JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT MODIFICATION

Doc Well Pad Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-B GENERAL PERMIT MODIFICATION

Jay-Bee Oil & Gas, Inc.

Doc Well Pad Production Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- **II.** Attachments
 - Attachment A Single Source Determination Form
 - Attachment C Current Business Certificate
 - Attachment D Process Flow Diagram
 - Attachment E Process Description
 - Attachment F Plot Plan
 - Attachment G Area Map
 - Attachment H G70-B Section Applicability Form
 - Attachment I Emission Units/ERD Table
 - Attachment J Fugitive Emissions Summary Sheets
 - Attachment K Gas Well Affected Facility Data Sheet
 - Attachment L Storage Vessels Data Sheet(s)
 - Attachment M Natural Gas Fired Fuel Burning Units Data Sheet(s)
 - Attachment N Internal Combustion Engine Data Sheet(s)
 - Attachment O Tanker Truck Loading Data Sheet(s)
 - Attachment R Air Pollution Control Device Sheet(s)
 - Attachment S Emission Calculations
 - Attachment T Facility-wide Emission Summary Sheet(s)
 - Attachment U Class I Legal Advertisement

SECTION I

Application Form

dep	west virginia c	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov	
G70-B GE	NERAL PER	RMIT REGISTRATION A	PPLICATION
	RELOCATION, AD	POLLUTION IN REGARD TO THE CONSTR MINISTRATIVE UPDATE AND OPERATIO JCTION FACILITIES LOCATED AT THE W	N OF
□CONSTRU ⊠MODIFIC □RELOCA	ATION	□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATI	
	SEC	TION 1. GENERAL INFORMATION	
Name of Applicant (as	s registered with the W	V Secretary of State's Office): Jay-Bee Oil & O	Gas, Inc.
	No. (FEIN): 55-073-886		
	ddress: 3570 Shields H		
City: Cairo		City: Cairo	City: Cairo
Facility Name: Doc W	al Address: Off of Indi	an Creek Boad	
	road, city or town and a		
City: Middlebourne		City: Middlebourne	City: Middlebourne
Latitude & Longitude Latitude: 39.449105 Longitude: -80.76823 4		Decimal Degrees to 5 digits):	
SIC Code: 1311 NAICS Code: 211111		DAQ Facility ID No. (For exi 095-00059	sting facilities)
	CE	RTIFICATION OF INFORMATION	
Official is a Presiden Directors, or Owner, authority to bir Proprietorship. R. compliance certif Representative. If a b off and the appro	It, Vice President, Secret depending on business s and the Corporation, Part equired records of daily fications and all require usiness wishes to certif priate names and signat istration Application y	Application shall be signed below by a Responsi- etary, Treasurer, General Partner, General Manag structure. A business may certify an Authorized nership, Limited Liability Company, Associatio throughput, hours of operation and maintenance d notifications must be signed by a Responsible y an Authorized Representative, the official agre- ures entered. Any administratively incomplete will be returned to the applicant. Furthermor returned to the applicant. No substitution of	ger, a member of the Board of Representative who shall have n, Joint Venture or Sole e, general correspondence, Official or an Authorized eement below shall be checked or improperly signed or e, if the G70-B forms are not
obligate and legally b notify the Director of	rtnership, Limited Liab ind the business. If the the Division of Air Qua		e Proprietorship) and may a Responsible Official shall
documents appended	hereto is, to the best of	d in this G70-B General Permit Registration App my knowledge, true, accurate and complete, and ensive information possible.	blication and any supporting that all reasonable efforts
Responsible Official Name and Title: Official Email: sdowell@jayb	ce Manager	Phone: 3047628-3119 Fax: Date:	
If applicable: Authorized Represent Name and Title: Email:		Phone: Fax: Date:	
If applicable: Environmental Conta Name and Title: Email:	ct	Phone: Fax: Date:	

OPERATING SIT	TE INFORMATION			
Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of a back-up vapor control system (enclosed combustor) for times when the VRU is down for maintenance or repair.				
Directions to the facility: From Middlebourne , proceed sou Proceed approximately 5.8 miles to the junction with CR Indian Creek (CR13) intersection, take Indian Creek Rd for 0.2 miles to well pad entrance .	1/3 (Indian Creek Road) on the left. From WV 18 and			
ATTACHMENTS AND S	UPPORTING DOCUMENTS			
I have enclosed the following required document	nts:			
Check payable to WVDEP - Division of Air Quality with the	e appropriate application fee (per 45CSR13 and 45CSR22).			
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment I wish to pay by credit card. Contact for payment (incl. n 				
⊠\$500 (Construction, Modification, and Relocation) □\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or C □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or I				
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NES requirements by complying with NSPS, Subparts IIII and/or NSPS and NESHAP fees apply to new construction or if the s	JJJJ.			
Responsible Official or Authorized Representative Signat	ure (if applicable)			
\boxtimes Single Source Determination Form (must be completed i	n its entirety) – Attachment A			
□ Siting Criteria Waiver (if applicable) – Attachment B 🛛 Current Business Certificate – Attachment C				
🛛 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E			
🖾 Plot Plan – Attachment F	🖾 Area Map – Attachment G			
🖾 G70-B Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I			
🛛 Fugitive Emissions Summary Sheet – Attachment J				
\boxtimes Gas Well Affected Facility Data Sheet (if applicable) – A	ttachment K			
\boxtimes Storage Vessel(s) Data Sheet (include gas sample data, U HYSYS, etc.), etc. where applicable) – Attachment L	SEPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
\boxtimes Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPU: M	s, Heater Treaters, In-Line Heaters if applicable) – Attachment			
⊠ Internal Combustion Engine Data Sheet(s) (include manu N	facturer performance data sheet(s) if applicable) – Attachment			
Tanker Truck Loading Data Sheet (if applicable) - Attack				
\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P				
Pneumatic Controllers Data Sheet – Attachment Q				
⊠ Air Pollution Control Device/Emission Reduction Device applicable) – Attachment R	(s) Sheet(s) (include manufacturer performance data sheet(s) if			
\boxtimes Emission Calculations (please be specific and include all	calculation methodologies used) - Attachment S			
⊠ Facility-wide Emission Summary Sheet(s) – Attachment 7	Г			
🛛 Class I Legal Advertisement – Attachment U				
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	h pdf copy of application and attachments			

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes X No \Box

If Yes, please complete the questionnaire on the following page (Attachment A).

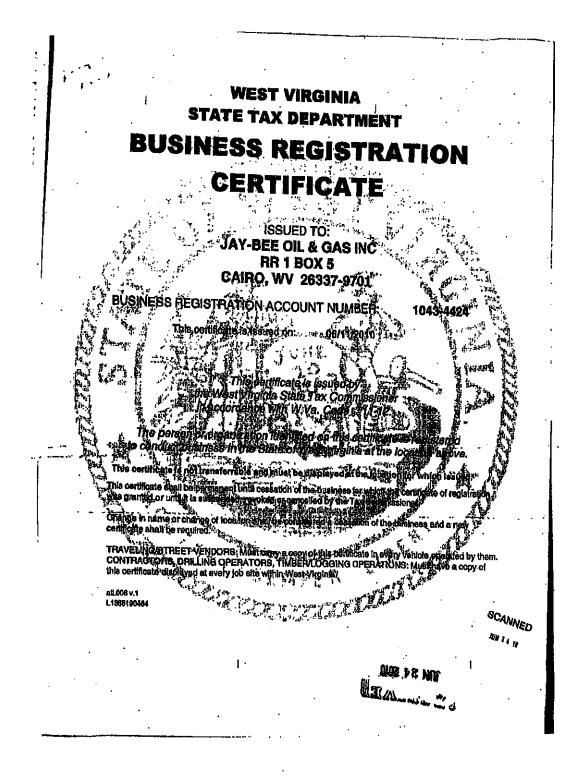
Please provide a source aggregation analysis for the proposed facility below:

This Jay-Bee Oil & Gas facility receives and manages raw natural gas and associated produced fluids from the three on-site wells. After separation of the liquids, the gas is be injected into gathering lines for transportation to Jay-Bee's Big Moses Compressor Station for compression, dehydration and injection into a pipeline system for transportation to a regional natural gas processing plant owned and operated by others. The planned modification to this facility will not impact the relationship between the Doc Well Pad and other Jay-Bee facilities in the area.

The Doc Well Pad Production Facility and the receiving Big Moses Compressor Station are under the same general SIC Code. They are also under common ownership and may, from time to time have a sharing of staff. However, Big Moses Compressor station is over one mile from the Doc Well Pad, with no clear line of sight and properties owned by others in between. Additionally, as the gas can flow also flow to other compressor stations further away, there is no dependency of the Doc Well Pad Production Facility on this compressor station should Big Moses station be unavailable. Operation of this compressor station is not dependent upon the Doc Well Pad as it also receives gas from other well pads. Most importantly, the distance between the planned Doc Well Pad Production facility and the Big Moses Compressor Station does not rise to the definition of contiguous or adjacent.

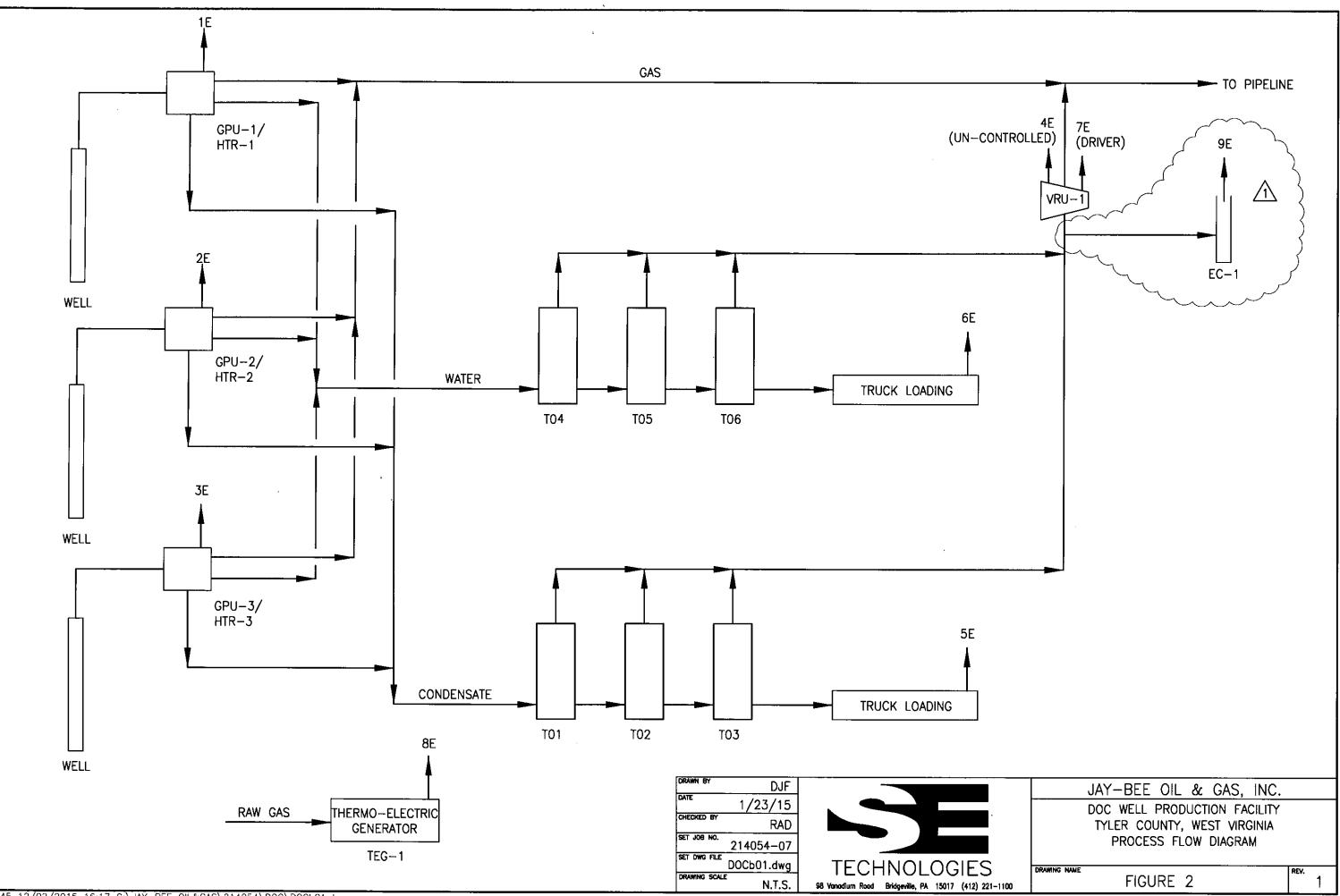
The closest Jay-Bee facility to the Doc Well Pad Production Facility is the Dopey Well Pad. As with the compressor station discussed above, this facility is under common ownership, under the same SIC code and may, from time to time, have a sharing of staff. However, these two well pads are approximately 0.78 miles apart. Additionally, they are not on contiguous or adjacent parcels. Lastly, there is no interconnection or interdependency between these two facilities. Gas from one well pad does not flow to the other. Accordingly, the operation of one well pad is not dependent upon the operation of the other. Thus, given the lack of dependency and the distance of separation, emissions from these two well pads should not be aggregated.

