	0.000	0.000	0.000
Totals:	100.000	100.000	100.000

Charac	terist	içs of	Total	Samp	e:

Specific Gravity	0.6583	(Water=1)
*API Gravity	83.46	@ 60°F
Molecular Weight	81.3	
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7794	(Water=1)
Molecular Weight-	153,3	

Characteristics of Atmospheric Sample:

*API Gravity	70.79	@ 60°F
Reid Vapor Pressure (ASTM D-5191)-	5,28	psi

QUAL	JTY CONTROL	CHECK	Mark The
	Sampling Conditions	Test S	amples
Cylinder Number	inner	W-2408*	W-2423
Pressure, PSIG	340	299	297
Temperature, °F	65	86	66

^{*} Sample used for analysis

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LlqVol %	Wt %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0.014
Methane	7.015	3.036	1.384
Ethane	7,995	5,481	2,956
Propane	9,072	6.384	4.919
Isobutane	2.854	2.218	1.898
n-Butane	7,473	6.018	5.341
2,2 Dimethylpropane	0.192	0.188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5.144
2,2 Dimethytbutane	0.319	0.341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.632	0.557	0.564
2 Methylpentane	3.616	3.833	3.831
3 Methylpentane	2.379	2.481	2,521
n-Hexane	6.324	6.642	6.701
Mathylcyclopentane Benzene	0.537	0,486	0,556
Cyclohexane	0.113	0.081	0.108
2-Methylhexane	0.966	0.831	0.989
3-Methylhexane	3.063	3.637	3.774
2,2,4 Trimethylpentane	2.577 0.000	3.022	3.176
Other C-7's	1.532	0.000	0.000
n-Heptane	4.601	1.725 5.422	1.888
Methylcyclohexane	2.764	2.838	5.669 3.337
Toluene	0.613	0.525	0.695
Other C-8's	7.205	8.736	9.764
л-Octane	2.728	3.569	3.831
E-Benzene	0,534	0.526	0.697
M & P Xylenes	0.618	0.611	0.804
O-Xylene	0.820	0.796	1.071
Other C-9's	3.488	4.696	5.383
n-Nonane	1.467	2,109	2.314
Other C-10's	2.979	4.434	5.175
n-decane	0.771	1.208	1.349
Undecanes(11)	2.240	3.420	4.048
Dodecanes(12)	1,277	2.107	2,529
Tridecanes(13)	0.746	1.320	1.606
Tetradecanes(14)	0.349	0.660	0.814
Pentadecanes (15)	0.160	0.324	0.404
Hexadecanes(16) Heptadecanes(17)	0.078	0.169	0.213
Octadecanes(18)	0.037 0.018	0.085	0.108
Nonadecanes(19)	0.007	0.043	0.055
Elcosanes(20)	0.007	0.017 0.005	0.022 0.008
Henelcosanes(21)	0.001	0.003	0.003
Docosanes(22)	0.001	0.003	0.003
Tricosenes(23)	0.000	0.001	0.001
Tetracosanes (24)	0.000	0.001	0.001
Pentacosanes(25)	0.000	0.000	0.000
Hexacosanes(26)	0.000	0.000	0.000
Heptacosanes(27)	0.000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes(29)	0.000	0.000	0.000
Triacontanes (30)	0.000	0.000	0.000
Hentriacontanes Plus(31+)	0,000	0.000	0.000
Total	100.000	100,000	100,000

= HAP

Page 3 of 3

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: TK-01
City: Huntington
State: West Virginia
Company: Icon Midstream

Type of Tank: Vertical Fixed Roof Tank

Description: Condensate Tank W&B Emissions

Tank Dimensions

 Shell Height (ft):
 15.00

 Diameter (ft):
 10.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 8.00

 Volume (gallons):
 8,225.29

 Turnovers:
 25.53

 Net Throughput(gal/yr):
 210,000.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone Height (ft) 0.25 Slope (ft/ft) (Cone Roof) 0.05

Breather Vent Settings

Vacuum Settings (psig): -0.03
Pressure Settings (psig) 0.30

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

Page 2 of 7

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-01 - Vertical Fixed Roof Tank Huntington, West Virginia

	· 		ily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-01 - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	450.1831
Vapor Space Volume (cu ft):	556.3237
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1269
Vented Vapor Saturation Factor:	0.4685
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	556,3237
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	7,0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	5.0000
Vapor Density	0.0373
Vapor Density (lb/cu ft):	69.0000
Vapor Molecular Weight (lb/lb-mole):	09.0000
Vapor Pressure at Daily Average Liquid	3.0220
Surface Temperature (psia):	521.0866
Daily Avg. Liquid Surface Temp. (deg. R):	54.8458
Daily Average Ambient Temp. (deg. F):	⊅4,0400
Ideal Gas Constant R	10.731
(psia cuft / (lb-mol-deg R)):	516,7 5 58
Liquid Bulk Temperature (deg. R):	0.5400
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	1,246,2101
Factor (Btu/sqft day):	1,240.2101
Vapor Space Expansion Factor	0,1269
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R):	33,2847
Daily Vapor Pressure Range (peia):	1.0425
Breather Vent Press. Setting Range(psia):	0.3300
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.0220
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.5373
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	3.5797
Daily Avg. Liquid Surface Temp. (deg R):	521.0866
Daily Min. Liquid Surface Temp. (deg R):	512.7654
Daily Max. Liquid Surface Temp. (deg R):	529.4077
Daily Ambient Temp. Range (deg. R):	20.0583
Vented Vapor Saturation Factor	_
Vented Vapor Saturation Factor:	0,4685
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.0220
Vapor Space Outage (ft):	7.0833

Working Losses (lb):	1,042.6040
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Annual Net Throughput (gal/yr.):	210,000.0000
Annual Turnovers:	25,5310
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	8,225,2880
Maximum Liquid Height (ft):	14,0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 1,492.7871

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-01 - Vertical Fixed Roof Tank Huntington, West Virginia

	55 No. 100 No.	Losses(lbs)						
Components	Working Loss Breathing Loss		Total Emissions		- 4			
Gasoline (RVP 6)	1,042.60	450.18	1,492.79	122	Tank			
	5213	2251	7464	Five	Tinks	16 /yr		
	2.61	1, 13	3.44	Five	Tinks	+124		

Icon Midstream Pipeline - Big Moses

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data

Gas-Water-ratio = 4.06 scf/bbl Using GOW from comparable well pad

Throughput = 1,400 bbl/yr

Stock tank gas molecular weight = 39.56 g/mole

Conversions

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

Equations

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 E_{TOT} = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Constituent	TPY	
Nitrogen 5.21E-03 Carbon Dioxide 4.72E-03 Methane 9.27E-02 Ethane 5.04E-02 Propane 3.60E-02 Isobutane 9.00E-03 n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Total	0.3134	
Carbon Dioxide 4.72E-03 Methane 9.27E-02 Ethane 5.04E-02 Propane 3.60E-02 Isobutane 9.00E-03 n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	VOC	0.1603	
Methane 9.27E-02 Ethane 5.04E-02 Propane 3.60E-02 Isobutane 9.00E-03 n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 7.11E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Nitrogen	5.21E-03	
Ethane 5.04E-02 Propane 3.60E-02 Isobutane 9.00E-03 n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Carbon Dioxide	4.72E-03	
Propane 3.60E-02 Isobutane 9.00E-03 n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04 HA	Methane	9.27E-02	
Isobutane	Ethane	5.04E-02	
n-Butane 2.54E-02 2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Propane	3.60E-02	
2,2 Dimethylpropane 3.98E-04 Isopentane 1.28E-02 n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Isobutane	9.00E-03	
Isopentane	n-Butane	2.54E-02	
Isopentane	2,2 Dimethylpropane	3.98E-04	- 44
n-Pentane 1.77E-02 2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		1.28E-02	
2,2 Dimethylbutane 6.61E-04 Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		1.77E-02	
Cyclopentane 0.00E+00 2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	2,2 Dimethylbutane		
2,3 Dimethylbutane 1.28E-03 2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		0.00E+00	
2 Methylpentane 7.11E-03 3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		1.28E-03	1
3 Methylpentane 4.58E-03 n-Hexane 1.24E-02 Methylcyclopentane 1.15E-03 Benzene 2.26E-04 Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04			1
n-Hexane 1.24E-02 HAI Methylcyclopentane 1.15E-03 Benzene 2.26E-04 HAI Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		4.58E-03	1
Benzene 2.26E-04 HAI Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		1.24E-02	HAP
Benzene 2.26E-04 HAI Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Methylcyclopentane	1.15E-03	
Cyclohexane 1.59E-03 2-Methylhexane 3.45E-03 3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04		2.26E-04	HAP
3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	Cyclohexane		1
3-Methylhexane 3.59E-03 2,2,4 Trimethylpentane 0.00E+00 Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	2-Methylhexane	3.45E-03	1
Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	3-Methylhexane	3.59E-03	1
Other C7's 3.30E-03 n-Heptane 6.02E-03 Methylcyclohexane 3.19E-03 Toluene 4.95E-04	2,2,4 Trimethylpentane	0.00E+00	1
Methylcyclohexane 3.19E-03 Toluene 4.95E-04 HA	Other C7's	3.30E-03	1
Toluene 4.95E-04 HA	n-Heptane		1
Toluene 4.95E-04 HA			1
		4.95E-04	HAP
Other C8's 5.47E-03	Other C8's	5.47E-03	1
n-Octane 1.72E-03	n-Octane	1.72E-03	1
	Ethylbenzene		HAP
		2.82E-04	HAP
		3.13E-05	HAP
Other C9's 1.66E-03	Other C9's		1
n-Nonane 3.10E-04	n-Nonane	3.10E-04	
Other C10's 3.64E-04			1
n-Decane 6.27E-05			1
Undecanes (11) 5.95E-05	Undecanes (11)		1

E_{TOT} Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC

Building D, Second Floor 98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number:

Sample: Well B1 2H

FLASH LIBERATION OF SEPARATOR WATER				
	Separator	Stock Tank		
Pressure, psig	540	0		
Temperature, °F	78	70		
Gas Water Ratio (1)	======	4.06		
Gas Specific Gravity (2)	PP4400	1.069		

(1) - Scf of water saturated vapor per barrel of stock tank water

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

Analyst:

T.G.

