

January 26, 2016

Mr. Jerry Williams, P.E. WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

RE: Antero Midstream LLC – Nichols Compressor Station West Virginia Department of Environmental Protection, Division of Air Quality, 45CSR13 Air Permit Modification R13-3201A

Dear Mr. Williams,

On behalf of Antero Midstream LLC, please find attached the 45CSR13 Air Permit Modification for permit number R13-3201A for the Nichols Compressor Station (Facility ID 017-00114) located in Doddridge County, West Virginia. A summary of the modifications in this application include:

1. Updating compressor engine emissions to reflect catalyst data based on a new catalyst design from the manufacturer,

2. The installation of two new compressor engines and associated blowdown events,

3. Eliminating the compressor fuel use limit and synthetic minor status,

4. Increasing the dehydrator throughput to 72.5 MMscfd per dehydrator, and

5. Modifying the dehydrator flash tank control efficiency based on new standardized guidance from WVDEP.

Enclosed are one hardcopy and two CDs containing the entire permit application including the application form and required attachments. Per 45CSR22, a \$4,500 application fee is also enclosed, which covers the base 45CSR13 \$1,000 application fee, an additional \$1,000 for NSPS requirements, and an additional \$2,500 for Hazardous Air Pollutant requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719) 632-3593 or by email at msteyskal@kleinfelder.com.

Sincerely, **KLEINFELDER**

Michele Stephal

Michele Steyskal Air Quality Specialist

Enclosure: Nichols Compressor Station R13-3201A Air Permit Modification

20163815/DEN16O33572 ©2016 Kleinfelder Page 1 of 1

January 26, 2016

Antero Midstream LLC

Nichols Compressor Station

NSR Permit Application R13-3201A Modification West Virginia Department of Environmental Protection Division of Air Quality 45CSR13

Doddridge County, West Virginia

January 2016

Prepared by:

KLEINFELDER Bright People. Right Solutions.

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 <u>www.kleinfelder.com</u>

> © 2016 Kleinfelder DEN16O33572

Table of Contents

	45CSR13 Application Form
	Discussion of Nearby Facilities
Attachment A.	Business Certificate
Attachment B.	Area Map
Attachment C.	Installation and Startup Schedule
Attachment D.	Regulatory Discussion
Attachment E.	Plot Plan
Attachment F.	Process Flow Diagram
Attachment G.	Process Description
Attachment H.	Material Safety Data Sheets
Attachment I.	Emission Units Table
Attachment J.	Emission Point Data Summary Sheet
Attachment K.	Fugitive Emissions Data Summary Sheet
Attachment L.	Emissions Unit Data Sheets
	a. Compressor Engines
	b. Dehydrators
	 c. Bulk Loading and Fugitives
Attachment M.	Air Pollution Control Device Sheets
	a. NSCR Catalysts
Attachment N.	Supporting Emissions Calculations
	a. Emission Calculations
	b. GLYCalc 4.0
Attachment O.	Monitoring, Recordkeeping, Reporting, and Testing Plans
Attachment P.	Public Notice
Attachment R.	Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		LICATION FOR NSR PERMIT AND ITLE V PERMIT REVISION (OPTIONAL)		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNC	OWN): PLEASE CHECK	K TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY)		
		I MODIFICATION DVE IS CHECKED, INCLUDE TITLE V REVISION		
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FA		AS ATTACHMENT S TO THIS APPLICATION		
FOR TITLE V FACILITIES ONLY: Please refer to "Title V F (Appendix A, "Title V Permit Revision Flowchart") and al				
Sect	ion I. General			
1. Name of applicant (as registered with the WV Secretary Antero Midstream LLC	v of State's Office):	2. Federal Employer ID No. <i>(FEIN):</i> 46-5517375		
3. Name of facility (if different from above):		4. The applicant is the:		
Nichols Compressor Station		□ OWNER □ OPERATOR		
5A. Applicant's mailing address: 1615 Wynkoop Street Denver, CO 80202	5B. Facility's pres 2189 Long Run Ro Greenwood, WV 26			
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide th	ne name of parent corpo	oration:		
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Antero Midstream LLC owns the land for the site If NO, you are not eligible for a permit for this source. 				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 10. North American Industry (NAICS) code for the facility 221210 				
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit number associated with this process (for existing facilities only): R13-3201A				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

1	2A.
•	

Г

12A.			
 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 			
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 			
Take US-50 towards Greenwood, WV. Head northwes head east on CR-36 (Duckworth Road) for 1.0 n miles. Turn left onto access road and reach fac	niles. Turn left and head north on CR-		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
2189 Long Run Road	Pennsboro	Doddridge	
Greenwood, WV 26415			
12.E. UTM Northing (KM): 4349.253	12F. UTM Easting (KM): 511.253	12G. UTM Zone: 17	
13. Briefly describe the proposed change(s) at the facilit The reduction efficiencies for the engine catalysts ha compressor engines have been added. The dehydra Lastly, the fuel limit for the compressors has been re	ave been updated based on new cata tor throughput has been increased to	72.5 MMscfd per dehydrator.	
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide change did happen: / / 		14B. Date of anticipated Start-Up if a permit is granted: April 1, 2016	
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit	
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:	
	Weeks Per Year 52	ation:	
Hours Per Day 24 Days Per Week 7	Weeks Per Year 52 cility involved? YES NO		
Hours Per Day 24Days Per Week 716. Is demolition or physical renovation at an existing fa	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom	e subject due to proposed	
Hours Per Day 24Days Per Week 716. Is demolition or physical renovation at an existing fa17. Risk Management Plans. If this facility is subject to	Weeks Per Year 52 cility involved? YES NO 112(r) of the 1990 CAAA, or will become bo), submit your Risk Management Pla	e subject due to proposed n (RMP) to U. S. EPA Region III.	
Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp	Weeks Per Year 52 cility involved? YES NO 0 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you	e subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the	
Hours Per Day 24Days Per Week 716. Is demolition or physical renovation at an existing fa17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp18. Regulatory Discussion. List all Federal and State a	Weeks Per Year 52 cility involved? YES NO 0 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Att	ne subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application	
Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible applicability	Weeks Per Year 52 cility involved? YES NO 0 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Att	ne subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible application (Title V Permit Revision Information). Discuss application as Attachment D. 	Weeks Per Year 52 cility involved? YES NO 0 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Att	e subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this	
Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible application (Title V Permit Revision Information). Discuss application as Attachment D. Section II. Additional attact 19. Include a check payable to WVDEP – Division of Air	Weeks Per Year 52 cility involved? YES NO a 112(r) of the 1990 CAAA, or will become bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta- ability and proposed demonstration(s) of Cachments and supporting d	ne subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known).</i> Provide this OCUMENTS.	
Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. Section II. Additional attachment D. 19. Include a check payable to WVDEP – Division of Air 45CSR13).	Weeks Per Year 52 cility involved? YES NO a 112(r) of the 1990 CAAA, or will become bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta- ability and proposed demonstration(s) of Cachments and supporting d Quality with the appropriate application	ne subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known).</i> Provide this OCUMENTS.	
Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. Section II. Additional att 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of your	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom po), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Att ability and proposed demonstration(s) of achments and supporting d Quality with the appropriate application ur application package.	te subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this OCUMENTS. n fee (per 45CSR22 and	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible application (Title V Permit Revision Information). Discuss application information as Attachment D. Section II. Additional attaction 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Redet in the second second	Weeks Per Year 52 cility involved? YES NO a 112(r) of the 1990 CAAA, or will become bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta ability and proposed demonstration(s) of achments and supporting d Quality with the appropriate application ur application package. ch(es) showing the location of the proper effer to <i>Plot Plan Guidance</i>).	the subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this ocuments. n fee (per 45CSR22 and arty on which the stationary	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process <i>(if known)</i>. A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. Section II. Additional att 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Re- Indicate the location of the nearest occupied structure 	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta ability and proposed demonstration(s) of Cachments and supporting d Quality with the appropriate application ur application package. ch(es) showing the location of the proper efer to <i>Plot Plan Guidance</i>). e (e.g. church, school, business, residen	The subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this OCUMENTS. n fee (per 45CSR22 and arty on which the stationary ce).	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepg 18. Regulatory Discussion. List all Federal and State a proposed process <i>(if known)</i>. A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. Section II. Additional att 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Re- Indicate the location of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta ability and proposed demonstration(s) of Cachments and supporting d Quality with the appropriate application ur application package. ch(es) showing the location of the proper efer to <i>Plot Plan Guidance</i>). e (e.g. church, school, business, residen	The subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this OCUMENTS. n fee (per 45CSR22 and arty on which the stationary ce).	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process <i>(if known)</i>. A list of possible applica (Title V Permit Revision Information). Discuss applica information as Attachment D. Section II. Additional att 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Re- Indicate the location of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show 	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Atta ability and proposed demonstration(s) of Cachments and supporting d Quality with the appropriate application ur application package. ch(es) showing the location of the proper efer to <i>Plot Plan Guidance</i>). e (e.g. church, school, business, residen	The subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this OCUMENTS. n fee (per 45CSR22 and arty on which the stationary ce).	
 Hours Per Day 24 Days Per Week 7 16. Is demolition or physical renovation at an existing fa 17. Risk Management Plans. If this facility is subject to changes (for applicability help see www.epa.gov/cepp 18. Regulatory Discussion. List all Federal and State a proposed process (<i>if known</i>). A list of possible application (Title V Permit Revision Information). Discuss application information as Attachment D. Section II. Additional attact 19. Include a check payable to WVDEP – Division of Air 45CSR13). 20. Include a Table of Contents as the first page of you 21. Provide a Plot Plan, e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Re- Indicate the location of the nearest occupied structure 22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	Weeks Per Year 52 cility involved? YES NO o 112(r) of the 1990 CAAA, or will becom bo), submit your Risk Management Pla air pollution control regulations that you able requirements is also included in Attra- ability and proposed demonstration(s) of achments and supporting d Quality with the appropriate application ur application package. ch(es) showing the location of the proper efer to <i>Plot Plan Guidance</i>). e (e.g. church, school, business, resident wing each proposed or modified emission all changes made to the facility since the	The subject due to proposed n (RMP) to U. S. EPA Region III. believe are applicable to the achment S of this application compliance <i>(if known)</i> . Provide this ocuments. n fee (per 45CSR22 and wrty on which the stationary <u>ce)</u> . ns unit, emission point and control e last permit review (if applicable).	

24. Provide Material Safety Data Shee	ets (MSDS) for all materials proces	ssed, used or produced as Attachment H.	
 For chemical processes, provide a MSDS for each compound emitted to the air. 			
25. Fill out the Emission Units Table and provide it as Attachment I.			
26. Fill out the Emission Points Data S	Summary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.	
27. Fill out the Fugitive Emissions Dat	ta Summary Sheet and provide it	as Attachment K.	
28. Check all applicable Emissions Un	it Data Sheets listed below:		
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry	
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage	
Concrete Batch Plant	Incinerator	Facilities	
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks	
General Emission Unit, specify: Eng	ines, Dehydrator		
Fill out and provide the Emissions Unit	Data Sheet(s) as Attachment L.		
29. Check all applicable Air Pollution (Control Device Sheets listed belo	w:	
Absorption Systems	Baghouse	Flare	
Adsorption Systems	Condenser	Mechanical Collector	
Afterburner	Electrostatic Precipita	tor Uvet Collecting System	
Other Collectors, specify: Catalysts	5		
Fill out and provide the Air Pollution Co	ontrol Device Sheet(s) as Attach	ment M.	
30. Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachment N, o	or attach the calculations directly to the forms listed in	
	e compliance with the proposed e	proposed monitoring, recordkeeping, reporting and missions limits and operating parameters in this permit	
	ay not be able to accept all measure	her or not the applicant chooses to propose such ures proposed by the applicant. If none of these plans de them in the permit.	
32. Public Notice. At the time that the	application is submitted, place a	Class I Legal Advertisement in a newspaper of general	
circulation in the area where the sou	urce is or will be located (See 45C	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>	
Advertisement for details). Please	submit the Affidavit of Publicati	on as Attachment P immediately upon receipt.	
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?			
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.			
Section III. Certification of Information			
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:			
Authority of Corporation or Other Business Entity			
Authority of Governmental Agency Authority of Limited Partnership			
Submit completed and signed Authority Form as Attachment R.			
		Permitting Section of DAQ's website, or requested by phone.	

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

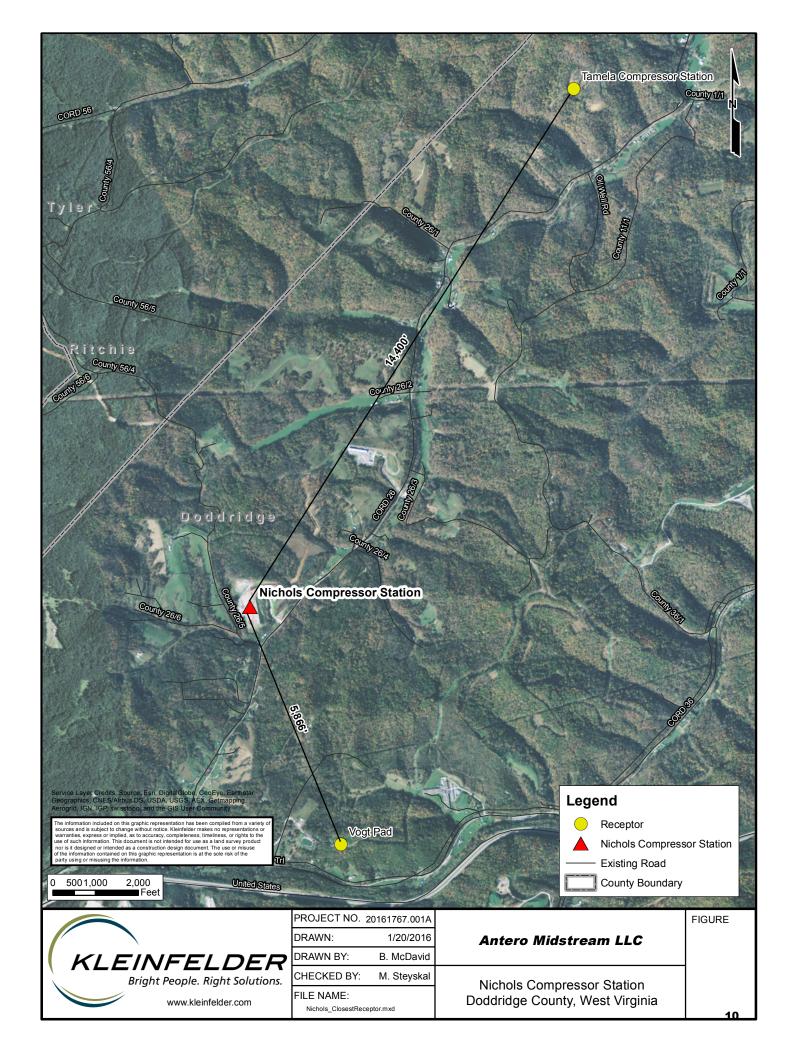
SIGNATURE(Please	use blue/ink)	DATE:	(Please use blue ink)
35B. Printed name of signee: Ward McNeilly			e: Vice President, Reserves and Midstream
35D. E-mail: wmcneilly@anteroresources.com	36E. Phone: (303)357-6822	36F. FA	X: (303)357-7315
36A. Printed name of contact person (if differe	nt from above): Barry Schatz		e: Senior Environmental and ry Manager
36C. E-mail: <u>bschatz@anteroresources.com</u>	36D. Phone: (303) 357-7276	36E. FAX	K: (303)357-7315

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	ED WITH THIS PERMIT APPLICATION:			
	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 			
address listed on the first page of this application. Please DO NOT fax permit applications.				
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:				
Forward 1 copy of the application to the Title V Permitting	g Group and:			
For Title V Administrative Amendments:				
□ NSR permit writer should notify Title V permit writer of draft permit,				
□ For Title V Minor Modifications:				
Title V permit writer should send appropriate notic	fication to EPA and affected states within 5 days of receipt,			
□ NSR permit writer should notify Title V permit writ	ter of draft permit.			
For Title V Significant Modifications processed in parallel	with NSR Permit revision:			
NSR permit writer should notify a Title V permit with the second seco	riter of draft permit,			
Public notice should reference both 45CSR13 and				
EPA has 45 day review period of a draft permit.				
All of the required forms and additional information can be f	ound under the Permitting Section of DAQ's website, or requested by phone.			

7

Discussion of Nearby Facilities

Nichols Compressor Station – Closest Antero Facilities


1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes Antero Resources Corporation production facilities in addition to the Antero Midstream LLC midstream facilities.

2. SIC Code: The Nichols Compressor Station will operate under SIC code 4923 (natural gas distribution). The closest facility owned by Antero Midstream LLC with this SIC code is the Tamela Compressor station which is 2.7 miles northeast of the Facility. All Antero Resources Corporation production facilities operate under the SIC code of 1311 (crude petroleum and natural gas extraction). The closest facility operated by Antero Resources Corporation with the SIC code of 1311 is the Vogt Pad 1.1 miles to the southeast.

3. Contiguous or Adjacent: The land between the Nichols Compressor Station and its nearest facility operating under SIC code 4923 is not owned or managed by Antero Midstream LLC or Antero Resources Corporation. Therefore, the two facilities are not contiguous or adjacent.

Based on this three-pronged evaluation, although the Nichols Compressor Station and Tamela Compressor Station do belong to the same major industrial group, they should not be aggregated because they are not contiguous or adjacent.

The Nichols Compressor Station and Vogt Pad should not be aggregated because they do not belong to the same major industrial group and do not directly rely on each other nor are they contiguous or adjacent.

Attachment A. Business Certificate

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO MIDSTREAM LLC

Control Number: 9A5E1

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of April 29, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of April 29, 2014

talil E. Yoww

Secretary of State

	2 9 2014 OFFICE OF TARY OF STAT	E		Submitted by: CT Corporation Rep-Terry Terry.Stamper@wolterskiu 304-776-1152
Natalie E. Tennant Secretary of State 1900 Kanawha Blvd E Bldg I, Suite 157-K Charleston, WV 25305 FILE ONE ORIGINAL (Two if you want a filed stamped copy returned to you) FEE: \$150	WV APPL CERTIFICATE O LIMITED LIAI		ORITY OF	Penney Barker, Manager Corporations Division Tcl: (304)558-8000 Fax: (304)558-8381 Website: <u>www.wvsos.com</u> E-mail: <u>husiness@wvsos.com</u> Office Hours: Monday – Friday 8:30 a.m. – 5:00 p.m. ET Control #
1. The name of the company home state is:	as registered in its	Antero Mid	stream LLC	
X UNECK HERE to maicate		ma submitted	men enis appa	cation a <u>CERTIFICATE OF</u>
EXISTENCE (GOOD ST/	<u>ANDING</u>), dated duri to process your applie e in the home state of est Virginia will be: the required terms such abbreviations such as ons for complete list of	ing the curren cation. The ce original incor Home S (If nam follow DBA nam (See sp	t tax year, fron rtificate may b poration. State name as l e is not available y special instructions me	n your home state of original e obtained by contacting the isted above, if available in WV . check DBA Name box below and ons in Section 2. attached.) in Section 2. Regarding the
 EXISTENCE (GOOD ST: incorporation as required Secretary of State's Office The name to be used in We [The name must contain one of as limited liability company" or a "L.C" or "PLLC". See instruction acceptable terms and requirement 	<u>ANDING</u>), dated duri to process your applic e in the home state of est Virginia will be: the required terms such abbreviations such as ons for complete list of ts for use of trade name.] e instructions for limitation L.C. in WV. All members In most cases, a Letter of e appropriate State	ing the curren cation. The ce original incor Home S (If nam fullow DBA na (See sp Lette s X regul	t tax year, fron rtificate may b poration. State name as l e is not available special instruction me coial instructions r of Resolution a ar L.L.C.	n your home state of original e obtained by contacting the isted above, if available in WV . check DBA Name box below and ons in Section 2. attached.)
 <u>EXISTENCE (GOOD ST:</u> incorporation as <u>required</u> Secretary of State's Office The name to be used in We (The name must contain one of as limited liability company" or a "LLC" or "PLLC". See instruction acceptable terms and requirement The company will be a: [Sec on professions which may form P.L must have WV professional license Authorization/Approval from the 	ANDING), dated duri to process your applic e in the home state of est Virginia will be: the required terms such abbreviations such as ons for complete list of ts for use of trade name.] e instructions for limitation .L.C. in WV. All members 2. In most cases, a Letter of e appropriate State scess the application.]	ing the curren cation. The ce original incor Home S (If nam fullow DBA na (See sp Lette s X regul	t tax year, fron rtificate may b poration. State name as l e is not available v special instructions r of Resolution a ar L.L.C. essional L.L.C.	n your home state of original e obtained by contacting the isted above, if available in WV , check DBA Name box below and ons in Section 2. attached.) in Section 2. Regarding the ttached to this application.) for the profession of reet, Suite 300
 EXISTENCE (GOOD ST: incorporation as required Secretary of State's Office The name to be used in We (The name must contain one of as limited liability company" or a "LLC" or "PLLC". See instruction acceptable terms and requirement The company will be a: [Sec on professions which may form P.L must have WV professional license Authorization/Approval from the Licensing Board is required to pro The street address of the pris: 	ANDING), dated durit to process your application process your application process your application process your application process your applications such as possible for use of trade name.] est Virginia will be: the required terms such as poss for complete list of ts for use of trade name.] e instructions for limitationL.C. in WV. All members: In most cases, a Letter of expropriate State becass the application.] rincipal office different) is: hted office of , will be:	ing the curren cation. The ce original incor Home S (If nam follow DBA na (See sp Lette s S Prof No. & Street: City/State/Zip:	t tax year, fron rtificate may b poration. State name as I e is not available v special instructions cold instructions of Resolution a ar L.L.C. 1625 17th Str Denver, Colo	n your home state of original e obtained by contacting the isted above, if available in WV . check DBA Name box below and ons in Section 2. attached.) in Section 2. Regarding the ttached to this application.) for the profession of reet, Suite 300 rado 80202

WV045 - 09/04/2013 Wolters Kluwe: Online

. .