Single Source Determination Form has been completed for aggregation determination Doc and Dopey Well Pads.


ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are suppo- indicate the SIC code, permit number (if applicable), and the distance between facilities in question of	ort facilitie	s. Please
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. Jay-Bee Oil & Gas 100% of both	Yes 🛛	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🗵
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No 🛛
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🛛	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🖂	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain. Both are owned by Jay-Bee and share common personnel	Yes 🛛	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🖂
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🖂
Are there any financial arrangements between the two (2) entities? Both are owned by Jay-Bee	Yes 🛛	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🖂
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🗵
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 3111	Yes 🛛	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🖂
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🖂
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain. While both well pads are owned by Jay-Bee, they operate independently of each other. Jay- Bee is responsible for compliance with air quality requirements at both facilities.	Yes 🗆	No 🖂


ATTACHMENT C

Current Business Certificate

ATTACHMENT D

Process Flow Diagram

Plot: env045 12/02/2015 16:17 G:\JAY-BEE OIL&GAS\214054\DOC\DOCb01.dwg

ATTACHMENT E

Process Description

Jay-Bee Oil & Gas, Incorporated Doc Well Pad Production Facility Attachment E Process Description

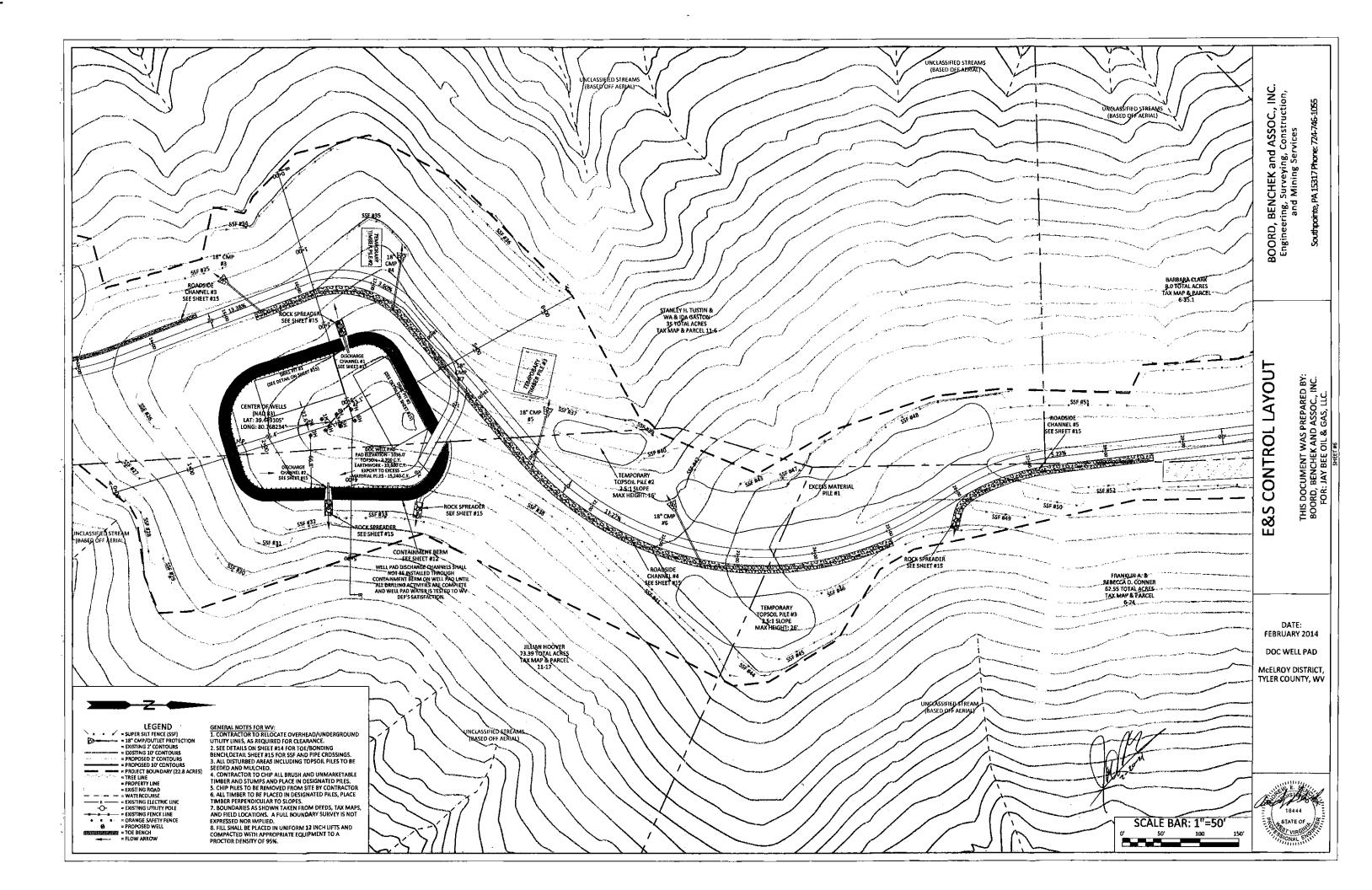
Jay-Bee currently operates its Doc Well Pad Production Facility under General Permit Registration number G70-A148. The following describes current operations and planned modification to this facility. In accordance with WVDEP policy, this modification also includes conversion to the G70-B permit.

Natural gas and Produced Fluids (condensate and water) are received from two wells at this location at approximately 2500 psi and pass through Gas Processing Units (one per well) to avoid ice formation during subsequent pressure drops. These materials then pass through a three-way separator where gas, condensate and water are separated. The gas is routed to a gathering pipeline owned and operated by others.

Both the condensate and Produced Water are accumulated in six 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate is transported to a regional processing facility and the Produced Water to a regional disposal facility. Flash, working and breathing losses from these tanks is currently routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. In accordance with the G70-A and G70-B permit registration, a maximum capture and control efficiency of only 95% is claimed for the VRU.

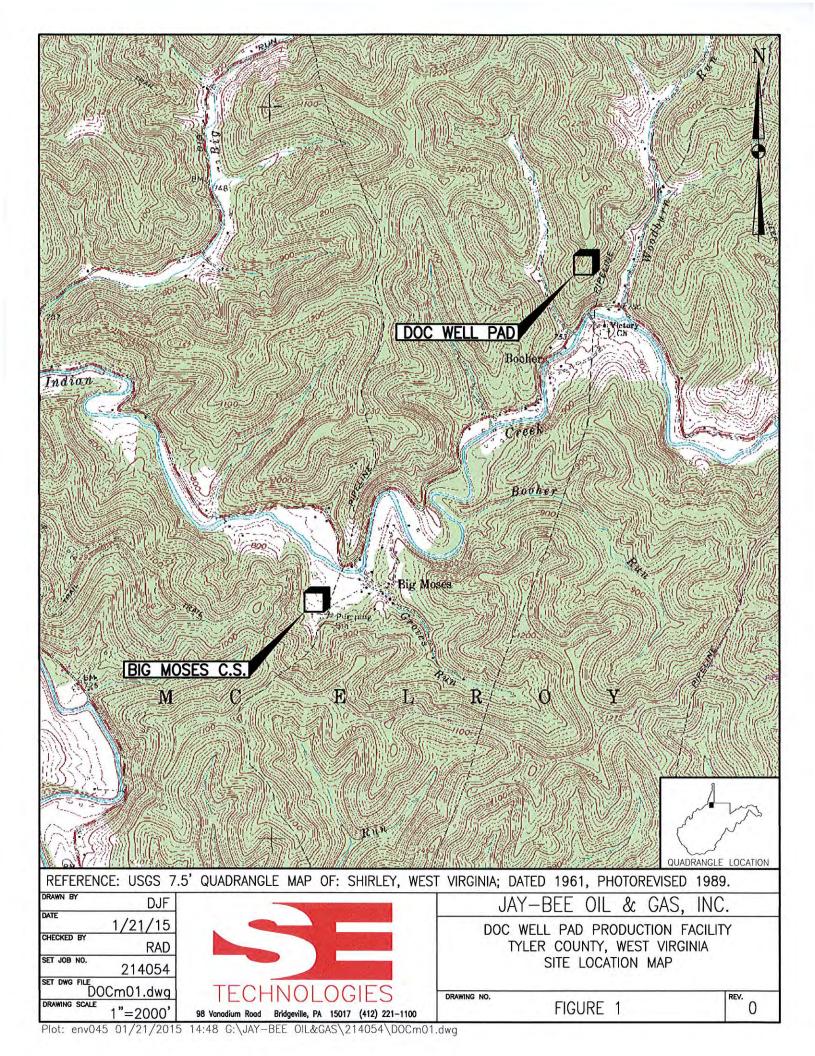
Jay-Bee is seeking approval for installation of an enclosed combustor as a back-up for the VRU to capture and destroy tank emissions for those times when the VRU is not available (e.g. engine and compressor maintenance). Refinements were also made on truck loading emissions due to availability of more accurate date for emission measurements. No other changes are being requested at this time.

A Process Flow Diagram depicting these features is provided in Attachment D.


There are no gas-fired compressor engines, other than a single engine for the vapor recovery unit (VRU), or dehydration units proposed for this facility.

All natural gas fired equipment (GPUs) use natural gas produced at the site as fuel.

The proposed change to the tank emissions control methodology will actually control the tank emissions to a greater degree than the VRU, actually reduce overall VOC and HAPs emissions. However, the presence of a permanent combustor warrants the modification being through a Modification rather than a Class II Administrative Update. It is also our understanding that in order for both control devices to be addressed within the confines of the G70-B permit registration, the application must show the emissions for both control units as if they were the only control. Thus, for permitting purposes, the enclosed application shows 2% of the potential tank emissions as un-captured/uncontrolled emissions from the current VRU.


ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

Plot: env045 12/23/2015 12:03 G:\JAY-BEE OIL&GAS\214054\DOC\DOC 300 FT RADm01.dwg

ATTACHMENT H

G-70B Section Applicability Form

ATTACHMENT H – G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	GENERAL PERMIT G70-B APPLICABLE SECTIONS				
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)				
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
⊠ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines				
⊠ Section 14.0	Tanker Truck Loading ³				
□ Section 15.0	Glycol Dehydration Units ⁴				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emissions Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
GPU-1	1E	Gas Processing Unit	2015		1.5 MMBTU/Hr	Existing	None	
GPU-2	2E	Gas Processing Unit	2015		1.5 MMBTU/Hr	Existing	None	
GPU-3	3E	Gas Processing Unit	2015		1.5 MMBTU/Hr	Existing	None	
T01	4E	Condensate Tank	2015		210 BBL	Existing	VRU-1/EC-1	
T02	4E	Condensate Tank	2015		210 BBL	Existing	VRU-1/EC-1	
T03	4E	Condensate Tank	2015		210 BBL	Existing	VRU-1/EC-1	
T04	4E	Produce Water Tank	2015		210 BBL	Existing	VRU-1/EC-1	
T05	4E	Produced Water Tank	2015		210 BBL	Existing	VRU-1/EC-1	
T06	4E	Produced Water Tank	2015		210 BBL	Existing	VRU-1/EC-1	
TL-1	5E	Condensate Truck Loading	2015		30,000 BBL/yr	Existing	None	
TL-2	6E	Produced Water Truck Loading	2015		63,600 BBL/yr	Existing	None	
CE-1	7E	VRU Driver	2015	4/10/14	84 Hp	Existing	1C	
TEG-1	8E	Thermoelectric Generator	2015		4.4 KW/Hr	Existing	None	
EC-1	9E	Enclosed Combustor	2016			NEW	N/A	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheets

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET								
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.								
S	ource/Equipm	ient:							
	leak Detection Aethod Used		□ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) camer	□ Infrared (FLIR) cameras	□ Other (please describe)			□ None required	
Component	Closed		Source of	Leak Factors	Stream type		Estimated Emi	issions (tpy)	
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)	
Pumps	□ Yes □ No	0			□ Gas □ Liquid □ Both				
Valves	□ Yes □ No	52	ЕРА	EPA		0.477	0.017	1.628	
Safety Relie Valves	$ f \qquad \Box Yes \\ \Box No $	18	ЕРА		□ Gas □ Liquid ⊠ Both	0.034	0.001	2.714	
Open Ended Lines	□ Yes ⊠ No	3	EPA		⊠ Gas □ Liquid □ Both	0.009	<0.001	<0.001	
Sampling Connections	□ Yes □ No	0							
Connections (Not sampling		22	EPA	EPA		0.186	0.007	0.181	
Compressors	□ Yes □ No	1	API	API		0.016	0.001	0.073	
Flanges	□ Yes □ No	56	API		□ Gas □ Liquid ⊠ Both	0.040	0.001	2.124	
Other ¹	□ Yes ⊠ No	3	Low Bleed Pneumatic Controllers EPA		⊠ Gas □ Liquid □ Both	0.195	0.007	16.342	
Other ¹	⊠ Yes □ No	2	Tank Truck Loading		□ Gas ⊠ Liquid □ Both				

Other ¹	□ Yes ⊠ No		VRU Compressor Blowdown	⊠ Gas □ Liquid □ Both	0.01	<0.01	<0.01
¹ Other equip	oment types m	ay include c	compressor seals, relief valves, diaphragms, drains, m	eters, etc.			
Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Please indicate if there are any closed vent bypasses (include component): No							
Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) Tanks, VRU, Enclosed Combustor and associated piping.							

ATTACHMENT K

Gas Well Affected Facility Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-095-02191	12-28-2015	1-27-2016	VRU & Combustor
47-095-02190	12-22-2015	1-21-2016	VRU & Combustor
47-095-02168	1-4-2016	2-3-2016	VRU & Combustor

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessels Data Sheet(s)

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Doc Tank Farm	Tanks T01-T03				
3. Emission Unit ID number	4. Emission Point ID number				
N/A Vapors to combustors, emission point 4E	4E				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
2015	\Box New construction \Box New stored material \boxtimes Other				
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)					
A maximum of 30,000 BBL per year throughput for Tanks T01 through T03 combined.					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.			
210 BBL				
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15			
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8			
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7			
12. Nominal Capacity (specify barrels or gallons). This is also l	known as "working volume. 190 BBL			
13A. Maximum annual throughput (gal/yr) 420,000 (each)	13B. Maximum daily throughput (gal/day) 1500			
14. Number of tank turnovers per year 53 (max)	15. Maximum tank fill rate (gal/min) 16			
16. Tank fill method 🗌 Submerged 🗌 Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? Yes	🛛 No			
If yes, (A) What is the volume expansion capacity of the system	(gal)?			
(B) What are the number of transfers into the system per y	/ear?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof $_X_$ vertical $_$ horizontal $_$ fla	t roof cone roof dome roof other (describe)			
 External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground Other (describe) 				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

 Refer to enclosed TANKS Summary Sheets

 Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary	Sheets					
\Box Refer to the responses to items 34 – 3	☐ Refer to the responses to items 34 – 39 in section VII					
VI. EMISSIONS AND CONTROL	DEVICE DATA (required)					
40. Emission Control Devices (check as	nany as apply):					
Does Not Apply	Rupture Disc (psig)					
Carbon Adsorption ¹	bon Adsorption ¹ Inert Gas Blanket of					
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers)						
Condenser ¹	Conservation Vent (psig					
\bigcirc Other ¹ (describe)	Vacuum Setting Pressure Setting					
VRU	Emergency Relief Valve (psig)					

¹ Complete appropriate Air Pollution Control Device Sheet

Material Name and CAS No.	Flashing Loss B		Breathi	Breathing Loss		Working Loss		ons Loss	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs	132.5	580.3	0.155	0.68	0.539	2.36	133.2	583.3	Flash Measurements
(Un-controlled)									+EPA Tanks For W+B
Tanks T01-T03 Combined									
Emissions									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION							
19. Tank Shell Construction:							
Riveted Gunite lined Epoxy-coated rivets Other (describe)							
20A. Shell Color: Blue	20B. Roof Color: Blue 20C. Year Last Painted: 2015						
21. Shell Condition (if metal and unlined):	21. Shell Condition (if metal and unlined):						
🖾 No Rust 🗌 Light Rust 🔲 Dense Rust 🗌 Not applicable							
22A. Is the tank heated? \Box Yes \boxtimes No	e tank heated? Yes No 22B. If yes, operating temperature:						
23. Operating Pressure Range (psig): Less than	n 0.3 psig						
24. Is the tank a Vertical Fixed Roof Tank?	24B. If yes, for cone roof, provide slop (ft/ft)						
Yes No	N/A	N/A					
25. Complete item 25 for Floating Roof Tanks	\square Does not apply \square						
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
Vapor mounted resilient seal Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? Yes No							

25D. If yes, how is the secondary seal mounted? (<i>check one</i>) Shoe Rim Other (describe):								
25E. Is the floating roof equipped with a weather shield? Yes No								
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Roof Tanks Does not apply								
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:								
26C. Deck seam. Continuous sheet construction:								
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wi	de 🔲 5 x 7.5 ft. wid	e 🗌 5	x 12 ft. wide	other (describe)			
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported			
		tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION:								
27. Provide the city and state on which the data	in this section are based							
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	-	rature (°F):			
30. Annual Avg. Minimum Temperature (°F):		31. Avg. Wind Speed (mph):						
	32. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):				33. Atmospheric Pressure (psia):			
LIQUID INFORMATION:								
34. Avg. daily temperature range of bulk34A. Minimum (°F): 5034B. Maximum (°F): 70								
liquid (°F): 60								
35. Avg. operating pressure range of tank	35A. Minimum (psig)	:		35B. Max	imum (psig):			
(psig):	0 psig			0.3 psig				
0-0.3 psig								
36A. Minimum liquid surface temperature (°F)	:	36B. Corresponding vapor pressure (psia):						
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia):						
38A. Maximum liquid surface temperature (°F		38B. Corresponding vapor pressure (psia):						
39. Provide the following for each liquid or gas	1	Add add	litional pages if r	necessary.				
39A. Material name and composition:	Condensate							
39B. CAS number:	N/A							
39C. Liquid density (lb/gal):	6.20							
39D. Liquid molecular weight (lb/lb-mole):	81.3							
39E. Vapor molecular weight (lb/lb-mole):39.56								
39F. Maximum true vapor pressure (psia):								
39G. Maxim Reid vapor pressure (psia):	5.28							
39H. Months Storage per year. From:	Continuous							
To:								

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

. Bulk Storage Area Name 2. Tank Name				
Doc Tank Farm	Tanks T04-T06			
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 4E	4 E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
2015	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (<i>if applicable</i>)				
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.				
☐ Yes				
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)				
A maximum of 63,800 BBL per year throughput for Tanks T04 and T06 combined.				

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.				
210 BBL					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15				
10A. Maximum Liquid Height (ft.)14	10B. Average Liquid Height (ft.) 8				
11A. Maximum Vapor Space Height (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 190 BBL				
13A. Maximum annual throughput (gal/yr) 890,400 (each)	13B. Maximum daily throughput (gal/day) 5,000 (each)				
14. Number of tank turnovers per year 112 (max)	15. Maximum tank fill rate (gal/min) 20				
16. Tank fill method 🗌 Submerged 🗌 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	🛛 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof $_X_$ vertical $_$ horizontal $_$ flat	t roof cone roof dome roof other (describe)				
 External Floating Roof pontoon roof doub Domed External (or Covered) Floating Roof Internal Floating Roof vertical column support Variable Vapor Space lifter roof diaphrag Pressurized spherical cylindric Underground Other (describe) 	self-supporting gm				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Su	mmary Sheets
\boxtimes Refer to the responses to item	s 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets
Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devi	ces (cheo	ck as man	y as apply):					
Does Not Apply	Dt Apply 🗌 Rupture Disc (psig)								
Carbon Adsorption ¹	Carbon Adsorption ¹ Inert Gas Blanket of								
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers)									
Condenser ¹	Conservation Vent (psig								
\bigcirc Other ¹ (describe)	Vacuum Setting Pressure Setting								
VRU				Emerg	gency Re	lief Valve	(psig)		
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
41. Expected Emission Rat	te (submi	it Test Da	ta or Calcu	ilations he	ere or else	ewhere in t	he applicat	tion).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs	0.121	0.53					0.121	0.53	W&B losses from
(Un-controlled)									Water tanks is
									negligible.
Tanks T04-T06 Combined									
Emissions									
						1			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION							
19. Tank Shell Construction:							
Riveted Gunite lined Epoxy-coated rivets Other (describe)							
20A. Shell Color: Blue	20B. Roof Color: Blue 20C. Year Last Painted: 2015						
21. Shell Condition (if metal and unlined):							
🖾 No Rust 🔲 Light Rust 🔲 Dense Rust 🗌 Not applicable							
22A. Is the tank heated? Yes X No	No 22B. If yes, operating temperature: 22C. If yes, how is heat pr						
23. Operating Pressure Range (psig): Less than	n 0.3 psig						
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)					
⊠ Yes □No	N/A	N/A					
25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal							
□ Vapor mounted resilient seal □ Other (describe):							
25C. Is the Floating Roof equipped with a secondary seal? Yes No							
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box O	ther (describe):					