Piston No.: WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO_Ltd.

40

David Dannhaus

361-661-7015

Alice, Texas

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC
Building D, Second Floor
98 Vanadium Road

Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dloxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	Ó.8 6 7
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100,000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez

Analyst: MR
Processor: OA
Cylinder ID: WF# 10S

Certified: FESCO, Ltd.

Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT%
Hydrogen Sulfide*	< 0.001	O1 141	< 0.001
Nitrogen	1.821	•	1.663
Carbon Dioxide	1.049		1,505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4,069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.481
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.0 6 3	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Alr=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	RTHICE

Condensate Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

 $L_L = 12.46[SPM/T]$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded

S= saturation factor (0.6)

P=true vapor pressure of liquid loaded: 7.45 psia

M= Molecular weight of vapor in lb/lb-mole (66.6 From Lab Report)

T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, L_L = 12.46[0.6 x 7.45 x 66.6]/[460+60] L_L = 7.13 lb/1000 gallons loaded

Based on sample data of breathing vapor (attached), these emissions are 99.6% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 200 BBL (8400 gallons) a day, uncontrolled VOC emissions are estimated at 59.65 lb of VOC per day [8.4 x 7.13 x .996]. With all daily loading taking place within 1 hour, the hourly uncontrolled emission rate is estimated at 59.65 lb/hr. NSPS certified trucks will be used for condensate transportation. Thus, a 98.7% capture efficiency can be claimed. Accordingly, potential un-captured VOC emissions are estimated at 0.76 lb/hr.

Maximum annual throughput is 25,000 BBL (1,050,000 gallons) per year. Thus, un-captured VOC emissions are conservatively estimated at 96.9 pounds per year [1050 x 7.13 x .996 x 1.3%] or 0.05 tons per year.

Based on the attached analysis of a representative tank's breathing emissions, HAPs represent 6.8 percent of the emissions. Thus, hourly un-captured HAPs emissions equals 0.05 lb/hr [8.4 x $7.13 \times 1.3\% \times 6.8\%$]. Annual maximum uncaptured HAPs emissions are estimated at 6.6 lb/yr [1050 x $7.13 \times 1.3\% \times 6.8\%$] or <0.01 tpy.

Loading to Combustor

Captured emissions are 98.7% of total emissions or 59.11 lb/Hr during loading [8.4 x 7.13 x 98.7%]. Using the composition of the measured condensate breathing vapors from a well that will be sending condensate to this facility (a heat content of 3921 BTU/scf and a density of 0.186 lb/scf) total hourly load to the combustor from truck loading will be 59.11/0.186 or 318 scf/hr. Heat loading to the combustor will be 1.25 MMBTU/Hr.

Annual loading to the combustor will be 7389 lbs $[1050 \times 7.13 \times .987]$ or 39,727 scf and 155.77 MMBTU/Hr.

Using a combustion efficiency of 98%, captured/controlled VOC emissions are 1.18 lb/hr [8.4 x 7.13 x 98.7% x 0.02] and 148 lb/yr [1050 x 7.13 x 98.7% x 2%] or 0.07 tpy.

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor

From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9,586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	4.374	1.881
Totals	100.000	34.799

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value	The state of the s	

Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. -Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2288

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	51	< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethene	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.652	2.920	7.721
n-Butane	30.167	9.586	28.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.589	0.261	0.858
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	800.0	0.032
O-Xylena	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	0.000	0.000	0.000
Totals	100.000	34.799	100.000

2.412	(Air=1)
0.9539	•
66.64	
3921	BTU/CF
3853	BTU/CF
	0.9539 66.64 3921

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Separator Hydrocarbon Liquid Sampled @ 340 psig & 65 °F

Date Sampled: 04/07/14 Job Number: 42794.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0.014
Methane	7.015	3.036	1.384
Ethane	7.995	5.461	2.956
Propane	9.072	6.384	4.919
Isobutane	2.654	2.218	1.896
n-Butane	7.473	6.018	5.341
2,2 Dimethylpropane	0.192	0.188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5.144
2,2 Dimethylbutane	0.319	0.341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.532	0.557	0.564
2 Methylpentane	3.616	3.833	3.831
3 Methylpentane	2.379	2.481	2.521
n-Hexane	6.324	6.642	6.701
Heptanes Plus	42.259	53.409	60.372
Totals:	100.000	100.000	100.000

01	A 41 -	611		Dines
Charac	tenstic	s of Hen	ranes	PIUS:

Specific Gravity	0.7441	(Water=1)
*API Gravity	58.66	@ 60°F
Molecular Weight	116.2	
Vapor Volume	20.33	CF/Gal
Weight	6.20	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)
*API Gravity	83.46	@ 60°F
Molecular Weight	81.3	T William
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Base Conditions: 14.850 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2408

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.025	0.011	0.014
Nitrogen	0.011	0.003	0.004
Methane	7.015	3.036	1.384
Ethane	7.995	5.461	2.956
Propane	9.072	6.384	4.919
Isobutane	2.654	2.218	1.896
n-Butane	7.666	6.206	5.511
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5,144
Other C-6's	6.846	7.212	7.254
Heptanes	13.266	15.122	16.031
Octanes	12,697	15.144	16,932
Nonanes	4.935	6.806	7.697
Decanes Plus	8.665	13.799	16.337
Benzene	0.113	0.081	0.108
Toluene	0.613	0.525	0.695
E-Benzene	0.534	0.526	0.697
Xylenes	1.436	1.407	1.875
n-Hexane	6.324	6.642	6.701
2,2,4 Trimethylpentane			
Totals:	<u>0.000</u> 100.000	<u>0.000</u> 100.000	<u>0.000</u> 100.000

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)
°API Gravity	83.46	@ 60°F
Molecular Weight	81.3	
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7794	(Water=1)
Molecular Weight	153.3	

Characteristics of Atmospheric Sample:

and a second sec	
API Gravity	70.79 @ 60°F
Reid Vapor Pressure (ASTM D-5191)	5.28 psi

API Gravity		70.79	@ 60°F
Reid Vapor Pressure (ASTM D	-5191)	5.28	psi = ~ 7.45/35100
			© 60°F psi = 7,45/351a frue Uype presure
QUAI	LITY CONTROL	CHECK	presoure
	Sampling Conditions	Test S	amples
Cylinder Number	•••••	W-2408*	W-2423
Pressure, PSIG	340	299	297
Temperature, °F	65	66	66

^{*} Sample used for analysis

Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

 $L_L = 12.46[SPM/T]$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded

S = saturation factor (0.6)

P=true vapor pressure of liquid loaded (0.3 psia) Based on water at 60 Deg. F

M= Molecular weight of vapor in lb/lb-mole (30.68) From Flash gas of comparable water sample T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, L_L = 12.46[0.6 x 0.3 x 37.74]/[460+60] L_L = 0.16 lb/1000 gallons loaded

Based on produced water flash gas from comparable wells, estimated that these emissions are 24.1% VOCs

Given a maximum water loading of 80 BBL (3,360 gallons) a day, uncontrolled emissions are estimated at 0.13 lb of VOC per day [3.36 x 0.16 x 24.1%]. Un-certified trucks will be used for condensate transportation and there will be no controls on emissions from water truck loading. Therefore, uncaptured VOC emissions are also estimated at 0.13 lb/day. As all daily loading will take place within a 1 hour period, the uncaptured/uncontrolled hourly emission rate is also estimated at 0.13 lb/hr.

Maximum annual throughput is 1,400 BBL per year (58,800 gallons per year). Thus, un-captured water loading VOC emissions are estimated at 2.27 pounds per year [58.8 x 0.16 x 24.1%] or <0.01 tons per year.

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC
Building D, Second Floor
98 Vanadium Road
Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number: 📟

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dloxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	1.397
Totals	100.000	12.514

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	-;
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	•
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

^{*}Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSi & 60 Deg F

Sampled By: (16) Gonzalez

Analyst: MR Processor: OA Cylinder ID: WF# 10S Certified: FESCO, Ltd.

David Dannhaus 361-661-7015

Alice, Texas

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8.096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.461
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0,159	1.145
2,2,4 Trimethylpentane	0.000 €	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	0.004	<u>0.002</u>	0.019
Totals	100,000	12,514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	•
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	RTU/CE

Fugitive Emissions Calculations

NGL Truck Loading Lost Emissions

As noted in the project overview, NGL will be produced and accumulated in a pressure vessel at this facility. NGL loading to a transport truck will be accomplished by simply connecting the tank truck to the pressurized storage vessel and allowing it to fill to the point where it equalizes with the pressure of the bulk storage tank or brought to the maximum pressure of the transport truck, depending upon the pressure rating of the transport truck and the operating pressure of the bulk storage tank. Thus, the only emissions are the small amount of NGL left in the connection line at the time of disconnection.

The gap between the valve for the tank truck and the valve for the bulk storage tank is estimated at 0.029 cubic feet. Using liquid propane as a surrogate for NGL, this represents a release of 0.90 lb of VOCs during each disconnect [31.12 lb/cf x 0.029 cf].

NGL will be loaded at a maximum rate of 16,000 BBL/yr. With an estimated 200 BBL/tank truck, this represents a maximum of 80 truckloads or 80 disconnects per year. Thus, annual VOC emissions from NGL loading will be 72 pounds [0.90 x 80] or 0.04 tpy.