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 2

7. E-mail address whe	ere business corre	espondence may be received:	nnaula@anteroresources.com	
8. Website address of		11/0		
9. The company is:	a term	vill company, for an indefinite p company, for the term of will expire on	years,	
10. The company is:	10. The company is: member-managed. [List the names and addresses of all members.] manager-managed. [List the names and addresses of all managers.]			
List the Name(s) a pages if necessary)		s) of the Member(s)/Manager(s) of the company (attach additional	
Name		Street Address	City, State, Zip	
Antero Resources	Corporation	1625 17th Street, Suite 300	Denver, Colorado 80202	
(Describe the type(s) (of business activit	e p d liability company is formed a	ple, "real estate," "construction of residential	
Midstream oil and g	is operating com	pany		
and pro	•	lete the Scrap Metal Dealer Regis 14.].	stration Form (<u>Form SMD-1</u>)	
14. The number of pag	es attached and	Included in this application is:	3	
Form I.I.F.I		Issued by the Office of the Secretary of the	State Revised 8/13	

WV045 - 09/64/2013 Wolters Kluwer Online

•

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3

15. The requested effective date is:	the date & time of filing in	the Secretary of State's Office
[Requested date <u>may not be earlier than</u> filing nor later than 90 days after filing in our office.]	the following date	and time

16. Contact and Signature Information* (See below Important Legal Notice Regarding Signature):

a.	Alvyn A. Schopp	(313) 357-7310
	Contact Name	Phone Number
ь.	Alvyn A. Schopp	Chief Administrative Officer and Regional Vice President
0.	Print or type name offait ar	Title / Capacity of Signer
c.	Hz-Achtp	April 28, 2014
	Signature /	Date

*Important Legal Notice Regarding Signature: Per West Virginia Code <u>§31B-2-209</u>. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Form LLF-1

Issued by the Office of the Secretary of State

•

Revised 8/13

• •

Delaware

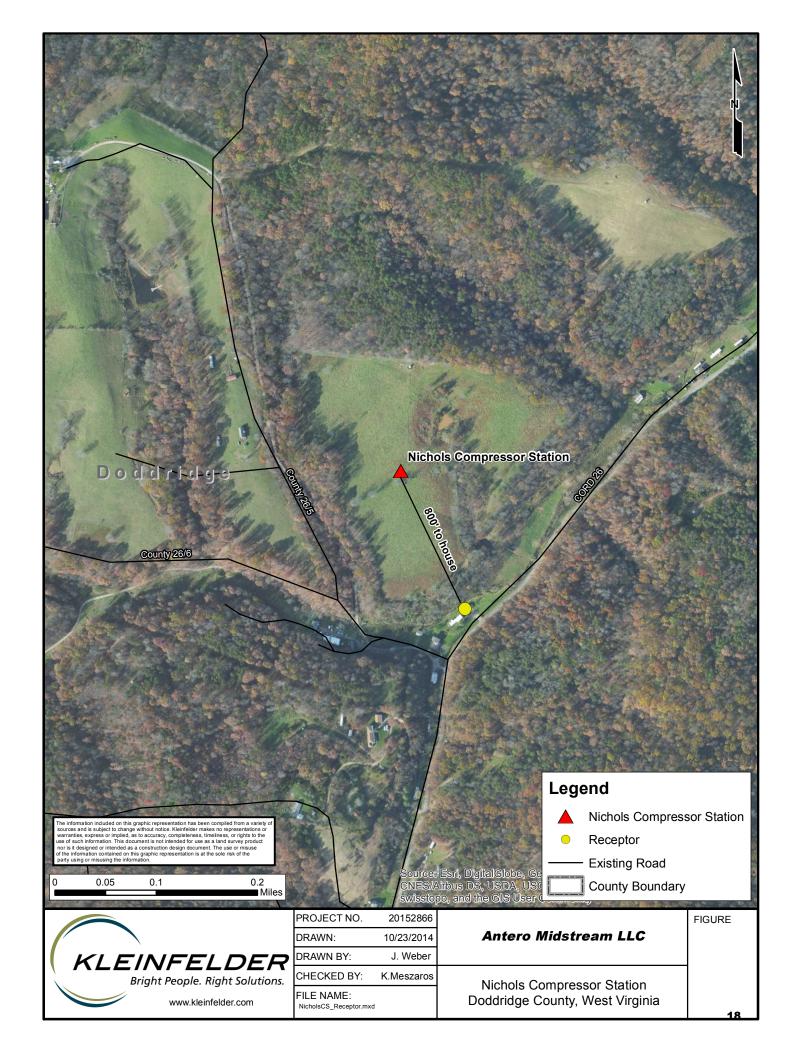
PAGE 1

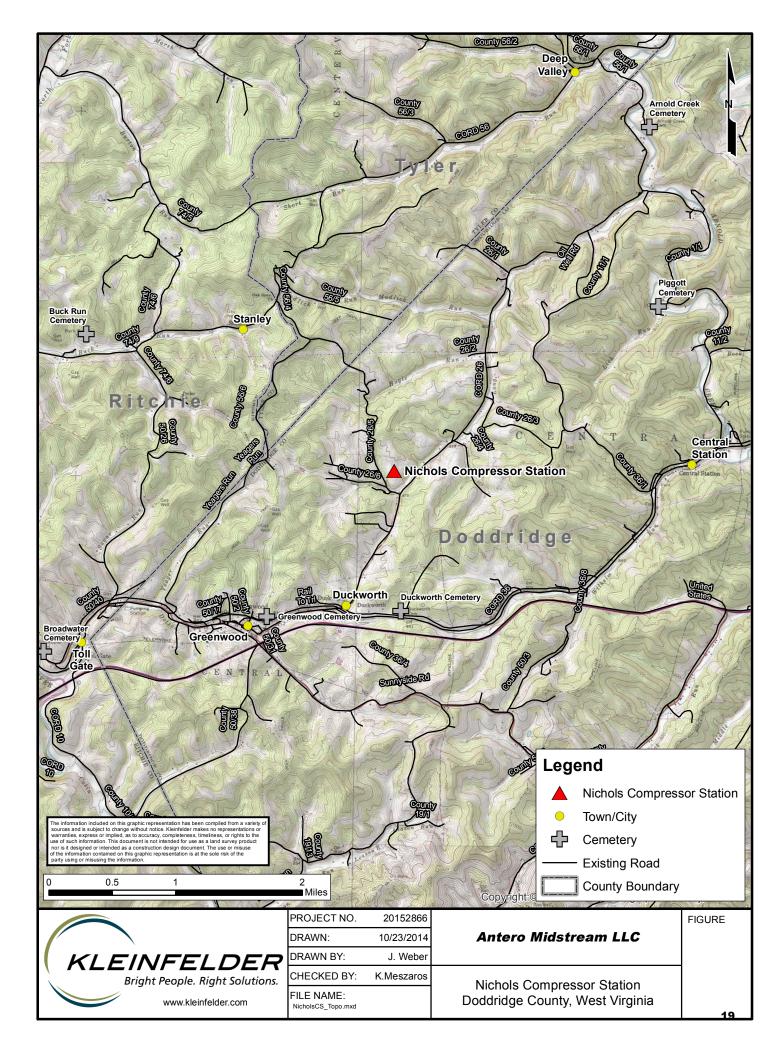
The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ANTERO MIDSTREAM LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF APRIL, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5466900 8300


140532521 You may verify this certificate online at corp.delaware.gov/authver.shtml


•••

Jeffrey W. Bullock, Secretary of State AUTHENTICATION: 1328067

DATE: 04-29-14

Attachment B. Area Map

Attachment C. Installation and Startup Schedule

Nichols Compressor Station – Installation and Startup Schedule

The Nichols Compressor Station is an existing facility located in Doddridge County, WV, approximately 7.6 miles east of Pennsboro, WV. Equipment is currently installed and operating per permit R13-3201A. The proposed equipment is scheduled to be installed and operational around April 1, 2016.

Attachment D. Regulatory Discussion

Nichols Compressor Station – Regulatory Discussion

Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

<u>Applicability:</u> Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). Since all storage tanks at the Nichols Compressor Station are 64 m³, Subpart Kb does not apply.

II. Subpart GG - Standards of Performance for Stationary Gas Turbines

<u>Applicability:</u> Subpart GG applies to all stationary gas turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the lower heating value of the fuel (§60.330(a)). Since the microturbine generators at the Nichols Compressor Station have a heat input rating less than 10 million Btu per hour, Subpart GG does not apply.

III. Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart KKK applies to facilities built or modified before August 23, 2011, so Subpart KKK does not apply as the Nichols Compressor Station was constructed after that date.

IV. Subpart LLL - Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart LLL applies to facilities built or modified before August 23, 2011, so Subpart LLL will not apply as the Nichols Compressor Station was constructed after that date.

V. Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

<u>Applicability:</u> Subpart JJJJ applies to rich burn engines that were ordered after June 12, 2006 and manufactured on or after July 1, 2007 for engines with maximum power greater than or equal to 500 hp (§60.4230(a)(4)(i)). Thus, Subpart JJJJ applies to the Nichols Compressor Station as the compressor engines were ordered after June 12, 2006 and manufactured after July 1, 2007.

VI. Subpart KKKK - Standards of Performance for Stationary Combustion Turbines

<u>Applicability:</u> Subpart KKKK applies to all stationary combustion turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the higher heating value of the fuel (§60.4305(a)). Since the microturbine generators at the Nichols Compressor Station have a heat input rating less than 10 million Btu per hour, Subpart KKKK does not apply.

VII. Subpart 0000 - Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

<u>Applicability:</u> Subpart OOOO applies to reciprocating compressor facilities that were constructed, modified, or reconstructed after August 23, 2011 (§60.5365(c)). Additionally, Subpart OOOO applies to storage vessel affected facilities with individual tank emissions greater than 6 tons per year (§60.5365(e)). Thus, Subpart OOOO applies to the Nichols Compressor Station as it was constructed after August 23, 2011 and has reciprocating compressors. Only the settling tank has a potential to emit greater than 6 tons per year. The pneumatic controllers installed at Nichols Compressor Station are air-actuated and therefore exempt from the requirements of this subpart.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

<u>Applicability:</u> Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the Nichols Compressor Station because none of the components have fluid (natural gas, water, or condensate) that is over 10 percent by weight of any VHAP.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart HH – National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

<u>Applicability:</u> Subpart HH applies to oil and natural gas production facilities that are a major or area source of HAP emissions, and that process, upgrade, or store hydrocarbon liquids or natural gas prior to the transmission and storage source category (§63.760(a)). Subpart HH does apply to the Nichols Compressor Station, and because it is an area source of HAP emissions, the two (2) TEG dehydrators will be applicable sources under Subpart HH (§63.760(b)(2)). However, actual benzene emissions from

the dehydrators at the Nichols Compressor Station are less than 1 ton per year, so both dehydrators are exempt from all requirements except recordkeeping (§63.764(e)(1)(ii)).

II. Subpart HHH – National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

<u>Applicability:</u> Subpart HHH applies to natural gas transmission and storage facilities that are a major source of HAP emissions (§63.1270(a)). Subpart HHH does not apply to the Nichols Compressor Station as it is not a major source of HAP emissions. Further, the Nichols Compressor Station is prior to the gas transmission and storage phase.

III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the Nichols Compressor Station as it is not a major source of HAP emissions.

IV. Subpart YYYY – National Emission Standards for Hazardous Air Pollutants for Stationary Combustion Turbines

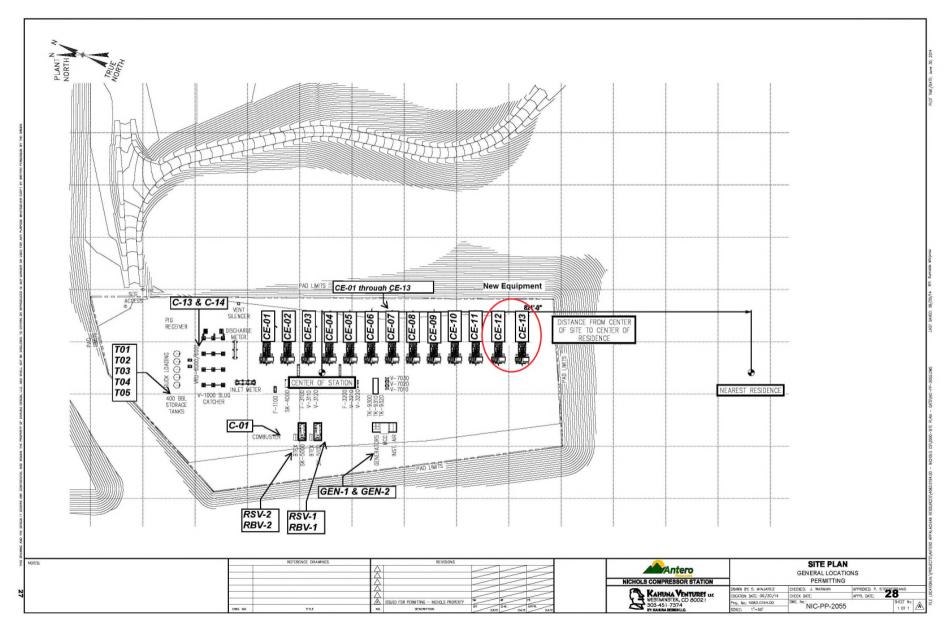
<u>Applicability:</u> Subpart YYYY applies to stationary combustion turbines located at major sources of HAP emissions (§63.6085(a)). Since the Nichols Compressor Station is not a major source of HAP emissions, Subpart YYYY does not apply.

V. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

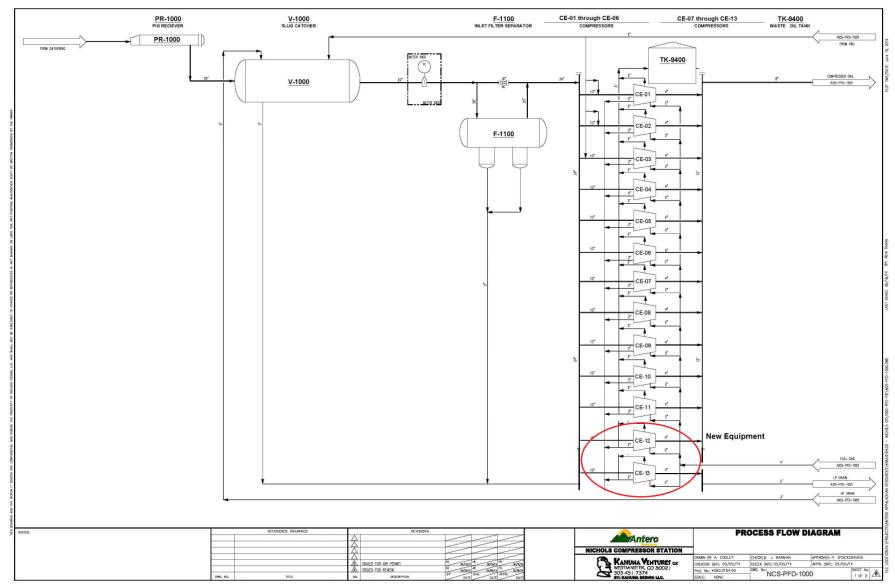
<u>Applicability:</u> Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the Nichols Compressor Station as the compressor engines are new RICE. The engines will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart JJJJ as the Nichols Compressor Station is an area source of HAP emissions (§63.6590(c)(1)).

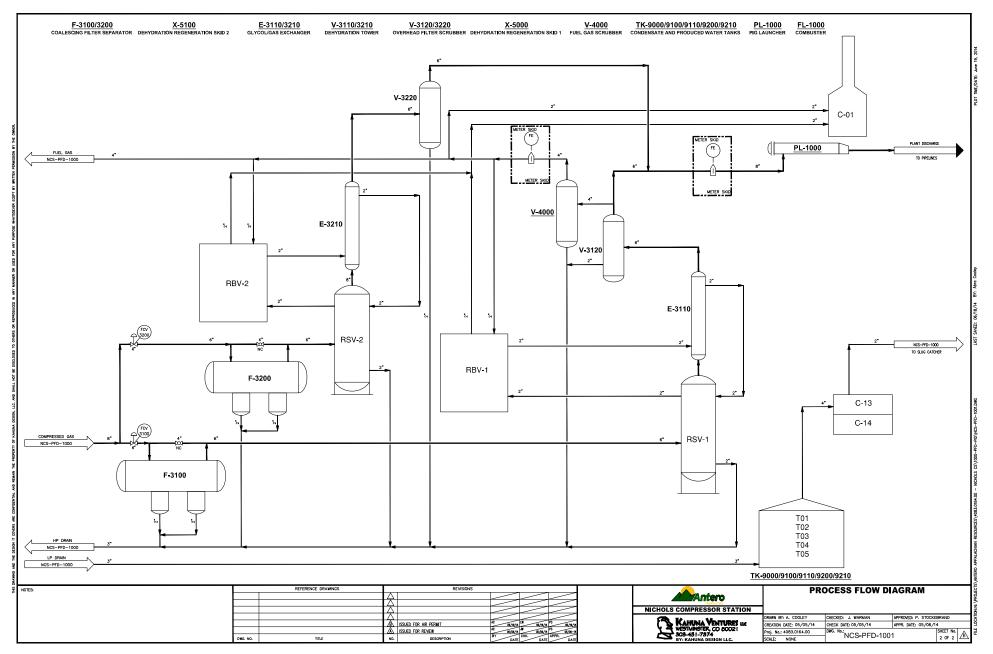
VI. Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters

<u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the Nichols Compressor Station as it is not a major source of HAP emissions.


West Virginia State Regulations

Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality


The following Title 45 Legislative Rules will be applicable to the Nichols Compressor Station:


- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- II. 45CSR2A Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2
- III. 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- IV. 45CSR6 Control of Air Pollution from Combustion of Refuse
- V. 45CSR8 Ambient Air Quality Standards
- VI. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VII. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation
- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program
- XI. 45CSR27 To Prevent and Control the Emissions of Toxic Air Pollutants
- XII. 45CSR33 Acid Rain Provisions and Permits
- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules
- XV. 45CSR42 Greenhouse Gas Emissions Inventory

Attachment E. Plot Plan

Attachment F. Process Flow Diagram

Attachment G. Process Description

Nichols Compressor Station – Process Description

The Nichols Compressor Station is located in Doddridge County, West Virginia. Gas from surrounding pipelines enters the facility through one (1) receiver and associated slug catcher. From there, the gas is metered and routed through a scrubber and filter separator. Any produced liquids from the scrubber or separator are sent to the 400 barrel settling tank (T03). Gas from the filter separator is sent to one (1) of thirteen (13) 1680 hp Waukesha compressor engines (CE-01 through CE-13). The thirteen (13) compressor engines are controlled with NSCR catalysts and air-fuel ratio controllers (C-02 through C-12, C-15, C-16). Produced fluids are routed to the settling tank and gas goes to one of the two (2) TEG dehydrators.

Each TEG dehydrator (RSV-1 and RSV-2) contains a flash gas tank and 1.5 MMBtu/hr reboiler. Each dehydrator has a design rate of 72.5 MMscf/day. Within the dehydrator unit, vent gas from the flash gas tank is routed to the reboiler (RBV-1 and RBV-2) and used as fuel. In the case where the flash tank gas cannot be used by the reboiler due to excess gas or the reboiler being offline, the gas will be sent to the VRUs (C-13 and C-14) via the storage tanks (T01 – T05) and thus controlled by 98%. Emissions from each reboiler are routed to the atmosphere. The dehydrator still vents (RSV-1 and RSV-2) are controlled by a combustor with at least 98% control efficiency (C-01). Produced fluids from the dehydrator are routed to the settling tank. The dry gas from the dehydration process is either routed to a fuel gas scrubber, metered, and routed to the compressors as fuel gas or metered and sent to plant discharge.

All produced fluids enter one (1) 400 barrel settling tank (T03) where the fluids settle out as either condensate or produced water. The produced water goes to two (2) 400 barrel produced water tanks (T01 and T02) and the condensate goes to two (2) 400 barrel condensate tanks (T04 and T05). Flashing only occurs at the settling tank as the fluids stabilize in the settling tank before going to the other storage tanks. All five (5) tanks are connected to a vapor recovery unit (C-13) where tank vapors are collected and recycled back into the gas system right before the initial filter scrubber. There is a second vapor recovery unit (C-14) that is used as a back-up control for the storage tanks. The produced fluids are trucked out via tanker trucks as needed (EPLOR). The production is 150.9 barrels per day of condensate and 44.7 barrels per day of produced water.

Two (2) natural gas microturbine generators, each rated at 200 kWe supply power to the facility (GEN1 – GEN2). A small 24,000 Btu/hr catalytic heater (CATHT-1) is used to heat the fuel to

power the generators. Fugitive emissions from component leaks, traffic on unpaved roads, and emissions from venting or blowdown events also occur.

There will also be nine (9) small storage tanks onsite. A list of the tanks and their capacity is in the table below.

Tag Number	Description	Gallons
TK-9440	Compressor Skid Settling Tank	1,000
TK-9410	Bulk TEG Storage Tank	1,000
TK-9430	Bulk Lube Oil Storage Tank	1,000
TK-9330	Waste Oil Storage Tank	1,000
TK-9420	Bulk Coolant Storage Tank	1,000
TK-9300	Compressor Skid Oily Water Tank	1,000
TK-9310	Sump Collection Tank	1,000
TK-9320	Jacket Water Storage Tank	1,000
TK-9400	Compressor Waste Oil Tank	4,200

Attachment H. Material Safety Data Sheets

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

JMN Specialties, Inc.

1100 Victory Drive Westwego, LA 70094 (504) 341-3749 ISO 9001 Registered HMIS HEALTH:.....2 HMIS FLAMMABILITY:.....1 HMIS REACTIVITY:.....0 PERSONAL PROTECTION:C

SECTION 1 – IDENTIFICATION OF CHEMICAL PRODUCT

PRODUCT NAME:TRIETHYLENE GLYCOL (TEG)**EFFECTIVE DATE:**October 1, 2007**CHEMICAL FAMILY:**Glycol**FORMULA:** $C_6H_{14}O_4$ **CAS NUMBER:**112-27-6

SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT	PERCENT	CAS NUMBER	PEL
TRIETHYLENE GLYCOL	> 99	112-27-6	None Established by ACGIH
			or OSHA.

The criteria for listing components in the composition section are as follows: Carcinogens are listed when present at 0.1% or greater; components which are otherwise hazardous according to OSHA are listed when present at 1.0% or greater. Non-hazardous components may be listed at 3.0% or greater if not proprietary in nature. This is not intended to be complete compositional disclosure. Refer to section 14 for applicable states right to know and other regulatory information.

SECTION 3 – HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW				
APPEARANCE / ODOR: Clear Liquid / Mild Odor				
SHORT TERM EXPOSURE:	Inhalation: No adverse health effects expected from inhalation.			
	Ingestion: No adverse effects expected. Skin Contact: Prolonged			
	exposure may cause skin irritation. Eye Contact: Splashing in eye			
	causes irritation with transitory disturbances of corneal epithelium.			
	However, these effects diminish and no permanent injury is expected.			
	Vapors are non-irritating. Chronic Exposure: Possible skin irritation.			
	Aggravation of Pre-existing Conditions: No information found.			
OSHA REGULATED:	. No			
LISTED CARCINOGEN:	. NTP: No IARC MONOGRAPHS: No			

POTENTIAL HEALTH EFFECTS

INHALATION:	Unlikely
INGESTION:	Irritant
SKIN (DERMAL):	Slight Irritant After Prolonged Contact

OVER EXPOSURE EFFECTS:Inhalation: No adverse health effects expected from inhalation.Ingestion: No adverse effects expected.Skin Contact: Prolonged
exposure may cause skin irritation.Exposure may cause skin irritation.Eye Contact: Splashing in eye
causes irritation with transitory disturbances of corneal epithelium.
However, these effects diminish and no permanent injury is expected.
Vapors are non-irritating.Chronic Exposure: Possible skin irritation.
Aggravation of Pre-existing Conditions: No information found.