25E. Is the floating roof equipped with a weather shield? Yes No						
25F. Describe deck fittings:	25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	11	-		
26A. Deck Type: Dolted V	Welded	26B. 1	For bolted decks,	, provide dec	k construction:	
26C. Deck seam. Continuous sheet construction:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide					describe)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):		6F. For column supported		26G. For column supported	
		tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:						
27. Provide the city and state on which the data	in this section are based					
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	-	erature (°F):	
30. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed			
32. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	33. A	mospheric Press	ure (psia):		
LIQUID INFORMATION:						
34. Avg. daily temperature range of bulk	34A. Minimum (°F):			34B. Max	imum (°F):	
liquid (°F): 60	50			70		
35. Avg. operating pressure range of tank	35A. Minimum (psig)		35B. Maximum (psig):			
(psig):	0 psig			0.3 psig		
0-0.3 psig		-				
36A. Minimum liquid surface temperature (°F)	:	36B. Corresponding vapor pressure (psia):				
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temperature (°F)			Corresponding va		e (psia):	
39. Provide the following for each liquid or gas		Add add	litional pages if 1	necessary.		
39A. Material name and composition:	Produced Water					
39B. CAS number:	N/A					
39C. Liquid density (lb/gal):	8.347					
39D. Liquid molecular weight (lb/lb-mole):	18.04					
39E. Vapor molecular weight (lb/lb-mole):	30.68					
39F. Maximum true vapor pressure (psia):						
39G. Maxim Reid vapor pressure (psia):						
39H. Months Storage per year. From: Continuous						
To:						

Jay-Bee Oil & Gas, Incorporated Doc Well Pad Production Facility Condensate Tank Emissions

Utilizing direct measurements of the Gas to Oil (GOR) ratio and flash gas composition from a nearby Jay-Bee well pad (T103-6), the attached calculation spreadsheet was used to determine <u>un-controlled</u> VOC and HAP flash emissions from the Condensate tanks of 580.3 tpy and 19.0 tpy respectively for the maximum annual throughput of 30,000 BBL/Yr of Condensate. Working and Breathing losses were calculated using EPA's Tanks 4.0 to be 3.04 tpy VOCs and 0.01 tpy HAPs (est.). RVP 6 Gasoline was used as a surrogate. As the RVP of the condensate at atmospheric pressure was measured at 5.28, this was deemed appropriate. Thus, total <u>uncontrolled</u> tank emissions are projected to be 583.3 tpy of VOCs and 19.0 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 133.2 pounds per hour VOCs and 4.34 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be 17.4 tons per year or 3.97 pounds per hour.

Methane is also be emitted at a maximum rate of 82.1 tpy (18.74 lb/hr) from the condensate tanks. Using the GHG factor of 25 for Methane, the CO_{2e} un-controlled emission rate is 2053 tpy. This is equivalent to 468.6 lb/hr of CO_{2e} .

During operation of the VRU, emissions are controlled at a minimum of 95%. Actual control efficiency is anticipated to be much higher, but only 95% is claimed as allowed under the G70-B General Permit. Thus, when in operation, emissions will be controlled to 6.66 pounds per hour of VOCs and 0.22 pounds per hour of HAPs. Methane emissions will be controlled to 23.4 lb/hr while n-Hexane will be controlled to 0.20 pounds per hour.

The proposed Enclosed Combustor will control organic vapor emissions to at least 98%. Actual control efficiency is anticipated to be higher, but only 98% is claimed as allowed under the G70-B General Permit. Thus, when in operation, organic emissions from the combustor will be controlled to 2.66 pounds per hour of VOCs and 0.09 pounds per hour of HAPs. Methane emissions will be controlled to 9.37 lb/hr while n-Hexane will be controlled to 0.08 pounds per hour.

VRU Emissions

The VRU is permitted to operate continuously, except for brief intervals for preventive maintenance. It is conservatively estimated that the VRU will capture and control 95% of potential emissions. Thus, total potential condensate tank emissions are calculated as follows:

<u>VOCs</u>

6.66 lb/hr (Controlled) x 8760 = 58,342 lb/yr or 29.17 tpy

HAPs 0.22 lb/Hr (Controlled) x 8760	= 1,927 lb/yr or 0.96 tpy
<u>n-Hexane</u> 0.20 lb/Hr (Controlled) x 8760	= 1,752 lb/yr or 0.87 tpy
Methane 23.4 lb/Hr (Controlled) x 8760	= 205,247 lb/yr or 102.6 tpy

Enclosed Combustor Emissions

In order to include the enclosed combustor into the G70-B permit, it is assumed that the combustor will operate full time. Thus, it is conservatively estimated that the combustor will capture and control 98% of potential emissions. Total potential tank emissions via the combustor are therefore calculated as follows:

<u>VOCs</u> 2.66 lb/hr (Controlled) x 8760	= 23,302 lb/yr or 11.66 tpy
HAPs 0.09 lb/Hr (Controlled) x 8760	= 788 lb/yr or 0.38 tpy
<u>n-Hexane</u> 0.08 lb/Hr (Controlled) x 8760	= 701 lb/yr or 0.35 tpy
<u>Methane</u> 9.37 lb/Hr (Controlled) x 8760	= 82,081 lb/yr or 41.1 tpy

Gas Flow to Combustor

Total gas flow to the combustor from the condensate tanks is derived from the condensate flash calculation spreadsheets (826.9 tpy total organics) plus working and breathing losses for the condensate tanks (3.0 tpy) for a total of 829.9 tpy. Using the density of the condensate vapor shown in the Excel spreadsheet (0.111 lb/scf), an annual gas flow to the combustor of 14.95 MMSCF/yr or 40,967 scfd was determined.

Using the HHV of 2313 BTU/scf of the condensate tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 3.95 MMBTU/Hr.

Jay-Bee Oil & Gas - Doc

Flash Emission Calculations - Condensate

Using Gas-Oil Ratio Method

Un-Controlled

Site specific data			
Gas-Oil-ratio	=	500 scf/bbl Using Actual GOR from RPT-8	
Throughput	=	30,000 bbl/yr	
Stock tank gas molecular weight	=	39.56 g/mole	

		Conversions	
1 lb :	=	453.6 g	
1 mole	=	22.4 L	
1 scf =	=	28.32 L	
1 ton =	=	2000 lb	

Equations

$E_{TOT} = Q$	$2\frac{(bbl)}{\times}$	$R\frac{(scf)}{k}$	28.32(L)	$\times \frac{1(mole)}{\times} \times 1$	$MW \xrightarrow{(g)} \times$	(1(lb))	$\times \underline{1(ton)}$
2 101 x	(yr)			22.4(L)	(mole)	453.6(<i>g</i>)	2000(<i>lb</i>)

 E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	826.9700	
VOC	580.2765	
Nitrogen	2.07E-01	
Carbon Dioxide	1.30E+00	
Methane	8.21E+01	
Ethane	1.63E+02	
Propane	2.14E+02	
Isobutane	5.80E+01	
n-Butane	1.33E+02	
2,2 Dimethylpropane	1.63E+00	
Isopentane	4.57E+01	
n-Pentane	4.79E+01	
2,2 Dimethylbutane	1.73E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	2.51E+00	
2 Methylpentane	1.33E+01	
3 Methylpentane	7.95E+00	
n-Hexane	1.74E+01	HAP
Methylcyclopentane	1.27E+00	
Benzene	2.98E-01	HAP
Cyclohexane	1.79E+00	
2-Methylhexane	3.85E+00	
3-Methylhexane	3.79E+00	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	3.61E+00	
n-Heptane	5.57E+00	
Methylcyclohexane	3.47E+00	
Toluene	6.78E-01	HAP
Other C8's	5.66E+00	
n-Octane	1.89E+00	
Ethylbenzene	4.13E-02	HAP
M & P Xylenes	4.88E-01	HAP
O-Xylene	6.62E-02	HAP
Other C9's	2.35E+00	
n-Nonane	5.62E-01	
Other C10's	8.85E-01	
n-Decane	1.16E-01	
Undecanes (11)	1.24E-01	

E_{TOT} Sum of C3+

ŝ

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERATION OF HYDROCARBON LIQUID				
Separator HC Liquid Stock Tai				
Pressure, psig	340	0		
Temperature, °F	65	70		
Gas Oil Ratio (1)		500		
Gas Specific Gravity (2)		1.387		
Separator Volume Factor (3)	1.2987	1.000		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reid Vapor Pressure, psi (5)	5.28

Quality Control Check			
	Sampling Conditions	Test S	amples
Cylinder No.		W-2408*	W-2423
Pressure, psig	340	299	297
Temperature, °F	65	66	66

(1) - Scf of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst: M. G.

* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

ŝ

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23.253	6.457
lsobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.376	0.988
Heptanes Plus	<u>1.701</u>	<u>0.761</u>
Totals	100.000	22.579

Computed Real	Characteristics	Of Heptanes P	lus:
Specific Growit			

Specific Gravity	3.599	(Air=1)
Molecular Weight	102.69	
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

1.387	(Air=1)
0.9850	ç,
39.56	
2321	BTU/CF
2282	BTU/CF
	0.9850 39.56 2321

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: (GPA 2377) Results: (GPA 2377)

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

ŝ

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001	0.11	< 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6.993	19,719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1,116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.736	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.189	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	<u>0.004</u>	<u>0.002</u>	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	• •
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

ì

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Computed Real	Characteristics	Of Heptanes Plus:
----------------------	-----------------	-------------------

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air≓1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Moi %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

ł

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

TANKS 4.0.9d

Emissions Report - Detail Format

Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Doc Well Pad Huntington West Virginia Jay-Bee Oil & Gas, Inc. Vertical Fixed Roof Tank 210 BBL Condensate Tanks - Emissions from a Single Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 10.00 14.00 10.00 8.225.29 51.06 420,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.25 0.04
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Doc Well Pad - Vertical Fixed Roof Tank Huntington, West Virginia

		Da Temp	ily Liquid Su perature (de	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Doc Well Pad - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations Standing Losses (Ib):	451.6638
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1508
Vented Vapor Saturation Factor:	0.5512
ank Vapor Space Volume:	
Vapor Space Volume (cu ft):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	5.0833 15.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0833
coof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0400
Shell Radius (ft):	5.0000
'apor Density Vapor Density (lb/cu ft):	0.0373
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Daily Avg. Liquid Surface Temp. (deg. R):	521.0866
Daily Average Ambient Temp. (deg. F):	54.8458
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	516.7558
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,246.2101
apor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1508
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	33.2847 1.0425
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	5.0000
Surface Temperature (psia):	3.0220
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.5373
Vapor Pressure at Daily Maximum Liquid	a
Surface Temperature (psia):	3.5797
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	521.0866 512.7654
Daily Max. Liquid Surface Temp. (deg R):	529.4077
Daily Ambient Temp. Range (deg. R):	20.0583
ented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5512
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.0220
Vapor Space Outage (ft):	5.0833
Vorking Losses (Ib):	1,572.6372
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Annual Net Throughput (gal/yr.): Annual Turnovers:	420,000.0000 51.0620
Turnover Factor:	0.7542
Maximum Liquid Volume (gal):	8.225.2880
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
otal Losses (lb):	2,024.3010

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Doc Well Pad - Vertical Fixed Roof Tank Huntington, West Virginia

		Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 6)	1,572.64	451.66	2,024.30			

^^ For one tank only. Total emissions = 2,024.30*3 = 6,072.90 TANKS 4.0 Report

Jay-Bee Oil & Gas, Incorporated Doc Well Pad Production Facility Produced Water Tank Emissions

Utilizing direct measurements of the Gas to Water (GOW) ratio and flash gas composition from a nearby Jay-Bee well pad (Schulberg), the attached calculation spreadsheet was used to determine <u>un-controlled</u> VOC and HAP flash emissions from the Produced Water tanks of 0.53 tpy and 0.04 tpy respectively for the currently permitted maximum annual throughput of 63,600 BBL/Yr. Working and Breathing losses were deemed negligible. Thus, total <u>un-controlled</u> produced water tank emissions are projected to be 0.53 tpy of VOCs and 0.04 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 0.121 pounds per hour VOCs and 0.009 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be 0.02 tons per year and <0.01 pounds per hour.