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

PM PM-10

k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
p =	Number of days per year with precipitation >0.01 in.	157	157

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Produced Water Tanker Trucks	10	27	10	0.6	1	18	None	0
2	Condensate Truck	18	27	10	0.6	1	125	None	0
3	NGL Trucks	18	27	10	0.6	1	75	None	0
4	- 1								
5									
6									
7									
8									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s + 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

PM PM-10

		· · · · · · · · · · · · · · · · · · ·	
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S=	Mean vehicle speed (mph)	10	10
W=	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	М		PM-10			
Item No.	Uncon	trolled	Cont	rolled	Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	3.0	0.03	3.0	0.03	0.4	<0.01	0.4	< 0.01
2	3.8	0.24	3.8	0.24	0.51	0.03	0.51	0.03
3	3.8	0.14	3.8	0.14	0.51	0.02	0.51	0.02
4		1						
5								
6								
7					<u> </u>			
8							_	
TOTALS	10.6	0.41	10.6	0.41	1.42	0.05	1.42	0.05

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

1 =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	None						
2							
3							
4							
5							
6	1.16						
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads $E = 0.077 \times I \times (4 + n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W=	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT + trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb + VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncoi	ntrolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

VRG260 VRC2/3, 3 Stage (Note: assumed ideal gas behavior and used OD for volume calc)

ENTER the following Values:	Suction Pressure, psig Discharge Pressure, psig	20 450	Suction Temperature, F Discharge Temperature, F	120				
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles
	6.50	3.00	1,13	0.00	97	539	143	0.002
1st Stage Cylinder	4.00	3.00	1.13	0.00	35	739	287	0.001
2nd Stage Cylinder	2.25	3.00	1.13	0.00	9	739	450	0.000
3rd Stage Cylinder	2.25	3.00	The second state of the second					Calculated Moles
Scrubbers/Suction & Discharge Drums	OD, in	Height, in	Total Scrubber Volume, in			Temperature, R	Pressure, psig	0.024
lst Stage Scrubber	12.00	60.00	6786			539		0.035
2nd Stage Scrubber	8.00	48.00	2413			589	143	
3rd Stage Scrubber	8.00	48.00	2413			589	287	0.067
	No. of Tubes	OD, in	Length, in	Total Tube Volume, in ³		Temperature, R	Pressure, psig	Calculated Moles
Cooler Section	CONTRACTOR OF THE PROPERTY OF	0.63	60 .	313		739	143	0.004
st Stage Cooler Section	17		60	258		739	287	0.006
2nd Stage Cooler Section	14	0.63		258		739	450	0.009
3rd Stage Cooler Section	14	0.63	60	298				
Piping	OD, in	Length, in	Total Piping Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles
1st Stage Piping / Inlet vessel to compressor	4.00	54	679			539	20	0.002
rom Compressor to 1st cooler section.	3.00	132	933			739	143	0.011
From 1st cooler section to 1st interstage vessel	2.00	172	540			589	143	0.008
and Stage Piping / 1st interstage vessel to compres	3.00	87	615			589	143	0.009
From compressor to 2nd cooler section	2.00	112	352			739	287	0.008
From 2nd cooler section to 2nd interstage vessel	2.00	153	481			589	287	0.013
ord Stage Piping / 2nd interstage vessel to compres	3.00	91	643			589	287	0.018
From compressor to 3rd cooler section	2.00	107	336			739	450	0.011
	1.00	167	131			589	450	0.006
Bypass					Total Estimated Moles of Gas D			
				Tota	I Estimated Volume of Blowd	down Gas, ft ³ @ STF	(68F, 14.7 psia) =	89

G8.3 JGP2, 3 Stage (Note: assumed ideal gas behavior and used OD for volume calc)

ENTER the following Values:	Suction Pressure, psig Discharge Pressure, psig	60 1100	Suction Temperature, F Discharge Temperature, F	80 120				
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles
	6,50	3.00	1.13	0.00	97	539	347	0.003
1st Stage Cylinder	4.38	3.00	1.13	0.00	42	739	693	0.002
2nd Stage Cylinder	2.75	3.00	1.13	0.00	15	739	1100	0.001
3rd Stage Cylinder		Height, in	Total Scrubber Volume, in			Temperature, R	Pressure, psig	Calculated Mole
Scrubbers/Suction & Discharge Drums	OD, in		14476			539	60	0.108
1st Stage Scrubber	16.00	72.00	6673			579	347	0.225
2nd Stage Scrubber	12.00	59.00				579	693	0.440
3rd Stage Scrubber	12.00	59.00	6673			- Charles and the street of the street		
Cooler Section	No. of Tubes	OD, in	Length, in	Total Tube Volume, in ³		Temperature, R	Pressure, psig	Calculated Mole 0.023
Ist Stage Cooler Section	29	0.63	96	854		739	347	0.023
2nd Stage Cooler Section	23	0.63	96	677		739	693	0.058
3rd Stage Cooler Section	24	0.63	96	707		739	1100	CONTRACTOR OF STREET
Piping	OD, in	Length, in	Total Piping Volume, in ³			Temperature, R	Pressure, psig	Calculated Mole 0.011
1st Stage Piping / Inlet vessel to compressor	6.00	52	1470			539	347	0.049
rom Compressor to 1st cooler section.	4.00	148	1860			739	347	0.022
rom 1st cooler section to 1st interstage vessel	2.00	205	644			579 579	347	0.019
2nd Stage Piping / 1st interstage vessel to compres	4.00	44	553			739	693	0.020
From compressor to 2nd cooler section	2.00	124	390			579	693	0.047
From 2nd cooler section to 2nd interstage vessel	2.00	228	716			579	693	0.010
3rd Stage Piping / 2nd interstage vessel to compres	2.00	46	145			739	1100	0.037
From compressor to 3rd cooler section	2.00	144	452			579	1100	0.017
Bypass	1.00	214	168		Total Estimated Moles of Gas D			
				Tota	I Estimated Volume of Blowd	own Gas, ft @ 5 i P	(oor, 14./ psia) -	433

PIGGING EVENT VENTING VOLUME

Given:

$Q_a =$	64.00 Cubic feet	yields	1.8122752 Cubic Meters	Volume of receiver
P_i =	68.03 Atm	yields	6893.14 kPa	Pressure of Pipeline
$T_i =$	25.00 Deg C	yields	298.15 Deg K	Temperature in Pipeline
P _C =	1.00 Atm	yields	101.33 kPa	Ambient Pressure (Usually 1 ATM)
T _f =	25.00 Deg C	yields	298.15 Deg K	Ambient Temperature (Usually 10-25 Deg. C or Standard Temp -15Deg. C)
z _i =	0.84311			See Compressibility spreadsheet
$\mathbf{z}_{\mathbf{f}} =$	1.00111			See Compressibility spreadsheet

4929.48 Cubic Feet

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22-23

or

$$Q_i = Q_a \times (T_s/P_s) \times (Pi/(z_i * T_i)) - (P_f/(z_f * T_f))$$

139.587 Cubic Meters

Where:

 $Q_t =$

 Q_t = Total volume of gas released in cubic meters at STP (15 Deg C and 1 Atm)

Q_a = Actual volume of gas at process conditions in cubic meters

P_s = Standard Pressure in kPa (101.3)

 T_s = Standard Temperature in K (288.1)

z =Compressibility factor for the gas

i = initial pressure and temperature

f = final temperature and pressure (generally STP)

COMPRESSABILITY FACTOR

Given:

Pressure 1.0 Atm. 101.3 kPa

Temperature 25 Deg. C

Compressibility Factor (z) 1.0011085

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22.25

$$z = a + bP + cT + dP^2 + eT^2 + fPT$$

where

P = Pressure in kPa

T = Tepereature in Deg. C

a = 0.99187

b=-3.3501E-05

c=6.9652E-04

d=6.3134E-10

e=-8.6023E-06

f=2.3290E-07

COMPRESSABILITY FACTOR

Given:

Pressure 68.03 Atm. 6893.1 kPa 1000.04 PSIG

Temperature 25 Deg. C

Compressibility Factor (z) 0.8431113

Based on EPA's Addendum 1 to the Oil and Gas Production Protocol, Version 1.1, Equation 22.25

$$z = a + bP + cT + dP^{2} + eT^{2} + fPT$$

where

P = Pressure in kPa

T = Tepereature in Deg. C

a = 0.99187

b=-3.3501E-05

c=6.9652E-04

d=6.3134E-10

e=-8.6023E-06

f=2.3290E-07

Client Project Number
ICON MIDSTREAM PIPELINE, LLC 100102
Doc. No.: Blank

		BIG MOSES PROCESS	EQUIPMENT FUGITIVE EMISSIONS CONNECTIONS COUNT	
NE	QUANTITY	PFD ITEM	DESCRIPTION	COUNT
	1	SLUG CATCHER DUMP VALVE	NORRISEAL 1" DUMP VALVE	
		Connections	1" NPT 3/16 stainless steel tubing instrument gas connection Dump valve vents to atmosphere during dump cycle	2 1
	1	SLUG CATCHER LEVEL CONTROLLER	NORRISEAL LEVEL CONTROLLER	
		Connections	3/16 stainless steel tubing instrument gas connection	3
	1	LINE HEATER	.250 MBTU/HR DIRECT FIRED LINE HEATER	
	SPEC INFO	Heater Size	250MBtu/hr	
		Stack Height	10'	
		Stack Size Brand	8-5/8" OD (8-1/8" ID) Exterran	
		Fuel Heating Value BTU/FT3	1150	
		Connections	1/2" NPT	1
			1/2" Needle Valve 1" Ball Valve	1
STOATE				
5	SPEC INFO	HEATED SEPARATOR Heater Size	36" OD X 10' X 125# W.P. HORIZONTAL (3) PHASE DIRECT FIRED 250MBtu/hr	THEATED SEPARATUR - IMMBIU/HR
	3, 23, 11, 0	Stack Height	15'	
		Stack Size	8-5/8" OD (8-1/8" ID)	
		Brand	Valerus	
		Fuel Heating Value BTU/FT3	1150	
		Connections	1" Ball Valve	23
			1" NPT	51 2
			1" Regulator 1" Relief Valve	1
			1/2" Ball Valve	20
			1/2" Needle Valve	4
			1/2" NPT	50
			1/4" Ball Valve	1
			1/4" Needle Valve	2
			1/4" NPT	10
			2" Ball Valve	8
			2" BP Regulator	1
			2" Controller 2" NPT	2 25
			2" Relief Valve	1
			2" Valve Motor	1
			2x10 Float Valve	1
			3/16 stainless steel tubing instrument gas connection	2
			3/4" NPT	1
8	1	FLASH COMPRESSOR	NATURAL GAS DRIVER W/ LEROI HGF1000 SCREW COMPRESS	OR 47 HP
		Connections	6" ANSI 300 Flange	1
			2" ANSI 600 Flange	1
			1" NPT 1/2" NPT	3 2
10	1	VRU COMPRESSOR	NATURAL GAS CUMMINS W/ ARIEL JGP/2 1800 RPM 80 HP	
.0	1	Connections	6" ANSI 300 Flange	1
			2" ANSI 600 Flange	1
			1" NPT	3
			1/2" NPT	2