SECTION 4 – FIRST AID MEASURES

FIRST AID: SKIN CONTACT: Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. EYE CONTACT: Flush eyes immediately with large amounts of water or normal saline solution, occasionally lifting upper and lower lids until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. INGESTION: Give large amounts of fresh water or milk immediately. Do not give anything by mouth if person is unconscious or otherwise unable to swallow. If vomiting occurs, keep head below hips to prevent aspiration. Treat symptomatically and supportively. Seek medical attention immediately. INHALATION: Remove from exposure area to fresh air immediately. If breathing has stopped, perform artificial resuscitation. Keep person warm and at rest. Treat symptomatically and supportively. Seek medical attention immediately. Qualified medical personnel should consider administering oxygen. NOTE TO PHYSICIAN: Ethylene Glycol (EG) and diethylene glycol (DEG) intoxication may initially produce behavioral changes, drowsiness, vomiting, diarrhea, thirst, and convulsions. EG and DEG are nephrotoxic. End stages of poisoning may include renal damage or failure with acidosis. Supportive measures, supplemented with hemodialysis if indicated, may limit the progression and severity of toxic effects. Primary toxic effects of EG when swallowed are kidney damage and metabolic acidosis. This product may contain trace amounts of Ethylene Glycol (EG) or Diethylene Glycol (DEG).

SECTION 5 - FIRE FIGHTING MEASURES

FLASHPOINT:	.350°F
EXTINGUISHING MEDIA:	Water fog or spray, Foam, Dry Powder, Carbon Dioxide (CO ₂).
DECOMPOSITION	
PRODUCTS:	. From fire; Smoke, Carbon dioxide, & Carbon Monoxide
LOWER FLAME LIMIT:	. < 0.9
HIGHER FLAME LIMIT:	.>9
UNUSUAL FIRE AND	
EXPLOSION HAZARDS:	• Toxic levels of carbon monoxide, carbon dioxide, irritation aldehydes and ketones may be formed on burning. Heating in air may produce irritating aldehydes, acids, and ketones.
FIRE FIGHTING	

EOUIPMENT:	Fire fighters and others exposed to products of combustion should wear
C C	self-contained breathing apparatus. Equipment should be thoroughly
	decontaminated after use.

SECTION 6 - ACCIDENTAL RELEASE MEASURES

CHEMTEL EMERGENCY NUMBER (24 Hour):	1-800-255-3924
SPILL:	. Ventilate area of leak or spill. Wear appropriate personal protective
	equipment as specified in Section 8. Isolate hazard area. Keep
	unnecessary and unprotected personnel from entering. Contain and
	recover liquid when possible. Collect liquid in an appropriate container
	or absorb with an inert material (e. g., vermiculite, dry sand, earth), and
	place in a chemical waste container. Do not use combustible materials,
	such as saw dust. Do not flush to sewer!
RCRA STATUS:	. None

SECTION 7 – HANDLING AND STORAGE

HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES. THESE PRACTICES INCLUDE AVOIDING UNNECESSARY EXPOSURE AND PROMPT REMOVAL OF MATERIAL FROM EYES, SKIN, AND CLOTHING.

HANDLING AND STORAGE: .. No special storage requirements. Do not store above 120°F. PRECAUTIONARY

MEASURES: Provide fresh air ventilation during and after application. Close container after each use. Avoid prolonged or repeated contact with skin. Avoid contact with skin, eyes, and clothing. After handling this product, wash hands before eating, drinking, or smoking. If needed, take first aid action shown in Section 4.

SECTION 8 - EXPOSURE CONTROL / PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment.

EYE PROTECTION:	• Chemical safety goggles meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 should be worn whenever there is the possibility of splashing or other contact with the eyes. Wear safety glasses meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 where no contact with the eye is anticipated.
RESPIRATORY PROTECTION:	• Not normally needed. Use NIOSH approved vapor respirator if exposure is unknown or exceeds permissible limits. A respiratory protection program that meets OSHA's 29 CFR 1910.134 or ANSI Z88.2 requirements must be followed whenever workplace conditions warrant respirator use.

Use NIOSH / MSHA approved respiratory protection equipment when airborne exposure limits are exceeded (see below). Consult the respirator manufacturer to determine appropriate type of

PAGE 3 of 6

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

MECHANICAL EXHAUST: Desired in closed places LOCAL EXHAUST: Recommended

VENTILATION:

VENTILATION NOTES: Provide natural or mechanical ventilation to control exposure levels below Airborne exposure limits (see below). The use of local mechanical exhaust ventilation is preferred at sources of air contamination such as open process equipment. Consult NFPA Standard 91 for design of exhaust systems.

THRESHOLD LIMIT VALUE: None Established

PROTECTIVE EQUIPMENT:... HMIS PERSONAL PROTECTION: C: Safety Glasses, Gloves, Apron The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

SECTION 10 – STABILITY AND REACTIVITY

 STABILITY:
 Stable

 HAZARDOUS
 Will Not Occur

 POLYMERIZATION AVOID:
 None

 INCOMPATIBILITY:
 Explosive decomposition may occur if combined with strong acids or strong bases and subjected to elevated temperatures. Therefore, avoid strong acids and strong bases at elevated temperatures. Avoid contamination with strong oxidizing agentsand materials reactive with hydroxyl compounds. Avoid burning or heating in air. This may produce irritating aldehydes, acids, and ketones.

 CONDITIONS TO AVOID:
 Excessive heat. Will ignite in air at 700°F

SECTION 11 – TOXICOLOGICAL INFORMATION

EYE EFFECTS:

The eye irritation hazard is based on data from information supplied by raw material(s) supplier(s). **SKIN EFFECTS:**

The skin irritation hazard is based on data from information supplied by raw material(s) supplier(s). **ACUTE ORAL EFFECTS:**

The acute oral toxicity is based on data from information supplied by raw material(s) supplier(s). **ACUTE INHALATION EFFECTS:**

The acute respiratory toxicity is based on data from information supplied by raw material(s) supplier(s).

SECTION 12 – ECOLOGICAL INFORMATION

Data from laboratory studies and from scientific literature is noted below if available.

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Treatment, storage, transportation and disposal must be in accordance with Federal, State/Provincial and Local Regulations. Regulations may vary in different locations. Characterization and compliance with applicable laws are the responsibility solely of the generator. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

SECTION 14- TRANSPORTATION INFORMATION

The data provided in this section is for information only. The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate regulations to properly classify your shipment for transportation.

SECTION 15 - REGULATORY INFORMATION

EPA CHRONIC: No EPA IGNITABILITY: No EPA REACTIVITY: No EPA SUDDEN RELEASE OF PRESSURE: No CERCLA RQ VALUE: None SARA TPO: None SARA RQ:..... None EPA HAZARD WASTE #:..... None CLEAN AIR: NA CLEAN WATER:..... NA SARA SECTION 313:..... No NFPA FLAMMABILITY:.....1 NFPA REACTIVITY:0 **DEA Chemical Trafficking Act:..** No TSCA STATUS: All ingredients in this product are on the TSCA Inventory List.

SECTION 16 - ADDITIONAL INFORMATION

FOOT NOTES: NA - NOT APPLICABLE ND - NO DATA AVAILABLE > = GREATER THAN < = LESS THAN

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Company Health and Risk Assessment Unit, PO Box 1519, Gretna, LA 70054-1519.

REVISION STATEMENT: Changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

DISCLAIMER:

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, the Company makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving this MSDS will make their own determination as to its suitability for their intended purposes prior to use. Since the product is within the exclusive control of the user, it is the user's obligation to determine the conditions of safe use of this product. Such conditions should comply with all Federal Regulations concerning the Product. It must be recognized that the physical and chemical properties of any product may not be fully understood and that new, possibly hazardous products may arise from reactions between chemicals. The information given in this data sheet is based on our present knowledge and shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED. OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

PAGE 6 of 6

Material Name: Produced Water

US GHS

SYNONYMS: Produced Brine Water, Brine, Brine Water, Formation Water

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME:	Produced Water	EMERGENCY PHONE:	(800) 878-1373
PRODUCT CODES:	Mixture	AFTER HOURS:	(800) 878-1373
ADDRESS: 10	ntero Resources 615 Wynkoop Street enver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water

US GHS

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS #	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

First Aid: Skin

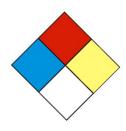
First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.


Material Name: Produced Water

US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5) ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *				
Appearance:	Clear to Brown	Odor:	Salty	
Physical State:	Liquid	pH:	ND	
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1	
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C	
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C	
Evaporation Rate:	Variable	VOC:	ND	
Octanol / H2O Coeff.:	ND	Flash Point:	ND	
Flash Point Method:	ND			
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND	
(LFL):		(UFL):		
Auto Ignition:	ND	Burning Rate:	ND	

Material Name: Produced Water

*** Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION ***

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

*** Section 11 - TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis – D50/LC50

Water (7732-18-5) Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Material Name: Produced Water

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC, NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water

US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information Shipping Description: Not Regulated UN #: Not Regulated

Material Name: Produced Water

*** Section 15 – REGULATORY INFORMATION ***

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372,

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 – OTHER INFORMATION * * *

NFPA® Hazard Rating

	Health	1	
	Fire	0	
	Reactivit	y0	
HMIS® Hazard Rating	Health	1	Slight
	Fire	0	Minimal
	Physical	0	Minimal

Material Name: Produced Water

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Natural Gas Condensate

US GHS

SYNONYMS: Drips; Condensate; Field Condensate; Gas Well Condensate; High Pressure Inlet Liquids; Lease Condensate; Natural Gas Liquids; Pipeline Liquids

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME		EMERGENCY PHONE:	(800) 878-1373
PRODUCT CODE		AFTER HOURS:	(800) 878-1373
ADDRESS:	Antero Resources 1615 Wynkoop Street Denver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Liquids – Category 2. Acute Toxicity Inhalation – Category 3 Germ Cell Mutagenicity – Category 1B Carcinogenicity – Category 1A Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 3 Specific Target Organ Systemic Toxicity (STOT) – Repeat Exposure Category 1 Aspiration Toxicity – Category 1 Toxic to the Aquatic Environment Acute – Category 3

GHS LABEL ELEMENTS

Signal Word Danger

Material Name: Natural Gas Condensate

US GHS

Hazard Statements

Highly flammable liquid and vapor.
Toxic if inhaled.
May cause genetic defects.
May cause cancer.
May cause respiratory irritation.
May cause drowsiness or dizziness.
May cause damage to organs (liver, kidneys, blood, nervous system, and skin) through prolonged or repeated exposure.
May be fatal if swallowed and enters airways.
Harmful to aquatic life.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking. Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe gas/mist/vapors/spray.

Do not handle until all safety precautions have been read and understood. Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Response

If on SKIN (or hair): Wash with plenty of soap and water. Remove / Take off all contaminated clothing immediately. Rinse skin with water/shower.

If INHALED: Remove victim to fresh air and keep comfortable for breathing. Call a poison center/doctor if the victim feels unwell.

If SWALLOWED: Immediately call a poison center or doctor / physician. Do not Induce vomiting.

If exposed or concerned: Get medical advice/attention.

In case of fire: Use water spray, fog or fire-fighting foam.

Storage

Store in a well-ventilated place. Keep cool. Store in a secure area.

Material Name: Natural Gas Condensate

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

CAS #	Component	Percent
111-65-9 142-82-5	Octanes Heptanes	25 - 95 25 - 95
110-54-3	Hexanes as n-Hexane	25 - 95
109-66-0 106-97-8	Pentanes as n-Pentane N-butane	5 - 70 0 - 45
74-98-6	Propane	0 - 15
78-84-0 71-43-2	Ethane Benzene	0 - 5 < 1
108-88-3	Toluene	< 1
1330-20-7	m-,o-,p-Xylene	< 1

Because natural gas condensate is a natural product, composition can vary greatly.

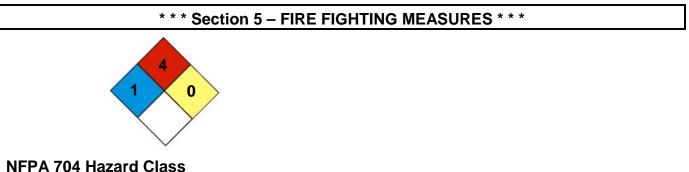
* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops. Wash contaminated clothing before reuse.


First Aid: Ingestion (swallowing)

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

Material Name: Natural Gas Condensate

First Aid: Inhalation (breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

NFPA /04 Hazard Class

Health: 1 Flammability: 4 Instability: 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Extremely flammable. Vapors may be ignited rapidly when exposed to heat, spark, open flame, or other source of ignition (e.g., static electricity, pilot lights, mechanical / electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Flammable vapors can burn in the open or explode in confined spaces. Vapors are heavier than air, and may travel distances to an ignition source and flash back. Runoff to sewer systems may cause fire or explosion.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, water spray, carbon dioxide (CO_2), or other gaseous extinguishing agents. Use caution when applying CO2 in confined spaces.

LARGE FIRES: Water spray, fog or fire-fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Unsuitable Extinguishing Media

None

Material Name: Natural Gas Condensate

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied firefighting foam.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full face piece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8). Extremely flammable. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of

Material Name: Natural Gas Condensate

ignition and hot metal surfaces away from spill/release if safe to do so.

The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons downwind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions

Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of firefighting foam may be useful in certain situations to reduce vapors. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Prevention of Secondary Hazards

None

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use non-sparking tools. Use only outdoors or in well ventilated areas. Wear protective gloves / clothing and eye / face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Storage Procedures

Store only in approved containers. Bond and ground containers. Keep away from flame, sparks, excessive temperatures and open flames. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

Material Name: Natural Gas Condensate

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Octanes (111-65-9)

ACGIH: 300 ppm TWA (listed under Octane, all isomers)

Heptanes (142-82-5)

ACGIH: 400 ppm TWA (listed under n-Heptane)

n-Hexane (110-54-3)

ACGIH: 20 ppm TWA (listed under n-Hexane)

n-Pentane (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

n-Butane (106-97-8)

ACGIH: 600 ppm TWA (listed under n-Butane)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Benzene (71-43-2)

ACGIH: 0.5 ppm (TWA); NIOSH: 0.1 ppm (TWA); OSHA 1 ppm (TWA)

Toluene (108-88-3)

ACGIH: 20 ppm TWA (listed under Toluene)

m-, o-, p-Xylene (1330-20-7)

ACGIH: 100 ppm TWA (listed under Xylene o, m & p isomers)

Material Name: Natural Gas Condensate

Engineering Measures

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH-approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere (oxygen content less than 19.5 percent). A respiratory program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant the use of a respirator.

If benzene concentrations equal or exceed applicable exposure limits, OSHA requirements for personal protective equipment, exposure monitoring, and training may apply (29 CFR 1910.1028 – Benzene).

CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Gloves constructed of nitrile or neoprene are recommended.

Personal Protective Equipment: Eyes

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying. Eye protection that meets or exceeds ANSI Z.87.1 is recommended. Depending on conditions of use, a face shield may be necessary.

Personal Protective Equipment: Skin and Body

Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use gasoline or solvents (naphtha, kerosene, etc.) for washing this product from

Material Name: Natural Gas Condensate

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance: Physical State: Vapor Pressure:	Colorless to straw yellow Liquid 110 – 200 psia (Reid VP) @ 100°F/37.8°C	Odor: pH: Vapor Density (air = 1):	Aromatic, Gasoline; ND > 1
Boiling Point:	Approx. 85 - 437°F (39 – 200°C)	Melting Point:	ND
Solubility (H2O):	Insoluble to slightly soluble	Specific Gravity:	AP 0.62-0.76 (varies)
Evaporation Rate:	High	VOC:	ND
Octanol / H2O Coeff.:	ND	Flash Point:	-40°F -40°C
Flash Point Method:	Tag Closed Cup (TCC)		
Lower Flammability Limit: (LFL):	ND (NFPA Gasoline 1.4)	Upper Flammability Limit: (UFL):	ND (NFPA Gasoline 7.6)
Auto Ignition:	AP 480°F (250°C)	Burning Rate:	ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from ignition sources and high temperatures.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Material Name: Natural Gas Condensate

US GHS

*** Section 11 – TOXICOLOGICAL INFORMATION ***

Acute Toxicity

- A: General Product Information Harmful if swallowed.
- B. Component Analysis LD50/LC50 Octanes (111-65-9) Inhalation LC50 rat = 118,000 mg/m3 / 4H

Heptanes (142-82-5) Inhalation LC50 rat = 103,000 mg/m3 / 4H

Hexanes as n-Hexane (110-53-3) Inhalation LC50 rat = 48,000 ppm / 4H

Pentanes as n-Pentane (109-66-0)

Inhalation LC50 rat = 364,000 mg/m3 / 4H

Butanes as n-Butane (106-97-8)

Inhalation LC50 rat 658,000 mg/l / 4H

Propane (74-98-6) Inhalation LC50 Rat > 800,000 ppm / 0.25H

Ethane (74-84-0) Inhalation LC50 Rat 658,000 mg/l / 4H

Benzene (71-43-2) Inhalation LC50 Rat 44,700 mg/m3 /

Toluene (108-88-3) Inhalation LD50 Rat 12/5 mg/l / 4H

m-, o-, p-Xylene (1330-20-7) Inhalation LC50 Rat 5000 ppm / 4H

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Material Name: Natural Gas Condensate

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Potential Health Effects: Ingestion (swallowing)

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation (breathing)

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Respiratory Organs Sensitization / Skin Sensitization

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

Carcinogenicity

A: General Product Information

May cause cancer.

This product contains benzene, although at very low concentrations. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Exposure to light hydrocarbons in the same boiling range as this product have been associated in animal studies with effects to the central nervous system, peripheral nervous system, liver, and kidneys. The significance of these animal models to predict similar human response is uncertain. Observing good work practices and personal hygiene procedures (Sections 7 and 8) can minimize potential risks to humans.

B: Component Carcinogenicity

Benzene (71-43-2)

ACGIH:	A1 - Confirmed Human Carcinogen
OSHA:	5 ppm STEL (Cancer hazard, Flammable, See 29 CFR 1910.1028,
	15 min); 0.5 ppm Action Level; 1 ppm TWA
NIOSH:	potential occupational carcinogen
NTP:	Known Human Carcinogen (Select Carcinogen)

Material Name: Natural Gas Condensate

US GHS

IARC: Monograph 100F [in preparation]; Supplement 7 [1987]; Monograph 29 [1982] (Group 1 (carcinogenic to humans))

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

May cause damage to organs (liver, kidneys, blood, nervous system and skin) through prolonged or repeated exposure.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

Benzene (71-43-2)

Test and Species	Conditions
96 Hr LC50 Pimephales promelas	10.7-14.7 mg/L [flow-through]
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-through]
96 Hr LC50 Lepomis macrochirus	22.49 mg/L [static]
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]
96 Hr LC50 Pimephales promelas	22330-41160 µg/L [static]
96 Hr LC50 Lepomis macrochirus	70000-142000 μg/L [static]
72 Hr EC50 Pseudokirchneriella subcapitata	29 mg/L
48 Hr EC50 Daphnia magna	8.76 - 15.6 mg/L [static]
48 Hr EC50 Daphnia magna	10 mg/L

Material Name: Natural Gas Condensate

Natural Gas condensates (68919-39-1)

Test and Species

96 Hr LC50 Alburnus alburnus
96 Hr LC50 Cyprinodon variegatus
72 Hr EC50 Pseudokirchneriella subcapitata
24 Hr EC50 Daphnia magna

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations. This material, if discarded should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material. Do not dispose of by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

Conditions

119 mg/L [static] 82 mg/L [static] 56 mg/L 170 mg/L

Material Name: Natural Gas Condensate

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Petroleum Products, n.o.s. (condensate)

UN #: 1268 Hazard Class: 3

Additional Info.: Dependent on the product's properties, the shipper may also elect to classify as Gasoline UN1203 or Petroleum Crude Oil UN1267 - reference 49 CFR 172.101 for further description (e.g., packing group determination).

Placard:

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1% de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
Х	Х	Х		

SARA SECTION 313 – SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

Material Name: Natural Gas Condensate

US GHS

INGREDIENT NAME (CAS NUMBER)

CONCENTRATION PERCENT BY WEIGHT

Benzene (71-43-2) <0.1 to 2

Canadian Regulatory Information

DSL/NDSL Inventory	This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the SDS contains all the information required by the Regulations.
Workplace Hazardous Materials Information System	 B2 - Flammable Liquid D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic Material D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material

European Union Regulatory Information

Labeling	Product is dangerous as defined by the European Union Dangerous Substances / Preparations Directives. Contains: Low Boiling Point Naphtha
Symbol	F+ Extremely Flammable T Toxic N Dangerous for the Environment
Risk Phrases	R12-45-38-65-67-51/53 Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness and dizziness. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
Safety Phrases	S16-53-45-2-23-24-29-43-62 Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). Keep out of reach of children. Do not breathe vapor. Avoid contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO2. If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.

Material Name: Natural Gas Condensate

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists

Component	CAS	CA	MA	MN	NJ	РА	RI
Octanes	111-65-9	Yes	No	Yes	Yes	Yes	Yes
Heptanes	142-82-5	Yes	No	Yes	Yes	Yes	Yes
n-Hexane	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
n-Pentane	109-66-0	Yes	No	Yes	Yes	Yes	Yes
n-Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
m-, o-, p-Xylene	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.

WARNING! This product contains a chemical known to the state of California to cause Reproductive / developmental effects.

Component Analysis – WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act

Ingredient Disclosure List:

Component	CAS #	Minimum Concentration
Benzene	71-43-2	0.1%

* * * Section 16 – OTHER INFORMATION * * *					
NFPA® Hazard Rating	Health 1 Fire 4 Reactivity 0				
HMIS [®] Hazard Rating	Health 1 Fire 4 Physical 0	Slight Severe Minimal * Chronic			

Material Name: Natural Gas Condensate

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 29, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Wet Field Natural Gas

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAM		Wet Field Natural Gas CAS Reg. No. 68410-63-9	EMERGENCY PHONE: AFTER HOURS:	(800) 878-1373 (800) 878-1373
PRODUCER: ADDRESS:	16 ⁻	tero Resources I5 Wynkoop Street nver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure – Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Wet Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place. Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 – COMPOSITION / INFO	RMATION ON INGREDIENTS * * *	

CAS #	Component	Percent
74-82-8	Methane	72 - 97
78-84-0	Ethane	2.2 - 14
74-98-6	Propane	0.0 - 8.0
106-97-8	Butanes	0.0 - 3.5
109-66-0	Pentanes	0.0 - 1.4
110-54-3	Hexanes	0.0 - 0.5
7727-37-9	Nitrogen	< 0.4
124-38-9	Carbon Dioxide	< 0.2
7782-44-7	Oxygen	< 0.04

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Wet Field Natural Gas

First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 - 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Wet Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Wet Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

*** Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION ***

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Wet Field Natural Gas

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

Appearance:	Colorless	Odor:	Odorless to slight petroleum odor
Physical State:	Gas	pH:	ND
Vapor Pressure:	40 atm @ -187°F (-86°C)	Vapor Density:	0.6
Boiling Point:	-259°F (-162°C)	Melting Point:	ND
Solubility (H2O):	3.5%	Specific Gravity:	0.4 @ -263°F (-164°C)

*** Section 9 – PHYSICAL AND CHEMICAL PROPERTIES ***

Material Name: Wet Field Natural Gas

Evaporation Rate: ND Octanol / H2O Coeff.: ND Flash Point Method: N/A Lower Flammability Limit: 3.8 – 6.5 (LFL): Auto Ignition: 900-1170°F (482-632°C) VOC: ND Flash Point: Flammable Gas

Upper Flammability Limit: 13-17 (UFL): Burning Rate: ND

* * * Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 – TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Wet Field Natural Gas

Butanes (106-97-8) Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0) Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3) Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9) Simple Asphyxiant

Carbon Dioxide (124-38-9) Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7) N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Wet Field Natural Gas

*** Section 12 - ECOLOGICAL INFORMATION ***

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Wet Field Natural Gas

*** Section 15 - REGULATORY INFORMATION ***

Regulatory Information Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

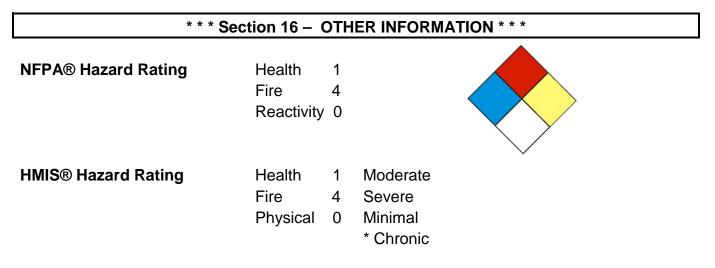
n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Х	Х	

SARA Section 313 – Supplier Notification

This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.