Methane is also be emitted at a maximum rate of 0.69 tpy (0.16 lb/hr) from the water tanks. Using the GHG factor of 25 for Methane, the CO_{2e} un-controlled emission rate is 17.25 tpy. This is equivalent to 3.94 lb/hr of CO_{2e} .

During operation of the VRU, emissions are controlled at a minimum of 95%. Actual control efficiency is anticipated to be much higher, but only 95% is claimed as allowed under the G70-B General Permit. Thus, when in operation, emissions will be controlled to <0.01 pounds per hour of VOCs and <0.01 pounds per hour of HAPs. Methane and n-hexane emissions will be controlled to 0.20 lb/hr and <0.01 lb/hr respectively.

The proposed Enclosed Combustor will control organic vapor emissions to at least 98%. Actual control efficiency is anticipated to be higher, but only 98% is claimed as allowed under the G70-A General Permit. Thus, when in operation, organic emissions from the combustor will also be controlled to <0.01 pounds per hour of VOCs, HAPs and n-Hexane. Methane will be controlled to 0.08 lb/hr.

VRU Emissions

The VRU is permitted to operate continuously, except for brief intervals for preventive maintenance. It is conservatively estimated that the VRU will capture and control 95% of potential emissions. Thus, total potential tank emissions are calculated as follows:

<u>VOCs</u>

0.006 lb/hr (Controlled) x 8760 = 53 lb/yr or 0.03 tpy

 $\frac{\text{HAPs}}{0.0005 \text{ lb/Hr}}$ (Controlled) x 8760 = 4 lb/yr or <0.01 tpy

 $\frac{\text{Methane}}{0.20 \text{ lb/Hr}}$ (Controlled) x 8760 = 1,725 lb/yr or 0.86 tpy

Enclosed Combustor Emissions

In order to include the enclosed combustor into the G70-B permit, it is assumed that the combustor will operate full time. It is conservatively estimated that the combustor will capture and control 98% of potential emissions. Total potential tank emissions via the combustor are less than 0.01 lb/hr and less than 0.01 tpy for VOCs, HAPS and n-Hexane. Total potential tank emissions for Methane are calculated as follows:

Methane

0.08 lb/Hr (Controlled) x 8760 = 690 lb/yr or 0.35 tpy

Gas Flow to Combustor

Total gas flow to the combustor from the water tanks is derived from the water flash calculation spreadsheets (1.44 tpy total organics). Using the density of the vapor from the water tanks shown in the Excel spreadsheet (0.069 lb/scf), an annual gas flow to the combustor of 0.042 MMSCF/yr or 114 scfd was determined.

Using the HHV of 1431 BTU/scf for the water tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 0.007 MMBTU/Hr.

Jay-Bee Oil & Gas - Doc

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data					
Gas-Water-ratio	=	0.41 scf/bbl Using GOW from comparable well pad			
Throughput	=	63,600 bbl/yr			
Stock tank gas molecular weight	=	39.56 g/mole			

		Conversions	
1 lb	=	453.6 g	
1 mole	=	22.4 L	
1 scf	=	28.32 L	
1 ton	=	2000 lb	

Equations

ſ	$E_{max} = 0$	$2^{(bbl)} \times$	$R\frac{(scf)}{x}$	28.32(L)	$\times \frac{1(mole)}{\times M}$	$W \xrightarrow{(g)} X$	(1(lb))	$\times \frac{1(ton)}{1}$
	$L_{TOT} - Q$	(yr)	(bbl)	1(scf)	22.4(<i>L</i>)	(mole)	453.6(g)'	2000(<i>lb</i>)

E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	1.4376	
VOC	0.5261	
Nitrogen	9.34E-03	
Carbon Dioxide	4.09E-02	
Methane	6.90E-01	
Ethane	1.71E-01	
Propane	1.12E-01	
Isobutane	6.21E-02	
n-Butane	6.89E-02	
2,2 Dimethylpropane	0.00E+00	
Isopentane	5.46E-02	
n-Pentane	3.88E-02	
2,2 Dimethylbutane	4.90E-03	
Cyclopentane	5.75E-04	
2,3 Dimethylbutane	3.00E-03	
2 Methylpentane	1.74E-02	
3 Methylpentane	1.06E-02	
n-Hexane	2.09E-02	HAP
Methylcyclopentane	3.46E-03	
Benzene	4.26E-03	HAP
Cyclohexane	4.97E-03	
2-Methylhexane	9.65E-03	
3-Methylhexane	8.54E-03	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	9.72E-03	
n-Heptane	1.29E-02	
Methylcyclohexane	1.16E-02	
Toluene	9.36E-03	HAP
Other C8's	1.89E-02	
n-Octane	7.16E-03	
Ethylbenzene	4.31E-04	HAP
M & P Xylenes	4.80E-03	HAP
O-Xylene	8.05E-04	HAP
Other C9's	1.51E-02	
n-Nonane	3.57E-03	
Other C10's	4.67E-03	
n-Decane	8.19E-04	
Undecanes (11)	1.57E-03	

E_{TOT}

Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083 Date Sampled: 08/21/2012

Date Analyzed: 08/27/2012

Job Number: J25159

Sample: Schulberg 1-HF

FLASH LIBERATION OF SEPARATOR WATER						
Separator Stock Tank						
Pressure, psig	155	0				
Temperature, °F	NA	70				
Gas Water Ratio (1)		0.41				
Gas Specific Gravity (2)	===44A	0.880				
Separator Volume Factor (3)	1.000	1.000				

Pleton No. : WF-308

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oll & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: Schulberg 1-HF

Gas Evolved from Separator Water Flashed From 155 psig & NA °F to 0 psig & 70 °F

Date Sampled: 08/21/2012

Job Number: 25159.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

Hydrogen Sulfide* < 0.001 Nitrogen 0.575 Carbon Dloxide 1.602 Methane 74.187 Ethane 9.798 2.605 Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.952 Totals 100.000 7.276 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.816 (Air=1) Molecular Weight 104.16 Gross Heating Value 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9946 Molecular Weight 24.78 Gross Heating Value 0.9946 Dry Basis 1426 BTU/CF Staturated Basis 1402 B	COMPONENT	MOL%		GPM	
Nitrogen 0.575 Carbon Dloxide 1.602 Methane 74.187 Ethane 9.798 2.605 Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.962 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.816 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 0.9948 Molecular Weight 1426 BTU/CF Saturated Basis 1402 BTU/CF Saturated Basis 1402 BTU/CF				Griff	
Carbon Dloxide 1.602 Methane 74.187 Ethane 9.798 2.605 Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 Isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.962 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.616 (Air=1) Molecular Weight 0.460 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Saturated Basis 1426 BTU/CF	• •				
Methane 74.187 Ethane 9.798 2.605 Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopantane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.618 (Air=1) Molecular Weight 104.18 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 24.78 Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF	•				
Ethane 9.798 2.605 Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Pius 2.188 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.616 (Air=1) Molecular Weight 104.18 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 24.78 Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF					
Propane 4.384 1.201 Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 Isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9946 Molecular Weight 24.78 Gross Heating Value 24.78 Dry Basis 1426 BTU/CF Seturated Basis 1426 BTU/CF				0.005	
Isobutane 1.841 0.599 n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Pius 2.168 0.962 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Seturated Basis 1402 BTU/CF					
n-Butane 2.043 0.640 2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.962 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.618 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Molecular Weight 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Seturated Basis 1426 BTU/CF	•				
2-2 Dimethylpropane 0.000 0.000 isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.188 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.618 (Alr=1) Molecular Weight 104.18 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 24.78 Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF		1.841		0.599	
isopentane 1.305 0.475 n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.476 Computed Real Characteristics Of Total Sample: Specific Gravity 0.476 Compressibility (Z) 0.9948 Molecular Weight 0.9948 Molecular Weight 24.78 Gross Heating Value 0.9948 Dry Basis 1426 BTU/CF Saturated Basis 1426 BTU/CF		2.043		0.640	
n-Pentane 0.928 0.334 Hexanes 1.149 0.471 Heptanes Plus 2.168 0.962 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.9948 Molecular Weight 24.78 Gross Heating Value Dry Basis 1426 BTU/CF Saturated Basis	2-2 Dimethylpropane	0.000		0.000	
Hexanes 1.149 0.471 Heptanes Pius 2.188 0.952 Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Pius: Specific Gravity Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Seturated Basis 1402 BTU/CF	isopentene	1.305		0.475	
Heptanes Plus 2.168 0.952 Totals 100.000 7.276 Computed Real Characteristics Of Heptanes Plus: Specific Gravity Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.76 Gross Heating Value 1426 BTU/CF Seturated Basis 1402 BTU/CF	n-Pentane	0.928		0.334	
Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.616 (Air=1) Molecular Weight 104.18 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Saturated Basis 1426 BTU/CF	Hexanes	1.149		0.471	
Totals 100.000 7.278 Computed Real Characteristics Of Heptanes Plus: Specific Gravity 3.616 (Air=1) Molecular Weight 104.18 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Saturated Basis 1426 BTU/CF	Heptanes Plus	2,188		0.952	
Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.76 Gross Heating Value 1426 BTU/CF Saturated Basis 1402 BTU/CF		100.000		7.278	
Specific Gravity 3.616 (Air=1) Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.76 Gross Heating Value 1426 BTU/CF Saturated Basis 1402 BTU/CF	Computed Real Charac	cteristics Of H	laptanes I	Plus:	
Molecular Weight 104.16 Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: 5424 BTU/CF Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight Molecular Weight 24.76 Gross Heating Value Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF			-		
Gross Heating Value 5424 BTU/CF Computed Real Characteristics Of Total Sample: Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.76 Gross Heating Value Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF	-			(/	
Specific Gravity 0.860 (Air≂1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Saturated Basis 1402 BTU/CF	-			BTU/CF	
Specific Gravity 0.860 (Air=1) Compressibility (Z) 0.9948 Molecular Weight 24.78 Gross Heating Value 1426 BTU/CF Saturated Basis 1402 BTU/CF	Computed Real Chara	cteristics Of 1	iotal Sam	pie:	
Compressibility (Z) 0.9946 Molecular Weight 24.78 Gross Heating Value Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF					
Molecular Weight 24.78 Gross Heating Value 24.78 Dry Basis 1426 Saturated Basis 1402				C/	
Gross Heating Value Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF					
Dry Basis 1426 BTU/CF Saturated Basis 1402 BTU/CF	•		L -1.7 U		
Saturated Basis 1402 BTU/CF			1478	DTU/CC	
	-				

*Hydrogen Suifide tested in laboratory by Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: MFG Cylinder ID: FL-9