Client Project Number
ICON MIDSTREAM PIPELINE, LLC 100102
Doc. No.: Blank

NAME OF THE PERSON OF PERSONS ASSESSED.	POLICE AND ADDRESS OF		
11	2	CONDENSATE TANK	API 12F ATM 500 BBL, THIEF HATCH, FITTINGS, PRIME COATED, DELIVERED
		Brand	Waterford Tank
		Size	500 BBL
		Dimensions	15' 6" Wide x 16' High
		Daily Throughput	100 BBL/Day
		Tank Type	API 12F
		Tank Material	Steel
13	1	NGL TANK	18,000 GALLON NGL BULLET TANK W/ SADDLE
12 N 4 3 9 5		Brand	Waterford Tank
		Size	18,000 Gallon
		Dimensions	38' x 10'
		Daily Throughput	68 BBL/Day
		Tank Type	ASME Code, section VIII, Division I, II and III for 250 PSIG MAWP
		Tank Material	Steel
14	1	NGL LOAD OUT STATION	PUMP, METER, RETURN LINE, ETC.
		Connections	3" NPT 1
			1" NPT
15	1	WATER TANK	ATM 100 BBL
		Brand	Waterford Tank
		Size	100 BBL
		Dimensions	10' Wide x 8' High
		THE RESIDENCE TO SELECT A SECOND SECO	1 BBL/Day
		Daily Throughput	그 얼마나 가입니다 가입니다 그 그 사람이 되는 그들이 나를 보는 것이 되었다. 그는 그들은 그들은 그들은 그는 그들은 그를 보는 것이 없는 것이 없어요.
		Tank Type	API 12F
			그 일반으로 살아내려면 그는 사람들이 되었다. 그는 사람들은 그들이 나는 모든 사람들이 되었다면 하는 사람들이 되었다면 하는 사람들이 되었다. 그는 사람들이 되었다면 하는 것이 없는 사람들이 없는 사람들이 없다면 하는데 없다면

Connections

Station pipe connections are counted with the skid connections as they would be the other side of the flange/valve/thread.

Client Project Number
ICON MIDSTREAM PIPELINE, LLC 100102

Doc. No.: Blank
100102-0019-101915-0 BIG MOSES EQUIPMENT EMISSIONS INFORMATION

BIG MOSES EQUIPMENT FUGITIVE EMISSIONS COUNT

ITEM	QTY	PART NUMBER	DESCRIPTION
2	5	0.5 IN ON 2 IN THREADOLET	3000#, THREADOLET, ASTM A105 , ASME B 31.8
3	1	0.5 IN ON 3 IN THREADOLET	3000#, THREADOLET, ASTM A105 , ASME B 31.8
4	6	0.5 IN PIPE PLUG NPT	SOLID, HEX HEAD, 316 SS, B16.11, THREADED
9	2	12 IN 600# RFWN FLANGE	RFWN, STD BORE, CLASS 600, MSS-SP-44, F-52
10	12	18 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, MSS-SP-44, F-60
18	2	2 IN 600# CLASS PLUG VALVE	PLUG VALVE CLASS 600, A105, ASME B16.34
19	2	2 IN 600# RF BLIND FLANGE	RF, BLIND, CLASS 600, A105, B16.5
20	24	2 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, A105, B16.5
29	1	20 IN 600# RF BLIND FLANGE	RF, BLIND, CLASS 600, A105, B16.5
30	1	20 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, MSS-SP-44, F-60
37	2	3 IN 600# RF BLIND FLANGE	RF, BLIND, CLASS 600, A105, B16.5
38	12	3 IN 600# RFWN FLANGE	RFWN, STD BORE, CLASS 600, A105, B16.5
54	8	36 IN 600# RFWN FLANGE	RFWN, 34.25 IN BORE, CLASS 600, MSS-SP-44, F-65, ASME B16.47 SERIES A
	1	SLUG CATCHER DUMP VALVE	NORRISEAL 1" DUMP VALVE

LAUNCHER-RECEIVER NON-WELDED FITTING CONNECTIONS & VALVES SEE DRAWING	100102-D002 REV 1 SHEET 2 OF 2
---	--------------------------------

ITEM	QTY	PART NUMBER	DESCRIPTION
1	1	0.5 IN ON 20 IN THREADOLET	3000#, THREADOLET, ASTM A105 , ASME B 31.8
2	1	0.5 IN ON 24 IN THREADOLET	3000#, THREADOLET, ASTM A105 , ASME B 31.8
3	2	0.5 IN BALL VALVE THD 3000 CWP	3000 PSI, THRD, CS BODY, FP/RP, API 607, CS TRIM, PTFE SEAT, LO
4	2	0.5 IN PIPE PLUG NPT	SOLID, HEX HEAD, 316 SS, B16.11, THREADED
5	2	0.5 IN PIPE SECTION 1	XS, A106/A53/API 5L, GRADE B, PE
16	3	2 IN 600# CLASS PLUG VALVE	PLUG VALVE CLASS 600, A105, ASME B16.34
17	1	2 IN 600# CLASS VERTICAL CLOSURE	YALE 2225 PSIG MAX TEST PRESSURE
18	1	2 IN 600# RF THREADED FLANGE	RF, THREADED, CLASS 600, A105, B16.5
19	9	2 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, A105, B16.5
22	1	2 IN PIPE PLUG NPT	SOLID, HEX HEAD, A105, B16.11, THREADED
26	2	20 IN 600# CLASS BALL VALVE	CLASS 600 RF, FP, A216 WCB/WCC, TRUNNION, ENP BALL, API 607, GO
27	6	20 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, MSS-SP-44, F-60
37	1	24 IN TOW D2000 PIPELINE PIG CLOSURE	2225 PSIG MAX TEST PRESSURE
43	1	6 IN 600# CLASS BALL VALVE	CLASS 600 RF, RP, A216 WCB/WCC, TRUNNION, ENP BALL, API 607, GO
44	1	6 IN 600# CLASS VERTICAL CLOSURE	YALE 2225 PSIG MAX TEST PRESSURE
45	2	6 IN 600# RFWN FLANGE	RFWN, STD BORE, CLASS 600, A105, B16.5
48	1	8 IN 600# CLASS BALL VALVE	CLASS 600 RF, RP, A216 WCB/WCC, TRUNNION, ENP BALL, API 607, GO
49	1	8 IN 600# RF BLIND FLANGE	RF, BLIND, CLASS 600, A105, B16.5
50	5	8 IN 600# RFWN FLANGE	RFWN, STD BORE, CLASS 600, MSS-SP-44, F-42
59	2	TDW THREAD-O-RING NIPPLE	TDW 00-1023-0333-51

12" TIE-IN-BYPASS NON-WELDED FITTING CONNECTIONS & VALVES SEE DRAWING 100102-D007 REV 3

ITEM	QTY	PART NUMBER	DESCRIPTION
5	2	12 IN 600# CLASS BALL VALVE	CLASS 600 RF, RP, A216 WCB/WCC, TRUNNION, ENP BALL, API 607, GO
6	2	12 IN 600# RF BLIND FLANGE	RF, BLIND, CLASS 600, A105, B16.5
7	2	12 IN 600# RFWN FLANGE	RFWN, STD BORE, CLASS 600, MSS-SP-44, F-52
13	1	20 IN 600# CLASS BALL VALVE	CLASS 600 RF, FP, A216 WCB/WCC, TRUNNION, ENP BALL, API 607, GO
14	4	20 IN 600# RFWN FLANGE	RFWN, XS BORE, CLASS 600, MSS-SP-44, F-60

Certificate of Analysis

Number: 2030-14090166-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Sep. 17, 2014

Field:

Jay Bee Oil & Gas

Station Name: Big Moses Fuel Gas Before Skid

Station Number:

Sample Point: Submeter

Analyzed:

09/16/2014 16:23:04 by CC39

Sampled By:

TD-GAS

Sample Of:

Gas Spot

Sample Date:

09/09/2014 10:20

Sample Conditions: 900 psig Method: GPA 2286

Cylinder No:

0454

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.392	0.530		GPM TOTAL C2+	5.908	
Carbon Dioxide	0.154	0.327				
Methane	78.367	60.673				
Ethane	13.883	20.146	3.725			
Propane	4.458	9.487	1.232			
Iso-Butane	0.582	1.633	0.191			
n-Butane	1.145	3.212	0.362			
Iso-Pentane	0.297	1.034	0.109			
n-Pentane	0.296	1.031	0.107			
i-Hexanes	0.146	0.588	0.058			
n-Hexane	0.096	0.393	0.039			
Benzene	0.002	0.007	0.001			
Cyclohexane	0.011	0.044	0.004			
i-Heptanes	0.075	0.343	0.032			
n-Heptane	0.030	0.141	0.013			
Toluene	0.004	0.017	0.001			
i-Octanes	0.042	0.240	0.021			
n-Octane	0.008	0.041	0.004			
Ethylbenzene	NIL	0.001	NIL			
Xylenes	0.002	0.013	0.001			
i-Nonanes	0.006	0.049	0.004			
n-Nonane	0.002	0.012	0.001			
Decane Plus	0.002	0.038	0.003			
	100.000	100.000	5.908			
Physical Properties			Total	C10+	_	-
Calculated Molecular			20.72	144.93		
GPA 2172-09 Calcul Calculated Gross B		14.73 neis	& 60°F			
Real Gas Dry BTU	po @		1258.4	7711.6		
Water Sat. Gas Base	BTU		1236.5	77 11.6 7577.4		
Relative Density Real Gas			0.7176	5.0168		
Legative Deligity KHA						