State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	ΡΑ	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No

Material Name: Wet Field Natural Gas

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: February 7, 2014

Date of Last Revision: March 4,, 2014

End of Sheet

Material Name: Dry Field Natural Gas

US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAM		Dry Field Natural Gas CAS Reg. No. 68410-63-9	EMERGENCY PHONE: AFTER HOURS:	(800) 878-1373 (800) 878-1373
PRODUCER: ADDRESS:	16′	tero Resources I5 Wynkoop Street nver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure – Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place. Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 – COMPOSITION /	NFORMATION ON INGREDIENTS * * *

CAS #	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3	Hexanes	0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas


First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 - 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

*** Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION ***

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas

US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

Appearance:	Colorless	Odor:	Odorless to slight petroleum odor
Physical State:	Gas	pH:	ND
Vapor Pressure:	40 atm @ -187°F (-86°C)	Vapor Density:	0.6
Boiling Point:	-259°F (-162°C)	Melting Point:	ND
Solubility (H2O):	3.5%	Specific Gravity:	0.4 @ -263°F (-164°C)

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *

Material Name: Dry Field Natural Gas

Evaporation Rate: ND Octanol / H2O Coeff.: ND Flash Point Method: N/A Lower Flammability Limit: 3.8 – 6.5 (LFL): Auto Ignition: 900-1170°F (482-632°C) VOC: ND Flash Point: Flammable Gas

Upper Flammability Limit: 13-17 (UFL): Burning Rate: ND

* * * Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

*** Section 11 – TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas

Butanes (106-97-8) Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0) Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3) Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9) Simple Asphyxiant

Carbon Dioxide (124-38-9) Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7) N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas

*** Section 12 - ECOLOGICAL INFORMATION ***

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

*** Section 13 - DISPOSAL CONSIDERATIONS ***

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas

*** Section 15 - REGULATORY INFORMATION ***

Regulatory Information Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

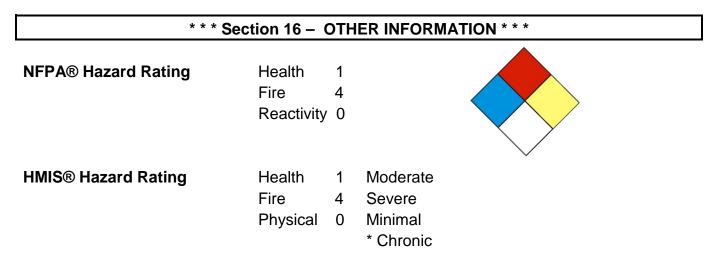
SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Х	Х	

SARA Section 313 – Supplier Notification

This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations


Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	РА	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No

Material Name: Dry Field Natural Gas

US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Attachment I. Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Emission Unit ID ¹ Point ID ²		Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device 4	
C-01	1E	Flare Combustion Device 1	2015	4.8 MMBtu/hr	NA	NA	
CE-01	15E	Compressor Engine #1	2016	1680 hp	Modification	NSCR (C-02	
CE-02	16E	Compressor Engine #2	2016	1680 hp	Modification	NSCR (C-03	
CE-03	17E	Compressor Engine #3	2016	1680 hp	Modification	NSCR (C-04	
CE-04	18E	Compressor Engine #4	2016	1680 hp	Modification	NSCR (C-05	
CE-05	19E	Compressor Engine #5	2016	1680 hp	Modification	NSCR (C-06	
CE-06	20E	Compressor Engine #6	2016	1680 hp	Modification	NSCR (C-07	
CE-07	21E	Compressor Engine #7	2016	1680 hp	Modification	NSCR (C-08	
CE-08	22E	Compressor Engine #8	2016	1680 hp	Modification	NSCR (C-09)	
CE-09	23E	Compressor Engine #9	2016	1680 hp	Modification	NSCR (C-10)	
CE-10	24E	Compressor Engine #10	2016	1680 hp	Modification	NSCR(C-11)	
CE-11	25E	Compressor Engine #11	2016	1680 hp	Modification	NSCR(C-12)	
GEN-1	26E	Microturbine Generator #1	2015	200 kWe	NA	None	
GEN-2	27E	Microtrubine Generator #2	2015	200 kWe	NA	None	
RSV-1	29E	Dehydrator Still Vent #1	2016	72.5 MMscfd	Modification	Combustor (C-01)	
RBV-1	28E	Dehydrator Reboiler #1	2016	1.5 mmbtu/hr	Modification	None	
RSV-2	31E	Dehydrator Still Vent #2	2016	72.5 MMscfd	Modification	Combustor (C-01)	
RBV-2	30E	Dehydrator Reboiler #2	2016	1.5 mmbtu/hr	Modification	None	
T03	34E	Settling Tank 1	2015	400 barrel	NA	VRUs (C-13 and C-14)	
T04	35E	Condensate Tank 1	2015	400 barrel	NA	VRUs (C-13 and C-14)	
T05	36E	Condensate Tank 2	2015	400 barrel	NA	VRUs (C-13 and C-14)	
T01	32E	Produced Water Tank 1	2015	400 barrel	NA	VRUs (C-13 and C-14)	
T02	33E	Produced Water Tank 2	2015	400 barrel	NA	VRUs (C-13 and C-14)	

Emission Units Table 03/2007

Page _____ of ____

C-02	2E	NSCR Catalyst for Compressor #1	2016		Modification	None
C-03	3E	NSCR Catalyst for Compressor #2	2016		Modification	None
C-04	4E	NSCR Catalyst for Compressor #3	2016		Modification	None
C-05	5E	NSCR Catalyst for Compressor #4	2016		Modification	None
C-06	6E	NSCR Catalyst for Compressor #5	2016		Modification	None
C-07	7E	NSCR Catalyst for Compressor #6	2016		Modification	None
C-08	8E	NSCR Catalyst for Compressor #7	2016		Modification	None
C-09	9E	NSCR Catalyst for Compressor #8	2016		Modification	None
C-10	10E	NSCR Catalyst for Compressor #9	2016		Modification	None
C-11	11E	NSCR Catalyst for Compressor #10	2016		Modification	None
C-12	12E	NSCR Catalyst for Compressor #11	2016		Modification	None
C-13	13E	Vapor Recovery Unit 1	2015	46 MSCFD	NA	None
C-14	14E	Vapor Recovery Unit 2	2015	46 MSCFD	NA	None
EPLOR	37E	Truck Loadout	2015	71,395 bbl/yr	NA	None
CATHT1	47E	Catalytic Heater	2015	24,000 btu/hr	NA	None
CE-12	48E	Compressor Engine #12	2016	1680 hp	New	NSCR (C-15)
CE-13	49E	Compressor Engine #13	2016	1680 hp	New	NSCR (C-16)
C-15	50E	NSCR Catalyst for Compressor #12	2016		New	None
C-16	51E	NSCR Catalyst for Compressor #13	2016		New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page _____ of _____

Attachment J. Emission Point Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table	1: Emissions [Data																												
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Ven Throug Po <i>(Must)</i> <i>Emissio</i>	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		ime for on Unit mical es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled Emissions ⁴		nts - Potential cal Uncontrollec CAS ³ Emissions ⁴ VOCs		Pollutants - Pot Chemical Unco Name/CAS ³ Emis (Speciate VOCs		Pot Con	timum ential trolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)																								
1E/29E/ 31E	Upward Vertical Stack	C- 01/RSV -1/RSV- 2	Flare combu stion device 1			С	8760	NOx CO VOC PM10 SO2 Total HAPs CO2e	 158.2 15.04 3955	 693.05 65.87 17325	0.33 1.78 1.54 0.0001 1E-5 0.26 644	1.44 7.79 6.73 0.0006 5E-5 1.15 2821	Gas/Vapor	EE																							
15E/2E	Upward Vertical Stack	CE-01	Com- pressor engine 1	C-02	NSCR catalyst	С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.48 0.27 0.008 0.35 0.19 2085	220.62 207.64 6.49 1.18 0.036 1.54 0.81 9133	1.26 1.19 0.24 0.27 0.008 0.50 0.019 1993	5.52 5.19 1.04 1.18 0.036 0.22 0.081 8727	Gas/Vapor	EE																							
16E/3E	Upward Vertical Stack	CE-02	Com- pressor engine 2	C-03	NSCR catalyst	С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.48 0.27 0.008 0.35 0.19 2085	220.62 207.64 6.49 1.18 0.036 1.54 0.81 9133	1.26 1.19 0.24 0.27 0.008 0.50 0.019 1993	5.52 5.19 1.04 1.18 0.036 0.22 0.081 8727	Gas/Vapor	EE																							

170/40	III	CE-03	Com-	C 04	NICOD	G	0760	NO	50.27	220 (2	1.00	5.50	C NI	FF	
17E/4E	Upward Vertical	CE-05	pressor	C-04	NSCR catalyst	С	8760	NOx CO	50.37 47.41	220.62 207.64	1.26 1.19	5.52 5.19	Gas/Vapor	EE	
	Stack		engine 3		j			VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
18E/5E	Upward	CE-04	Com-	C-05	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Vertical		pressor engine 4		catalyst	-		CO	47.41	207.64	1.19	5.19	1		
	Stack		engine 4					VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
19E/6E	Upward	CE-05	Com-	C-06	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Vertical		pressor engine 5		catalyst			CO	47.41	207.64	1.19	5.19			
	Stack		0					VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
20E/7E	Upward	CE-06	Com-	C-07	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Vertical		pressor engine 6		catalyst			CO	47.41	207.64	1.19	5.19			
	Stack		-					VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			

21E/8E	Upward Vertical	CE-07	Com- pressor	C-08	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Stack		engine 7		catalyst			CO	47.41	207.64	1.19	5.19			
	Bluck							VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
22E/9E	Upward	CE-08	Com-	C-09	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Vertical		pressor engine 8		catalyst			CO	47.41	207.64	1.19	5.19			
	Stack		engine o					VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
23E/10E	Upward	CE-09	Com-	C-10	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
202,102	Vertical		pressor engine 9	0 10	catalyst	C	0700	CO	47.41	207.64	1.19	5.19			
	Stack		engine 9					VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
24E/11E	Upward	CE-10	Com-	C-11	NSCR	С	8760	NOx	50.37	220.62	1.26	5.52	Gas/Vapor	EE	
	Vertical		pressor		catalyst		5700	CO	47.41	207.64	1.19	5.19	Such upor		
	Stack		engine 10		-			VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.030			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
. <u> </u>	1							0.020	2000		1775	5727			

· · · · · · · · · · · · · · · · · · ·	I									1					
25E/12E	Upward Vertical	CE-11	Com- pressor	C-12	NSCR catalyst	С	8760	NOx CO	50.37 47.41	220.62 207.64	1.26 1.19	5.52 5.19	Gas/Vapor	EE	
	Stack		engine 11		5			VOC	1.48	6.49	0.24	1.04			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.036	0.008	0.036			
								Total HAPs	0.35	1.54	0.50	0.22			
								Formaldehyde	0.19	0.81	0.019	0.081			
								CO2e	2085	9133	1993	8727			
26E	Upward	GEN-1	Microtu			С	8760	NOx	0.10	0.42	0.10	0.42	Gas/Vapor	EE	
	Vertical		rbine Genera					СО	0.26	1.16	0.26	1.16	-		
	Stack		tor 1					VOC	0.02	0.11	0.02	0.11			
								PM10	0.02	0.07	0.02	0.07			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.003	0.01	0.003	0.01			
								Formaldehyde	0.002	0.008	0.002	0.008			
								CO2e	266	1166	266	1166			
27E	Upward	GEN-2	Microtu			С	8760	NOx	0.10	0.42	0.10	0.42	Gas/Vapor	EE	
	Vertical		rbine Genera					CO	0.26	1.16	0.26	1.16			
	Stack		tor 2					VOC	0.02	0.11	0.02	0.11			
								PM10	0.02	0.07	0.02	0.07			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.003	0.01	0.003	0.01			
								Formaldehyde	0.002	0.008	0.002	0.008			
								CO2e	266	1166	266	1166			
28E	Upward	RBV-1	Dehydr ator			С	8760	NOx	0.15	0.64	0.15	0.64	Gas/Vapor	EE	
	Vertical		Reboile					CO	0.12	0.54	0.12	0.54			
	Stack		r 1					VOC	24.59	107.72	0.50	2.19			
								PM10	0.011	0.049	0.011	0.049			
								SO2	0.001	0.004	0.001	0.004			
								Total HAPs	1.39	6.11	0.031	0.13			
								Formaldehyde	0.0001	0.0005	0.0001	0.0005			
								CO2e	1121	4909	196	857			

30E	Upward Vertical Stack	RBV-2	Dehydr ator Reboile r 2			С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.15 0.12 24.59 0.011 0.001 1.39 0.0001 1121	0.64 0.54 107.72 0.049 0.004 6.11 0.0005 4909	0.15 0.12 0.50 0.011 0.001 0.031 0.0001 196	0.64 0.54 2.19 0.049 0.004 0.13 0.0005 857	Gas/Vapor	EE	
32E/13E &14E	Upward Vertical Stack	T01	Produc ed Water Tank 1	C-13, C-14	VRU- Closed Loop System	С	8760	VOC Total HAPs CO2e	0.09 0.007 0.23	0.38 0.03 1.02	0.002 1.4E-4 0.005	0.008 5.9E-4 0.02	Gas/Vapor	EE	
33E/13E &14E	Upward Vertical Stack	T02	Produc ed Water Tank 2	C-13, C-14	VRU- Closed Loop System	С	8760	VOC Total HAPs CO2e	0.09 0.007 0.23	0.38 0.03 1.02	0.002 1.4E-4 0.005	0.008 5.9E-4 0.02	Gas/Vapor	EE	
34E/13E &14E	Upward Vertical Stack	Т03	Settler Tank	C-13, C-14	VRU- Closed Loop System	С	8760	VOC Total HAPs CO2e	91.49 7.30 252	400.72 31.96 1104	1.83 0.15 5.23	8.01 0.64 22.9	Gas/Vapor	EE	
35E/13E &14E	Upward Vertical Stack	Т04	Conden sate Tank 1	C-13, C-14	VRU- Closed Loop System	С	8760	VOC Total HAPs CO2e	1.28 0.10 3.47	5.60 0.44 15.20	0.03 0.002 0.07	0.11 0.009 0.30	Gas/Vapor	EE	
36E/13E &14E	Upward Vertical Stack	Т05	Conden sate Tank 2	C-13, C-14	VRU- Closed Loop System	С	8760	VOC Total HAPs CO2e	1.28 0.10 3.47	5.60 0.44 15.20	0.03 0.002 0.07	0.11 0.009 0.30	Gas/Vapor	EE	
47E	Upward Vertical Stack	CATHT 1	Catalyti c Heater			С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.0002 1E-5 4E-5	0.009 0.0006	0.002 0.002 0.0001 0.0002 1E-5 4E-5 2E-6 2.82	0.009 0.0006	Gas/Vapor	EE	

48E/50E	Upward Vertical Stack	CE-12	Com- pressor engine 12	C-15	NSCR catalyst	С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.48 0.27 0.008 0.35 0.19 2085	220.62 207.64 6.49 1.18 0.036 1.54 0.81 9133	1.26 1.19 0.24 0.27 0.008 0.50 0.019 1993	5.52 5.19 1.04 1.18 0.036 0.22 0.081 8727	Gas/Vapor	EE	
49E/51E	Upward Vertical Stack	CE-13	Com- pressor engine 13	C-16	NSCR catalyst	С	8760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.48 0.27 0.008 0.35 0.19 2085	220.62 207.64 6.49 1.18 0.036 1.54 0.81 9133	1.26 1.19 0.24 0.27 0.008 0.50 0.019 1993	5.52 5.19 1.04 1.18 0.036 0.22 0.081 8727	Gas/Vapor	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	eter Data			
Emission	Inner		Exit Gas		Emission Point E	levation (ft)	UTM Coordinat	es (km)
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
15E/C-02	1.1	1225	8886	156	1100	25	4349.298	511.254
16E/C-03	1.1	1225	8886	156	1100	25	4349.286	511.257
17E/C-04	1.1	1225	8886	156	1100	25	4349.274	511.258
18E/C-05	1.1	1225	8886	156	1100	25	4349.263	511.261
19E/C-06	1.1	1225	8886	156	1100	25	4349.251	511.262
20E/C-07	1.1	1225	8886	156	1100	25	4349.239	511.265
21E/C-08	1.1	1225	8886	156	1100	25	4349.227	511.267
22E/C-09	1.1	1225	8886	156	1100	25	4349.215	511.270
23E/C-10	1.1	1225	8886	156	1100	25	4349.204	511.271
24E/C-11	1.1	1225	8886	156	1100	25	4349.192	511.273
25E/C-12	1.1	1225	8886	156	1100	25	4349.179	511.276
26E	1.0	535	1.3 kg/s mass flow	67	1100	8	4349.225	511.208
27E	1.0	535	1.3 kg/s mass flow	67	1100	8	4349.146	511.424
29E/C-01 (1E)	4	1400	7540	10	1100	15	4349.297	511.220
28E	1.5	1000	965	9.1	1100	30	4349.281	511.214
31E/C-01 (1E)	4	1400	7540	10	1100	15	4349.297	511.220
30E	1.5	1000	965	9.10	1100	30	4349.272	511.211
2E-36E/C-13-C-14	Er	nissions captured	l in closed loop system with	h VRU	1100	NA	4349.368	511.286
47E	TBD	1300	TBD	TBD	1100	TBD	4349.217	511.201
48E/C-15	1.1	1225	8886	156	1100	25	4349.166	511.278
49E/C-16	1.1	1225	8886	156	1100	25	4349.156	511.281

¹ Give at operating conditions. Include inerts.² Release height of emissions above ground level.

WVDEP-DAQ Revision 2/11

Attachment K. Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	🖾 Yes 🗌 No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled I		Maximum Po Controlled Em		Est. Method
	Chemical Name/CAS*	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM-10 PM-2.5	0.30 0.03	1.30 0.13	0.30 0.03	1.30 0.13	EE
Storage Pile Emissions						
Loading/Unloading Operations	VOCs Total HAPs CO2e	57.54 4.53 156.2	7.87 0.62 21.36	57.54 4.53 156.2	7.87 0.62 21.36	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOCs Total HAPs CO2e	2.41 0.11 32.3	10.57 0.48 142	2.41 0.11 32.3	10.57 0.48 142	EE
General Clean-up VOC Emissions						
Other – Venting Episodes	VOCs Total HAPs CO2e	Does not apply	10.23 0.46 740	Does not apply	10.23 0.46 740	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L. Emission Unit Data Sheets

Compressor Engines

Source Ide	entification Number ¹	1	5E	1	6E	17E		
Engine Mar	nufacturer and Model	Waukesha	a, 7044 GSI	Waukesha	, 7044 GSI	Waukesha	, 7044 GSI	
Manufactu	rer's Rated bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	
So	purce Status ²	Ν	AS	Ν	1S	MS		
Date Installe	d/Modified/Removed ³	Apri	1 2016	April	2016	April	2016	
	tured/Reconstruction Date4	20)14	20)14	20)14	
	l Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	ľ	No	Ν	lo	MS MS April 2016 2014 No RB4S NSCR PQ 0 m 1680 bhp/1200 rpm $8,295$ 12,360 108.27 $8,760$ s/yr lbs/hr tons/yr 52 1.26 5.19 1.19		
	Engine Type ⁶	RI	34S	RI	34S	RE	34S	
	APCD Type ⁷	NS	SCR	NS	CR	NS	CR	
. .	Fuel Type ⁸	F	°Q	P	Q	Р	PQ	
Engine, Fuel and Combustion Data	H ₂ S (gr/100 scf)		0		0	0		
	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp/1200 rpm		
	BSFC (Btu/bhp-hr)	8,	295	8,2	295	8,295		
	Fuel throughput (ft ³ /hr)	12	,360	12,	360	12,	360	
	Fuel throughput (MMft ³ /yr)	10	8.27	108	8.27	108	8.27	
	Operation (hrs/yr)	8,	760	8,	760	12,360 108.27 8,760	760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD	NOx	1.26	5.52	1.26	5.52	1.26	5.52	
MD	СО	1.19	5.19	1.19	5.19	1.19	5.19	
MD	VOC	0.24	1.04	0.24	1.04	0.24	1.04	
AP	SO_2	0.0082	0.036	0.0082	0.036	0.0082	0.036	
AP	PM10	0.27	1.18	0.27	1.18	0.27	1.18	
MD	Formaldehyde	0.019	0.081	0.019	0.081	0.019	0.081	
MD	CO2e	1993	8727	1993	8727	1993	8727	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identification Number ¹		18E		19E		20E	
Engine Mar	ufacturer and Model	er and Model Waukesha, 7044 GSI		Waukesha, 7044 GSI		Waukesha, 7044 GSI	
Manufactu	rer's Rated bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
So	urce Status ²	Ν	4S	Ν	1S	Ν	1S
Date Installe	d/Modified/Removed ³	April	2016	April	2016	April	2016
Engine Manufact	ured/Reconstruction Date4	20)14	20)14	20)14
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	No		Ν	lo	No	
	Engine Type ⁶	RI	34S	RI	34S	RE	34S
	APCD Type ⁷	NS	SCR	NS	CR	NS	CR
	Fuel Type ⁸	P	°Q	P	'Q	Р	'Q
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp/1200 rpm		1680 bhp/1200 rpm	
Data	BSFC (Btu/bhp-hr)	8,295		8,295		8,295	
	Fuel throughput (ft ³ /hr)	12,360		12,360		12,360	
	Fuel throughput (MMft ³ /yr)	108	8.27	108.27		108.27	
	Operation (hrs/yr)	8,	760	8,760		8,760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.26	5.52	1.26	5.52	1.26	5.52
MD	СО	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.24	1.04	0.24	1.04	0.24	1.04
AP	SO_2	0.0082	0.036	0.0082	0.036	0.0082	0.036
AP	PM10	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.019	0.081	0.019	0.081	0.019	0.081
MD	CO2e	1993	8727	1993	8727	1993	8727