٠

David Dannhaus 361-861-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.575		0.650
Carbon Dioxide	1.602		2.845
Methane	74.187		48.024
Ethane	9.798	2.605	11.868
Propane	4.384	1.201	7.800
Isobutane	1.841	0.599	4.318
n-Bulane	2.043	0.640	4.791
2,2 Dimethylpropane	0.000	0.000	0.000
Isopentane	1.305	0.475	3.799
n-Pentane	0.928	0.334	2.702
2,2 Dimethylbutane	0.098	0.041	0.341
Cyclopentane	0.014	0.006	0.040
2,3 Dimethylbutane	0.060	0.024	0.209
2 Methylpentane	0.347	0.143	1.207
3 Methylpentane	0.211	0.086	0.734
n-Hexane	0.419	0.171	1.457
Methylcyclopeniane	0.071	0.024	0.241
Benzene	0.094	0.026	0.296
Cyclohexane	0.102	0.035	0.348
2-Methylhexane	0.166	0.077	0.671
3-Methylhexane	0.147	0.067	0.594
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.169	0.073	0.676
n-Heptane	0.221	0.101	0.894
Methylcyclohexana	0.203	0.081	0.804
Toluene	0.175	0.058	0.651
Other C8's	0.298	0.137	1.316
n-Octane	0.108	0.055	0.498
Ethylbenzene	0.007	0.003	0.030
M & P Xylenes	0.078	0.030	0.334
O-Xylene	0.013	0.005	0.056
Other C9's	0.206	0.104	1.049
n-Nonane	0.048	0.027	0.248
Other C10's	0.057	0.033	0.325
n-Decane	0.010	0.006	0.057
Undecanes (11)	<u>0.017</u>	<u>0.010</u>	<u>0.109</u>
Totals	100.000	7.276	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.860	(Air=1)
Compressibility (Z)	0.9948	
Molecular Weight	24.78	
Gross Heating Value		
Dry Basis —————	1426	BTU/CF
Saturated Basis	1402	BTU/CF

ATTACHMENT M

Natural Gas Fired Fuel Burning Units Data Sheet(s)

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
GPU-1	1E	Pride of the Hills GPU	2015	EXISTING	1.5	1263
GPU-2	2E	Pride of the Hills GPU	2015	EXISTING	1.5	1263
GPU-3	3E	Pride of the Hills GPU	2015	EXISTING	1.5	1263
TEG-1	8E	Pride of the Hills GPU	2015	EXISTING	0.0133	1263

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Internal Combustion Engine Data Sheet(s)

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	D#1	CI	E-1					
Engine Manufac	cturer/Model	Cummi	ns G5.9					
Manufacturers H	Rated bhp/rpm	84 @ 1800						
Source Status ²		E	S					
Date Installed/ Modified/Remo	ved/Relocated ³	20	15					
Engine Manufac /Reconstruction		After 3	/1/2012					
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ	
Engine Type ⁶		RB4S						
APCD Type ⁷		NSCR						
Fuel Type ⁸		RG						
H ₂ S (gr/100 scf)		<1						
Operating bhp/r	pm	84 @ 1800						
BSFC (BTU/bhg	p-hr)	7914						
Hourly Fuel Th	roughput	526.4 ft ³ /hr 6.32 gal/hr			⁸ /hr l/hr		/hr l/hr	
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	4.62 MMft ³ /yr 55,440 gal/yr			MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
AP	NO _x	0.19	0.81					
AP	СО	0.37	1.62					
AP	VOC	0.05	0.21					
AP	SO ₂	< 0.001	< 0.01					
AP	PM10	0.013	0.06					
AP	Formaldehyde	0.017	0.08					
AP	Total HAPs	0.024	0.11					
AP	GHG (CO ₂ e)	89	391					

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter the Engine Type designation(s) using the following codes:									
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	B	Four St	roke Rich Burn				
7	Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:									
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		1	IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	mbustion Char Combustion	nbers	S	
8	Enter th	e Fuel Type using the following codes:								
	PQ	Pipeline Quality Natural Gas	RG	Raw	Natura	Gas /Productio	n Gas	D	Diesel	
9	Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.									
	MD GR	Manufacturer's Data GRI-HAPCalc TM		AP OT	AP Oth		(please list)			

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

	⊠ NSCR		\sqcup SCR	\Box Oxidation Catalyst		
n		1 1 0				

Provide details of process control used for proper mixing/control of reducing agent with gas stream: N/A

Manufacturer: Miratech	Model #: VX-RE-08XC					
Design Operating Temperature: 1000 °F	Design gas volume: 430 + scfm					
Service life of catalyst: 2+ years, depending on site conditions	Provide manufacturer data? ⊠Yes □ No					
Volume of gas handled: 430 acfm at 1078 °F	Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F					
Reducing agent used, if any: None	Ammonia slip (ppm): N/A					

Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O

Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: **Part of** the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check.

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \boxtimes No

How often is catalyst recommended or required to be replaced (hours of operation)?

Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced.

How often is performance test required?

🗌 Initial

Annual

Every 8,760 hours of operation Field Testing Required

 \square No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT: **Per 40 CFR 60.4243(a)(iii)**, an owner or operator of a stationary SI internal combustion engine

NSPS/GACT: Per 40 CFR 60.4243(a)(iii), an owner or operator of a stationary SI internal combustion engine less than 100 HP, must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required for an owner or operator

ATTACHMENT O

Tanker Truck Loading Data Sheet(s)

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#:		Emissi	ion Point ID#	#: Year Inst			alled/Modified: 2015		
Emission Unit Description: Tank Un-Loading Area									
			Loading A	Area Data					
Number of Pumps: 1 (on truck)Number of Liquids Loaded: 2Max number of trucks loading at one (1) time: 1									
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of c	Provide description of closed vent system and any bypasses.								
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole)									
Time		Jan – Mar	Apr	- Jun	J	ul – Sept		Oct - Dec	
Hours/day		4		4		4		4	
Days/week		6		6		6		6	
		Bulk Liquid	l Data (use e	xtra pages a	s necess	ary)			
Liquid Name		Condens	ate Produced Wa		iter				
Max. Daily Throughput (1000 gal/day)		8.40			10.08				
Max. Annual Throughpu (1000 gal/yr)	ut	1,260			2,671.2				
Loading Method ¹		SUB			SP				
Max. Fill Rate (gal/min)	30	30		30				
Average Fill Time (min/loading)		40	40		40				
Max. Bulk Liquid Temperature (°F)		70	70		70				
True Vapor Pressure ²	3.1 psi	3.1 psia n/a		n/a					
Cargo Vessel Condition	3	U			U				
Control Equipment or Method ⁴		None			None				
Max. Collection Efficiency (%)		n/a	n/a		n/a				

Max. Control Efficiency (%)		n/a	n/a n/a	
Max.VOC Emission	Loading (lb/hr)	27.8	0.11	
Rate	Annual (ton/yr)	2.09	0.05	
Max.HAP Emission	Loading (lb/hr)	1.37	n/a	
Rate	Annual (ton/yr)	0.10	n/a	
Estimation Method ⁵		EPA	EPA	

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maxir	imum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as 1	many as apply (complete and s	submit app	propriate .	Air Pollut	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devic	vice F Flare		Flare			
	TO	Thermal Oxidization or Inci						
5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
	TM	Test Measurement based up	on test dat	data submittal		O Other (describe)		

Condensate Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded: 3.6 psia (per AP-42 conversion of RVP to TVP) M= Molecular weight of vapor in lb/lb-mole 64.35 (see attached breathing vapor analysis report) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 3.6 \text{ x } 64.35]/[460+60]$ $L_L = 3.33 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 99.4% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 200 BBL (8,400 gallons) a day, uncontrolled VOC emissions are estimated at 27.8 lb of VOC per day [8,4 x 3.33×0.994]. With all daily loading taking place within 1 hour, the average hourly un-controlled emission rate is therefore also estimated at 27.8 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 1,260,000 gallons (30,000 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 4171 pounds per year [1260 x $3.33 \times .994$] or 2.09 tons per year.

Based on the attached analysis of a representative tank's breathing emissions, HAPs represent 4.9 percent of the emissions. Thus, daily HAPs emissions equal 1.37 lb/hr [$8.40 \times 3.33 \times 0.049$]. Annual maximum HAPs emissions are estimated at 205.6 lb/yr [$1260 \times 3.33 \times 0.049$] or 0.10 tpy.

Produced Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded: 0.3 psia (water at 60 Deg. F) M= Molecular weight of vapor in lb/lb-mole 24.78 (flash gas of comparable water sample) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 0.3 \text{ x } 24.78]/[460+60]$ $L_L = 0.11 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 36.59% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 240 BBL (10,080 gallons) a day, uncontrolled VOC emissions are estimated at 0.42 lb of VOC per day [10.08 x 0.11 x .366]. With all daily loading taking place within 4 hours, the average hourly un-controlled emission rate is estimated at 0.11 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 2,671,200 gallons (63,600 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 107.5 pounds per year [2,671.2 x 0.11 x .366] or 0.05 tons per year.

ATTACHMENT R

Air Pollution Control Device Sheet(s)

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

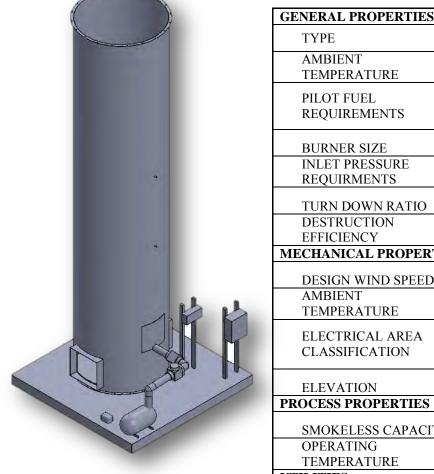
Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.							
Emission Unit IDs: T01-T06	Make/Model: Condensate and Water Tanks						
Primary Control Device ID: VRU	Make/Model: Arrow/VRC2						
Control Efficiency (%): 95	APCD/ERD Data Sheet Completed: 🛛 Yes 🗌 No						
Secondary Control Device ID: EC-1	Make/Model: HY-BON CH 10.0						
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: 🛛 Yes 🗌 No						

VAPOR COMBUSTION (Including Enclosed Combustors)									
General Information									
Control De		Installation Date:							
Maximum scft					leat Content TU/scf				
			Control Devic	e Informati	on				
	Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer								
Manufactu Model: CH	rer: HY-BON Engi I 10.0	neering		Hours of o	peration	per year? 8	8760 (Potential)		
List the en	nission units whose	emissions	are controlled by this	vapor contr	ol device	e (Emission	n Point ID# 4E)		
Emission Unit ID#	Emission Source	Description	n	Emission Unit ID#	Emissio	on Source	Description		
T01	Condensate Tanl	κ.		T04	Produc	ed Water	Tank		
T02	Condensate Tanl	κ.		T05	05 Produced Water Tank				
T03	Condensate Tanl	κ.		T06	06 Produced Water Tank				
If thi.	s vapor combustor d	controls en	nissions from more the	an six (6) en	nission un	nits, please	e attach additional pages.		
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?		
Steam Pressu	re Air		11 feet	2 feet			⊠ Yes □ No Provide determination.		
			Waste Gas 1	Information	l				
Maximu	m Waste Gas Flow I (scfm)	Rate 30		Vaste Gas StreamExit Vel0 BTU/ft3			locity of the Emissions Stream 78 (ft/s) max		
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.		
			Pilot Gas I	nformation					
Number	Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot63 scfh			Heat Input per Pilot 80,000 BTU/hr			Will automatic re-ignition be used? ⊠ Yes □ No		
	If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will go into manual mode which means someone will need to manually start. Gas flow is shut off if it fails to ignite.								
-	Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type? \Box Thermocouple \Box InfraredUltraviolet \Box Camera \Box Other:								
unavailabl		Combusto	or burner, pilot, and				aintain the warranty. (<i>If</i> cked for foreign debris		
Additional information attached? 🛛 Yes 🔅 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.									