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

SAYBOLT LP

Thomas Hogya

3915 SAW MILL RUN BLVD PITTSBURGH, PA 15227 Report Number:

57801-140803

Date Reported:

3/20/2014

Date Received:

3/18/2014

Analytical Report

Sample No. 140803-002 Sample ID 2014000147-02 (87-9505) Condensate

Date Sampled 3/14/2014

Tank 2, RPT8 Pad, Eureka Pipeline

Test Result Units Method Date Analyst

Detailed Hydrocarbon Analysis
Capillary Gas Chromatography See Attached ASTM D-6733 3/18/2014 CC

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

 Saybolt LP
 3/20/14

 Sample Number
 140803-002
 ASTM D-6733

 Sample ID
 2014000147-02 (87-9505) Condensate
 Page 1 of 7

Tank 2.RPT8 Pad, Eureka Pipeline 3/14/2014

Carbon Dioxide WT % LV % MOL % Carbon Dioxide 0.07 0.06 0.14 Methane 0.04 0.09 0.22 Ethane 0.37 0.70 1.07 Propane 3.40 4.51 6.71 Isobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 2,2-Dimethylpropane 0.22 0.25 0.27 ⇒ 70 T → Fact Isopentane 7.54 8.11 9.09 N-Perlane 9.88 10.54 11.92 2,2-Dimethylbutane 0.34 0.35 0.35 ⇒ 70 → Fact 2,2-Dimethylbutane 0.66 0.66 0.66 0.66 2,3-Dimethylpentane 3.67 3.75 3.71 0.6 3-Methylpentane 2.42 2.43 2.44 N-Heisane 6.34 6.42 6.40 2,2-Dimethylpentane 0.24 0.21 0.18 → Te C T Methylocopentane 0.49 0.43 0.50 → Te C	Tank 2,RPT8 Pad, Eureka Pipeline 3	3/14/2014		
Methane 0.04 0.09 0.22 Ethane 0.37 0.70 1.07 Propane 3.40 4.51 6.71 Isobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 2,2-Dimethylpropane 0.22 0.25 0.27 ⇒ 77 1-part Isopentane 7.54 8.11 9.09 N-Petane 9.88 10.54 11.92 2.2-Dimethylbutane 0.34 0.35 0.35 ⇒ 75 7.54 6.11 9.09 N-Petane 0.06 0.06 0.08 0.08 ⇒ 12 - Part 6.06 0.08 0.08 0.06 0.08 0.08 0.06 0.08 0.08 0.06 0.08 0.06 0.08 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56		WT %	LV %	MOL %
Methane 0.04 0.09 0.22 Ethane 0.37 0.70 1.07 Propane 3.40 4.51 6.71 Isobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 2,2-Dimethylpropane 0.22 0.25 0.27 ⇒ 70 1.5± ↑ Isopentane 7.54 8.11 9.09 N-Perlane 9.88 10.54 11.92 2,2-Dimethylbutane 0.34 0.35 0.35 ⇒ 75 3.75 0.35 0.35 ⇒ 75 3.71 0.35 0.35 ⇒ 75 3.71 0.35 0.35 ⇒ 75 3.71 0.66 0.60 0.66 0.60 0.66 0.60 0.66 <	Carbon Dioxide	0.07	0.06	0.14
Propane 3.40 4.51 6.71 Isobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 2,2-Dimethylpropane 0.22 0.25 0.27 ₹ 70 1 - Part Isopentane 7.54 8.11 9.09 N-Pentane 9.88 10.54 11.92 2,2-Dimethylbutane 0.34 0.35 0.35 ₹ 70 € € Cyclopentane 0.06 0.06 0.08 ₹ 70 € € 2,3-Dimethylbutane 0.56 0.56 0.56 2,3-Dimethylpentane 2.42 2.43 2.44 N-Hexane 6.34 6.42 6.40 2,2-Dimethylpentane 0.21 0.21 0.18 ₹ 70 € € 2,2-Dimethylpentane 0.32 0.32 0.32 0.32 0.28 ₹ 70 € € 2,2,3-Trimethylpentane 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0		0.04	0.09	0.22
Sobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 15.75 15	Ethane	0.37	0.70	1.07
Sobutane 2.58 3.08 3.86 N-Butane 9.84 11.33 14.73 14.73 12.2-Dimethylpropane 0.22 0.25 0.27 = 77 12-part 15-part 1	Propane	3.40	4.51	6.71
2,2-Dimethylpropane 0.22 0.25 0.27 3 TO I - Part		2.58	3.08	3.86
Isopentane	N-Butane	9.84	11.33	14.73
N-Pentane 2,2-Dimethylbutane 0,34 0,35 0,35 ⇒ To Lemark 6 Cyclopentane 0,06 0,06 0,08 0,08 0,06 0,08 0,06 0,08 0,06 0,08 0,06 0,08 0,06 0,06	2,2-Dimethylpropane	0.22	0.25	0.27 3 TO I-Pant
2,2-Dimethylbutane 0.34 0.35 0.35 ⇒ To track to Cyclopentane 2,3-Dimethylbutane 0.06 0.06 0.08 ⇒ pc f point 2,3-Dimethylpentane 3.67 3.75 3.71 c.c. 3-Methylpentane 2.42 2.43 2.44 N-Hexane 6.34 6.42 6.40 2,2-Dimethylpentane 0.21 0.21 0.18 → To CT Methylcyclopentane 0.49 0.43 0.50 → To CE 2,4-Dimethylpentane 0.32 0.32 0.28 → To CT 2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 → To CG 3,3-Dimethylpentane 0.14 0.14 0.13 → To CG 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 C ≠ Cis-1, 3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,2-dimethylcyclopentane 0.02 0.02 0.01 <td>Isopentane</td> <td>7.54</td> <td>8.11</td> <td>9.09</td>	Isopentane	7.54	8.11	9.09
2,3-Dimethylbutane 3.67 3.75 3.71 C.C. 2-Methylpentane 3.67 3.75 3.71 C.C. 3-Methylpentane 2.42 2.43 2.44 N-Hexane 6.34 6.42 6.40 2,2-Dimethylpentane 0.21 0.21 0.18 -Te-CT Methylcyclopentane 0.49 0.43 0.50 -77e C.C. 2,4-Dimethylpentane 0.32 0.32 0.28 To-CT 2,4-Dimethylpentane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 -7e-CT 3,3-Dimethylpentane 0.14 0.14 0.13 -7e-CT Cyclohexane 0.88 0.76 0.91 -77e-CC 2-Methylhexane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 0.09 0.08 0.08 3-Methylhexane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.01 0.18 2,2,4-Trimethylcyclopentane 0.02 0.02 0.01 - C.C. N-Heptane 0.03 0.32 0.31 0.25 - C.C. 1,1-Dimethylcyclopentane 0.18 0.18 1,1,3-Trimethylcyclopentane 0.01 0.10 0.10 2,5-Dimethylpentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylpentane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C.	N-Pentane	9.88	10.54	11.92
2,3-Dimethylbutane 3.67 3.75 3.71 C.C. 2-Methylpentane 3.67 3.75 3.71 C.C. 3-Methylpentane 2.42 2.43 2.44 N-Hexane 6.34 6.42 6.40 2,2-Dimethylpentane 0.21 0.21 0.18 -Te-CT Methylcyclopentane 0.49 0.43 0.50 -77e C.C. 2,4-Dimethylpentane 0.32 0.32 0.28 To-CT 2,4-Dimethylpentane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 -7e-CT 3,3-Dimethylpentane 0.14 0.14 0.13 -7e-CT Cyclohexane 0.88 0.76 0.91 -77e-CC 2-Methylhexane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 0.09 0.08 0.08 3-Methylhexane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.01 0.18 2,2,4-Trimethylcyclopentane 0.02 0.02 0.01 - C.C. N-Heptane 0.03 0.32 0.31 0.25 - C.C. 1,1-Dimethylcyclopentane 0.18 0.18 1,1,3-Trimethylcyclopentane 0.01 0.10 0.10 2,5-Dimethylpentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylpentane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C.	2,2-Dimethylbutane	0.34	0.35	0.35 -> To fatter C. 6
2,3-Dimethylbutane 3.67 3.75 3.71 C.C. 2-Methylpentane 3.67 3.75 3.71 C.C. 3-Methylpentane 2.42 2.43 2.44 N-Hexane 6.34 6.42 6.40 2,2-Dimethylpentane 0.21 0.21 0.18 -Te-CT Methylcyclopentane 0.49 0.43 0.50 -77e C.C. 2,4-Dimethylpentane 0.32 0.32 0.28 To-CT 2,4-Dimethylpentane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 -7e-CT 3,3-Dimethylpentane 0.14 0.14 0.13 -7e-CT Cyclohexane 0.88 0.76 0.91 -77e-CC 2-Methylhexane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 0.09 0.08 0.08 3-Methylhexane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.01 0.18 2,2,4-Trimethylcyclopentane 0.02 0.02 0.01 - C.C. N-Heptane 0.03 0.32 0.31 0.25 - C.C. 1,1-Dimethylcyclopentane 0.18 0.18 1,1,3-Trimethylcyclopentane 0.01 0.10 0.10 2,5-Dimethylpentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.32 0.31 0.25 - C.C. 2,4-Dimethylpentane 0.32 0.31 0.25 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C. 2,4-Dimethylhexane 0.41 0.39 0.32 - C.C.	Cyclopentane	0.06	0.06	0.08 -> To I- Pont
3-Methylpentane N-Hexane 0.34 0.44 0.40 0.21 0.21 0.21 0.18 0.18 0.50 0.75 0.66 0.49 0.43 0.50 0.75 0.66 0.49 0.43 0.50 0.75 0.66 0.49 0.43 0.50 0.75 0.66 0.75 0.66 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	2,3-Dimethylbutane	0.56	0,56	0.56
3-Methylpentane N-Hexane 2,42 2,43 8,44 N-Hexane 3,34 8,42 8,40 8,40 8,41 8,42 8,40 8,40 8,41 8,42 8,40 8,42 8,40 8,40 8,41 8,41 8,42 8,40 8,42 8,40 8,40 8,41 8,41 8,42 8,40 8,41 8,41 8,42 8,40 8,41 8,41 8,41 8,42 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41	2-Methylpentane	3.67	3.75	3.71 6 66
2,2-Dimethylpentane 0.21 0.21 0.18 - To CT Methylcyclopentane 0.49 0.43 0.50 - 7 to CE 2,4-Dimethylpentane 0.32 0.32 0.28 > To CT 2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 - 7 to CT 3,3-Dimethylpentane 0.14 0.14 0.13 - 7 to CT Cyclohexane 0.88 0.76 0.91 - 7 to CT 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 CF Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 CF N-Heptane 4.61 4.50 4.00 CF Methylcyclohexane 2.75 2.38 2.43 -1 </td <td>3-Methylpentane</td> <td>2.42</td> <td>2.43</td> <td></td>	3-Methylpentane	2.42	2.43	
2,4-Dimethylpentane 0.32 0.32 0.28 70 64 2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 3 76 64 3,3-Dimethylpentane 0.14 0.14 0.13 776 64 Cyclohexane 0.88 0.76 0.91 776 64 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 CF Cis-1,3-dimethylcyclopentane 0.14 0.12 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.18 0.18 2,2,4-Trimethylpentane 4.61 4.50 4.00 N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.12 0.10 0.14 Ethylcyclopent	N-Hexane	6.34	6.42	6.40
2,4-Dimethylpentane 0.32 0.32 0.28 70 64 2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 3 76 64 3,3-Dimethylpentane 0.14 0.14 0.13 776 64 Cyclohexane 0.88 0.76 0.91 776 64 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 CF Cis-1,3-dimethylcyclopentane 0.14 0.12 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.18 0.18 2,2,4-Trimethylpentane 4.61 4.50 4.00 N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.12 0.10 0.14 Ethylcyclopent	2,2-Dimethylpentane	0.21	0.21	0.18 - TO CI
2,4-Dimethylpentane 0.32 0.32 0.28 70 64 2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 3 76 64 3,3-Dimethylpentane 0.14 0.14 0.13 776 64 Cyclohexane 0.88 0.76 0.91 776 64 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 CF Cis-1,3-dimethylcyclopentane 0.14 0.12 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.18 0.18 2,2,4-Trimethylpentane 4.61 4.50 4.00 N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.12 0.10 0.14 Ethylcyclopent	Methylcyclopentane	0.49	0.43	0.50 -7 TO CE
2,2,3-Trimethylbutane 0.05 0.05 0.05 Benzene 0.10 0.08 0.11 3 - 7	2,4-Dimethylpentane	0.32	0.32	0.28 > TO 67
3,3-Dimethylpentane 0.14 0.14 0.13 370 C4 Cyclohexane 0.88 0.76 0.91 770 C6 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 C7 Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 0.12 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 - 8 N-Heptane 4.61 4.50 4.00 - 8 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.02 0.01 0.00 2,5-Dimethylhexane 0.032 0.31 0.25 - 68 2,4-Dimethylhexa	2,2,3-Trimethylbutane	0.05	0.05	0.05
Cyclohexane 0.88 0.76 0.91 770 66 2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 -68 N-Heptane 4.61 4.50 4.00 -68 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - 68 2,4-Dimethylhexane 0.41 0.39 0.32 - 68	Benzene	0.10	0.08	0.11 7 to CE
2-Methylhexane 2.55 2.51 2.21 2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 CF Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 0.18 0.18 2,2,4-Trimethylcyclopentane 0.02 0.02 0.01 CF N-Heptane 4.61 4.50 4.00 CF Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 CF 2,4-Dimethylhexane 0.41 0.39 0.32 0.32	3,3-Dimethylpentane	0.14	0.14	0.13 -7 TO C.7
2,3-Dimethylpentane 0.59 0.57 0.52 1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 -<8	Cyclohexane	0.88	0.76	0.91 -7 TO CG
1,1-Dimethylcyclopentane 0.09 0.08 0.08 3-Methylhexane 2.65 2.57 2.30 Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 - N-Heptane 4.61 4.50 4.00 - Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 2,4-Dimethylhexane 0.41 0.39 0.32	2-Methylhexane	2.55	2.51	2.21
3-Methylhexane 2.65 2.57 2.30 Cis-1,3-dimethylcyclopentane 0.15 0.14 0.14 Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.02 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 0.01 N-Heptane 4.61 4.50 4.00 0.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 2,4-Dimethylhexane 0.41 0.39 0.32	2,3-Dimethylpentane	0.59	0.57	0.52
Cis-1,3-dimethylcyclopentane Cis-1,3-dimethylcyclopentane 0.15 0.14 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.03	1,1-Dimethylcyclopentane	0.09	0.08	0.08
Trans-1,3-dimethylcyclopentane 0.14 0.12 0.12 3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 - 6 N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - 68 2,4-Dimethylhexane 0.41 0.39 0.32 - 68	3-Methylhexane	2.65	2.57	2.30 > C7
3-Ethylpentane 0.23 0.22 0.20 Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 - 6 N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 - 68 2,4-Dimethylhexane 0.41 0.39 0.32 - 68	Cis-1,3-dimethylcyclopentane	0.15	0.14	0.14
Trans-1,2-dimethylcyclopentane 0.20 0.18 0.18 2,2,4-Trimethylpentane 0.02 0.02 0.01 - 6 N-Heptane 4.61 4.50 4.00 - 6 Methylcyclohexane 2.75 2.38 2.43 - 6 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 - 6 Ethylcyclopentane 0.12 0.10 0.10 - 6 2,5-Dimethylhexane 0.32 0.31 0.25 - 6 2,4-Dimethylhexane 0.41 0.39 0.32 - 6	Trans-1,3-dimethylcyclopentane	0.14	0.12	0.12
2,2,4-Trimethylpentane 0.02 0.02 0.01 - 6 N-Heptane 4.61 4.50 4.00 - 6 Methylcyclohexane 2.75 2.38 2.43 - 6 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 - 6 Ethylcyclopentane 0.12 0.10 0.10 - 6 2,5-Dimethylhexane 0.32 0.31 0.25 - 6 2,4-Dimethylhexane 0.41 0.39 0.32 - 6	3-Ethylpentane	0.23	0.22	0.20
N-Heptane 4.61 4.50 4.00 Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 2,4-Dimethylhexane 0.41 0.39 0.32	Trans-1,2-dimethylcyclopentane	0.20	0.18	
Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 2,4-Dimethylhexane 0.41 0.39 0.32	2,2,4-Trimethylpentane	0.02	0.02	0.01 - < 8
Methylcyclohexane 2.75 2.38 2.43 1,1,3-Trimethylcyclopentane 0.18 0.16 0.14 Ethylcyclopentane 0.12 0.10 0.10 2,5-Dimethylhexane 0.32 0.31 0.25 2,4-Dimethylhexane 0.41 0.39 0.32	N-Heptane			
Ethylcyclopentane 0.12 0.10 0.10/ 2,5-Dimethylhexane 0.32 0.31 0.25 - 3 2,4-Dimethylhexane 0.41 0.39 0.32 - 3	Methylcyclohexane	2.75	2.38	2.43
2,5-Dimethylhexane 0.32 0.31 0.25 - 6 - 8 2,4-Dimethylhexane 0.41 0.39 0.32 - 6 - 8	1,1,3-Trimethylcyclopentane	0.18	0.16	0.14 /
2,4-Dimethylhexane 0.41 0.39 0.32 < 8	Ethylcyclopentane	0.12	0.10	
	2,5-Dimethylhexane		0.31	
	2,4-Dimethylhexane	0.41	0.39	
	Trans,cis-1,2,4-trimethylcyclopentane	0.07	0.06	0.06 - 68
3,3-Dimethylhexane 0.13 0.12 0.10-CF	STATE OF THE STATE			