Source Identification Number ¹		21E		22E		23E	
Engine Mar	ufacturer and Model	rer and Model Waukesha, 7044 GSI		Waukesha, 7044 GSI		Waukesha, 7044 GSI	
Manufactu	rer's Rated bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
So	urce Status ²	Ν	4S	Ν	1S	Ν	1S
Date Installe	d/Modified/Removed ³	April	2016	April	2016	April	2016
Engine Manufact	ured/Reconstruction Date4	20)14	20)14	20)14
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Ν	Чо	Ν	lo	Ν	10
	Engine Type ⁶	RI	34S	RI	34S	RE	34S
	APCD Type ⁷	NS	SCR	NS	CR	NS	CR
	Fuel Type ⁸	P	PQ	P	Q	Р	Q
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0	(0
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp/1200 rpm		1680 bhp/1200 rpm	
Data	BSFC (Btu/bhp-hr)	8,295		8,295		8,295	
	Fuel throughput (ft ³ /hr)	12,360		12,360		12,360	
	Fuel throughput (MMft ³ /yr)	108	8.27	108.27		108.27	
	Operation (hrs/yr)	8,	760	8,760		8,760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.26	5.52	1.26	5.52	1.26	5.52
MD	СО	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.24	1.04	0.24	1.04	0.24	1.04
AP	SO ₂	0.0082	0.036	0.0082	0.036	0.0082	0.036
AP	PM10	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.019	0.081	0.019	0.081	0.019	0.081
MD	CO2e	1993	8727	1993	8727	1993	8727

Source Identification Number ¹		24E		25E		48E	
Engine Mar	Engine Manufacturer and Model Waukesha, 7044 GSI		Waukesha, 7044 GSI		Waukesha, 7044 GSI		
Manufactu	rer's Rated bhp/rpm	1680 bhp	o/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
So	purce Status ²	Ν	ЛS	Ν	1S	Ν	IS
Date Installe	d/Modified/Removed ³	Apri	1 2016	April	2016	April	2016
Engine Manufact	tured/Reconstruction Date4	20	014	20)14	T	3D
	I Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	No		Ν	ło	No	
	Engine Type ⁶	RI	B4S	RI	34S	RI	34S
	APCD Type ⁷	NS	SCR	NS	CR	NS	CR
	Fuel Type ⁸	F	YQ	P	'Q	P	'Q
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	1680 bhp	o/1200 rpm	1680 bhp/1200 rpm		1680 bhp/1200 rpm	
Data	BSFC (Btu/bhp-hr)	8,295		8,295		8,295	
	Fuel throughput (ft ³ /hr)	12,360		12,360		12,360	
	Fuel throughput (MMft ³ /yr)	10	8.27	108.27		108.27	
	Operation (hrs/yr)	8,	760	8,760		8,760	
Reference9	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NOx	1.26	5.52	1.26	5.52	1.26	5.52
MD	СО	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.24	1.04	0.24	1.04	0.24	1.04
AP	SO ₂	0.0082	0.036	0.0082	0.036	0.0082	0.036
AP	PM10	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.019	0.081	0.019	0.081	0.019	0.081
MD	CO2e	1993	8727	1993	8727	1993	8727

Source Identification Number ¹		49E					
Engine Manufacturer and Model		Waukesha, 7044 GSI					
Manufactu	rer's Rated bhp/rpm	1680 bhp	/1200 rpm				
So	urce Status ²	Ν	١S				
Date Installe	d/Modified/Removed ³	Apri	1 2016				
	ured/Reconstruction Date4	T	BD				
	I Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Γ	٩o				
	Engine Type ⁶	RI	34S				
	APCD Type ⁷	NS	SCR				
	Fuel Type ⁸	F	YQ				
Engine, Fuel and	H ₂ S (gr/100 scf)		0				
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm				
Data	BSFC (Btu/bhp-hr)	8,295					
	Fuel throughput (ft ³ /hr)	12,360					
	Fuel throughput (MMft ³ /yr)	10	8.27				
	Operation (hrs/yr)	8,	760				
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.26	5.52				
MD	СО	1.19	5.19				
MD	VOC	0.24	1.04				
AP	SO_2	0.0082	0.036				
AP	PM10	0.27	1.18				
MD	Formaldehyde	0.019	0.081				
MD	CO2e	1993	8727				

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

- NS Construction of New Source (installation)
- ES **Existing Source**
- MS Modification of Existing Source
- RS Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

7.

8.

	LB2S	Lean Burn Two Stroke	RB4S	Rich Burn Four Stroke
	LB4S	Lean Burn Four Stroke		
	Enter the A	Air Pollution Control Device (APCD) type designation	on(s) usi	ng the following codes:
	A/F	Air/Fuel Ratio	IR	Ignition Retard
	HEIS	High Energy Ignition System	SIF	C Screw-in Precombustion Chambers
	PSC	Prestratified Charge	LE	C Low Emission Combustion
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SC	R Lean Burn & Selective Catalytic Reduction
•	Enter the F	Fuel Type using the following codes:		
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas
	Enter the	Potential Emissions Data Reference designation u	using the	e following codes. Attach all referenced data to

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	Based on typical operating conditions

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Antero - Nichols Compressor Station - Doddridge County, WV

Gas Compressor Consultants, Inc.	Kyle Jark	(303) 325-2074	kjark@gccinc.us	Gas Compression - Continuous
ENGINE SPEED (rpm):	1200			
DISPLACEMENT (in3):	7040		COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	8:1		INTERCOOLER WATER INLET (°F):	130
IGNITION SYSTEM:	ESM		JACKET WATER OUTLET (°F):	180
EXHAUST MANIFOLD:	Water Co	bled	JACKET WATER CAPACITY (gal):	100
COMBUSTION:	Rich Burn	, Turbocharged	AUXILIARY WATER CAPACITY (gal):	11
ENGINE DRY WEIGHT (lbs):	21000		LUBE OIL CAPACITY (gal):	190
AIR/FUEL RATIO SETTING:	0.38% CC)	MAX. EXHAUST BACKPRESSURE (in. H2	2O): 18
ENGINE SOUND LEVEL (dBA)	104		MAX. AIR INLET RESTRICTION (in. H2O)	: 15
			EXHAUST SOUND LEVEL (dBA)	111

SITE CONDITIONS:			
FUEL:		ALTITUDE (ft):	908
FUEL PRESSURE RANGE (psig):	30 - 60	MAXIMUM INLET AIR TEMPERATURE (°F):	100
FUEL HHV (BTU/ft3):	1,247.2	FUEL WKI:	62.6
FUEL LHV (BTU/ft3):	1,127.4		

SITE SPECIFIC TECHNICAL DATA		MAX RATING AT 100 °F		IG AT MAXIMUN PERATURE OF 1	
POWER RATING	UNITS	AIR TEMP	100%	90%	50%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr	1680 10	1680 10	1512 -	843 -
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL	% BHP	30.7 1680	30.7 1680	30.0 1512	28.6 843
based on no auxiliary engine driven equipment					
FUEL CONSUMPTION					
FUEL CONSUMPTION (LHV) FUEL CONSUMPTION (HHV) FUEL FLOW based on fuel analysis	BTU/BHP-hr BTU/BHP-hr is LHV SCFM	8295 9176 206	8295 9176 206	8488 9390 190	8915 9862 111
HEAT REJECTION					
JACKET WATER (JW) LUBE OIL (OC) INTERCOOLER (IC) EXHAUST RADIATION	BTU/hr x 1000 BTU/hr x 1000 BTU/hr x 1000 BTU/hr x 1000 BTU/hr x 1000	4171 572 269 4211 707	4171 572 269 4211 707	3911 557 238 3836 694	2526 435 92 1922 538
EMISSIONS					
NOx (NO + NO2) CO THC NMHC NM, NEHC CH4 CO2 CO2e CH2O	g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr g/bhp-hr	13.6 12.8 2.3 0.89 0.40 1.43 527 557 0.05	13.6 12.8 2.3 0.89 0.40 1.43 527 557 0.05	14.1 12.9 2.3 0.89 0.40 1.41 539 569 0.05	16.5 11.4 1.8 0.69 0.31 1.10 566 590 0.05
AIR INTAKE / EXHAUST GAS					
INDUCTION AIR FLOW EXHAUST GAS MASS FLOW EXHAUST GAS FLOW at exhaust temp, 14. EXHAUST TEMPERATURE	SCFM Ib/hr .5 psia ACFM °F	2552 11867 8887 1225	2552 11866 8886 1225	2350 10929 8131 1214	1376 6397 4353 1071
HEAT EXHANGER SIZING					
TOTAL JACKET WATER CIRCUIT (JW) TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000 BTU/hr x 1000	4730 954			
COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS					

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	44

All data provided per the conditions listed in the notes section on page three. Data Generated by EngCalc Program Version 3.3 Dresser Inc. 6/9/2014 3:27 PM

Antero - Nichols Compressor Station - Doddridge County, WV Gas Compressor Consultants, Inc. Kyle Jark (303) 325-2074 kjark@gccinc.us

Gas Compressor Consultants, Inc.

FUEL COMPOSITION

HYDROCARBONS:	Molo or \	/olume %		FUEL:	
Methane	CH4	77.891		FUEL PRESSURE RANGE (psig):	30 - 60
Ethane	C2H6	14.319		FUEL WKI:	62.6
Propane	C3H8	4.156			02.0
Iso-Butane	I-C4H10	0.5719		FUEL SLHV (BTU/ft3):	1107.82
Normal Butane	N-C4H10	1.0496		FUEL SLHV (MJ/Nm3):	43.56
Iso-Pentane	I-C5H12	0.309			+0.00
Normal Pentane	N-C5H12	0.308		FUEL LHV (BTU/ft3):	1127.44
Hexane	C6H14	0.25		FUEL LHV (MJ/Nm3):	44.34
Heptane	C7H16	0.09			
Ethene	C2H4	0		FUEL HHV (BTU/ft3):	1247.17
Propene	C3H6	0		FUEL HHV (MJ/Nm3):	49.04
	SUM HYDROCARBONS	98.944		FUEL DENSITY (SG):	0.71
NON-HYDROCARBONS:		00.011			0.11
Nitrogen	N2	0.795		Standard Conditions per ASTM D3588-91 [60°F a	and 14.696psia] and ISO
Oxygen	02	0		6976:1996-02-01[25, V(0;101.325)].	
Helium	He	0		Based on the fuel composition, supply pressure a hydrocarbons may be present in the fuel. No liqui	
Carbon Dioxide	CO2	0.205		allowed in the fuel. The fuel must not contain any	
Carbon Monoxide	СО	0		Waukesha recommends both of the following:	
Hydrogen	H2	0		1) Dew point of the fuel gas to be at least 20°F (1	
Water Vapor	H2O	0		measured temperature of the gas at the inlet of the 2) A fuel filter separator to be used on all fuels ex	
	TOTAL FUEL	99.944		natural gas. Refer to the 'Fuel and Lubrication' section of 'Tec the Waukesha Application Engineering Departme	
				information on fuels, or LHV and WKI* calculation * Trademark of General Electric Company	
FUEL CONTAMINANTS		0	0/ 1	Tatal Oukun Oamaanin da	
Total Sulfur Compounds		0	% volume	Total Sulfur Compounds	0 µg/BTU
Total Halogen as Cloride Total Ammonia		0	% volume	Total Halogen as Cloride Total Ammonia	0 µg/BTU
i otal Ammonia		0	% volume	i otal Ammonia	0 µg/BTU
<u>Siloxanes</u>				Total Siloxanes (as Si)	0 µg/BTU
Tetramethyl silane		0	% volume		
Trimethyl silanol		0	% volume		
Hexamethyldisiloxane (L2)	-,	0	% volume	Calculated fuel contaminant analysis	
Hexamethylcyclotrisiloxane (D3	3)	0	% volume	entered fuel composition and selected	d engine model.
Octamethyltrisiloxane (L3)		0	% volume		
Octamethylcyclotetrasiloxane (U4)	0	% volume		
Decamethyltetrasiloxane (L4)		0	% volume		
Decamethylcyclopentasiloxane		0	% volume		
Dodecamethylpentasiloxane (L Dodecamethylcyclohexasiloxar		0	% volume % volume		
Others		0	% volume % volume		
Oulers		0			

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

Antero - Nichols Compressor Station - Doddridge County, WV

Gas Compressor Consultants, Inc. Kyle Jark (303) 325-2074 kjark@gccinc.us

NOTES

1. All data is based on engines with standard configurations unless noted otherwise.

2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.

3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.

4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.

5. Emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.

6. Air flow is based on undried air with a tolerance of \pm 7%.

7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 75°F (42°C).

8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of ± 7%.

9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.

10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.

11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.

12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.

13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).

14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].

15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.

16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.

17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow. Refer to technical data sheets S-5136-34 and S-6543-36 (or latest version) for more information.

18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. It is permissible to operate the engine at the indicated overload power, for two hours in every 24 hour period.

REQUIRED OPTION CODES

Dehydrators

West Virginia Department of Environmental Protection

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

	Section A: Facility Description				
Affected facility actual annual average natural	145,000,000 (72,500,000				
		per Dehy)			
Affected facility actual annual average hydroca	arbon liquid throughput: (bbl/day):	195.6			
The affected facility processes, upgrades, or sto	ores hydrocarbon liquids prior to custod	y transfer. Yes No			
The affected facility processes, upgrades, or su	tores natural gas prior to the point at w	hich natural gas Yes No			
(NG) enters the NG transmission and storage s	•••	l user.			
The affected facility is: \square prior to a NG	processing plant a NG pro	cessing plant			
prior to the point of cu	istody transfer and there is no NG proce	essing plant			
The affected facility transports or stores na	atural gas prior to entering the pipe	line to a local (Yes) No			
distribution company or to a final end user (if t	here is no local distribution company).				
The affected facility exclusively processes, sto	res, or transfers black oil.	Yes No			
Initial producing gas-to-oil ratio (GOR):	scf/bbl API gravity:	degrees			
Secti	on B: Dehydration Unit (if applicabl	e) ¹			
Description: Nichols Compr	essor Station Dehydrators (RSV-1 and	d RSV-2)			
Date of Installation: January 2015	Annual Operating Hours: 8,760	Burner rating (MMbtu/hr): 1.5			
Exhaust Stack Height (ft): 15	Stack Diameter (ft): 4	Stack Temp. (°F): 1,400			
Glycol Type: 🛛 TEG	EG Oth	er:			
Glycol Pump Type: Elect	ric 🛛 Gas If gas, what is t	ne volume ratio? _0.032ACFM/gpm			
Condenser installed? Xes	No Exit Temp. 145	°F Condenser Pressure _0psig			
Incinerator/flare installed? Xes	No Destruction Eff	98%			
Other controls installed?	No Describe:				
Wet Gas ² : Gas Ter	np.: _120_°F Gas Pressure _810 psig	T			
(Upstream of Contact Tower) Saturate	ed Gas? 🛛 Yes 🗌 No	If no, water content lb/MMSCF			
Dry Gas: Gas Flo	owrate(MMSCFD) Actual	Design72.5			
(Downstream of Contact Tower) Water	Content lb/MMSCF				
Lean Glycol: Circulation rate (gpm) Actual ³ Maximum ⁴ 7.5					
Pump make/model: Kimray 45015PV					
Glycol Flash Tank (if applicable): Temp.: 130 °F Pressure 60 psig Vented? Yes No					
If no, c	lescribe vapor control: Flash tank vent	gas used in reboiler as fuel or sent to VRU			
system					
Stripping Gas (if applicable): Source	of gas: dry gas, if used	Rate _40 scfm			

1. 2. 3. 4.	 applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. 2. Extended gas analysis from the Wet Gas Stream including mole percents of C₁-C₈, benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. 							
т.	4. Detailed calculations of gas or hydrocarbon flow rate. Section C: Facility NESHAPS Subpart HH/HHH status							
			ubpart HH - applies, but is exempt through < 1 tpy benzene exemption					
Α	ffected facility	Subject to S	ıbpart HHH					
	status:	Not Subject	\boxtimes < 10/25 TPY					
(choose only one) because: Affected facility exclusively handles black of		because:	Affected facility exclusively handles black oil					
			\Box The facility wide actual annual average NG throughput is < 650 thousand					
			scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					
			No affected source is present					

		Manufact	urer and Model	Valerus, 72	.5 MMscfd
		Max Dry Gas Flow Rate (mmscf/day)		72.5	
		Design Heat	Input (mmBtu/hr)	1.5	
		Design Typ	be (DEG or TEG)	TE	EG
	l Glycol	Sou	rce Status ²	М	IS
•	tion Unit ata	Date Installed/	Modified/Removed ³	April	2016
		Regenerator	Still Vent APCD ⁴	F	L
		Fuel H	IV (Btu/scf)	1,1	26
		H ₂ S Cont	tent (gr/100 scf)	()
		Opera	operation (hrs/yr) 8,76		60
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
	Reboiler Vent – (includes controlled flash tank emissions)	AP & GLYCalc	NO _X	0.15	0.64
		AP & GLYCalc	СО	0.12	0.54
		AP & GLYCalc	VOC	0.49	2.19
		AP & GLYCalc	SO_2	0.00088	0.0039
28E		AP & GLYCalc	PM ₁₀	0.011	0.049
2012		AP & GLYCalc	Benzene	0.00080	0.0035
		AP & GLYCalc	Ethylbenzene	0.0	0.0
		AP & GLYCalc	Toluene	0.0020	0.0087
		AP & GLYCalc	Xylenes	0.00044	0.0019
		AP & GLYCalc	n-Hexane	0.025	0.11
		GLYCalc	VOC	0.77	3.36
		GLYCalc	Benzene	0.016	0.069
29E	Glycol Regenerator	GLYCalc	Ethylbenzene	0.0	0.0
2712	Still Vent	GLYCalc	Toluene	0.053	0.23
		GLYCalc	Xylenes	0.024	0.11
		GLYCalc	n-Hexane	0.039	0.21

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufact	turer and Model	Valerus, 72	.5 MMscfd
		Max Dry Gas Flow Rate (mmscf/day)		72	.5
		Design Heat	Input (mmBtu/hr)	1.5	
		Design Typ	pe (DEG or TEG)	TE	G
	l Glycol	Sou	rce Status ²	М	S
•	tion Unit ata	Date Installed/	/Modified/Removed ³	April	2016
		Regenerator	Still Vent APCD ⁴	FI	L
		Fuel H	HV (Btu/scf)	1,1	26
		H ₂ S Cont	tent (gr/100 scf)	0)
		Opera	tion (hrs/yr)	8,7	60
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
	Reboiler Vent – (includes controlled flash tank emissions)	AP & GLYCalc	NO _X	0.15	0.64
		AP & GLYCalc	СО	0.12	0.54
		AP & GLYCalc	VOC	0.49	2.19
		AP & GLYCalc	SO_2	0.00088	0.0039
30E		AP & GLYCalc	PM_{10}	0.011	0.049
5012		AP & GLYCalc	Benzene	0.00080	0.0035
		AP & GLYCalc	Ethylbenzene	0.0	0.0
		AP & GLYCalc	Toluene	0.0020	0.0087
		AP & GLYCalc	Xylenes	0.00044	0.0019
		AP & GLYCalc	n-Hexane	0.025	0.11
		GLYCalc	VOC	0.77	3.36
		GLYCalc	Benzene	0.016	0.069
31E	Glycol Regenerator	GLYCalc	Ethylbenzene	0.0	0.0
511	Still Vent	GLYCalc	Toluene	0.053	0.23
		GLYCalc	Xylenes	0.024	0.11
		GLYCalc	n-Hexane	0.039	0.21

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS	Construction of New Source	
----	----------------------------	--

- ES Existing Source
- MS Modification of Existing Source RS Removal of Source
- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

	NA	None	CD	Condenser		
	FL	Flare	CC	Condenser/Combustion Combination		
	ТО	Thermal Oxidizer				
5.	Enter the Potential Emissions Data Reference designation using the following codes:					

MDManufacturer's DataAPAP-42GRGRI-GLYCalcTMOTOther _____ (please list)

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

Bulk Loading and Fugitives

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.					
Emergency Vent Summary Sheet Leak Sources Data Sheet Toxicology Data Sheet	 □ Emergency Vent Summary Sheet ⊠ Leak Sources Data Sheet □ Toxicology Data Sheet 					
Reactor Data Sheet Distillation Column Data Sheet						
	equipment ID number (as shown in <i>Ec</i> g not contained in equipment form.	uipment List Form)				
 Standard Industrial Classification (4923 	Codes (SICs) for process(es)					
 List raw materials and ⊠ attach M Wet Natural Gas 	ISDSs					
4 List Dradusta and Maximum Dradu						
4. List Products and Maximum Produ	_					
Description and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)				
Dry Natural Gas	6.04 MMscf/hour	52,925 MMscf/year				
Condensate	6.3 barrels/hour	55,079 barrels/year				
Produced Water	1.9 barrels/hour	16,316 barrels/year				
	immary Sheet for all emergency relief c					
 Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. Leak Detection Plan. Not subject to any federal regulations. 						
planned inspection frequency, ar requirement (e.g. 40CFR60, Subp Leak Detection Plan. Not subject	art VV), please list those here.					

sheets (MSDS) chemical entity sheet is not re teratogenicity, i unknown, and 8B. Describe any h conducted by th in the environm	 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.). 						
	ets - Waste products statu ste Section of WVDEP, OA	s: (If source is subject to RCRA or 450 Q at (304) 926-3647.)	CSR25, please contact the				
9A. Types and amo	ounts of wastes to be dispos	sed:					
9B. Method of disp Carrier:	osal and location of waste d	lisposal facilities: Phone:					
	••	ardous Waste Landfill will be used 🗌					
		Schedule for process or project as a who					
circle units:	(hrs/day) (hr/batch)	(days), (batches/day), (batches/week)	(days/yr), (weeks/year)				
10A. Maximum	24	7	52				
10B. Typical	24	7	52				
11. Complete a Re	actor Data Sheet for each re	eactor in this chemical process.					
12. Complete a Dis	stillation Column Data Shee	t for each distillation column in this chem	ical process.				
Please propose		Reporting, and Testing , and reporting in order to demonstrate co ting in order to demonstrate compliance v RECORDKEEPING					
MONTORING							
See Attachment	: O	See Attachment O					
REPORTING		TESTING					
See Attachment	: O	See Attachment O					
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING. Please describe the proposed frequency of reporting of the recordkeeping. TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.							
14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty							

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	1,000		1 st attempt – 5 days Final repair – 15 days	17,381 – EE
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC	2,500		1 st attempt – 5 days Final repair – 15 days	3,766 – EE
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Fugitive so no number assigned

1. Name or type and model of proposed affected source:
Fugitive emissions from venting episodes such as plant shutdowns and compressor start/shut downs.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
 - compressor blowdown - 0.028 tons VOC per event, 0.001 tons HAPs per event, 2.04 tons CO2e per event - plant shutdown - 0.57 tons VOC per event, 0.025 tons HAPs per event, 40.81 tons CO2e per event - pigging venting - 0.006 tons VOC per event, 0.0003 tons HAPs per event, 0.41 tons CO2e per event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
none
 The identification number which appears here must correspond to the air pollution control device identification number appearing on the <i>List Form</i>.