VAPOR RECOVERY UNIT						
	General Information					
Emission Unit ID#: VRU			n Date: 2015 (Existing Device)			
	Device In	formation				
	Manufacturer: Arrow Model: VRC2					
List the en	nission units whose emissions are controlled by this	s vapor recov	very unit (Emission Point ID# 4E)			
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description			
T01	Condensate Tank	T04	Produced Water Tank			
T02	Condensate Tank	Т05	Produced Water Tank			
Т03	Condensate Tank	T06	Produced Water Tank			
If this vapor recovery unit controls emissions from more than six (6) emission units, please attach additional pages.						
Additional information attached? 🛛 Yes 🗌 No Please attach copies of manufacturer's data sheets, drawings, and performance testing.						

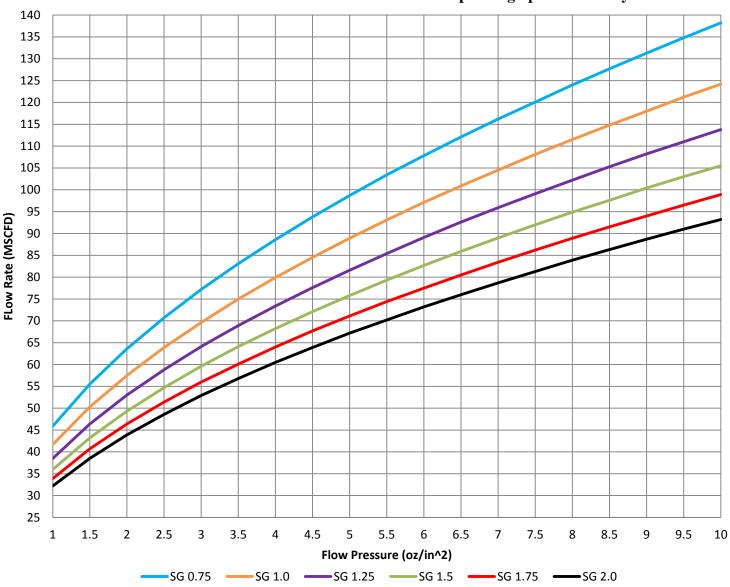
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.


The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the **CH10.0** enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.



- > EPA 40 CFR 60, Quad O Compliant
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- Fully Automated System
- Output Operational Data via Thumb Drive
- Capable of SCADA Integration

GENERAL PROPERTIES	
ТҮРЕ	Enclosed Tank Battery Flare
AMBIENT	
TEMPERATURE	-20 °F to +100 °F
PILOT FUEL	Propane or Site Gas
REQUIREMENTS	@5psi of natural gas = 13.3 SCFM
REQUIREMENTS	@5psi of propane = 12.5 SCFM
BURNER SIZE	10.0 million BTU/hr
INLET PRESSURE	Minimum 0.5 oz/in^2 (~1.0 inches
REQUIRMENTS	w.c.)
TURN DOWN RATIO	5:1
DESTRUCTION	
EFFICIENCY	99.99% DRE
MECHANICAL PROPERTIES	
DESIGN WIND SPEED	100 MPH
AMBIENT	
TEMPERATURE	-20 °F to +120 °F
ELECTRICAL AREA	General Area Classification (Non-
CLASSIFICATION	Hazardous)
CLASSIFICATION	Hazardous)
ELEVATION	up to 3,000ft ASL
PROCESS PROPERTIES	
SMOKELESS CAPACITY	100%
OPERATING	800 °F to 2000 °F (1500 °F
TEMPERATURE	Nominal)
UTILITIES	1(0)
PILOT GAS	Process Gas
ELECTRICITY	1 Phase, 60 Hz, 120V/10A
SOLAR PANEL OPTION	YES
AVAILABLE	I ES

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015

Unit Information Sheet

Date: May 27, 2014 Unit #: 6041 Customer: To Be Determined

To:

Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Package Information				
Compressor Manufacturer:	Arrow			
Compressor Model:	VRC2			
Compressor Serial Number:	12095			
Compressor Cylinders:	6.5" x 4.0" x 2.25"			
Driver Manufacturer:	Cummins			
Driver Model:	G5.9			
Rated HP & Speed	84 HP @ 1800 RPM			
Driver Type:	4-stroke Rich Burn			
Engine Serial Number:	73364060			
Engine Manufacturing Date:	3/19/2012			
Engine Catalyst Model:	VXC-1408-04-HSG			
Engine Catalyst Element:	VX-RE-08XC			
Engine AFR Model:	AFR-1RD-10-TK2			
Engine Stack Height:	9' 5"			
Engine Stack Diameter:	4"			
Operating Information				
Suction Pressure:	N/A psig			
Discharge Pressure:	N/A psig			
Design Capacity:	N/A MSCFD			
Gas Specific Gravity:	N/A			

Emission Output informtion included in the attached catalyst specification sheet.

ATTACHMENT S

Emission Calculations

Jay-Bee Oil & Gas, Inc.

Doc Well Pad Production Facility Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane Ib/Hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
CE-1	VRU Compressor ⁴	0.19	0.37	89.4	0.05	0.000	0.013	0.000	0.001	0.017	0.024
HTR-1	GPU#1	0.15	0.13	181.2	0.01	0.001	0.011	0.003	0.000	0.000	0.003
HTR-2	GPU #2	0.15	0.13	181.2	0.01	0.001	0.011	0.003	0.000	0.000	0.003
HTR-3	GPU #3	0.15	0.13	181.2	0.01	0.001	0.011	0.003	0.000	0.000	0.003
TEG-1	Thermoelectric Generator	0.00	0.00	1.6	0.00	0.000	0.000	0.000	0.000	0.000	0.000
	Blowdowns ¹			N/A	N/A						
T01-T06	Condensate Tanks + Water Tanks ²			23.9	6.64			0.20			0.20
EC-1	Condensate Tanks + Water Tanks ⁵	0.28	1.47	474.5	2.65	0.000	0.014	0.11	0.000	0.000	0.11
TL-1 + TL-2	Truck Loading ³				27.90						1.37
	Truck Traffic Fugitive Dust						16.53				
	Fittings Fugitive Emissions			5.3	0.17						
Total		0.91	2.22	1,138	37.44	0.00	16.59	0.32	0.00	0.02	1.71

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
CE-1	VRU Compressor ⁴	0.81	1.62	391	0.21	0.002	0.06	0.00	0.005	0.07	0.11
HTR-1	GPU #1	0.66	0.55	794	0.04	0.004	0.05	0.01	0.000	0.0005	0.01
HTR-2	GPU #2	0.66	0.55	794	0.04	0.004	0.05	0.01	0.000	0.0005	0.01
HTR-3	GPU #3	0.66	0.55	794	0.04	0.004	0.05	0.01	0.000	0.0005	0.01
TEG-1	Thermoelectric Generator	0.01	0.00	7	0.00	0.000	0.00	0.00	0.000	0.0000	0.00
	Blowdowns ¹										
T01-T06	Condensate Tanks + Water Tanks ²			104	29.06			0.88			0.96
EC-1	Condensate Tanks + Water Tanks ⁵	0.64	3.34	1091	11.61	0.00	0.03	0.48	0.000	0.000	0.74
TL-1 + TL-2	Truck Loading3				2.14						0.10
	Truck Traffic Fugitive Dust						1.33				
	Fittings Fugitive Emissions			23	0.76						
Total		3.43	6.62	3,997	43.89	0.01	1.57	1.40	0.005	0.08	1.94
	Current Permit	2.79	3.28	2,952	45.53	0.01	1.54	1.35	0.00	0.08	1.65
	Increase/Decrease	0.64	3.34	1044.37	-1.64	0.00	0.03	0.05	0.00	0.00	0.29

¹ Blowdown Calculations in original application.

² Condensate and water tank emissions are currently controlled by a VRU at 95%. This entry represents the un-controlled 5%.

 ³ Truck loading is un-controlled.
 ⁴Emission presented herein for VOCs and Formaldehyde represent un-controlled Mfg. specs. + 15%. The Catalyst Warranty had 0% reduction for these parameters

⁵ Condensate and water tank emissions are alternately controlled by an Enclosed Combustor at 98%. The entries for VOC, n-hexane, HAPs and CO2e represents emissions of organics based on a 98% capture and control efficiency.

Jay-Bee Oil &Gas ,LLC ENGINE EMISSIONS

Doc Well Pad Production Facility Tyler County, WV

Controlled Emission Rates

Source CE-1 Flash Gas Compressor

Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins G5.9 Rich Burn Natural						
Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke	84 1,800 In-line 6 4.020 4.720	hp rpm inches inches					
Engine Displacement	359	cu. in.					
Engine BMEP Fuel Consumption (HHV)	103 7,914	psi Btu/bhp-h	-				
Fuer Consumption (HHV)	7,914	ыш/ыпр-п	11			AP-42	
						4strokerich	
Emission Rates: Oxides of Nitrogen, NOx	g/bhp-hr 1.000	lb/hr 0.19	tons/year 0.81	g/hr 84	lb/day 4,44	lb/mmbtu	Comment
Carbon Monoxide CO	2.000	0.19	1.62	168	4.44 8.89		453.59 grams = 1 pound
VOC (NMNEHC)	0.253	0.05	0.21	21	1.12		2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996		
CO2e		89	391				
Total Annual Hours of Operation	8,760						
SO2		0.0004	0.0017			0.0006	
PM2.5		0.0063	0.0277			0.0095	
PM (Condensable)		0.0066	0.0289			0.00991	Faster From 40 CED 00 Table C 0
CH ₄ N ₂ O		0.1262	0.5529				Factor From 40 CFR 98, Table C-2
acrolein		0.0115 0.0017	0.0503 0.0077			0.0002	Factor From 40 CFR 98, Table C-2
acetaldehyde			0.0077				
		0.0019	0.0081			0.00279	
formaldehyde	0.092	0.0019 0.0170	0.0081 0.0746			0.00279	Per Mfg.
formaldehyde benzene	0.092					0.00279	Per Mfg.
benzene toluene	0.092	0.0170 0.0011 0.0004	0.0746 0.0046 0.0016			0.00158 0.000558	Per Mfg.
benzene toluene ethylbenzene	0.092	0.0170 0.0011 0.0004 2E-05	0.0746 0.0046 0.0016 0.0001			0.00158 0.000558 2.48E-05	Per Mfg.
benzene toluene ethylbenzene xylene s	0.092	0.0170 0.0011 0.0004 2E-05 0.0001	0.0746 0.0046 0.0016 0.0001 0.0006			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol	0.092	0.0170 0.0011 0.0004 2E-05 0.0001 0.002	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs	0.092	0.0170 0.0011 0.0004 2E-05 0.0001	0.0746 0.0046 0.0016 0.0001 0.0006			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters:		0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature	0.092	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate	1,078	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F lb/hr	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature		0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate	1,078 430	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F Ib/hr acfm	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate	1,078	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F lb/hr	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate Exhaust Stack Height	1,078 430 96 8.00	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F lb/hr acfm inches feet	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate	1,078 430 96 8.00 4	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F Ib/hr acfm inches feet inches	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate Exhaust Stack Height	1,078 430 96 8.00	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F lb/hr acfm inches feet	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.
benzene toluene ethylbenzene xylene s methanol total HAPs Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate Exhaust Stack Height	1,078 430 96 8.00 4	0.0170 0.0011 0.0004 2E-05 0.0001 0.002 0.0242 deg. F Ib/hr acfm inches feet inches	0.0746 0.0046 0.0016 0.0001 0.0006 0.0089			0.00158 0.000558 2.48E-05 0.000195	Per Mfg.