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP

Sample ID

Sample Number

140803-002

2014000147-02 (87-9505) Condensate

Tank 2,RPT8 Pad, Eureka Pipeline 3/14/2014

3/20/14 **ASTM D-6733** Page 2 of 7

	WT %	LV %	MOL %
Trans,cis-1,2,3-trimethylcyclopentane	0.05	0.05	0.04
2,3,4-Trimethylpentane	0.03	0.03	0.02
Toluene	0.58	0.44	(0.54)
2,3,3-Trimethylpentane	0.03	0.03	0.02
2,3-Dimethylhexane	0.32	0.30	0.25
2-Methyl-3-Ethylpentane	0.06	0.06	0.05
2-Methylheptane	1.63	1.56	1.24
4-Methylheptane	0.80	0.76	0.61
3,4-Dimethylhexane	0.07	0.07	0.05
3-Methylheptane	2.43	2.30	1.85
3-Ethylhexane	0.29	0.27	0.22 -
Trans-1,4-dimethylcyclohexane	0.32	0.28	0.25
1,1-Dimethylcyclohexane	0.13	0.11	0.10
Trans-1-ethyl-3-methylcyclopentane	0.07	0.06	0.06
Cis-1-ethyl-3-methylcyclopentane	0.05	0.05	0.04
Trans-1-ethyl-2-methylcyclopentane	0.05	0.04	0.03
Trans-1,2,dimethylcyclohexane	0.23	0.20	0.18
N-Octane	3.10	2.95	2.36
Isopropylcyclopentane	0.02	0.02	0.01 - < 8
2,4,4-Trimethylhexane	0.01	0.01	0.01 - 69
2,3,5-Trimethylhexane	0.05	0.04	0.03
Cis-1-ethyl-2-methylcyclopentane	0.02	0.02	0.01
2,2-Dimethylheptane	0.07	0.07	0.05
Cis-1,2-dimethylcyclohexane	0.07	0.06	0.06
2,4-Dimethylheptane	0.21	0.19	0.14
4,4-Dimethylheptane	0.03	0.03	0.02
Ethylcyclohexane	0.39	0.33	0.30 - 68
2-Methyl-4-ethylhexane	0.05	0.04	0.03
2,6-Dimethylheptane	0.21	0.19	0.14
1,1,3-Trimethylcyclohexane	0.07	0.06	0.05
2,5-Dimethylheptane	0.43	0.40	0.29
3,5-Dimethylheptane	0.13	0.12	0.09
C9 Naphthene	0.01	0.01	0.01
C9 Naphthene	0.01	0.01	0.01
Ethylbenzene	0.06	0.05	0.05 - 50
2,3,4,Trimethylhexane	0.19	0.17	0.13 - (-9
Cis,trans,1,3,5-trimethylcyclohexane	0.02	0.02	0.01 -6-6
3,3,4,Trimethylhexane	0.04	0.03	0.02
Meta-Xylene	0.51	0.40	0.42 - 608

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP Sample Number Sample ID

140803-002

2014000147-02 (87-9505) Condensate

Tank 2, RPT8 Pad, Eureka Pipeline 3/14/2014

3/20/14 ASTM D-6733 Page 3 of 7

WT % LV % MOL % 0.15 - 288 Para-Xylene 0.19 0.15 0.13 0.19 0.17 2,3-Dimethylheptane 0.06 0.06 0.04 3,4-Dimethylheptane D/L 0.08 0.07 0.05 3,4-Dimethylheptane L/D 0.17 0.16 0.12 4-Ethylheptane 0.49 0.73 0.68 4-Methyloctane 2-Methyloctane 0.82 0.77 0.56 0.01 0.01 0.01 Trans, cis, 1, 2, 4, trimethylcyclohexane 3-Ethylheptane 0.21 0.19 0.14 0.86 0.80 0.59 3-Methyloctane Cis,trans,1,2,4,trimethylcyclohexane 0.01 0.01 0.01 0.01 Cis,cis,1,2,4,trimethylcyclohexane 0.02 0.02 -118 0.12 Ortho-Xylene 0.14 0.11 0.02 0.04 0.03 Trans-1-Methyl-2-propylcyclopentane 0.12 0.17 0.14 Cis-1-ethyl-3-methylcyclohexane 0.06 0.05 0.07 Trans-1-ethyl-4-methylcyclohexane 0.01 0.01 0.01 Isobutylcyclopentane 0.01 0.01 0.01 1-Ethyl-1-methylcyclohexane 0.02 0.02 0.01 Cis.trans,1,2,3,trimethylcyclohexane 0.02 0.02 0.01 Trans, trans, 1,2,3, trimethylcyclohexane 1.83 1.70 1.24 N-Nonane 0.10 0.08 0.07 Trans-1-ethyl-3-methylcyclohexane 0.02 0.04 0.03 Trans-1-ethyl-2-methylcyclohexane Cis-1-ethyl-4-methylcyclohexane 0.04 0.03 0.02 0.02 0.01 0.01 Isopropylbenzene 0.05 0.04 0.03 Isopropylcyclohexane 0.17 0.16 0.10 2,4-Dimethyloctane 2,6-Dimethyloctane 0.10 0.09 0.06 0.04 0.03 0.02 2,5-Dimethyloctane 0.32 0.27 0.22 N-propylcyclohexane 0.06 0.09 0.08 3,5-Dimethyloctane 0.22 0.20 0.13 2,7-Dimethyloctane 0.03 n-Propylbenzene 0.04 0.03 0.04 3.6-Dimethyloctane 0.07 0.07 0.02 0.03 0.02 3,3-Dimethyloctane 0.12 0.11 1-Methyl-3-ethylbenzene 0.15 0.07 0.08 0.10 1-Methyl-4-ethylbenzene 0.01 2,3-Dimethyloctane 0.01 0.01 0.23 0.32 0.25 1,3,5-Trimethylbenzene

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP Sample Number Sample ID

140803-002

2014000147-02 (87-9505) Condensate

Tank 2,RPT8 Pad, Eureka Pipeline 3/14/2014

3/20/14

ASTM D-6733

Page 4 of 7

### Big Bi	Tank 2,RPT8 Pag, Eureka Pipeline 3/1	4/2014		
C10 Naphthene 0.01 0.01 0.01 5-Methylnonane 0.23 0.21 0.14 4-Methylnonane 0.42 0.39 0.26 1-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.11 0.10 0.07 3-Ethyloctane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans 1,4 diethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 sec-Butylbenzene 0.05		WT %	LV %	MOL %
C10 Naphthene 0.01 0.01 0.01 5-Methylnonane 0.23 0.21 0.14 4-Methylnonane 0.42 0.39 0.26 1-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.11 0.10 0.07 1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 8ce-Butylbenzene 0.05 <td>4-Ethyloctane</td> <td>0.20</td> <td>0.18</td> <td>0.12</td>	4-Ethyloctane	0.20	0.18	0.12
5-Methylnonane 0.23 0.21 0.14 4-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.01 0.01 0.07 1,2,3,5 Tel-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tel-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1, 4 diethylcyclohexane 0.08 0.07 0.05 Trans 1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 sec-Butylbe		0.01	0.01	0.01
4-Methylnonane 0.42 0.39 0.26 1-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.11 0.10 0.07 1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1, 4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-E		0.23	0.21	0.14
1-Methyl-2-ethylbenzene 0.02 0.01 0.01 2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.11 0.10 0.07 1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1, 4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.02 1-Decane 1.19 1.09 0.73 C10 Napht		0.42	0.39	0.26
2-Methylnonane 0.45 0.41 0.28 3-Ethyloctane 0.11 0.10 0.07 1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.06 0.05 0.04 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1, 4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.03 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcy		0.02	0.01	0.01
3-Ethyloctane 0.11 0.10 0.07 1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans 1,4 diethylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Subtylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.05 0.04 0.04 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.02 1-Methyl-3-isopropylbenzene 0.0	2-Methylnonane	0.45	0.41	0.28
1,2,3,5 Tet-methylcyclohexane 0.02 0.02 0.01 3-Methylnonane 0.47 0.43 0.29 1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-4-isopropylbenzene		0.11	0.10	0.07
1,2,3,4 Tet-methylcyclohexane 0.03 0.02 0.02 C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 1-Ethyl-2,3-dimethylcyclohexane 0.05 0.04 0.04 sec-Butylbenzene 0.05 0.04 0.04 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.02 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-4-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.06 0.04 0.05		0.02	0.02	0.01
C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.02 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane	3-Methylnonane	0.47	0.43	0.29
C10 Naphthenes 0.06 0.05 0.04 C10 Paraffin 0.03 0.02 0.02 1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.02 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane	1,2,3,4 Tet-methylcyclohexane	0.03	0.02	0.02
1,2,4-Trimethylbenzene 0.19 0.14 0.14 Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.02 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-	C10 Naphthenes	0.06	0.05	0.04
Cis-1-methyl-3-propylcyclohexane 0.06 0.05 0.04 Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.06 0.04 0.05 5ec-butylcyclohexane 0.06 0.04 0.05 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-4-n-propylbenzene 0.13 0.10 0.08 1-Met		0.03	0.02	0.02
Trans 1,4 diethylcyclohexane 0.08 0.07 0.05 Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.06 0.04 0.05 1-Methyl-2-isopropylbenzene 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-	1,2,4-Trimethylbenzene	0.19	0.14	0.14
Trans-1-methyl-3-propylcyclohexane 0.01 0.01 0.01 1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.06 0.04 0.05 Sec-butylcyclohexane 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.01 0.03 0.02 N-Butylbenzene	Cis-1-methyl-3-propylcyclohexane	0.06	0.05	0.04
1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene <t< td=""><td></td><td>0.08</td><td>0.07</td><td>0.05</td></t<>		0.08	0.07	0.05
1-Ethyl-2,3-dimethylcyclohexane 0.02 0.02 0.01 Isobutylbenzene 0.05 0.04 0.04 sec-Butylbenzene 0.03 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.01 0.01 0.02 N-Butylbenzene 0.04 0.03 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.	Trans-1-methyl-3-propylcyclohexane	0.01	0.01	0.01
Sobutylbenzene 0.05 0.04 0.04 Sec-Butylbenzene 0.03 0.02 0.02 0.02 N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 0.01 1.2,3-Trimethylbenzene 0.05 0.03 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 0.05 0.03 0.05		0.02	0.02	0.01
N-Decane 1.19 1.09 0.73 C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03		0.05	0.04	0.04
C10 Naphthene 0.02 0.02 0.01 Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	sec-Butylbenzene	0.03	0.02	0.02
Trans 1,3 diethylcyclohexane 0.01 0.01 0.01 1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	N-Decane	1.19	1.09	0.73
1,2,3-Trimethylbenzene 0.05 0.03 0.03 1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	C10 Naphthene	0.02	0.02	0.01
1-Methyl-3-isopropylbenzene 0.04 0.03 0.02 1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	Trans 1,3 diethylcyclohexane	0.01	0.01	0.01
1-Methyl-4-isopropylbenzene 0.03 0.02 0.02 Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1,2,3-Trimethylbenzene	0.05	0.03	
Indan (2,3-Dihydroindene) 0.06 0.04 0.05 Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1-Methyl-3-isopropylbenzene	0.04	0.03	
Sec-butylcyclohexane 0.09 0.08 0.06 1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1-Methyl-4-isopropylbenzene	0.03	0.02	
1-Methyl-2-isopropylbenzene 0.14 0.11 0.09 Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	Indan (2,3-Dihydroindene)		0.04	
Butylcyclohexane 0.04 0.03 0.02 1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	Sec-butylcyclohexane	0.09	0.08	0.06
1-Methyl-3-n-propylbenzene 0.13 0.10 0.08 1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1-Methyl-2-isopropylbenzene	0.14	0.11	
1-Methyl-4-n-propylbenzene 0.11 0.08 0.07 1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	Butylcyclohexane	0.04	0.03	
1,4-Diethylbenzene 0.03 0.02 0.02 N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1-Methyl-3-n-propylbenzene	0.13	0.10	
N-Butylbenzene 0.04 0.03 0.02 1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1-Methyl-4-n-propylbenzene	0.11	0.08	
1,3-Dimethyl-5-ethylbenzene 0.05 0.03 0.03 1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1,4-Diethylbenzene	0.03	0.02	0.02
1,2-Diethylbenzene 0.02 0.01 0.01 1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	N-Butylbenzene	0.04	0.03	0.02
1-Methyl-2-n-propylbenzene 0.05 0.03 0.03	1,3-Dimethyl-5-ethylbenzene	0.05	0.03	
	1,2-Diethylbenzene	0.02	0.01	0.01
5-Methyldecane 0.15 0.14 0.09	1-Methyl-2-n-propylbenzene	0.05	0.03	0.03
	5-Methyldecane	0.15	0.14	0.09
4-Methyldecane 0.23 0.21 0.13	4-Methyldecane			
2-Methyldecane 0.22 0.19 0.12	2-Methyldecane	0.22	0.19	0.12

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP

Sample Number

140803-002

ASTM D-6733

Sample ID

2014000147-02 (87-9505) Condensate

Page 5 of 7

3/20/14

Tank 2, RPT8 Pad, Eureka Pipeline 3/14/2014

W	Γ% LV	% MOL %
1,3-Dimethyl-4-ethylbenzene	0.02 0.	01 0.01
		27 0.17
		18 0.17
VAC 14-3-7-70-7-20-00-7-7-7-00-00-00-00-00-00-00-00-00-00		05 0.04
		01 0.01
		02 0.02
		06 0.04
		38 0.22
- 1.1 (75 0.46
		.03 0.02
		.01 0.01
		.64 0.41
		.05 0.05
	0.08 0.	.06 0.05
		.03 0.02
	0.02 0.	.01 0.01
	0.08 0.	.07 0.04
	0.14 0.	.13 0.07
	0.14 0.	.13 0.07
	0.02 0.	.01 0.01
	0.17 0.	.12 0.12
	0.05 0.	.03 0.03
	0.02 0.	.01 0.01
	0.14 0.	.13 0.07
	0.27 0.	.21 0.16
N-Dodecane	0.58 0.	.51 0.29
1,3,5-triethylbenzene	0.05 0.	.04 0.03
1,3 Dimethylindan	0.01 0.	.01 0.01
5,6 Dimethylindan	0.02 0.	.01 0.01
1,2,4-triethylbenzene	0.05	.03 0.02
	0.01 0.	.01 0.01
	0.07 0.	.05 0.04
Tridecanes	1.31 1.	.08 0.65
N-Tridecane	0.42 0.	.37 0.20
1-Methylnaphthalene	0.02 0.	.01 0.01
Tetradecanes	0.91 0.	.74 0.42
N-Tetradecane	0.26 0.	.23 0.11
Pentadecanes	0.51 0.	.41 0.22
N-Pentadecane	0.15 0.	.13 0.06

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP Sample Number

Sample ID

140803-002

2014000147-02 (87-9505) Condensate

ASTM D-6733

Page 6 of 7

3/20/14

Tank 2,RPT8 Pad, Eureka Pipeline 3/14/2014

Tank 2,RPT8 Pad, Eureka Pipeline 3/1	4/2014		
	WT %	LV %	MOL %
Hexadecanes	0.23	0.19	0.09
N-Hexadecane	0.10	0.09	0.04
Heptadecanes	0.14	0.11	0.05
N-Heptadecane	0.05	0.05	0.02
Pristane	0.02	0.02	0.01
Octadecanes	0.04	0.03	0.01
N-Octadecane	0.04	0.03	0.01
Nonadecanes	0.02	0.01	0.01
N-Nonadecane	0.03	0.02	0.01
N-Eicosane	0.02	0.02	0.01
Heneicosanes	0.01	0.01	0.00
Unidentified	0.67	0.61	0.35
Total	100.00	100.00	100.00
Total Paraffins	38.18	39.79	42.13
Total Isoparaffins	39.59	39.58	36.81
Total Naphthenes	8.06	7.02	6.85
Total Aromatics	4.62	3.46	3.39
Unclassified	9.56	10.15	10.82
Total C4	12.42	14.41	18.59
Total C5	17.70	18.96	21.36
Total C6	14.80	14.78	14.98
Total C7	15.36	14.53	13.46
Total C8	12.20	11.32	9.37
Total C9	8.31	7.48	5.69
Total C10	5.76	4.98	3.62
Total C11	2.70	2.35	1.52
Total C12	1.19	1.04	0.59
C4 Paraffin	9.84	11.33	14.73
C5 Paraffin	9.88	10.54	11.92
C6 Paraffin	6.34	6.42	6.40
C7 Paraffin	4.61	4.50	4.00
C8 Paraffin	3.10	2.95	2.36
C9 Paraffin	1.83	1.70	1.24
C10 Paraffin	1.19	1.09	0.73
C11 Paraffin	0.83	0.75	0.46
C12 Paraffin	0.58	0.51	0.29
C4 Isoparaffin	2.58	3.08	3.86
C5 Isoparaffin	7.76	8.36	9.36
C6 Isoparaffin	6.99	7.09	7.06

201 Deerwood Glen Dr Deer Park, TX 77536 281-478-1300

Saybolt LP

Sample Number

140803-002

2014000147-02 (87-9505) Condensate

3/20/14

ASTM D-6733

Page 7 of 7

Sample ID	2014000147-02 (87-9505) Condensate				Page 7 of 7	
	Tank 2,RPT8 Pad, Eurek	ca Pipeline 3/14/	2014			
			WT %	LV %	MOL %	
C7 Isoparaffin			6.74	6.59	5.87	
C8 Isoparaffin			6.54	6.22	4.99	
C9 Isoparaffin			4.52	4.19	3.07	
C10 Isoparaffin			2.62	2.40	1.62	
C11 Isoparaffin			1.32	1.19	0.73	
C12 Isoparaffin			0.51	0.46	0.25	
C5 Naphthene			0.06	0.06	0.08	
C6 Naphthene			1.37	1.19	1.41	
C7 Naphthene			3.44	3.00	3.05	
C8 Naphthene			1.66	1.44	1.28	
C9 Naphthene			1.02	0.88	0.70	
C10 Naphthene			0.44	0.39	0.29	
C11 Naphthene			0.07	0.06	0.04	
C6 Aromatic			0.10	0.08	0.11	
C7 Aromatic			0.58	0.44	0.54	
C8 Aromatic			0.91	0.71	0.74	
C9 Aromatic			0.95	0.71	0.68	
C10 Aromatic			1.51	1.10	0.98	
C11 Aromatic			0.48	0.35	0.29	
C12 Aromatic			0.10	0.07	0.05	
Mol WT of Sam	ple, gm/mol	87.01				
Density of Sam	ple, gm/cc	0.6727				
The second secon						

Attachment O

Monitoring, Recordkeeping, Reporting and Testing Plan

ATTACHMENT O

Icon Midstream Pipeline, LLC

Big Moses Liquids Management Facility Monitoring, Recordkeeping, Reporting and Testing Plan

I. Monitoring

Engines

Icon Midstream (Icon) will monitor and record engine hours of operation on a daily basis. Additionally, Icon will monitor the amount of gas managed by the station on a daily basis as well as gas consumed in operating the compressor engines on a daily basis. Together, this information will allow the company to determine emissions for each engine, utilizing the catalyst manufacturer's warranted emission factors.

The air to fuel ratio will be monitored on a weekly basis to ensure proper operation of the catalytic converters. Additionally, the catalytic converters will be inspected and maintained in accordance with the manufacturer's specifications.

Condensate/NGL and Produced Water Tanks

Icon will monitor and record the volume of produced water and condensate being loading out on a monthly basis.

II. Recordkeeping

Icon will maintain accurate operating records of both engines and the facility throughput for each year on a 12-month rolling average. Records will include monthly fuel consumption (facility-wide), hours of operation for each engine, a total gas consumed by the heaters (a total for both heaters) and the amount of gas and each liquid managed by the facility. These records will be signed and dated by an authorized representative.

All inspections, preventive maintenance, failures, duration of failure events, replacements and/or repair of catalytic converters will be recorded, signed and dated by an authorized representative.

All inspections, maintenance, failures, replacements and/or repair of valves and non-welded connections will be recorded, signed and dated by an authorized representative.

All records will be kept either on site or at the nearest office location for a period of at least five (5) years.

III. Testing

Within 180 days of achieving the maximum facility throughput, Icon will conduct emissions testing of the VRU Driver engine as stipulated under Subpart JJJJ to demonstrate compliance with the emission rates set forth in the permit application. Due to its size, subsequent testing of the VRU compressor engine is not required. The Flash Gas compressor driver engine does not require testing.

IV. Reporting

Icon will submit certified emission statements on an annual basis in accordance with WVDEP, Division of Air Quality requirements.

Public Notice Affidavit

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Icon Midstream Pipeline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for its Big Moses Liquids Management Facility located off of Big Moses Road near Alma, WV in Tyler County., West Virginia (Lat.39.43011, Long. -80.78876)

The applicant estimates the increase in potential to discharge the following regulated air pollutants:

2.55 tons of Nitrogen Oxides per year

4.78 tons of Carbon Monoxide per year

35.09 tons of Volatile Organics per year

0.01 tons of Sulfur Dioxide per year

2.63 tons of Particulate Matter per year

0.04 tons of Benzene

0.75 tons of n-Hexane

0.13 tons of formaldehyde

2,101 tons of CO_{2e} per year

Startup of the modified operation is planned to begin on or about the 30th day of March, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell
Operations Manager
Icon Midstream Pipeline, LLC