6.	Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
	(b)	Chemic	al analysis of pr	oposed fuel(s), e	excluding coal, ir	cluding maxim	um percent sulfur
		and ash	:				
	(n)	Theoret	ical combustion	air requirement	(ACE/unit of fue	Ŋ.	
	(0)	meorei		raii requirement		<i>ii)</i> .	
			@		°F and		psia.
	(-1)	Danaant					
	(d)	Percent	excess air:				
	(e)	Type an	d BTU/hr of bu	rners and all oth	er firing equipme	ent planned to l	be used:
	(1)	14 1 .					
	(†)	If coal is	s proposed as a it will be fired:	source of fuel, i	dentify supplier a	and seams and	l give sizing of the
		0001 00	it will be fired.				
	(a)	Dropoor		aign haat innut:			× 10 ⁶ BTU/hr.
	(y)	Fiopose		sign heat input:			
7.	Pro	jected o	perating schedu	lle:			
Ho	ours/l	Day	not a regular schedule	Days/Week	not a regular schedule	Weeks/Year	not a regular schedule

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	eventing events are uncontrolled °F and psia						
a.	NOx	lb/hr	grains/ACF				
b.	SO ₂	lb/hr	grains/ACF				
c.	СО	lb/hr	grains/ACF				
d.	PM ₁₀	lb/hr	grains/ACF				
e.	Hydrocarbons	lb/hr	grains/ACF				
f.	VOCs	lb/hr	grains/ACF				
g.	Pb	lb/hr	grains/ACF				
h.	Specify other(s)						
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 					
MONITORING	RECORDKEEPING				
See Attachment O	See Attachment O				
REPORTING	TESTING				
See Attachment O	See Attachment O				
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE				
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMPOLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR				
maintain warranty	nance procedures required by Manufacturer to				
N/A					

Attachment M. Air Pollution Control Device Sheets

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C-02 through C-12, C-15, C-16

Equipment Information

1.	Manufacturer: EMIT Technologies Model No. RT-3615-T		 Control Device Name: C-02-C-12, C-15, C-16 – Catalyst for CE-01 to CE-13 Type: NSCR Catalyst 							
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.									
4.	On a separate sheet(s) supply all data and cal	culation	ns used in selecting or de	esigning this collection device.						
5.	Provide a scale diagram of the control device s	showing	internal construction.							
6.	Submit a schematic and diagram with dimension	ons and	flow rates.							
	 Guaranteed minimum collection efficiency for each pollutant collected: N/A – no capture of pollutants 									
8.	8. Attached efficiency curve and/or other efficiency information.									
9.	Design inlet volume: 8886 A	CFM	10. Capacity:							
N/A 12. 13.	 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. Replace Catalyst elements when necessary 									
	Gas Str	eam Cł	naracteristics							
14.	Are halogenated organics present? Are particulates present? Are metals present?		☐ Yes ⊠ No ⊠ Yes □ No □ Yes ⊠ No							
15.	Inlet Emission stream parameters:		Maximum	Typical						
	Pressure (mmHg):		Not specified							
	Heat Content (BTU/scf):		1,400	1,127						
	Oxygen Content (%):		Not specified							
	Moisture Content (%):		Not specified							
	Relative Humidity (%):		Not specified							

16. Type of pollutant(s) of Particulate (type):			☐ Odor ⊠ Other NOx, CO, VOC, HCHO, CH₄								
17. Inlet gas velocity:		156 ft/sec	18. Pollutant specific gravity:								
19. Gas flow into the coll 8886 ACF @	lector: 1225 °F and	PSIA	20. Gas stream temperature: Inlet: 1225 °F Outlet: 1225 °F								
21. Gas flow rate: Design Maximum: Average Expected:	888	6 ACFM ACFM	22. Particulate Grain Loading in grains/scf: N/A Inlet: Outlet:								
23. Emission rate of each pollutant (specify) into and out of collector:											
Pollutant	IN Po Ib/hr	ollutant grains/acf	Emission Capture Efficiency %	OUT Po Ib/hr	ollutant grains/acf	Control Efficiency %					
A NOx	50.37			1.26		97.5					
B CO	47.41			1.19		97.5					
C VOC	1.48			0.24		84					
D HCHO	0.19			0.019		90					
E CH4	5.30			1.59		70					
24. Dimensions of stack:	: Heiç	ght 25 f	ft. Diameter 1.1 ft.								
25. Supply a curve show rating of collector.	ving proposed c	sollection efficient	cy versus gas	volume from 25	5 to 130 perce	nt of design					
		Particulate [Distribution								
26. Complete the table:	F		Stribution at Inlet Fraction Efficiency of Collect Collector								
Particulate Size Range	e (microns)	Weight % for	r Size Range	Weig	ght % for Size	Range					
0 – 2											
2-4											
4 - 6											
6 - 8											
8 – 10											

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): **None**

28. Describe the collection material disposal system: Catalyst elements can be cleaned and/or replaced; materials are not disposed on site.

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? yes

30.	Proposed Monitoring, Recordkeeping, Reporting, and Testing		
	Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance	with	the
	proposed operating parameters. Please propose testing in order to demonstrate compliance proposed emissions limits.	with	the

MONITORING:		RECORDKEEPING:								
See Attachment O		See Attachment O								
REPORTING:		TESTING:								
See Attachment O		See Attachment O								
MONITORING:	•	Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process aquipment or air control device.								
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING: Please describe any proposed emissions testing for this process equipment on a										

REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. NOx: 97.5%, CO: 97.5%, VOC: 84%, HCHO: 90%, CH4:70% Due to variable load conditions, the catalyst efficiency may vary. The cat

Due to variable load conditions, the catalyst efficiency may vary. The catalyst efficiencies listed above are typical based on expected operating conditions.

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Inlet temperature range is 750 F – 1250 F. Engine must be operated between 50 – 100 % load. A/F ratio controller must be set properly with fuel heating value of around 1400 Btu/scf. Engine lube oil shall contain less than 0.5 wt% sulfated ash. Catalyst must not be exposed to the following: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, zinc.

2585 Heartland Dr. Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5081 riames@emittechnologies.com

QUOTE: QUO-17302-L3Z6

Prepared For: Clayton Brown ANTERO RESOURCES

INFORMATION PROVIDED BY WAUKESHA

Engine:	L7044GSI
Horsepower:	1680
RPM:	1200
Compression Ratio:	8.0
Exhaust Flow Rate:	8820 CFM
Exhaust Temperature:	1226 °F
Reference:	N/A
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>a/bhp-hr</u>	<u>Lb/Hr</u>	<u>Tons/Year</u>
NOx:	13.50	50.00	219.00
CO:	12.50	46.30	202.78
THC:	2.30	8.52	37.31
NMHC	0.90	3.33	14.60
NMNEHC:	0.48	1.78	7.79
HCHO:	0.05	0.19	0.81
O2:	0.30 %		

POST CATALYST EMISSIONS

	% Reduction
NOx:	>97.5%
CO:	>97.5%
VOC:	>84.0%
HCHO:	>90.0%
CH4:	>70.0%

CONTROL EQUIPMENT

Catalyst Element

Model:	RT-3
Catalyst Type:	NSC
Substrate Type:	BRA
Manufacturer:	EMI
Element Quantity:	6
Element Size:	Rect

RT-3615-T NSCR, Standard Precious Group Metals BRAZED EMIT Technologies, Inc 6 Rectangle 36" x 15" x 3.5"

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst be excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 50 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

Attachment N. Supporting Emissions Calculations

Emission Calculations

EMISSIONS SUMMARY TOTAL

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia

UNCONTROLLED POTENTIAL EMISSION SUMMARY

2	NOx		СО		VOC		SO ₂		PM-10		HAPs		Formaldehyde		CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines															
Compressor Engine 1	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 2	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 3	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 4	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 5	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 6	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 7	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 8	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 9	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 10	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 11	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 12	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
Compressor Engine 13	50.37	220.62	47.41	207.64	1.48	6.49	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,133
<u>Turbines</u>															
Microturbine Generator 1	0.10	0.42	0.26	1.16	0.024	0.11	0.0084	0.037	0.016	0.071	0.0025	0.011	0.0018	0.0077	1,166
Microturbine Generator 2	0.10	0.42	0.26	1.16	0.024	0.11	0.0084	0.037	0.016	0.071	0.0025	0.011	0.0018	0.0077	1,166
Catalytic Heater for Generator Fuel	0.0024	0.010	0.0020	0.0087	0.00013	0.00057	0.000014	0.000062	0.00018	0.00078	0.000044	0.00019	0.000002	0.00008	12
Dehydrator_															
TEG Dehydrator 1					103.70	454.22					8.91	39.03			12,800
TEG Dehydrator 2					103.70	454.22					8.91	39.03			12,800
Reboiler 1	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 2	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
<u>Combustors</u>															
Combustor and Pilot															
Hydrocarbon Loading			-												
Truck Loadout					57.54	7.87					4.53	0.62			21.4
Fugitive Emissions															
Component Leak Emissions					2.41	10.57					0.11	0.48			142
Venting Emissions						10.23						0.46			740
Fugitive Dust Emissions									0.30	1.30					
Storage Tanks															
Produced Water Tanks					0.17	0.75					0.014	0.059			2
Settler Tank					91.49	400.72					7.30	31.96			1,104
Condensate Tanks					2.56	11.20					0.20	0.88			30
Total Facility PTE =	655.30	2,870.23	617.07	2,702.78	380.90	1,434.42	0.13	0.55	3.87	16.94	34.53	132.59	2.41	10.56	150,259

EMISSIONS SUMMARY TOTAL

Company:	Antero Midstream LLC	
Facility Name:	Nichols Compressor Station	
Facility Location:	Doddridge County, West Virginia	

CONTROLLED POTENTIAL EMISSION SUMMARY

Sauraa	N	Ox	CO		VOC		SO ₂		PM-10		HAPs		Formaldehyde		CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines															
Compressor Engine 1	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 2	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 3	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 4	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 5	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 6	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 7	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 8	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 9	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 10	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 11	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 12	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
Compressor Engine 13	1.26	5.52	1.19	5.19	0.24	1.04	0.0082	0.036	0.27	1.18	0.050	0.22	0.019	0.081	8,727
<u>Turbines</u>															
Microturbine Generator 1	0.10	0.42	0.26	1.16	0.024	0.11	0.0084	0.037	0.016	0.071	0.0025	0.011	0.0018	0.0077	1,166
Microturbine Generator 2	0.10	0.42	0.26	1.16	0.024	0.11	0.0084	0.037	0.016	0.071	0.0025	0.011	0.0018	0.0077	1,166
Catalytic Heater for Generator Fuel	0.0024	0.010	0.0020	0.0087	0.00013	0.00057	0.000014	0.000062	0.00018	0.00078	0.000044	0.00019	0.000002	0.00001	12
<u>Dehydrator</u>															
TEG Dehydrator 1															
TEG Dehydrator 2															
Reboiler 1	0.15	0.64	0.12	0.54	0.50	2.19	0.00088	0.0039	0.011	0.049	0.031	0.13	0.00011	0.00048	857
Reboiler 2	0.15	0.64	0.12	0.54	0.50	2.19	0.00088	0.0039	0.011	0.049	0.031	0.13	0.00011	0.00048	857
<u>Combustion</u>															
Combustor and Pilot	0.33	1.44	1.78	7.79	1.54	6.73	0.000011	0.000048	0.00014	0.00060	0.26	1.15			2,821
Hydrocarbon Loading															
Truck Loadout					57.54	7.87					4.53	0.62			21.4
Fugitive Emissions				-		-				-					
Component Leak Emissions					2.41	10.57					0.11	0.48			142
Venting Emissions						10.23						0.46			740
Fugitive Dust Emissions									0.30	1.30					
Storage Tanks															
Produced Water Tanks					0.0034	0.015					0.00027	0.0012			0.041
Settler Tank					1.83	8.01					0.15	0.64			23
Condensate Tanks					0.051	0.22					0.0040	0.018			0.6
Total Facility PTE =	17.19	75.28	17.96	78.67	67.51	61.74	0.13	0.55	3.87	16.94	5.77	6.52	0.24	1.07	121,261

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Compressor Engines

Source Information-Per Engine

Emission Unit ID:	CE-01 through CE-13				
Engine Make/Model	Waukesha 7044 GSI				
Service	Comp	pression			
Controls - Y or N / Type	Y	NSCR/AFRC			
Site Horsepower Rating ¹	1,680	hp			
Fuel Consumption (BSFC) ¹	8,295	Btu/(hp-hr)			
Heat Rating ²	13.94	MMBtu/hr			
Fuel Consumption ^{2,3}	108.27	MMscf/yr			
Fuel Consumption ¹	12,360	scf/hr			
Fuel Heating Value	1,127	Btu/scf			
Operating Hours	8,760	hrs/yr			

Notes:

1. Values from Waukesha specification sheet.

2. Calculated values.

3. Annual fuel consumption is 100% of maximum fuel consumption at 100% load.

Potential Emissions per Engine

	Uncontrolled					Controlled					
Pollutant	Emissio (Ib/MMBtu)	n Factor (g/bhp-hr)	Est (lb/hr)	imated Emissi (lb/yr)	ons (tpy)	Emission (Ib/MMBtu)	n Factor (g/bhp-hr)	Est (Ib/hr)	imated Emissi (Ib/yr)	ons (tpy)	Source of Emissions Factors
NOx ^{1,4}		13.6	50.37		220.62		0.34	1.26		5.52	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
CO ^{1,4}		12.8	47.41		207.64		0.32	1.19		5.19	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
VOC ^{1,4}		0.40	1.48		6.49		0.064	0.24		1.04	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
SO ₂	5.88E-04		0.0082		0.036	5.88E-04		0.0082		0.036	AP-42, Chapter 3.2, Table 3.2-3
PM _{2.5} /PM ₁₀	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
Total PM	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
1,1,2,2-Tetrachloroethane ⁵	2.53E-05		0.00035	3.09	0.0015	4.05E-06		0.000056	0.49	0.00025	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
1,3-Butadiene ⁵	6.63E-04		0.0092	80.94	0.040	1.06E-04		0.0015	12.95	0.0065	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Acetaldehyde ⁵	2.79E-03		0.039	340.59	0.17	4.46E-04		0.0062	54.49	0.027	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Acrolein ⁵	2.63E-03		0.037	321.06	0.16	4.21E-04		0.0059	51.37	0.026	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Benzene⁵	1.58E-03		0.022	192.88	0.096	2.53E-04		0.0035	30.86	0.015	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Ethylbenzene ⁵	2.48E-05		0.00035	3.03	0.0015	3.97E-06		0.000055	0.48	0.00024	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Formaldehyde ^{1,4}		0.05	0.19	1,622	0.81		0.005	0.019	162.22	0.081	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
Methanol ⁵	3.06E-03		0.043	373.55	0.19	4.90E-04		0.0068	59.77	0.030	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Methylene Chloride	4.12E-05		0.00057	5.03	0.0025	4.12E-05		0.00057	5.03	0.0025	AP-42, Chapter 3.2, Table 3.2-3
PAH	1.41E-04		0.0020	17.21	0.0086	1.41E-04		0.0020	17.21	0.0086	AP-42, Chapter 3.2, Table 3.2-3
Foluene⁵	5.58E-04		0.0078	68.12	0.034	8.93E-05		0.0012	10.90	0.0054	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Xylenes ⁵	1.95E-04		0.0027	23.80	0.012	3.12E-05		0.00043	3.81	0.0019	AP-42, Chapter 3.2, Table 3.2-3 - uncontrolled, see Note 5 - controlled
Other HAPs ²	2.10E-04		0.0029	25.61	0.013	2.10E-04		0.0029	25.61	0.013	AP-42, Chapter 3.2, Table 3.2-3
Total HAPS			0.35	3,077	1.54			0.050	435	0.22	
Pollutant	Emissio			imated Emissi		Emissio			imated Emissi		Source of Emissions Factors
CO21	(kg/MMBtu)	(g/bhp-hr) 527	(lb/hr) 1,952	(lb/yr)	(tpy) 8549	(kg/MMBtu)	(g/bhp-hr) 527	(lb/hr) 1.952	(lb/yr)	(tpy) 8549	Manufacturer's Specs
CH4 ^{1,4}		1.43	5.30		23.20		0.43	1,952		6.96	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
ν ₂ Ο	0.0001		0.0031		0.013	0.0001	0.43	0.0031		0.013	40 CFR Part 98, Subpart C, Table C-2
	0.0001		2.085		9.133			1.993		8.727	40 CFR Part 98, Subpart C, Table C-2 40 CFR Part 98, Subpart A, Table A-1
CO ₂ e ²			2,000		9,100			1,993		0,121	HO OFT Fait 30, Subpart A, Table A-1

Notes:

4. Due to variable load conditions, the catalyst efficiency may vary. The catalyst efficiencies used in the emissions are typical based on expected operating conditions. The catalyst specification sheet shows typical destruction efficiencies that were used in the calculations.

The emission factors shown on the catalyst specification sheet are not site specific, so those will vary; however the efficiencies will be the same.

5. Denoted HAPs are also VOCs and will be controlled by the catalysts by the same reduction efficiency.

Example Calculations

lb/hr = (g/hp-hr) * (hp) * (1 lb/453.6 g) or (lb/MMBtu) * (MMBtu/hr)

tpy = (MMscf/yr) * (Btu/scf) * (10⁶ Btu/MMBtu) * (g/hp-hr) / (Btu/hp-hr) * (1 lb/453.59 g) * (1 ton/2000 lb) or (MMscf/yr) * (Btu/scf) * (lb/MMBtu) * (1 ton/2000 lb)

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Microturbine Generators

Source Information

Emission Unit ID:	GEN-1	& GEN-2
Make/Model	Capstone (C200 Standard
Microturbine Rating	200	kWe
Net Heat Rate	10,300	Btu/kWhe
Heat Input ¹	2.47	MMBtu/hr
Operating Hours	8,760	hrs/yr
Notes:		

1) Calculated

Potential Emissions per Generator

		Uncontrolled Controlled									
Pollutant	Emissio	on Factor	Est	mated Emiss	ions	Emission Factor Estimated Emissions		ions	Source of Emissions Factors		
Follutalit	(lb/MMBtu)	(lb/MWhe)	(lb/hr)	(lb/yr)	(tpy)	(lb/MMBtu)	(lb/MWhe)	(lb/hr)	(lb/yr)	(tpy)	Source of Emissions Factors
NOx		0.40	0.10		0.42		0.40	0.10		0.42	Manufacturer Specifications
со		1.10	0.26		1.16		1.10	0.26		1.16	Manufacturer Specifications
VOC		0.10	0.024		0.11		0.10	0.024		0.11	Manufacturer Specifications
SO ₂	3.40E-03		0.0084		0.037	3.40E-03		0.0084		0.037	AP-42, Chapter 3.1, Table 3.1-2a
PM _{2.5} /PM ₁₀	6.60E-03		0.016		0.071	6.60E-03		0.016		0.071	AP-42, Chapter 3.1, Table 3.1-2a
1,3-Butadiene	4.30E-07		1.06E-06	0.0093	0.0000047	4.30E-07		1.06E-06	0.0093	0.0000047	AP-42, Chapter 3.1, Table 3.1-3
Acetaldehyde	4.00E-05		9.89E-05	0.87	0.00043	4.00E-05		9.89E-05	0.87	0.00043	AP-42, Chapter 3.1, Table 3.1-3
Acrolein	6.40E-06		1.58E-05	0.14	0.000069	6.40E-06		1.58E-05	0.14	0.000069	AP-42, Chapter 3.1, Table 3.1-3
Benzene	1.20E-05		2.97E-05	0.26	0.00013	1.20E-05		2.97E-05	0.26	0.00013	AP-42, Chapter 3.1, Table 3.1-3
Ethylbenzene	3.20E-05		7.91E-05	0.69	0.00035	3.20E-05		7.91E-05	0.69	0.00035	AP-42, Chapter 3.1, Table 3.1-3
Formaldehyde	7.10E-04		1.76E-03	15.37	0.0077	7.10E-04		1.76E-03	15.37	0.0077	AP-42, Chapter 3.1, Table 3.1-3
Naphthalene	1.30E-06		3.21E-06	0.028	0.000014	1.30E-06		3.21E-06	0.028	0.000014	AP-42, Chapter 3.1, Table 3.1-3
РАН	2.20E-06		5.44E-06	0.048	0.000024	2.20E-06		5.44E-06	0.048	0.000024	AP-42, Chapter 3.1, Table 3.1-3
Propylene Oxide	2.90E-05		7.17E-05	0.63	0.00031	2.90E-05		7.17E-05	0.63	0.00031	AP-42, Chapter 3.1, Table 3.1-3
Toluene	1.30E-04		3.21E-04	2.82	0.0014	1.30E-04		3.21E-04	2.82	0.0014	AP-42, Chapter 3.1, Table 3.1-3
Xylenes	6.40E-05		1.58E-04	1.39	0.00069	6.40E-05		1.58E-04	1.39	0.00069	AP-42, Chapter 3.1, Table 3.1-3
Total HAPS			0.0025	22.25	0.011			0.0025	22.25	0.011	
Pollutant	Emissio	on Factor	Esti	mated Emiss	ions	Emission Factor		Esti	imated Emiss	ions	Source of Emissions Factors
Follutant	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	Source of Emissions Pactors
CO2		1,330	266.0		1,165		1,330	266.0		1,165	Manufacturer Specifications
CH ₄	0.001		0.0055		0.024	0.001		0.0055		0.024	40 CFR Part 98, Subpart C, Table C-2
N ₂ O	0.0001		0.00055		0.0024	0.0001		0.00055		0.0024	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e			266		1,166			266		1,166	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

Example Calculations

lb/hr = (lb/Mwhe) * kWe * (1 MWe/1000 kWe) or (lb/MMBtu) * (MMBtu/hr) or (kg/MMBtu) * (MMBtu/hr) * (2.21 lb/kg)

tpy = (lb/hr) * (hr/yr) * (ton/2000 lb)

Natural Gas Fueled Catalytic Heater Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Catalytic Heater for Generator Fuel

Source Information

Emission Unit ID:	CATHT1				
Source Description:	Generator Fuel Heater				
Hours of Operation	8,760	hr/yr			
Design Heat Rate	0.024	MMBtu/hr			
Fuel Heat Value	1,020	Btu/scf			
Fuel Use	0.21	MMscf/yr			

Emission Calculations per Reboiler

Pollutant	Emission Factor (Ib/MMscf)	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source
NO _X	100	0.0024	0.010	AP-42 Ch. 1.4 Table 1.4-1
СО	84	0.0020	0.0087	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.00013	0.00057	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.00018	0.00078	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.000014	0.000062	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.0000018	0.0000077	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO)	1.9	0.000044	0.00019	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor (kg/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
Carbon Dioxide	53.06	2.81	12.3	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.000053	0.00023	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.0000053	0.000023	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		2.82	12.3	40 CFR Part 98, Subpart A, Table A-1

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf)

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Dehydrator Emissions

Company:	Antero Midstream LLC	
Facility Name:	Nichols Compressor Station	
Facility Location:	Doddridge County, West Virginia	
Source Description:	Dehydrator Units	

Potential Emissions per Dehydrator

	Emission Unit ID:	RSV-1 and RSV-2	Emission Unit ID:	RBV-1 and RBV-2	
Pollutant	Dehydrator Still Vent		Dehydrator Flash Tank		
Fondant	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Uncontrolled Emissions ¹					
VOC	79.12	346.53	24.59	107.69	
Total HAPs	7.52	32.93	1.39	6.10	
Benzene	0.83	3.64	0.040	0.18	
Toluene	3.01	13.20	0.099	0.43	
Xylenes	1.67	7.34	0.022	0.096	
n-Hexane	2.00	8.76	1.23	5.39	
Methane	79.08	346.38	37.75	165.37	
Carbon Dioxide	0.74	3.23	0.77	3.36	
CO ₂ e	1,977.8	8,662.6	944.63	4,137.5	
Controlled Emissions ^{2,3}					
VOC	0.77	3.36	0.49	2.15	
Total HAPs	0.13	0.57	0.028	0.12	
Benzene	0.016	0.069	0.00080	0.0035	
Toluene	0.053	0.23	0.0020	0.0087	
Xylenes	0.024	0.11	0.00044	0.0019	
n-Hexane	0.039	0.21	0.025	0.11	
Methane	1.58	6.93	0.76	3.31	
Carbon Dioxide	0.74	3.23	0.77	3.36	
CO ₂ e	40.27	176.39	19.64	86.04	

¹Output from GRI-GLYCalc 4.0 for both the still vent and flash tank gas emissions

²Controlled emissions assume that the glycol still vent is equipped with a condenser and

is controlled by a combustor with 98% control efficiency.

³Flash tank gas is used in the reboiler as the primary fuel source. However, in the case that gas cannot be used in the reboiler, the gas is sent to the primary/backup VRU system via the storage tanks for 98% control.

Natural Gas Fueled Dehydrator Reboiler Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Dehydrator Reboilers

Source Information

Emission Unit ID:	RBV-1 and RBV-2		
Source Description:	Dehydrator Reboiler		
Hours of Operation	8,760 hr/yr		
Design Heat Rate	1.5 MMBtu/hr		
Fuel Heat Value	1,020 Btu/scf		
Fuel Use	12.9 MMscf/yr		

Emission Calculations per Reboiler

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO _X	100	0.15	0.64	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.12	0.54	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0081	0.035	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.011	0.049	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.00088	0.0039	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.00011	0.00048	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO)	1.9	0.0028	0.012	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Fonutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	175.9	770.4	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0033	0.015	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00033	0.0015	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		176.1	771.2	40 CFR Part 98, Subpart A, Table A-1

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf)

Emissions (tons/yr) = ___Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Combustor Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Combustor for Dehydrator Still Vent Gas
Emission Unit ID:	C-01

Combusted Gas Emissions

Combustor Heat Input :	4.80	MMBtu/hr
Vent Gas to Combustor Rate:	4,265	scf/hr
Gas Heating Value:	1,126	Btu/scf
Hours of Operation:	8,760	hr/yr
•		•

Pollutant	Emission Factor ¹ (Ib/MMBtu)	Emissions (Ibs/hr)	Emissions (tons/yr)	
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - Smokeless Design			
Nitrogen Oxides (NO _x)	0.068 0.33 1.43			
Carbon Monoxide (CO)	0.37	1.78	7.78	

¹ Emission Factors from Table 13.5-1 of AP-42 Section 13.5 (Sept 1991)

Pilot Emissions

Pilot Heating Value:	1,126	Btu/scf
Hours of Operation:	8,760	hr/yr
Total Pilot Natural Gas Usage:	1.64E-05	MMscf/hr

Pollutant	Emission Factor (Ib/MMscf)	Emissions (Ibs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5}) ²	7.6	1.38E-04	6.02E-04
Nitrogen Oxides (NO _x) ²	100	1.81E-03	7.93E-03
Sulfur Dioxide $(SO_2)^2$	0.6	1.09E-05	4.76E-05
Carbon Monoxide (CO) ²	84	1.52E-03	6.66E-03
Volatile Organic Compounds (VOC) ²	5.5	9.95E-05	4.36E-04
Total HAPs ^{2,3}	1.88	3.40E-05	1.49E-04

² Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

³ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

Total Combustor Emissions

Pollutant	Total Potential Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	6.02E-04
Nitrogen Oxides (NO _x)	1.44
Sulfur Dioxide (SO ₂)	4.76E-05
Carbon Monoxide (CO)	7.79
Volatile Organic Compounds (VOC)	4.36E-04
Total HAPs	1.49E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Follutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	562.9	2,465	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.011	0.046	40 CFR Part 98, Subpart C, Table C-2
Nitrogen Dioxide	0.0001	0.0011	0.0046	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		563.4	2,468	40 CFR Part 98, Subpart A, Table A-1

Settling Tank Flashing Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Settling Tank Flashing Emissions
Emission Unit ID:	T03

Settling Tank Throughput: **196** bbl/day

Settling Tank Flashing Emissions

Component	Uncontrolled Flashing Emissions ¹ (lb/hr)	Uncontrolled Flashing Emissions (tons/yr)	Controlled Flashing Emissions ² (Ib/hr)	Controlled Flashing Emissions ² (tons/yr)
Methane	9.89	43.33	0.20	0.87
Ethane	19.40	84.97	0.39	1.70
Propane	23.77	104.1	0.48	2.08
i-Butane	7.94	34.79	0.16	0.70
n-Butane	17.54	76.84	0.35	1.54
i-Pentane	9.19	40.24	0.18	0.80
n-Pentane	9.99	43.75	0.20	0.88
Hexanes	5.31	23.28	0.11	0.47
Heptanes	5.91	25.88	0.12	0.52
Octanes	2.12	9.27	0.042	0.19
Nonanes	0.014	0.060	0.00028	0.0012
Decanes+	0.87	3.80	0.017	0.076
Benzene	0.096	0.42	0.0019	0.0084
Toluene	0.17	0.74	0.0034	0.015
Ethylbenzene	0.00012	0.00053	0.0000024	0.000011
Xylenes	0.019	0.085	0.00039	0.0017
n-Hexane	6.88	30.13	0.14	0.60
Nitrogen	0.055	0.24	0.055	0.24
Carbon Dioxide	0.20	0.86	0.20	0.86
Water	3.41	14.92	3.41	14.92
VOC Subtotal	89.82	393.4	1.80	7.87
HAP Subtotal	7.16	31.38	0.14	0.63
CO₂e Subtotal	247.5	1,084	5.14	22.52
Total	122.8	537.7	6.04	26.45

Notes:

1. Flashing emissions calculated by ProMax 3.2 Stream "43". Flashing only occurs in the settling tank as all pressurized fluids flow into the settling tank and then separate out at atmospheric conditions to the condensate and produced water tanks.

2. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system

Storage Tank Working and Breathing Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	W&B Storage Tank Emissions
Emission Unit ID:	T01 through T05

TANK	Uncontrolled VOC	Uncontrolled CH₄	Uncontrolled CO ₂ e	Uncontrolled HAP
DESCRIPTION	Emissions ¹	Emissions ³	Emissions	Emissions ⁴
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400 bbl Hydrocarbon Storage Tank (T04)	5.60	0.61	15.20	0.44
400 bbl Hydrocarbon Storage Tank (T05)	5.60	0.61	15.20	0.44
400 bbl Settling Tank (T03)	7.30	0.79	19.82	0.57
400 bbl Produced Water Storage Tank ² (T01)	0.38	0.041	1.02	0.030
400 bbl Produced Water Storage Tank ² (T02)	0.38	0.041	1.02	0.030
TOTAL	19.26	2.09	52.28	1.51

TANK DESCRIPTION	Controlled VOC Emissions ⁵ (tons/yr)	Controlled CH₄ Emissions ⁵ (tons/yr)	Controlled CO ₂ e Emissions ⁵ (tons/yr)	Controlled HAP Emissions ⁵ (tons/yr)
400 bbl Hydrocarbon Storage Tank (T04)	0.11	0.012	0.30	0.0088
400 bbl Hydrocarbon Storage Tank (T05)	0.11	0.012	0.30	0.0088
400 bbl Settling Tank (T03)	0.15	0.016	0.40	0.011
400 bbl Produced Water Storage Tank2 (T01)	0.0075	0.00082	0.020	0.00059
400 bbl Produced Water Storage Tank2 (T02)	0.0075	0.00082	0.020	0.00059
TOTAL	0.39	0.04	1.05	0.03

Notes:

1. EPA Tanks 4.0.9d used to calculate standing, working, and breathing (S,W,B) emissions. Model was run on a per tank basis so as to not underestimate emissions.

2. Produced water assumed to have no more than 10% hydrocarbon liquid

3. Methane emissions estimated assuming 73% VOC and 8% CH₄ in tank vent gas based on ProMax 3.2 simulation.

4. HAP emissions estimated assuming 73% VOC and 5.8% HAPs in the tank vent gas based on ProMax 3.2 simulation.

5. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system. 20163815/ DEN16033572

Truck Loading Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Production Liquids Truck Loadout
Emission Unit ID:	EPLOR

AP - 42, Chapter 5.2 L_{L} = 12.46 x S x P x M / T

- L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)
 - S = Saturation Factor
 - P = True Vapor Pressure of the Loaded Liquid (psia)
 - M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)
 - $T = Temperature of Loaded Liquid (^{O}R)$

VOC Emissions (tpy) = L_{L} (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

					TUUU yai	2000 105/1011				
-								U	ncontroll	ed
_						L	Production	VOC	HAP⁵	CO ₂ e ⁶
Source	S ¹	P (psia) ²	M ²	T (⁰F) ³	T (⁰R)	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)
Condensate	0.6	7.7	60	52	511.81	6.78	151	7.85	0.62	21.30
Produced Water ⁴	0.6	7.7	60	52	511.81	0.68	45	0.023	0.0018	0.064

Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service)

1000 and * 2000 lbs/top

2. True vapor pressure and molecular weight retrieved from EPA Tanks 4.0.9d runs.

3. Temperature based on the annual average temperature for Elkins, West Virginia (EPA Tanks 4.0.9d runs).

4. Produced water assumed to have no more than 10% hydrocarbon liquid.

5. HAP emissions estimated from HAP weight% to VOC weight % ratio from settling tank flash gas.

6. CO₂e emissions estimated from CH₄ weight % to VOC weight % ratio from settling tank flash gas.

Assume 1 truck loaded per hour, 200 bbl truck, for short term emissions

									ncontroll	ed
						LL	Loading	VOC	HAP⁵	CO ₂ e ⁶
Source	S ¹	P (psia) ²	M ²	T (⁰F) ³	T (⁰R)	(lb/1000 gal)	bbl/hr	(lb/hr)	(lb/hr)	(lb/hr)
Condensate	0.6	7.7	60	52	511.81	6.78	200	56.97	4.48	154.7
Produced Water ⁴	0.6	7.7	60	52	511.81	0.68	200	0.57	0.045	1.55

Component Fugitive Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Emissions-Component Leaks

VOC Fugitive Emissions											
Equipment Type and Service	Number of Units ¹	Hours of Operation (hours/yr)	THC Emission Factor ² (kg/hr-unit)	VOC Weight Fraction ³	THC Emissions (tpy)	VOC Emissions (tpy)					
Flanges - Gas Service	2,500	8,760	3.90E-04	0.20	9.41	1.88					
Valves - Gas Service	1,000	8,760	4.50E-03	0.20	43.45	8.69					
Total Emissions (tons/yr)					52.87	10.57					

HAPs Fugitive Emissions											
Equipment Type and Service	Benzene Weight	Benzene Emissions	Toluene Weight	Toluene Emissions	Ethylbenzene Weight	Ethylbenzene Emissions	Xylene Weight	Xylene Emissions	n-Hexane Weight	n-Hexane Emissions	
	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	
Flanges - Gas Service	1.21E-04	1.14E-03	3.36E-04	3.17E-03	0.00E+00		9.80E-05	9.23E-04	8.60E-03	8.09E-02	
Valves - Gas Service	1.21E-04	5.25E-03	3.36E-04	1.46E-02	0.00E+00		9.80E-05	4.26E-03	8.60E-03	3.74E-01	
Total Emissions (tons/yr)		0.0064		0.018				0.0052		0.45	

1) Component counts from Engineering Lists.

2) API average emission factors are for oil and gas production operations - Table 2.4, EPA Protocol for Equipment Leak Emission Estimates - 1995.

3) VOC and HAP weight fractions are based on a ratio from Total Hydrocarbon weight fraction from a gas analysis from a site-specific ProMax 3.2 simulation.

GHG Fugitive Emissions												
Equipment Type	Number of Units ¹	Hours of Operation (hours/yr)	Emission Factor ⁴ (scf/hr-unit)	CH₄ Concentration⁵	CO₂ Concentration ⁵	CH₄ Emissions (tpy)	CO ₂ Emissions (tpy)	CO₂e Emissions (tpy)				
	Units	(nours/yr)	(sci/iii-uiiit)			(ipy)	(ipy)	(ipy)				
Flanges	2,500	8,760	0.003	0.98	0.011	1.23	0.038	30.79				
Valves	1,000	8,760	0.027	0.98	0.011	4.43	0.14	110.83				
Total Emissions (tons/yr)						5.66	0.17	141.61				

4) Emission factors from 40 CFR Part 98 Subpart W, Table W1-A; Gas service where available, else light crude service

5) CH_4 and CO_2 concentrations as defined in 40 CFR Part 98.233(r)

Fugitive Emissions From Venting Episodes

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Emissions-Venting Episodes

VOC Venting Emissions						
Type of Event ¹	Number Of Events (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (Ib/Ib-mol)	Total Emissions (ton/yr)	VOC Weight Fraction ³	VOC Emissions (ton/yr)
Compressor Blowdown ²	312	5,000	21.43	44.05	0.20	8.81
Plant Shutdown	2	100,000	21.43	5.65	0.20	1.13
Pigging Venting	52	1,000	21.43	1.47	0.20	0.29
Total Emissions (tons/yr)						10.23

HAPs Venting Emissions										
Type of Event ¹	Benzene Weight Fraction ³	Benzene Emissions (tpy)	Toluene Weight Fraction ³	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ³	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ³	Xylene Emissions (tpy)	n-Hexane Weight Fraction ³	n-Hexane Emissions (tpy)
Compressor Blowdown ²	1.19E-04	5.25E-03	3.31E-04	1.46E-02	0.00E+00		9.66E-05	4.25E-03	8.47E-03	3.73E-01
Plant Shutdown	1.19E-04	6.73E-04	3.31E-04	1.87E-03	0.00E+00		9.66E-05	5.46E-04	8.47E-03	4.78E-02
Pigging Venting	1.19E-04	1.75E-04	3.31E-04	4.87E-04	0.00E+00		9.66E-05	1.42E-04	8.47E-03	1.24E-02
Total Emissions (tons/yr)		0.0061		0.017				0.0049		0.43

GHG Venting Emissions								
Type of Event ¹	Number Of	Amount Vented per	Molecular Weight of	CH₄	CO2	CH₄	CO2	CO ₂ e
	Events	Event	Vented Gas	Weight	Weight	Emissions	Emissions	Emissions
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction ³	Fraction ³	(ton/yr)	(ton/yr)	(tpy)
Compressor Blowdown ²	312	5,000	21.43	0.58	0.0042	25.46	0.18	636.66
Plant Shutdown	2	100,000	21.43	0.58	0.0042	3.26	0.024	81.62
Pigging Venting	52	1,000	21.43	0.58	0.0042	0.85	0.0061	21.22
Total Emissions (tons/yr)						29.57	0.21	739.51

1) Estimated number of events and venting per event from engineering based on other facilities

2) Total number of compressor blowdowns based on 24 blowdowns per compressor.

3) Weight Fractions are from a gas analysis from a site-specific ProMax 3.2 simulation.

Fugitive Dust Emissions

Company:	Antero Midstream LLC
Facility Name:	Nichols Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Dust Emissions

Gravel Access Road	Loaded Truck Weight ¹	Trips per year ²	Trips per day ²	Distance per (truck in ar	•	VMT per year ⁴
	tons			feet	miles	miles
Condensate Tank Truck	40.00	365	1.0	15,840	3.00	1,095
Produced Water Tank Truck	40.00	365	1.0	15,840	3.00	1,095

Equation Parameter	PM-10/PM2.5	PM-Total
E , annual size-specific emission factor for $PM_{10} \& PM_{2.5}$ (upaved industrial roads) extrapolated for natural mitigation ⁶	see table below	see table below
k , Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	1.5	4.9
k, Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.15	4.9
s , surface material silt content, (%) (Source: AP-42 Table 13.2.2-1)	4.8	4.8
W, mean weight (tons) of the vehicles traveling the road	40.00	40.00
a , constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.9	0.7
b , constant for PM_{10} and $PM_{2.5}$ on industrial roads (Source: AP-42 Table 13.2.2-2)	0.45	0.45
P , number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.2-1.	160	160

$$E = \left[k \left(\frac{s}{12} \right)^a \times \left(\frac{W}{3} \right)^b \right] \times \left(365 - \frac{P}{365} \right)$$

Source of Equation: AP-42 Section 13.2.2

PM₁₀ Emissions

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM ₁₀ Emissions (tpy)
1.18	2,190.0	1.30

PM_{2.5} Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM _{2.5} Emissions (tpy)
0.12	2,190.0	0.13

PM- Total Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM-Total Emissions (tpy)
4.65	2,190.0	5.09

Notes:

1. Loaded truck weight is based on typical weight limit for highway vehicles.

2. Based on production, it's assumed a maximum of one condensate truck (200 bbl truck) and one produced water truck (200 bbl truck) will be onsite per day.

3. Distance per round trip is based on the site layout. The one way distance is measured as 7,920 feet for the gravel access road.

4. VMT/yr = Trips/yr x Roundtrip Distance

5. Hourly emissions determined from tons per year calculation using 2,000 lb/ton and 8,760 hours per year.

Facility Gas Analysis

	MOL %	MW	Component Weight	Wt. Fraction
		lb/lb-mol	lb/lb-mol	
Methane	77.22	16.04	12.39	0.58
Ethane	14.24	30.07	4.28	0.20
Propane	4.16	44.10	1.84	0.086
i-Butane	0.58	58.12	0.34	0.016
n-Butane	1.08	58.12	0.63	0.029
i-Pentane	0.34	72.15	0.24	0.011
n-Pentane	0.35	72.15	0.25	0.012
Hexanes	0.17	106.72	0.18	0.0084
Heptanes	0.23	100.20	0.23	0.011
Octanes	0.13	114.23	0.15	0.0071
Nonanes	0.0060	128.26	0.0077	0.00036
Decanes	0.28	142.29	0.39	0.018
n-Hexane	0.21	86.18	0.18	0.0085
Benzene	0.0033	78.11	0.0026	0.00012
Toluene	0.0077	92.14	0.0071	0.00033
Ethylbenzene	0.000	106.16	0.000	0.000
Xylenes	0.0020	106.16	0.0021	0.000097
Nitrogen	0.79	28.01	0.22	0.010
Carbon Dioxide	0.20	44.01	0.090	0.0042
Totals	100.0		21.43	1.00

Heating Value (Btu/scf)	1,125.5
Molecular weight	21.43
VOC weight fraction	0.20
Methane weight fraction	0.58
THC weight fraction	0.99
VOC of THC wt fraction	0.20
CH4 of THC wt fraction	0.59
Benzene of THC wt fraction	0.00012

Benzene of THC wt fraction	0.00012
Toluene of THC wt fraction	0.0003
E-benzene of THC wt fraction	0.0000000
Xylene of THC wt fraction	0.000098
n-Hexane of THC wt fraction	0.0086

1. Site-specific ProMax 3.2 analysis from Stream "Fuel Gas".

Facility	Flash	Gas	Analysis	
----------	-------	-----	----------	--

	MOL %	MW	Component Weight	Wt. Fraction
		lb/lb-mol	lb/lb-mol	
Methane	21.05	16.04	3.38	0.080
Ethane	22.02	30.07	6.62	0.16
Propane	18.41	44.10	8.12	0.19
i-Butane	4.66	58.12	2.71	0.064
n-Butane	10.30	58.12	5.99	0.14
i-Pentane	4.35	72.15	3.14	0.074
n-Pentane	4.73	72.15	3.41	0.081
Hexanes	2.11	106.72	2.25	0.053
Heptanes	2.01	100.20	2.02	0.048
Octanes	0.63	114.23	0.72	0.017
Nonanes	0.0037	128.26	0.0047	0.00011
Decanes	0.21	142.29	0.30	0.0070
n-Hexane	2.73	86.18	2.35	0.055
Benzene	0.042	78.11	0.033	0.00078
Toluene	0.063	92.14	0.058	0.0014
Ethylbenzene	0.000039	106.17	0.000041	0.0000010
Xylenes	0.0062	106.16	0.0066	0.00016
Nitrogen	0.067	28.01	0.019	0.00044
Carbon Dioxide	0.15	44.01	0.067	0.0016
Water	6.46	18.01	1.16	0.027
Totals	100.0		42.35	1.00

Molecular weight	42.35
VOC weight fraction	0.73
Methane weight fraction	0.080
THC weight fraction	0.97
VOC of THC wt fraction	0.76
CH4 of THC wt fraction	0.082
Benzene of THC wt fraction	0.00080
Toluene of THC wt fraction	0.0014
E-benzene of THC wt fraction	0.0000010
Xylene of THC wt fraction	0.00016
n-Hexane of THC wt fraction	0.057

1. Site-specific ProMax 3.2 analysis from Stream "43" off of the settling tank.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Nichols Compressor Station File Name: W:\20163815 Antero WV 2016 Comp Air Mods\2.0 Technical Information\Nichols CS\Attachment N\Nichols Glycalc.ddf Date: January 20, 2016 DESCRIPTION: _____ Description: 72.5 MMscfd Gas injection pump Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ _____ Temperature: 120.00 deg. F Pressure: 810.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) _____ ____
 Carbon Dioxide
 0.2000

 Nitrogen
 0.7900

 Methane
 77.2200

 Ethane
 14.2400

 Propane
 4.1600
 Isobutane 0.5800 n-Butane 1.0800 Isopentane 0.3400 n-Pentane 0.3500 n-Hexane 0.2100
 Other Hexanes
 0.1700

 Heptanes
 0.2300

 Benzene
 0.0033

 Toluene
 0.0077

 Xylenes
 0.0020
 C8+ Heavies 0.4200 DRY GAS: _____ Flow Rate: 72.5 MMSCF/day Water Content: 5.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm PUMP: _____ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.032 acfm gas/gpm glycol

Page: 1

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 130.0 deg. F Pressure: 60.0 psig

STRIPPING GAS:

Source of Gas: Dry Gas Gas Flow Rate: 40.000 scfm

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Condenser Temperature: 145.0 deg. F Pressure: 14.7 psia Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 0.0 % Ambient Air Temperature: 0.0 deg. F GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Nichols Compressor Station
File Name: W:\20163815 Antero WV 2016 Comp Air Mods\2.0 Technical Information\Nichols
CS\Attachment N\Nichols Glycalc.ddf
Date: January 20, 2016

DESCRIPTION:

Description: 72.5 MMscfd Gas injection pump

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.5814	37.953	6.9264
Ethane	0.5626	13.503	2.4644
Propane	0.2595	6.229	1.1367
Isobutane	0.0505	1.212	0.2211
n-Butane	0.1007	2.417	0.4411
Isopentane	0.0394	0.946	0.1726
n-Pentane	0.0438	1.051	0.1918
n-Hexane	0.0386	0.925	0.1689
Other Hexanes	0.0273	0.656	0.1197
Heptanes	0.0684	1.641	0.2994
Benzene	0.0158	0.379	0.0691
Toluene	0.0525	1.259	0.2298
Xylenes	0.0243	0.583	0.1064
C8+ Heavies	0.0473	1.136	0.2073
Total Emissions	2.9121	69.890	12.7548
Total Hydrocarbon Emissions	2.9121	69.890	12.7548
Total VOC Emissions	0.7681	18.433	3.3641
Total HAP Emissions	0.1311	3.147	0.5743
Total BTEX Emissions	0.0926	2.221	0.4054

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	79.0811	1897.947	346.3753
Ethane	28.1527	675.665	123.3089
Propane	13.0158	312.379	57.0092
Isobutane	2.5377	60.906	11.1153
n-Butane	5.0711	121.706	22.2114
Isopentane	1.9982	47.957	8.7521
n-Pentane	2.2274	53.457	9.7560
n-Hexane	2.0007	48.016	8.7630
Other Hexanes	1.4110	33.865	6.1804
Heptanes	3.7401	89.762	16.3816
Benzene	0.8308	19.939	3.6388
Toluene	3.0127	72.306	13.1958
Xylenes	1.6749	40.198	7.3361
C8+ Heavies	41.5963	998.311	182.1918

Page: 2

				5
Total	Emissions	186.3506	4472.414	816.2155
	Emissions Emissions	186.3506 79.1167 7.5191 5.5184	4472.414 1898.802 180.458 132.442	816.2155 346.5313 32.9337 24.1707

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.7551	18.122	3.3073
Ethane	0.3530	8.472	1.5462
Propane	0.1801	4.322	0.7887
Isobutane	0.0360	0.863	0.1575
n-Butane	0.0746	1.791	0.3269
Isopentane	0.0274	0.657	0.1199
n-Pentane	0.0310	0.745	0.1359
n-Hexane	0.0246	0.591	0.1078
Other Hexanes	0.0184	0.441	0.0805
Heptanes	0.0346	0.829	0.1514
Benzene	0.0008	0.019	0.0035
Toluene	0.0020	0.048	0.0087
Xylenes	0.0004	0.010	0.0019
C8+ Heavies	0.0619	1.485	0.2710
Total Emissions	1.5998	38.396	7.0072
Total Hydrocarbon Emissions	1.5998	38.396	7.0072
Total VOC Emissions	0.4917	11.801	2.1537
Total HAP Emissions	0.0278	0.668	0.1220
Total BTEX Emissions	0.0032	0.077	0.0141

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	37.7546	906.111	165.3652
Ethane	17.6507	423.617	77.3101
Propane	9.0038	216.091	39.4365
Isobutane	1.7977	43.145	7.8740
n-Butane	3.7317	89.560	16.3447
Isopentane	1.3683	32.839	5.9932
n-Pentane	1.5518	37.244	6.7971
n-Hexane	1.2310	29.543	5.3917
Other Hexanes	0.9194	22.065	4.0269
Heptanes	1.7279	41.469	7.5681
Benzene	0.0402	0.964	0.1760
Toluene	0.0992	2.380	0.4344
Xylenes	0.0218	0.523	0.0955
C8+ Heavies	3.0930	74.233	13.5475
Total Emissions	79.9911	1919.786	350.3610
Total Hydrocarbon Emissions	79.9911	1919.786	350.3610
Total VOC Emissions	24.5858	590.058	107.6857
Total HAP Emissions	1.3921	33.411	6.0976
Total BTEX Emissions	0.1612	3.868	0.7059

EQUIPMENT REPORTS:

Page: 3

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature Condenser Pressure Condenser Duty Hydrocarbon Recovery Produced Water Ambient Temperature Excess Oxygen Combustion Efficiency Supplemental Fuel Requirement	: 14.70 : 6.89e-001 : 3.28 : 21.34 : 0.00 : 0.00 : 98.00	psia MM BTU/hr bbls/day bbls/day deg. F % %
Component E	mitted	Destroyed
Methane Ethane Propane Isobutane n-Butane	1.99%	98.00% 98.01% 98.01%
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes	1.97% 1.97% 1.93% 1.94% 1.83%	98.03% 98.07% 98.06%
Benzene Toluene Xylenes C8+ Heavies	1.90% 1.74% 1.45% 0.11%	

ABSORBER

Coloulated Absorber Ctarges.	2.84	
Calculated Absorber Stages:		
Specified Dry Gas Dew Point:	5.00	lbs. H2O/MMSCF
Temperature:	120.0	deg. F
Pressure:	810.0	psig
Dry Gas Flow Rate:		MMSCF/day
Glycol Losses with Dry Gas:	2.6589	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	119.22	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	1.30	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.18%	95.82%
Carbon Dioxide	99.89%	0.11%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.96%	0.04%
Isobutane	99.95%	0.05%
n-Butane	99.93%	0.07%
Isopentane	99.94%	0.06%
n-Pentane	99.92%	0.08%
n-Hexane	99.89%	0.11%
Other Hexanes	99.91%	0.09%
Heptanes	99.81%	0.19%
Benzene	95.86%	4.14%

	Toluene	94.60%	Page: 5.40%	4
C8+	Xylenes Heavies	90.07% 99.32%	9.93% 0.68%	

FLASH TANK

Flash Control:	Combustion device
Flash Control Efficiency:	98.00 %
Flash Temperature:	130.0 deg. F
Flash Pressure:	60.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.90%	0.10%
Carbon Dioxide	19.19%	80.81%
Nitrogen	1.72%	98.28%
Methane	1.92%	98.08%
Ethane	5.74%	94.26%
Propane	13.59%	86.41%
Isobutane	18.44%	81.56%
n-Butane	22.82%	77.18%
Isopentane	24.90%	75.10%
n-Pentane	29.17%	70.83%
n-Hexane	41.28%	58.72%
Other Hexanes	35.03%	64.97%
Heptanes	57.13%	42.87%
Benzene	95.54%	4.46%
Toluene	97.02%	2.98%
Xylenes	98.87%	1.13%
C8+ Heavies	93.19%	6.81%

REGENERATOR ______

Regenerator Stripping Gas: Dry Product Gas Stripping Gas Flow Rate: 40.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water	15.46%	84.54%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.36%	98.64%
n-Pentane	1.24%	98.76%
n-Hexane	0.96%	99.04%
Other Hexanes	2.15%	97.85%
Heptanes	0.76%	99.24%
Benzene	5.20%	94.80%
Toluene	8.10%	91.90%
Xylenes	13.01%	86.99%
C8+ Heavies	12.39%	87.61%

STREAM REPORTS:

WET GAS STREAM

Temperature:	120.00 deg. F		
Pressure: Flow Rate:	824.70 psia 3.03e+006 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	2.51e-001 1.99e-001 7.88e-001 7.70e+001 1.42e+001	7.01e+002 1.76e+003 9.86e+004
	Isobutane n-Butane Isopentane	4.15e+000 5.79e-001 1.08e+000 3.39e-001 3.49e-001	2.68e+003 5.00e+003 1.95e+003
	Other Hexanes Heptanes Benzene	2.09e-001 1.70e-001 2.29e-001 3.29e-003 7.68e-003	1.17e+003 1.84e+003 2.05e+001
	Xylenes C8+ Heavies	1.99e-003 4.19e-001	
	Total Components	100.00	1.72e+005
Temperature: Pressure: Flow Rate:	824.70 psia		
Pressure:	824.70 psia	Conc. (vol%)	Loading (lb/hr)
Temperature: Pressure:	824.70 psia 3.02e+006 scfh Component Water Carbon Dioxide Nitrogen Methane	(vol%) 1.05e-002 2.00e-001	(lb/hr) 1.51e+001 7.00e+002 1.76e+003 9.86e+004
Temperature: Pressure:	824.70 psia 3.02e+006 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	(vol%) 1.05e-002 2.00e-001 7.90e-001 7.72e+001 1.42e+001 4.16e+000 5.80e-001 1.08e+000	(lb/hr) 1.51e+001 7.00e+002 1.76e+003 9.86e+004 3.41e+004 1.46e+004 2.68e+003 4.99e+003 1.95e+003
Temperature: Pressure:	824.70 psia 3.02e+006 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene	(vol%) 1.05e-002 2.00e-001 7.90e-001 7.72e+001 1.42e+001 4.16e+000 5.80e-001 1.08e+000 3.40e-001 3.50e-001 2.10e-001	(lb/hr) 1.51e+001 7.00e+002 1.76e+003 9.86e+004 3.41e+004 1.46e+004 2.68e+003 4.99e+003 1.95e+003 2.01e+003 1.44e+003 1.17e+003 1.83e+003 1.97e+001
Temperature: Pressure:	824.70 psia 3.02e+006 scfh Component Water Carbon Dioxide Nitrogen Methane Ethane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene Toluene	(vol%) 1.05e-002 2.00e-001 7.90e-001 7.72e+001 1.42e+001 4.16e+000 5.80e-001 1.08e+000 3.40e-001 3.50e-001 2.10e-001 1.70e-001 2.30e-001 3.16e-003	(lb/hr) 1.51e+001 7.00e+002 1.76e+003 9.86e+004 3.41e+004 1.46e+004 2.68e+003 4.99e+003 1.95e+003 2.01e+003 1.44e+003 1.17e+003 1.83e+003 1.97e+001 5.34e+001

Page: 6

C8+ Heavies 4.17e-001 5.66e+003

Total Components 100.00 1.72e+005

LEAN GLYCOL STREAM _____ _____ Temperature: 120.00 deg. F Flow Rate: 7.49e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.84e+001 4.15e+003 Water 1.50e+000 6.32e+001 Carbon Dioxide 1.75e-012 7.38e-011 Nitrogen 4.04e-013 1.70e-011 Methane 7.03e-018 2.97e-016 Ethane 9.48e-008 4.00e-006 Propane 5.82e-009 2.45e-007 Isobutane 9.94e-010 4.19e-008 n-Butane 1.96e-009 8.26e-008 Isopentane 1.46e-004 6.17e-003 n-Pentane 1.88e-004 7.93e-003 n-Hexane 1.97e-004 8.32e-003 Other Hexanes 2.52e-004 1.06e-002 Heptanes 4.13e-004 1.74e-002 Benzene 1.06e-003 4.47e-002 Toluene 6.21e-003 2.62e-001 Xylenes 5.90e-003 2.49e-001 C8+ Heavies 1.24e-001 5.25e+000 _____ ____ Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 120.00 deg. F Pressure: 824.70 psia Flow Rate: 8.46e+000 gpm NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	8.83e+001 8.73e+000 2.02e-002 1.49e-002 8.21e-001	4.09e+002 9.49e-001 7.00e-001
Propane Isobutane	3.99e-001 2.22e-001 4.70e-002 1.03e-001 3.89e-002	1.04e+001 2.20e+000 4.84e+000
n-Hexane Other Hexanes Heptanes	4.67e-002 4.47e-002 3.02e-002 8.60e-002 1.92e-002	2.10e+000 1.42e+000 4.03e+000
	7.11e-002 4.12e-002 9.69e-001	1.93e+000

Total Components 100.00 4.69e+003

_____ ____

FLASH TANK OFF GAS STREAM

Temperature: Pressure: Flow Rate: 1.2	±			
Cor	nponent		Loading (lb/hr)	
	Carbon Dioxide Nitrogen Methane	6.77e-001 5.11e-001 7.21e-001 6.91e+001 1.72e+001	7.67e-001 6.88e-001 3.78e+001	
	Isobutane n-Butane Isopentane	5.99e+000 9.08e-001 1.88e+000 5.57e-001 6.31e-001	1.80e+000 3.73e+000 1.37e+000	
	Other Hexanes Heptanes Benzene	4.19e-001 3.13e-001 5.06e-001 1.51e-002 3.16e-002	9.19e-001 1.73e+000 4.02e-002	
	Xylenes C8+ Heavies	6.03e-003 5.33e-001		
T	otal Components	100.00	8.19e+001	

FLASH TANK GLYCOL STREAM

Temperature: 130.00 deg. F Flow Rate: 8.28e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 8.99e+001 4.14e+003 Water 8.88e+000 4.09e+002 Carbon Dioxide 3.95e-003 1.82e-001 Nitrogen 2.61e-004 1.20e-002 Methane 1.61e-002 7.41e-001 Ethane 2.33e-002 1.07e+000 Propane 3.07e-002 1.42e+000 Isobutane 8.83e-003 4.07e-001 n-Butane 2.40e-002 1.10e+000 Isopentane 9.85e-003 4.54e-001 n-Pentane 1.39e-002 6.39e-001 n-Hexane 1.88e-002 8.66e-001 Other Hexanes 1.08e-002 4.96e-001 Heptanes 5.00e-002 2.30e+000 Benzene 1.87e-002 8.60e-001 Toluene 7.02e-002 3.23e+000 Xylenes 4.15e-002 1.91e+000 C8+ Heavies 9.19e-001 4.23e+001 Total Components 100.00 4.61e+003

FLASH GAS EMISSIONS

Flow Rate: 5.18e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.17e+001 3.77e+001 1.80e-001 3.45e-001 8.61e-002	2.26e+002 6.88e-001 7.55e-001
Isobutane n-Butane Isopentane	2.99e-002 4.54e-003 9.41e-003 2.78e-003 3.15e-003	3.60e-002 7.46e-002 2.74e-002
Other Hexanes Heptanes Benzene	2.09e-003 1.56e-003 2.53e-003 7.54e-005 1.58e-004	1.84e-002 3.46e-002 8.04e-004
Xylenes C8+ Heavies	3.01e-005 2.66e-003	
Total Components	100.00	3.80e+002

REGENERATOR OVERHEADS STREAM

Pressure:	212.00 deg. F 14.70 psia 9.86e+003 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	7.38e+001 6.45e-002 1.94e-001 1.90e+001 3.60e+000	7.38e-001 1.41e+000 7.91e+001
	Isobutane n-Butane Isopentane	1.14e+000 1.68e-001 3.36e-001 1.07e-001 1.19e-001	2.54e+000 5.07e+000 2.00e+000
	Other Hexanes Heptanes Benzene	8.93e-002 6.30e-002 1.44e-001 4.09e-002 1.26e-001	1.41e+000 3.74e+000 8.31e-001
	Xylenes C8+ Heavies	6.07e-002 9.39e-001	
	Total Components	100.00	5.34e+002

Temperature: Flow Rate:	2	F

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Carbon Dioxide Nitrogen Methane		2.54e-005 2.59e-003	999958. 1. 0. 8. 3.
Isobutane n-Butane Isopentane	1.77e-004 1.83e-005 4.70e-005 1.25e-005 1.48e-005	5.69e-005 1.46e-004 3.90e-005	2. 0. 0. 0. 0.
Other Hexanes Heptanes Benzene	1.03e-005 5.99e-006 9.83e-006 5.49e-004 1.44e-003	1.86e-005 3.06e-005 1.71e-003	0. 0. 5. 14.
Xylenes C8+ Heavies	6.56e-004 3.12e-006		7. 0.
Total Components	100.00	3.12e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 145.00 deg. F Flow Rate: 9.58e-002 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.62e-002 4.87e-004 7.24e-005 2.58e-002 4.80e-002	1.98e-004 2.95e-005 1.05e-002
Isobutane n-Butane Isopentane	9.62e-002 3.36e-002 8.68e-002 6.72e-002 9.21e-002	1.37e-002 3.54e-002 2.74e-002
Other Hexanes Heptanes Benzene	1.79e-001 1.08e-001 7.91e-001 9.77e-002 9.43e-001	4.41e-002 3.22e-001 3.98e-002
Xylenes C8+ Heavies	1.12e+000 9.63e+001	
Total Components	100.00	4.07e+001

CONDENSER VENT STREAM

Temperature: 145.00 deg. F Pressure: 14.70 psia Flow Rate: 3.21e+003 scfh

Component	Conc. (vol%)	
Carbon Dioxide Nitrogen Methane	2.25e+001 1.98e-001 5.96e-001 5.83e+001 1.11e+001	7.38e-001 1.41e+000 7.91e+001
Isobutane n-Butane Isopentane	3.48e+000 5.14e-001 1.03e+000 3.23e-001 3.59e-001	2.52e+000 5.04e+000 1.97e+000
Other Hexanes Heptanes Benzene	2.65e-001 1.88e-001 4.04e-001 1.20e-001 3.37e-001	1.37e+000 3.42e+000 7.89e-001
Xylenes C8+ Heavies	1.35e-001 1.64e-001	
Total Components	100.00	1.82e+002

COMBUSTION DEVICE OFF GAS STREAM

Pressure:	1000.00 deg. F 14.70 psia 4.92e+001 scfh		
	Component		Loading (lb/hr)
	Ethane Propane Isobutane	7.60e+001 1.44e+001 4.54e+000 6.70e-001 1.34e+000	5.63e-001 2.60e-001 5.05e-002
	n-Hexane Other Hexanes	4.68e-001 3.45e-001	4.38e-002 3.86e-002 2.73e-002
	Toluene	1.56e-001 4.39e-001 1.76e-001 2.14e-001	5.25e-002 2.43e-002
	Total Components	100.00	2.91e+000

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the Nichols Compressor Station, including federal and state regulatory requirements.

1. Summary of Key Operational Throughput Limits

- a. Maximum wet gas throughput into each Dehy (RSV-1 and RSV-2): 72.5 MMscf/day or 26,462.5 MMscf/year.
- b. Maximum liquids loaded out (EPLOR): 2,998,548 gallons per year.
- c. Maximum fuel use of all compressor engines (CE-01 through CE-13): 1,408 MMscf/year

2. Operational Requirements

- a. Compressor engines will operate with the catalytic converter in place at all times and will be fueled by natural gas only.
- b. Catalysts installed on all compressor engines will be operated per manufacturer instructions.
- c. Reciprocating compressor rod packing will be replaced within 36 months of last packing/startup or within 26,000 operating hours, whichever comes first.
- d. Microturbines will be be fueled by natural gas only.
- e. Each dehydrator reboiler will be operated at no more than 1.5 MMBtu/hr and fueled only by natural gas or offgases from the dehydrator flash tanks.
- f. No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- g. The combustor capacity will not exceed 4.80 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- h. The combustor will be operated per manufacturer instructions.
- i. Produced water, Condensate, and Settling storage tanks potential emissions shall be routed to the VRU with recovery greater than 98 percent at all times.
- j. Storage tanks must be covered and routed to a closed vent system with no detectable emissions.
- k. Liquid loadout trucks must use the submerged-fill method.
- I. Dehydrator still vents must be controlled by the combustor.
- m. Dehydrator flash tank vent gas is to be used in the reboiler as fuel or routed to the VRU system.

3. Monitoring

- a. Non-certified engines will be stack tested within 1 year of startup and every 8,760 hours of operation thereafter.
- b. Catalyst inlet temperature will be monitored.

- c. Compressor run time will be monitored as well as number of months since compressor rod repacking.
- d. Daily, monthly, and rolling 12-month average of the wet gas throughput for the dehydrators will be monitored.
- e. Initial Method 22 observations of each reboiler exhaust and combustor will be conducted for a minimum of 2 hours.
- f. Monthly Method 22 observations of each reboiler exhaust and combustor will be conducted for a minimum of 10 minutes each.
- g. Monthly olfactory, visual, and auditory inspections of the tanks closed vent and control system (combustor) will be conducted for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable (no later than 5 days for first attempt).
- h. The presence of combustor flame will be continuously monitored by a thermocouple.
- i. Monthly and rolling twelve-month average of the amount of liquids loaded out will be monitored.

4. Recordkeeping

- a. Records will be kept on-site for a minimum of 2 years, and in company records (on or off-site) for a minimum of 5 years.
- b. Records will be kept of inspection, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment.
- c. Records will be kept of the date, time, duration of each time that a flame is not present at the combustor, and startup, shutdown, malfunctions of the combustor.
- d. Records will be kept of engine maintenance and engine run time.
- e. Records will be kept of catalyst inlet temperature.
- f. Records will be kept of the actual annual average natural gas throughput in the dehydrators.

5. Notifications and Reports

- a. WVDAQ will be notified within 30 calendar days of commencement of construction.
- b. WVDAQ will be notified within 30 calendar days of startup.
- c. Upon startup, a Certificate to Operate (CTO) application will be filed and fees paid to WVDAQ for the period from startup to the following June 30 and then annually the CTO will be renewed and fees paid. CTO will be maintained on-site.
- d. An annual report will be filed for compliance with 40 CFR 60 Subpart OOOO for the compressors and storage tanks (for settling tank only) within 90 days after one year of operation (i.e., within 90 days after 12 months after initial startup).
- e. For stack testing, a protocol will be filed at least 30 days prior to test and WVDAQ and EPA will be notified of the test at least 15 days prior to test. Results will be reported within 60 days of test.
- f. If operations are suspended for 60 days or more, WVDAQ will be notified within 2 weeks after the 60th day.

Attachment P. Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application – Nichols Compressor Station

Notice is given that Antero Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification to the existing 45CSR13 Construction Permit R13-3201A for the Nichols Compressor Station located at 2189 Long Run Road, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.2926N, 80.8695W.

The applicant estimates the change in the potential to discharge of the following Regulated Air Pollutants will be:

Regulated Air Pollutant	Modified Potential Emissions (tons/yr)
Nitrogen Oxides (NOx)	-15.52
Carbon Monoxide (CO)	-14.61
Volatile Organic Compounds (VOC)	-24.31
Particulate Matter less than 10 µm (PM ₁₀)	4.86
Particulate Matter less than 2.5 µm (PM _{2.5})	3.69
Sulfur Dioxide (SO ₂)	0.11
Formaldehyde (HCHO)	-0.87
Benzene	-0.65
Toluene	-0.15
Ethylbenzene	-0.005
Xylenes	0.10
Total HAPs	-3.22
Greenhouse Gases (CO ₂ e)	27,387

Please note that negative numbers in the table indicate a decrease in potential to emit.

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated the 29th day of January 2016.

By: Antero Midstream LLC Barry Schatz Senior Environmental and Regulatory Manager 1615 Wynkoop Street Denver, CO 80202

Attachment R. Authority/Delegation of Authority

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: August 5 , 2015

ATTN.: Director

Corporation's / other business entity's Federal Employer I.D. Number _____46-5517375

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.

Further, the corporation or the business entity certifies as follows:

(1) Luz Slauter and Barry Schatz (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may

obligate and legally bind the corporation or the business entity.

(2) The corporation or the business entity is authorized to do business in the State of West Virginia.

(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.

Ward McNeilly, Vice President - Vice President Reserves Planning & Midstream

President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)

(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).

Secretary

Antero Midstream LLC