Doc Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29086.0 scfd 0.000 Mole % 8760

NOx	0.1501	lbs/hr	0.657	TPY
СО	0.1261	lbs/hr	0.552	TPY
CO2	180.1	lbs/hr	788.7	TPY
CO2e	181	lbs/hr	794	tpy
VOC	0.0083	lbs/hr	0.036	TPY
SO2	0.0009	lbs/hr	0.004	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0114	lbs/hr	0.050	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0027	lbs/hr	0.012	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0028	lbs/hr	0.012	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Doc Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-2

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29086.0 scfd 0.000 Mole % 8760

NOx	0.1501	lbs/hr	0.657	TPY
СО	0.1261	lbs/hr	0.552	TPY
CO2	180.1	lbs/hr	788.7	TPY
CO2e	181	lbs/hr	794	tpy
VOC	0.0083	lbs/hr	0.036	TPY
SO2	0.0009	lbs/hr	0.004	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0114	lbs/hr	0.050	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0027	lbs/hr	0.012	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0028	lbs/hr	0.012	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Doc Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-3

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29086.0 scfd 0.000 Mole % 8760

NOx	0.1501	lbs/hr	0.657	TPY
СО	0.1261	lbs/hr	0.552	TPY
CO2	180.1	lbs/hr	788.7	TPY
CO2e	181	lbs/hr	794	tpy
VOC	0.0083	lbs/hr	0.036	TPY
SO2	0.0009	lbs/hr	0.004	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0114	lbs/hr	0.050	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0027	lbs/hr	0.012	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0028	lbs/hr	0.012	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Doc Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

Source TEG-1

NOx	0.0013	lbs/hr	0.006	TPY
СО	0.0011	lbs/hr	0.005	TPY
CO2	1.6	lbs/hr	6.8	TPY
CO2e	2	lbs/hr	7	tpy
VOC	0.0001	lbs/hr	0.000	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0001	lbs/hr	0.000	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0000	lbs/hr	0.000	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0000	lbs/hr	0.000	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =310
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Doc Well Pad Production Facility Tyler County, WV

otential Emission Rate

Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 80.0 Mbtu/hr 99.0 % 1263.0 Btu/scf 1535.6 scfd 0.000 Mole % 8760

NOx	0.0079	lbs/hr	0.035	TPY
CO	0.0067	lbs/hr	0.029	TPY
CO2	9.5	lbs/hr	41.6	TPY
CO2e	10	lbs/hr	42	TPY
VOC	0.0004	lbs/hr	0.002	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0006	lbs/hr	0.003	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0001	lbs/hr	0.001	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0001	lbs/hr	0.001	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100	Lbs/MMCF
СО	84	Lbs/MMCF
CO ₂	120,000	Lbs/MMCF
VOC	5.5	Lbs/MMCF
PM	7.6	Lbs/MMCF
SO ₂	0.6	Lbs/MMCF
CH ₄	2.3	Lbs/MMCF
N_2O	2.2	Lbs/MMCF
нсон	0.075	Lbs/MMCF
Benzene	0.0021	Lbs/MMCF
n-Hexane	1.8	Lbs/MMCF
Toluene	0.0034	Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =310

Doc Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1

Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 2313.1 Btu/scf 0.041 MMSCFD 3.962 MMBTU/Hr

7.730 MMCF/Yr 17,880 MMBTU/Yr

NOx	0.27	lbs/hr	0.61	tpy	
CO	1.47	lbs/hr	3.31	tpy	
CO2	463.13	lbs/hr	1,045.0	tpy	
CO2e	464.90	lb/hr	1,048.9	tpy	
VOC	2.65	lb/hr	11.61	tpy	
CH4	0.03	lbs/hr	0.1300	tpy	
N2O	0.0009	lbs/hr	0.0020	tpy	
PM	0.0130	lb/hr	0.0294	tpy	
Benzene	0.0000	lb/hr	0.0000	tpy	
СНОН	0.0001	lb/hr	0.0003	tpy	
n-Hexane	0.1100	lb/hr	0.4800	tpy	
Toluene	0.0000	lb/hr	0.0000	tpy	
Total HAP	0.1102	lb/hr	0.7400	tpy	

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions sheet in the Calculations Section.

Factors Used		
AP-42 Table 13.5-1	NOx	0.068 Lbs/MMBTU
AP-42 Table 13.5-1	СО	0.37 Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89 Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022 Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022 Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF

Doc Well Pad Production Facility Tyler County, WV

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.032	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.093	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	21.006	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	26.977	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	25.650	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	5.272	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	11.899	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.281	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.198	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	1.776	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	0.816	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	100.000	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

Gas Density (STP) = 0.111

Ideal Gross (HHV)	2,283.4
Ideal Gross (sat'd)	2,244.3
GPM	-
Real Gross (HHV)	2,313.1
Real Net (LHV)	2,124.9

Doc Well Pad Production Facility Tyler County, WV

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

Gas Density (STP) = 0.069

1,424.0
1,399.9
-
1,430.5
1,302.3

Doc Well Pad Production Facility Tyler County, WV

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.350	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.406	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.158	0.136	0.005	0.654	7.0	7.5	0.072	0.654	0.0016	0.065
Heptane	0.064	0.064	0.002	0.308	3.3	3.5	0.034	0.308	0.0006	0.029
	100.000	20.836	0.719		1,140.7	1,257.6	11.875	18.396	0.9958	6.172

Gas Density (STP) = 0.058

Ideal Gross (HHV)	1,257.6
Ideal Gross (sat'd)	1,236.5
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Jay-Bee Oil & Gas, Inc. FUGITIVE EMISSIONS

Doc Well Pad Production Facility Tyler County, WV

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	18.40	weight percent
Methane from gas analysis:	59.35	weight percent
Carbon Dioxide from gas analysis:	0.32	weight percent
Gas Density	0.0580	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:										
Gas/Vapor:	16	0.02700 scf/hr	18.4	0.005	0.020	0.000	0.000	0.015	0.0651	1.628
Light Liquid:	36	0.05000 scf/hr	100.0	0.104	0.457					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.00
Low Bleed Pneumatic	3	1.39000 scf/hr	18.4	0.044	0.195	0.144	0.629	0.144	0.6285	16.34
Relief Valves:	18	0.04000 scf/hr	18.4	0.008	0.034	0.000	0.001	0.025	0.1085	2.71
Open-ended Lines, gas:	3	0.06100 sfc/hr	18.4	0.002	0.009					0.00
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.00
Pump Seals:										0.000
Gas:	-	0.00529 lb/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.00
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.00
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.00
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.001	0.0029	0.07
Connectors:										0.00
Gas:	16	0.00300 scf/hr	18.4	0.001	0.002	0.000	0.000	0.002	0.0072	0.18
Light Liquid:	6	0.00700 scf/hr	100.0	0.042	0.184					0.00
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Flanges:										0.00
Gas:	38	0.00086 lb/hr	18.4	0.006	0.026	0.000	0.000	0.019	0.0850	2.12
Light Liquid:	18	0.00300 scf/hr	100.0	0.003	0.014					0.00
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					0.00

	lb/hr	t/y
VOC	0.174	0.761
CH4	0.061	0.269
CO2	0.000	0.002
CO2e	5.265	23.06

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Jay-Bee Oil & Gas, Inc. GAS DATA INFORMATION

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,28.963One mole of gas occupies, @ 14.696 psia & 32 -I359.2 cu ft. per lb-moleOne mole of gas occupies, @ 14.696 psia & 60 -I379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°<u>F</u>

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

ATTACHMENT T

Facility-wide Emission Summary Sheet(s)

Α	ТТАСНИ	MENT	T – FA	CILITY	Y-WID	E CON	TROL	LED EN	MISSIC	ONS SU	MMAF	RY SH	EET		
List all sources of	f emissio	ns in th	is table	. Use e	xtra pa	ges if n	ecessar	у.							
-	NC) _x	СО		v	VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
CE-1	0.19	0.81	0.37	16.2	0.05	0.21	0.000	0.002	0.013	0.06			89.4	391	
HTR-1	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.011	0.05			181.2	794	
HTR-2	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.011	0.05			181.2	794	
HTR-3	0.15	0.66	0.13	0.55	0.01	0.04	0.001	0.004	0.011	0.05			181.2	794	
TEG-1	0.00	0.01	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.00			1.6	7	
T01-T06					6.64	29.06							23.9	104	
EC-1	0.28	0.64	1.47	3.34	2.65	11.61	0.000	0.00	0.014	0.03			474.4	1091	
TL-1 + TL-2 (Truck Loading)					27.9	2.14									
Truck Traffic Fugitive Dust									16.53	1.33					
Fittings Fugitive Emissions					0.17	0.76							5.3	23	
TOTAL	0.91	3.43	2.22	6.62	37.44	43.99	0.00	0.01	16.59	1.57			1,138	3,997	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	CHME	NT T –	FACIL	ITY-W	IDE H	AP CO	ONTRO	LLED	EMISS	IONS	SUMM	ARY SI	HEET	
List all sources of	emissions	s in this	table.	Use exti	ra page	es if ne	cessary.							
Envirois a Deint ID#	Formaldehyde		Ben	izene	Tolu	Toluene		Ethylbenzene		Xylenes		Hexane		al HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	0.017	0.07	0.001	0.005							0.000	0.000	0.024	0.11
HTR-1	0.000	0.0005	0.000	0.000							0.003	0.01	0.003	0.01
HTR-2	0.000	0.0005	0.000	0.000							0.003	0.01	0.003	0.01
HTR-3	0.000	0.0005	0.000	0.000							0.003	0.01	0.003	0.01
TEG-1	0.000	0.000	0.000	0.000							0.000	0.000	0.000	0.00
T01-T06											0.20	0.88	0.20	0.96
EC-1	0.000	0.000	0.000	0.000							0.11	0.48	0.11	0.74
TL-1 + TL-2 (Truck Loading)													1.37	0.10
Truck Traffic Fugitive Dust														
Fittings Fugitive Emissions														
TOTAL	0.02	0.08	0.00	0.005							0.32	1.40	1.71	1.94

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification of its G70-A General Permit Registration and conversion to a G70-B General Permit Registration for its Doc Well Pad Production Facility located off of Indian Creek Road east of Middlebourne, WV in Tyler County, West Virginia (Lat.39.449105, Long. -80.768234).

The applicant estimates an increase in potential emissions of the following regulated air pollutants:

0.64 tons of Nitrogen Oxides per year
3.34 tons of Carbon Monoxide per year
0.03 tons of Particulate Matter per year
0.00 tons of Sulfur Dioxide per year
0.00 tons of Formaldehyde per year
0.00 tons of Benzene per year
0.05 tons of n-Hexane
0.29 tons of Total Hazardous Air Pollutants per year
1.044 tons of Greenhouse Gases per year

The applicant estimates a decrease in potential emissions of the following regulated air pollutants:

1.65 tons of Volatile Organics per year

Startup of operation is planned to begin on or about the 29th day of February, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc.